WO2019007093A1 - 低温泵 - Google Patents

低温泵 Download PDF

Info

Publication number
WO2019007093A1
WO2019007093A1 PCT/CN2018/078256 CN2018078256W WO2019007093A1 WO 2019007093 A1 WO2019007093 A1 WO 2019007093A1 CN 2018078256 W CN2018078256 W CN 2018078256W WO 2019007093 A1 WO2019007093 A1 WO 2019007093A1
Authority
WO
WIPO (PCT)
Prior art keywords
baffle
cryopump
shutter member
pump casing
baffle members
Prior art date
Application number
PCT/CN2018/078256
Other languages
English (en)
French (fr)
Inventor
刘锦东
孔庆武
郭雄飞
Original Assignee
京东方科技集团股份有限公司
鄂尔多斯市源盛光电有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 鄂尔多斯市源盛光电有限责任公司 filed Critical 京东方科技集团股份有限公司
Priority to US16/305,730 priority Critical patent/US11333139B2/en
Publication of WO2019007093A1 publication Critical patent/WO2019007093A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B37/00Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00
    • F04B37/06Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00 for evacuating by thermal means
    • F04B37/08Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00 for evacuating by thermal means by condensing or freezing, e.g. cryogenic pumps

Definitions

  • Embodiments of the present disclosure relate to a cryopump.
  • the cryopump is used to evacuate the gas in the vacuum chamber and to cool the gas in the cryopump to achieve the desired vacuum in the vacuum chamber. Therefore, the main component of the cryopump is its internal cold head.
  • the cold head temperature is lower than 15K to fix the H 2 , He and other gases on the cold umbrella outside the cold head to maintain the vacuum environment of the vacuum chamber. Since the thermal radiation of the vacuum chamber affects the temperature of the cold head, the greater the heat radiation (especially the evaporation of organic materials with higher temperature), the more difficult the temperature of the cold head is to maintain, if the temperature of the cold head rises to 15K, cold The head will fail and the vacuum of the vacuum chamber will not be maintained.
  • An embodiment of the present disclosure provides a cryopump including: a pump casing including a suction port; a cold head, the cold head being located in the pump casing; and a shield, the shield being located at the pump a casing and an outer cover on the cold head; a baffle, the baffle is located at the suction port, the baffle includes a gas passage, the gas passage has an inlet and an outlet, and a cross section of the pump casing In section, the orthographic projection of the baffle completely covers the orthographic projection of the suction port, the gas passage including intersecting first and second portions, one end of the first portion defining the inlet, One end of the second portion defines the outlet.
  • the baffle includes: a plurality of first baffle members, the plurality of first baffle members are located on the pump casing; and a plurality of second baffle members, the plurality of a second baffle member is disposed on the pump casing, the plurality of first baffle members and the plurality of second baffle members are staggered, and each of the first baffle members is adjacent to the first baffle member
  • the second baffle member defines one of the gas passages.
  • the gas passage further includes a transition portion, and the other end of the first portion is connected to the other end of the second portion through the transition portion.
  • the plurality of first baffle members and the plurality of second baffle members are respectively annular structures.
  • the plurality of first baffle members and the plurality of second baffle members are respectively strip-shaped structures.
  • the baffle includes a plurality of spaced channel groups, each of the channel groups including two of the gas channels, and two of the gas channels of each of the channel groups The first portions are spaced apart by the second baffle member, and the second portions of the two gas passages of each of the channel groups are in communication.
  • the height of the second shutter member is less than or equal to the height of the first shutter member.
  • one end of the second shutter member is flush with one end of the first shutter member.
  • the first baffle member in the longitudinal section of the pump casing, includes two sub-blocks that are connected, and the cross-sectional areas of the two sub-stops are gradually reduced toward each other. small.
  • each of the sub-stops has a triangular cross section
  • the second baffle member has a triangular or quadrangular longitudinal section
  • Figure 1 is a schematic longitudinal sectional view of a prior art cryopump
  • FIG. 2 is a partial cross-sectional, partial schematic view of a baffle of a cryopump, in accordance with some embodiments of the present disclosure
  • FIG. 3 is a partial cross-sectional, partial schematic view of a baffle of a cryopump, in accordance with some embodiments of the present disclosure
  • FIG. 4 is a partial cross-sectional, partial schematic view of a baffle of a cryopump, in accordance with some embodiments of the present disclosure
  • FIG. 5 is a partial cross-sectional, partial schematic view of a baffle of a cryopump, in accordance with some embodiments of the present disclosure
  • FIG. 6 is a partial cross-sectional, partial schematic view of a baffle of a cryopump, in accordance with some embodiments of the present disclosure
  • FIG. 7 is a top plan view of a baffle of a cryopump, in accordance with some embodiments of the present disclosure.
  • FIG. 8 is a top plan view of a baffle of a cryopump, in accordance with some embodiments of the present disclosure.
  • connection In the description of the present disclosure, it should be noted that the terms “installation”, “connected”, and “connected” are to be understood broadly, and may be fixed or detachable, for example, unless otherwise explicitly defined and defined. Connected, or integrally connected; can be mechanical or electrical; can be directly connected, or indirectly connected through an intermediate medium, can be the internal communication of the two components.
  • Connected, or integrally connected can be mechanical or electrical; can be directly connected, or indirectly connected through an intermediate medium, can be the internal communication of the two components.
  • the specific meanings of the above terms in the present disclosure can be understood in the specific circumstances by those skilled in the art.
  • the longitudinal section of the baffle 1' of the cryopump 200' (i.e., the 80K baffle) is substantially oblique, and the baffle 1' is located at the suction of the pump casing 2'.
  • the heat radiation of the vacuum chamber can pass directly from the top to the bottom through the gap between the baffles 1' through the suction port into the cryopump 200', resulting in the shield 4'
  • the temperature of the cold head 3' rises, so that the cryopump 200' cannot condense the gas, and the vacuum chamber does not reach the required degree of vacuum.
  • cryopump of the embodiment of the present disclosure will be schematically illustrated below with reference to FIGS. 2-8.
  • Embodiments of the present disclosure provide a cryopump including a pump casing, a cold head, a shield, and a baffle 1.
  • the pump casing comprises a suction port
  • the cold head is located in the pump casing
  • shielding member is located in the pump casing and the outer cover is on the cold head
  • the baffle 1 is located at the suction port, and the baffle 1 includes a gas passage 10 having an inlet 101a and an outlet 102a.
  • the front projection surface of the baffle 1 completely covers the suction port.
  • the orthographic projection, gas passage 10 includes intersecting first portion 101 and second portion 102, one end of first portion 101 defining an inlet 101a and one end of second portion 102 defining an outlet 102a.
  • the cryopump may comprise a two-stage cooling structure
  • the primary cooling may comprise a shield and a baffle 1
  • the secondary cooling may comprise a cold head and a cold umbrella assembly.
  • the pump casing defines an accommodation space
  • the suction port may be formed in an upper portion of the pump casing
  • the suction port may be formed in a circular shape
  • the cold head and the shielding member are located in the accommodation space
  • the cold head may be provided
  • the cold umbrella assembly is configured to condense and adsorb gas
  • the shield member may be substantially formed into a cylindrical shape that is open upwardly.
  • the baffle plate 1 is located above the shield member to cover the suction port, so that the gas can only pass through the first portion 101 through the gas passage 10 and The second portion 102 flows into the pump casing.
  • the vacuum chamber communicates with the interior of the pump casing through the gas passage 10.
  • the shield, the baffle 1, the cold head, and the cold umbrella assembly are maintained at a low temperature.
  • the gas flows from the vacuum chamber into the cryopump through the gas passage 10, firstly cooled by the first stage, and the first stage cooling can condense and remove the gas molecules such as water vapor in the gas, and then the gas is cooled by the second stage to further condense H2, He, etc.
  • the gas thus forms a vacuum in the vacuum chamber.
  • the vacuum chamber Due to the higher temperature of the vacuum chamber, the vacuum chamber generates thermal radiation, and in the cross section of the pump casing, the orthographic projection of the baffle 1 completely covers the orthographic projection of the suction port, and the gas channel 10 includes the first portion of the intersection 101 and the second portion 102, the heat radiation cannot directly enter the cryopump through the gas passage 10 through the baffle 1, and the heat radiation will be reflected at least once by the baffle 1, thereby reducing the direct radiation of the vacuum chamber heat to the cryopump.
  • the cryogenic pump especially the cold head, is kept at a low temperature, which improves the pumping capacity of the cryopump, and the cryopump is well maintained, prolonging the service life of the cryopump.
  • the baffle 1 comprises a stainless steel member having a smooth surface, so that the baffle 1 can better reflect the heat radiation of the vacuum chamber, maintain the low temperature state in the cryopump, and avoid being easily absorbed due to the surface of the baffle 1 being not smooth.
  • the heat radiation causes the temperature of the baffle 1 to rise, affecting the normal operation of the cryopump, thereby improving the pumping capacity of the cryopump.
  • the gas passage 10 on the baffle 1 includes the intersecting The portion 101 and the second portion 102 prevent the heat radiation of the vacuum chamber from passing through the baffle 1 directly through the gas passage 10, maintaining the low temperature state in the cryopump, improving the pumping capacity of the cryopump, and simultaneously making the cryopump Good maintenance and extended service life of the cryopump.
  • the first portion 101 can be an upper portion of the gas passage 10, the first portion 101 can be obliquely extended from the top to the bottom, and the inlet 101a is located at the upper end of the first portion 101.
  • the second portion 102 is a lower portion of the gas passage 10, the second portion 102 can be obliquely extended from the top to the bottom, and the outlet portion 102a is located at a lower end of the second portion 102, the first portion The lower end of the 101 intersects and communicates with the upper end of the second portion 102.
  • the gas passage 10 has a simple structure and is easy to process.
  • the structure of the gas passage 10 may also be other regular or irregular shapes, but is not limited thereto.
  • the baffle 1 includes a plurality of first baffle members 11 and a plurality of second baffle members 12, the plurality of first baffle members 11 being located on the pump casing, and the plurality of second baffles
  • the piece 12 is located on the pump casing, and the plurality of first baffle members 11 and the plurality of second baffle members 12 are alternately disposed, and each of the first baffle members 11 defines a first baffle member 12 adjacent thereto Gas passage 10.
  • a second baffle member 12 is disposed between two adjacent first baffle members 11, and a second baffle member 12 is disposed between adjacent two baffle members 12.
  • the first baffle member 11, each of the first baffle members 11 and the second baffle member 12 adjacent thereto are spaced apart such that each of the first baffle members 11 and a second baffle adjacent thereto
  • a gas passage 10 is defined between the pieces 12.
  • the baffle 1 as a plurality of first baffle members 11 and a plurality of second baffle members 12 which are alternately disposed, the structure of the first baffle member 11 and the second baffle member 12 can be simplified, which is convenient At the same time, it is convenient to adjust the separation distance between the first baffle member 11 and the second baffle member 12 adjacent thereto, and the cross-sectional area of the gas passage 10 can be adjusted by adjusting the above-mentioned separation distance, thereby improving the effectiveness of the cryopump.
  • the suction area increases the pumping capacity of the cryopump.
  • the separation distance between the first baffle member 11 and the second baffle member 12 is adjusted such that one end of the second baffle member 12 (eg, the left end in FIGS. 2-6) One end of the first shutter member 11 adjacent to the one end of the second shutter member 12 (for example, the right end in FIGS. 2 to 6) is flush in the left-right direction, and the other end of the second shutter member 12 is (for example, the right end in FIGS. 2-6) and one end of the first shutter member 11 adjacent to the other end of the second shutter member 12 (for example, the left end in FIGS.
  • the number of the first baffle member 11 and the second baffle member 12 can be specifically set according to actual conditions, and the plurality of first baffle members 11 and the plurality of second baffle members 12 can also be located in the shield. On the piece.
  • the baffle 1 can also be an integrally formed part to reduce the number of parts.
  • the gas passage 10 further includes a transition portion (not shown), the other end of the first portion 101 being coupled to the other end of the second portion 102 by a transition portion.
  • a transition portion (not shown)
  • the inlet 101a is located at the upper end of the first portion 101 and the outlet 102a is located at the lower end of the second portion 102
  • the lower end of the first portion 101 can communicate with the upper end of the second portion 102 through the transition portion, so that the gas flow is more stable, and the cryopump is reduced. Vibration.
  • the plurality of first baffle members 11 and the plurality of second baffle members 12 are respectively annular structures, and the structure is simple and easy to implement.
  • the baffle 1 may be substantially a circular structure that is adapted to the shape of the suction port, and the plurality of first baffle members 11 are respectively concentric circular rings having different radii, respectively.
  • the second baffle members 12 are respectively concentric annular structures with different radii, and the plurality of first baffle members 11 and the plurality of second baffle members 12 are sequentially arranged at the suction port from the inside to the outside so that the pump The cross-section of the shell, the orthographic projection of the baffle 1 completely covers the orthographic projection of the suction opening.
  • the direction “inner” refers to the direction near the central axis of the cryopump, and the opposite direction is defined as “outer”.
  • the plurality of first baffle members 11 may be annular structures that are not identical in shape
  • the plurality of second baffle members 12 may also be annular structures that are not identical in shape.
  • the plurality of first baffle members 11 and the plurality of second baffle members 12 may respectively be annular structures of other shapes.
  • the plurality of first baffle members 11 and the plurality of second baffle members 12 are respectively strip-shaped structures, and the structure is simple and easy to implement.
  • the suction port is also a circular structure
  • the plurality of first baffle members 11 are respectively strip-shaped structures of different sizes
  • the plurality of second baffle members 12 are respectively strips of different sizes.
  • a plurality of first baffle members 11 and a plurality of second baffle members 12 from one side of the suction port (for example, the left side in FIG. 8) to the other side of the suction port (for example, The right side of 8 is sequentially staggered at the suction port so that the orthographic projection of the baffle 1 completely covers the orthographic projection of the suction port in the cross section of the pump casing.
  • the plurality of first baffle members 11 and the plurality of second baffle members 12 can also be other regular or irregular structures, only need to be arranged in a plurality of first cross sections on the cross section of the pump casing.
  • the orthographic projection surface of the baffle member 11 and the plurality of second baffle members 12 completely covers the orthographic projection of the suction port.
  • the shapes of the plurality of first baffle members 11 may be different from each other, and the plurality of second blocks are different.
  • the shapes of the plates 12 may also differ from each other.
  • the baffle 1 includes a plurality of spaced channel groups 100, each set of channel 100 including two gas channels 10, the first portion 101 of the two gas channels 10 of each set of channel groups 100 Interposed therebetween by the second baffle member 12, the second portions 102 of the two gas passages 10 of each set of channel groups 100 are in communication.
  • a group of channel groups 100 may include two gas channels 10 between two adjacent first baffle members 11, due to the upward deflection of the second baffle member 12.
  • the central cross-section of the plate 1 is such that the first portions 101 of the two gas passages 10 are spaced apart by the second baffle member 12 and the second portions 102 of the two gas passages 10 are connected to each other, thereby saving the first
  • the amount of material used for the two baffle members 12 reduces the cost.
  • the height of the second baffle member 12 is less than or equal to the height of the first baffle member 11 to reduce the occupied space of the second baffle member 12.
  • the height of the second shutter member 12 is equal to the height of the first shutter member 11; in the examples of FIGS. 2 to 4 and 6, in the up and down direction, The height of the second shutter member 12 is smaller than the height of the first shutter member 11. Of course, the height of the second shutter member 12 may also be greater than the height of the first shutter member 11.
  • the height of the second shutter member 12 may be 1/2 of the height of the first shutter member 11; as shown in FIG. 4, in the up and down direction, The height of the second shutter member 12 may be 1/4 of the height of the first shutter member 11. But it is not limited to this. Thereby, under the premise that the front projection surface of the baffle 1 completely covers the orthographic projection of the suction port, the material for the second baffle member 12 is saved, and the second baffle member is reduced. The occupied space of 12 effectively increases the effective suction area of the cryopump and increases the pumping speed, thereby improving the pumping efficiency of the cryopump.
  • one end of the second shutter member 12 is flush with one end of the first shutter member 11 to facilitate the mounting of the first shutter member 11 and the second shutter member 12.
  • the upper end of the second shutter member 12 is flush with the upper end of the first shutter member 11, and the lower end of the second shutter member 12 is offset from the lower end of the first shutter member 11. Settings.
  • the upper and lower ends of the second shutter member 12 are respectively flush with the upper and lower ends of the first shutter member 11.
  • either end of the second baffle member 12 is offset from either end of the first baffle member 11.
  • the upper and lower ends of the second shutter member 12 are offset from the upper and lower ends of the first shutter member 11, so that the second shutter member 12 is higher than It is smaller than the height of the first baffle member 11, thereby further saving the material of the second baffle member 12, reducing the occupied space of the second baffle member 12, thereby effectively improving the effective suction area of the cryopump and improving the effective suction area.
  • the pumping speed increases the pumping efficiency of the cryopump.
  • the cross-sectional area of the second baffle member 12 is greatest and the cross-sectional area of the first baffle member 11 on the longitudinal section of the pump casing.
  • the minimum point is flush, so that the cross-sectional area of the gas passage 10 is increased and the effective pumping of the cryopump is improved on the premise that the front projection surface of the baffle 1 completely covers the orthographic projection of the suction port on the cross section of the pump casing. Suction area.
  • the maximum area of the cross-sectional area of the second shutter member 12 is located at the lower end of the second shutter member 12, and the first shutter member
  • the minimum cross-sectional area of 11 is located in the middle of the first baffle member 11, and the lower end of the second baffle member 12 is flush with the middle of the first baffle member 11, which can increase the effective suction area of the cryopump.
  • the maximum cross-sectional area of the second shutter member 12 is located in the middle of the second shutter member 12, and the cross-sectional area of the first shutter member 11 is The minimum is located in the middle of the first shutter member 11, and the middle portion of the second shutter member 12 is flush with the middle portion of the first shutter member 11, so that the effective suction area of the cryopump can be improved.
  • the first baffle member 11 on the longitudinal section of the pump casing, includes two associated sub-segments 111, and the cross-sectional areas of the two sub-stops 111 gradually decrease in a direction toward each other.
  • the two sub-stops 111 are connected up and down, and the cross-sectional areas of the two sub-portions 111 are gradually decreased in directions toward each other, that is, the cross-section of the first shutter member 11.
  • the area gradually decreases from top to bottom and then gradually increases, so that the extending direction of the gas passage 10 defined between the first baffle member 11 and the second baffle member 12 can be at the junction of the two sub-stop portions 111.
  • a change is made to prevent the thermal radiation from the vacuum chamber from passing directly through the gas passage 10 through the baffle 1 affecting the temperature in the cryogenic pump, particularly the cold head, reducing direct radiation from the vacuum chamber to the cryopump.
  • each of the sub-stops 111 is formed in a triangular shape
  • the longitudinal section of the second shutter member 12 is formed in a triangular shape or a quadrangular shape.
  • each of the sub-portions 111 may each be formed as an isosceles triangle, and the longitudinal section of the second shutter member 12 may be formed as an isosceles triangle or a parallelogram. It is easy to understand that the longitudinal section of each sub-portion 111 may also include other shapes of triangles, such as right-angled triangles, etc., while the longitudinal cross-sectional shapes and sizes of the plurality of sub-stops 111 may not be identical, and the second baffle member 12 The longitudinal section may also form a quadrilateral of other shapes, such as a trapezoid or the like. Thereby, the longitudinal sectional shape of the sub-stop portion 111 and the second flap member 12 is regular, that is, the shape of the sub-stop portion 111 and the second flap member 12 is regular, which facilitates processing.
  • each of the sub-portions 111 can also be formed into other regular or irregular shapes
  • the longitudinal section of the second baffle member 12 can also be formed into other regular or irregular shapes.
  • the shape of the sub-stop portion 111 and the second baffle member 12 are various, and the diversity of the baffle 1 is improved, so that the baffle 1 has good applicability to better satisfy the practical application.
  • the baffle 1 includes a plurality of first baffle members 11 and a plurality of second baffle members 12 that are staggered, the upper end of the second baffle member 12 and the first An upper end of a baffle member 11 is flushly disposed, and each of the first baffle members 11 and a second baffle member 12 adjacent thereto define a gas passage 10, each gas passage 10 including an intersecting first portion 101 and In the second portion 102, the inlet 101a of the gas passage 10 is located at the upper end of the first portion 101, and the outlet 102a of the gas passage 10 is located at the lower end of the second portion 102.
  • Each of the first baffle members 11 includes two sub-blocks 111 connected thereto, and the first portion 101 is defined between the upper sub-portion 111 and the second baffle member 12.
  • each of the sub-portions 111 is an equilateral triangle of the same size, and the two sub-portions 111 of each of the first baffle members 11 are disposed opposite each other such that the upper edge and the lower sub-portion of the upper sub-block 111
  • the lower edges of the blocking portions 111 are parallel to each other and are both located in a horizontal plane.
  • the longitudinal section of the second baffle member 12 is an equilateral triangle, and the longitudinal section of the second baffle member 12 is the same as the longitudinal section of the lower sub-portion 111, that is, the height of the second baffle member 12 in the up and down direction.
  • the plurality of first baffle members 11 and the plurality of second baffle members 12 may both be annular structures (for example, as shown in FIG. 7), in which case a plurality of first baffle members 11 and a plurality of The second baffle members 12 are alternately arranged in order from the inside to the outside to cover the suction port; or the plurality of first baffle members 11 and the plurality of second baffle members 12 may each have a strip structure (for example, as shown in FIG.
  • a plurality of first baffle members 11 and a plurality of second baffle members 12 are sequentially staggered from one side of the suction port to the other side of the suction port, so that in the cross section of the pump casing, The front projection surface of the flap 1 covers the suction opening. But it is not limited to this.
  • each of the sub-portions 111 is an isosceles triangle of the same size (excluding an equilateral triangle), and the longitudinal section of the second shutter member 12 is opposite to the lower sub-portion 111.
  • the isosceles triangle having the same longitudinal section size, the above-mentioned isosceles triangle can be obtained by reducing the height of the middle triangle of the first embodiment and increasing the apex angle of the middle triangle of the first embodiment, so that the suction port is unchanged.
  • the amount of material of the second baffle member 12 can be saved, and the occupied space of the second baffle member 12 can be reduced, thereby further increasing the effective suction area of the cryopump.
  • the first baffle member 11 and the second baffle member 12 can be referred to the first baffle member 11 and the second baffle member 12 of the structure shown in FIG. The arrangement between them is no longer described in detail.
  • FIG. 4 similar to the structure shown in FIG. 2, wherein the same components are given the same reference numerals.
  • the junction between the upper sub-stop 111 and the lower sub-portion 111 is flush with the lower end edge of the second shutter member 12, that is, the cross section of the first shutter member 11.
  • the height of the second baffle member 12 is 1/4 of the height of the first baffle member 11 on the premise that the area is the smallest and the cross-sectional area of the second baffle member 12 is maximum in the up-and-down direction.
  • the amount of material of the second baffle member 12 is saved, the occupied space of the second baffle member 12 is reduced, and the suction capacity of the cryopump is improved.
  • first baffle member 11 and the second baffle member 12 of the structure shown in FIG. 4 For the arrangement of the cryopump, the first baffle member 11 and the second baffle member 12 of the structure shown in FIG. 4, reference may be made to the first baffle member 11 and the second baffle member 12 of the structure shown in FIG. The arrangement between them is similar, so it will not be described in detail.
  • the longitudinal direction of the second baffle member 12 is a diamond shape, so that the second portion 102 is defined between the second baffle member 12 and the lower sub-stop portion 111, and adjacent two The second portions 102 of the two gas passages 10 between the baffle members 11 are spaced apart by the second baffle member 12.
  • the height of the second baffle member 12 is equal to the height of the first baffle member 11, and the upper and lower ends of the second baffle member 12 are respectively opposite to the upper and lower ends of the first baffle member 11. Set flush.
  • the height of the second baffle member 12 may also be smaller than the height of the first baffle member 11, and at this time, one end of the second baffle member 12 may be flush with one end of the first baffle member 11, or The upper and lower ends of the second shutter member 12 are offset from the upper and lower ends of the first shutter member 11.
  • first baffle member 11 and the second baffle member 12 of the structure shown in FIG. 5 For the arrangement of the cryopump, the first baffle member 11 and the second baffle member 12 of the structure shown in FIG. 5, reference may be made to the first baffle member 11 and the second baffle member 12 of the structure shown in FIG. The arrangement between them is similar, so it will not be described in detail.
  • FIG. 6 similar to the structure shown in FIG. 2, wherein the same components are given the same reference numerals.
  • the upper sub-stop 111 and the lower sub-portion 111 are different in size, and the longitudinal section of the upper sub-portion 111 is larger than the longitudinal section of the lower sub-portion 111.
  • the left end of the second shutter member 12 and the right end of the lower sub-portion 111 adjacent to the left end of the second shutter member 12 are flush in the left-right direction, the right end of the second shutter member 12, and the second shutter member 12
  • the left end of the lower sub-portion 111 adjacent to the right end is flush in the left-right direction, so that the front projection surface of the baffle 1 completely covers the orthographic projection of the suction port in the cross section of the pump casing, while increasing the cryopump Effective suction area.
  • the minimum cross-sectional area of the first shutter member 11 is the same as the cross-sectional area of the second shutter member 12 at the maximum in the up-and-down direction to further increase the effective suction area of the cryopump.
  • the first baffle member 11 and the second baffle member 12 can be referred to the first baffle member 11 and the second baffle member 12 of the structure shown in FIG. The arrangement between them is similar, so it will not be described in detail.
  • cryopumps in accordance with embodiments of the present disclosure are known to those of ordinary skill in the art and will not be described in detail herein.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
  • Rotary Pumps (AREA)

Abstract

一种低温泵,包括:泵壳,泵壳包括抽吸口;冷头,冷头位于泵壳内;屏蔽件,屏蔽件位于泵壳内且外罩在冷头上;挡板(1),挡板(1)设在抽吸口处,挡板(1)包括气体通道(10),气体通道(10)具有入口(101a)和出口(102a),在泵壳的横截面上,挡板(1)的正投影面完全覆盖抽吸口的正投影,气体通道(10)包括相交的第一部分(101)和第二部分(102),第一部分(101)的一端限定出入口(101a),第二部分(102)的一端限定出出口(102a)。

Description

低温泵
相关申请的交叉引用
本申请要求于2017年7月3日递交的中国专利申请第201720798098.9号的优先权,在此全文引用上述中国专利申请公开的内容以作为本申请的一部分。
技术领域
本公开的实施例涉及一种低温泵。
背景技术
在实际生产中,一些产品需要在真空环境中制作及使用,例如显示屏,而制作这些产品所需的真空环境需要借助低温泵来实现。
低温泵是通过抽取真空腔室内的气体并将气体冷却吸附在低温泵内,以使真空腔室内达到所需的真空状态。因此,低温泵的主要部件是其内部的冷头,冷头温度低于15K才能将H 2、He等气体固定在冷头外的冷伞上,以保持真空腔室的真空环境。由于真空腔室的热辐射会影响冷头的温度,热辐射越大(尤其是温度较高的有机材料的蒸镀),冷头的温度越难保持,如果冷头的温度上升到15K,冷头就会失效,无法保持真空腔室的真空状态。
发明内容
本公开的实施例提供一种低温泵,包括:泵壳,所述泵壳包括抽吸口;冷头,所述冷头位于所述泵壳内;屏蔽件,所述屏蔽件位于所述泵壳内且外罩在所述冷头上;挡板,所述挡板位于所述抽吸口处,所述挡板包括气体通道,所述气体通道具有入口和出口,在所述泵壳的横截面上,所述挡板的正投影面完全覆盖所述抽吸口的正投影,所述气体通道包括相交的第一部分和第二部分,所述第一部分的一端限定出所述入口,所述第二部分的一端限定出所述出口。
根据本公开的一些实施例,所述挡板包括:多个第一挡板件,所述多个第一挡板件位于所述泵壳上;多个第二挡板件,所述多个第二挡板件位于所述泵壳上,所述多个第一挡板件和所述多个第二挡板件交错设置,每个所述 第一挡板件与与其相邻的一个所述第二挡板件限定出一个所述气体通道。
根据本公开的一些实施例,所述气体通道进一步包括:过渡部分,所述第一部分的另一端与所述第二部分的另一端通过所述过渡部分相连。
根据本公开的一些实施例,所述多个第一挡板件和所述多个第二挡板件分别为环形结构。
根据本公开的一些实施例,所述多个第一挡板件和所述多个第二挡板件分别为条状结构。
根据本公开的一些实施例,所述挡板包括多个间隔设置的通道组,每个所述通道组包括两个所述气体通道,每个所述通道组的两个所述气体通道的所述第一部分之间通过所述第二挡板件间隔设置,每个所述通道组的两个所述气体通道的所述第二部分相连通。
根据本公开的一些实施例,所述第二挡板件的高度小于或等于所述第一挡板件的高度。
根据本公开的一些实施例,所述第二挡板件的一端与所述第一挡板件的一端平齐设置。
根据本公开的一些实施例,在所述泵壳的纵截面上,所述第一挡板件包括相连的两个子挡部,所述两个子挡部的横截面积在朝向彼此的方向逐渐减小。
根据本公开的一些实施例,每个所述子挡部的纵截面为三角形,所述第二挡板件的纵截面为三角形或者四边形。
附图说明
本公开的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1是现有技术的低温泵的纵截面示意图;
图2是根据本公开一些实施例的低温泵的挡板的纵截面局部示意图;
图3是根据本公开一些实施例的低温泵的挡板的纵截面局部示意图;
图4是根据本公开一些实施例的低温泵的挡板的纵截面局部示意图;
图5是根据本公开一些实施例的低温泵的挡板的纵截面局部示意图;
图6是根据本公开一些实施例的低温泵的挡板的纵截面局部示意图;
图7是根据本公开一些实施例的低温泵的挡板的俯视图;
图8是根据本公开一些实施例的低温泵的挡板的俯视图。
具体实施方式
下面详细描述本公开的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本公开,而不能理解为对本公开的限制。
在本公开的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“高度”、“上”、“下”、“左”、“右”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本公开和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本公开的限制。此外,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本公开的描述中,除非另有说明,“多个”的含义是两个或两个以上。
在本公开的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本公开中的具体含义。
在发明人所知的技术中,如图1所示,低温泵200’的挡板1’(即80K挡板)的纵截面大致成斜线形,挡板1’位于泵壳2’的抽吸口处,而挡板1’间隔设置,真空腔室的热辐射可以自上向下直接穿过挡板1’之间的缝隙通过抽吸口进入低温泵200’内,导致屏蔽件4’内的冷头3’的温度上升,使得低温泵200’无法冷凝气体,真空腔室达不到所需的真空度。
下面结合图2-图8,对本公开实施例的低温泵进行示意性说明。
本公开实施例提供了一种低温泵,包括泵壳、冷头、屏蔽件和挡板1。
其中,泵壳包括抽吸口;
其中,冷头位于泵壳内;
其中,屏蔽件位于泵壳内且外罩在冷头上;
其中,挡板1位于抽吸口处,挡板1包括气体通道10,气体通道10具有入口101a和出口102a,在泵壳的横截面上,挡板1的正投影面完全覆盖抽吸口的正投影,气体通道10包括相交的第一部分101和第二部分102,第一部分101的一端限定出入口101a,第二部分102的一端限定出出口102a。
可选地,低温泵可以包括两级冷却结构,一级冷却可以包括屏蔽件和挡板1,二级冷却可以包括冷头和冷伞组件。
可选地,泵壳内限定出容纳空间,抽吸口可以形成在泵壳的上部,抽吸口可以形成为圆形,冷头和屏蔽件均位于上述容纳空间内,冷头上可以设有冷伞组件以冷凝、吸附气体,屏蔽件可以大致形成为上方敞开的圆筒形,挡板1位于屏蔽件的上方以覆盖抽吸口,使得气体只能通过气体通道10依次经过第一部分101和第二部分102流入泵壳内。
可选地,真空腔室通过气体通道10与泵壳内连通,低温泵运行时,屏蔽件、挡板1、冷头和冷伞组件均保持在低温状态。气体从真空腔室通过气体通道10流入低温泵内,首先经一级冷却,一级冷却可以凝缩排除气体内的水蒸气等气体分子,然后,气体经二级冷却以进一步冷凝H2、He等气体,从而在真空腔室内形成真空状态。
由于真空腔室的温度较高,真空腔室产生有热辐射,而在泵壳的横截面上,挡板1的正投影完全覆盖抽吸口的正投影、且气体通道10包括相交的第一部分101和第二部分102,热辐射无法直接通过气体通道10穿过挡板1进入低温泵内,热辐射将被挡板1至少反射一次,从而减少了真空腔室热量对低温泵内的直接辐射,使低温泵内尤其是冷头保持在低温状态,提升了低温泵的抽吸能力,同时低温泵得到了良好的维护,延长了低温泵的使用寿命。
可选地,挡板1包括表面光滑的不锈钢件,使得挡板1可以更好地反射真空腔室的热辐射,保持低温泵内的低温状态,避免由于挡板1的表面不光滑而容易吸收热辐射使得挡板1的温度升高,影响低温泵的正常运行,从而改善了低温泵的抽吸能力。
根据本公开实施例的低温泵,通过设置挡板1使在泵壳的横截面上挡板1的正投影面完全覆盖抽吸口的正投影、挡板1上的气体通道10包括相交的第一部分101和第二部分102,从而避免真空腔室的热辐射直接通过气体通道10而穿过挡板1,保持了低温泵内的低温状态,提升了低温泵的抽吸能力,同时使得 低温泵得到良好的维护,延长了低温泵的使用寿命。
在一些实施例中,如图2-图6所示,第一部分101可以为气体通道10的上部,第一部分101可以自上向下倾斜延伸,入口101a位于第一部分101的上端。
在一些实施例中,如图2-图6所示,第二部分102为气体通道10的下部,第二部分102可以自上向下倾斜延伸,出口102a位于第二部分102的下端,第一部分101的下端与第二部分102的上端相交、且连通。
本公开实施例的冷却泵,气体通道10的结构简单,便于加工。当然,气体通道10的结构还可以为其他规则或不规则的形状,但不限于此。
在本公开的一些实施例中,挡板1包括多个第一挡板件11和多个第二挡板件12,多个第一挡板件11位于泵壳上,多个第二挡板件12位于泵壳上,多个第一挡板件11和多个第二挡板件12交错设置,每个第一挡板件11与与其相邻的一个第二挡板件12限定出一个气体通道10。
例如,如图2-图8所示,相邻两个第一挡板件11之间均设有一个第二挡板件12,相邻两个第二挡板件12之间均设有一个第一挡板件11,每个第一挡板件11和与其相邻的第二挡板件12之间间隔设置,使得每个第一挡板件11和与其相邻的一个第二挡板件12之间限定出一个气体通道10。由此,通过将挡板1设置为交错设置的多个第一挡板件11和多个第二挡板件12,可以简化第一挡板件11和第二挡板件12的结构,便于加工;同时,方便调整第一挡板件11和与其相邻的第二挡板件12之间的间隔距离,通过调整上述间隔距离可以调整气体通道10的横截面积,从而提高低温泵的有效抽吸面积,进而提高低温泵的抽吸能力。
在本公开的一些实施例中,调整第一挡板件11和第二挡板件12之间的间隔距离至使得第二挡板件12的一端(例如,图2-图6中的左端)和与第二挡板件12的上述一端相邻的第一挡板件11的一端(例如,图2-图6中的右端)在左右方向上平齐、第二挡板件12的另一端(例如,图2-图6中的右端)和与第二挡板件12的上述另一端相邻的第一挡板件11的一端(例如,图2-图6中的左端)在左右方向上平齐,使得挡板1的横截面恰好完全覆盖住抽吸口,此时,第一挡板件11和与其相邻的第二挡板件12之间的间隔距离最大,气体通道10的横截面积最大,即低温泵的有效抽吸面积最大,大大提高了低温泵的抽吸能力。
可以理解的是,第一挡板件11和第二挡板件12的个数可以根据实际情况具 体设置,同时多个第一挡板件11和多个第二挡板件12也可以位于屏蔽件上。当然,挡板1还可以为一体成型件,以减少零件的数量。
在本公开的一些实施例中,气体通道10进一步包括过渡部分(图未示出),第一部分101的另一端与第二部分102的另一端通过过渡部分相连。当入口101a位于第一部分101的上端、出口102a位于第二部分102的下端时,第一部分101的下端可以通过过渡部分与第二部分102的上端相连通,使得气体流动更加平稳,减小低温泵的振动。
在本公开的一些实施例中,多个第一挡板件11和多个第二挡板件12分别为环形结构,结构简单、容易实现。
例如,在图7的示例中,挡板1可以大致为与抽吸口的形状相适配的圆形结构,多个第一挡板件11分别为半径不同的同心圆环形结构,多个第二挡板件12分别为半径不同的同心圆环形结构,将多个第一挡板件11和多个第二挡板件12从内向外依次交错设置在抽吸口处,使得在泵壳的横截面上、挡板1的正投影面完全覆盖抽吸口的正投影。
这里,需要说明的是,方向“内”是指靠近低温泵的中心轴线的方向,其相反方向被定义为“外”。可以理解的是,多个第一挡板件11可以为形状不完全相同的环形结构,多个第二挡板件12也可以为形状不完全相同的环形结构。当挡板1为其他形状时,多个第一挡板件11和多个第二挡板件12可以分别为其他形状的环形结构。
在本公开的另一些实施例中,多个第一挡板件11和多个第二挡板件12分别为条状结构,同样结构简单、容易实现。
例如,参考图8所示,抽吸口也为圆形结构,多个第一挡板件11分别为大小不一的条状结构,多个第二挡板件12分别为大小不一的条状结构,将多个第一挡板件11和多个第二挡板件12从抽吸口的一侧(例如,图8中的左侧)到抽吸口的另一侧(例如,图8中的右侧)依次交错设置在抽吸口处,使得在泵壳的横截面上、挡板1的正投影面完全覆盖抽吸口的正投影。
可以理解的是,多个第一挡板件11和多个第二挡板件12还可以为其他规则或不规则的结构,只需在泵壳的横截面上、交错设置的多个第一挡板件11和多个第二挡板件12的正投影面完全覆盖抽吸口的正投影即可,当然,多个第一挡板件11的形状可以互不相同,多个第二挡板件12的形状也可以互不相同。
在本公开的一些实施例中,挡板1包括多个间隔设置的通道组100,每组通道组100包括两个气体通道10,每组通道组100的两个气体通道10的第一部分101之间通过第二挡板件12间隔设置,每组通道组100的两个气体通道10的第二部分102相连通。
例如,如图2-图4、图6所示,一组通道组100可以包括相邻两个第一挡板件11之间的两个气体通道10,由于第二挡板件12向上偏离挡板1的中心横截面,使得上述两个气体通道10的第一部分101之间通过第二挡板件12间隔设置、上述两个气体通道10的第二部分102之间相连通,从而可以节省第二挡板件12的用材量,降低成本。
可选地,第二挡板件12的高度小于或等于第一挡板件11的高度,以减少第二挡板件12的占用空间。
例如,如图5所示,在上下方向上,第二挡板件12的高度等于第一挡板件11的高度;在图2-图4、图6的示例中,在上下方向上,第二挡板件12的高度小于第一挡板件11的高度。当然,第二挡板件12的高度还可以大于第一挡板件11的高度。
例如,如图2和图3所示,在上下方向上,第二挡板件12的高度可以为第一挡板件11高度的1/2;如图4所示,在上下方向上,第二挡板件12的高度可以为第一挡板件11高度的1/4。但不限于此。由此,使得在泵壳的横截面上、挡板1的正投影面完全覆盖抽吸口的正投影的前提下,节省了第二挡板件12的用材料,减少了第二挡板件12的占用空间,从而有效提高了低温泵的有效抽吸面积,提高了抽速,进而提高了低温泵的抽吸效率。
在本公开的一些实施例中,第二挡板件12的一端与第一挡板件11的一端平齐设置,以便于第一挡板件11和第二挡板件12的安装。
例如,参考图2、图3所示,第二挡板件12的上端与第一挡板件11的上端平齐设置、第二挡板件12的下端与第一挡板件11的下端错开设置。
例如,参考在图5所示,第二挡板件12的上、下两端分别与第一挡板件11的上、下两端平齐设置。
容易理解,还可以为第二挡板件12的下端与第一挡板件11的下端平齐设置、第二挡板件12的上端与第一挡板件11的上端错开设置。
在本公开的一些实施例中,第二挡板件12的两端中任意一端与第一挡板件 11的两端中的任意一端均错开设置。
例如,如图4和图6所示,第二挡板件12的上、下两端与第一挡板件11的上、下两端均错开设置,使得第二挡板件12的高于小于第一挡板件11的高度,从而进一步节省了第二挡板件12的用材料,减少了第二挡板件12的占用空间,从而有效提高了低温泵的有效抽吸面积,提高了抽速,进而提高了低温泵的抽吸效率。
在本公开的一些实施例中,参考图2-图6所示,在泵壳的纵截面上,第二挡板件12的横截面积最大之处与第一挡板件11的横截面积最小之处平齐,使得在泵壳的横截面上、挡板1的正投影面完全覆盖抽吸口的正投影的前提下,增大气体通道10的横截面积,提高低温泵的有效抽吸面积。
在本公开的一些实施例中,如图2-图4、图6所示,第二挡板件12的横截面积的最大之处位于第二挡板件12的下端,第一挡板件11的横截面积的最小之处位于第一挡板件11的中部,将第二挡板件12的下端与第一挡板件11的中部平齐,可以提高低温泵的有效抽吸面积。
在本公开的一些实施例中,如图5所示,第二挡板件12的横截面积的最大之处位于第二挡板件12的中部,第一挡板件11的横截面积的最小之处位于第一挡板件11的中部,将第二挡板件12的中部与第一挡板件11的中部平齐,可以提高低温泵的有效抽吸面积。
在本公开的一些实施例中,在泵壳的纵截面上,第一挡板件11包括相连的两个子挡部111,两个子挡部111的横截面积在朝向彼此的方向逐渐减小。
例如,如图2-图6所示,两个子挡部111上下相连,两个子挡部111的横截面积在朝向彼此的方向逐渐减小,也就是说,第一挡板件11的横截面积自上向下先逐渐减小、再逐渐增大,从而第一挡板件11与第二挡板件12之间限定出的气体通道10的延伸方向可以在两个子挡部111的连接处发生改变,以避免真空腔室的热辐射直接通过气体通道10而直接穿过挡板1影响低温泵内尤其是冷头的温度,减少了真空腔室对低温泵内的直接辐射。
在本公开的一些实施例中,如图2-图6所示,每个子挡部111的纵截面形成为三角形,第二挡板件12的纵截面形成为三角形或者四边形。
例如,每个子挡部111的纵截面可以均形成为等腰三角形,第二挡板件12的纵截面形成为等腰三角形或平行四边形。容易理解,每个子挡部111的纵截面 还可以包括其他形状的三角形,例如直角三角形等,同时多个子挡部111的纵截面形状、大小还可以不完全相同,而第二挡板件12的纵截面还可以形成其他形状的四边形,例如梯形等。由此,子挡部111和第二挡板件12的纵截面形状规则,即子挡部111和第二挡板件12的形状规则,便于加工。
可以理解的是,每个子挡部111的纵截面还可以形成为其他规则或不规则的形状,第二挡板件12的纵截面同样也可以形成为其他规则或不规则的形状。由此,子挡部111和第二挡板件12的形状多样,提升了挡板1的多样性,使得挡板1具有良好的适用性以更好地满足实际应用。
在本公开的一些实施例中,如图2所示,挡板1包括交错设置的多个第一挡板件11和多个第二挡板件12,第二挡板件12的上端与第一挡板件11的上端平齐设置,每个第一挡板件11和与其相邻的一个第二挡板件12限定出一个气体通道10,每个气体通道10包括相交的第一部分101和第二部分102,气体通道10的入口101a位于第一部分101的上端,气体通道10的出口102a位于第二部分102的下端。其中,每个第一挡板件11包括相连的两个子挡部111,上方的子挡部111与第二挡板件12之间限定出第一部分101。
可选地,每个子挡部111的纵截面为大小相同的等边三角形,每个第一挡板件11的两个子挡部111上下相对设置,使得上方子挡部111的上边缘、下方子挡部111的下边缘互相平行、且均位于水平面内。第二挡板件12的纵截面为等边三角形,且第二挡板件12的纵截面与下方子挡部111的纵截面大小相同,即在上下方向上,第二挡板件12的高度为第一挡板件11高度的1/2,使得相邻两个第一挡板件11之间的两个气体通道10的第二部分102相连通,同时,上方子挡部111、下方子挡部111之间的连接处与第二挡板件12的下端边缘在上下方向上平齐,即第一挡板件11的横截面积最小之处与第二挡板件12的横截面积最大之处在上下方向上平齐,从而提高了低温泵的有效抽吸面积,提高了低温泵的抽吸能力。
调整第一挡板件11和第二挡板件12之间的间隔距离至使得第二挡板件12的左端和与第二挡板件12左端相邻的第一挡板件11的右端在左右方向上平齐、第二挡板件12的右端和与第二挡板件12右端相邻的第一挡板件11的左端在左右方向上平齐,此时在泵壳的横截面上、挡板1的正投影面完全覆盖抽吸口的正 投影,从在避免真空腔室的热辐射直接穿过挡板1的前提下,增大了气体通道10的横截面积,从而提高了低温泵的抽吸能力。
可选地,多个第一挡板件11和多个第二挡板件12可以均为环状结构(例如,如图7所示),此时多个第一挡板件11和多个第二挡板件12从内向外依次交错布置,以覆盖抽吸口;或者多个第一挡板件11和多个第二挡板件12可以均为条状结构(例如,如图8所示),此时多个第一挡板件11和多个第二挡板件12从抽吸口的一侧到抽吸口的另一侧依次交错布置,使得在泵壳的横截面上、挡板1的正投影面覆盖抽吸口。但不限于此。
在本公开的一些实施例中,如图3所示,与图2所示结构类似,其中相同的部件采用相同的附图标记。在图3所示结构的低温泵中,每个子挡部111的纵截面为大小相同的等腰三角形(不包括等边三角形),第二挡板件12的纵截面为与下方子挡部111的纵截面大小相同的等腰三角形,上述等腰三角形可以通过减小实施例一中等边三角形的高度、增大实施例一中等边三角形的顶角得到,从而在抽吸口不变的前提下,可以节省第二挡板件12的用材量,减少第二挡板件12的占用空间,从而进一步提高了低温泵的有效抽吸面积。
其中,图3所示结构的低温泵,第一挡板件11、第二挡板件12之间的布置方式可参考图2所示结构的第一挡板件11、第二挡板件12之间的布置方式,不再此详细描述。
在本公开的一些实施例中,如图4所示,与图2所示结构类似,其中相同的部件采用相同的附图标记。在图4所示的低温泵中,在上方子挡部111、下方子挡部111之间的连接处与第二挡板件12的下端边缘平齐,即第一挡板件11的横截面积最小之处与第二挡板件12的横截面积最大之处在上下方向上平齐的前提下,第二挡板件12的高度为第一挡板件11高度的1/4,从而使得第二挡板件12强度的前提下,节省第二挡板件12的用材量,减少第二挡板件12的占用空间,进而提高低温泵的抽吸能力。
其中,图4所示结构的低温泵,第一挡板件11、第二挡板件12之间的布置方式可参考图2所示结构的第一挡板件11、第二挡板件12之间的布置方式类似,故不再此详细描述。
在本公开的一些实施例中,如图5所示,与图2所示结构类似,其中相同的部件采用相同的附图标记。在图5所示的低温泵中,第二挡板件12的纵截面为 菱形,从而第二挡板件12与下方子挡部111之间限定出第二部分102,且相邻两个第一挡板件11之间的两个气体通道10的第二部分102之间通过第二挡板件12间隔设置。
可选地,第二挡板件12的高度与第一挡板件11的高度相等,且第二挡板件12的上、下两端分别与第一挡板件11的上、下两端平齐设置。
可选地,第二挡板件12的高度还可以小于第一挡板件11的高度,此时第二挡板件12其中一端可以与第一挡板件11的其中一端平齐设置,或者第二挡板件12的上、下两端与第一挡板件11的上、下两端均错开设置。
其中,图5所示结构的低温泵,第一挡板件11、第二挡板件12之间的布置方式可参考图2所示结构的第一挡板件11、第二挡板件12之间的布置方式类似,故不再此详细描述。
在本公开的一些实施例中,如图6所示,与图2所示结构类似,其中相同的部件采用相同的附图标记。在图6所示的低温泵中,上方子挡部111与下方子挡部111的大小不相同,上方子挡部111的纵截面尺寸比下方子挡部111的纵截面尺寸大,此时,第二挡板件12的左端和与第二挡板件12左端相邻的下方子挡部111的右端在左右方向上平齐、第二挡板件12的右端和与第二挡板件12右端相邻的下方子挡部111的左端在左右方向上平齐,以使得在泵壳的横截面上、挡板1的正投影面完全覆盖抽吸口的正投影,同时增大低温泵的有效抽吸面积。
可选地,第一挡板件11的横截面积最小之处与第二挡板件12的横截面积最大之处在上下方向上平齐,以进一步增大低温泵的有效抽吸面积。
其中,图6所示结构的低温泵,第一挡板件11、第二挡板件12之间的布置方式可参考图2所示结构的第一挡板件11、第二挡板件12之间的布置方式类似,故不再此详细描述。
根据本公开实施例的低温泵的其他构成以及操作对于本领域普通技术人员而言都是已知的,这里不再详细描述。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示意性实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本公开的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。 而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
尽管已经示出和描述了本公开的实施例,本领域的普通技术人员可以理解:在不脱离本公开的原理和宗旨的情况下可以对这些实施例进行多种变化、修改、替换和变型,本公开的范围由权利要求及其等同物限定。

Claims (10)

  1. 一种低温泵,包括:
    泵壳,所述泵壳包括抽吸口;
    冷头,所述冷头位于所述泵壳内;
    屏蔽件,所述屏蔽件位于所述泵壳内且外罩在所述冷头上;
    挡板,所述挡板位于所述抽吸口处,所述挡板包括气体通道,所述气体通道具有入口和出口,在所述泵壳的横截面上,所述挡板的正投影面完全覆盖所述抽吸口的正投影,所述气体通道包括相交的第一部分和第二部分,所述第一部分的一端限定出所述入口,所述第二部分的一端限定出所述出口。
  2. 根据权利要求1所述的低温泵,其中,所述挡板包括:
    多个第一挡板件,所述多个第一挡板件位于所述泵壳上;
    多个第二挡板件,所述多个第二挡板件位于所述泵壳上;
    所述多个第一挡板件和所述多个第二挡板件交错设置,每个所述第一挡板件与与其相邻的一个所述第二挡板件限定出一个所述气体通道。
  3. 根据权利要求1所述的低温泵,其中,所述气体通道进一步包括:
    过渡部分,所述第一部分的另一端与所述第二部分的另一端通过所述过渡部分相连通。
  4. 根据权利要求2所述的低温泵,其中,所述多个第一挡板件和所述多个第二挡板件分别为环形结构。
  5. 根据权利要求2所述的低温泵,其中,所述多个第一挡板件和所述多个第二挡板件分别为条状结构。
  6. 根据权利要求2所述的低温泵,其中,所述挡板包括多个间隔设置的通道组,每个所述通道组包括两个所述气体通道,每个所述通道组的两个所述气体通道的所述第一部分之间通过所述第二挡板件间隔设置,每个所述通道组的两个所述气体通道的所述第二部分相连通。
  7. 根据权利要求2所述的低温泵,其中,所述第二挡板件的高度小于或等于所述第一挡板件的高度。
  8. 根据权利要求7所述的低温泵,其中,所述第二挡板件的一端与所述第一挡板件的一端平齐设置。
  9. 根据权利要求2-8中任一项所述的低温泵,其中,在所述泵壳的纵截面 上,所述第一挡板件包括相连的两个子挡部,所述两个子挡部的横截面积在朝向彼此的方向逐渐减小。
  10. 根据权利要求9所述的低温泵,其中,每个所述子挡部的纵截面形成为三角形,所述第二挡板件的纵截面形成为三角形或者四边形。
PCT/CN2018/078256 2017-07-03 2018-03-07 低温泵 WO2019007093A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/305,730 US11333139B2 (en) 2017-07-03 2018-03-07 Cryopump

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201720798098.9U CN207111346U (zh) 2017-07-03 2017-07-03 低温泵
CN201720798098.9 2017-07-03

Publications (1)

Publication Number Publication Date
WO2019007093A1 true WO2019007093A1 (zh) 2019-01-10

Family

ID=61587279

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/078256 WO2019007093A1 (zh) 2017-07-03 2018-03-07 低温泵

Country Status (3)

Country Link
US (1) US11333139B2 (zh)
CN (1) CN207111346U (zh)
WO (1) WO2019007093A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2600479A (en) * 2020-11-02 2022-05-04 Edwards Vacuum Llc Cryopumps and inlet flow restrictors for cryopumps

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118009606A (zh) * 2019-02-07 2024-05-10 苏黎世大学 利用液氦操作的低温恒温器及其操作方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102686880A (zh) * 2009-11-09 2012-09-19 住友重机械工业株式会社 低温泵及真空排气方法
CN102734124A (zh) * 2011-04-14 2012-10-17 住友重机械工业株式会社 低温泵及真空排气方法
CN102777345A (zh) * 2011-05-12 2012-11-14 住友重机械工业株式会社 低温泵及其制造方法
CN103994050A (zh) * 2013-02-18 2014-08-20 住友重机械工业株式会社 低温泵及低温泵的运行方法
CN105715510A (zh) * 2014-12-17 2016-06-29 住友重机械工业株式会社 低温泵、低温泵的控制方法以及制冷机
CN106438276A (zh) * 2015-08-10 2017-02-22 住友重机械工业株式会社 低温泵

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4356701A (en) * 1981-05-22 1982-11-02 Helix Technology Corporation Cryopump
US4718241A (en) * 1985-10-31 1988-01-12 Helix Technology Corporation Cryopump with quicker adsorption
US4791791A (en) * 1988-01-20 1988-12-20 Varian Associates, Inc. Cryosorption surface for a cryopump
EP0384922B1 (de) * 1989-02-28 1993-07-14 Leybold Aktiengesellschaft Mit einem zweistufigen Refrigerator betriebene Kryopumpe
US6155059A (en) * 1999-01-13 2000-12-05 Helix Technology Corporation High capacity cryopump
JP4430042B2 (ja) * 2006-06-07 2010-03-10 住友重機械工業株式会社 クライオポンプおよび半導体製造装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102686880A (zh) * 2009-11-09 2012-09-19 住友重机械工业株式会社 低温泵及真空排气方法
CN102734124A (zh) * 2011-04-14 2012-10-17 住友重机械工业株式会社 低温泵及真空排气方法
CN102777345A (zh) * 2011-05-12 2012-11-14 住友重机械工业株式会社 低温泵及其制造方法
CN103994050A (zh) * 2013-02-18 2014-08-20 住友重机械工业株式会社 低温泵及低温泵的运行方法
CN105715510A (zh) * 2014-12-17 2016-06-29 住友重机械工业株式会社 低温泵、低温泵的控制方法以及制冷机
CN106438276A (zh) * 2015-08-10 2017-02-22 住友重机械工业株式会社 低温泵

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2600479A (en) * 2020-11-02 2022-05-04 Edwards Vacuum Llc Cryopumps and inlet flow restrictors for cryopumps

Also Published As

Publication number Publication date
US20210222685A1 (en) 2021-07-22
CN207111346U (zh) 2018-03-16
US11333139B2 (en) 2022-05-17

Similar Documents

Publication Publication Date Title
JP6057782B2 (ja) クライオポンプ
WO2019007093A1 (zh) 低温泵
JP6338403B2 (ja) クライオポンプ及び真空排気方法
US20180156475A1 (en) Outdoor unit of air-conditioning apparatus
JP6076843B2 (ja) クライオポンプ
KR102364147B1 (ko) 크라이오펌프
KR101530926B1 (ko) 크라이오펌프
US9789420B2 (en) Cold trap and mounting structure of cold trap
US20150176580A1 (en) Compressor and valve assembly thereof for reducing pulsation and/or noise
JP2010196632A (ja) クライオポンプ
JP5103229B2 (ja) クライオポンプ
KR102364146B1 (ko) 크라이오펌프
JP6124776B2 (ja) コールドトラップ
JP2017122414A (ja) クライオポンプ
US20220389921A1 (en) Cryopump
US20240288757A1 (en) Heat conduction unit for light valve and projection device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18828733

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18828733

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 25.02.2020)

122 Ep: pct application non-entry in european phase

Ref document number: 18828733

Country of ref document: EP

Kind code of ref document: A1