JP2013143364A - Charged particle beam device for observing internal construction of sample - Google Patents

Charged particle beam device for observing internal construction of sample Download PDF

Info

Publication number
JP2013143364A
JP2013143364A JP2012004580A JP2012004580A JP2013143364A JP 2013143364 A JP2013143364 A JP 2013143364A JP 2012004580 A JP2012004580 A JP 2012004580A JP 2012004580 A JP2012004580 A JP 2012004580A JP 2013143364 A JP2013143364 A JP 2013143364A
Authority
JP
Japan
Prior art keywords
sample
particle beam
charged particle
internal structure
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012004580A
Other languages
Japanese (ja)
Other versions
JP5904799B2 (en
JP2013143364A5 (en
Inventor
Masanari Furuki
昌成 振木
Masako Nishimura
雅子 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Corp
Original Assignee
Hitachi High Technologies Corp
Hitachi High Tech Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Technologies Corp, Hitachi High Tech Corp filed Critical Hitachi High Technologies Corp
Priority to JP2012004580A priority Critical patent/JP5904799B2/en
Publication of JP2013143364A publication Critical patent/JP2013143364A/en
Publication of JP2013143364A5 publication Critical patent/JP2013143364A5/ja
Application granted granted Critical
Publication of JP5904799B2 publication Critical patent/JP5904799B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Length-Measuring Devices Using Wave Or Particle Radiation (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To solve such a problem that when an internal construction of a sample is analyzed, there is a case where a dedicated device is required, there is a fear of physical damage, such as destruction, loss, or deformation, of the sample due to cross-section segmentation, or there is a fear that evaluation of an original shape of the sample may be impossible because of chemical/physical alteration of the sample due to exposure to the atmosphere or the like.SOLUTION: A charged particle beam device which creates an image of a sample by irradiating the sample with a charge particle beam and using a secondary signal generated through the irradiation, includes: an uneven shape analysis part for analyzing an uneven shape of a surface of the sample from the image of the sample; a composition analysis part for evaluating a thickness of a same-composition portion by analyzing a composition in a thickness direction of the sample in an arbitrary area of the sample; and an internal construction structuring part for structuring an internal construction of the sample on the basis of the thickness of the same-composition portion and the uneven shape of the surface of the sample. With this configuration, it is possible to two-dimensionally or three-dimensionally structure the internal construction of the sample in a nondestructive manner.

Description

本発明は走査電子顕微鏡や、これを用いたパターン計測・検査装置等の荷電粒子線装置に関する。特に、試料の内部構造を観察する技術に関する。   The present invention relates to a charged particle beam apparatus such as a scanning electron microscope and a pattern measurement / inspection apparatus using the same. In particular, it relates to a technique for observing the internal structure of a sample.

走査型電子顕微鏡などの荷電粒子線装置を用いて試料形状の三次元構造を計測・観察する方法が知られている。走査型電子顕微鏡は試料表面に電子線を照射し、照射された領域から得られる二次電子や反射電子等の二次粒子の信号に基づいて画像を取得するものである。これらの二次粒子は主に試料表面近傍からの情報をもつものであり、一般的には、二次粒子等を用いた試料上方からの観察では試料の表面近傍の情報しか得られない。   A method of measuring and observing a three-dimensional structure of a sample shape using a charged particle beam apparatus such as a scanning electron microscope is known. A scanning electron microscope irradiates a sample surface with an electron beam and acquires an image based on secondary particle signals such as secondary electrons and reflected electrons obtained from the irradiated region. These secondary particles mainly have information from the vicinity of the sample surface. In general, observation from above the sample using secondary particles or the like can only provide information about the surface of the sample.

試料内部構造を解析する手法には、CT法、イオンミリング法、FIB法、機械研磨法、切削法などが挙げられるが、専用の装置が必要である場合や、試料を切削することによって破壊や消失を伴う場合もある。特に、試料内部に内包される異物等の解析を行う場合には、上記切削法などの物理的な断面作製では異物の変形や脱落といった形態変化を招く恐れがある。また、機械研磨法や切削法では広い領域の解析には適用しやすいが、局所領域での内部構造解析には適用しにくい。   Methods for analyzing the internal structure of the sample include CT method, ion milling method, FIB method, mechanical polishing method, cutting method, etc., but if a dedicated device is required or if the sample is cut, It may be accompanied by disappearance. In particular, in the case of analyzing a foreign substance or the like contained in a sample, there is a risk of causing a change in form such as deformation or dropping of the foreign substance in the physical cross-section preparation such as the above-described cutting method. In addition, mechanical polishing and cutting methods are easy to apply to analysis in a wide area, but are difficult to apply to internal structure analysis in a local area.

これに対して、特許文献1に記載されるように、加速電圧によって一次電子線の試料内部への侵入深さが変わることを用いて、試料内部の構造を観察する技術が知られている。   On the other hand, as described in Patent Document 1, there is known a technique for observing the structure inside the sample by using the change in the penetration depth of the primary electron beam into the sample by the acceleration voltage.

特開平11−250850号公報JP-A-11-250850

しかし、特許文献1に記載の発明は観察対象となる試料を走査透過像で観察を行うため、試料を観察可能となるまでイオンミリング法、FIB法、機械研磨法、切削法などにより薄片化する必要があるため非破壊での内部構造解析は困難である。   However, since the invention described in Patent Document 1 observes a sample to be observed with a scanning transmission image, the sample is sliced by an ion milling method, FIB method, mechanical polishing method, cutting method or the like until the sample can be observed. Because it is necessary, non-destructive internal structure analysis is difficult.

本発明は、試料表面から観察または分析を行うことで、試料を破壊することなく、また試料や基板形状に依らず試料内部構造を解析することを目的とする。   An object of the present invention is to analyze the internal structure of a sample without damaging the sample and regardless of the shape of the sample or the substrate by performing observation or analysis from the surface of the sample.

試料に荷電粒子線を照射して、照射によって発生した二次信号から試料の画像を生成する荷電粒子線装置であって、試料の画像から前記試料の表面の凹凸形状を分析する凹凸形状分析部と、試料の任意の領域における試料の厚さ方向の組成を分析して同一組成である部分の厚さを評価する組成分析部と、同一組成である部分の厚さと試料表面の凹凸形状とに基づいて前記試料の内部構造を構築する内部構造構築部とを備える。   A charged particle beam apparatus that irradiates a sample with a charged particle beam and generates an image of the sample from a secondary signal generated by the irradiation, and analyzes the uneven shape of the surface of the sample from the sample image A composition analysis unit that analyzes the composition in the thickness direction of the sample in an arbitrary region of the sample and evaluates the thickness of the portion having the same composition, and the thickness of the portion having the same composition and the uneven shape of the sample surface And an internal structure constructing section for constructing the internal structure of the sample based on the above.

試料表面から観察/分析を行い、データ取得を行うため、試料を破断することなく非破壊で試料内部構造(膜厚、異物形状など)を把握することができる。   Since observation / analysis is performed from the sample surface and data acquisition is performed, the internal structure of the sample (film thickness, foreign matter shape, etc.) can be grasped without breaking the sample.

荷電粒子線装置の全体構成の概略図である。It is the schematic of the whole structure of a charged particle beam apparatus. (a)電子線侵入深さの説明図、(b)複数点での膜厚計測の概略説明図である。(A) Explanatory drawing of electron beam penetration depth, (b) It is schematic explanatory drawing of the film thickness measurement in multiple points. 試料表面の凹凸形状計測の概略を説明する図である。It is a figure explaining the outline of the uneven | corrugated shape measurement of the sample surface. 試料内部構造解析の一例を示したフローチャートである。It is the flowchart which showed an example of the sample internal structure analysis. 異物を内包した試料の内部構造解析例である。It is an example of internal structure analysis of the sample which included the foreign material.

以下、図面を参照して本発明の実施の形態を詳細に説明する。なお、以下では走査電子顕微鏡の実施例を説明するが、走査電子顕微鏡を応用したパターン計測装置や試料観察装置、欠陥検査装置等の荷電粒子線装置にも応用可能である。ここでいう荷電粒子線装置とは、荷電粒子線を試料に照射し、照射によって発生した二次電子や反射電子等の二次信号から画像を生成する手段を有する装置を指す。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In addition, although the Example of a scanning electron microscope is described below, it is applicable also to charged particle beam apparatuses, such as a pattern measurement apparatus, a sample observation apparatus, and a defect inspection apparatus which applied the scanning electron microscope. The charged particle beam device here refers to a device having means for irradiating a sample with a charged particle beam and generating an image from secondary signals such as secondary electrons and reflected electrons generated by irradiation.

図1は、本実施例の走査電子顕微鏡の全体構成の概略を示す図であり、走査電子顕微鏡を断面で示した模式図である。   FIG. 1 is a diagram showing an outline of the entire configuration of the scanning electron microscope of the present embodiment, and is a schematic diagram showing a cross section of the scanning electron microscope.

電子銃101に熱あるいは電圧を印加し電子線102が放出され、収束レンズ103で収束され、偏向器104によって走査される。収束レンズ103、偏向器104は1個または複数で電子線102を収束する。この電子線102はさらに対物レンズ105により微小スポットとして収束され、試料106上に照射される。この電子線102の照射によって試料106から発生する二次信号107(二次電子、反射電子、吸収電流、特性X線など)によって画像取得または組成分析を行う。   Heat or voltage is applied to the electron gun 101, the electron beam 102 is emitted, converged by the converging lens 103, and scanned by the deflector 104. One or more converging lenses 103 and deflectors 104 converge the electron beam 102. The electron beam 102 is further converged as a minute spot by the objective lens 105 and irradiated onto the sample 106. Image acquisition or composition analysis is performed by secondary signals 107 (secondary electrons, reflected electrons, absorption current, characteristic X-rays, etc.) generated from the sample 106 by irradiation of the electron beam 102.

画像取得は、二次電子検出器110や反射電子検出器108によって検出された二次信号を試料上の走査位置の画素と対応付けて、表示部111に表示あるいはデジタルデータとして画像生成される。   In the image acquisition, the secondary signal detected by the secondary electron detector 110 or the backscattered electron detector 108 is associated with the pixel at the scanning position on the sample and displayed on the display unit 111 or an image is generated as digital data.

組成分析にはX線検出器109が用いられる。電子線102が試料に照射されると、試料から特性X線等、試料の組成情報を持つ二次信号107が発生する。これを検出し、スペクトル解析することで、電子線102が照射された領域の組成を分析することができる。   An X-ray detector 109 is used for the composition analysis. When the sample is irradiated with the electron beam 102, a secondary signal 107 having sample composition information such as characteristic X-rays is generated from the sample. By detecting this and analyzing the spectrum, the composition of the region irradiated with the electron beam 102 can be analyzed.

取得した画像や分析された試料の組成は、表示部111に表示される。表示部は走査電子顕微鏡本体に併設されてもよいし、ネットワークで接続されて遠隔したコンピュータ等の表示部であってもよい。制御用PC112は取得した膜厚情報などから内部構造を構築する際に用いるが、制御用PC112は同じく走査電子顕微鏡本体に併設されてもよいし、ネットワークで接続されて遠隔したコンピュータ等であってもよい。   The acquired image and the analyzed composition of the sample are displayed on the display unit 111. The display unit may be provided in the scanning electron microscope main body, or may be a display unit such as a remote computer connected by a network. The control PC 112 is used when building the internal structure from the acquired film thickness information, etc., but the control PC 112 may also be provided in the scanning electron microscope main body, or may be a remote computer connected via a network. Also good.

また、対物レンズ105は試料を対物レンズ内部に挿入して高分解能観察を実現するインレンズ方式、試料を対物レンズ下部に配置することで大型試料に対応できるアウトレンズ方式、または対物レンズ下方に仮想レンズが形成されることにより高分解能と大型試料観察を両立したシュノーケルレンズ方式(セミインレンズ方式)など種々の方式が用いられる。またX線分析は半導体検出器と波高分析器を用いて検出した特性X線のエネルギーに応じて同定を行うエネルギー分散型や、分光結晶を用いて検出する特性X線の波長に応じて同定を行う波長分散型など種々の方式が用いられる。   In addition, the objective lens 105 is an in-lens method in which a sample is inserted into the objective lens to realize high-resolution observation, an out-lens method that can accommodate a large sample by arranging the sample below the objective lens, or a virtual image below the objective lens. Various systems such as a snorkel lens system (semi-in-lens system) that achieves both high resolution and large sample observation by using a lens are used. X-ray analysis can be performed according to the energy dispersive type that performs identification according to the energy of characteristic X-rays detected using a semiconductor detector and pulse height analyzer, or according to the wavelength of characteristic X-rays detected using a spectroscopic crystal. Various methods such as a wavelength dispersion type are used.

また、本実施例の荷電粒子線装置は他の外部観察装置や検査装置などとネットワークで接続し、解析対象個所の位置情報を入出力してもよい。   Further, the charged particle beam apparatus according to the present embodiment may be connected to other external observation apparatuses, inspection apparatuses, and the like via a network, and input / output position information of analysis target locations.

図2は膜厚計測についての説明図で、(a)電子線侵入深さの説明図、(b)複数点での膜厚計測の概略説明図である。   2A and 2B are explanatory diagrams of film thickness measurement. FIG. 2A is an explanatory diagram of an electron beam penetration depth, and FIG. 2B is a schematic explanatory diagram of film thickness measurement at a plurality of points.

基板201上に形成された膜202に対し、電子線203を照射する。基板上の膜は1層あるいは組成の異なる複数層で形成される。図2(a)に示すように、電子線203が照射されると、組成分析用の電子線203が照射された領域から特性X線205が発生する。電子線203は加速電圧によって決まるエネルギーや、試料を構成する元素、密度、結晶状態等によって、試料内部に潜り込む領域、深さが異なる。以下、電子線203が潜り込むことによってX線が発生する領域を、X線発生領域204とよぶ。電子線203は試料を構成する元素、密度、膜厚等の情報から計算を行い、膜202を通過して基板201まで到達する加速電圧が自動選択される。X線発生領域を変化させるための条件は、加速電圧や試料を構成する元素、密度、結晶状態がある。X線検出器206で検出された特性X線205の定性分析から試料を構成する元素が同定され、加速電圧などの電子線照射条件を含めて計算される特性X線205の発生領域、X線検出器206で検出された特性X線205を演算して得られる定量分析結果及び試料を構成する元素の密度情報から計算を行い、膜202の膜厚情報207が求まる。   The film 202 formed on the substrate 201 is irradiated with an electron beam 203. The film on the substrate is formed of one layer or a plurality of layers having different compositions. As shown in FIG. 2A, when the electron beam 203 is irradiated, characteristic X-rays 205 are generated from a region irradiated with the composition analysis electron beam 203. The region and depth of the electron beam 203 that enter the sample differ depending on the energy determined by the acceleration voltage, the element constituting the sample, the density, the crystal state, and the like. Hereinafter, an area where X-rays are generated when the electron beam 203 enters is referred to as an X-ray generation area 204. The electron beam 203 is calculated from information such as the element constituting the sample, density, and film thickness, and an acceleration voltage that reaches the substrate 201 through the film 202 is automatically selected. Conditions for changing the X-ray generation region include an acceleration voltage, an element constituting the sample, a density, and a crystal state. The region where the characteristic X-ray 205 is generated, which is calculated from the qualitative analysis of the characteristic X-ray 205 detected by the X-ray detector 206 and which includes the electron beam irradiation conditions such as the acceleration voltage. Calculation is performed from the quantitative analysis result obtained by calculating the characteristic X-ray 205 detected by the detector 206 and the density information of the elements constituting the sample, and the film thickness information 207 of the film 202 is obtained.

膜表面の凹凸を計測する場合や膜厚分布を求める場合は、複数点での膜厚情報210を取得する。特に、凹凸の位置がわかっている場合には、凹部208を横断あるいは囲むように複数点にライン状あるいはグリッド状に電子線209を照射する。電子線209の照射点は少なくとも凹部の内外の各1点以上を選択する必要がある。凹部について説明したが凸部の場合も同様である。以下で説明するように、試料に異物が内包されている場合、凹部または凸部は、異物の垂直上方にあたる試料上の領域と言い換えることもできる。   When measuring the unevenness of the film surface or when obtaining the film thickness distribution, the film thickness information 210 at a plurality of points is acquired. In particular, when the position of the unevenness is known, the electron beam 209 is irradiated to a plurality of points in a line shape or a grid shape so as to cross or surround the recess 208. The irradiation point of the electron beam 209 needs to select at least one point inside and outside the recess. Although the concave portion has been described, the same applies to the convex portion. As will be described below, when a foreign substance is included in the sample, the concave portion or the convex portion can be rephrased as a region on the sample that is vertically above the foreign matter.

以上、試料が基板の上に積層された膜であるとして説明したが、必ずしも膜である必要はなく、試料の高さ方向に形成された構造物であればよい。組成の異なる堆積した、あるいは付着した異物、膜に生じた傷などによる形状変形なども含まれる。以下では簡単のため、試料の高さ方向の構造物を膜と表現するが、本明細書において膜とは同一組成からなる構造物を広く指すものとする。   As described above, the sample is described as being a film laminated on the substrate. However, the sample is not necessarily a film and may be a structure formed in the height direction of the sample. Examples of such deformation include accumulated foreign substances having different compositions or adhered, and shape deformation caused by scratches on the film. Hereinafter, for the sake of simplicity, the structure in the height direction of the sample is expressed as a film, but in this specification, the film widely refers to a structure having the same composition.

次に、図3を用いて試料表面の凹凸形状を測定または観察する方法について説明する。ここで、試料表面とは用いる装置の分解能により依存する識別可能な深さ情報で、加速電圧等に依存する。例えば、二次電子を用いる場合は一般的に二次電子の発生深さ(約10nm)を示すが、反射電子の場合にはそれよりも深い情報も検出しうる。試料表面とは上述の領域でかつ、観察している試料上部に構造が無い状態を示す。また、内部構造とは試料から物理的に露出していない状態の構造を表す。例えば、上述の「試料表面」より下側、すなわち凹凸形状観察用の一次電子線が侵入する深さ(侵入長)で検出できる試料構造のことをいう。何らかの粒子が膜中に存在している場合、粒子上部が膜面より露出している場合は露出部分は「試料表面」であるし、粒子上部に膜が覆っていると認識できる領域は「試料内部」となる。図3は試料表面の凹凸形状計測の概略を説明する図である。図3(a)では4分割された円環状反射電子検出器を用いて凹凸形状計測を行う例を示している。試料301に電子線302が照射され、試料301直上に配置された4分割反射電子検出器303で反射電子304を検出する。4分割された反射電子検出器の各検出素子305で取得する反射電子信号量は試料凹凸、材質などによって変化するが、試料上の任意の測定点において4検出素子で取得した信号量を演算することで、試料表面の各種の凹凸情報を構築できる。   Next, a method for measuring or observing the uneven shape on the sample surface will be described with reference to FIG. Here, the sample surface is identifiable depth information that depends on the resolution of the apparatus used, and depends on the acceleration voltage and the like. For example, in the case of using secondary electrons, the generation depth of secondary electrons (about 10 nm) is generally shown, but in the case of reflected electrons, information deeper than that can also be detected. The sample surface is the above-described region and indicates a state where there is no structure on the top of the sample being observed. The internal structure represents a structure that is not physically exposed from the sample. For example, it refers to a sample structure that can be detected below the “sample surface” described above, that is, at a depth (penetration length) at which a primary electron beam for observing an uneven shape enters. When some particles are present in the film, if the upper part of the particle is exposed from the film surface, the exposed part is the “sample surface”, and the area that can be recognized as the film covering the upper part of the particle is “sample "Inside". FIG. 3 is a diagram for explaining the outline of measurement of the uneven shape on the sample surface. FIG. 3A shows an example in which uneven shape measurement is performed using an annular backscattered electron detector divided into four. The sample 301 is irradiated with the electron beam 302, and the reflected electrons 304 are detected by a four-part reflected electron detector 303 disposed immediately above the sample 301. The amount of reflected electron signals acquired by each detection element 305 of the four-part reflected electron detector varies depending on the sample unevenness, material, etc., but the signal amount acquired by the four detection elements is calculated at an arbitrary measurement point on the sample. Thus, various unevenness information on the sample surface can be constructed.

試料に対向して配置された4分割された反射電子検出器の各検出素子305A〜305Dの検出信号は、試料の傾斜情報を反映する。凹凸情報を求めるには、例えば、次式に示すようにそれぞれの検出信号からX、Y方向に二次元的な積分を行うことで高さ分布Z(P2)を求めることができる。なお、x0、x1、y0、1はそれぞれ二次元上での位置、Z(P0)は原点(x0、y0)における高さを示す。 The detection signals of the detection elements 305A to 305D of the four-part reflected electron detectors arranged to face the sample reflect the tilt information of the sample. In order to obtain the unevenness information, for example, the height distribution Z (P2) can be obtained by performing two-dimensional integration in the X and Y directions from the respective detection signals as shown in the following equation. Note that x 0 , x 1 , y 0 and y 1 are two-dimensional positions, respectively, and Z (P 0 ) is the height at the origin (x 0 , y 0 ).

ここで凹凸情報とは図3(b)のように凹凸が認識できるSEM像306、図3(c)のように凹凸を分かりやすく示した鳥瞰図307、図3(d)のようにSEM像中の任意のラインで抽出した断面プロファイル308などがある。なお、断面プロファイル308はSEM像をZ方向を含む任意の方向に二次元的に切り出し、当該方向の試料高さの分布を示すものである。   Here, the unevenness information is an SEM image 306 in which the unevenness can be recognized as shown in FIG. 3B, a bird's eye view 307 showing the unevenness easily as shown in FIG. 3C, and an SEM image as shown in FIG. There is a cross-sectional profile 308 extracted with an arbitrary line. The cross-sectional profile 308 is a two-dimensionally cut out SEM image in an arbitrary direction including the Z direction, and shows the distribution of the sample height in that direction.

このうち、図3(d)の断面プロファイル308では、ベースライン高さ309が示されている。取得した凹凸情報は、ベースライン高さ309を基準とした相対的な高さの変位によって表されている。ベースライン高さ309は4分割された反射電子検出器の各検出素子305で検出した信号量の差分が0となる位置、あるいは基準高さと設定したキャリブレーション位置が起点となる。ベースライン高さ309は高さの絶対値が既知のものをキャリブレーション試料として用いることで、絶対基準高さで表現しても良い。また、断面プロファイル308を複数の方向に対して作成することで、凹凸情報310は取得画像中の任意の画素から数値として抽出可能である。試料セットが傾斜している場合などでは、試料表面凹凸形状に誤差要因が加わり、内部構造が歪むといったことが生じかねないが、ベースライン高さ309を基準とすることで、試料傾斜を補正して水平調整を行い、本来の内部構造を把握することも可能となる。   Among these, the baseline height 309 is shown in the cross-sectional profile 308 of FIG. The acquired unevenness information is represented by a relative height displacement based on the baseline height 309. The baseline height 309 starts from a position where the difference in signal amount detected by each detection element 305 of the backscattered electron detector divided into four becomes zero, or a calibration position set as a reference height. The baseline height 309 may be expressed as an absolute reference height by using a calibration sample whose absolute value is known. Further, by creating the cross-sectional profile 308 in a plurality of directions, the unevenness information 310 can be extracted as a numerical value from any pixel in the acquired image. When the sample set is tilted, an error factor may be added to the uneven shape of the sample surface and the internal structure may be distorted. However, the sample tilt is corrected by using the baseline height 309 as a reference. It is also possible to adjust the level and grasp the original internal structure.

ここで反射電子検出器は4分割としたが、分割数は2以上であれば試料から出射される反射電子の方位角を弁別して検出が可能であり、これに限定されるものではない。また、試料表面の凹凸形状計測の手法としては、上述した方法以外にも、試料傾斜またはビーム傾斜によってステレオ像を取得する方法など種々適用可能である。   Here, the reflected electron detector is divided into four parts, but if the number of divisions is two or more, the azimuth angle of the reflected electrons emitted from the sample can be discriminated and detected, and the present invention is not limited to this. In addition to the above-described method, various methods such as a method of acquiring a stereo image by sample inclination or beam inclination are applicable as a method for measuring the uneven shape of the sample surface.

さて、試料の内部構造を観察するには、従来、試料を切削することが必要となる場合が多く、試料の破壊や消失を伴っていた。特に、試料内部に内包される異物等の解析を行う場合には、上記切削法などの物理的な断面作製では、試料を切削するための刃物等の接触あるいは摩擦等により応力が加えられ、解析対象となる異物の変形や脱落といった形態変化を招く恐れがあった。   Now, in order to observe the internal structure of a sample, conventionally, it is often necessary to cut the sample, which is accompanied by destruction or disappearance of the sample. In particular, when analyzing foreign substances contained in the sample, in the preparation of a physical cross-section such as the above-mentioned cutting method, stress is applied by contact or friction of a blade or the like for cutting the sample. There was a risk of causing a change in shape such as deformation or dropout of the target foreign matter.

また、図3に示すような凹凸形状の観察では、試料表面近傍の情報が大部分を占めており、試料の内部構造を分析することはできない。膜厚が均一で基板表面も平滑な試料の場合には、試料表面の凹凸形状を把握することで内部異物の存在を推測することもできる場合もあるが、基板および試料表面の平滑性が前提となっているため、現実的には試料表面の凹凸が内部に埋め込まれた異物に起因するものであるか否かを判別することは困難である。基板および試料表面の平滑性が確保された試料で異物が内部に埋め込まれた場合でも、たとえば三角形状の異物が埋め込まれていた場合、三角形状異物の頭頂部が試料に対し上向きあるいは下向きであったとしても、試料表面の凹凸は同様の形状を示すため、さらに異物の全形を精度良く把握することは困難となる。   Further, in the observation of the concavo-convex shape as shown in FIG. 3, most of the information in the vicinity of the sample surface occupies and the internal structure of the sample cannot be analyzed. In the case of a sample with a uniform film thickness and a smooth substrate surface, it may be possible to estimate the presence of internal foreign matter by grasping the uneven shape of the sample surface, but the smoothness of the substrate and sample surface is assumed. Therefore, in reality, it is difficult to determine whether or not the unevenness of the sample surface is caused by foreign matter embedded inside. Even when a foreign object is embedded inside a sample with a smooth substrate and sample surface, for example, when a triangular object is embedded, the top of the triangular object is upward or downward with respect to the sample. Even so, since the unevenness of the sample surface shows the same shape, it is difficult to accurately grasp the entire shape of the foreign matter.

本実施例では、試料表面の凹凸形状の情報と、同一組成である部分の厚さに基づいて、試料の内部構造を分析する。試料表面の凹凸形状の情報は二次信号に基づく試料の画像から分析することができ、同一組成である部分の厚さは元素分析等によって試料の厚さ方向の組成を分析することにより評価することができる。なお、以下で「厚さ」は「深さ」と言い換えることもできる。   In this example, the internal structure of the sample is analyzed based on the information on the uneven shape of the sample surface and the thickness of the portion having the same composition. Information on the uneven shape of the sample surface can be analyzed from the image of the sample based on the secondary signal, and the thickness of the part having the same composition is evaluated by analyzing the composition in the thickness direction of the sample by elemental analysis etc. be able to. In the following, “thickness” can also be referred to as “depth”.

特に、本実施例では試料上の複数の点において試料の組成ごとの厚さを計測する。   In particular, in this embodiment, the thickness of each sample composition is measured at a plurality of points on the sample.

これによって、基板に平行な面における試料の内部構造の面内分布を把握することができ、結果として、これらの分析結果から試料の局所領域に対して内部構造を構築することが可能となる。したがって、本実施例によれば試料を破壊することなく、内部構造を計測または観察することができる。   As a result, the in-plane distribution of the internal structure of the sample in the plane parallel to the substrate can be grasped, and as a result, the internal structure can be constructed for the local region of the sample from these analysis results. Therefore, according to this embodiment, the internal structure can be measured or observed without destroying the sample.

試料内部構造解析の一例を示したフローチャートを図4に示す。   A flowchart showing an example of the internal structure analysis of the sample is shown in FIG.

解析対象となる試料を走査電子顕微鏡の試料室に装填する。次に走査電子顕微鏡の試料ステージを移動させ、解析対象個所の特定を行う(ステップ401)。解析対象箇所とは内部構造の解析を行う範囲として設定された領域をいう。解析対象箇所はユーザによって指定されても良く、また検査条件が設定されているレシピによって予め指定されていて自動で設定されても良い。または、走査電子顕微鏡画像以外に外部画像、たとえば色情報を持った光学顕微鏡画像やデジタルカメラ画像などを用いて、外部画像が取得された装置から出力される位置情報を解析対象箇所として設定することも可能である。   A sample to be analyzed is loaded into a sample chamber of a scanning electron microscope. Next, the sample stage of the scanning electron microscope is moved to specify the analysis target portion (step 401). The analysis target portion refers to a region set as a range for analyzing the internal structure. The analysis target portion may be designated by the user, or may be designated in advance by a recipe in which inspection conditions are set, and may be automatically set. Alternatively, by using an external image other than the scanning electron microscope image, such as an optical microscope image or digital camera image having color information, position information output from the device from which the external image was acquired is set as an analysis target location. Is also possible.

次に、解析対象個所で試料表面の凹凸形状計測を行い(ステップ402)、基準高さ情報の取得(ステップ403)と試料表面凹凸情報の取得(ステップ404)を実施する。ステップ402、ステップ403、ステップ404は、例えば図3を用いて説明した方法により行う。ここで、基準高さ情報とは4分割された反射電子検出器の各検出素子305で検出した信号量の差分が0となる位置、あるいは基準高さとして設定したキャリブレーション位置をいい、試料表面凹凸情報とは各測定点において計算された高さ情報と基準高さ情報の差分をいう。   Next, the uneven shape measurement of the sample surface is performed at the analysis target part (step 402), the reference height information is acquired (step 403), and the sample surface unevenness information is acquired (step 404). Steps 402, 403, and 404 are performed by the method described with reference to FIG. 3, for example. Here, the reference height information means a position where the difference in signal amount detected by each detection element 305 of the backscattered electron detector divided into four becomes zero, or a calibration position set as a reference height. The unevenness information refers to the difference between the height information calculated at each measurement point and the reference height information.

次に、凹凸形状を観察した位置と同じ解析対象個所において、元素分析を行い(ステップ405)、試料の厚さ方向の組成を分析し、同一組成である部分の厚さの情報(以下、構造物の厚さ情報という)を取得する(ステップ406)。なお、構造物とは膜の他にも、人工的なパターンや試料に内包される異物も含むものとする。三次元形状計測(ステップ402)と元素分析(ステップ405)による構造物の厚さ情報の取得(ステップ406)は試料位置移動を行わずに同じ解析対象個所で測定を行うため、容易にデータ取得を行うことができる。なお、凹凸形状を観察した位置と同じ解析対象個所とは、凹凸形状を観察した複数の位置のうち一部について元素分析を行い、構造物の厚さ情報を取得する場合も含むものとする。元素分析(ステップ405)を行う加速電圧は試料を構成する元素、密度、膜厚等の情報から計算を行い、解析対象となる構造物を透過して到達する条件が自動選択される。試料表面の凹凸形状を観察する場合は元素分析と同一の加速電圧でも良いし、試料形状を明確に捉えるため、加速電圧を変えて測定を行ってもよい。   Next, elemental analysis is performed at the same analysis target location as the position where the uneven shape was observed (step 405), the composition in the thickness direction of the sample is analyzed, and information on the thickness of the portion having the same composition (hereinafter referred to as structure) The object thickness information is acquired (step 406). In addition to the film, the structure includes an artificial pattern and a foreign substance included in the sample. Acquisition of structure thickness information (step 406) by three-dimensional shape measurement (step 402) and elemental analysis (step 405) is performed at the same analysis target without moving the sample position, so data acquisition is easy. It can be performed. Note that the same analysis target position as the position where the uneven shape is observed includes a case where element analysis is performed on a part of a plurality of positions where the uneven shape is observed to obtain thickness information of the structure. The acceleration voltage for performing the elemental analysis (step 405) is calculated from information such as the element constituting the sample, the density, the film thickness, and the conditions for reaching through the structure to be analyzed are automatically selected. When observing the concave / convex shape on the sample surface, the same acceleration voltage as in elemental analysis may be used, or in order to clearly grasp the sample shape, measurement may be performed by changing the acceleration voltage.

三次元形状計測(ステップ402)による基準高さ情報と試料表面凹凸情報と元素分析(ステップ405)による構造物の厚さ情報を加減算して合算し(ステップ407)各測定点における基準高さから算出した構造物の位置情報を取得する。次に、各測定で得られた各測定点における基準高さから算出した構造物の位置情報をプロットしてグラフ化あるいは三次元図化することで、試料内部構造を構築する(ステップ408)ことができる。   The reference height information by the three-dimensional shape measurement (step 402), the sample surface unevenness information, and the thickness information of the structure by the elemental analysis (step 405) are added and subtracted (step 407). Obtain the calculated position information of the structure. Next, the internal structure of the sample is constructed by plotting the position information of the structure calculated from the reference height at each measurement point obtained by each measurement, and plotting it into a graph or a three-dimensional diagram (step 408). Can do.

ここで最終的に構築される試料内部構造とは、例えば三角錘形状の異物が基材と膜の間に内包されている場合、異物の形状、大きさ、異物位置、異物の向き等の情報を示す。   The internal structure of the sample that is finally constructed here is, for example, information on the shape, size, position of foreign matter, and orientation of foreign matter when a triangular pyramid-like foreign matter is contained between the substrate and the film. Indicates.

試料内部構造構築のための計算は、試料の表面の凹凸形状情報と、構造物の厚さ情報を加減算することによって行う。一例として、以下の通りである。
試料表面形状:[基準高さ−試料表面の凹凸情報]
構造物1形状:[基準高さ−試料表面の凹凸情報+構造物1の厚さ情報]
構造物2形状:[基準高さ−試料表面の凹凸情報+構造物1の厚さ情報+構造物2の厚 さ情報]
The calculation for constructing the internal structure of the sample is performed by adding / subtracting the uneven shape information on the surface of the sample and the thickness information of the structure. An example is as follows.
Sample surface shape: [reference height-uneven information on sample surface]
Structure 1 shape: [reference height-sample surface irregularity information + structure 1 thickness information]
Structure 2 shape: [reference height-sample surface unevenness information + structure 1 thickness information + structure 2 thickness information]

以下、構造物の総数が増えた際には各構造物について厚さ情報を加算していき、試料表面形状、構造物1〜構造物nまで分析してこれらの情報を加減算することで内部構造が構築できる。   Hereinafter, when the total number of structures increases, the thickness information is added to each structure, the sample surface shape, the structure 1 to the structure n are analyzed, and the internal structure is obtained by adding and subtracting the information. Can be built.

凹凸形状情報と組成分析から得られる膜厚情報は画像及び組成分析情報を取得した走査電子顕微鏡制御PCあるいは分析制御PCで計算を行い取得できる、あるいは外部接続されたPCまたは単独PCでも算出可能である。これらの情報を元に内部構造情報を構築する際も、上述の各制御用PCあるいは外部接続されたPCまたは単独PCで構築可能である。   Uneven shape information and film thickness information obtained from composition analysis can be obtained by calculation with a scanning electron microscope control PC or analysis control PC that acquired the image and composition analysis information, or can be calculated with an externally connected PC or a single PC. is there. Even when the internal structure information is constructed based on these pieces of information, it can be constructed by each of the control PCs described above, an externally connected PC, or a single PC.

図5に、試料内部構造解析の一例として異物を内包した試料の解析例を示す。この例では異物および膜が上述した「構造物」にあたる。基板501上に形成された1層あるいは複数の組成の異なる複数層で形成された膜502の内部に異物503が内包されている。異物503の垂直上方にあたる試料表面領域を含むように、電子線504を走査し、試料表面の凹凸形状の情報を取得する。図5では、電子線504の走査は異物503の垂直上方にあたる試料表面領域を横断するように図5中丸字で示す1−9の順に走査する。ここで、異物503の垂直上方にあたる試料表面領域とは、例えば図5中丸字3−7で電子線が照射される領域をいう。解析対象となる異物503を含む領域はユーザによる目視、あるいは検査装置、光学顕微鏡、実体顕微鏡、金属顕微鏡、X線像など各種観察によって存在を確認する、あるいは試料表面の凹凸などから異物の存在を推測する。試料表面の凹凸形状情報は、例えば、図3を用いて説明したような方法で取得することができる。これによって、試料表面凹凸情報505と試料基準高さ506が取得できる。   FIG. 5 shows an analysis example of a sample containing a foreign substance as an example of the internal structure analysis of the sample. In this example, the foreign matter and the film correspond to the “structure” described above. A foreign substance 503 is included in a film 502 formed of one layer or a plurality of layers having different compositions formed on the substrate 501. The electron beam 504 is scanned so as to include a sample surface region that is vertically above the foreign material 503, and information on the uneven shape of the sample surface is acquired. In FIG. 5, the scanning with the electron beam 504 is performed in the order of 1-9 indicated by the round letters in FIG. 5 so as to cross the sample surface region which is vertically above the foreign substance 503. Here, the sample surface area that is vertically above the foreign substance 503 is, for example, an area irradiated with an electron beam in circles 3-7 in FIG. The region including the foreign object 503 to be analyzed is confirmed by various observations such as visual inspection by the user, an inspection apparatus, an optical microscope, a stereomicroscope, a metallographic microscope, and an X-ray image, or the presence of foreign objects is confirmed by unevenness of the sample surface. Infer. The uneven shape information on the sample surface can be acquired by the method described with reference to FIG. 3, for example. Thereby, the sample surface unevenness information 505 and the sample reference height 506 can be acquired.

次に、異物503の垂直上方にあたる試料表面領域を含むように、電子線507を照射し、各電子線507照射個所において膜の膜厚情報508と異物の厚さ情報509を取得する。膜の膜厚情報508および異物の厚さ情報509の取得は、例えば、図2を用いて説明したような方法で取得することができる。   Next, the electron beam 507 is irradiated so as to include a sample surface region that is vertically above the foreign material 503, and film thickness information 508 and foreign material thickness information 509 are obtained at each electron beam 507 irradiation site. The film thickness information 508 and the foreign substance thickness information 509 can be acquired by, for example, the method described with reference to FIG.

なお、凹凸形状情報と膜厚情報は、試料上の1箇所で分析すればその領域での試料の内部構造を構築することができる。さらに本実施例に示すように、1直線上の複数の箇所で凹凸形状情報と膜厚情報を分析することで、二次元の内部構造を構築することができる。さらに、少なくとも同一直線上にない3点で表面凹凸情報と膜厚情報を取得すれば、三次元で試料の内部構造を構築することができる。   In addition, if the uneven | corrugated shape information and film thickness information are analyzed at one place on the sample, the internal structure of the sample in that region can be constructed. Further, as shown in the present embodiment, a two-dimensional internal structure can be constructed by analyzing the concavo-convex shape information and the film thickness information at a plurality of locations on one straight line. Furthermore, if the surface unevenness information and film thickness information are acquired at least at three points that are not on the same straight line, the internal structure of the sample can be constructed in three dimensions.

凹凸形状情報と膜厚情報の分析領域の選び方はユーザが事前に選択する構成であってもよいし、自動的に領域選択されてもよい。自動的に領域選択する手法としては、走査電子顕微鏡の反射電子像による組成コントラストでの異物位置の判別や、上述の外部画像が取得された異物の特定位置情報から設定することもできる。   The method for selecting the analysis region for the uneven shape information and the film thickness information may be a configuration in which the user selects in advance, or the region may be automatically selected. As a method for automatically selecting a region, it is possible to set the position based on the foreign object position based on the composition contrast based on the backscattered electron image of the scanning electron microscope or the specific position information of the foreign object from which the external image is acquired.

特に、試料が異物を内包する場合には、分析領域として、少なくとも、前記異物の垂直上方にあたる第一の領域と、前記試料上で前記第一の領域以外の第二の領域を選択するようにするとよい。なお、凹凸形状情報と膜厚情報を分析するのは一定の範囲を持った領域であっても、点状であってもよい。本明細書において分析領域とは点状の領域も含むものとする。   In particular, when the sample contains foreign matter, at least a first region that is vertically above the foreign matter and a second region other than the first region on the sample are selected as the analysis region. Good. The uneven shape information and the film thickness information may be analyzed in a region having a certain range or a point shape. In this specification, the analysis region includes a dotted region.

次に、取得した各情報の合算を行う。まず、基準高さ506を原点0として、基準高さ−表面凹凸情報510によって試料表面情報を取得する。更に、基準高さ−表面凹凸情報+膜の膜厚情報511によって膜情報を求め、基準高さ−表面凹凸情報+膜の膜厚情報+異物の膜厚情報512によって異物情報を求め、プロットすることで試料内部構造再構築結果513が得られる。ここで、膜情報とは各測定点における膜の深さ方向位置をいい、異物情報とは異物の大きさや埋まっている深さ位置を指す。図5では説明を簡単にするため、電子線の照射点数を9点のみとしているが、試料表面の凹凸形状と膜厚情報の測定点数を増やすことで微細な試料形状も把握できる。   Next, the obtained information is summed. First, sample surface information is acquired from the reference height-surface unevenness information 510 with the reference height 506 as the origin 0. Further, film information is obtained by reference height-surface unevenness information + film thickness information 511, and foreign object information is obtained by reference height-surface unevenness information + film thickness information + foreign film thickness information 512 and plotted. Thus, the internal structure reconstruction result 513 of the sample is obtained. Here, the film information refers to the position in the depth direction of the film at each measurement point, and the foreign matter information refers to the size of the foreign matter and the buried depth position. In FIG. 5, for the sake of simplicity, the number of electron beam irradiation points is only nine. However, a fine sample shape can be grasped by increasing the number of measurement points for the uneven shape of the sample surface and film thickness information.

また、電子線507をライン状に照射すると二次元的な断面情報が得られ、電子線507をグリッド状に照射すると三次元的な内部構造が把握可能となる。   Further, when the electron beam 507 is irradiated in a line shape, two-dimensional cross-sectional information is obtained, and when the electron beam 507 is irradiated in a grid shape, a three-dimensional internal structure can be grasped.

以上の実施例によれば、三次元形状計測手段、膜厚計測手段を備えた表面観察装置のみで内部構造を解析できるため、断面作製のための機械研磨、イオンミリングなどの特殊な個別装置を必要とせず、簡便に、非破壊で試料内部構造(膜厚、異物形状など)を把握することができる。   According to the above embodiment, since the internal structure can be analyzed only by the surface observation device provided with the three-dimensional shape measuring means and the film thickness measuring means, a special individual device such as mechanical polishing and ion milling for cross-section preparation is provided. The internal structure of the sample (film thickness, foreign material shape, etc.) can be grasped easily and non-destructively.

上述した実施例は、試料内部に内包される異物だけでなく、半導体デバイスに代表されるような多層膜や配線材の形状評価、樹脂強度向上のために混入される分散材の内部形状評価などにも適用可能である。比較的大きな形状の内部構造評価はX線CTなどを用いれば対応できるが、微細化する半導体デバイスなどでは分解能的に対応困難な場合が多い。これに対し、本手法では走査電子顕微鏡を用いた解析であるため、より高分解能な走査電子顕微鏡を用いることで容易に対応できる。   In the above-described embodiments, not only foreign substances contained in the sample, but also evaluation of the shape of multilayer films and wiring materials typified by semiconductor devices, evaluation of the internal shape of dispersion materials mixed to improve resin strength, etc. It is also applicable to. A relatively large internal structure can be evaluated by using X-ray CT or the like, but it is often difficult to deal with resolution in a semiconductor device or the like that is miniaturized. On the other hand, since this method is an analysis using a scanning electron microscope, it can be easily handled by using a higher-resolution scanning electron microscope.

本実施例によれば、試料や基板の平滑性や、試料構成材質の導電性の有無に依らず試料内部構造が把握可能である。   According to the present embodiment, the internal structure of the sample can be grasped regardless of the smoothness of the sample and the substrate and the presence or absence of the conductivity of the sample constituent material.

本実施例では、大気中で反応が進行しやすい試料、汚染しやすい試料を観察する例を示す。例えばリチウムイオン電池材料や活性度の高い金属材などが挙げられる。   In this embodiment, an example of observing a sample that easily proceeds in the atmosphere and a sample that is easily contaminated will be described. Examples include lithium ion battery materials and highly active metal materials.

内部組織や内包される異物が大気暴露により変質しやすい試料の場合には、断面作製で内部組織や内包された異物を露出させることで変質を生じてしまう恐れがある。このような試料の場合には、従来、断面作製装置及び観察のための荷電粒子線装置に試料を搬送する際にも、雰囲気遮断を行える試料搬送用機器を用いて作業を行っているが、専用機器を必要とし、作業も煩雑となる可能性がある。試料表層の組織が変質しやすい場合は、試料表面にたとえばPtなどの金属あるいはCなどのコーティングにより保護膜を形成し、保護膜を含む積層膜構造物として試料表層組織を解析することも可能である。   In the case of a sample in which the internal tissue or contained foreign matter is easily altered by exposure to the atmosphere, the internal structure or contained foreign matter may be exposed during cross-section preparation, which may cause alteration. In the case of such a sample, conventionally, when the sample is transported to the cross-section preparation device and the charged particle beam device for observation, the work is performed using a sample transport device that can shut off the atmosphere. Special equipment is required, and the work may be complicated. If the structure of the sample surface layer is likely to change, it is possible to analyze the sample surface structure as a laminated film structure including a protective film by forming a protective film on the surface of the sample by coating with a metal such as Pt or C, for example. is there.

このような試料においても、本発明による走査電子顕微鏡で試料の内部構造を観察することで、内部組織を露出することなく、試料表面から観察/分析することで内部構造を把握できる。   Even in such a sample, by observing the internal structure of the sample with the scanning electron microscope according to the present invention, the internal structure can be grasped by observing / analyzing from the sample surface without exposing the internal structure.

試料内部に内包される異物が非導電性である場合、一次電子線の照射により試料表面に帯電現象が起こりやすくなる。この帯電現象により一次電子線照射あるいは二次信号の発生が阻害され、試料ドリフトや信号発生量の増減などの一因となり試料断面作製ならびに試料観察を阻害する恐れがある。表面凹凸情報並びに膜厚情報を取得する際に帯電現象に基づく試料ドリフトによる位置ずれ、あるいは信号発生量増減による凹凸形状演算及び膜厚計測結果に誤差などが生じるといった問題が発生する。   When the foreign substance contained in the sample is non-conductive, a charging phenomenon is likely to occur on the sample surface due to the irradiation of the primary electron beam. This charging phenomenon hinders primary electron beam irradiation or generation of secondary signals, which may contribute to sample drift and increase / decrease in the amount of signal generation, thereby hindering sample cross-section preparation and sample observation. When acquiring surface unevenness information and film thickness information, there arises a problem that an error or the like occurs in a position shift due to a sample drift based on a charging phenomenon, or an uneven shape calculation and film thickness measurement result due to increase / decrease in signal generation amount.

これに対し、本実施例のように、荷電粒子線装置に試料室内真空度調整による帯電軽減機能を付随することで、試料を構成する材質の導電性が低い場合であっても、帯電の影響を低減した観察または分析が可能となる。   On the other hand, as in this embodiment, the charged particle beam device is accompanied by a charge reducing function by adjusting the degree of vacuum in the sample chamber, so that even if the material constituting the sample has low conductivity, the influence of the charge is exerted. Observation or analysis with reduced is possible.

101 電子銃
102、203、209、302、504、507 電子線
103 収束レンズ
104 偏向器
105 対物レンズ
106、301 試料
107 二次信号
108 反射電子検出器
109、206 X線検出器
110 二次電子検出器
111 表示部
112 制御用PC
201、501 基板
202、502 膜
204 X線発生領域
205 特性X線
207 膜厚情報
208 凹部
210 複数点での膜厚情報
303 4分割反射電子検出器
304 反射電子
305 検出素子
306 SEM像
307 鳥瞰図
308 断面プロファイル
309 ベースライン高さ
310 凹凸情報
503 異物
505 表面凹凸情報
506 基準高さ
508 膜の膜厚情報
509 異物の厚さ情報
510 基準高さ−表面凹凸情報
511 基準高さ−表面凹凸情報+膜の膜厚情報
512 基準高さ−表面凹凸情報+膜の膜厚情報+異物の厚さ情報
101 Electron gun 102, 203, 209, 302, 504, 507 Electron beam 103 Converging lens 104 Deflector 105 Objective lens 106, 301 Sample 107 Secondary signal 108 Backscattered electron detector 109, 206 X-ray detector 110 Secondary electron detection 111 Display unit 112 Control PC
201, 501 Substrate 202, 502 Film 204 X-ray generation region 205 Characteristic X-ray 207 Film thickness information 208 Recess 210 Film thickness information at a plurality of points 303 Quadrant reflected electron detector 304 Reflected electron 305 Detector element 306 SEM image 307 Bird's eye view 308 Cross-sectional profile 309 Baseline height 310 Concavity and convexity information 503 Foreign matter 505 Surface unevenness information 506 Reference height 508 Film thickness information 509 Foreign matter thickness information 510 Reference height−surface unevenness information 511 Reference height−surface unevenness information + film Film thickness information 512 Reference height-surface unevenness information + film thickness information + foreign matter thickness information

Claims (13)

試料に荷電粒子線を照射して、前記照射によって発生した二次信号から前記試料の画像を生成する荷電粒子線装置であって、
前記画像から前記試料の表面の凹凸形状を分析する凹凸形状分析部と、
前記試料の任意の領域における、前記試料の厚さ方向の組成を分析し、同一組成である部分の厚さを評価する組成分析部と、
前記領域における前記凹凸形状と前記同一組成である部分の厚さに基づいて、前記試料の内部構造を構築する内部構造構築部とを備えることを特徴とする荷電粒子線装置。
A charged particle beam apparatus that irradiates a sample with a charged particle beam and generates an image of the sample from a secondary signal generated by the irradiation,
An uneven shape analyzer for analyzing the uneven shape of the surface of the sample from the image,
A composition analysis unit that analyzes the composition in the thickness direction of the sample in an arbitrary region of the sample and evaluates the thickness of a portion having the same composition;
A charged particle beam apparatus comprising: an internal structure constructing unit configured to construct an internal structure of the sample based on a thickness of a portion having the same composition as the uneven shape in the region.
請求項1に記載の荷電粒子線装置において、
前記凹凸形状および前記同一組成である部分の厚さは、前記試料上の複数箇所で分析され、
前記内部構造は二次元または三次元に構築されることを特徴とする荷電粒子線装置。
The charged particle beam apparatus according to claim 1,
The uneven shape and the thickness of the portion having the same composition are analyzed at a plurality of locations on the sample,
The charged particle beam apparatus characterized in that the internal structure is constructed in two dimensions or three dimensions.
請求項2に記載の荷電粒子線装置において、
前記試料は異物を内包するものであって、
前記複数箇所として、少なくとも、前記異物の垂直上方にあたる第一の領域と、前記試料上で前記第一の領域以外の第二の領域が選択されることを特徴とする荷電粒子線装置。
The charged particle beam apparatus according to claim 2,
The sample contains a foreign substance,
The charged particle beam apparatus according to claim 1, wherein at least a first region that is vertically above the foreign substance and a second region other than the first region on the sample are selected as the plurality of locations.
請求項1に記載の荷電粒子線装置において、
前記内部構造構築部は、前記凹凸形状と前記同一組成である部分の厚さを加減算することで前記試料の内部構造を構築することを特徴とする荷電粒子線装置。
The charged particle beam apparatus according to claim 1,
The internal structure constructing unit constructs the internal structure of the sample by adding or subtracting the thickness of a portion having the same composition as the uneven shape.
請求項1に記載の荷電粒子線装置において、
前記凹凸形状は、所定の基準高さと前記基準高さからの相対変位によって表現されることを特徴とする荷電粒子線装置。
The charged particle beam apparatus according to claim 1,
The charged particle beam apparatus characterized in that the uneven shape is expressed by a predetermined reference height and a relative displacement from the reference height.
請求項1に記載の荷電粒子線装置において、さらに、
前記内部構造を表示する表示部を備えることを特徴とする荷電粒子線装置。
The charged particle beam device according to claim 1, further comprising:
A charged particle beam apparatus comprising a display unit for displaying the internal structure.
請求項1に記載の荷電粒子線装置において、さらに、
前記試料の帯電を緩和する手段を備えることを特徴とする荷電粒子線装置。
The charged particle beam device according to claim 1, further comprising:
A charged particle beam apparatus comprising means for relaxing charging of the sample.
試料に荷電粒子線を照射して、前記照射によって発生した二次信号から前記試料の画像を生成する試料観察方法であって、
前記画像から前記試料の表面の凹凸形状を分析するステップと、
前記試料の任意の領域における、前記試料の厚さ方向の組成を分析し、同一組成である部分の厚さを評価するステップと、
前記領域における前記凹凸形状と前記同一組成である部分の厚さに基づいて、前記試料の内部構造を構築するステップとを備えることを特徴とする試料観察方法。
A sample observation method for irradiating a sample with a charged particle beam and generating an image of the sample from a secondary signal generated by the irradiation,
Analyzing the concavo-convex shape of the surface of the sample from the image;
Analyzing a composition in a thickness direction of the sample in an arbitrary region of the sample, and evaluating a thickness of a portion having the same composition;
And a step of constructing an internal structure of the sample on the basis of the thickness of the concave and convex shape in the region and the portion having the same composition.
請求項8に記載の試料観察方法において、
前記凹凸形状および前記同一組成である部分の厚さは、前記試料上の複数点で分析され、
前記内部構造は二次元または三次元に構築されることを特徴とする試料観察方法。
The sample observation method according to claim 8,
The uneven shape and the thickness of the part having the same composition are analyzed at a plurality of points on the sample,
The sample observation method, wherein the internal structure is constructed in two dimensions or three dimensions.
請求項8に記載の試料観察方法において、
前記内部構造を構築するステップは、前記凹凸形状と前記同一組成である部分の厚さを加減算することで前記試料の内部構造を構築することを特徴とする試料観察方法。
The sample observation method according to claim 8,
The sample observing method is characterized in that the step of constructing the internal structure constructs the internal structure of the sample by adding or subtracting the thickness of a portion having the same composition as the uneven shape.
請求項8に記載の試料観察方法において、
前記試料は単層または多層の膜による層構造であることを特徴とする試料観察方法。
The sample observation method according to claim 8,
The sample observation method, wherein the sample has a layer structure of a single layer or a multilayer film.
請求項8に記載の試料観察方法において、
前記試料は異物を内包していることを特徴とする試料観察方法。
The sample observation method according to claim 8,
A sample observation method, wherein the sample contains a foreign substance.
請求項8に記載の試料観察方法において、
前記試料の内部構造は大気暴露により変質する材質であることを特徴とする試料観察方法。
The sample observation method according to claim 8,
A sample observation method, wherein the internal structure of the sample is a material that changes in quality when exposed to the atmosphere.
JP2012004580A 2012-01-13 2012-01-13 Charged particle beam apparatus and sample observation method for observing internal structure of sample Expired - Fee Related JP5904799B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012004580A JP5904799B2 (en) 2012-01-13 2012-01-13 Charged particle beam apparatus and sample observation method for observing internal structure of sample

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012004580A JP5904799B2 (en) 2012-01-13 2012-01-13 Charged particle beam apparatus and sample observation method for observing internal structure of sample

Publications (3)

Publication Number Publication Date
JP2013143364A true JP2013143364A (en) 2013-07-22
JP2013143364A5 JP2013143364A5 (en) 2014-12-18
JP5904799B2 JP5904799B2 (en) 2016-04-20

Family

ID=49039813

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012004580A Expired - Fee Related JP5904799B2 (en) 2012-01-13 2012-01-13 Charged particle beam apparatus and sample observation method for observing internal structure of sample

Country Status (1)

Country Link
JP (1) JP5904799B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019008699A1 (en) * 2017-07-05 2019-01-10 株式会社日立ハイテクノロジーズ Charged particle beam device
JP2019096544A (en) * 2017-11-27 2019-06-20 日本電子株式会社 Quantitative analysis method and electron microscope
EP3944281A1 (en) 2020-07-21 2022-01-26 Jeol Ltd. Charged particle beam apparatus and setting assisting method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05290786A (en) * 1992-04-10 1993-11-05 Hitachi Ltd Method and device for displaying image of sample to be scanned and sample to be used therefor
JPH10283965A (en) * 1997-04-10 1998-10-23 Jeol Ltd Method for eliminating charge from sample in scanning electron microscope, and scanning electron microscope
JP2002203507A (en) * 2000-12-28 2002-07-19 Shimadzu Corp Concavoconvex image forming device and electron beam analyzer
JP2005259396A (en) * 2004-03-10 2005-09-22 Hitachi High-Technologies Corp Defective image collection method and its device
JP2011090973A (en) * 2009-10-26 2011-05-06 Hitachi High-Technologies Corp Charged particle beam apparatus, and display method of three dimensional information in charged particle beam apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05290786A (en) * 1992-04-10 1993-11-05 Hitachi Ltd Method and device for displaying image of sample to be scanned and sample to be used therefor
JPH10283965A (en) * 1997-04-10 1998-10-23 Jeol Ltd Method for eliminating charge from sample in scanning electron microscope, and scanning electron microscope
JP2002203507A (en) * 2000-12-28 2002-07-19 Shimadzu Corp Concavoconvex image forming device and electron beam analyzer
JP2005259396A (en) * 2004-03-10 2005-09-22 Hitachi High-Technologies Corp Defective image collection method and its device
JP2011090973A (en) * 2009-10-26 2011-05-06 Hitachi High-Technologies Corp Charged particle beam apparatus, and display method of three dimensional information in charged particle beam apparatus

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019008699A1 (en) * 2017-07-05 2019-01-10 株式会社日立ハイテクノロジーズ Charged particle beam device
JPWO2019008699A1 (en) * 2017-07-05 2020-05-21 株式会社日立ハイテク Charged particle beam device
JP2019096544A (en) * 2017-11-27 2019-06-20 日本電子株式会社 Quantitative analysis method and electron microscope
EP3944281A1 (en) 2020-07-21 2022-01-26 Jeol Ltd. Charged particle beam apparatus and setting assisting method
US11574795B2 (en) 2020-07-21 2023-02-07 Jeol Ltd. Charged particle beam apparatus and setting assisting method

Also Published As

Publication number Publication date
JP5904799B2 (en) 2016-04-20

Similar Documents

Publication Publication Date Title
JP5968677B2 (en) Sample inspection method using charged particle microscope
CN104795302B (en) The Difference Imaging of pattern identification with the process automation for crosscutting application
JP6261178B2 (en) Charged particle beam device, sample processing method using charged particle beam device, and sample processing computer program using charged particle beam device
KR20190053771A (en) Pattern measurement device and pattern measurement method
EP2706555B1 (en) Particle beam microscope for generating material data and method of operating such a microscope
WO2011013316A1 (en) Pattern shape selection method and pattern measuring device
JP6932004B2 (en) 3D imaging in a charged particle microscope
JP5591107B2 (en) Method and apparatus for composition analysis of materials
CN102931044A (en) Charged-particle microscopy imaging method
KR101709433B1 (en) Sample observation device
US20110186734A1 (en) Electron microscope and specimen analyzing method
KR100447713B1 (en) Method and apparatus for showing scanning image of sample
JP6328456B2 (en) Energy dispersive X-ray analyzer and energy dispersive X-ray analysis method
WO2014104191A1 (en) Charged particle beam device and method for analyzing defect therein
US9857318B2 (en) Method for generating image data relating to an object and particle beam device for carrying out this method
JP5904799B2 (en) Charged particle beam apparatus and sample observation method for observing internal structure of sample
US8901510B2 (en) Particle beam device having a detector arrangement
JP5187810B2 (en) Film thickness measuring method and sample preparation method, film thickness measuring apparatus and sample preparation apparatus
JP7007136B2 (en) Tomographic imaging method
US9846133B2 (en) Semiconductor inspection device including a counter electrode with adjustable potentials used to obtain images for detection of defects, and inspection method using charged particle beam
EP2383767A1 (en) Method of imaging an object
Hayashida et al. Three dimensional accurate morphology measurements of polystyrene standard particles on silicon substrate by electron tomography
JP7114736B2 (en) Image forming method and image forming system
JP2011022059A (en) Charged particle microscope and analysis method
US20030222215A1 (en) Method for objective and accurate thickness measurement of thin films on a microscopic scale

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141022

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141022

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141022

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150811

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150825

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151001

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160216

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160315

R150 Certificate of patent or registration of utility model

Ref document number: 5904799

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees