WO2019007257A1 - 定位方法及系统、电子设备、计算机可读存储介质 - Google Patents

定位方法及系统、电子设备、计算机可读存储介质 Download PDF

Info

Publication number
WO2019007257A1
WO2019007257A1 PCT/CN2018/093412 CN2018093412W WO2019007257A1 WO 2019007257 A1 WO2019007257 A1 WO 2019007257A1 CN 2018093412 W CN2018093412 W CN 2018093412W WO 2019007257 A1 WO2019007257 A1 WO 2019007257A1
Authority
WO
WIPO (PCT)
Prior art keywords
communication
working state
parameter
module
positioning
Prior art date
Application number
PCT/CN2018/093412
Other languages
English (en)
French (fr)
Inventor
钟印成
任冠佼
Original Assignee
纳恩博(北京)科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 纳恩博(北京)科技有限公司 filed Critical 纳恩博(北京)科技有限公司
Priority to US16/624,501 priority Critical patent/US20210157323A1/en
Priority to EP18827847.7A priority patent/EP3627259A4/en
Publication of WO2019007257A1 publication Critical patent/WO2019007257A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0276Control of position or course in two dimensions specially adapted to land vehicles using signals provided by a source external to the vehicle
    • G05D1/028Control of position or course in two dimensions specially adapted to land vehicles using signals provided by a source external to the vehicle using a RF signal
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/418Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM]
    • G05B19/4185Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM] characterised by the network communication
    • G05B19/4186Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM] characterised by the network communication by protocol, e.g. MAP, TOP
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/12Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves by co-ordinating position lines of different shape, e.g. hyperbolic, circular, elliptical or radial
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/20Instruments for performing navigational calculations
    • G01C21/206Instruments for performing navigational calculations specially adapted for indoor navigation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S3/00Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received
    • G01S3/02Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received using radio waves
    • G01S3/14Systems for determining direction or deviation from predetermined direction
    • G01S3/46Systems for determining direction or deviation from predetermined direction using antennas spaced apart and measuring phase or time difference between signals therefrom, i.e. path-difference systems
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/418Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM]
    • G05B19/4189Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM] characterised by the transport system
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0287Control of position or course in two dimensions specially adapted to land vehicles involving a plurality of land vehicles, e.g. fleet or convoy travelling
    • G05D1/0291Fleet control
    • G05D1/0295Fleet control by at least one leading vehicle of the fleet
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/10Simultaneous control of position or course in three dimensions
    • G05D1/101Simultaneous control of position or course in three dimensions specially adapted for aircraft
    • G05D1/104Simultaneous control of position or course in three dimensions specially adapted for aircraft involving a plurality of aircrafts, e.g. formation flying

Definitions

  • the present application relates to positioning technologies, and in particular, to a positioning method and system, an electronic device, and a computer readable storage medium.
  • the embodiment of the present application provides a positioning method and system, an electronic device, and a computer readable storage medium.
  • the positioning method provided by the embodiment of the present application is applied to a first device, where the method includes:
  • the first device controls its working state to be in the first working state
  • the first device in the first working state performs signal communication with the at least one second device in the second working state to obtain a first communication parameter of the signal communication process
  • the first device sends a first location parameter of the at least one second device relative to the first device to each second device.
  • the method further includes:
  • the first device controls the working state of the second device to be in the second working state, and notifies the at least one second device to control the working state of the second device to be in the first working state;
  • the first device in the second working state performs signal communication with the at least one second device in the first working state, so that each second device obtains the first device according to the second communication parameter of the signal communication process a second position parameter relative to the second device;
  • the first device sends orientation information of the at least one second device and orientation information of the first device to each second device.
  • the method further includes:
  • the first device sends orientation information of the at least one second device and orientation information of the first device to each second device.
  • the first device has a positioning module, and the positioning module includes: a first antenna, a second antenna, a first processing chip, and a second processing chip;
  • the positioning module implements the first working state when both the first antenna and the second antenna are connected to and cooperate with the second processing chip
  • the positioning module implements the second working state when the first antenna is connected to the first processing chip and works in cooperation.
  • the first device in the first working state performs signal communication with the at least one second device in the second working state, and obtains the first communication parameter of the signal communication process, including:
  • the first device sends a response packet to the second device, where the sending time of the response packet is T3, and the receiving time is T4;
  • the first device receives the second data packet sent by the second device, where the sending time of the second data packet is T5 calculated by the second device, and the receiving time is T6;
  • the first device obtains a first communication parameter of the signal communication process based on the locally recorded T2, T3, T6 and the T1, T2, and T4 carried by the second data packet, where the first communication parameter includes: T1, T2 , T3, T4, T5, T6;
  • the first location parameter of the at least one second device relative to the first device is obtained based on the first communication parameter, including:
  • the first device in the first working state performs signal communication with the at least one second device in the second working state to obtain the first communication parameter of the signal communication process, and further includes:
  • the first device collects the second data packet by the second processing chip to reach a phase difference or a time difference between the first antenna and the second antenna;
  • the first communication parameter further includes: the phase difference or a time difference
  • the first location parameter of the at least one second device relative to the first device is obtained based on the first communication parameter, including:
  • the positioning system provided by the embodiment of the present application is configured in a first device, where the positioning system includes:
  • control module configured to control an operating state of the first device to be in a first working state
  • a communication module configured to perform signal communication with at least one second device in a second working state to obtain a first communication parameter of the signal communication process
  • a processing module configured to obtain, according to the first communication parameter, a first location parameter of the at least one second device relative to the first device;
  • a sending module configured to send, to each second device, a first location parameter of the at least one second device relative to the first device.
  • control module is further configured to control the working state of the first device to be in a second working state, and notify the at least one second device to control the working state of the second device to be in the first state.
  • the communication module is further configured to perform signal communication with the at least one second device in the first working state, so that each second device obtains the first device relative to the second communication parameter according to the second communication parameter of the signal communication process Determining a second location parameter of the second device;
  • the system also includes:
  • a receiving module configured to receive a second location parameter of the first device relative to the second device that is sent by each second device
  • the processing module is further configured to determine orientation information of the at least one second device based on the first location parameter and the second location parameter;
  • the sending module is further configured to send orientation information of the at least one second device and orientation information of the first device to each second device.
  • system further includes:
  • a receiving module configured to receive respective orientation information sent by each second device, where the orientation information of the second device is detected by the second device by its own sensor;
  • the sending module is further configured to send orientation information of the at least one second device and orientation information of the first device to each second device.
  • the system further includes: a positioning module, where the positioning module includes: a first antenna, a second antenna, a first processing chip, and a second processing chip;
  • the positioning module implements the first working state
  • the positioning module implements the second working state when the first antenna is connected to the first processing chip and works in cooperation.
  • the communication module is configured to:
  • the processing module is configured to:
  • the communication module is configured to:
  • the first communication parameter further includes: the phase difference or a time difference
  • the processing module is configured to calculate an orientation of the at least one second device relative to the first device based on the phase difference or a time difference.
  • the electronic device provided by the embodiment of the present application includes any of the positioning systems described above.
  • the computer readable storage medium provided by the embodiment of the present application is for storing a computer program, and the computer program causes the computer to execute the positioning method described above.
  • the first device controls the working state of the device to be in the first working state; the first device in the first working state performs signal communication with the at least one second device in the second working state.
  • the external environment can be completed through communication between the devices without using the external environment, and the multiple devices can organize the movement to perform the formation, and can realize the collaborative work to complete the task.
  • FIG. 1 is a schematic flowchart 1 of a positioning method according to an embodiment of the present application.
  • FIG. 2 is a schematic flowchart 2 of a positioning method according to an embodiment of the present application.
  • FIG. 3 is a schematic diagram of mutual positioning of two robots according to an embodiment of the present application.
  • FIG. 4 is a schematic diagram of a multi-robot self-organizing formation according to an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of a positioning system according to an embodiment of the present application.
  • Ultra Wideband is a carrierless communication technology that uses N-second to picosecond non-sinusoidal narrow-pulse transmission data, usually using sub-nanosecond ultra-narrow pulses for close-range accurate indoor positioning;
  • TOF Time Of Flight
  • the sensor converts the distance between the target and the target by calculating the time difference between the emission and reflection of radio waves (or light waves, sound waves, etc.).
  • PDOA Phase Difference of Arrival
  • Multi-robot positioning method requires the modification of the environment, the installation of a camera or other sensors, and the use of external means to obtain the position of the robot. This method has high requirements on the positioning environment and is not conducive to large-scale application of robots working together.
  • the embodiment of the present application proposes a UWB-based positioning method to solve the problem of mutual positioning and self-organizing formation of robots in a multi-robot collaborative working environment.
  • FIG. 1 is a schematic flowchart 1 of a positioning method according to an embodiment of the present disclosure.
  • the positioning method in this example is applied to a first device. As shown in FIG. 1 , the positioning method includes the following steps:
  • Step 101 The first device controls its working state to be in the first working state.
  • the first device and the second device may be any form of mobile device, such as a robot, an aircraft, or the like.
  • the number of the second devices may be multiple, and the first device and the plurality of second devices form a device group.
  • the embodiment of the present application is to implement mutual positioning between the devices in the device group.
  • the first device and the second device both have two working states, which are a first working state and a second working state, respectively.
  • the second device is in the second working state when the first device is in the first working state, and is in the first working state when the first device is in the second working state.
  • the following is an example of the first working state and the second working state of the first device, and the second device is the same as the first device. specifically:
  • the first device has a positioning module, and the positioning module includes: a first antenna, a second antenna, a first processing chip, and a second processing chip;
  • the positioning module implements the first working state
  • the positioning module implements the second working state when the first antenna is connected to the first processing chip and works in cooperation.
  • each device (the first device and the second device) is a UWB positioning node, and the UWB positioning node can serve as an anchor node or a tag node, wherein the anchor node passes the wireless communication.
  • the relative distance and angle of the Tag node can be obtained.
  • Two or two rotations between multiple devices are positioned as Tag nodes and Anchor nodes, so that the relative positions of all devices can be obtained, and then the mobile can be organized to form a team.
  • the first working state refers to: two antennas in the device work at the same time to implement the function of the Anchor node.
  • the second working state refers to: an antenna in the device works to implement the function of the Tag node.
  • the first device controls its own working state to be in the first working state, that is, represents the first device as an Anchor node.
  • Step 102 The first device in the first working state performs signal communication with the at least one second device in the second working state to obtain a first communication parameter of the signal communication process.
  • the second device is in the second working state, that is, the second device is used as the Tag node.
  • a first communication parameter is used as the first device of the Anchor node and a plurality of second devices as the Tag node, and the first communication parameter of the signal communication process can be obtained.
  • the first communication parameter is used to calculate the second device relative to the first device.
  • a first position parameter where the first position parameter comprises at least one of: a distance of the second device relative to the first device, and an orientation (ie, an angle) of the second device relative to the first device.
  • the first communication parameter on which the distance of the second device is relative to the first device is time, and the first communication parameter on which the angle of the second device is relative to the first device is phase.
  • the first communication parameter is obtained through the following communication process:
  • the first device sends a response packet to the second device, where the sending time of the response packet is T3, and the receiving time is T4;
  • the first device receives the second data packet sent by the second device, where the sending time of the second data packet is T5 calculated by the second device, and the receiving time is T6;
  • the first device obtains a first communication parameter of the signal communication process based on the locally recorded T2, T3, T6 and the T1, T2, and T4 carried by the second data packet, where the first communication parameter includes: T1, T2 , T3, T4, T5, T6.
  • the first communication parameter is obtained by the following communication process:
  • the first device collects the second data packet by the second processing chip to reach a phase difference or a time difference between the first antenna and the second antenna;
  • the first communication parameter further includes: the phase difference or a time difference.
  • Step 103 Obtain a first location parameter of the at least one second device relative to the first device based on the first communication parameter.
  • An orientation of the at least one second device relative to the first device is calculated based on the phase difference or time difference.
  • the distance and the azimuth together constitute the first position parameter.
  • the distance represents how far the second device is in the first device
  • the orientation represents which angle of the second device is in the first device.
  • Step 104 The first device sends, to each second device, a first location parameter of the at least one second device relative to the first device.
  • the first device can obtain the first location parameter of all the second device relative to the first device by communicating with each second device, and the first device packages the location parameters and sends the information to each The second device, in this way, all devices can know the mutual location between the devices.
  • the technical solution of the embodiment of the present application integrates the UWB positioning system into the device, so that the devices can be positioned to each other to determine each other's positions, and no external positioning information is needed, thereby reducing the environment requirements for the devices to work together, so that the devices are in different environments. The collaborative work underneath is easier to implement.
  • the first device obtains the positional relationship (ie, the first position parameter) of the second device relative to the first device, however, the positional relationship of the second device relative to the first device (ie, the second position parameter) It cannot be determined simply based on the first position parameter. For example, if the A device knows that the B device is 5m away (the first position parameter) behind it (the first position parameter), then the orientation of the A device relative to the B device is uncertain, and needs to be based on the orientation of the B device (ie, Further).
  • the relative orientations of the A device and the B device can be obtained based on the two data. For example, if the A device knows that the B device is 5m away (the first position parameter) behind it, and the B device knows that the A device is 5m away from the back of the device (the second position parameter), then A and B are back to back and the distance is 5m.
  • the formation may be performed regardless of the orientation problem regardless of the orientation problem. Further, in order to accomplish tasks based on formations more accurately, it is necessary to consider the orientation problem. To this end, the first device and the second device are required to perform the role exchange between the anchor node and the tag node.
  • the reason for the role exchange between the tag node and the anchor node is to determine the orientation of the device, such as the orientation of the robot face, which is determined by bidirectional positioning, for example: the position of the A device relative to the B device (including the distance) And orientation) Positioned in one communication process, the position of the B device relative to the A device is located in another communication process, then, according to the two data, the orientation of the B device phase can be determined (here, the orientation of the A device phase)
  • the reference is determined as a known case, that is, the orientation of the B device relative to the A device.
  • FIG. 2 is a schematic flowchart of a positioning method according to an embodiment of the present application.
  • the positioning method in this example is applied to a first device. As shown in FIG. 2, the positioning method includes the following steps:
  • Step 201 The first device controls its working state to be in the second working state, and notifies the at least one second device to control the working state of the second device to be in the first working state.
  • the first device controls its working state to be in the second working state, that is, represents the first device as a Tag node.
  • the second device is in the first working state, that is, represents the second device as an Anchor node. In this way, the role exchange is completed.
  • Step 202 The first device in the second working state performs signal communication with the at least one second device in the first working state, so that each second device obtains the second communication parameter according to the signal communication process. a second positional parameter of the first device relative to the second device.
  • the second device that is the Anchor node performs signal communication with the first device that is the Tag node, and the second communication parameter of the signal communication process can be obtained.
  • the second communication parameter is used to calculate the first device relative to the first device.
  • a second position parameter of the second device where the second position parameter comprises at least one of: a distance of the first device relative to the second device, and an orientation (ie, an angle) of the first device relative to the second device.
  • Step 203 The first device receives a second location parameter of the first device relative to the second device that is sent by each second device, where the first device is based on the first location parameter and the second device a location parameter, determining orientation information of the at least one second device.
  • the first device knows its absolute orientation information (that is, the direction in which the face faces), then according to the first location parameter and the second location parameter, the second device may be determined to be relative to the first device.
  • the relative orientation of a device the first device can determine the absolute orientation of the second device according to its absolute orientation and the relative orientation of the second device relative to the first device.
  • Step 204 The first device sends the orientation information of the at least one second device and the orientation information of the first device to each second device.
  • each device may obtain not only the location status of all the devices, but also In the orientation of their respective positions, accurate self-organizing formation and target tasks can be achieved.
  • the present invention is not limited thereto, and a sensor capable of detecting the orientation such as a gyroscope may be attached to the device, and the orientation information of the device may be detected by the sensor.
  • the first device receives the respective orientation information sent by each second device, where the orientation information of the second device is detected by the second device by its own sensor; the first device is sent to each second The device sends orientation information of the at least one second device and orientation information of the first device. In this way, precise positioning of the position and orientation can also be achieved.
  • the Tag node sends a poll packet, and when sent, the Tag node records the timestamp tt1 sent;
  • the Anchor node waits for reception, after receiving the poll data packet, records the time stamp ta1 of the receiving time, and sends a response packet to record the timestamp ta2 of the response to be sent;
  • the Tag node waits for reception. After receiving the response packet, it records the timestamp tt2 of the receiving time, and calculates the timestamp tt3 of the final packet to be sent. When the tag node clock reaches tt3, the final packet is sent, and the final packet contains three. Timestamp information (tt1, tt2, tt3);
  • the Anchor node After receiving the final packet, the Anchor node records the reception timestamp ta3. At this time, the anchor node has recorded three timestamps ta1, ta2, ta3, and at the same time, by reading the contents of the final packet, three time stamps tt1, tt2, tt3 of the tag node can also be obtained;
  • Tround1 tt2-tt1;
  • Treply1 ta2–ta1;
  • Tround2 ta3–ta2
  • Treply2 tt3–tt2;
  • the communication time can be accurately obtained, and then the distance between the two can be obtained by multiplying the time and the speed of light. among them,
  • time difference of Arrival can also be used for angle measurement.
  • the anchor node can collect the signal time difference between the final packet and the two antennas, and the processor reads The two time values are T1 and T2, the distance difference between the signals and the two antennas is calculated, and the orientation of the tag node relative to the anchor node is calculated according to the relative relationship of the triangles.
  • FIG. 3 is a schematic diagram of mutual positioning of two robots according to an embodiment of the present application.
  • both the robot A and the robot B have a UWB positioning module.
  • the positioning module acts as a Tag node
  • the UWB positioning module of Robot B acts as an Anchor node.
  • the positioning process is as follows: Robot A sends a Poll packet, and after receiving the Poll packet, Robot B replies to the Response packet to Robot A. After receiving the Response packet, Robot A will send a Final packet to Robot B.
  • the two antennas of Robot B will calculate the relative angle of Robot A based on the phase difference or time difference of the received Final packet.
  • Robot A wants to determine the relative position of Robot B, it is only necessary to have Robot A act as an Anchor, and then let Robot B act as a Tag, and then repeat the above process.
  • FIG. 4 is an intention of a multi-robot self-organizing formation according to an embodiment of the present application. As shown in FIG. 4, there are nine robots, which are numbered by numbers 1 to 9, respectively. The arrows in the figure represent the orientation of the robot.
  • one of the robots (assumed No. 5) is defined as the organizer, the UWB positioning module on the fifth robot is used as the Anchor node, the other robots are used as the Tag node, and the fifth robot communicates with other robots in turn. Position the other robots at their own origin and then broadcast the location information to other robots. Then, the organizer acts as a Tag node, and other robots act as Anchor nodes, obtaining the perspective of the organizer relative to itself, and then obtaining their own orientation information. After all the robot's position and orientation information is determined, the self-organizing formation movement can be realized according to the algorithm.
  • each device determines its own flight parameters according to the target task (for example, according to a certain formation), so as to realize the autonomous formation.
  • the formation is A-shaped, and the device determines its flight parameters according to the position of other equipment to maintain the A-shape.
  • the organizer can be either a robot or a fixed node placed in the environment in advance.
  • FIG. 5 is a schematic structural diagram of a positioning system according to an embodiment of the present disclosure.
  • the positioning system in this example is disposed on a first device. As shown in FIG. 5, the positioning system includes:
  • the control module 501 is configured to control the working state of the first device to be in a first working state
  • the communication module 502 is configured to perform signal communication with at least one second device in a second working state to obtain a first communication parameter of the signal communication process;
  • the processing module 503 is configured to obtain, according to the first communication parameter, a first location parameter of the at least one second device relative to the first device;
  • the sending module 504 is configured to send, to each second device, a first location parameter of the at least one second device relative to the first device.
  • control module 501 is further configured to control the working state of the first device to be in a second working state, and notify the at least one second device to control the working state of the second device to be in the first a working state;
  • the communication module 502 is further configured to perform signal communication with at least one second device in the first working state, so that each second device obtains the first device relative to the second communication parameter of the signal communication process. a second position parameter of the second device;
  • the system also includes:
  • the receiving module 505 is configured to receive, by each second device, a second location parameter of the first device relative to the second device;
  • the processing module 503 is further configured to determine orientation information of the at least one second device based on the first location parameter and the second location parameter;
  • the sending module 504 is further configured to send, to each second device, orientation information of the at least one second device and orientation information of the first device.
  • system further includes:
  • the receiving module 505 is configured to receive respective orientation information sent by each second device, where the orientation information of the second device is detected by the second device by its own sensor;
  • the sending module 504 is further configured to send, to each second device, orientation information of the at least one second device and orientation information of the first device.
  • the system further includes: a positioning module 506, the positioning module 506 includes: a first antenna, a second antenna, a first processing chip, and a second processing chip;
  • the positioning module 506 implements the first working state
  • the positioning module 506 implements the second operational state when the first antenna is coupled to the first processing chip and cooperates.
  • the communication module 502 is configured to:
  • the processing module 503 is configured to:
  • the communication module 502 is configured to:
  • the first communication parameter further includes: the phase difference or a time difference
  • the processing module 503 is configured to calculate an orientation of the at least one second device relative to the first device based on the phase difference or a time difference.
  • An embodiment of the present application provides an electronic device, where the electronic device includes any of the positioning systems described above.
  • the disclosed method and smart device may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner such as: multiple units or components may be combined, or Can be integrated into another system, or some features can be ignored or not executed.
  • the coupling, or direct coupling, or communication connection of the components shown or discussed may be indirect coupling or communication connection through some interfaces, devices or units, and may be electrical, mechanical or other forms. of.
  • the units described above as separate components may or may not be physically separated, and the components displayed as the unit may or may not be physical units, that is, may be located in one place or distributed to multiple network units; Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one second processing unit, or each unit may be separately used as one unit, or two or more units may be integrated into one unit;
  • the above integrated unit can be implemented in the form of hardware or in the form of hardware plus software functional units.
  • the embodiment of the present application further provides a computer readable storage medium for storing a computer program.
  • the computer readable storage medium is applicable to the network device in the embodiment of the present application, and the computer program causes the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application. No longer.
  • the computer readable storage medium is applicable to the mobile terminal/terminal device in the embodiment of the present application, and the computer program causes the computer to execute the corresponding process implemented by the mobile terminal/terminal device in each method of the embodiment of the present application.
  • the computer program causes the computer to execute the corresponding process implemented by the mobile terminal/terminal device in each method of the embodiment of the present application.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Quality & Reliability (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种定位方法及系统、电子设备、计算机可读存储介质。定位方法包括:第一设备控制自身的工作状态处于第一工作状态(101);处于第一工作状态下的第一设备与处于第二工作状态的至少一个第二设备进行信号通讯,获得信号通信过程的第一通讯参数(102);基于第一通讯参数,得到至少一个第二设备相对于第一设备的第一位置参数(103);第一设备向各个第二设备发送至少一个第二设备相对于第一设备的第一位置参数(104)。该定位方法及系统在多设备协作的任务中,通过设备之间的通信即可完成相互之间的定位,以便于实现多设备间的自组编队和协同完成任务。

Description

定位方法及系统、电子设备、计算机可读存储介质
相关申请的交叉引用
本申请基于申请号为2017105421227、申请日为2017年7月5日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请涉及定位技术,尤其涉及一种定位方法及系统、电子设备、计算机可读存储介质。
背景技术
随着机器人技术的不断发展,多机器人协作完成复杂任务逐渐变成可能。在多机器人协作的任务中,机器人彼此之间的确定位置,对于机器人间的有组织移动,以及跟距离相关的任务完成都至关重要。然而,目前并没有成熟的多机器人定位方案,大部分探索性方案也需要对所处空间进行一定的改造,比如加装摄像头或者其他传感器,或者对不同位置进行标记。这样的方法对于机器人所处的空间限制过高,无法在任意环境使用。
发明内容
为解决上述技术问题,本申请实施例提供了一种定位方法及系统、电子设备、计算机可读存储介质。
本申请实施例提供的定位方法,应用于第一设备,所述方法包括:
第一设备控制自身的工作状态处于第一工作状态;
处于所述第一工作状态下的第一设备与处于第二工作状态的至少一个 第二设备进行信号通讯,获得信号通信过程的第一通讯参数;
基于所述第一通讯参数,得到所述至少一个第二设备相对于所述第一设备的第一位置参数;
所述第一设备向各个第二设备发送所述至少一个第二设备相对于所述第一设备的第一位置参数。
本申请实施例中,所述方法还包括:
第一设备控制自身的工作状态处于第二工作状态,并通知所述至少一个第二设备控制所述第二设备的工作状态处于第一工作状态;
处于所述第二工作状态的第一设备与处于所述第一工作状态的至少一个第二设备进行信号通讯,以使各个第二设备根据信号通信过程的第二通讯参数得到所述第一设备相对于所述第二设备的第二位置参数;
所述第一设备接收各个第二设备发送的所述第一设备相对于所述第二设备的第二位置参数;
所述第一设备基于所述第一位置参数和所述第二位置参数,确定所述至少一个第二设备的朝向信息;
所述第一设备向各个第二设备发送所述至少一个第二设备的朝向信息以及所述第一设备的朝向信息。
本申请实施例中,所述方法还包括:
所述第一设备接收各个第二设备发送的各自的朝向信息,其中,所述第二设备的朝向信息是所述第二设备通过自身的传感器检测得到;
所述第一设备向各个第二设备发送所述至少一个第二设备的朝向信息以及所述第一设备的朝向信息。
本申请实施例中,所述第一设备具有定位模块,所述定位模块包括:第一天线、第二天线、第一处理芯片、第二处理芯片;其中,
当所述第一天线和所述第二天线均与所述第二处理芯片连接并协同工 作时,所述定位模块实现所述第一工作状态;
当所述第一天线与所述第一处理芯片连接并协同工作时,所述定位模块实现所述第二工作状态。
本申请实施例中,所述处于所述第一工作状态下的第一设备与处于第二工作状态的至少一个第二设备进行信号通讯,获得信号通信过程的第一通讯参数,包括:
第一设备接收第二设备发送的第一数据包,所述第一数据包的发送时刻为T1、接收时刻为T2;
第一设备向第二设备发送响应包,所述响应包的发送时刻为T3、接收时刻为T4;
第一设备接收第二设备发送的第二数据包,所述第二数据包的发送时刻为所述第二设备计算得到的T5,接收时刻为T6;
所述第一设备基于本地记录的T2、T3、T6以及所述第二数据包携带的T1、T2、T4,获得信号通信过程的第一通讯参数,所述第一通讯参数包括:T1、T2、T3、T4、T5、T6;
相应地,所述基于所述第一通讯参数,得到所述至少一个第二设备相对于所述第一设备的第一位置参数,包括:
基于所述第一通讯参数,计算得到所述第一设备与所述第二设备之间的通讯时间;
基于所述第一设备与所述第二设备之间的通讯时间,计算得到所述第二设备相对于所述第一设备的距离。
本申请实施例中,所述处于所述第一工作状态下的第一设备与处于第二工作状态的至少一个第二设备进行信号通讯,获得信号通信过程的第一通讯参数,还包括:
第一设备通过所述第二处理芯片采集所述第二数据包达到所述第一天 线和第二天线的相位差或时间差;
所述第一通讯参数还包括:所述相位差或时间差;
相应地,所述基于所述第一通讯参数,得到所述至少一个第二设备相对于所述第一设备的第一位置参数,包括:
基于所述相位差或时间差,计算得到所述至少一个第二设备相对于所述第一设备的方位。
本申请实施例提供的定位系统,设置于第一设备,所述定位系统包括:
控制模块,配置为控制所述第一设备的工作状态处于第一工作状态;
通信模块,配置为与处于第二工作状态的至少一个第二设备进行信号通讯,获得信号通信过程的第一通讯参数;
处理模块,配置为基于所述第一通讯参数,得到所述至少一个第二设备相对于所述第一设备的第一位置参数;
发送模块,配置为向各个第二设备发送所述至少一个第二设备相对于所述第一设备的第一位置参数。
本申请实施例中,所述控制模块,还配置为控制所述第一设备的工作状态处于第二工作状态,并通知所述至少一个第二设备控制所述第二设备的工作状态处于第一工作状态;
所述通信模块,还配置为与处于所述第一工作状态的至少一个第二设备进行信号通讯,以使各个第二设备根据信号通信过程的第二通讯参数得到所述第一设备相对于所述第二设备的第二位置参数;
所述系统还包括:
接收模块,配置为接收各个第二设备发送的所述第一设备相对于所述第二设备的第二位置参数;
所述处理模块,还配置为基于所述第一位置参数和所述第二位置参数,确定所述至少一个第二设备的朝向信息;
所述发送模块,还配置为向各个第二设备发送所述至少一个第二设备的朝向信息以及所述第一设备的朝向信息。
本申请实施例中,所述系统还包括:
接收模块,配置为接收各个第二设备发送的各自的朝向信息,其中,所述第二设备的朝向信息是所述第二设备通过自身的传感器检测得到;
所述发送模块,还配置为向各个第二设备发送所述至少一个第二设备的朝向信息以及所述第一设备的朝向信息。
本申请实施例中,所述系统还包括:定位模块,所述定位模块包括:第一天线、第二天线、第一处理芯片、第二处理芯片;其中,
当所述第一天线和所述第二天线均与所述第二处理芯片连接并协同工作时,所述定位模块实现所述第一工作状态;
当所述第一天线与所述第一处理芯片连接并协同工作时,所述定位模块实现所述第二工作状态。
本申请实施例中,所述通信模块,配置为:
接收第二设备发送的第一数据包,所述第一数据包的发送时刻为T1、接收时刻为T2;
向第二设备发送响应包,所述响应包的发送时刻为T3、接收时刻为T4;
接收第二设备发送的第二数据包,所述第二数据包的发送时刻为所述第二设备计算得到的T5,接收时刻为T6;
基于本地记录的T2、T3、T6以及所述第二数据包携带的T1、T2、T4,获得信号通信过程的第一通讯参数,所述第一通讯参数包括:T1、T2、T3、T4、T5、T6;
所述处理模块,配置为:
基于所述第一通讯参数,计算得到所述第一设备与所述第二设备之间的通讯时间;
基于所述第一设备与所述第二设备之间的通讯时间,计算得到所述第二设备相对于所述第一设备的距离。
本申请实施例中,所述通信模块,配置为:
通过所述第二处理芯片采集所述第二数据包达到所述第一天线和第二天线的相位差或时间差;
所述第一通讯参数还包括:所述相位差或时间差;
所述处理模块,配置为:基于所述相位差或时间差,计算得到所述至少一个第二设备相对于所述第一设备的方位。
本申请实施例提供的电子设备,包括上述任意所述的定位系统。
本申请实施例提供的计算机可读存储介质,用于存储计算机程序,该计算机程序使得计算机执行上述的定位方法。
本申请实施例的技术方案中,第一设备控制自身的工作状态处于第一工作状态;处于所述第一工作状态下的第一设备与处于第二工作状态的至少一个第二设备进行信号通讯,获得信号通信过程的第一通讯参数;基于所述第一通讯参数,得到所述至少一个第二设备相对于所述第一设备的第一位置参数;所述第一设备向各个第二设备发送所述至少一个第二设备相对于所述第一设备的第一位置参数。采用本申请实施例的技术方案,无需改造外部环境,通过设备之间的通信即可完成相互之间的定位,多设备可以自行组织移动进行编队,并能够实现协同工作完成任务。
附图说明
图1为本申请实施例的定位方法的流程示意图一;
图2为本申请实施例的定位方法的流程示意图二;
图3为本申请实施例的两个机器人相互定位的示意图;
图4为本申请实施例的多机器人自组织编队的示意图;
图5为本申请实施例的定位系统的结构组成示意图。
具体实施方式
为了能够更加详尽地了解本申请实施例的特点与技术内容,下面结合附图对本申请实施例的实现进行详细阐述,所附附图仅供参考说明之用,并非用来限定本申请实施例。
以下为本申请实施例涉及到的关键术语的解释说明:
超宽带(UWB,Ultra WideBand):是一种无载波通信技术,利用纳秒至微微秒级的非正弦波窄脉冲传输数据,通常利用亚纳秒级超窄脉冲来进行近距离精确室内定位;
飞行时间(TOF,Time Of Flight):TOF是指飞行时间测距法,传感器通过计算无线电波(或光波、声波等)发射和反射时间差,来换算成目标的距离。
达到相位差(PDOA,Phase Difference of Arrival):一种利用相位差进行定位的方法。通过测量信号到达多个监测站的相位差,可以确定信号源的和基站的相对角度。
多机器人定位方法,需要对环境进行改造,加装摄像头或者其他传感器,使用外部的手段获得机器人的位置。这种方式对定位环境要求高,不利于机器人协同工作的大规模应用。为此,本申请实施例提出一种基于UWB的定位方法,以解决多机器人协同工作环境下,机器人之间相互定位、自组织编队的问题。
图1为本申请实施例的定位方法的流程示意图一,本示例中的定位方法应用于第一设备,如图1所示,所述定位方法包括以下步骤:
步骤101:第一设备控制自身的工作状态处于第一工作状态。
本申请实施例中,第一设备和第二设备可以是任意形式的移动设备,例如:机器人、飞行器等。第二设备的个数可以为多个,由第一设备和多个第二设备组成一个设备群,本申请实施例旨在实现设备群中的设备之间 的相互定位。
本申请实施例中,第一设备以及第二设备都具有两种工作状态,分别为第一工作状态和第二工作状态。其中,当第一设备处于第一工作状态时,第二设备处于第二工作状态;当第一设备处于第二工作状态时,第一设备处于第一工作状态。
下面以第一设备的第一工作状态和第二工作状态的解释说明为例,第二设备与第一设备同理。具体地:
第一设备具有定位模块,所述定位模块包括:第一天线、第二天线、第一处理芯片、第二处理芯片;其中,
当所述第一天线和所述第二天线均与所述第二处理芯片连接并协同工作时,所述定位模块实现所述第一工作状态;
当所述第一天线与所述第一处理芯片连接并协同工作时,所述定位模块实现所述第二工作状态。
上述方案中,每个设备(第一设备、第二设备)是一个UWB定位节点,该UWB定位节点既可作为锚(Anchor)节点也可作为标签(Tag)节点,其中,Anchor节点通过无线通讯可获得Tag节点的相对距离和角度。多个设备之间两两轮流作为Tag节点和Anchor节点进行定位,即可获得所有设备的相对位置,之后便可以自行组织移动进行编队。基于此,第一工作状态是指:设备中的两个天线同时工作,实现Anchor节点的功能。第二工作状态是指:设备中的一个天线工作,实现Tag节点的功能。
基于以上所述,第一设备控制自身的工作状态处于第一工作状态,也即代表第一设备作为Anchor节点。
步骤102:处于所述第一工作状态下的第一设备与处于第二工作状态的至少一个第二设备进行信号通讯,获得信号通信过程的第一通讯参数。
本申请实施例中,第二设备处于第二工作状态,也即代表第二设备作 为Tag节点。
作为Anchor节点的第一设备与作为Tag节点的多个第二设备进行信号通讯,可以获得信号通信过程的第一通讯参数,这里,第一通讯参数用于计算第二设备相对于第一设备的第一位置参数,这里,第一位置参数包括以下至少之一:第二设备相对于第一设备的距离,第二设备相对于第一设备的方位(也即角度)。
本申请实施例中,第二设备相对于第一设备的距离所基于的第一通讯参数为时间,第二设备相对于第一设备的角度所基于的第一通讯参数为相位。
针对于第一通讯参数为时间的情况,第一通讯参数通过如下通讯过程获得:
第一设备接收第二设备发送的第一数据包,所述第一数据包的发送时刻为T1、接收时刻为T2;
第一设备向第二设备发送响应包,所述响应包的发送时刻为T3、接收时刻为T4;
第一设备接收第二设备发送的第二数据包,所述第二数据包的发送时刻为所述第二设备计算得到的T5,接收时刻为T6;
所述第一设备基于本地记录的T2、T3、T6以及所述第二数据包携带的T1、T2、T4,获得信号通信过程的第一通讯参数,所述第一通讯参数包括:T1、T2、T3、T4、T5、T6。
针对于第一通讯参数为相位的情况,第一通讯参数通过如下通讯过程获得:
第一设备通过所述第二处理芯片采集所述第二数据包达到所述第一天线和第二天线的相位差或时间差;
所述第一通讯参数还包括:所述相位差或时间差。
步骤103:基于所述第一通讯参数,得到所述至少一个第二设备相对于所述第一设备的第一位置参数。
具体地,基于所述T1、T2、T3、T4、T5、T6,计算得到所述第一设备与所述第二设备之间的通讯时间;
基于所述第一设备与所述第二设备之间的通讯时间,计算得到所述第二设备相对于所述第一设备的距离。
基于所相位差或时间差,计算得到所述至少一个第二设备相对于所述第一设备的方位。
本申请实施例中,距离和方位共同组成了第一位置参数。其中,距离代表了第二设备在第一设备的多远处,方位代表了第二设备在第一设备的哪个角度。
步骤104:所述第一设备向各个第二设备发送所述至少一个第二设备相对于所述第一设备的第一位置参数。
本申请实施例中,第一设备通过与各个第二设备进行通讯,便可以获得所有的第二设备相对于第一设备的第一位置参数,第一设备将这些位置参数打包在一起发送给各个第二设备,这样,所有的设备都可以知道设备之间的相互位置。本申请实施例的技术方案,将UWB定位系统集成到设备中,使得设备之间可以相互定位确定彼此的位置,不需要外部其他定位信息,降低了设备协同工作的环境要求,使得设备在不同环境下的协同工作更容易实现。
上述方案中,第一设备获得了第二设备相对于第一设备的位置关系(也即第一位置参数),然而,第二设备相对于第一设备的位置关系(也即第二位置参数)并不能简单基于第一位置参数而确定。例如:A设备知道B设备在其身后(方位)的5m远(第一位置参数),那么,A设备相对于B设备是处于何种方位是不确定的,需要根据B设备的面向(也即朝向)进一 步确定。如果获得A设备相对于B设备的位置关系,也获得了B设备相对于A设备的位置关系,那么,可以基于这两个数据得到A设备与B设备的相对朝向。例如:A设备知道B设备在其身后的5m远(第一位置参数),B设备知道A设备在其身后的5m远(第二位置参数),那么A和B是背对背朝向且距离5m。
本申请实施例中,可以不考虑朝向问题,只考虑位置来进行编队。进一步,为了更精准地完成基于编队而完成的任务,需要考虑朝向问题。为此,需要第一设备、第二设备进行anchor节点与tag节点的角色互换。之所以进行tag节点与anchor节点的角色互换,是为了确定出设备的朝向,例如机器人脸部的朝向,这个是通过双向定位确定出的,例如:A设备相对于B设备的位置(包括距离和方位)在一次通讯过程定位出,B设备相对于A设备的位置在另一次通讯过程定位出,那么,根据这两个数据可以确定出B设备相的朝向(这里,以A设备相的朝向为基准作为已知的情况下确定的),也即是B设备相对于A设备的朝向。
在经过图1所示的定位过程后,对调第一设备和第二设备的角色,进行如下图2所示的定位过程。
图2为本申请实施例的定位方法的流程示意图二,本示例中的定位方法应用于第一设备,如图2所示,所述定位方法包括以下步骤:
步骤201:第一设备控制自身的工作状态处于第二工作状态,并通知所述至少一个第二设备控制所述第二设备的工作状态处于第一工作状态。
具体地,第一设备控制自身的工作状态处于第二工作状态,也即代表第一设备作为Tag节点。第二设备处于第一工作状态,也即代表第二设备作为Anchor节点。如此,完成角色的互换。
步骤202:处于所述第二工作状态的第一设备与处于所述第一工作状态的至少一个第二设备进行信号通讯,以使各个第二设备根据信号通信过程 的第二通讯参数得到所述第一设备相对于所述第二设备的第二位置参数。
本申请实施例中,作为Anchor节点的第二设备与作为Tag节点的第一设备进行信号通讯,可以获得信号通信过程的第二通讯参数,这里,第二通讯参数用于计算第一设备相对于第二设备的第二位置参数,这里,第二位置参数包括以下至少之一:第一设备相对于第二设备的距离,第一设备相对于第二设备的方位(也即角度)。
步骤203:所述第一设备接收各个第二设备发送的所述第一设备相对于所述第二设备的第二位置参数;所述第一设备基于所述第一位置参数和所述第二位置参数,确定所述至少一个第二设备的朝向信息。
本申请实施例中,假设第一设备知道自己的绝对朝向信息(也即面部所朝的方向),那么,根据第一位置参数和所述第二位置参数,可以确定出第二设备相对于第一设备的相对朝向,第一设备根据自己的绝对朝向以及第二设备相对于第一设备的相对朝向,可以确定出第二设备的绝对朝向。
步骤204:所述第一设备向各个第二设备发送所述至少一个第二设备的朝向信息以及所述第一设备的朝向信息。
本申请实施例中,第一设备向各个第二设备发送所述至少一个第二设备的朝向信息以及所述第一设备的朝向信息后,各个设备不仅可以获得所有设备的位置情况,也可以获得在各自位置的朝向情况,如此,可以完成精准的自组织编队并实现目标任务。
上述获取朝向的方案是基于对调角色来实现的,当然,不局限于此,也可以在设备中安装有陀螺仪等能够检测朝向的传感器,通过该传感器来检测设备的朝向信息。基于此,第一设备接收各个第二设备发送的各自的朝向信息,其中,所述第二设备的朝向信息是所述第二设备通过自身的传感器检测得到;所述第一设备向各个第二设备发送所述至少一个第二设备的朝向信息以及所述第一设备的朝向信息。如此,也可以实现位置与朝向 的精确定位。
下面对本申请上述实施例中的位置参数(第一位置参数、第二位置参数)的计算进行详细描述:
1、采用双向距离修正(TWR,Two-Way Ranging)方法计算位置参数中的距离,其中,每次测距需要进行3次通讯:
a.Tag节点发出一个poll数据包,发出时,Tag节点记录发送的时间戳tt1;
b.Anchor节点等待接收,收到poll数据包后,记录接收时刻的时间戳ta1,并发送一个response包,记录发送response的时间戳ta2;
c.Tag节点等待接收,收到response包后,记录接收时刻的时间戳tt2,并计算出需要发送final包的时间戳tt3,tag节点时钟到达tt3时,发出final包,final包中包含3个时间戳信息(tt1,tt2,tt3);
d.Anchor节点收到final数据包后,记录接收时间戳ta3。此时anchor节点已经记录了3个时间戳ta1,ta2,ta3,同时通过读取final包的内容,也可以得到tag节点的三个时间戳tt1,tt2,tt3;
e.由于anchor节点与tag节点时间不同步,因此需要计算各自的时间差:
Tround1=tt2-tt1;
Treply1=ta2–ta1;
Tround2=ta3–ta2;
Treply2=tt3–tt2;
f.根据四个时间差信息,就可以精确地获得通讯的时间,再通过时间与光速的乘积就可以获取两者之间的距离。其中,
通信时间T=(Tround1–Treply1)/2;
加速光速为V,则通信距离为DIS=T×V。
2、使用PDOA方法进行方位(也即角度)测量,当tag节点发送出final 包的时候,anchor节点可以采集到final包到达两个天线的信号相位差,处理器读取2个相位值为P1和P2,计算出相位差为PD=P1-P2(单位为弧度值),基于PD可得到tag节点和anchor节点的角度为ang=(PD/(2∏))/360(单位为度)。
当然,也可使用到达时间差(TDOA,Time Difference Of Arrival)的方法进行角度测量,当tag节点发送出final包的时候,anchor节点可以采集到final包到达两个天线的信号时间差,处理器读取2个时间值为T1和T2,计算出信号到两个天线之间的距离差,再根据三角形的相对关系计算出tag节点相对于anchor节点的方位。
图3为本申请实施例的两个机器人相互定位的示意图,如图3所示,机器人A和机器人B都具有UWB定位模块,在两个机器人相互确定对方位置的场景下,首先机器人A的UWB定位模块会作为Tag节点,机器人B的UWB定位模块作为Anchor节点。定位流程如下:机器人A的发送Poll包,机器人B收到Poll包后,回复Response包给机器人A。机器人A收到Response包后会发送Final包给机器人B,机器人B的两根天线会根据收到Final包的相位差或时间差计算出机器人A的相对角度。再根据3次通讯的总时间计算出机器人A的相对距离。机器人A如果想确定机器人B的相对位置,只需要让机器人A充当Anchor,然后让机器人B充当Tag,之后重复上述过程即可。
图4为本申请实施例的多机器人自组织编队的意图,如图4所示,有9个机器人,分别通过数字1至9进行编号。图中箭头代表机器人的朝向。
多机器人编队的场景中,可以其中一台机器人(假定5号)定义为组织者,5号机器人上的UWB定位模块作为Anchor节点,其他机器人作为Tag节点,5号机器人依次和其他机器人进行通讯,以自身为原点定位其他机器人的位置,然后将位置信息广播给其他机器人。然后,组织者充当Tag 节点,其他机器人充当Anchor节点,获得组织者相对与自身的角度,进而获得自身的朝向信息。所有的机器人的位置和朝向信息都确定后,即可根据算法实现自组织的编队运动。
上述方案中,当所有的机器人的位置和朝向信息都确定后,各个设备根据目标任务(比如按照某种队形进行编队),确定自身的飞行参数,以实现自主编队。例如:队形为A字型,设备根据其他设备的位置情况,确定自己的飞行参数,以保持这个A字型。需要注意的是,组织者既可以是某个机器人,也可以是提前放置在环境中的固定的一个节点。
图5为本申请实施例的定位系统的结构组成示意图,本示例中的定位系统设置于第一设备,如图5所示,所述定位系统包括:
控制模块501,配置为控制所述第一设备的工作状态处于第一工作状态;
通信模块502,配置为与处于第二工作状态的至少一个第二设备进行信号通讯,获得信号通信过程的第一通讯参数;
处理模块503,配置为基于所述第一通讯参数,得到所述至少一个第二设备相对于所述第一设备的第一位置参数;
发送模块504,配置为向各个第二设备发送所述至少一个第二设备相对于所述第一设备的第一位置参数。
本申请实施例中,所述控制模块501,还配置为控制所述第一设备的工作状态处于第二工作状态,并通知所述至少一个第二设备控制所述第二设备的工作状态处于第一工作状态;
所述通信模块502,还配置为与处于所述第一工作状态的至少一个第二设备进行信号通讯,以使各个第二设备根据信号通信过程的第二通讯参数得到所述第一设备相对于所述第二设备的第二位置参数;
所述系统还包括:
接收模块505,配置为接收各个第二设备发送的所述第一设备相对于所述第二设备的第二位置参数;
所述处理模块503,还配置为基于所述第一位置参数和所述第二位置参数,确定所述至少一个第二设备的朝向信息;
所述发送模块504,还配置为向各个第二设备发送所述至少一个第二设备的朝向信息以及所述第一设备的朝向信息。
本申请实施例中,所述系统还包括:
接收模块505,配置为接收各个第二设备发送的各自的朝向信息,其中,所述第二设备的朝向信息是所述第二设备通过自身的传感器检测得到;
所述发送模块504,还配置为向各个第二设备发送所述至少一个第二设备的朝向信息以及所述第一设备的朝向信息。
本申请实施例中,所述系统还包括:定位模块506,所述定位模块506包括:第一天线、第二天线、第一处理芯片、第二处理芯片;其中,
当所述第一天线和所述第二天线均与所述第二处理芯片连接并协同工作时,所述定位模块506实现所述第一工作状态;
当所述第一天线与所述第一处理芯片连接并协同工作时,所述定位模块506实现所述第二工作状态。
本申请实施例中,所述通信模块502,配置为:
接收第二设备发送的第一数据包,所述第一数据包的发送时刻为T1、接收时刻为T2;
向第二设备发送响应包,所述响应包的发送时刻为T3、接收时刻为T4;
接收第二设备发送的第二数据包,所述第二数据包的发送时刻为所述第二设备计算得到的T5,接收时刻为T6;
基于本地记录的T2、T3、T6以及所述第二数据包携带的T1、T2、T4,获得信号通信过程的第一通讯参数,所述第一通讯参数包括:T1、T2、T3、 T4、T5、T6;
所述处理模块503,配置为:
基于所述第一通讯参数,计算得到所述第一设备与所述第二设备之间的通讯时间;
基于所述第一设备与所述第二设备之间的通讯时间,计算得到所述第二设备相对于所述第一设备的距离。
本申请实施例中,所述通信模块502,配置为:
通过所述第二处理芯片采集所述第二数据包达到所述第一天线和第二天线的相位差或时间差;
所述第一通讯参数还包括:所述相位差或时间差;
所述处理模块503,配置为:基于所述相位差或时间差,计算得到所述至少一个第二设备相对于所述第一设备的方位。
本领域技术人员应当理解,图5所示的定位系统中的各模块的实现功能可参照前述定位方法的相关描述而理解。
本申请实施例提供一种电子设备,该电子设备包括上述任意所述的定位系统。
本申请实施例所记载的技术方案之间,在不冲突的情况下,可以任意组合。
在本申请所提供的几个实施例中,应该理解到,所揭露的方法和智能设备,可以通过其它的方式实现。以上所描述的设备实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,如:多个单元或组件可以结合,或可以集成到另一个系统,或一些特征可以忽略,或不执行。另外,所显示或讨论的各组成部分相互之间的耦合、或直接耦合、或通信连接可以是通过一些接口,设备或单元的间接耦合或通信连接,可以是电性的、机械的或其它形式的。
上述作为分离部件说明的单元可以是、或也可以不是物理上分开的,作为单元显示的部件可以是、或也可以不是物理单元,即可以位于一个地方,也可以分布到多个网络单元上;可以根据实际的需要选择其中的部分或全部单元来实现本实施例方案的目的。
另外,在本申请各实施例中的各功能单元可以全部集成在一个第二处理单元中,也可以是各单元分别单独作为一个单元,也可以两个或两个以上单元集成在一个单元中;上述集成的单元既可以采用硬件的形式实现,也可以采用硬件加软件功能单元的形式实现。
本申请实施例还提供了一种计算机可读存储介质,用于存储计算机程序。
可选的,该计算机可读存储介质可应用于本申请实施例中的网络设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机可读存储介质可应用于本申请实施例中的移动终端/终端设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。

Claims (14)

  1. 一种定位方法,应用于第一设备,所述方法包括:
    第一设备控制自身的工作状态处于第一工作状态;
    处于所述第一工作状态下的第一设备与处于第二工作状态的至少一个第二设备进行信号通讯,获得信号通信过程的第一通讯参数;
    基于所述第一通讯参数,得到所述至少一个第二设备相对于所述第一设备的第一位置参数;
    所述第一设备向各个第二设备发送所述至少一个第二设备相对于所述第一设备的第一位置参数。
  2. 根据权利要求1所述的定位方法,其中,所述方法还包括:
    第一设备控制自身的工作状态处于第二工作状态,并通知所述至少一个第二设备控制所述第二设备的工作状态处于第一工作状态;
    处于所述第二工作状态的第一设备与处于所述第一工作状态的至少一个第二设备进行信号通讯,以使各个第二设备根据信号通信过程的第二通讯参数得到所述第一设备相对于所述第二设备的第二位置参数;
    所述第一设备接收各个第二设备发送的所述第一设备相对于所述第二设备的第二位置参数;
    所述第一设备基于所述第一位置参数和所述第二位置参数,确定所述至少一个第二设备的朝向信息;
    所述第一设备向各个第二设备发送所述至少一个第二设备的朝向信息以及所述第一设备的朝向信息。
  3. 根据权利要求1所述的定位方法,其中,所述方法还包括:
    所述第一设备接收各个第二设备发送的各自的朝向信息,其中,所述第二设备的朝向信息是所述第二设备通过自身的传感器检测得到;
    所述第一设备向各个第二设备发送所述至少一个第二设备的朝向信 息以及所述第一设备的朝向信息。
  4. 根据权利要求1所述的定位方法,其中,所述第一设备具有定位模块,所述定位模块包括:第一天线、第二天线、第一处理芯片、第二处理芯片;其中,
    当所述第一天线和所述第二天线均与所述第二处理芯片连接并协同工作时,所述定位模块实现所述第一工作状态;
    当所述第一天线与所述第一处理芯片连接并协同工作时,所述定位模块实现所述第二工作状态。
  5. 根据权利要求4所述的定位方法,其中,所述处于所述第一工作状态下的第一设备与处于第二工作状态的至少一个第二设备进行信号通讯,获得信号通信过程的第一通讯参数,包括:
    第一设备接收第二设备发送的第一数据包,所述第一数据包的发送时刻为T1、接收时刻为T2;
    第一设备向第二设备发送响应包,所述响应包的发送时刻为T3、接收时刻为T4;
    第一设备接收第二设备发送的第二数据包,所述第二数据包的发送时刻为所述第二设备计算得到的T5,接收时刻为T6;
    所述第一设备基于本地记录的T2、T3、T6以及所述第二数据包携带的T1、T2、T4,获得信号通信过程的第一通讯参数,所述第一通讯参数包括:T1、T2、T3、T4、T5、T6;
    相应地,所述基于所述第一通讯参数,得到所述至少一个第二设备相对于所述第一设备的第一位置参数,包括:
    基于所述第一通讯参数,计算得到所述第一设备与所述第二设备之间的通讯时间;
    基于所述第一设备与所述第二设备之间的通讯时间,计算得到所述 第二设备相对于所述第一设备的距离。
  6. 根据权利要求5所述的定位方法,其中,所述处于所述第一工作状态下的第一设备与处于第二工作状态的至少一个第二设备进行信号通讯,获得信号通信过程的第一通讯参数,还包括:
    第一设备通过所述第二处理芯片采集所述第二数据包达到所述第一天线和第二天线的相位差或时间差;
    所述第一通讯参数还包括:所述相位差或时间差;
    相应地,所述基于所述第一通讯参数,得到所述至少一个第二设备相对于所述第一设备的第一位置参数,包括:
    基于所述相位差或时间差,计算得到所述至少一个第二设备相对于所述第一设备的方位。
  7. 一种定位系统,设置于第一设备,所述定位系统包括:
    控制模块,配置为控制所述第一设备的工作状态处于第一工作状态;
    通信模块,配置为与处于第二工作状态的至少一个第二设备进行信号通讯,获得信号通信过程的第一通讯参数;
    处理模块,配置为基于所述第一通讯参数,得到所述至少一个第二设备相对于所述第一设备的第一位置参数;
    发送模块,配置为向各个第二设备发送所述至少一个第二设备相对于所述第一设备的第一位置参数。
  8. 根据权利要求7所述的定位系统,其中,所述控制模块,还配置为控制所述第一设备的工作状态处于第二工作状态,并通知所述至少一个第二设备控制所述第二设备的工作状态处于第一工作状态;
    所述通信模块,还配置为与处于所述第一工作状态的至少一个第二设备进行信号通讯,以使各个第二设备根据信号通信过程的第二通讯参数得到所述第一设备相对于所述第二设备的第二位置参数;
    所述系统还包括:
    接收模块,配置为接收各个第二设备发送的所述第一设备相对于所述第二设备的第二位置参数;
    所述处理模块,还配置为基于所述第一位置参数和所述第二位置参数,确定所述至少一个第二设备的朝向信息;
    所述发送模块,还配置为向各个第二设备发送所述至少一个第二设备的朝向信息以及所述第一设备的朝向信息。
  9. 根据权利要求7所述的定位系统,其中,所述系统还包括:
    接收模块,配置为接收各个第二设备发送的各自的朝向信息,其中,所述第二设备的朝向信息是所述第二设备通过自身的传感器检测得到;
    所述发送模块,还配置为向各个第二设备发送所述至少一个第二设备的朝向信息以及所述第一设备的朝向信息。
  10. 根据权利要求7所述的定位系统,其中,所述系统还包括:定位模块,所述定位模块包括:第一天线、第二天线、第一处理芯片、第二处理芯片;其中,
    当所述第一天线和所述第二天线均与所述第二处理芯片连接并协同工作时,所述定位模块实现所述第一工作状态;
    当所述第一天线与所述第一处理芯片连接并协同工作时,所述定位模块实现所述第二工作状态。
  11. 根据权利要求10所述的定位系统,其中,所述通信模块,配置为:
    接收第二设备发送的第一数据包,所述第一数据包的发送时刻为T1、接收时刻为T2;
    向第二设备发送响应包,所述响应包的发送时刻为T3、接收时刻为T4;
    接收第二设备发送的第二数据包,所述第二数据包的发送时刻为所述第二设备计算得到的T5,接收时刻为T6;
    基于本地记录的T2、T3、T6以及所述第二数据包携带的T1、T2、T4,获得信号通信过程的第一通讯参数,所述第一通讯参数包括:T1、T2、T3、T4、T5、T6;
    所述处理模块,配置为:
    基于所述第一通讯参数,计算得到所述第一设备与所述第二设备之间的通讯时间;
    基于所述第一设备与所述第二设备之间的通讯时间,计算得到所述第二设备相对于所述第一设备的距离。
  12. 根据权利要求11所述的定位系统,其中,所述通信模块,配置为:
    通过所述第二处理芯片采集所述第二数据包达到所述第一天线和第二天线的相位差或时间差;
    所述第一通讯参数还包括:所述相位差或时间差;
    所述处理模块,配置为:基于所述相位差或时间差,计算得到所述至少一个第二设备相对于所述第一设备的方位。
  13. 一种电子设备,其中,所述电子设备包括权利要求7至12任一项所述的定位系统。
  14. 一种计算机可读存储介质,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求1至6中任一项所述的方法。
PCT/CN2018/093412 2017-07-05 2018-06-28 定位方法及系统、电子设备、计算机可读存储介质 WO2019007257A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/624,501 US20210157323A1 (en) 2017-07-05 2018-06-28 Positioning method and system, electronic device, and computer-readable storage medium
EP18827847.7A EP3627259A4 (en) 2017-07-05 2018-06-28 POSITIONING METHOD AND SYSTEM, ELECTRONIC DEVICE AND COMPUTER READABLE STORAGE MEDIUM

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710542122.7 2017-07-05
CN201710542122.7A CN107479513B (zh) 2017-07-05 2017-07-05 一种定位方法及系统、电子设备

Publications (1)

Publication Number Publication Date
WO2019007257A1 true WO2019007257A1 (zh) 2019-01-10

Family

ID=60595516

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/093412 WO2019007257A1 (zh) 2017-07-05 2018-06-28 定位方法及系统、电子设备、计算机可读存储介质

Country Status (4)

Country Link
US (1) US20210157323A1 (zh)
EP (1) EP3627259A4 (zh)
CN (1) CN107479513B (zh)
WO (1) WO2019007257A1 (zh)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107479513B (zh) * 2017-07-05 2020-05-19 纳恩博(北京)科技有限公司 一种定位方法及系统、电子设备
KR102100941B1 (ko) * 2018-05-04 2020-04-14 엘지전자 주식회사 복수의 자율주행 이동 로봇
CN108802676A (zh) * 2018-06-29 2018-11-13 哈尔滨理工大学 一种植保无人机作业区域自主定位方法
CN110139212B (zh) * 2019-06-21 2021-07-06 Oppo广东移动通信有限公司 定位处理方法及相关产品
US11676492B2 (en) * 2019-08-30 2023-06-13 Kabushiki Kaisha Toshiba System and method for cooperative robotics
CN111983559A (zh) * 2020-08-14 2020-11-24 Oppo广东移动通信有限公司 室内定位导航方法及装置
CN114153184A (zh) * 2020-09-07 2022-03-08 Oppo广东移动通信有限公司 智能家居管理方法、装置、设备、系统及存储介质
CN114513739A (zh) * 2020-10-27 2022-05-17 Oppo广东移动通信有限公司 室内定位系统、室内定位方法及相关产品
CN112838968B (zh) * 2020-12-31 2022-08-05 青岛海尔科技有限公司 一种设备控制方法、装置、系统、存储介质及电子装置
CN112946712A (zh) * 2021-01-28 2021-06-11 北京华星北斗智控技术有限公司 一种基于rtk和uwb的定位系统及方法
KR20230146027A (ko) * 2021-02-17 2023-10-18 인터디지탈 패튼 홀딩스, 인크 Uav 통신을 위한 5gs 및 eps 연동을 위한 방법 및 시스템
CN114115444A (zh) * 2021-11-30 2022-03-01 上海有个机器人有限公司 机器人对齐时间轴方法及相关产品
CN115002653A (zh) * 2022-04-20 2022-09-02 星耀能(北京)科技有限公司 基于一体式uwb基站的轻量级二维高精度定位方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101661098A (zh) * 2009-09-10 2010-03-03 上海交通大学 机器人餐厅多机器人自动定位系统
CN104237850A (zh) * 2013-06-20 2014-12-24 沈阳工业大学 一种多个机器人之间相互定位及确认的方法与装置
CN105425233A (zh) * 2015-12-08 2016-03-23 上海酷哇机器人有限公司 用于移动设备的测距与跟随定位的装置及方法
WO2017105621A1 (en) * 2015-12-14 2017-06-22 Google Inc. Self-organizing hybrid indoor location system
CN107479513A (zh) * 2017-07-05 2017-12-15 纳恩博(北京)科技有限公司 一种定位方法及系统、电子设备

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2010106747A1 (ja) * 2009-03-17 2012-09-20 パナソニック株式会社 測位システム及び測位方法
AU2013395182A1 (en) * 2013-07-24 2016-03-10 Beestar Bv Locating a tag in an area
CN104299016B (zh) * 2014-09-30 2018-02-02 小米科技有限责任公司 对象定位方法及装置
US11656315B2 (en) * 2015-11-10 2023-05-23 Xco Tech Inc System and method for ultrawideband position location

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101661098A (zh) * 2009-09-10 2010-03-03 上海交通大学 机器人餐厅多机器人自动定位系统
CN104237850A (zh) * 2013-06-20 2014-12-24 沈阳工业大学 一种多个机器人之间相互定位及确认的方法与装置
CN105425233A (zh) * 2015-12-08 2016-03-23 上海酷哇机器人有限公司 用于移动设备的测距与跟随定位的装置及方法
WO2017105621A1 (en) * 2015-12-14 2017-06-22 Google Inc. Self-organizing hybrid indoor location system
CN107479513A (zh) * 2017-07-05 2017-12-15 纳恩博(北京)科技有限公司 一种定位方法及系统、电子设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3627259A4 *

Also Published As

Publication number Publication date
CN107479513A (zh) 2017-12-15
EP3627259A1 (en) 2020-03-25
EP3627259A4 (en) 2020-05-27
CN107479513B (zh) 2020-05-19
US20210157323A1 (en) 2021-05-27

Similar Documents

Publication Publication Date Title
WO2019007257A1 (zh) 定位方法及系统、电子设备、计算机可读存储介质
US8811199B2 (en) Location detection in a wireless network
JP6940214B2 (ja) ポジショニングシステム
KR100671283B1 (ko) 순차 송수신 방식을 이용한 비동기 무선 측위 시스템 및방법
WO2018228604A1 (zh) 一种控制方法、设备、系统及计算机存储介质
US11582621B2 (en) Sensor-assisted technique for RF power normalization in locationing applications
CN112073903A (zh) 一种单基站高精度uwb室内定位系统及方法
US20090304374A1 (en) Device for tracking a moving object
US20240107260A1 (en) Low level smartphone audio and sensor clock synchronization
US20230063193A1 (en) Location system with ultra-wideband (uwb) infrastructure and discovery infrastructure
CN102662159A (zh) 一种反射式室内定位的方法及系统
Wang et al. Prototyping and experimental comparison of IR-UWB based high precision localization technologies
US20240080796A1 (en) Methods, Systems and Computer Program Products for Determining Location of Tags in an Environment Using Mobile Antennas
CN109922426A (zh) 平面二维基站定位方法及装置
US20230236283A1 (en) Improved Method and System for Positioning
Shao et al. Research Progress of Personnel Positioning Technology in Coal Mine Based on UWB
CN114152910A (zh) 一种基于主被动基站信息融合的定位方法及系统
EP4350378A1 (en) Method for determining position of an object in a space
WO2018224970A1 (en) A personal tracking system and method
KR102604367B1 (ko) 확장현실을 포함한 가상현실 공간 서비스를 위한 고정밀 위치 움직임 획득장치
WO2024145955A1 (zh) 一种面向狭长空间的室内定位装置及方法
Barnwal et al. Experimental evaluation of indoor localization methods for industrial IoT environment
Divya et al. Indoor Navigation Using Ultra Wide Band
CN117459898A (zh) 一种应急定位通信方法及系统
Santos Mapeamento Sistemático

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18827847

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018827847

Country of ref document: EP

Effective date: 20191220