WO2019007349A1 - 非有效接地系统接地故障相降压消弧的安全运行方法 - Google Patents

非有效接地系统接地故障相降压消弧的安全运行方法 Download PDF

Info

Publication number
WO2019007349A1
WO2019007349A1 PCT/CN2018/094419 CN2018094419W WO2019007349A1 WO 2019007349 A1 WO2019007349 A1 WO 2019007349A1 CN 2018094419 W CN2018094419 W CN 2018094419W WO 2019007349 A1 WO2019007349 A1 WO 2019007349A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
voltage
fault
ground
ground fault
Prior art date
Application number
PCT/CN2018/094419
Other languages
English (en)
French (fr)
Inventor
曾祥君
Original Assignee
长沙理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 长沙理工大学 filed Critical 长沙理工大学
Priority to AU2018295937A priority Critical patent/AU2018295937B2/en
Priority to US16/616,975 priority patent/US11368017B2/en
Priority to RU2019136374A priority patent/RU2727727C1/ru
Priority to BR112019025557-5A priority patent/BR112019025557B1/pt
Priority to EP18828588.6A priority patent/EP3605773B1/en
Publication of WO2019007349A1 publication Critical patent/WO2019007349A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/001Methods to deal with contingencies, e.g. abnormalities, faults or failures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H9/00Emergency protective circuit arrangements for limiting excess current or voltage without disconnection
    • H02H9/08Limitation or suppression of earth fault currents, e.g. Petersen coil
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/12Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/08Locating faults in cables, transmission lines, or networks
    • G01R31/081Locating faults in cables, transmission lines, or networks according to type of conductors
    • G01R31/086Locating faults in cables, transmission lines, or networks according to type of conductors in power transmission or distribution networks, i.e. with interconnected conductors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/52Testing for short-circuits, leakage current or ground faults
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H9/00Emergency protective circuit arrangements for limiting excess current or voltage without disconnection

Definitions

  • the invention relates to the technical field of single-phase ground fault suppression of a non-effective grounding system, in particular to a safe operation method of a ground fault phase of a non-effective earthing system.
  • domestic and international generator sets and distribution networks generally adopt neutral point non-effective grounding methods, and the non-effective grounding system constitutes more than 95% of China's 6kV and above voltage level power grids. Nearly 70% of power outages are caused by this system failure. The annual power outage losses have reached an annual average of hundreds of billions of yuan.
  • the non-effective grounding system is different from the power transmission system, and the ground fault resistance can be as high as several tens of kilohms, which is difficult to sense and protect. Long-term operation with faults endangers personal and equipment safety and causes serious social and economic losses. Ground faults are prone to electric shocks, and the number of deaths per year is as high as 1,000, second only to traffic accidents.
  • Ground faults are prone to arc overvoltages, causing equipment to burn out and even causing "fire and burn camp" accidents. Large-scale unit grounding faults cannot be extinguished in time. Arc currents easily cause iron cores and windings to burn out, causing accidents to expand and even destroying people. Grounding faults and power outages will reduce power supply reliability and directly affect industrial production and people's living standards. Non-Effective Grounding System Grounding Failure Safety operation is critical to grid security and national security.
  • the ground fault handling and operation modes of the existing non-effective grounding system mainly include fault suppression and fault removal.
  • the ground fault suppression mainly adjusts or regulates the neutral point grounding mode of the primary system of the power grid, regulates the neutral grounding impedance, suppresses the voltage and current of the fault point, and realizes the ground fault suppression of the non-effective grounding system, but can only run for 1 to 2 hours in a short time. And easy to generate overvoltage, there are security risks.
  • the ground fault resection is mainly to select the fault line and cut off the fault point as soon as possible after the system grounds to ensure the safe operation of the system. For example, from the traditional manual line-by-line "trial pull", to the use of fault line selection device and fault indicator line selection, and then to the feeder automation technology to quickly isolate the fault, but the fault removal technology leads to long power outage time, high investment costs, serious Reduce the reliability of power distribution system power supply.
  • the inventor proposed in 2011 a distribution network ground fault arc suppression and protection method (patent application number 201110006701.2), the method by injecting a certain current into the distribution network, forcing the fault phase voltage to zero and the ground fault current is Zero, can achieve 100% arc suppression of instantaneous faults and rapid isolation of permanent faults, and solve the technical problem that the arc extinguishing effect of the current arc extinguishing method is poor and the reliability of the traditional protection method is low. But this method will cause the non-fault phase voltage to rise. Times, long-term operation poses a threat to electrical insulation, which may lead to breakdown of weak locations of non-faulty phase insulation, and then develop into phase-to-phase short-circuit accidents, affecting power supply reliability.
  • the present invention proposes a safe operation method for a ground fault phase non-effective grounding system with step-down arc suppression.
  • a safe operation method for non-effective grounding system ground fault phase step-down arc-extinguishing applied to ground fault safety operation of neutral point non-effective earthing generator or distribution network, in case of single-phase earthing fault, in non-effective grounding system
  • the side busbar and ground, or the line and ground, or the neutral point and ground, or the tapping tap of the side winding of the non-effective grounding system of the transformer, and the ground voltage are applied.
  • the voltage output of the voltage source is: The voltage of the fault phase is reduced, and the voltage arc-extinguishing and active step-down operation of the ground fault are realized; It is the normal voltage of the access point under the condition that the normal grid voltage source is not connected, and the zero sequence voltage variation By formula or Calculation, For the zero sequence voltage after active buck, For zero sequence voltage under normal operating conditions, ( Or B or C) is the ground fault phase Power supply voltage, The fault phase voltage after the application of the voltage source, the value range is The fault phase voltage before the voltage source is applied.
  • the present invention can further adopt the following technical means:
  • the damping rate of the non-effective earthing system or the ground fault line is measured and calculated. If the damping rate d is greater than the setting value, the voltage source output voltage is regulated. The size and phase of the fault phase further reduce the fault phase voltage and suppress the fault arc until d is less than or equal to the set value, that is, it is judged as fault arc extinction, and the ground fault phase is actively stepped down and safely operated; wherein g is three relative ground conductance, ⁇ For system angular frequency, C is three relative ground capacitance, U 0 is zero sequence voltage, I 0R is zero sequence active current, I 0C is zero sequence capacitance current, P 0 is zero sequence active power, Q 0 is zero sequence reactive Power, ⁇ 0 is the zero sequence admittance angle.
  • the zero-sequence current of the ground fault line is measured. If it is greater than the set value, the magnitude and phase of the voltage source output voltage U&# are adjusted, so that the fault phase voltage is further reduced, and the fault current is suppressed until The zero-sequence current of the ground fault line is less than or equal to the set value, and the ground fault phase is actively stepped down and safely operated.
  • the zero-sequence current setting value is selected according to the fault current allowed by the fault line for a long time with single-phase ground fault safety operation.
  • the value range is usually [1A, 30A], or the ground fault current suppression rate is selected, and the value range is usually [0.001 I 0 , I 0 ), where I 0 is the zero-sequence current of the ground fault line before the applied adjustable current source.
  • the applied voltage source continues for a period of time, and then, the voltage source is disconnected, and then the ground fault is detected. If the fault does not exist, it is determined that the instantaneous ground fault has been extinguished and resumes normal operation; otherwise , re-apply the voltage source, continue to achieve the ground fault phase active step-down operation.
  • the value range of the applied voltage source for a period of time is usually (0.1 s, 60 s).
  • the voltage source is a voltage source with adjustable amplitude and phase realized by power electronic components, or a voltage source output by a single-phase transformer.
  • the setting value of the damping rate d is set to K 3 times the damping rate of the system or the normal operating state of the line; the coefficient K 3 ranges from (1, 5).
  • the input voltage of the voltage source is derived from the secondary side voltage of the transformer of the non-effective grounding system, and the phase of the voltage is consistent with the phase of the faulty phase power supply voltage; thus, when the voltage source is regulated, there is no need to adjust the phase, and only the amplitude is adjusted, thereby realizing Simple and economical.
  • a voltage single-phase voltage regulator is installed in the voltage source circuit to regulate the voltage amplitude.
  • a protection device is provided in the output circuit of the voltage source to prevent the device from being damaged by a large current.
  • the transformer is a Z-type grounding transformer or a Y/ ⁇ wiring transformer or a Y/Y/ ⁇ wiring transformer connected to a non-effective grounding system.
  • the detection method and fault phase selection technology of the single-phase ground fault of the non-effective grounding system are very mature at present, and there are many technical means to be selected.
  • the present invention no longer describes how to detect the fault. Normally, if the system zero sequence voltage change exceeds the set value, it is determined that a ground fault has occurred.
  • the inventor has pioneered the grounding fault phase phase-down operation theory of the non-effective grounding system, and based on the theory, the present invention first proposes the busbar and the ground, or the line and the ground on the side of the non-effectively grounded system. Or the neutral point and the ground, or the technical solution of the adjustable voltage source between the tapping tap of the side winding of the transformer non-effectively grounded system and the ground, the technical scheme greatly simplifies the control method of the fault suppression.
  • the operation method and control method are simple and reliable.
  • the invention takes the fault phase voltage as the control target, does not need to accurately measure the system ground parameter, and avoids the problem that the traditional current arc extinguishing method has poor suppression effect due to the system ground parameter measurement error, so that the suppression precision is significantly improved by 80%. .
  • the invention realizes the flexible regulation of the fault phase voltage for the first time. After the fault occurs, the fault phase voltage is lowered in the case of ensuring the arc extinguishing. between, The fault phase voltage before the voltage source is applied. Reducing the rising amplitude of the non-fault phase voltage and reducing the risk of non-fault phase insulation breakdown can effectively avoid the breakdown of the non-fault phase insulation, and can effectively extend the fault running time after the single-phase ground fault of the non-effective grounding system.
  • the implementation cost is low.
  • the invention does not need to increase the arc-extinguishing system composed of multiple sets of primary devices to realize the arc-extinguishing function, and the installation investment of the equipment and the device can be greatly reduced compared with the traditional arc-extinguishing method.
  • Figure 1 is a schematic diagram of the safe operation principle of the step-down arc suppression of the ground fault phase of the non-effectively grounded distribution network using the Y/ ⁇ wiring transformer.
  • Figure 2 is a circuit diagram of the zero-sequence equivalent of the non-effective grounding system when a ground fault occurs.
  • Figure 3 is a phasor diagram of the step-down arc-extinguishing operation range of the ground fault phase of the non-effective earthing system.
  • Figure 4 is a schematic diagram of the measurement of the non-effective system damping rate or line damping rate.
  • Figure 5 is a schematic diagram of the safe operation principle of the step-down arc suppression of the ground fault phase of the non-effective grounding distribution network using the Z-type grounding transformer.
  • Figure 6 is a schematic diagram of the safe operation principle of the step-down arc suppression of the ground fault phase of the non-effectively grounded generator.
  • the non-effective earthing system of the transformer After the side windings are star-connected, the neutral point N is taken out and then impedance Z is grounded; a s , b s , and c s are the low-voltage side windings of the transformer, and the low-voltage side windings are connected by delta wires.
  • the grounding resistance is R f
  • the fault phase Voltage is ( Or B or C)
  • the amount of change is then:
  • Zero sequence voltage change Can also be formulated or Calculation; Is the normal voltage of the access point under the condition that the normal grid voltage source is not connected, For the zero sequence voltage after active buck, For zero sequence voltage under normal operating conditions, The power supply voltage for the ground fault phase, The fault phase voltage after the application of the voltage source, the value range is The fault phase voltage before the voltage source is applied.
  • the zero-sequence equivalent circuit in the non-effective grounding system corresponding to Figure 1 is the zero-sequence equivalent circuit of the non-effective grounding system when a ground fault occurs, as shown in Figure 2.
  • an external adjustable voltage source is adopted to realize active step-down arc-extinguishing, and the voltage source output voltage is uniquely determined by the target value of the fault phase step-down, and the busbar or line from the non-effective grounding system side, This can be achieved by either a neutral point or a tapped tap of the transformer's non-effectively grounded system side winding plus an adjustable voltage source.
  • the fault phase bucking operating range of the fault arc extinction is further discussed below.
  • the neutral point voltage is zero
  • the phase A voltage vector is The B phase voltage vector is The C phase voltage vector is Taking the ground fault of phase C as an example, the maximum operating voltage amplitude of the fault phase to ensure the fault phase arc is extinguished is CC", and the condition of the arc phase of the fault phase is: the circle with the zero potential point at the center of C as the center of the circle
  • the non-fault phase voltage is required to be smaller than the line voltage, that is, the zero potential point should be within the circle with the point A as the radius of the center AC, and the point B is The center of the circle BC is within the radius of the circle. Therefore, in order to ensure a safe operation for a long time after the step-down of the non-effective grounding system failure phase, the range of the zero potential point after the step-down
  • the zero sequence current of the measuring system is measured during the step-down arc-extinguishing operation.
  • zero sequence voltage calculate the damping rate of the system, or measure the zero sequence current of the fault line m
  • the zero sequence voltage calculate the damping rate of the fault line m.
  • E A , E B , and E C are the three-phase power electromotive force of the system, respectively.
  • Line-to-ground leakage resistance r 0 4.7k ⁇
  • line-to-ground capacitance value C 0 8.36uF
  • K is a protection device (can be an overcurrent protection device or a fuse), setting the zero-sequence current setting of the ground fault line
  • the value is 10A
  • the neutral point N grounding impedance Z j121 ⁇
  • a 1 , B 1 , C 1 , A 2 , B 2 , C 2 are the Z-type grounding transformer non-effective grounding system side winding
  • KM1, KM2, KM3 are the contact Transformer non-effective grounding system
  • the one end lead wire of the side winding is directly connected to the three-phase connection of the non-effective grounding system A, B, C.
  • the other end of the transformer non-effective grounding system side winding is Z-connected and leads to the neutral point N.
  • Impedance Z is grounded;
  • a 1 , b 1 , and c 1 are the low-voltage side windings of the Z-type grounding transformer, the low-voltage side windings are star-connected, the terminals are represented by a, b, c, and n, and T 1 is a neutral point.
  • Z-type grounding transformer, T 2 is the voltage source of the external single-phase transformer output, connected between the neutral point and the ground.
  • the input voltage of the single-phase transformer is derived from the secondary side voltage of the grounding transformer T 1 , and the voltage phase is
  • the fault phase power supply voltage has the same phase and the output voltage amplitude is adjustable.
  • the fault phase voltage U C1 is lowered to a voltage lower than the continuous burning of the ground arc, that is, U C1 ⁇ 1.90 kV, and the ground fault arc extinguishing is realized.
  • U C1 step-down arc-extinguishing operation
  • the fault phase voltage operating range [0, 2.60kV) is satisfied.
  • the non-fault phase voltage is 8.51kV, which is less than the line voltage of 10kV, which not only realizes the ground fault phase arc extinction, but also the non-fault phase voltage does not rise.
  • the line voltage is used to achieve safe operation of step-down arc suppression.
  • step-down operation measure the zero-sequence current of the ground fault line. If it is greater than the set value of 10A, continue to regulate the amplitude of the voltage source output voltage, further reduce the fault phase voltage, and suppress the fault current until the zero-sequence current of the ground fault line. Less than or equal to the set value of 10A, to achieve ground fault phase step-down arc-safe operation.
  • the critical voltage for continuous combustion is 2.20kV.
  • an adjustable voltage source is applied between the neutral point of the non-effectively grounded generator and the ground.
  • the fault phase voltage U C1 is lowered to a voltage lower than the continuous burning of the ground arc, that is, U C1 ⁇ 2.20 kV, and the ground fault is extinguished.
  • U C1 step-down arc-extinguishing operation at 2.13kV
  • the fault phase voltage operating range [0, 2.76kV) is satisfied.
  • the non-fault phase voltage is 18.27kV, which is less than the line voltage of 20kV, which not only realizes the ground fault phase arc extinction, but also the non-fault phase voltage does not rise.
  • the line voltage is used to achieve safe operation of step-down arc suppression.
  • the applied voltage source continues for a period of time, and then, the voltage source is disconnected, and then the ground fault is detected. If the fault does not exist, it is determined that the instantaneous ground fault has been extinguished and restored. Normal operation; otherwise, the voltage source is re-applied to continue the active step-down operation of the ground fault phase; the value range of the applied voltage source for a period of time is (0.1s, 60s).
  • the safety of the step-down arc-extinguishing of the ground fault phase of the 10 kV non-effective grounding distribution network shown in FIG. 1 is performed in the PSCAD simulation software.
  • the operation method was simulated and analyzed: the simulation time was 0.12s, the system single-phase ground fault occurred at 0.04s, the 0.08s time closed switch added the applied voltage source to the neutral point and the ground; the non-effective ground distribution system single-phase grounded
  • the data of the simulation results before and after the failure are shown in Table 1.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Emergency Protection Circuit Devices (AREA)

Abstract

一种非有效接地系统接地故障相降压消弧的安全运行方法,应用于中性点非有效接地发电机或配电网的接地故障安全运行:发生单相接地故障时,在非有效接地系统侧的母线与地,或线路与地,或中性点与地,或变压器非有效接地系统侧绕组的分接抽头与地之间外加电压源,降低故障相电压,使故障点电压低于接地电弧持续燃烧的电压,满足长时间不停电安全运行要求。该方法操作手段及控制方法简单可靠,能够消除瞬时性单相接地故障;抑制永久性单相接地故障电流,限制非故障相电压的上升幅值,降低非故障相绝缘击穿的风险,降低人身设备安全隐患,有效防止停电事故的发生,大大提高供电可靠性和安全性。

Description

非有效接地系统接地故障相降压消弧的安全运行方法 技术领域
本发明涉及非有效接地系统单相接地故障抑制技术领域,特别涉及一种非有效接地系统接地故障相降压消弧的安全运行方法。
背景技术
国内外发电机组和配电网普遍采用中性点非有效接地方式,所构成的非有效接地系统占我国6kV及以上电压等级电网的95%以上。近70%停电事故由该系统故障引发。造成全国停电损失年均上千亿元。非有效接地系统不同于输电系统,接地故障电阻可高达数十千欧姆,感知和保护困难。带故障长时间运行,危及人身、设备安全,造成严重的社会经济损失。接地故障易引发触电事故,每年死亡人数高达上千人次,仅次于交通事故。接地故障易产生弧光过电压,造成设备烧毁,甚至引发“火烧连营”事故。大型机组接地故障不能及时消弧,电弧电流易造成铁芯和绕组烧损,造成事故扩大,甚至机毁人亡;接地故障跳闸停电将降低供电可靠性,直接关系工业生产、人民生活水平。非有效接地系统接地故障安全运行对电网安全乃至国家安全至关重要。
现有非有效接地系统接地故障处理与运行模式主要包括故障抑制和故障切除两大类。
接地故障抑制主要通过改造或调控电网一次系统中性点接地方式,调控中性点接地阻抗,抑制故障点电压和电流,实现非有效接地系统的接地故障抑制,但只能短时间1~2h运行,且易产生过电压,存在安全隐患。
接地故障切除主要是在系统发生接地后尽快选出故障线路、切除故障点,以保证系统安全运行。例如,从传统的人工逐条线路“试拉”,到利用故障选线装置和故障指示器选线,再到馈线自动化技术快速隔离故障,但故障切除技术导致停电时间过长、投资成本高,严重降低了配电系统供电可靠性。
为此,国内外开始研究抑制故障点电流和电压的有源消弧方法,如2015年瑞典中立公司发表的《接地故障中和器全补偿技术及应用》一文,公开了一种有源电流消弧方法,发生接地故障时,以接地残流为控制目标,通过残流补偿器往中性点注入电流,补偿接地故障全电流(包括无功分量及有功分量残流),同时将故障点电压降至为零,由此达到接地故障电流全补偿目的。由于故障残流无法直接测量且线路零序有功电流分量精确测量困难,该方法难以实际应用。
本发明人曾于2011年提出了一种配电网接地故障消弧和保护方法(专利申请号201110006701.2),该方法通过向配电网注入一定电流,强制故障相电压为零和接地故障电流为零,可实现瞬时故障的100%消弧及永久故障的快速隔离,解决了电流消弧方法消弧效果差,传统保护方法可靠性低的技术难题。但该方法会导致非故障相电压升高
Figure PCTCN2018094419-appb-000001
倍,长时间运行对电气绝缘造成威胁,易导致非故障相绝缘薄弱位置击穿,进而发展成为相间短路事故,影响供电可靠性。
总之,现有技术无法兼顾非有效接地系统的供电可靠性及安全性。
发明内容
为了克服上述现有技术的缺陷,本发明提出了一种非有效接地系统接地故障相降压消弧的安全运行方法。
本发明的发明目的是通过下述技术方案实现的:
一种非有效接地系统接地故障相降压消弧的安全运行方法,应用于中性点非有效接地发电机或配电网的接地故障安全运行,发生单相接地故障时,在非有效接地系统侧的母线与地,或线路与地,或中性点与地,或变压器非有效接地系统侧绕组的分接抽头与地之间外加电压源,电压源输出的电压为:
Figure PCTCN2018094419-appb-000002
使故障相电压降低,实现接地故障的电压消弧与主动降压运行;其中
Figure PCTCN2018094419-appb-000003
是正常电网电压源未接入条件下的接入点正常电压,零序电压变化量
Figure PCTCN2018094419-appb-000004
由公式
Figure PCTCN2018094419-appb-000005
Figure PCTCN2018094419-appb-000006
计算,
Figure PCTCN2018094419-appb-000007
为主动降压后的零序电压,
Figure PCTCN2018094419-appb-000008
为正常运行条件下的零序电压,
Figure PCTCN2018094419-appb-000009
(
Figure PCTCN2018094419-appb-000010
或B或C)为接地故障相
Figure PCTCN2018094419-appb-000011
的电源电压,
Figure PCTCN2018094419-appb-000012
为外加电压源之后的故障相电压,其取值范围为
Figure PCTCN2018094419-appb-000013
为外加电压源之前的故障相电压。
为了更好地实现发明目的,本发明可进一步采用如下技术手段:
降压运行过程中,测量计算电压源注入的电流
Figure PCTCN2018094419-appb-000014
调控外加电压源
Figure PCTCN2018094419-appb-000015
的大小和相位,使公式
Figure PCTCN2018094419-appb-000016
成立,即实现故障点电弧熄灭,其中ΣY 0为非有效接地系统正常运行时的对地零序导纳。
进一步地,降压运行过程中,测量计算非有效接地系统或接地故 障线路的阻尼率
Figure PCTCN2018094419-appb-000017
如果阻尼率d大于整定值,则调控电压源输出电压
Figure PCTCN2018094419-appb-000018
的大小和相位,使故障相电压进一步降低,抑制故障电弧,直到d小于或等于整定值,即判断为故障熄弧,实现接地故障相主动降压安全运行;其中g为三相对地电导,ω为系统角频率,C为三相对地电容,U 0为零序电压,I 0R为零序有功电流,I 0C为零序电容电流,P 0为零序有功功率,Q 0为零序无功功率,α 0为零序导纳角。
进一步地,配电网降压运行过程中,测量接地故障线路的零序电流,如果大于整定值,则调控电压源输出电压U&的大小和相位,使故障相电压进一步降低,抑制故障电流,直到接地故障线路的零序电流小于或等于整定值,实现接地故障相主动降压安全运行。零序电流整定值按故障线路长时间带单相接地故障安全运行允许的故障电流选取,取值范围通常为[1A,30A],或者按接地故障电流抑制率选取,取值范围通常为[0.001I 0,I 0),其中I 0为外加可调电流源之前的接地故障线路的零序电流。
进一步地,检测到接地故障后,外加电压源延续一段时间,然后,断开电压源,再检测接地故障是否存在,如果故障不存在,则判断为瞬时接地故障已经消弧,恢复正常运行;否则,重新外加电压源,继续实现接地故障相主动降压运行。所述外加电压源延续一段时间的取值范围通常为(0.1s,60s)。
进一步地,所述电压源为采用电力电子元件实现的幅值和相位可调的电压源,或外加单相变压器输出的电压源。
进一步地,阻尼率d的整定值设定为该系统或该线路正常运行状态下阻尼率的K 3倍;系数K 3取值范围为(1,5]。
进一步地,电压源的输入电压来源于非有效接地系统变压器的二次侧电压,且该电压相位与故障相电源电压相位一致;这样,调控电压源时无需调控相位,只需调控幅值,实现简便、经济。
进一步地,电压源回路安装一单相调压器,调控电压幅值。
进一步地,在电压源的输出回路中设置保护装置,防止流经大电流损坏设备。
进一步地,所述变压器为与非有效接地系统连接的Z型接地变压器或Y/△接线变压器或Y/Y/△接线变压器。
另需说明的是,非有效接地系统的单相接地故障的检测手段及故障选相技术在目前已经非常成熟,且可供选择的技术手段非常多,本发明不再就发生故障如何检测予以赘述,通常情况下,如果系统零序电压变化量超过整定值时,就判定发生了接地故障。
此外,本发明人首创性地提出了非有效接地系统接地故障相降压运行理论,并在该理论的基础上,本发明首次提出在非有效接地系统侧的母线与地,或线路与地,或中性点与地,或变压器非有效接地系统侧绕组的分接抽头与地之间外加可调电压源的技术方案,该技术方案大大简化了故障抑制的控制方法。
本发明的有益效果在于:
1、操作手段及控制方法简便可靠。本发明以故障相电压为控制目标,无需精确测量系统对地参数,避免了传统电流消弧方法因系统 对地参数测量误差所带来的抑制效果不佳的问题,使抑制精度显著提高80%。
2、提升系统供电可靠性。本发明首次实现对故障相电压柔性调控,故障发生后,在确保熄弧的情况下,使故障相电压降低运行在
Figure PCTCN2018094419-appb-000019
之间,
Figure PCTCN2018094419-appb-000020
为外加电压源之前的故障相电压。减少非故障相电压的上升幅值,降低非故障相绝缘击穿的风险,可有效避免非故障相的绝缘被击穿,同时可有效延长非有效接地系统单相接地故障后带故障运行时间。
3、实施成本低廉。本发明无需增加多套一次设备组成的消弧系统来实现消弧功能,相比传统消弧方法可大大减少设备及装置的安装投资。
附图说明
图1为采用Y/△接线变压器的非有效接地配电网接地故障相降压消弧的安全运行原理示意图。
图2为发生接地故障时,非有效接地系统零序等值电路图。
图3为非有效接地系统接地故障相降压消弧运行范围相量图。
图4为非有效系统阻尼率或线路阻尼率的测量原理图。
图5为采用Z型接地变压器的非有效接地配电网接地故障相降压消弧的安全运行原理示意图。
图6为非有效接地发电机接地故障相降压消弧的安全运行原理示意图。
具体实施方式
以下结合附图对本发明的内容作进一步的说明和解释。
如图1所示,在非有效接地配电网中,
Figure PCTCN2018094419-appb-000021
分别为系统三相电源电动势,C 0为系统对地电容,r 0为系统对地泄漏电阻,A S、B S、C S为Y/△接线变压器非有效接地系统侧绕组,S为开关,K为保护装置(可以是过流保护装置,也可以是熔断器),变压器非有效接地系统侧绕组的一端引出线直接与非有效接地系统A、B、C三相连接,变压器非有效接地系统侧绕组做星形接线后引出中性点N再经阻抗Z接地;a s、b s、c s为变压器低压侧绕组,低压侧绕组采用三角形接线。发生单相接地故障时,接地电阻为R f,此时故障相
Figure PCTCN2018094419-appb-000022
的电压为
Figure PCTCN2018094419-appb-000023
(
Figure PCTCN2018094419-appb-000024
或B或C),在非有效接地系统侧的母线与地,或线路与地,或中性点与地,或变压器T 1绕组的分接抽头与地之间外加电压源
Figure PCTCN2018094419-appb-000025
将导致整个配电系统的对地电压同时升高或降低,变化量为
Figure PCTCN2018094419-appb-000026
则:
Figure PCTCN2018094419-appb-000027
且零序电压变化量
Figure PCTCN2018094419-appb-000028
也可由公式
Figure PCTCN2018094419-appb-000029
Figure PCTCN2018094419-appb-000030
计算;其中
Figure PCTCN2018094419-appb-000031
是正常电网电压源未接入条件下的接入点正常电压,
Figure PCTCN2018094419-appb-000032
为主动降压后的零序电压,
Figure PCTCN2018094419-appb-000033
为正常运行条件下的零序电压,
Figure PCTCN2018094419-appb-000034
为接地故障相的电源电压,
Figure PCTCN2018094419-appb-000035
为外加电压源之后的故障相电压,其取值范围为
Figure PCTCN2018094419-appb-000036
为外加电压源之前的故障相电压。
图1所对应的非有效接地系统中的零序等值电路,即发生接地故障时非有效接地系统零序等值电路,如图2所示。根据基尔霍夫电流方程,电压源
Figure PCTCN2018094419-appb-000037
注入的电流
Figure PCTCN2018094419-appb-000038
为:
Figure PCTCN2018094419-appb-000039
式(1)中,配电网对地零序导纳
Figure PCTCN2018094419-appb-000040
中性点接地导纳
Figure PCTCN2018094419-appb-000041
三相对地电导
Figure PCTCN2018094419-appb-000042
三相对地电容C=3C 0,故障对地电导
Figure PCTCN2018094419-appb-000043
为零序电压。
考虑非有效接地系统正常运行条件下的三相对地参数不对称产生的零序电压影响,式(1)中的零序电压U 0用零序电压变化量
Figure PCTCN2018094419-appb-000044
代替;并考虑故障消弧后,故障点对地导纳Y f=0,则式(1)可简化为:
Figure PCTCN2018094419-appb-000045
因此,在降压运行过程中,测量计算电压源注入的电流
Figure PCTCN2018094419-appb-000046
调控外加电压源
Figure PCTCN2018094419-appb-000047
的大小和相位,使公式
Figure PCTCN2018094419-appb-000048
成立,即实现故障点电弧熄灭,其中ΣY 0为非有效接地系统正常运行时的对地零序导纳。
以上可知,系统发生接地故障后,采取外加可调电压源实现主动降压熄弧,电压源输出电压由故障相降压的目标值唯一确定,且从非有效接地系统侧的母线,或线路,或中性点,或变压器非有效接地系统侧绕组的分接抽头外加可调电压源,均可实现该目的。
以下进一步讨论故障电弧熄灭的故障相降压运行范围,如图3所示,系统正常运行时,中性点电压为零,A相电压向量为
Figure PCTCN2018094419-appb-000049
B相电压向量为
Figure PCTCN2018094419-appb-000050
C相电压向量为
Figure PCTCN2018094419-appb-000051
以C相发生接地故障为例,设确保故障相电弧熄灭的故障相最大运行电压幅值为CC”,则故障相熄弧的条件为:零电位点在以C为圆心CC”为半径的圆内;另外,为防止非故障相电压过高发生绝缘击穿,要求非故障相电压小于线电压,即:零电位点应在以A点为圆心AC为半径的圆内,和以B点为圆 心BC为半径的圆内。因此,为确保非有效接地系统故障相降压后长时间安全运行,本发明的故障相降压后的零电位点的范围为:上述三个圆的交集内。
以下进一步讨论通过测量阻尼率判断故障熄弧的方法,如图4所示,在降压消弧运行过程中,通过测量系统的零序电流
Figure PCTCN2018094419-appb-000052
和零序电压,计算系统的阻尼率,或测量故障线路m的零序电流
Figure PCTCN2018094419-appb-000053
和零序电压,计算故障线路m的阻尼率。非有效接地系统的阻尼率或线路的阻尼率的计算公式为:
Figure PCTCN2018094419-appb-000054
并设定阻尼率d的整定值为该系统或该线路正常运行状态下阻尼率的K 3倍;系数K 3取值范围为(1,5];如果阻尼率d大于整定值,则调控电压源输出电压
Figure PCTCN2018094419-appb-000055
的大小和相位,使故障相电压进一步降低,抑制故障电弧,直到d小于或等于整定值,即判断为故障熄弧,实现接地故障相主动降压安全运行;其中
Figure PCTCN2018094419-appb-000056
为三相对地电导,ω为系统角频率,C=3C 0为三相对地电容,U 0为零序电压;I 0R为零序有功电流,I 0C为零序电容电流;P 0为零序有功功率,Q 0为零序无功功率,α 0为零序导纳角。
以上详细介绍了本发明应用于非有效接地配电网时的技术原理,该技术原理同样适用于本发明应用于非有效接地发电机的情形;以下进一步介绍本发明应用于非有效接地配电网和发电机的具体情况:
如图5所示,在非有效接地10kV配电网中,E A、E B、E C分别为系统的三相电源电动势,
Figure PCTCN2018094419-appb-000057
线路对地泄漏电阻r 0=4.7kΩ、线路对地电容值C 0=8.36uF,K为保护装置(可以是过流保 护装置,也可以是熔断器),设定接地故障线路零序电流整定值为10A,中性点N接地阻抗Z=j121Ω,A 1、B 1、C 1、A 2、B 2、C 2为Z型接地变压器非有效接地系统侧绕组,KM1、KM2、KM3为接触器,变压器非有效接地系统侧绕组的一端引出线直接与非有效接地系统A、B、C三相连接,变压器非有效接地系统侧绕组做Z型连接后的另一端引出中性点N再经阻抗Z接地;a 1、b 1、c 1为Z型接地变压器低压侧绕组,低压侧绕组采用星形接线,引出端用a,b,c,n表示,T 1为可以提供中性点的Z型接地变压器,T 2为外加单相变压器输出的电压源,连接在中性点与地之间,单相变压器的输入电压来源于接地变压器T 1的二次侧电压,且该电压相位与故障相电源电压相位一致,输出电压幅值可调。如C相发生单相接地故障,接地电阻用R f表示,R f=1kΩ,
Figure PCTCN2018094419-appb-000058
为故障相电压。发生故障后,未加外加电压源之前,测得故障相电压为U C0=2.60kV,设维持接地电弧持续燃烧的临界电压为1.90kV,此时,在非有效接地配电网中性点与地之间外加可调电压源
Figure PCTCN2018094419-appb-000059
正常电网电压源未接入条件下的接入点正常电压U 1=0V,此时有:
Figure PCTCN2018094419-appb-000060
调控外加电压源
Figure PCTCN2018094419-appb-000061
使故障相电压U C1降低到低于接地电弧持续燃烧的电压,即:U C1<1.90kV,实现接地故障熄弧。本例中设要使故障相电压U C1降压消弧运行在1.82kV,可先调控电压源输出电压幅值为:U=3.95kV,再合上接触器KM2,即可将故障相电压降低到1.82kV,满足故障相电压运行范围[0,2.60kV),此时,非故障相电压为8.51kV,小于线电压10kV,既实现了接地故障相消弧,同时非故障相电压未 升高至线电压,实现降压消弧安全运行。
降压运行过程中,测量接地故障线路零序电流,如果大于整定值10A,则继续调控电压源输出电压的幅值,使故障相电压进一步降低,抑制故障电流,直到接地故障线路的零序电流小于或等于整定值10A,实现接地故障相降压消弧安全运行。
如图6所示,在20kV非有效接地发电机中,三相电源分别为
Figure PCTCN2018094419-appb-000062
发电机定子对地泄漏电阻r 0=20kΩ、发电机定子对地电容值C 0=1.81uF,K为保护装置(可以是过流保护装置,也可以是熔断器),中性点N接地阻抗Z=j600Ω,在该配电网中C相发生接地故障,接地故障电阻R f=2kΩ,发生故障后,未加外加电压源之前,测得故障相电压U C0=2.76kV,设维持接地电弧持续燃烧的临界电压为2.20kV,此时,在非有效接地发电机中性点与地之间外加可调电压源,正常发电机电压源未接入条件下的接入点正常电压U 1=0V,此时有:
Figure PCTCN2018094419-appb-000063
调控外加电压源
Figure PCTCN2018094419-appb-000064
使故障相电压U C1降低到低于接地电弧持续燃烧的电压,即:U C1<2.20kV,实现接地故障熄弧。本例中设要使故障相电压U C1降压消弧运行在2.13kV,可先调控电压源输出电压幅值为:U=9.41kV,再合上接触器KM2,即可将故障相电压降低到2.13kV,满足故障相电压运行范围[0,2.76kV),此时,非故障相电压为18.27kV,小于线电压20kV,既实现了接地故障相消弧,同时非故障相电压未升高至线电压,实现降压消弧安全运行。
作为本实施例的改进,检测到接地故障后,外加电压源延续一段 时间,然后,断开电压源,再检测接地故障是否存在,如果故障不存在,则判断为瞬时接地故障已经消弧,恢复正常运行;否则,重新外加电压源,继续实现接地故障相主动降压运行;所述外加电压源延续一段时间的取值范围为(0.1s,60s)。
为了验证本发明非有效接地系统接地故障相降压消弧的安全运行方法的可行性,在PSCAD仿真软件中对图1所示的10kV非有效接地配电网接地故障相降压消弧的安全运行方法进行了仿真分析:仿真时间0.12s,0.04s时刻系统发生单相接地故障,0.08s时刻闭合开关将外加电压源加至中性点与地之间;非有效接地配电系统单相接地故障(接地过渡电阻1kΩ)时的故障前后仿真结果数据如表1所示。
表1
Figure PCTCN2018094419-appb-000065
综合分析表1中的数据可知,发生接地故障并加入电压源后,故障相电压降低运行在1.82kV,在
Figure PCTCN2018094419-appb-000066
的范围内,
Figure PCTCN2018094419-appb-000067
为外加电压源之前的故障相电压,此时非故障相电压为8.51kV,小于线电压10kV。仿真结果表明,本发明既降低了故障相电压,满足长时间不停电安全运行要求,又降低了非故障相绝缘击穿的风险,大大提高了供电可靠性和安全性。

Claims (10)

  1. 一种非有效接地系统接地故障相降压消弧的安全运行方法,应用于中性点非有效接地发电机或配电网的接地故障安全运行,其特征在于:发生单相接地故障时,在非有效接地系统侧的母线与地,或线路与地,或中性点与地,或变压器非有效接地系统侧绕组的分接抽头与地之间外加电压源,电压源输出的电压为:
    Figure PCTCN2018094419-appb-100001
    使故障相电压降低,实现接地故障的电压消弧与主动降压运行;其中
    Figure PCTCN2018094419-appb-100002
    是正常电网电压源未接入条件下的接入点正常电压,零序电压变化量
    Figure PCTCN2018094419-appb-100003
    由公式
    Figure PCTCN2018094419-appb-100004
    Figure PCTCN2018094419-appb-100005
    计算,
    Figure PCTCN2018094419-appb-100006
    为主动降压后的零序电压,
    Figure PCTCN2018094419-appb-100007
    为正常运行条件下的零序电压,
    Figure PCTCN2018094419-appb-100008
    为接地故障相的电源电压,
    Figure PCTCN2018094419-appb-100009
    为外加电压源之后的故障相电压,其取值范围为
    Figure PCTCN2018094419-appb-100010
    为外加电压源之前的故障相电压。
  2. 根据权利要求1所述的非有效接地系统接地故障相降压消弧的安全运行方法,其特征在于:降压运行过程中,测量计算电压源注入的电流
    Figure PCTCN2018094419-appb-100011
    调控外加电压源
    Figure PCTCN2018094419-appb-100012
    的大小和相位,使公式
    Figure PCTCN2018094419-appb-100013
    成立,即实现故障点电弧熄灭,其中ΣY 0为非有效接地系统正常运行时的对地零序导纳。
  3. 根据权利要求1所述的非有效接地系统接地故障相降压消弧的安全运行方法,其特征在于:降压运行过程中,测量计算非有效接地系统或接地故障线路的阻尼率
    Figure PCTCN2018094419-appb-100014
    如果阻尼率d大于整定值,则调控电压源输出电压
    Figure PCTCN2018094419-appb-100015
    的大小和相位,使故 障相电压进一步降低,抑制故障电弧,直到d小于或等于整定值,即判断为故障熄弧,实现接地故障相主动降压安全运行;其中g为三相对地电导,ω为系统角频率,C为三相对地电容,U 0为零序电压,I 0R为零序有功电流,I 0C为零序电容电流,P 0为零序有功功率,Q 0为零序无功功率,α 0为零序导纳角。
  4. 根据权利要求1所述的非有效接地系统接地故障相降压消弧的安全运行方法,其特征在于:配电网降压运行过程中,测量接地故障线路的零序电流,如果大于整定值,则调控电压源输出电压U&的大小和相位,使故障相电压进一步降低,抑制故障电流,直到接地故障线路的零序电流小于或等于整定值,实现接地故障相主动降压安全运行。
  5. 根据权利要求1所述的非有效接地系统接地故障相降压消弧的安全运行方法,其特征在于:检测到接地故障后,外加电压源延续一段时间,然后,断开电压源,再检测接地故障是否存在,如果故障不存在,则判断为瞬时接地故障已经消弧,恢复正常运行;否则,重新外加电压源,继续实现接地故障相主动降压运行。
  6. 根据权利要求1所述的非有效接地系统接地故障相降压消弧的安全运行方法,其特征在于:所述电压源为采用电力电子元件实现的幅值和相位可调的电压源,或外加单相变压器输出的电压源。
  7. 根据权利要求3所述的非有效接地系统接地故障相降压消弧的安全运行方法,其特征在于:阻尼率d的整定值设定为该系统或该线路正常运行状态下阻尼率的K 3倍;系数K 3取值范围为(1,5]。
  8. 根据权利要求1-7任意一项所述的非有效接地系统接地故障相降压消弧的安全运行方法,其特征在于:电压源的输入电压来源于非有效接地系统变压器的二次侧电压,且该电压相位与故障相电源电压相位一致。
  9. 根据权利要求1-7任意一项所述的非有效接地系统接地故障相降压消弧的安全运行方法,其特征在于:电压源回路安装一单相调压器,调控电压幅值。
  10. 根据权利要求1-7任意一项所述的非有效接地系统接地故障相降压消弧的安全运行方法,其特征在于:在电压源的输出回路中设置保护装置,防止流经大电流损坏设备。
PCT/CN2018/094419 2017-07-05 2018-07-04 非有效接地系统接地故障相降压消弧的安全运行方法 WO2019007349A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
AU2018295937A AU2018295937B2 (en) 2017-07-05 2018-07-04 Safe operation method for voltage reduction and arc suppression of ground fault phase of non-effective grounding system
US16/616,975 US11368017B2 (en) 2017-07-05 2018-07-04 Safe operation method for voltage reduction arc suppression of ground fault phase of non-effective ground system
RU2019136374A RU2727727C1 (ru) 2017-07-05 2018-07-04 Безопасный операционный способ снижения напряжения и устранения искрения фазы замыкания на землю выключенной системы заземления
BR112019025557-5A BR112019025557B1 (pt) 2017-07-05 2018-07-04 Método seguro de operação para supressão do arco de redução de tensão da fase de falha de aterramento do sistema de aterramento não eficaz
EP18828588.6A EP3605773B1 (en) 2017-07-05 2018-07-04 Safe operation method for voltage reduction and arc suppression of ground fault phase of non-effective grounding system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710544978.8 2017-07-05
CN201710544978.8A CN107276097B (zh) 2017-07-05 2017-07-05 非有效接地系统接地故障相降压消弧的安全运行方法

Publications (1)

Publication Number Publication Date
WO2019007349A1 true WO2019007349A1 (zh) 2019-01-10

Family

ID=60072259

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/094419 WO2019007349A1 (zh) 2017-07-05 2018-07-04 非有效接地系统接地故障相降压消弧的安全运行方法

Country Status (7)

Country Link
US (1) US11368017B2 (zh)
EP (1) EP3605773B1 (zh)
CN (1) CN107276097B (zh)
AU (1) AU2018295937B2 (zh)
BR (1) BR112019025557B1 (zh)
RU (1) RU2727727C1 (zh)
WO (1) WO2019007349A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110350476A (zh) * 2019-07-23 2019-10-18 天地(常州)自动化股份有限公司 信号低损调理的选择性漏电保护电路及漏电保护方法
CN112202180A (zh) * 2020-09-24 2021-01-08 云南电网有限责任公司电力科学研究院 基于故障相残压的全补偿系统补偿变压器分压比设计方法
CN112909910A (zh) * 2021-01-18 2021-06-04 长沙理工大学 一种配电网接地故障消弧方法及其装置
CN113746069A (zh) * 2020-05-28 2021-12-03 中国南方电网有限责任公司 一种接地变压器接地故障的保护方法
CN113765056A (zh) * 2020-12-12 2021-12-07 保定钰鑫电气科技有限公司 一种单相接地的处理方法

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE541989C2 (sv) * 2017-05-24 2020-01-14 Swedish Neutral Holding Ab Anordning och metod för jordfelskompensering i kraftnät
CN107276097B (zh) 2017-07-05 2018-10-09 长沙理工大学 非有效接地系统接地故障相降压消弧的安全运行方法
CN109507516A (zh) * 2018-11-28 2019-03-22 南京国电南自软件工程有限公司 基于稳态故障量的接地故障检测方法、系统及存储介质
CN109490719B (zh) * 2019-01-18 2020-06-05 云南电网有限责任公司电力科学研究院 一种用于接地故障电流全补偿分析简化回路及分析方法
CN109599854B (zh) * 2019-01-18 2020-03-27 云南电网有限责任公司电力科学研究院 一种无电感补偿的可控电压源接地故障全补偿电路和方法
CN109755933B (zh) * 2019-01-18 2020-10-20 云南电网有限责任公司电力科学研究院 一种带补偿电感的全补偿分析简化回路及分析方法
CN109742746B (zh) * 2019-01-30 2020-06-23 云南电网有限责任公司电力科学研究院 一种接地电流补偿方法以及接地电流补偿装置
CN110264049A (zh) * 2019-05-30 2019-09-20 杭州电力设备制造有限公司 一种配电网柔性接地优化评估方法
CN110261729A (zh) * 2019-05-30 2019-09-20 杭州电力设备制造有限公司 一种配电网柔性接地控制方法
CN110311380B (zh) * 2019-07-19 2023-05-23 云南电网有限责任公司电力科学研究院 一种有源接地补偿器控制方法
CN110571778A (zh) * 2019-10-18 2019-12-13 云南电网有限责任公司电力科学研究院 一种自产供电相电源的接地故障电流补偿系统及方法
CN110611317A (zh) * 2019-10-18 2019-12-24 云南电网有限责任公司电力科学研究院 一种自产供电相电源的接地故障电流补偿系统及方法
CN110707670B (zh) * 2019-10-24 2020-12-01 南方电网科学研究院有限责任公司 一种变电站小电阻接地装置的控制方法
CN110912102A (zh) * 2019-11-27 2020-03-24 长沙理工大学 基于零相转移的低压供电网漏电故障保护方法
CN111262231B (zh) * 2019-12-24 2022-09-02 长沙理工大学 非有效接地系统接地消弧装置、方法、设备和介质
CN111769534B (zh) * 2020-02-06 2022-06-07 云南电网有限责任公司电力科学研究院 一种电源接地故障电流补偿系统的电压调节方法和装置
CN211701481U (zh) * 2020-02-26 2020-10-16 安徽一天电气技术股份有限公司 消弧系统
CN111181146A (zh) * 2020-02-26 2020-05-19 安徽一天电气技术股份有限公司 消弧系统及方法
CN111817272B (zh) * 2020-07-08 2022-05-13 国网福建省电力有限公司检修分公司 基于接地点弧光电压幅值特性输电线路单相高阻接地故障继电保护方法
CN113937737A (zh) * 2020-07-13 2022-01-14 长沙理工大学 一种发电机定子与厂用电系统接地故障处理方法
US11958374B2 (en) * 2020-08-31 2024-04-16 Siemens Industry, Inc. Standalone or networked electric vehicle supply equipment (EVSE) to detect and stop arcing before it becomes dangerous
CN112462314B (zh) * 2020-11-25 2023-05-30 青岛鼎信通讯股份有限公司 一种用于故障指示器的三相电压测量不对称误差消除方法
CN113169549A (zh) * 2020-12-18 2021-07-23 安徽一天电气技术股份有限公司 单相电源、消弧系统及消弧方法
CN112909911B (zh) * 2021-01-18 2024-03-15 长沙理工大学 一种单相接地故障电流全补偿装置和方法
CN112909912A (zh) * 2021-01-18 2021-06-04 长沙理工大学 一种配电网单相接地故障电流全补偿方法及其装置
CN113792442B (zh) * 2021-09-28 2022-06-07 国网四川省电力公司电力科学研究院 一种配电网弧光接地故障建模分析方法
CN114142451B (zh) * 2021-11-19 2022-09-23 广东福德电子有限公司 配电网接地故障降压有源消弧电源及其控制方法
CN115693630B (zh) * 2023-01-05 2023-04-25 国网山西省电力公司朔州供电公司 一种基于分裂绕组的混合型熄弧系统及其工作方法
CN116111603B (zh) * 2023-03-03 2023-06-09 湖南大学 面向有源配电网的无功电压支撑与故障主动调控复合装置
CN116231720B (zh) * 2023-03-28 2023-10-27 山东大学 新能源经柔性直流并网系统暂态稳定性提升的方法及系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090147414A1 (en) * 2007-12-06 2009-06-11 David Lazarovich Ground fault detection in an ungrounded electrical system
CN102074950A (zh) * 2011-01-13 2011-05-25 长沙理工大学 一种配电网接地故障消弧和保护方法
DE102011006701A1 (de) 2011-04-04 2012-10-04 manroland sheetfed GmbH Bogenverarbeitungsmaschine mit einer Auslegervorrichtung
CN105044560A (zh) * 2015-08-18 2015-11-11 海南电网有限责任公司三亚供电局 一种基于故障自适应技术的配电网故障判决方法
CN107276097A (zh) * 2017-07-05 2017-10-20 长沙理工大学 非有效接地系统接地故障相降压消弧的安全运行方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4580186A (en) * 1983-07-15 1986-04-01 Parker Douglas F Grounding and ground fault detection circuits
US6646837B2 (en) * 2000-11-06 2003-11-11 Ballard Power Systems Corporation Active ground current reduction device
US6888709B2 (en) * 2002-05-03 2005-05-03 Applied Energy Llc Electromagnetic transient voltage surge suppression system
US7345488B2 (en) * 2005-06-01 2008-03-18 Schweitzer Engineering Laboratories, Inc. Apparatus and method for determining a faulted phase of a three-phase ungrounded power system
US7301739B2 (en) * 2005-10-12 2007-11-27 Chevron U.S.A. Inc. Ground-fault circuit-interrupter system for three-phase electrical power systems
RU2454769C1 (ru) * 2011-05-19 2012-06-27 Общество с ограниченной ответственностью Научно-производственное предприятие "ЭНЕРГОКОНСАЛТ" Устройство заземления нейтрали трехфазной электрической сети
CN102738813B (zh) * 2011-11-10 2014-10-08 山东科汇电力自动化股份有限公司 中性点非有效接地方式电力系统中的电压控制方法
US10222409B2 (en) * 2013-03-29 2019-03-05 Beijing Inhand Networks Technology Co., Ltd. Method and system for detecting and locating single-phase ground fault on low current grounded power-distribution network
CN103219714B (zh) * 2013-04-15 2015-11-04 国家电网公司 基于电压降相位特性的线路相间故障继电保护方法
CN103293446A (zh) * 2013-05-20 2013-09-11 国家电网公司 基于消弧线圈的小电流接地故障选线方法
CN105322528B (zh) * 2014-06-30 2019-01-11 中国石油大学(华东) 小电流接地故障有源消弧时注入电流两点计算方法
RU2655670C2 (ru) * 2016-10-24 2018-05-29 Общество с ограниченной ответственностью "НПП Бреслер" (ООО "НПП Бреслер") Способ автоматической компенсации тока однофазного замыкания на землю в сети с дугогасящим реактором в нейтрали

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090147414A1 (en) * 2007-12-06 2009-06-11 David Lazarovich Ground fault detection in an ungrounded electrical system
CN102074950A (zh) * 2011-01-13 2011-05-25 长沙理工大学 一种配电网接地故障消弧和保护方法
DE102011006701A1 (de) 2011-04-04 2012-10-04 manroland sheetfed GmbH Bogenverarbeitungsmaschine mit einer Auslegervorrichtung
CN105044560A (zh) * 2015-08-18 2015-11-11 海南电网有限责任公司三亚供电局 一种基于故障自适应技术的配电网故障判决方法
CN107276097A (zh) * 2017-07-05 2017-10-20 长沙理工大学 非有效接地系统接地故障相降压消弧的安全运行方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Ground Fault Neutralizer Full-Compensation Technology and Application", 2015, SWEDISH NEUTRAL CORPORATION
See also references of EP3605773A4

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110350476A (zh) * 2019-07-23 2019-10-18 天地(常州)自动化股份有限公司 信号低损调理的选择性漏电保护电路及漏电保护方法
CN110350476B (zh) * 2019-07-23 2024-02-09 天地(常州)自动化股份有限公司 信号低损调理的选择性漏电保护电路及漏电保护方法
CN113746069A (zh) * 2020-05-28 2021-12-03 中国南方电网有限责任公司 一种接地变压器接地故障的保护方法
CN112202180A (zh) * 2020-09-24 2021-01-08 云南电网有限责任公司电力科学研究院 基于故障相残压的全补偿系统补偿变压器分压比设计方法
CN112202180B (zh) * 2020-09-24 2024-02-06 云南电网有限责任公司电力科学研究院 基于故障相残压的全补偿系统补偿变压器分压比设计方法
CN113765056A (zh) * 2020-12-12 2021-12-07 保定钰鑫电气科技有限公司 一种单相接地的处理方法
CN112909910A (zh) * 2021-01-18 2021-06-04 长沙理工大学 一种配电网接地故障消弧方法及其装置

Also Published As

Publication number Publication date
CN107276097B (zh) 2018-10-09
EP3605773A1 (en) 2020-02-05
AU2018295937B2 (en) 2020-09-24
US20210126450A1 (en) 2021-04-29
CN107276097A (zh) 2017-10-20
EP3605773B1 (en) 2021-09-01
BR112019025557B1 (pt) 2024-03-05
AU2018295937A1 (en) 2019-10-31
RU2727727C1 (ru) 2020-07-23
US11368017B2 (en) 2022-06-21
BR112019025557A2 (pt) 2020-06-16
EP3605773A4 (en) 2020-10-07

Similar Documents

Publication Publication Date Title
WO2019007349A1 (zh) 非有效接地系统接地故障相降压消弧的安全运行方法
WO2019007348A1 (zh) 非有效接地系统接地故障相主动降压安全处理方法
CN107276082B (zh) 非有效接地系统接地故障相主动降压安全运行方法
CN203942275U (zh) 一种35kV中性点不接地配电网铁磁谐振抑制装置
CN106602540A (zh) 一种适用于中压配电网单相接地故障的有源电压消弧法
Zheng et al. Design and analysis on the turn-to-turn fault protection scheme for the control winding of a magnetically controlled shunt reactor
CN107085182B (zh) 一种高压断路器抗短路电流能力校核方法
CN110879330B (zh) 一种基于零序伏安曲线面积的配电网单相接地故障发展态势判别方法
Zheng et al. Novel protection scheme against turn-to-turn fault of magnetically controlled shunt reactor based on equivalent leakage inductance
CN107147099B (zh) 弧光接地过电压抑制方法和系统
Lifang et al. Distribution Network Voltage Arc Suppression Method Based on Flexible Regulation of Neutral Point Potential of the New Grounding Transformer
CN103532112A (zh) 一种分段式阀组直流差动保护方法
CN103473387B (zh) 一种计算e型避雷器暂态应力的方法
Xi et al. The Study of Mechanism and Limit Measures for 500kV Single Phase Short Circuit Current Exceeding Limit in UHVDC Converter Station
CN202696141U (zh) 一种消弧消谐装置
Luo et al. Research on limiting measures for DC component of short circuit current based on fault current limiter and selection of installation site
Wang et al. Study on the neutral reactor of shut reactor of insulation level for UHV transmission lines
Liu et al. The Protection and Coordinated Control Study of VSC-HVDC Access System for Large-Scale Offshore Wind Power
Li et al. Reason Analysis for the increase of single-phase short circuit current and its suppressing measure
Ji et al. Switching Overvoltage of UHVAC Systems
Tian et al. The protection strategy analysis of the last circuit breaker in the 1+ 1/2 operation mode
Zhuang et al. Analysis of Substation 35kV Reactance Switch Fault Based on ATP-EMTP
Somanna et al. Review of optimized FSFCL effects on the Transient Recovery Voltage of a Circuit Breaker at 550 kV
CN104678245B (zh) 一种判断电气装置短路的方法
Štumberger et al. Medium-voltage distribution feeders in closed-loop arrangement–neutral point grounding

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18828588

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018828588

Country of ref document: EP

Effective date: 20191021

ENP Entry into the national phase

Ref document number: 2018295937

Country of ref document: AU

Date of ref document: 20180704

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112019025557

Country of ref document: BR

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 112019025557

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20191203