WO2019007348A1 - 非有效接地系统接地故障相主动降压安全处理方法 - Google Patents

非有效接地系统接地故障相主动降压安全处理方法 Download PDF

Info

Publication number
WO2019007348A1
WO2019007348A1 PCT/CN2018/094402 CN2018094402W WO2019007348A1 WO 2019007348 A1 WO2019007348 A1 WO 2019007348A1 CN 2018094402 W CN2018094402 W CN 2018094402W WO 2019007348 A1 WO2019007348 A1 WO 2019007348A1
Authority
WO
WIPO (PCT)
Prior art keywords
ground
fault
tap
phase
ground fault
Prior art date
Application number
PCT/CN2018/094402
Other languages
English (en)
French (fr)
Inventor
曾祥君
Original Assignee
长沙理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 长沙理工大学 filed Critical 长沙理工大学
Priority to RU2019136388A priority Critical patent/RU2739824C1/ru
Priority to US16/613,409 priority patent/US10892616B2/en
Priority to AU2018295936A priority patent/AU2018295936B2/en
Priority to EP18828476.4A priority patent/EP3605768B1/en
Publication of WO2019007348A1 publication Critical patent/WO2019007348A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H9/00Emergency protective circuit arrangements for limiting excess current or voltage without disconnection
    • H02H9/08Limitation or suppression of earth fault currents, e.g. Petersen coil
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H9/00Emergency protective circuit arrangements for limiting excess current or voltage without disconnection
    • H02H9/02Emergency protective circuit arrangements for limiting excess current or voltage without disconnection responsive to excess current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H9/00Emergency protective circuit arrangements for limiting excess current or voltage without disconnection
    • H02H9/001Emergency protective circuit arrangements for limiting excess current or voltage without disconnection limiting speed of change of electric quantities, e.g. soft switching on or off
    • H02H9/002Emergency protective circuit arrangements for limiting excess current or voltage without disconnection limiting speed of change of electric quantities, e.g. soft switching on or off limiting inrush current on switching on of inductive loads subjected to remanence, e.g. transformers

Definitions

  • the invention relates to the technical field of power system ground fault suppression, in particular to a method for actively controlling step-down safety of a ground fault phase of a non-effective grounding system.
  • domestic and international generator sets and distribution networks generally adopt neutral point non-effective grounding methods, and the non-effective grounding system constitutes more than 95% of China's 6kV and above voltage level power grids. Nearly 70% of power outages are caused by this system failure. The annual power outage losses have reached an annual average of hundreds of billions of yuan.
  • the non-effective grounding system is different from the power transmission system, and the ground fault resistance can be as high as several tens of kilohms, which is difficult to sense and protect. Long-term operation with faults endangers personal and equipment safety and causes serious social and economic losses. Ground faults are prone to electric shocks, and the number of deaths per year is as high as 1,000, second only to traffic accidents.
  • Ground faults are prone to arc overvoltages, causing equipment to burn out and even causing "fire and burn camp" accidents. Large-scale unit grounding faults cannot be extinguished in time. Arc currents easily cause iron cores and windings to burn out, causing accidents to expand and even destroying people. Grounding faults and power outages will reduce power supply reliability and directly affect industrial production and people's living standards. Non-Effective Grounding System Grounding Failure Safety operation is critical to grid security and national security.
  • the ground fault handling and operation modes of the existing non-effective grounding system mainly include fault suppression and fault removal.
  • the ground fault suppression mainly adjusts or regulates the neutral point grounding mode of the primary system of the power grid, adjusts the neutral point grounding impedance, suppresses the voltage and current of the fault point, and realizes the ground fault suppression of the non-effective grounding system, but can only run for 1 to 2 hours in a short time. And easy to generate overvoltage, there are security risks.
  • the ground fault resection is mainly to select the fault line and cut off the fault point as soon as possible after the system grounds to ensure the safe operation of the system. For example, from the traditional manual line-by-line "trial pull", to the use of fault line selection device and fault indicator line selection, and then to the feeder automation technology to quickly isolate the fault, but the fault removal technology leads to long power outage time, high investment costs, serious Reduce the reliability of power distribution system power supply.
  • the inventor proposed in 2011 a distribution network ground fault arc suppression and protection method (patent application number 201110006701.2), the method by injecting a certain current into the distribution network, forcing the fault phase voltage to zero and the ground fault current is Zero, can achieve 100% arc suppression of instantaneous faults and rapid isolation of permanent faults, and solve the technical problem that the arc extinguishing effect of the current arc extinguishing method is poor and the reliability of the traditional protection method is low. But this method will cause the non-fault phase voltage to rise. Times, long-term operation poses a threat to electrical insulation, which may lead to breakdown of weak locations of non-faulty phase insulation, and then develop into phase-to-phase short-circuit accidents, affecting power supply reliability.
  • the present invention provides an active step-down safety processing method for the ground fault phase of the non-effective grounding system, by which the method The fault phase voltage is reduced, achieving the goal of safe and stable operation of the system for a long time.
  • the object of the invention is achieved by the following technical solutions:
  • a non-effective grounding system ground fault phase active step-down safety processing method is applied to a ground fault safety treatment of a neutral point non-effective earthing generator or a distribution network, and is characterized by:
  • a plurality of tapping taps are arranged, and the number of tapping taps of each phase is sequentially increased from the neutral point to the outlet.
  • the present invention can further adopt the following technical means:
  • the zero-sequence current of the ground fault line is measured. If it is greater than the set value, the tap tap is incrementally changed to short-circuit the ground, the fault phase voltage is further reduced, and the fault current is suppressed until the ground fault line The zero-sequence current is less than or equal to the set value, and the ground fault phase is realized to actively step-down safe operation.
  • the measurement calculates the exit current of the side winding of the non-effectively grounded system Change the tap taps in turn to make a short circuit to ground, so that the formula When it is established, the arc at the fault point is extinguished, where ⁇ Y 0 is the zero-order admittance to ground when the non-effective grounding system is in normal operation.
  • the damping rate of the non-effective earthing system or the ground fault line is measured and calculated. If the damping rate d is greater than the setting value, the tapping tap is sequentially incremented to short-circuit the ground, the fault phase voltage is further reduced, and the fault arc is suppressed until d is less than or equal to the setting value, that is, the fault is extinguished and the ground fault phase is realized.
  • Active buck safe operation where g is three relative ground admittance, ⁇ is the system angular frequency, C is three relative ground capacitance, U 0 is zero sequence voltage; I 0R is zero sequence active current, I 0C is zero sequence capacitance current ; P 0 is the zero sequence active power, Q 0 is the zero sequence reactive power, and ⁇ 0 is the zero sequence admittance angle.
  • the tap tap when the tap is short-circuited to the ground, in order to prevent excessive inrush current, the tap tap is short-circuited to the ground by the impedance Z. If the short-circuit current is less than the short-circuit current setting value, the impedance is shorted to realize the tap X directly. Short circuit to ground; otherwise, judge the fault phase selection error and disconnect the impedance.
  • a protection device is disposed between the tap X and the ground to prevent the short circuit from flowing through the large current to damage the device.
  • the transformer is a Z-type grounding transformer or a Y/ ⁇ wiring transformer or a Y/Y/ ⁇ wiring transformer.
  • the number of taps of each phase winding on the non-effectively grounded system side is set in the range of 1-30.
  • the zero-sequence current setting value is selected according to the fault current allowed by the line for a long time with single-phase ground fault safety operation, the value range is [1A, 30A], or the ground fault current suppression rate is selected, and the value range is [ 0.001I 0 , I 0 ), where I 0 is the zero sequence current of the fault line before the tap is shorted to ground.
  • the value of the impedance Z is [10,500] ohms; the setting value of the short-circuit current is taken as K 1 U 0 /Z 0 , where U 0 is the measured zero-sequence voltage, and Z 0 is the normal operation of the non-effective grounding system.
  • the zero sequence impedance of the time, K 1 is the safety factor, and the value range is [1, 3].
  • the inventors have found out whether the arc is reignited, and actually depends on the relative magnitude between the recovery voltage of the fault phase and the arc reignition voltage after the current zero crossing. Therefore, by injecting the zero-sequence current, the voltage of the faulty phase is forced to fall. When it falls below the arc reignition voltage of the fault point, the arc cannot be re-ignited, and the current at the fault point is suppressed to zero, that is, the fault current is eliminated; it is not required to reduce the fault phase.
  • the voltage is zero, which can reduce the rising amplitude of the non-fault phase voltage, reduce the risk of non-fault phase insulation breakdown, and prolong the safe and stable operation time of the system with single-phase ground fault.
  • the engineering specifies that the non-effective earthing system ground fault generator, or the fault current of the ground fault line, or the zero sequence current, or the fault phase voltage, or the zero sequence voltage can be safe for a long time as long as the control is within the allowable range. Stable operation.
  • the present invention first proposes a technical solution for short-circuiting to the ground at the tapped tap of the transformer.
  • the solution greatly simplifies the control method of fault suppression.
  • Figure 1 is a schematic diagram showing the principle of active step-down safety treatment of ground fault phase of non-effectively grounded distribution network using Y/ ⁇ wiring transformer.
  • Figure 2 is a circuit diagram of the zero-sequence equivalent of the non-effective grounding system when a ground fault occurs.
  • Figure 3 is a phasor diagram of the step-down arc-extinguishing operation range of the ground fault phase of the non-effective earthing system.
  • Figure 4 is a schematic diagram of the measurement of the non-effective system damping rate or line damping rate.
  • Fig. 5 is a schematic diagram showing the principle of active step-down safety treatment of ground fault phase of non-effectively grounded distribution network using Z-type grounding transformer.
  • Figure 6 is a schematic diagram of the principle of active step-down safety treatment for ground faults of non-effectively grounded generators.
  • E A , E B , and E C are the three-phase power electromotive force of the system
  • C 0 is the system-to-ground capacitance
  • r 0 is the system-to-ground leakage resistance
  • a s , B s , C s is Y / ⁇ wiring transformer non - effective grounding system side windings
  • S is a switch
  • P is a protection device (can be an overcurrent protection device, can also be a fuse)
  • the transformer is not effectively grounded system side winding
  • the one end lead wire is directly connected to the three-phase connection of the non-effective grounding system A, B, C.
  • the transformer non-effective grounding system side winding is star-connected, and then the neutral point N is taken out and then grounded by the impedance Z 1 ; a s , b s , c s
  • the low-voltage side winding adopts delta connection; in the non-effective grounding system side winding of the transformer, a plurality of tapping taps are arranged (so-called multiple tapping taps refer to the sum of the tapping taps of the three-phase windings of A, B and C is Three or more), and the number of taps of each phase winding is set from 1 to 30, and the tap number of each phase is defined from the neutral point to the outlet.
  • the tapping of any tap X to the ground can be forced.
  • a protection device P is provided between the tap X and the ground.
  • the grounding resistance is R f
  • the transformer tap is selected according to the target value U 2 of the ground fault phase step-down operation.
  • the number of coils from the neutral point to the tap tap is greater than NN ⁇ U 2 / E selects the tapping tap with the lowest number to short to the ground, and realizes the active step-down safe operation processing; wherein, the target value U 2 of the ground fault phase step-down operation is in the range of (0, U 1 ), U 1 is The fault phase voltage before the tap is shorted to ground.
  • the zero-sequence equivalent circuit in the non-effective grounding system corresponding to Figure 1 is the zero-sequence equivalent circuit of the non-effective grounding system when a ground fault occurs, as shown in Figure 2.
  • the transformer non-effective grounding system side winding outlet current for:
  • the measurement calculates the exit current of the side winding of the non-effectively grounded system. Change the tap taps in turn to make a short circuit to ground, so that the formula When it is established, the arc at the fault point is extinguished, where ⁇ Y 0 is the zero-order admittance to ground when the non-effective grounding system is in normal operation.
  • the tapping tap when the tapping tap is short-circuited to the ground, in order to prevent excessive inrush current, the tapping tap is short-circuited by the impedance Z to the ground first. If the short-circuit current is less than the short-circuit current setting value, the impedance is shorted to realize the tapping tap X. Directly short to ground; otherwise, judge the fault phase selection error, disconnect the impedance;
  • the fault phase bucking operating range of the fault arc extinction is further discussed below.
  • the neutral point voltage is zero
  • the phase A voltage vector is The B phase voltage vector is The C phase voltage vector is Taking the ground fault of phase C as an example, the maximum operating voltage amplitude of the fault phase to ensure the fault phase arc is extinguished is CC", and the condition of the arc phase of the fault phase is: the circle with the zero potential point at the center of C as the center of the circle
  • the non-fault phase voltage is required to be smaller than the line voltage, that is, the zero potential point should be within the circle with the point A as the radius of the center AC, and the point B is The center of the circle BC is within the radius of the circle. Therefore, in order to ensure a safe operation for a long time after the step-down of the non-effective grounding system failure phase, the range of the zero potential point after the step-down
  • the zero sequence current of the measuring system is measured during the step-down arc-extinguishing operation.
  • zero sequence voltage calculate the damping rate of the system, or measure the zero sequence current of the fault line m
  • the zero sequence voltage calculate the damping rate of the fault line m.
  • the Y/ ⁇ wiring transformer in this embodiment can be replaced with a Z-type grounding transformer.
  • the Y/ ⁇ wiring transformer in this embodiment can also be replaced by a Y/Y/ ⁇ wiring transformer.
  • winding A s, B s, C s CCP is provided with 15 taps, i.e., the winding A s, B s, C s are provided five taps, the definition of each phase tap number from the neutral point to the exit ascending order , respectively, tap 1 , tap 2, tap 3, tap 4, tap 5; tap 1 to neutral point 30, tap 2 to neutral
  • the number of turns of the coil is 60, the number of turns of the tap 3 to the neutral point is 90, the number of turns of the tap 4 to the neutral is 120, and the tap of the tap 5 to the neutral is The number is 150.
  • the zero-sequence current of the ground fault line is measured. If it is greater than the set value of 10A, the tap changer is sequentially incremented to short-circuit the ground, the fault phase voltage is further reduced, and the fault current is suppressed until the ground fault line is zero. The sequence current is less than or equal to the set value of 10A, and the ground fault phase is actively stepped down for safe processing.
  • the tapping tap is short-circuited by the impedance Z to the ground. If the short-circuit current is less than the short-circuit current setting value, the impedance is shorted to realize the tapping of the tap X directly to the ground; otherwise, the fault is selected incorrectly. , disconnecting the impedance; the impedance Z is 10 ohms;
  • the target value of the pressure operation U 2 2.6kV
  • the damping rate d is set to K 3 times the damping rate of the system or the normal operating state of the line
  • the coefficient K 3 3
  • the damping rate is 8.8% under normal operating conditions.
  • Neutral point N grounding impedance Z 2 j600 ⁇
  • a s , B s , C s is Y / ⁇ wiring transformer non-effective grounding system side winding
  • the total number of turns of the windings A s , B s , and C s is 150, and 15 taps are provided in the windings A s , B s , and C s .
  • the windings A s , B s , and C s are respectively set with 5 taps, and the tap number of each phase is defined to be incremented from the neutral point to the outlet, respectively, tapping tap 1, tap tap 2, tap tap 3, Tap the tap 4, tap the tap 5; the number of turns of the tap 1 to the neutral point is 30, the number of turns of the tap 2 to the neutral is 60, tap tap The number of turns of the coil to the neutral point is 90, the number of turns of the tap 4 to the neutral point is 120, and the number of turns of the tap 5 to the neutral is 150.
  • the voltage is 14.42kV, which is less than the line voltage of 20kV. It not only realizes the ground fault phase arc extinction, but also the non-fault phase voltage is not raised to the line voltage, achieving active step-down safe operation.
  • the tapping tap is short-circuited by the impedance Z to the ground. If the short-circuit current is less than the short-circuit current setting value, the impedance is shorted to realize the tapping of the tap X directly to the ground; otherwise, the fault is selected incorrectly. , disconnect the impedance; the impedance Z is 10 ohms.

Abstract

一种非有效接地系统接地故障相主动降压安全处理方法,应用于中性点非有效接地发电机或配电网的接地故障安全处理:在变压器非有效接地系统侧绕组(A s,B s,C s)设置多个分接抽头(1,2,3,4,5);单相接地故障时,选择故障相绕组的一分接抽头直接对地短路或经阻抗(Z)对地短路,降低故障相电压,使故障点电压低于接地电弧持续燃烧的电压,满足长时间不停电安全运行要求。该方法能够消除瞬时性单相接地故障,抑制永久性单相接地故障电流,限制非故障相电压的上升幅值,降低非故障相绝缘击穿的风险,降低人身设备安全隐患,有效防止停电事故的发生,提高供电可靠性和安全性。

Description

非有效接地系统接地故障相主动降压安全处理方法 技术领域
本发明涉及电力系统接地故障抑制技术领域,特别涉及一种非有效接地系统接地故障相主动降压安全处理方法。
背景技术
国内外发电机组和配电网普遍采用中性点非有效接地方式,所构成的非有效接地系统占我国6kV及以上电压等级电网的95%以上。近70%停电事故由该系统故障引发。造成全国停电损失年均上千亿元。非有效接地系统不同于输电系统,接地故障电阻可高达数十千欧姆,感知和保护困难。带故障长时间运行,危及人身、设备安全,造成严重的社会经济损失。接地故障易引发触电事故,每年死亡人数高达上千人次,仅次于交通事故。接地故障易产生弧光过电压,造成设备烧毁,甚至引发“火烧连营”事故。大型机组接地故障不能及时消弧,电弧电流易造成铁芯和绕组烧损,造成事故扩大,甚至机毁人亡;接地故障跳闸停电将降低供电可靠性,直接关系工业生产、人民生活水平。非有效接地系统接地故障安全运行对电网安全乃至国家安全至关重要。
现有非有效接地系统接地故障处理与运行模式主要包括故障抑制和故障切除两大类。
接地故障抑制主要通过改造或调控电网一次系统中性点接地方式,调整中性点接地阻抗,抑制故障点电压和电流,实现非有效接地系统的接地故障抑制,但只能短时间1~2h运行,且易产生过电压,存在安全隐患。
接地故障切除主要是在系统发生接地后尽快选出故障线路、切除故障点, 以保证系统安全运行。例如,从传统的人工逐条线路“试拉”,到利用故障选线装置和故障指示器选线,再到馈线自动化技术快速隔离故障,但故障切除技术导致停电时间过长、投资成本高,严重降低了配电系统供电可靠性。
为此,国内外开始研究抑制故障点电流和电压的有源消弧方法,如2015年瑞典中立公司发表的《接地故障中和器全补偿技术及应用》一文,公开了一种有源电流消弧方法:发生接地故障时,以接地残流为控制目标,通过残流补偿器往中性点注入电流,补偿接地故障全电流(包括无功分量及有功分量残流),同时将故障点电压降至为零,由此达到接地故障电流全补偿目的。由于故障残流无法直接测量且线路零序有功电流分量精确测量困难,该方法难以实际应用。
本发明人曾于2011年提出了一种配电网接地故障消弧和保护方法(专利申请号201110006701.2),该方法通过向配电网注入一定电流,强制故障相电压为零和接地故障电流为零,可实现瞬时故障的100%消弧及永久故障的快速隔离,解决了电流消弧方法消弧效果差,传统保护方法可靠性低的技术难题。但该方法会导致非故障相电压升高
Figure PCTCN2018094402-appb-000001
倍,长时间运行对电气绝缘造成威胁,易导致非故障相绝缘薄弱位置击穿,进而发展成为相间短路事故,影响供电可靠性。
总之,现有技术无法兼顾非有效接地系统的供电可靠性及安全性。
发明内容
为了克服上述现有技术的缺陷,有效解决现有技术无法同时兼顾供电可靠性及安全性的难题,本发明提供了一种非有效接地系统接地故障相主动降压安全处理方法,通过该方法将故障相电压降低,达到系统能长时间安全稳定运行的目标。本发明的目的是通过下述技术方案实现的:
一种非有效接地系统接地故障相主动降压安全处理方法,应用于中性点非有效接地发电机或配电网的接地故障安全处理,其特征在于:
在变压器非有效接地系统侧绕组设置多个分接抽头,定义每相分接抽头编号从中性点到出口依次递增,任意分接抽头X对地短路能强迫该相出口电压为:U X=E·(N-N X)/N,对地短路的抽头编号越大对应的故障相出口电压越低;单相接地故障时,根据接地故障相降压运行的目标值U 2选择变压器分接抽头,按中性点到该分接抽头的线圈匝数大于N-N·U 2/E选择其中编号最小的分接抽头对地短路,实现主动降压安全运行处理;其中E为电源相电压,N为每相绕组的线圈总匝数,N X为故障相绕组中该分接抽头X到中性点的线圈匝数,接地故障相降压运行的目标值U 2的取值范围为(0,U 1),U 1为分接抽头对地短路之前的故障相电压。
为了更好地实现发明目的,本发明可进一步采用如下技术手段:
配电网降压运行过程中,测量接地故障线路的零序电流,如果大于整定值,则依次递增改变分接抽头进行对地短路,使故障相电压进一步降低,抑制故障电流,直到接地故障线路的零序电流小于或等于整定值,实现接地故障相主动降压安全运行。
进一步地,降压运行过程中,测量计算非有效接地系统侧绕组出口电流
Figure PCTCN2018094402-appb-000002
依次递增改变分接抽头进行对地短路,使公式
Figure PCTCN2018094402-appb-000003
成立,即实现故障点电弧熄灭,其中ΣY 0为非有效接地系统正常运行时的对地零序导纳。
进一步地,降压运行过程中,测量计算非有效接地系统或接地故障线路的阻尼率
Figure PCTCN2018094402-appb-000004
如果阻尼率d大于整定值,则依次递增改变分接抽头进行对地短路,使故障相电压进一步降低,抑制故障电弧,直到d小于或等于整定值,即判断为故障熄弧,实现接地故障相主动降压安全运行;其中g为三相对地导纳,ω为系统角频率,C为三相对地电容,U 0为零序电压; I 0R为零序有功电流,I 0C为零序电容电流;P 0为零序有功功率,Q 0为零序无功功率,α 0为零序导纳角。
进一步地,分接抽头对地短路时,为防止过大冲击电流,分接抽头先经阻抗Z对地短路,如果短路电流小于短路电流整定值,则短接该阻抗,实现分接抽头X直接对地短路;否则,判断故障选相错误,断开该阻抗。
进一步地,在所述分接抽头X与地之间设置保护装置,防止该短路回路流经大电流损坏设备。
进一步地,所述变压器为Z型接地变压器或Y/△接线变压器或Y/Y/△接线变压器。
进一步地,所述非有效接地系统侧每相绕组的分接抽头数量设置范围为1-30个。
进一步地,零序电流整定值按该线路长时间带单相接地故障安全运行允许的故障电流选取,取值范围为[1A,30A],或者按接地故障电流抑制率选取,取值范围为[0.001I 0,I 0),其中I 0为分接抽头短路接地前的故障线路的零序电流。
进一步地,阻抗Z的取值范围为[10,500]欧姆;短路电流整定值取为K 1U 0/Z 0,其中U 0为实测的零序电压,Z 0为非有效接地系统正常运行时的零序阻抗,K 1为安全系数,取值范围为[1,3]。
另需说明的是,在本发明的研发过程中,发明人发现电弧是否重燃,实际上取决于电流过零后故障相的恢复电压与电弧重燃电压之间的相对大小。所以,通过注入零序电流,强迫故障相电压下降,当下降到低于故障点电弧重燃电压时,电弧无法重燃,故障点电流抑制为零,即故障电流消除;并不要求降低故障相电压到零,这样可以减少非故障相电压的上升幅值,降低非故障相绝缘击穿的风险,延长系统带单相接地故障时相对安全稳定运行的时间。而且,工程 上规定非有效接地系统接地故障发电机,或接地故障线路的故障电流,或零序电流,或故障相电压,或零序电压只要控制在允许的范围内,就可实现长时间安全稳定运行。
此外,本发明人首创性地提出了非有效接地系统接地故障相降压运行理论,并在该理论的基础上,本发明首次提出在变压器分接抽头绕组处对地短路的技术方案,该技术方案大大简化了故障抑制的控制方法。
本发明具有下述有益效果:
(1)首次提出在分接抽头绕组处对地短路,实现对故障相电压柔性调控,使故障相电压降低;(2)减少非故障相电压的上升幅值,降低非故障相绝缘击穿的风险,可有效避免非故障相的绝缘层受到损坏;(3)大大提高供电可靠性和安全性,可有效防止停电事故的发生、降低人身设备安全隐患;(4)本发明可实现带接地故障长时间安全稳定运行。
附图说明
图1为采用Y/△接线变压器的非有效接地配电网接地故障相主动降压安全处理方法原理示意图。
图2为发生接地故障时,非有效接地系统零序等值电路图。
图3为非有效接地系统接地故障相降压消弧运行范围相量图。
图4为非有效系统阻尼率或线路阻尼率的测量原理图。
图5为采用Z型接地变压器的非有效接地配电网接地故障相主动降压安全处理方法原理示意图。
图6为非有效接地发电机接地故障相主动降压安全处理方法原理示意图。
具体实施方式
以下结合附图对本发明的内容作进一步说明和解释。
如图1所示,在非有效接地配电网中,E A、E B、E C分别为系统三相电源电动势,C 0为系统对地电容,r 0为系统对地泄漏电阻,A s、B s、C s为Y/△接线变压器非有效接地系统侧绕组,S为开关,P为保护装置(可以是过流保护装置,也可以是熔断器),变压器非有效接地系统侧绕组的一端引出线直接与非有效接地系统A、B、C三相连接,变压器非有效接地系统侧绕组做星形接线后引出中性点N再经阻抗Z 1接地;a s、b s、c s为变压器低压侧绕组,低压侧绕组采用三角形接线;在变压器非有效接地系统侧绕组设置多个分接抽头(所谓多个分接抽头是指A、B、C三相绕组的分接抽头总和为三个或三个以上),且每相绕组的分接抽头数量设置范围为1-30个,定义每相分接抽头编号从中性点到出口依次递增,任意分接抽头X对地短路能强迫该相出口电压为:U X=E·(N-N X)/N,其中E为电源相电压,N为每相绕组的线圈总匝数,N X为故障相绕组中该分接抽头X到中性点的线圈匝数。同时,为了防止该短路回路流经大电流损坏设备,在分接抽头X与地之间设置保护装置P。发生单相接地故障时,接地电阻为R f,根据接地故障相降压运行的目标值U 2选择变压器分接抽头,按中性点到该分接抽头的线圈匝数大于N-N·U 2/E选择其中编号最小的分接抽头对地短路,实现主动降压安全运行处理;其中,接地故障相降压运行的目标值U 2的取值范围为(0,U 1),U 1为分接抽头对地短路之前的故障相电压。
图1所对应的非有效接地系统中的零序等值电路,即发生接地故障时非有效接地系统零序等值电路,如图2所示。根据基尔霍夫电流方程,变压器非有效接地系统侧绕组出口电流
Figure PCTCN2018094402-appb-000005
为:
Figure PCTCN2018094402-appb-000006
式(1)中,配电网对地零序导纳
Figure PCTCN2018094402-appb-000007
中性点接地导纳
Figure PCTCN2018094402-appb-000008
三相对地电导
Figure PCTCN2018094402-appb-000009
三相对地电容C=3C 0,故障对地电导
Figure PCTCN2018094402-appb-000010
Figure PCTCN2018094402-appb-000011
为零序电压。
考虑非有效接地系统正常运行条件下的三相对地参数不对称产生的零序电压影响,式(1)中的零序电压U 0用零序电压变化量
Figure PCTCN2018094402-appb-000012
代替;并考虑故障消弧后,故障点对地导纳Y f=0,则式(1)可简化为:
Figure PCTCN2018094402-appb-000013
因此,在降压运行过程中,测量计算非有效接地系统侧绕组出口电流
Figure PCTCN2018094402-appb-000014
依次递增改变分接抽头进行对地短路,使公式
Figure PCTCN2018094402-appb-000015
成立,即实现故障点电弧熄灭,其中∑Y 0为非有效接地系统正常运行时的对地零序导纳。
本实施例中分接抽头对地短路时,为防止过大冲击电流,分接抽头先经阻抗Z对地短路,如果短路电流小于短路电流整定值,则短接该阻抗,实现分接抽头X直接对地短路;否则,判断故障选相错误,断开该阻抗;
以下进一步讨论故障电弧熄灭的故障相降压运行范围,如图3所示,系统正常运行时,中性点电压为零,A相电压向量为
Figure PCTCN2018094402-appb-000016
B相电压向量为
Figure PCTCN2018094402-appb-000017
C相电压向量为
Figure PCTCN2018094402-appb-000018
以C相发生接地故障为例,设确保故障相电弧熄灭的故障相最大运行电压幅值为CC”,则故障相熄弧的条件为:零电位点在以C为圆心CC”为半径的圆内;另外,为防止非故障相电压过高发生绝缘击穿,要求非故障相电压小于线电压,即:零电位点应在以A点为圆心AC为半径的圆内,和以B点为圆心BC为半径的圆内。因此,为确保非有效接地系统故障相降压后长时间安 全运行,本发明的故障相降压后的零电位点的范围为:上述三个圆的交集内。
以下进一步讨论通过测量阻尼率判断故障熄弧的方法,如图4所示,在降压消弧运行过程中,通过测量系统的零序电流
Figure PCTCN2018094402-appb-000019
和零序电压,计算系统的阻尼率,或测量故障线路m的零序电流
Figure PCTCN2018094402-appb-000020
和零序电压,计算故障线路m的阻尼率。非有效接地系统的阻尼率或线路的阻尼率的计算公式为:
Figure PCTCN2018094402-appb-000021
并设定阻尼率d的整定值为该系统或该线路正常运行状态下阻尼率的K 3倍;系数K 3取值范围为(1,5];如果阻尼率d大于整定值,则依次递增改变分接抽头进行对地短路,使故障相电压进一步降低,抑制故障电弧,直到d小于或等于整定值,即判断为故障熄弧,实现接地故障相主动降压安全运行;其中
Figure PCTCN2018094402-appb-000022
为三相对地电导,ω为系统角频率,C=3C 0为三相对地电容,U 0为零序电压;I 0R为零序有功电流,I 0C为零序电容电流;P 0为零序有功功率,Q 0为零序无功功率,α 0为零序导纳角。
如图5所示,本实施例中的Y/△接线变压器可用Z型接地变压器进行替换。同理,本实施例中的Y/△接线变压器也可用Y/Y/△接线变压器进行替换。
以上详细介绍了本发明应用于非有效接地配电网时的技术原理,该技术原理同样适用于本发明应用于非有效接地发电机的情形;以下进一步介绍本发明应用于非有效接地配电网和发电机的具体情况:
第一种情况,如图1所示,在非有效接地配电网中,
Figure PCTCN2018094402-appb-000023
线路对地泄漏电阻r 0=4.7kΩ、线路对地电容值C 0=8.36uF,P为保护装置(可以是过流保护装置,也可以是熔断器),设定接地故障相降压运行的目标值U 2=2.4kV,接地故障线路零序电流整定值为10A,中性点N接地阻抗Z 1=j121Ω, A s、B s、C s为Y/△接线变压器非有效接地系统侧绕组,A s、B s、C s的引出线分别与A、B、C三相母线对应连接,绕组A s、B s、C s的线圈总匝数(用N表示)各为150个,在绕组A s、B s、C s中共设置有15个分接抽头,即绕组A s、B s、C s分别设置5个分接抽头,定义每相分接抽头编号从中性点到出口依次递增,分别为分接抽头1,分接抽头2,分接抽头3,分接抽头4,分接抽头5;分接抽头1到中性点的线圈匝数为30,分接抽头2到中性点的线圈匝数为60,分接抽头3到中性点的线圈匝数为90,分接抽头4到中性点的线圈匝数为120,分接抽头5到中性点的线圈匝数为150。在C相发生单相接地故障且未将分接抽头进行短路前,检测到故障相电压U 1为2.6kV,接地电阻R f=1kΩ,此时将故障相C相电压U 1进行降压安全处理,按中性点到该分接抽头的线圈匝数大于N-N·U 2/E=88.5选择其中编号最小的分接抽头3对地短路,分接抽头3到中性点的线圈匝数N 3=90,即可将故障相电压降低到U 3=E C·(N-N 3)/N=2.3kV,满足故障相电压运行范围[0,2.60kV),此时非故障相电压为7.2kV,小于线电压10kV,既实现了接地故障相消弧,同时非故障相电压也未升高至线电压,实现主动降压安全运行处理。
降压安全处理过程中,测量接地故障线路零序电流,如果大于整定值10A,则依次递增改变分接抽头进行对地短路,使故障相电压进一步降低,抑制故障电流,直到接地故障线路的零序电流小于或等于整定值10A,实现接地故障相主动降压安全处理。
为防止过大冲击电流,分接抽头先经阻抗Z对地短路,如果短路电流小于短路电流整定值,则短接该阻抗,实现分接抽头X直接对地短路;否则,判断故障选相错误,断开该阻抗;阻抗Z的取值10欧姆;
第二种情况,如图6所示,在非有效接地发电机中,
Figure PCTCN2018094402-appb-000024
发电机定子对地泄漏电阻r 0=20kΩ、发电机定子对地电容值C 0=1.81uF,P为保护装置(可以是过流保护装置,也可以是熔断器),设定接地故障相降压运行的目标值U 2=2.6kV,阻尼率d的整定值为该系统或该线路正常运行状态下阻尼率的K 3倍,系数K 3=3,且正常运行状态下阻尼率为8.8%,中性点N接地阻抗Z 2=j600Ω,A s、B s、C s为Y/△接线变压器非有效接地系统侧绕组,A s、B s、C s的引出线分别与A、B、C三相母线对应连接,绕组A s、B s、C s的线圈总匝数(用N表示)各为150个,在绕组A s、B s、C s中共设置有15个分接抽头,即绕组A s、B s、C s分别设置5个分接抽头,定义每相分接抽头编号从中性点到出口依次递增,分别为分接抽头1,分接抽头2,分接抽头3,分接抽头4,分接抽头5;分接抽头1到中性点的线圈匝数为30,分接抽头2到中性点的线圈匝数为60,分接抽头3到中性点的线圈匝数为90,分接抽头4到中性点的线圈匝数为120,分接抽头5到中性点的线圈匝数为150。
在C相发生单相接地故障且未将分接抽头进行短路前,检测到故障相电压U 1为2.76kV,接地电阻用R f=2kΩ,此时将故障相C相电压
Figure PCTCN2018094402-appb-000025
进行降压安全处理,按中性点到该分接抽头的线圈匝数大于N-N·U 2/E=116.2选择其中编号最小的分接抽头4对地短路,分接抽头4到中性点的线圈匝数N 4=120,即可将故障相电压降低到U 4=E C·(N-N 4)/N=2.31kV,满足故障相电压运行范围[0,2.76kV),此时非故障相电压为14.42kV,小于线电压20kV,既实现了接地故障相消弧,同时非故障相电压也未升高至线电压,实现主动降压安全运行处理。
降压安全处理过程中,测量非有效接地发电机的阻尼率,如果阻尼率d大于整定值3×8.8%=26.4%,则依次递增改变分接抽头进行对地短路,使故障相电压进一步降低,抑制故障电弧,直到d小于或等于整定值3×8.8%=26.4%, 即判断为故障熄弧,实现接地故障相主动降压安全运行;
为防止过大冲击电流,分接抽头先经阻抗Z对地短路,如果短路电流小于短路电流整定值,则短接该阻抗,实现分接抽头X直接对地短路;否则,判断故障选相错误,断开该阻抗;阻抗Z的取值10欧姆。

Claims (10)

  1. 一种非有效接地系统接地故障相主动降压安全处理方法,应用于中性点非有效接地发电机或配电网的接地故障安全处理,其特征在于:在变压器非有效接地系统侧绕组设置多个分接抽头,定义每相分接抽头编号从中性点到出口依次递增,任意分接抽头X对地短路能强迫该相出口电压为:U X=E·(N-N X)/N,对地短路的抽头编号越大对应的故障相出口电压越低;单相接地故障时,根据接地故障相降压运行的目标值U 2选择变压器分接抽头,按中性点到该分接抽头的线圈匝数大于N-N·U 2/E选择其中编号最小的分接抽头对地短路,实现主动降压安全运行处理;其中E为电源相电压,N为每相绕组的线圈总匝数,N X为故障相绕组中该分接抽头X到中性点的线圈匝数,接地故障相降压运行的目标值U 2的取值范围为(0,U 1),U 1为分接抽头对地短路之前的故障相电压。
  2. 根据权利要求1所述的非有效接地系统接地故障相主动降压安全处理方法,其特征在于:配电网降压运行过程中,测量接地故障线路的零序电流,如果大于整定值,则依次递增改变分接抽头进行对地短路,使故障相电压进一步降低,抑制故障电流,直到接地故障线路的零序电流小于或等于整定值,实现接地故障相主动降压安全运行。
  3. 根据权利要求1所述的非有效接地系统接地故障相主动降压安全处理方法,其特征在于:降压运行过程中,测量计算非有效接地系统侧绕组出口电流
    Figure PCTCN2018094402-appb-100001
    依次递增改变分接抽头进行对地短路,使公式
    Figure PCTCN2018094402-appb-100002
    成立,即实现故障点电弧熄灭,其中ΣY 0为非有效接地系统正常运行时的对地零序导纳。
  4. 根据权利要求1所述的非有效接地系统接地故障相主动降压安全处理方 法,其特征在于:降压运行过程中,测量计算非有效接地系统或接地故障线路的阻尼率
    Figure PCTCN2018094402-appb-100003
    如果阻尼率d大于整定值,则依次递增改变分接抽头进行对地短路,使故障相电压进一步降低,抑制故障电弧,直到d小于或等于整定值,即判断为故障熄弧,实现接地故障相主动降压安全运行;其中g为三相对地导纳,ω为系统角频率,C为三相对地电容,U 0为零序电压;I 0R为零序有功电流,I 0C为零序电容电流;P 0为零序有功功率,Q 0为零序无功功率,α 0为零序导纳角。
  5. 根据权利要求1所述的非有效接地系统接地故障相主动降压安全处理方法,其特征在于:分接抽头对地短路时,为防止过大冲击电流,分接抽头先经阻抗Z对地短路,如果短路电流小于短路电流整定值,则短接该阻抗,实现分接抽头X直接对地短路;否则,判断故障选相错误,断开该阻抗。
  6. 根据权利要求1所述的非有效接地系统接地故障相主动降压安全处理方法,其特征在于:在所述分接抽头X与地之间设置保护装置,防止该短路回路流经大电流损坏设备。
  7. 根据权利要求1所述的非有效接地系统接地故障相主动降压安全处理方法,其特征在于:所述变压器为Z型接地变压器或Y/△接线变压器或Y/Y/△接线变压器。
  8. 根据权利要求1所述的非有效接地系统接地故障相主动降压安全处理方法,其特征在于:所述非有效接地系统侧每相绕组的分接抽头数量设置范围为1-30个。
  9. 根据权利要求2所述的非有效接地系统接地故障相主动降压安全处理方法,其特征在于:零序电流整定值按该线路长时间带单相接地故障安全运行允 许的故障电流选取,取值范围为[1A,30A],或者按接地故障电流抑制率选取,取值范围为[0.001I 0,I 0),其中I 0为分接抽头短路接地前的故障线路的零序电流。
  10. 根据权利要求5所述的非有效接地系统接地故障相主动降压安全处理方法,其特征在于:阻抗Z的取值范围为[10,500]欧姆;短路电流整定值取为K 1U 0/Z 0,其中U 0为实测的零序电压,Z 0为非有效接地系统正常运行时的零序阻抗,K 1为安全系数,取值范围为[1,3]。
PCT/CN2018/094402 2017-07-06 2018-07-04 非有效接地系统接地故障相主动降压安全处理方法 WO2019007348A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
RU2019136388A RU2739824C1 (ru) 2017-07-06 2018-07-04 Безопасный операционный способ снижения активного напряжения фазы замыкания на землю выключенной системы заземления
US16/613,409 US10892616B2 (en) 2017-07-06 2018-07-04 Safe processing method for active voltage reduction of ground fault phase of non-effective ground system
AU2018295936A AU2018295936B2 (en) 2017-07-06 2018-07-04 Safe processing method for active voltage reduction of ground fault phase of non-effective ground system
EP18828476.4A EP3605768B1 (en) 2017-07-06 2018-07-04 Safe processing method for active voltage reduction of ground fault phase of non-effective grounding system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710550400.3 2017-07-06
CN201710550400.3A CN107147096B (zh) 2017-07-06 2017-07-06 非有效接地系统接地故障相主动降压安全处理方法

Publications (1)

Publication Number Publication Date
WO2019007348A1 true WO2019007348A1 (zh) 2019-01-10

Family

ID=59785660

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/094402 WO2019007348A1 (zh) 2017-07-06 2018-07-04 非有效接地系统接地故障相主动降压安全处理方法

Country Status (6)

Country Link
US (1) US10892616B2 (zh)
EP (1) EP3605768B1 (zh)
CN (1) CN107147096B (zh)
AU (1) AU2018295936B2 (zh)
RU (1) RU2739824C1 (zh)
WO (1) WO2019007348A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111983510A (zh) * 2020-07-17 2020-11-24 珠海许继电气有限公司 基于相电压和电流突变量的单相接地故障选相方法及系统
CN112198461A (zh) * 2020-09-28 2021-01-08 芜湖金牛电气股份有限公司 干式变压器故障处理方法
CN112436496A (zh) * 2019-08-26 2021-03-02 中国石油化工股份有限公司 小电流接地消弧装置及消弧方法
CN112909911A (zh) * 2021-01-18 2021-06-04 长沙理工大学 一种单相接地故障电流全补偿装置和方法
CN113178889A (zh) * 2021-04-23 2021-07-27 国网福建省电力有限公司泉州供电公司 一种有源配电网接地装置的安全校核计算方法

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107147096B (zh) 2017-07-06 2018-07-03 长沙理工大学 非有效接地系统接地故障相主动降压安全处理方法
CN110261729A (zh) * 2019-05-30 2019-09-20 杭州电力设备制造有限公司 一种配电网柔性接地控制方法
CN110726908B (zh) * 2019-08-09 2020-09-29 清华大学 一种换流变压器绝缘老化监测方法
CN110927515B (zh) * 2019-11-14 2022-01-25 长沙理工大学 基于接地变压器分接抽头接地的配电网单相接地故障选线方法及系统
CN110927516B (zh) * 2019-11-14 2022-01-21 长沙理工大学 基于接地变压器分接抽头接地的配电网单相接地故障辨识方法及系统
CN111181146A (zh) * 2020-02-26 2020-05-19 安徽一天电气技术股份有限公司 消弧系统及方法
CN111969575B (zh) * 2020-08-13 2023-03-28 广东电网有限责任公司 配电网单相接地故障消弧方法、装置、设备及存储介质
CN111934305B (zh) * 2020-08-20 2022-04-08 福州大学 基于电压解耦控制的配电网单相接地故障柔性消弧方法
CN112054498B (zh) * 2020-09-24 2022-09-27 云南电网有限责任公司电力科学研究院 一种接地故障全补偿系统的限流保护方法及装置
CN112054494B (zh) * 2020-09-24 2022-09-27 云南电网有限责任公司电力科学研究院 一种接地故障电流全补偿系统保护及整定方法
CN112180290B (zh) * 2020-09-29 2024-03-08 西安热工研究院有限公司 一种发电机定子接地故障定位方法
CN112269049B (zh) * 2020-10-14 2023-08-22 广西电网有限责任公司电力科学研究院 一种配电网对地电容电流测量方法及系统
CN112269064A (zh) * 2020-10-16 2021-01-26 南方电网科学研究院有限责任公司 配电网对地泄漏电阻测量系统和方法
CN112491002A (zh) * 2020-11-10 2021-03-12 安徽合凯电气科技股份有限公司 一种分相控制的电压暂降治理方法
CN112433175B (zh) * 2020-11-10 2023-08-22 西安工程大学 一种利用零序电流倍增特征的不接地系统故障选线方法
CN112491063A (zh) * 2020-11-23 2021-03-12 国网北京市电力公司 抑制低频非线性振荡的方法、系统及装置
CN112684288A (zh) * 2020-12-10 2021-04-20 国网陕西省电力公司西咸新区供电公司 一种利用三相故障信号电流实现小电流单相接地选线方法
CN113725811B (zh) * 2020-12-12 2023-12-05 保定钰鑫电气科技有限公司 一种非有效接地系统单相接地的处理方法
CN112615360A (zh) * 2020-12-16 2021-04-06 全球能源互联网研究院有限公司 一种柔性直流输电系统的接地装置
CN112886627B (zh) * 2021-01-15 2022-08-09 长沙理工大学 一种提升mmc供电无源网络功率传输能力的方法
CN112615383B (zh) * 2021-01-29 2022-06-07 杭州弘塔通信技术有限公司 一种通信基站的电压精确提升和稳定系统
CN113595048A (zh) * 2021-08-06 2021-11-02 国网河南省电力公司新野县供电公司 一种全补偿消弧线圈接地残流检测方法及系统
CN114142451B (zh) * 2021-11-19 2022-09-23 广东福德电子有限公司 配电网接地故障降压有源消弧电源及其控制方法
CN117559377A (zh) * 2022-08-04 2024-02-13 南京南瑞继保电气有限公司 基于可调电抗的全补偿消弧系统及方法
CN117013506B (zh) * 2023-10-07 2023-12-01 安徽沃华电力设备有限公司 一种中性点非线性电阻接地保护系统及可靠选线装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1645705A (zh) * 2005-01-20 2005-07-27 长沙理工大学 小电流接地系统接地故障选线与保护方法
CN1912642A (zh) * 2006-07-28 2007-02-14 徐文远 中性点非有效接地系统单相接地选线设备及方法
WO2012013165A1 (en) * 2010-07-27 2012-02-02 Západočeská Univerzita V Plzni The apparatus compensating ground currents connected to a transformer neutral point
CN104662761A (zh) * 2012-08-03 2015-05-27 瑞典中立公司 一种包括可控接地变压器的设备
CN107147096A (zh) * 2017-07-06 2017-09-08 长沙理工大学 非有效接地系统接地故障相主动降压安全处理方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL27336C (zh) * 1928-04-19
BE638540A (zh) * 1962-10-13
US4156884A (en) * 1977-11-07 1979-05-29 General Electric Company Ground fault protection system for industrial power circuits
US4685022A (en) * 1985-05-10 1987-08-04 Square D Company Ground fault circuit interrupter capable of deriving energy from ground fault current in order to achieve circuit interruption in the presence of a reduced supply voltage
RU2080726C1 (ru) * 1995-07-31 1997-05-27 Товарищество с ограниченной ответственностью "Таврида-Электрик" Устройство заземления высоковольтной сети
CN2306605Y (zh) * 1997-08-14 1999-02-03 张旭辉 电网接地点限流选线装置
US6504691B1 (en) * 1999-07-13 2003-01-07 Kabushiki Kaisha Sanyo Denki Seisa Kusho Safety enhanced transformer circuit
US7301739B2 (en) * 2005-10-12 2007-11-27 Chevron U.S.A. Inc. Ground-fault circuit-interrupter system for three-phase electrical power systems
CN102074950B (zh) 2011-01-13 2013-07-31 长沙理工大学 一种配电网接地故障消弧和保护方法
RU2453020C1 (ru) * 2011-04-05 2012-06-10 Владимир Анатольевич Благинин Способ заземления нейтрали
CN202353205U (zh) * 2011-04-20 2012-07-25 黄留欣 Y接电抗器灭弧装置
CN103384066A (zh) * 2013-06-25 2013-11-06 合肥天海电气技术有限公司 调匝式消弧线圈自动跟踪补偿系统
CN104901299A (zh) * 2015-06-19 2015-09-09 安徽马尼特合开电器有限公司 一种谐振接地系统自动跟踪补偿装置及方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1645705A (zh) * 2005-01-20 2005-07-27 长沙理工大学 小电流接地系统接地故障选线与保护方法
CN1912642A (zh) * 2006-07-28 2007-02-14 徐文远 中性点非有效接地系统单相接地选线设备及方法
WO2012013165A1 (en) * 2010-07-27 2012-02-02 Západočeská Univerzita V Plzni The apparatus compensating ground currents connected to a transformer neutral point
CN104662761A (zh) * 2012-08-03 2015-05-27 瑞典中立公司 一种包括可控接地变压器的设备
CN107147096A (zh) * 2017-07-06 2017-09-08 长沙理工大学 非有效接地系统接地故障相主动降压安全处理方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"round Fault Neutralizer Full-Compensation Technology and Application''", 2015, SWEDISH NEUTRAL CORPORATION
See also references of EP3605768A4

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112436496A (zh) * 2019-08-26 2021-03-02 中国石油化工股份有限公司 小电流接地消弧装置及消弧方法
CN111983510A (zh) * 2020-07-17 2020-11-24 珠海许继电气有限公司 基于相电压和电流突变量的单相接地故障选相方法及系统
CN111983510B (zh) * 2020-07-17 2023-08-18 珠海许继电气有限公司 基于相电压和电流突变量的单相接地故障选相方法及系统
CN112198461A (zh) * 2020-09-28 2021-01-08 芜湖金牛电气股份有限公司 干式变压器故障处理方法
CN112909911A (zh) * 2021-01-18 2021-06-04 长沙理工大学 一种单相接地故障电流全补偿装置和方法
CN112909911B (zh) * 2021-01-18 2024-03-15 长沙理工大学 一种单相接地故障电流全补偿装置和方法
CN113178889A (zh) * 2021-04-23 2021-07-27 国网福建省电力有限公司泉州供电公司 一种有源配电网接地装置的安全校核计算方法
CN113178889B (zh) * 2021-04-23 2023-06-16 国网福建省电力有限公司泉州供电公司 一种有源配电网接地装置的安全校核计算方法

Also Published As

Publication number Publication date
CN107147096B (zh) 2018-07-03
EP3605768A1 (en) 2020-02-05
EP3605768A4 (en) 2020-12-30
AU2018295936B2 (en) 2020-12-17
CN107147096A (zh) 2017-09-08
AU2018295936A1 (en) 2019-10-31
US20200083702A1 (en) 2020-03-12
US10892616B2 (en) 2021-01-12
EP3605768B1 (en) 2023-01-11
RU2739824C1 (ru) 2020-12-28

Similar Documents

Publication Publication Date Title
WO2019007348A1 (zh) 非有效接地系统接地故障相主动降压安全处理方法
WO2019007349A1 (zh) 非有效接地系统接地故障相降压消弧的安全运行方法
CN203942275U (zh) 一种35kV中性点不接地配电网铁磁谐振抑制装置
CN107276082B (zh) 非有效接地系统接地故障相主动降压安全运行方法
WO2011020301A1 (zh) 限制超高压/特高压同塔双回线路潜供电流的方法及装置
CN106602540A (zh) 一种适用于中压配电网单相接地故障的有源电压消弧法
Zheng et al. Design and analysis on the turn-to-turn fault protection scheme for the control winding of a magnetically controlled shunt reactor
CN108845223B (zh) 一种消弧线圈磁控扰动选线方法
CN105098748A (zh) 一种浪涌保护器及提升其暂时过电压耐受能力的方法
CN111736093B (zh) 基于3次谐波和有功损耗的相控电抗器匝间故障识别方法
Hu et al. Analysis on the necessity of high-voltage shunt reactors in power grid
CN107147099B (zh) 弧光接地过电压抑制方法和系统
CN109813997B (zh) 一种可控电流源接地电流全补偿输出电流计算方法及系统
Varetsky et al. Study of transient overvoltages on CSI adjustable speed drives under arcing SLGF in the industrial cable grid
CN202696141U (zh) 一种消弧消谐装置
Luo et al. Research on limiting measures for DC component of short circuit current based on fault current limiter and selection of installation site
CN219498953U (zh) 一种配电网单相接地故障处理系统
CN112909902B (zh) 配电网柔性跳闸的控制方法、故障馈线辨识方法及系统
Hardi et al. Modeling Of Generator Neutral Grounding Through Distribution Transformator Using Lab View Graphical User Interface
Sevsek Advanced Earth Fault Mitigation Using Virtual Air Gap Reactors
Klucznik et al. Resonance problems in UHV transmission lines
Xu et al. Study on transient recovery voltage characteristics of on-load tap charger during switching process
CN104678245B (zh) 一种判断电气装置短路的方法
CN117526236A (zh) 基于并联环流的主变串接限流电抗器故障监测保护方法
CN113363950A (zh) 一种配电网经变压器柔性接地方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18828476

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018828476

Country of ref document: EP

Effective date: 20191021

ENP Entry into the national phase

Ref document number: 2018295936

Country of ref document: AU

Date of ref document: 20180704

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE