WO2019006665A1 - 宽窄视角可切换的液晶显示装置的驱动方法 - Google Patents

宽窄视角可切换的液晶显示装置的驱动方法 Download PDF

Info

Publication number
WO2019006665A1
WO2019006665A1 PCT/CN2017/091723 CN2017091723W WO2019006665A1 WO 2019006665 A1 WO2019006665 A1 WO 2019006665A1 CN 2017091723 W CN2017091723 W CN 2017091723W WO 2019006665 A1 WO2019006665 A1 WO 2019006665A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
viewing angle
bias electrode
voltage
bias
Prior art date
Application number
PCT/CN2017/091723
Other languages
English (en)
French (fr)
Inventor
钟德镇
廖家德
苏子芳
姜丽梅
Original Assignee
昆山龙腾光电有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昆山龙腾光电有限公司 filed Critical 昆山龙腾光电有限公司
Priority to PCT/CN2017/091723 priority Critical patent/WO2019006665A1/zh
Priority to US16/626,265 priority patent/US11187928B2/en
Priority to CN201780002179.6A priority patent/CN107995958B/zh
Publication of WO2019006665A1 publication Critical patent/WO2019006665A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/1323Arrangements for providing a switchable viewing angle
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134363Electrodes characterised by their geometrical arrangement for applying an electric field parallel to the substrate, i.e. in-plane switching [IPS]
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134372Electrodes characterised by their geometrical arrangement for fringe field switching [FFS] where the common electrode is not patterned
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134381Hybrid switching mode, i.e. for applying an electric field with components parallel and orthogonal to the substrates
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/12Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode
    • G02F2201/121Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode common or background

Definitions

  • the present invention relates to the technical field of liquid crystal display, and in particular to a driving method of a wide and narrow viewing angle switchable liquid crystal display device.
  • the liquid crystal display has the advantages of good picture quality, small size, light weight, low driving voltage, low power consumption, no radiation and relatively low manufacturing cost, and is dominant in the field of flat panel display.
  • liquid crystal display devices are gradually developing in a wide viewing angle, whether it is a mobile phone mobile terminal application, a desktop display or a notebook computer, but in addition to the demand for a wide viewing angle, in many occasions, the display device needs to have a wide viewing angle and a narrow viewing angle. The function of switching between each other.
  • the current wide viewing angle and narrow viewing angle switching are generally realized by the occlusion function of the blinds, which requires an additional shielding film outside the display device, which is inconvenient to use.
  • the liquid crystal display device includes an upper substrate 11, a lower substrate 12, and a liquid crystal layer 13 between the upper substrate 11 and the lower substrate 12.
  • the upper substrate 11 is provided with a viewing angle control electrode 111.
  • the viewing angle control electrode 111 on the upper substrate 11 does not apply a voltage, and the liquid crystal display device realizes a wide viewing angle display.
  • FIG. 1 in the wide viewing angle display, the viewing angle control electrode 111 on the upper substrate 11 does not apply a voltage, and the liquid crystal display device realizes a wide viewing angle display.
  • the viewing angle control electrode 111 on the upper substrate 11 is given a voltage, and the liquid crystal molecules in the liquid crystal layer 13 are lifted by the vertical electric field E (shown by an arrow in the figure).
  • the liquid crystal display device has a reduced contrast due to light leakage, and finally achieves a narrow viewing angle.
  • the matching viewing angle control electrode is a transparent conductive electrode, and the transparent conductive electrode has a large resistance value, so the viewing angle control electrode faces a large impedance and load during signal transmission, resulting in a viewing angle control electrode.
  • the voltage waveform transmitted on the upper side is distorted, and the waveform distortion causes the viewing angle control electrode to generate different pressure differences from its corresponding pixel electrode and common electrode.
  • the viewing angle control electrode adopts a patterned electrode strip structure, and the respective electrode strips are arranged along the horizontal direction or the vertical direction, the pressure difference between the electrode strips in the row or column directions and the pixel electrode and the common electrode in the entire screen is performed.
  • the entire column or the entire line appears bright and dark, resulting in vertical or horizontal grain problems in the narrow viewing angle mode.
  • an object of the present invention is to provide a driving method for a liquid crystal display device with a wide and narrow viewing angle switchable, which can realize switching between two modes of wide and narrow viewing angles, and at the same time solve the problem of vertical stripes or horizontal stripes which occur in the conventional architecture.
  • the present invention provides a driving method for a wide and narrow viewing angle switchable liquid crystal display device, the liquid crystal display device comprising a lower substrate, an upper substrate, and a liquid crystal layer between the lower substrate and the upper substrate;
  • the lower substrate is provided with a scan line, a data line, a pixel electrode and a common electrode, wherein the lower substrate is insulated from each other by a plurality of scan lines and a plurality of data lines to define a plurality of pixel units;
  • the upper substrate is provided with a first bias electrode and a second bias electrode
  • the first bias electrode includes a plurality of first electrode strips electrically connected together
  • the second bias electrode includes a plurality of second electrode strips electrically connected together, the plurality of first electrode strips and the The plurality of second electrode strips are interdigitated and inserted into each other, and the driving method comprises:
  • a DC common voltage is applied to the common electrode, a driving voltage is output to each pixel unit, and a gray scale display is realized by different voltage values, and the first bias electrode and the second bias voltage are electrically Applying a voltage signal such that a voltage difference between the first bias electrode and the common electrode and between the second bias electrode and the common electrode is less than a preset value;
  • a DC common voltage is applied to the common electrode, a driving voltage is output to each pixel unit, and a gray scale display is realized by different voltage values, and a first alternating voltage is applied to the first bias electrode.
  • each pixel unit covered by each first electrode strip of the first bias electrode exhibits alternating positive and negative different polarities
  • each second electrode of the second bias electrode Each pixel unit covered by the strip exhibits alternating positive and negative different polarities.
  • the plurality of first electrode strips and the plurality of second electrode strips each extend in a horizontal direction; in the second viewing angle mode, the polarity of the driving voltage outputted to each of the pixel units is reversed by a column.
  • the plurality of first electrode strips and the plurality of second electrode strips each extend in a vertical direction; In the second viewing angle mode, the polarity of the driving voltage output to each pixel unit is inverted by a line.
  • the first alternating voltage applied to the first bias electrode and the second alternating voltage applied to the second bias electrode are relative to the direct current on the common electrode
  • the common voltage has the opposite polarity.
  • the first alternating voltage applied to the first bias electrode and the second alternating voltage applied to the second bias electrode are both square waves and relative to the The DC common voltage on the common electrode is mirrored.
  • the plurality of first electrode strips and the plurality of second electrode strips each extend in a horizontal direction or a vertical direction; in the second viewing angle mode, a polarity of a driving voltage output to each pixel unit is a point Reverse.
  • the first alternating voltage applied to the first bias electrode and the second alternating voltage applied to the second bias electrode are relative to the direct current on the common electrode
  • the common voltage has the same polarity.
  • the first alternating voltage applied to the first bias electrode and the second alternating voltage applied to the second bias electrode are both square waves and have the same Waveform.
  • the driving frequency of the first alternating voltage applied to the first bias electrode and the driving frequency of the second alternating voltage applied to the first bias electrode are both
  • the frame rate of the liquid crystal display device is 1/2, and the polarity of the driving voltage output to each pixel unit is inverted every two frames.
  • the driving frequency of the first alternating voltage applied to the first bias electrode and the driving frequency of the second alternating voltage applied to the first bias electrode are both
  • the frame rate of the liquid crystal display device is 1/4, and the polarity of the driving voltage output to each pixel unit is inverted once per frame or inverted every four frames.
  • a DC voltage signal identical to the DC common voltage of the common electrode is applied to both the first bias electrode and the second bias electrode, so that the first bias voltage is The voltage difference between the pole and the common electrode and between the second bias electrode and the common electrode is zero.
  • the liquid crystal layer uses positive liquid crystal molecules, the first viewing angle mode is a wide viewing angle mode, and the second viewing angle mode is a narrow viewing angle mode.
  • the liquid crystal layer uses negative liquid crystal molecules, the first viewing angle mode is a narrow viewing angle mode, and the second viewing angle mode is a wide viewing angle mode.
  • the upper substrate is further provided with a plurality of first metal strips and a plurality of second metal strips, the plurality of first metal strips being parallel to the plurality of first electrode strips and respectively electrically conductive with the plurality of first electrode strips Connecting, the plurality of second metal strips are parallel to the plurality of second electrode strips and are electrically connected to the plurality of second electrode strips, respectively.
  • the liquid crystal display device is provided with a viewing angle switching button for switching different viewing angle modes of the liquid crystal display device.
  • the driving method of the wide and narrow viewing angle switchable liquid crystal display device provided by the embodiment of the present invention can realize the wide and narrow viewing angle modes by the arrangement manner of the bias electrodes of the upper substrate and the application of the signal, and the reverse driving mode of the lower substrate. Switching, while solving the vertical and horizontal stripes problems existing in the traditional architecture, improving the display quality of the display device.
  • FIG. 1 is a partial cross-sectional view showing a conventional liquid crystal display device at a wide viewing angle.
  • FIG. 2 is a partial cross-sectional view of the liquid crystal display device of FIG. 1 at a narrow viewing angle.
  • FIG. 3 is a schematic diagram showing the circuit structure of a liquid crystal display device in a first embodiment of the present invention.
  • FIG. 4 is a schematic plan view showing the first bias electrode and the second bias electrode of FIG. 3.
  • Figure 5 is a cross-sectional view of the liquid crystal display device of Figure 3 taken along line A-A.
  • FIG. 6 is a schematic cross-sectional view of the liquid crystal display device of FIG. 3 at a narrow viewing angle.
  • FIG. 7 is a schematic diagram showing a polarity inversion of a voltage signal applied to a first bias electrode and a second bias electrode by a liquid crystal display device of FIG. 3 at a narrow viewing angle and a pixel unit in different frame frames.
  • FIG. 7 is a schematic diagram showing a polarity inversion of a voltage signal applied to a first bias electrode and a second bias electrode by a liquid crystal display device of FIG. 3 at a narrow viewing angle and a pixel unit in different frame frames.
  • each pixel unit 8 is similar to FIG. 7, but a numerical value is used in each pixel unit to represent a voltage difference between the first bias electrode, the second bias electrode, and each pixel electrode.
  • FIG. 9 is a first bias electrode and a second bias voltage of a liquid crystal display device according to a second embodiment of the present invention.
  • FIG. 10 is a schematic diagram showing a polarity inversion of a voltage signal applied to a first bias electrode and a second bias electrode by a liquid crystal display device at a narrow viewing angle and a pixel unit in a different frame according to a second embodiment of the present invention.
  • FIG. 11 is a schematic diagram showing a polarity inversion of a voltage signal applied to a first bias electrode and a second bias electrode by a liquid crystal display device at a narrow viewing angle and a pixel unit in a different frame according to a third embodiment of the present invention.
  • FIG. 12 is a schematic diagram showing a polarity inversion of a voltage signal applied to a first bias electrode and a second bias electrode by a liquid crystal display device at a narrow viewing angle and a pixel unit in a different frame according to a fourth embodiment of the present invention.
  • FIG. 13 is a schematic diagram showing the use of the polarity inversion of the first bias electrode and the second bias electrode of the liquid crystal display device in accordance with the fifth embodiment of the present invention.
  • FIG. 14 is a schematic diagram showing the use of the polarity inversion of the first bias electrode and the second bias electrode of the liquid crystal display device in accordance with the sixth embodiment of the present invention.
  • FIG. 15 is a schematic diagram showing a polarity inversion of a voltage signal applied to a first bias electrode and a second bias electrode by a liquid crystal display device at a narrow viewing angle and a pixel unit in a different frame according to a seventh embodiment of the present invention.
  • 16 is a schematic diagram showing a polarity inversion of a voltage signal applied to a first bias electrode and a second bias electrode by a liquid crystal display device at a narrow viewing angle and a pixel unit in a different frame according to an eighth embodiment of the present invention.
  • FIG. 17 is a schematic diagram showing a polarity inversion of a voltage signal applied to a first bias electrode and a second bias electrode by a liquid crystal display device at a narrow viewing angle and a pixel unit in a different frame according to a ninth embodiment of the present invention.
  • FIG. 18 is a schematic diagram showing a polarity inversion of a voltage signal applied to a first bias electrode and a second bias electrode by a liquid crystal display device at a narrow viewing angle and a pixel unit in a different frame according to a tenth embodiment of the present invention.
  • FIG. 19 is a perspective view showing a polarity inversion of a voltage signal applied to a first bias electrode and a second bias electrode by a liquid crystal display device at a narrow viewing angle according to an eleventh embodiment of the present invention.
  • FIG. 20 is a diagram showing a polarity inversion of a voltage signal applied to a first bias electrode and a second bias electrode by a liquid crystal display device at a narrow viewing angle according to a twelfth embodiment of the present invention; schematic diagram.
  • FIG. 21 is a diagram showing the polarity inversion of a voltage signal applied to a first bias electrode and a second bias electrode by a liquid crystal display device at a narrow viewing angle according to a thirteenth embodiment of the present invention; schematic diagram.
  • FIG. 22 is a diagram showing, in a fourteenth embodiment of the present invention, a voltage signal applied to a first bias electrode and a second bias electrode by a liquid crystal display device at a narrow viewing angle, and polarity inversion of a pixel unit in different frame images. schematic diagram.
  • Figure 23 is a plan view showing the structure of a liquid crystal display device in a fifteenth embodiment of the present invention.
  • 24a to 24d are schematic views showing different cross-sectional structures of the liquid crystal display device of Fig. 23 along the line B-B.
  • Figure 25 is a plan view showing the structure of a liquid crystal display device in a sixteenth embodiment of the present invention.
  • 26a to 26d are schematic views showing different cross-sectional structures of the liquid crystal display device of Fig. 25 along the line C-C.
  • Figure 27 is a partial cross-sectional view showing a liquid crystal display device in a seventeenth embodiment of the present invention.
  • Figure 28 is a cross-sectional view showing the liquid crystal display device of Figure 27 at a wide viewing angle.
  • 29a and 29b are schematic plan views showing a liquid crystal display device in an eighteenth embodiment of the present invention.
  • the invention provides a driving method for a liquid crystal display device with a wide and narrow viewing angle switchable.
  • the wide and narrow viewing angle switchable liquid crystal display device provided by the first embodiment of the present invention includes a display panel 10 including a lower substrate 20 , an upper substrate 30 disposed opposite the lower substrate 20 , and The liquid crystal layer 40 between the lower substrate 20 and the upper substrate 30.
  • the lower substrate 20 may be a thin film transistor array substrate (ie, an array substrate), and the upper substrate 30 may be a color filter substrate (ie, a color filter substrate).
  • the lower substrate 20 is provided with a scanning line 21, a data line 22, a switching element 23, a pixel electrode 24, and a common electrode 25 on the side facing the liquid crystal layer 40, but the invention is not limited thereto.
  • the switching element 23 is, for example, a thin film transistor (TFT).
  • TFT thin film transistor
  • the lower substrate 20 is insulated from each other by a plurality of scanning lines 21 and a plurality of data lines 22 to define a plurality of pixel units arranged in an array.
  • a switching element 23 and a pixel electrode 24 are provided in each pixel unit, and the pixel electrode 24 is connected to the scanning line 21 and the data line 22 through the switching element 23.
  • Each switching element 23 includes a gate, an active layer, a source and a drain, wherein the gate is electrically connected to the corresponding scan line 21, the source is electrically connected to the corresponding data line 22, and the drain is electrically connected to the corresponding pixel electrode 24.
  • the lower substrate 20 may also be provided with at least one insulating layer or flat layer to insulate adjacent electrodes or traces from each other or to flatten the inner side of the lower substrate 20.
  • the common electrode 25 is formed on the lower substrate 20, and the common electrode 25 and the pixel electrode 24 are located in different layers with an insulating layer 26 interposed therebetween, and the pixel electrode 24 is located above the common electrode 25, that is, the pixel electrode 24 is compared.
  • the common electrode 25 is closer to the liquid crystal layer 40.
  • the liquid crystal display device is a fringe field switching type (FFS).
  • FFS fringe field switching type
  • the common electrode 25 and the pixel electrode 24 may be located in the same layer on the lower substrate 20. In this case, the common electrode 25 and the pixel electrode 24 may be respectively formed into a comb structure and inserted into each other.
  • In-Plane Switching IPS
  • IPS In-Plane Switching
  • the upper substrate 30 is provided with a black matrix (BM) 31, a color resist layer 32, a first bias electrode 33, and a second bias electrode 34 on the side facing the liquid crystal layer 40, but the invention is not limited thereto.
  • the color resist layer 32 is, for example, R, G, and B color resist.
  • the color resist layer 32 and the black matrix 31 are disposed on the upper substrate 30 toward the liquid crystal.
  • the first bias electrode 33 and the second bias electrode 34 are transparent conductive electrodes.
  • the first bias electrode 33 includes a plurality of first electrode strips 331 which are spaced apart from each other and electrically connected together
  • the second bias electrode 34 includes a plurality of second electrode strips 341 which are spaced apart from each other and electrically connected together.
  • the plurality of first electrode strips 331 and the plurality of second electrode strips 341 are interdigitated and inserted into each other.
  • the plurality of first electrode strips 331 and the plurality of second electrode strips 341 each extend in a horizontal direction, that is, both extend along the scanning line 21 .
  • the plurality of first electrode strips 331 respectively correspond to pixel units located in odd rows (ie, the first row, the third row, the fifth row, ...), and the plurality of second electrode strips 341 respectively correspond to the even rows ( That is, the pixel unit of the 2nd line, the 4th line, the 6th line, ).
  • first bias electrode 33 further includes a first common conductive strip 332 electrically connected to the plurality of first electrode strips 331, and the second bias electrode 34 further includes a plurality of second electrode strips 341 A second common conductive strip 342 is connected.
  • the plurality of first electrode strips 331 and the plurality of second electrode strips 341 are located in an effective display area (not labeled) of the display panel 10
  • the first common conductive strips 332 and the second common conductive strips 342 are located on the display panel 10 .
  • Non-display area (not shown).
  • the upper substrate 30 can also be provided with at least one insulating layer or flat layer to insulate adjacent electrodes or wires from each other or to flatten the inner side of the upper substrate 30.
  • the upper substrate 30 is further provided with a first flat layer 35 and a second flat layer 36.
  • the first flat layer 35 covers the color resist layer 32 and the black matrix 31, the first bias electrode 33 and the second bias.
  • the electrode 34 is formed on the first flat layer 35, and the first bias electrode 33 and the second bias electrode 34 can be formed by etching patterning the same transparent conductive layer, and the second flat layer 36 covers the first bias The electrode 33 and the second bias electrode 34 are provided.
  • the first bias electrode 33, the second bias electrode 34, the common electrode 25, and the pixel electrode 24 can be made of a transparent conductive material such as indium tin oxide (ITO) or indium zinc oxide (IZO).
  • ITO indium tin oxide
  • IZO indium zinc oxide
  • the first bias electrode 33 and the second bias electrode 34 are used for applying a voltage signal to achieve wide and narrow viewing angle switching of the liquid crystal display device
  • the common electrode 25 is for applying a common voltage (Vcom) for picture display
  • the pixel The electrode 24 is for receiving a driving voltage (Vdata) through the data line 22 to achieve different gray scale display of the picture.
  • the liquid crystal molecules in the liquid crystal layer 40 are positive liquid crystal molecules, and the positive liquid crystal molecules have the advantage of fast response.
  • FIG. 5 in the initial state, positive liquid crystal molecules in the liquid crystal layer 40 are presented.
  • the lying posture substantially parallel to the substrates 20, 30, that is, the long-axis direction of the positive liquid crystal molecules is substantially parallel to the surfaces of the substrates 20, 30.
  • the positive liquid crystal molecules in the liquid crystal layer 40 and the substrates 20, 30 may have a small initial pretilt angle, and the initial pretilt angle may be less than or equal to 10 degrees, that is, 0°. ⁇ ⁇ 10 °.
  • the first bias electrode 33 and the second bias electrode 34 of the upper substrate 30 are used to control the liquid crystal display device to perform wide-angle switching, by applying on the first bias electrode 33 and the second bias electrode 34
  • Different voltage signals may generate different voltage differences between the first bias electrode 33 and the pixel electrode 24, the common electrode 25, and between the second bias electrode 34 and the pixel electrode 24, the common electrode 25 (ie, Bias) to control the liquid crystal display device to switch between a wide viewing angle mode and a narrow viewing angle mode.
  • a DC common voltage (DC Vcom) is applied to the common electrode 25, and Vcom may be 0V; the driving voltage (Vdata) is outputted to each pixel electrode 24 of the lower substrate 20 and passed.
  • DC Vcom DC common voltage
  • Vdata driving voltage
  • Different voltage values are used to achieve gray scale display (eg, the darkest is L0 gray scale and corresponds to 0V, the brightest is L255 gray scale and corresponds to 5V); the first bias electrode 33 and the second bias of the upper substrate 30
  • the electrodes 34 respectively apply voltage signals such that the voltage difference between the first bias electrode 33 and the common electrode 25 and between the second bias electrode 34 and the common electrode 25 is less than a preset value (eg, less than 1 V).
  • the liquid crystal display device achieves a normal wide viewing angle display.
  • a DC voltage signal identical to the DC common voltage (DC Vcom) of the common electrode 25 is applied to both the first bias electrode 33 and the second bias electrode 34 to make the first bias voltage
  • DC Vcom DC common voltage
  • an alternating voltage signal may be applied to both the first bias electrode 33 and the second bias electrode 34 as long as the first bias electrode 33 and the common electrode 25 are ensured.
  • the voltage difference between the second bias electrode 34 and the common electrode 25 is less than a preset value (for example, less than 1V).
  • Narrow viewing angle mode Please refer to FIG. 6 and FIG. 7 simultaneously.
  • a DC common voltage DC Vcom
  • Vcom may be 0V
  • the driving voltage is outputted to each pixel electrode 24 of the lower substrate 20 ( Vdata) and achieve gray scale display through different voltage values (such as the darkest L0 gray)
  • the order is corresponding to 0V, the brightest is L255 gray scale and corresponds to 5V
  • the first bias voltage 33 of the upper substrate 30 is applied with a first alternating voltage (indicated by CF ITO1 in the figure), and the second bias of the upper substrate 30 is
  • the voltage electrode 34 applies a second alternating voltage (indicated by CF ITO2 in the drawing) such that the voltage difference between the first bias electrode 33 and the common electrode 25 and between the second bias electrode 34 and the common electrode 25 is Greater than the preset value (eg greater than 3V).
  • the deflection causes the tilt angle between the liquid crystal molecules and the substrates 20 and 30 to increase, and the liquid crystal molecules change from the lying posture to the inclined posture, so that the liquid crystal display device observes the light leakage at a large angle, and the contrast is lowered and the viewing angle is changed in the squint direction. Narrow, the liquid crystal display device finally achieves a narrow viewing angle display.
  • the first alternating voltage applied on the first bias electrode 33 and the second alternating voltage applied on the second bias electrode 34 have a potential symmetric center and a common current of the common electrode 25
  • the voltage (DC Vcom) potential is the same, that is, both the first alternating voltage and the second alternating voltage fluctuate around the DC Vcom, and the potential difference with respect to the common electrode 25 is uniform.
  • each pixel unit covered by each first electrode strip 331 of the first bias electrode 33 exhibits alternating positive and negative different polarities
  • each second of the second bias electrodes 34 Each of the pixel cells covered by the electrode strip 341 exhibits alternating positive and negative different polarities.
  • the polarity of the driving voltage outputted to each pixel unit is reversed by column, that is, the polarity of the K+1th column pixel unit of the lower substrate 20 and its adjacent Kth column, Kth
  • the polarity of the +2 column pixel cells is reversed (K ⁇ 1), and each pixel cell in each row exhibits an alternating arrangement of positive and negative polarities.
  • each of the first electrode strips 331 and each of the second electrode strips 341 extend in a horizontal direction and each cover a row of pixel units, and thus each pixel unit in a row covered by each of the first electrode strips 331
  • the alternating positive and negative polarities are present, and each pixel unit in a row covered by each second electrode strip 341 exhibits alternating positive and negative different polarities.
  • the driving frequency of the first alternating voltage applied to the first bias electrode 33 and the driving frequency of the second alternating voltage applied to the second bias electrode 34 are both the liquid crystal.
  • 1/2 of the frame rate of the display device that is, within one period T of the first alternating voltage and the second alternating voltage, the display panel 10 refreshes two frame images and outputs the driving voltages to the respective pixel units.
  • the polarity is inverted every two frames, that is, the display polarity of the N+1th frame and the N+2th frame is the same, and the polarity is reversed in the N+3th frame, the N+4th frame and the N+3th frame.
  • the display polarity of the frame is the same (N ⁇ 0).
  • the first alternating voltage applied to the first bias electrode 33 and the second alternating voltage applied to the second bias electrode 34 are relative to the common electrode 25 in the narrow viewing angle mode.
  • the DC common voltage (DC Vcom) has the opposite polarity.
  • the first alternating voltage applied to the first bias electrode 33 and the second alternating voltage applied to the second bias electrode 34 are both square waves and relative to the direct current on the common electrode 25.
  • the common voltage (DC Vcom) is in a mirror image, that is, in the same frame, the first alternating voltage and the second alternating voltage are positive and negative with respect to DC Vcom.
  • the first alternating voltage is opposite in polarity of the adjacent two frames
  • the second alternating voltage is opposite in polarity of the adjacent two frames, that is, the first alternating voltage and the second alternating voltage are in each adjacent two frames.
  • a blanking time may be provided between adjacent two frames of pictures, and the first alternating current voltage and the second alternating current voltage may perform positive and negative polarity switching in the blank time period.
  • each pixel unit covered by each first electrode strip 331 of the first bias electrode 33 exhibits alternating positive and negative different polarities
  • each pixel unit covered by each second electrode strip 341 of the second bias electrode 34 Alternating positive and negative polarities are also present, such that the pixel units of the positive and negative polarities in the same row interact with the first bias electrode 33 or the second bias electrode 34 to form adjacent pixels.
  • the display effect of the unit presentation is bright and dark.
  • the first alternating current voltage and the second alternating current voltage are alternating current square waves having an amplitude of 5 V, and the maximum voltage applied to each of the pixel electrodes 24 by the display panel 10 when the white screen is displayed is 5 V (+5 V for the positive polarity and negative for the negative polarity).
  • each pixel unit in FIG. 8 represent the first bias electrode 33, the second bias electrode 34 and the respective pixel electrodes 24 in different frame pictures.
  • the pressure difference between them can be seen from the figure, the pressure difference between each of the first electrode strips 331 and its correspondingly covered pixel electrodes 24 alternates between 0V and 10V, and likewise each second electrode strip 341 corresponds thereto.
  • the voltage difference between the covered pixel electrodes 24 also alternates between 0V and 10V, and the high and low voltage differences in the adjacent upper and lower rows are also staggered.
  • the pixel unit display is that the adjacent pixel unit is bright and dark, and the pixel units in the same column are arranged in order of light and dark, instead of the entire column of pixel units appearing in the conventional architecture.
  • the column pixel units are all dark.
  • the pixel unit performance in the adjacent two columns of pixel units also appears as a difference in light and dark.
  • other pixel units adjacent to the brighter pixel unit are relatively darker pixel units, and other pixel units adjacent to the darker pixel unit appear as Relatively bright.
  • the waveform of the periodic alternating voltage applied to the first bias electrode 33 and the second bias electrode 34 may be a square wave, a sine wave, a triangular wave or a sawtooth wave or the like.
  • the liquid crystal display device further includes a drive circuit 50 to which a desired voltage signal is applied to the first bias electrode 33 and the second bias electrode 34, respectively.
  • the lower substrate 20 may be electrically connected to the upper substrate 30 through the conductive paste 60 in the peripheral non-display area of the display panel 10.
  • a voltage signal is supplied from the driving circuit 50 to the lower substrate 20, and a voltage signal is applied from the lower substrate 20 through the conductive paste 60 to the first bias electrode 33 and the second bias electrode 34 of the upper substrate 30, respectively.
  • the second flat layer 36 may be formed with a through hole (not labeled) in the peripheral non-display area to expose the first bias electrode 33 or the second bias electrode 34, thereby facilitating the conductive paste 60 to pass through the corresponding
  • the through hole is electrically connected to the first bias electrode 33 or the second bias electrode 34.
  • the driving method of the wide and narrow viewing angle switchable liquid crystal display device provided by the embodiment can realize the switching between the wide and narrow viewing angle modes by the arrangement manner of the bias electrodes of the upper substrate and the application of the signal, and the reverse driving mode of the lower substrate. At the same time, the vertical and horizontal stripes existing in the conventional architecture are solved, and the display quality of the display device is improved.
  • the polarity inversion manner of the driving voltage output to each pixel unit is not limited, and column inversion, row inversion, or dot inversion may be adopted. Moreover, it is possible to take a reverse polarity for each frame or to invert the polarity once every two frames.
  • the difference between the present embodiment and the first embodiment is that, in this embodiment, the plurality of first electrode strips 331 and the second bias electrode 34 of the first bias electrode 33 are The plurality of second electrode strips 341 each extend in the vertical direction, that is, both extend in the direction of the data line 22.
  • the plurality of first electrodes The strips 331 respectively correspond to the pixel units located in the odd-numbered columns (ie, the first column, the third column, the fifth column, ...), and the plurality of second electrode strips 341 are respectively located in the even-numbered columns (ie, the second column, the first column Pixel cells of 4 columns, 6th column, ).
  • each pixel unit in the narrow viewing angle mode in the narrow viewing angle mode, the polarity of the driving voltage outputted to each pixel unit is reversed by a row, and the polarity of the pixel unit of the K+1th row of the lower substrate 20 is adjacent to the first
  • the pixel units of row K and row K+2 are opposite in polarity (K ⁇ 1), and each pixel unit in each column exhibits an alternating arrangement of positive and negative polarities.
  • each of the first electrode strips 331 and each of the second electrode strips 341 extend in a vertical direction and each cover a column of pixel units, and thus each pixel in a column covered by each of the first electrode strips 331
  • the cells exhibit alternating positive and negative polarities
  • each pixel cell in a column covered by each second electrode strip 341 exhibits alternating positive and negative different polarities.
  • the driving frequency of the first alternating voltage applied to the first bias electrode 33 and the driving frequency of the second alternating voltage applied to the second bias electrode 34 are both the liquid crystal.
  • the frame rate of the display device is 1/2, and the polarity of the driving voltage output to each pixel unit is inverted every two frames.
  • each pixel unit covered by each first electrode strip 331 of the first bias electrode 33 exhibits alternating positive and negative different polarities
  • each pixel unit covered by each second electrode strip 341 of the second bias electrode 34 Alternating positive and negative polarities are also present, such that the pixel units of the positive and negative polarities in the same column interact with the first bias electrode 33 or the second bias electrode 34 to form a differential pressure, adjacent pixels
  • the display effect of the unit presentation is bright and dark.
  • the row of pixel units Although the row of pixel cells are both positive or negative, they are simultaneously applied to the first bias electrode 33 and the second bias electrode 34, so this row
  • the effect of the pixel unit display is that the adjacent pixel unit is bright and dark, and the pixel units in the same row are arranged in order of light and dark, instead of the entire row of pixel units appearing in the traditional architecture being bright or the entire row of pixel units being dark. .
  • the pixel unit performance in the adjacent two rows of pixel units also appears as a difference in light and dark.
  • the difference between the embodiment and the first embodiment is that in the narrow viewing angle mode, the polarity of the driving voltage output to each pixel unit is reversed by a dot, and the polarity of any one of the pixel units is used.
  • the polarity of all other pixel units adjacent thereto is opposite, so each pixel unit in one row covered by each first electrode strip 331 exhibits alternating positive and negative different polarities, one row covered by each second electrode strip 341 Each pixel unit exhibits alternating positive and negative different polarities.
  • the driving frequency of the first alternating voltage applied to the first bias electrode 33 and the driving frequency of the second alternating voltage applied to the second bias electrode 34 are both the liquid crystal.
  • the frame rate of the display device is 1/2, and the polarity of the driving voltage output to each pixel unit is inverted every two frames.
  • the first alternating voltage applied to the first bias electrode 33 and the second alternating voltage applied to the second bias electrode 34 are relative to the direct current common voltage on the common electrode 25 in the narrow viewing angle mode.
  • DC Vcom has the same polarity.
  • the first alternating voltage applied to the first bias electrode 33 and the second alternating voltage applied to the second bias electrode 34 are both square waves and have the same waveform, ie, in the same frame. In the picture, the first alternating voltage and the second alternating voltage are both positive or negative with respect to DC Vcom.
  • each pixel unit covered by each first electrode strip 331 of the first bias electrode 33 exhibits alternating positive and negative different polarities
  • each pixel unit covered by each second electrode strip 341 of the second bias electrode 34 Alternating positive and negative polarities are also present, such that the pixel units of the positive and negative polarities in the same row interact with the first bias electrode 33 or the second bias electrode 34 to form adjacent pixels.
  • the display effect of the unit presentation is bright and dark. For all pixel units in the entire picture, other pixel units adjacent to the brighter pixel unit are relatively darker pixel units, and other pixel units adjacent to the darker pixel unit appear as Relatively bright.
  • the difference between the first embodiment and the first embodiment is that, in the embodiment, the plurality of first electrode strips 331 and the second bias electrode 34 of the first bias electrode 33 are different.
  • the two electrode strips 341 each extend in the vertical direction, that is, both extend in the direction of the data line 22.
  • the plurality of first electrode strips 331 respectively cover pixel units located in odd columns (ie, the first column, the third column, the fifth column, ...), and the plurality of second electrode strips 341 respectively correspond to the even columns ( That is, the pixel unit of the second column, the fourth column, the sixth column, ).
  • the polarity of the driving voltage output to each pixel unit adopts dot inversion, and the polarity of any one of the pixel units is opposite to the polarity of all other pixel units adjacent thereto, so each first Each pixel unit in a column covered by the electrode strip 331 exhibits alternating positive and negative polarities, and each pixel unit in a column covered by each second electrode strip 341 exhibits alternating positive and negative different polarities.
  • the driving frequency of the first alternating voltage applied to the first bias electrode 33 and the driving frequency of the second alternating voltage applied to the second bias electrode 34 are both the liquid crystal.
  • the frame rate of the display device is 1/2, and the polarity of the driving voltage output to each pixel unit is inverted every two frames.
  • the first alternating voltage applied to the first bias electrode 33 and the second alternating voltage applied to the second bias electrode 34 are relative to the direct current common voltage on the common electrode 25 in the narrow viewing angle mode.
  • DC Vcom has the same polarity.
  • the first alternating voltage applied to the first bias electrode 33 and the second alternating voltage applied to the second bias electrode 34 are both square waves and have the same waveform, ie, in the same frame. In the picture, the first alternating voltage and the second alternating voltage are both positive or negative with respect to DC Vcom.
  • each pixel unit covered by each first electrode strip 331 of the first bias electrode 33 exhibits alternating positive and negative different polarities
  • each pixel unit covered by each second electrode strip 341 of the second bias electrode 34 Alternating positive and negative polarities are also present, such that the pixel units of the positive and negative polarities in the same column interact with the first bias electrode 33 or the second bias electrode 34 to form a differential pressure, adjacent pixels
  • the display effect of the unit presentation is bright and dark. For all pixel units in the entire picture, other pixel units adjacent to the brighter pixel unit are relatively darker pixel units, and other pixel units adjacent to the darker pixel unit appear as Relatively bright.
  • the difference between the embodiment and the first embodiment is that, in the narrow viewing angle mode, the polarity of the driving voltage output to each pixel unit is set by using two adjacent pixel units.
  • the dot inversion mode ie, 2DOT inversion
  • the polarities of two adjacent pixel units are the same and the polarities of all other pixel units adjacent thereto are opposite, and thus each pixel unit in one row covered by each first electrode strip 331
  • the alternating positive and negative polarities are present, and each pixel unit in a row covered by each second electrode strip 341 exhibits alternating positive and negative different polarities.
  • the driving frequency of the first alternating voltage applied to the first bias electrode 33 and the driving frequency of the second alternating voltage applied to the second bias electrode 34 are both the liquid crystal.
  • the frame rate of the display device is 1/2, and the polarity of the driving voltage output to each pixel unit is inverted every two frames.
  • the first alternating voltage applied to the first bias electrode 33 and the second alternating voltage applied to the second bias electrode 34 are relative to the direct current common voltage on the common electrode 25 in the narrow viewing angle mode.
  • DC Vcom has the same polarity.
  • the difference between the first embodiment and the first embodiment is that, in the embodiment, the plurality of first electrode strips 331 and the second bias electrodes 34 of the first bias electrode 33 are different.
  • the two electrode strips 341 each extend in the vertical direction, that is, both extend in the direction of the data line 22.
  • the plurality of first electrode strips 331 respectively cover pixel units located in odd columns (ie, the first column, the third column, the fifth column, ...), and the plurality of second electrode strips 341 respectively correspond to the even columns ( That is, the pixel unit of the second column, the fourth column, the sixth column, ).
  • the polarity of the driving voltage output to each pixel unit is adopted.
  • the polarities of two adjacent pixel units are the same and the polarities of all other pixel units adjacent thereto are opposite, so each first
  • Each pixel unit in a column covered by the electrode strip 331 exhibits alternating positive and negative polarities
  • each pixel unit in a column covered by each second electrode strip 341 exhibits alternating positive and negative different polarities.
  • the driving frequency of the first alternating voltage applied to the first bias electrode 33 and the driving frequency of the second alternating voltage applied to the second bias electrode 34 are both the liquid crystal.
  • the frame rate of the display device is 1/2, and the polarity of the driving voltage output to each pixel unit is inverted every two frames.
  • the first alternating voltage applied to the first bias electrode 33 and the second alternating voltage applied to the second bias electrode 34 are relative to the direct current common voltage on the common electrode 25 in the narrow viewing angle mode.
  • DC Vcom has the same polarity.
  • the driving manner of the first embodiment (refer to FIG. 7) of the present embodiment is different from that of the first alternating current voltage applied to the first bias electrode 33 in the narrow viewing angle mode.
  • the driving frequency and the driving frequency of the second alternating voltage applied to the second bias electrode 34 are both 1/4 of the frame rate of the liquid crystal display device, that is, a period T of the first alternating current voltage and the second alternating current voltage.
  • the display panel 10 refreshes the four frame picture, and the polarity of the driving voltage output to each pixel unit is inverted every four frames, that is, the N+1th frame, the N+2th frame, and the N+3th.
  • the display polarity of the frame and the N+4th frame are the same, and the polarity is reversed in the N+5th frame, and the display of the N+8th frame, the N+7th frame, the N+6th frame, and the N+5th frame is performed.
  • the polarity is the same (N ⁇ 0).
  • the first alternating voltage applied to the first bias electrode 33 and the second alternating voltage applied to the second bias electrode 34 are relative to the direct current common voltage on the common electrode 25 in the narrow viewing angle mode.
  • DC Vcom has the opposite polarity. Specifically, the first alternating voltage applied to the first bias electrode 33 and the second alternating voltage applied to the second bias electrode 34 are both square waves and with respect to the direct current common voltage on the common electrode 25.
  • DC Vcom is mirrored.
  • the polarity of the driving voltage outputted to each pixel unit is in a column inversion manner, which can avoid that all pixel units in the same column of the traditional architecture always be biased.
  • Bright or always dark a dark line problem formed by pixel cells that are concentrated in the same column and are relatively dark relative to adjacent columns, that is, macroscopically an anomalous vertical streak arranged along the column direction.
  • the driving manner of the second embodiment is different from that of the first alternating current voltage applied to the first bias electrode 33 in the narrow viewing angle mode.
  • the driving frequency and the driving frequency of the second alternating voltage applied to the second bias electrode 34 are both 1/4 of the frame rate of the liquid crystal display device, that is, a period T of the first alternating current voltage and the second alternating current voltage.
  • the display panel 10 refreshes the four frame picture, and the polarity of the driving voltage output to each pixel unit is inverted every four frames, that is, the N+1th frame, the N+2th frame, and the N+3th.
  • the display polarity of the frame and the N+4th frame are the same, and the polarity is reversed in the N+5th frame, and the display of the N+8th frame, the N+7th frame, the N+6th frame, and the N+5th frame is performed.
  • the polarity is the same (N ⁇ 0).
  • the first alternating voltage applied to the first bias electrode 33 and the second alternating voltage applied to the second bias electrode 34 are relative to the direct current common voltage on the common electrode 25 in the narrow viewing angle mode.
  • DC Vcom has the opposite polarity. Specifically, the first alternating voltage applied to the first bias electrode 33 and the second alternating voltage applied to the second bias electrode 34 are both square waves and with respect to the direct current common voltage on the common electrode 25.
  • DC Vcom is mirrored.
  • the polarity of the driving voltage outputted to each pixel unit is in a line inversion manner, which can prevent all pixel units in the same row of the traditional architecture from always being bright or always dark.
  • a dark line problem formed by pixel cells that are concentrated in the same row and are relatively dark relative to adjacent rows, that is, macroscopically is a horizontal grain anomaly arranged along the row direction.
  • the driving manner of the third embodiment is different from that of the first alternating current voltage applied to the first bias electrode 33 in the narrow viewing angle mode.
  • the driving frequency and the driving frequency of the second alternating voltage applied to the second bias electrode 34 are both 1/4 of the frame rate of the liquid crystal display device, that is, a period T of the first alternating current voltage and the second alternating current voltage.
  • the display panel 10 refreshes the four frame picture, and the polarity of the driving voltage output to each pixel unit is inverted every four frames, that is, the N+1th frame, the N+2th frame, and the N+3th.
  • the display polarity of the frame and the N+4th frame are the same, and the polarity is reversed in the N+5th frame, and the display of the N+8th frame, the N+7th frame, the N+6th frame, and the N+5th frame is performed.
  • the polarity is the same (N ⁇ 0).
  • the first alternating voltage applied to the first bias electrode 33 and the second alternating voltage applied to the second bias electrode 34 are relative to the direct current common voltage on the common electrode 25 in the narrow viewing angle mode.
  • DC Vcom has the same polarity.
  • the first alternating voltage applied to the first bias electrode 33 and the second alternating voltage applied to the second bias electrode 34 are both square waves and have the same waveform.
  • the polarity of the driving voltage outputted to each pixel unit is in a dot inversion manner, which can prevent all pixel units in the same column of the traditional architecture from always being bright or always dark.
  • a dark line problem formed by pixel cells concentrated in the same column and relatively dark in adjacent columns, that is, a macroscopic phenomenon is an abnormal phenomenon of vertical stripes arranged along the column direction.
  • the driving manner of the fourth embodiment is different from that of the first alternating current voltage applied to the first bias electrode 33 in the narrow viewing angle mode.
  • the driving frequency and the driving frequency of the second alternating voltage applied to the second bias electrode 34 are both 1/4 of the frame rate of the liquid crystal display device, that is, a period T of the first alternating current voltage and the second alternating current voltage.
  • the display panel 10 refreshes the four frame picture, and the polarity of the driving voltage output to each pixel unit is inverted every four frames, that is, the N+1th frame, the N+2th frame, and the N+3th.
  • the display polarity of the frame and the N+4th frame are the same, and the polarity is reversed in the N+5th frame, and the display of the N+8th frame, the N+7th frame, the N+6th frame, and the N+5th frame is performed.
  • the polarity is the same (N ⁇ 0).
  • the first alternating voltage applied to the first bias electrode 33 and the second alternating voltage applied to the second bias electrode 34 are relative to the direct current common voltage on the common electrode 25 in the narrow viewing angle mode.
  • DC Vcom has the same polarity.
  • the first alternating voltage applied to the first bias electrode 33 and the second alternating voltage applied to the second bias electrode 34 are both square waves and have the same waveform.
  • the polarity of the driving voltage outputted to each pixel unit is in a dot inversion manner, which can prevent all pixel units in the same row of the traditional architecture from always being bright or always dark.
  • a dark line problem formed by pixel cells that are concentrated in the same row and are relatively dark relative to adjacent rows, that is, macroscopically is a horizontal grain anomaly arranged along the row direction.
  • the driving manner of this embodiment is different from that of the first embodiment (refer to FIG. 7).
  • the driving frequency of the first alternating voltage applied to the first bias electrode 33 and the driving frequency of the second alternating voltage applied to the second bias electrode 34 are both the liquid crystal. 1/4 of the frame rate of the display device, that is, within one period T of the first alternating voltage and the second alternating voltage, the display panel 10 refreshes the frame of four frames and outputs the polarity of the driving voltage to each pixel unit Each frame is inverted once, that is, each pixel unit has different polarities in adjacent two frames.
  • the first alternating voltage applied to the first bias electrode 33 and the second alternating voltage applied to the second bias electrode 34 are relative to the direct current common voltage on the common electrode 25 in the narrow viewing angle mode.
  • DC Vcom has the opposite polarity. Specifically, the first alternating voltage applied to the first bias electrode 33 and the second alternating voltage applied to the second bias electrode 34 are both square waves and with respect to the direct current common voltage on the common electrode 25.
  • DC Vcom is mirrored.
  • the polarity of the driving voltage outputted to each pixel unit is in a column inversion manner, which can prevent all pixel units in the same column of the traditional architecture from always being bright or always dark.
  • a dark line problem formed by pixel cells concentrated in the same column and relatively dark in adjacent columns, that is, a macroscopic phenomenon is an abnormal phenomenon of vertical stripes arranged along the column direction.
  • the driving manner of the second embodiment (refer to FIG. 10) of the present embodiment is different from that of the first alternating current voltage applied to the first bias electrode 33 in the narrow viewing angle mode.
  • the driving frequency and the driving frequency of the second alternating voltage applied to the second bias electrode 34 are both 1/4 of the frame rate of the liquid crystal display device, that is, a period T of the first alternating current voltage and the second alternating current voltage.
  • the display panel 10 refreshes the four frame picture, and the polarity of the driving voltage output to each pixel unit is inverted once every frame, that is, the polarity of each pixel unit in the adjacent two frames is different.
  • the first alternating voltage applied to the first bias electrode 33 and the second alternating voltage applied to the second bias electrode 34 are relative to the direct current common voltage on the common electrode 25 in the narrow viewing angle mode.
  • DC Vcom has the opposite polarity. Specifically, the first alternating voltage applied to the first bias electrode 33 and the second alternating voltage applied to the second bias electrode 34 are both square waves and with respect to the direct current common voltage on the common electrode 25.
  • DC Vcom is mirrored.
  • the polarity of the driving voltage outputted to each pixel unit is in a line inversion manner, which can prevent all pixel units in the same row of the traditional architecture from always being bright or always dark.
  • a dark line formed by pixel cells that are concentrated in the same row and are relatively dark relative to adjacent rows The problem is that the macro is an anomaly of the horizontal stripes arranged along the row direction.
  • the driving manner of the third embodiment (refer to FIG. 11) of the present embodiment is different from that of the first alternating current voltage applied to the first bias electrode 33 in the narrow viewing angle mode.
  • the driving frequency and the driving frequency of the second alternating voltage applied to the second bias electrode 34 are both 1/4 of the frame rate of the liquid crystal display device, that is, a period T of the first alternating current voltage and the second alternating current voltage.
  • the display panel 10 refreshes the four frame picture, and the polarity of the driving voltage output to each pixel unit is inverted once every frame, that is, the polarity of each pixel unit in the adjacent two frames is different.
  • the first alternating voltage applied to the first bias electrode 33 and the second alternating voltage applied to the second bias electrode 34 are relative to the direct current common voltage on the common electrode 25 in the narrow viewing angle mode.
  • DC Vcom has the same polarity.
  • the first alternating voltage applied to the first bias electrode 33 and the second alternating voltage applied to the second bias electrode 34 are both square waves and have the same waveform.
  • the polarity of the driving voltage outputted to each pixel unit is in a dot inversion manner, which can prevent all pixel units in the same column of the traditional architecture from always being bright or always dark.
  • a dark line problem formed by pixel cells concentrated in the same column and relatively dark in adjacent columns, that is, a macroscopic phenomenon is an abnormal phenomenon of vertical stripes arranged along the column direction.
  • the driving manner of the fourth embodiment is different from that of the first alternating current voltage applied to the first bias electrode 33 in the narrow viewing angle mode.
  • the driving frequency and the driving frequency of the second alternating voltage applied to the second bias electrode 34 are both 1/4 of the frame rate of the liquid crystal display device, that is, a period T of the first alternating current voltage and the second alternating current voltage.
  • the display panel 10 refreshes the four frame picture, and the polarity of the driving voltage output to each pixel unit is inverted once every frame, that is, the polarity of each pixel unit in the adjacent two frames is different.
  • the first alternating voltage applied to the first bias electrode 33 and the second alternating voltage applied to the second bias electrode 34 are relative to the direct current common voltage on the common electrode 25 in the narrow viewing angle mode.
  • DC Vcom has the same polarity.
  • the first alternating voltage applied to the first bias electrode 33 and the second alternating voltage applied to the second bias electrode 34 are both square waves and have the same waveform.
  • the polarity of the driving voltage outputted to each pixel unit is in a dot inversion manner, which can prevent all pixel units in the same row of the traditional architecture from always being bright or always dark.
  • a dark line problem formed by pixel cells that are concentrated in the same row and are relatively dark relative to adjacent rows, that is, macroscopically is a horizontal grain anomaly arranged along the row direction.
  • the first bias electrode 33 and the second bias electrode 34 are made of a transparent conductive material such as ITO or IZO
  • the first bias electrode 33 and the second are made due to the large impedance and load of the ITO and IZO.
  • the voltage waveform delivered across the bias electrode 34 is susceptible to distortion and signal delay.
  • the upper substrate 30 is further provided with a plurality of first metal strips 37 and a plurality of second metal strips 38.
  • the plurality of first metal strips 37 are parallel to the plurality of first electrode strips 331 and respectively
  • the plurality of first electrode strips 331 are electrically connected to each other
  • the plurality of second metal strips 38 are parallel to the plurality of second electrode strips 341 and electrically connected to the plurality of second electrode strips 341, respectively.
  • the plurality of first metal strips 37 and the plurality of second metal strips 38 may be made of a metal having a low resistivity such as Mo, Al, Au, Ag, or Cu. These metal strips 37, 38 correspond to the positions of the black matrix 31, and each of the metal strips 37 (or 38) can be electrically connected to the electrode strips 331 (or 341) corresponding to the open areas by partial contact.
  • the resistance of the metal strips 37, 38 is small, and the conduction capability is strong.
  • the impedance and the load of the first bias electrode 33 and the second bias electrode 34 are greatly reduced, thereby solving the problem of signal delay on the first bias electrode 33 and the second bias electrode 34, which can be reduced.
  • Waveform distortion prevents waveform distortion or signal attenuation from causing abnormal image quality.
  • the metal strips 37, 38 and the first electrode strips 331 and the second electrode strips 341 all extend in the vertical direction, that is, in the direction in which the data lines 22 are located.
  • the specific positions of the metal strips 37 and 38 in the upper substrate 30 are not limited, and can be adjusted as needed, as shown in FIG. 24a to FIG. 24d.
  • the upper substrate 30 is provided with a black matrix 31, a color resist layer 32, a first flat layer 35, a first metal strip 37, a second metal strip 38, and a first bias on a side facing the liquid crystal layer 40.
  • the first flat layer 35 covers the black matrix 31 and the color resist layer 32, and then the first metal strip 37, the second metal strip 38, and the first layer are sequentially formed on the first flat layer 35.
  • a bias electrode 33 and a second bias electrode 34 and then sequentially covering the first metal strip 37, the second metal strip 38, the first bias electrode 33 and the second bias electrode by using the second flat layer 36 34.
  • the upper substrate 30 is provided with a black matrix 31, a color resist layer 32, a first flat layer 35, a first bias electrode 33, and a second bias electrode 34 on a side facing the liquid crystal layer 40.
  • the first flat layer 35 covers the black matrix 31 and the color resist layer 32, and then the first bias electrode 33, the second bias electrode 34, the first metal strip 37, and the second metal are sequentially formed on the first flat layer 35.
  • the strip 38 covers the first bias electrode 33, the second bias electrode 34, the first metal strip 37, and the second metal strip 38 in sequence using the second planar layer 36.
  • the upper substrate 30 is provided with a black matrix 31, a color resist layer 32, a first bias electrode 33, a second bias electrode 34, a first metal strip 37, and a side facing the liquid crystal layer 40.
  • a first bias electrode 33, a second bias electrode 34, a first metal strip 37 and a second metal strip 38 are formed on the black matrix 31 and the color resist layer 32, and the first bias current is covered by the flat layer 39.
  • the upper substrate 30 is provided with a ferrous metal, a color resist layer 32, a first bias electrode 33, a second bias electrode 34, and a flat layer 39 on the side facing the liquid crystal layer 40.
  • the ferrous metal is formed into a first metal strip 37 and a second metal strip 38, and the first metal strip 37 and the second metal strip 38 are used as a black matrix (BM) in the vertical direction, thereby saving the original black matrix (BM). ) the production steps and costs.
  • a first bias electrode 33 and a second bias electrode 34 are formed on the ferrous metal and color resist layer 32, and the first bias electrode 33, the second bias electrode 34, and the ferrous metal are covered by the flat layer 39. .
  • the upper substrate 30 is further provided with a plurality of first metal strips 37 and a plurality of second metal strips 38, and the plurality of first metal strips 37 and the plurality of first electrode strips 331 Parallel and electrically connected to the plurality of first electrode strips 331 , the plurality of second metal strips 38 are parallel to the plurality of second electrode strips 341 and electrically connected to the plurality of second electrode strips 341 .
  • the plurality of first metal strips 37 and the plurality of second metal strips 38 may be made of a metal having a low resistivity such as Mo, Al, Au, Ag, or Cu. These metal strips 37, 38 correspond to the positions of the black matrix 31, and each of the metal strips 37 (or 38) can be electrically connected to the electrode strips 331 (or 341) corresponding to the open areas by partial contact.
  • the metal strips 37, 38 and the first electrode strip 331 and the second electrode strip 341 Both extend in the horizontal direction, that is, in the direction in which the scanning line 21 is located.
  • the specific positions of the metal strips 37 and 38 in the upper substrate 30 are not limited, and can be adjusted as needed, as shown in FIG. 26a to FIG. 26d.
  • the upper substrate 30 is provided with a black matrix 31, a color resist layer 32, a first flat layer 35, a first metal strip 37, a second metal strip 38, and a first bias on a side facing the liquid crystal layer 40.
  • the first flat layer 35 covers the black matrix 31 and the color resist layer 32, and then the first metal strip 37, the second metal strip 38, the first bias electrode 33, and the second bias voltage are sequentially formed on the first flat layer 35.
  • the pole 34 covers the first metal strip 37, the second metal strip 38, the first bias electrode 33, and the second bias electrode 34 in sequence by the second flat layer 36.
  • the upper substrate 30 is provided with a black matrix 31, a color resist layer 32, a first flat layer 35, a first bias electrode 33, a second bias electrode 34, on a side facing the liquid crystal layer 40, The first metal strip 37, the second metal strip 38, and the second flat layer 36.
  • the first flat layer 35 covers the black matrix 31 and the color resist layer 32, and then the first bias electrode 33, the second bias electrode 34, the first metal strip 37, and the second metal are sequentially formed on the first flat layer 35.
  • the strip 38 covers the first bias electrode 33, the second bias electrode 34, the first metal strip 37, and the second metal strip 38 in sequence using the second planar layer 36.
  • the upper substrate 30 is provided with a black matrix 31, a color resist layer 32, a first bias electrode 33, a second bias electrode 34, and a first metal strip 37 on a side facing the liquid crystal layer 40.
  • a first bias electrode 33, a second bias electrode 34, a first metal strip 37 and a second metal strip 38 are formed on the black matrix 31 and the color resist layer 32, and the first bias current is covered by the flat layer 39.
  • the upper substrate 30 is provided with a ferrous metal, a color resist layer 32, a first bias electrode 33, a second bias electrode 34, and a flat layer 39 on the side facing the liquid crystal layer 40.
  • the ferrous metal is formed into a first metal strip 37 and a second metal strip 38, and the first metal strip 37 and the second metal strip 38 are used as a black matrix (BM) in the horizontal direction, thereby saving the original black matrix (BM). Production steps and costs.
  • a first bias electrode 33 and a second bias electrode 34 are formed on the ferrous metal and color resist layer 32, and the first bias electrode 33, the second bias electrode 34, and the ferrous metal are covered by the flat layer 39. .
  • the liquid crystal display device provided in this embodiment is different from the above-described first embodiment in that the liquid crystal layer 40 in this embodiment employs negative liquid crystal molecules.
  • the negative liquid crystal molecules in the liquid crystal layer 40 have a large initial pretilt angle with respect to the substrates 20, 30, that is, the negative liquid crystal molecules are in an initial state relative to the substrate. 20, 30 is inclined.
  • Narrow viewing angle mode Referring to FIG. 27, in this embodiment, when the voltage difference applied between the first bias electrode 33 and the common electrode 25 and between the second bias electrode 34 and the common electrode 25 is less than a predetermined value ( If less than 1 V), since the voltage difference between the first bias electrode 33 and the common electrode 25 and between the second bias electrode 34 and the common electrode 25 is small, the tilt angle of the liquid crystal molecules in the liquid crystal layer 40 is almost The liquid crystal display device has a large angle to observe the light leakage, and the liquid crystal display device realizes a narrow viewing angle display. That is, the driving method in the narrow viewing angle mode of the present embodiment is the same as the driving method in the wide viewing angle mode of the first embodiment described above.
  • the first biasing electrode 33 when a first alternating voltage is applied to the first bias electrode 33 and a second alternating voltage is applied to the second biasing electrode 34, the first biasing electrode 33 is When the voltage difference between the common electrodes 25 and between the second bias electrode 34 and the common electrode 25 is greater than a preset value (for example, greater than 3 V), due to the first bias electrode 33 and the common electrode 25 and The voltage difference between the two bias electrodes 34 and the common electrode 25 is large, and a strong vertical electric field E is generated between the lower substrate 20 and the upper substrate 30 in the liquid crystal cell (as indicated by an arrow in FIG.
  • a preset value for example, greater than 3 V
  • the negative liquid crystal molecules are deflected in a direction perpendicular to the electric field lines under the action of the electric field, so that the negative liquid crystal molecules are deflected by the vertical electric field E, so that the tilt angle between the liquid crystal molecules and the substrates 20, 30 is reduced, and the liquid crystal
  • the large-angle light leakage phenomenon of the display device is correspondingly reduced, the contrast is increased in the squint direction, and the viewing angle is increased, and the liquid crystal display device finally realizes a wide viewing angle display. That is, the driving method in the wide viewing angle mode of the present embodiment corresponds to the driving manner in the narrow viewing angle mode of the first embodiment described above.
  • the liquid crystal display device further includes a viewing angle switching button 80 for switching different viewing angle modes of the liquid crystal display device.
  • the angle of view switching button 80 can be a mechanical button (as shown in Figure 29a) or a virtual button (as shown in Figure 29b, set by software control or application).
  • the viewing angle switching button 80 can be operated to issue a viewing angle switching request to the liquid crystal display device, and finally by the driving circuit 50.
  • the voltage signals applied to the first bias electrode 33 and the second bias electrode 34 of the upper substrate 30 are controlled, and the reverse driving mode of the lower substrate 20 is controlled to realize the switching of the wide and narrow viewing angles, so that the user can
  • the liquid crystal display device of the embodiment of the invention has strong operational flexibility and convenience.
  • the driving method provided in the embodiment of the present invention can realize the switching between the wide and narrow viewing modes by the arrangement of the bias electrodes of the upper substrate and the application of the signal, and the reverse driving mode of the lower substrate, and solve the problem in the traditional architecture.
  • the problem of vertical stripes and horizontal stripes improves the display quality of the display device.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Mathematical Physics (AREA)
  • Computer Hardware Design (AREA)
  • Theoretical Computer Science (AREA)
  • Liquid Crystal Display Device Control (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Liquid Crystal (AREA)

Abstract

一种宽窄视角可切换的液晶显示装置的驱动方法,在第一种视角模式下,向公共电极(25)施加直流公共电压,向第一偏压电极(33)和第二偏压电极(34)施加电压信号,使第一偏压电极(33)与公共电极(25)之间及第二偏压电极(34)与公共电极(25)之间的电压差均小于预设值;在第二种视角模式下,向公共电极(25)施加直流公共电压,向第一偏压电极(33)施加第一交流电压,向第二偏压电极(34)施加第二交流电压,使第一偏压电极(33)与公共电极(25)之间及第二偏压电极(34)与公共电极(25)之间的电压差均大于预设值;而且在第二种视角模式下,第一偏压电极(33)的每个第一电极条(331)覆盖的各个像素单元呈现交替的正负不同极性,第二偏压电极(34)的每个第二电极条(341)覆盖的各个像素单元呈现交替的正负不同极性。

Description

宽窄视角可切换的液晶显示装置的驱动方法 技术领域
本发明涉及液晶显示的技术领域,特别是涉及一种宽窄视角可切换的液晶显示装置的驱动方法。
背景技术
液晶显示装置(liquid crystal display,LCD)具有画质好、体积小、重量轻、低驱动电压、低功耗、无辐射和制造成本相对较低的优点,在平板显示领域占主导地位。
现在的液晶显示器件逐渐朝着宽视角的方向发展,无论是手机移动终端应用、桌上显示器还是笔记本电脑,但是在广视角的需求之外,在许多场合还需要显示装置具备广视角与窄视角相互切换的功能。
目前的宽视角与窄视角的切换,一般是通过百叶窗的遮挡功能来实现的,这就需要在显示器件外,额外准备一个遮挡膜,使用起来很不方便。
近来,业界也开始提出利用彩色滤光片基板(CF)一侧的视角控制电极给液晶分子施加一个垂直电场,来实现宽窄视角切换。请参图1与图2,该液晶显示装置包括上基板11、下基板12和位于上基板11与下基板12之间的液晶层13,上基板11上设有视角控制电极111。如图1所示,在宽视角显示时,上基板11上的视角控制电极111不给电压,液晶显示装置实现宽视角显示。如图2所示,当需要窄视角显示时,上基板11上的视角控制电极111给电压,液晶层13中的液晶分子会因为垂直方向电场E(如图中箭头所示)而翘起,液晶显示装置因为漏光而对比度降低,最终实现窄视角。
但是现有的宽窄视角切换架构中,搭配的视角控制电极为透明导电电极,透明导电电极的电阻值较大,所以视角控制电极在信号传送中会面临较大的阻抗与负载,导致视角控制电极上输送的电压波形失真,波形失真则会促使视角控制电极与其相对应的像素电极、公共电极产生不同压差。如果视角控制电极采用图案化的电极条结构,各个电极条沿着水平方向或竖直方向排列,则整个画面下各行或各列方向上的电极条与像素电极、公共电极的压差作用, 从而出现整列或整行显示亮暗,导致在窄视角模式下出现竖纹或横纹问题。
发明内容
有鉴于此,本发明的目的在于提供一种宽窄视角可切换的液晶显示装置的驱动方法,可以实现宽窄视角两种模式切换,同时解决传统架构出现的竖纹或横纹问题。
本发明提供一种宽窄视角可切换的液晶显示装置的驱动方法,该液晶显示装置包括下基板、上基板和位于该下基板与该上基板之间的液晶层;该下基板设有扫描线、数据线、像素电极和公共电极,该下基板由多条扫描线与多条数据线相互绝缘交叉限定形成多个像素单元;该上基板设有第一偏压电极和第二偏压电极,该第一偏压电极包括电连接在一起的多个第一电极条,该第二偏压电极包括电连接在一起的多个第二电极条,该多个第一电极条与该多个第二电极条呈叉指状相互插入配合,该驱动方法包括:
在第一种视角模式下,向该公共电极施加直流公共电压,向各个像素单元输出驱动电压并通过不同的电压值实现灰阶显示,向该第一偏压电极和该第二偏压电极施加电压信号,使该第一偏压电极与该公共电极之间以及该第二偏压电极与该公共电极之间的电压差均小于预设值;
在第二种视角模式下,向该公共电极施加直流公共电压,向各个像素单元输出驱动电压并通过不同的电压值实现灰阶显示,向该第一偏压电极施加第一交流电压,向该第二偏压电极施加第二交流电压,使该第一偏压电极与该公共电极之间以及该第二偏压电极与该公共电极之间的电压差均大于预设值;
而且在第二种视角模式下,该第一偏压电极的每个第一电极条覆盖的各个像素单元呈现交替的正负不同极性,该第二偏压电极的每个第二电极条覆盖的各个像素单元呈现交替的正负不同极性。
进一步地,该多个第一电极条与该多个第二电极条均沿着水平方向延伸;在第二种视角模式下,输出至各个像素单元的驱动电压的极性采用列反转。
进一步地,该多个第一电极条与该多个第二电极条均沿着竖直方向延伸; 在第二种视角模式下,输出至各个像素单元的驱动电压的极性采用行反转。
进一步地,在第二种视角模式下,施加至该第一偏压电极上的第一交流电压和施加至该第二偏压电极上的第二交流电压相对于该公共电极上的直流公共电压具有相反的极性。
进一步地,在第二种视角模式下,施加至该第一偏压电极上的第一交流电压和施加至该第二偏压电极上的第二交流电压均为方波且相对于该公共电极上的直流公共电压呈镜像关系。
进一步地,该多个第一电极条与该多个第二电极条均沿着水平方向或竖直方向延伸;在第二种视角模式下,输出至各个像素单元的驱动电压的极性采用点反转。
进一步地,在第二种视角模式下,施加至该第一偏压电极上的第一交流电压和施加至该第二偏压电极上的第二交流电压相对于该公共电极上的直流公共电压具有相同的极性。
进一步地,在第二种视角模式下,施加至该第一偏压电极上的第一交流电压和施加至该第二偏压电极上的第二交流电压均为方波且具有相同的波形。
进一步地,在第二种视角模式下,施加至该第一偏压电极上的第一交流电压的驱动频率和施加至该第一偏压电极上的第二交流电压的驱动频率均为该液晶显示装置的帧频的1/2,且输出至各个像素单元的驱动电压的极性每两帧画面反转一次。
进一步地,在第二种视角模式下,施加至该第一偏压电极上的第一交流电压的驱动频率和施加至该第一偏压电极上的第二交流电压的驱动频率均为该液晶显示装置的帧频的1/4,且输出至各个像素单元的驱动电压的极性每一帧画面反转一次或每四帧画面反转一次。
进一步地,在第一种视角模式下,向该第一偏压电极和该第二偏压电极均施加与该公共电极的直流公共电压相同的直流电压信号,使该第一偏压电极与该公共电极之间以及该第二偏压电极与该公共电极之间的电压差均为零。
进一步地,该液晶层采用正性液晶分子,第一种视角模式为宽视角模式,第二种视角模式为窄视角模式。
进一步地,该液晶层采用负性液晶分子,第一种视角模式为窄视角模式,第二种视角模式为宽视角模式。
进一步地,该上基板还设有多个第一金属条和多个第二金属条,该多个第一金属条与该多个第一电极条平行且分别与该多个第一电极条导电连接,该多个第二金属条与该多个第二电极条平行且分别与该多个第二电极条导电连接。
进一步地,该液晶显示装置设有视角切换按键,用于切换该液晶显示装置的不同视角模式。
本发明实施例提供的宽窄视角可切换的液晶显示装置的驱动方法,通过上基板的偏压电极的排列方式与施加信号,搭配下基板的反转驱动方式,可以实现宽窄视角两种模式的切换,同时解决传统架构中存在的竖纹与横纹问题,提高显示装置的显示画质。
附图概述
图1为现有一种液晶显示装置在宽视角下的局部截面示意图。
图2为图1中液晶显示装置在窄视角下的局部截面示意图。
图3为本发明第一实施例中液晶显示装置的电路结构示意图。
图4为图3中第一偏压电极和第二偏压电极的平面结构示意图。
图5为图3中液晶显示装置沿着A-A线的截面示意图。
图6为图3中液晶显示装置在窄视角时的截面示意图。
图7为图3中液晶显示装置在窄视角时施加在第一偏压电极和第二偏压电极上的电压信号与像素单元在不同帧画面进行极性反转的示意图。
图8与图7类似,但每个像素单元中用数值代表第一偏压电极、第二偏压电极与各个像素电极之间的电压差。
图9为本发明第二实施例中液晶显示装置的第一偏压电极和第二偏压电 极的平面结构示意图。
图10为本发明第二实施例中液晶显示装置在窄视角时施加在第一偏压电极和第二偏压电极上的电压信号与像素单元在不同帧画面进行极性反转的示意图。
图11为本发明第三实施例中液晶显示装置在窄视角时施加在第一偏压电极和第二偏压电极上的电压信号与像素单元在不同帧画面进行极性反转的示意图。
图12为本发明第四实施例中液晶显示装置在窄视角时施加在第一偏压电极和第二偏压电极上的电压信号与像素单元在不同帧画面进行极性反转的示意图。
图13为本发明第五实施例中液晶显示装置的第一偏压电极和第二偏压电极与像素单元的极性反转进行搭配使用的示意图。
图14为本发明第六实施例中液晶显示装置的第一偏压电极和第二偏压电极与像素单元的极性反转进行搭配使用的示意图。
图15为本发明第七实施例中液晶显示装置在窄视角时施加在第一偏压电极和第二偏压电极上的电压信号与像素单元在不同帧画面进行极性反转的示意图。
图16为本发明第八实施例中液晶显示装置在窄视角时施加在第一偏压电极和第二偏压电极上的电压信号与像素单元在不同帧画面进行极性反转的示意图。
图17为本发明第九实施例中液晶显示装置在窄视角时施加在第一偏压电极和第二偏压电极上的电压信号与像素单元在不同帧画面进行极性反转的示意图。
图18为本发明第十实施例中液晶显示装置在窄视角时施加在第一偏压电极和第二偏压电极上的电压信号与像素单元在不同帧画面进行极性反转的示意图。
图19为本发明第十一实施例中液晶显示装置在窄视角时施加在第一偏压电极和第二偏压电极上的电压信号与像素单元在不同帧画面进行极性反转 的示意图。
图20为本发明第十二实施例中液晶显示装置在窄视角时施加在第一偏压电极和第二偏压电极上的电压信号与像素单元在不同帧画面进行极性反转的示意图。
图21为本发明第十三实施例中液晶显示装置在窄视角时施加在第一偏压电极和第二偏压电极上的电压信号与像素单元在不同帧画面进行极性反转的示意图。
图22为本发明第十四实施例中液晶显示装置在窄视角时施加在第一偏压电极和第二偏压电极上的电压信号与像素单元在不同帧画面进行极性反转的示意图。
图23为本发明第十五实施例中液晶显示装置的平面结构示意图。
图24a至图24d为图23中液晶显示装置沿着B-B线的不同截面结构示意图。
图25为本发明第十六实施例中液晶显示装置的平面结构示意图。
图26a至图26d为图25中液晶显示装置沿着C-C线的不同截面结构示意图。
图27为本发明第十七实施例中液晶显示装置的局部截面示意图。
图28为图27中液晶显示装置在宽视角时的截面示意图。
图29a与图29b为本发明第十八实施例中液晶显示装置的平面示意框图。
本发明的较佳实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明实施方式作进一步地描述。
本发明提出一种宽窄视角可切换的液晶显示装置的驱动方法,通过上基板的偏压电极的排列方式与施加信号,搭配下基板的反转驱动方式,来实现宽窄视角模式的切换,同时解决传统架构中存在的竖纹与横纹问题,提高显示装置的显示画质。
[第一实施例]
请参图3至图5,本发明第一实施例提供的宽窄视角可切换的液晶显示装置包括显示面板10,该显示面板10包括下基板20、与下基板20相对设置的上基板30及位于下基板20与上基板30之间的液晶层40。其中,下基板20可以为薄膜晶体管阵列基板(即阵列基板),上基板30可以为彩色滤光片基板(即彩膜基板)。
下基板20在朝向液晶层40的一侧设有扫描线21、数据线22、开关元件23、像素电极24和公共电极25,但本发明不以此为限。开关元件23例如为薄膜晶体管(TFT)。下基板20由多条扫描线21与多条数据线22相互绝缘交叉限定形成呈阵列排布的多个像素单元。每个像素单元内设有开关元件23和像素电极24,像素电极24通过开关元件23与扫描线21和数据线22连接。每个开关元件23包括栅极、有源层、源极及漏极,其中栅极电连接对应的扫描线21,源极电连接对应的数据线22,漏极电连接对应的像素电极24。
可以理解地,下基板20还可以设有至少一绝缘层或平坦层,以使相邻的电极或走线之间相互绝缘或者使下基板20的内侧变得平坦。
本实施例中,公共电极25形成在下基板20,公共电极25和像素电极24位于不同层且两者之间夹设有绝缘层26,像素电极24位于公共电极25上方,即像素电极24相较于公共电极25更靠近液晶层40。此时该液晶显示装置为边缘电场切换型(Fringe Field Switching,FFS)。该液晶显示装置在正常显示时,公共电极25和像素电极24之间产生边缘电场,使液晶分子在与基板大致平行的平面内旋转以获得较广的视角。
在其他实施例中,公共电极25和像素电极24在下基板20也可以位于同一层,此时公共电极25和像素电极24可以分别制成梳状结构且相互插入配合,此时该液晶显示装置为平面内切换型(In-Plane Switching,IPS)。该液晶显示装置在正常显示时,公共电极25和像素电极24之间产生平面电场,使液晶分子在与基板大致平行的平面内旋转以获得较广的视角。
上基板30在朝向液晶层40的一侧设有黑矩阵(BM)31、色阻层32、第一偏压电极33和第二偏压电极34,但本发明不以此为限。色阻层32例如为R、G、B色阻。本实施例中,色阻层32和黑矩阵31设置在上基板30朝向液晶 层40一侧的内表面上,其他膜层结构设置在色阻层32和黑矩阵31上。
第一偏压电极33与第二偏压电极34为透明导电电极。第一偏压电极33包括相互平行间隔且电连接在一起的多个第一电极条331,第二偏压电极34包括相互平行间隔且电连接在一起的多个第二电极条341,该多个第一电极条331与该多个第二电极条341呈叉指状相互插入配合。
本实施例中,该多个第一电极条331和该多个第二电极条341均沿着水平方向延伸,即均沿着扫描线21方向延伸。该多个第一电极条331分别对应覆盖位于奇数行(即第1行、第3行、第5行、……)的像素单元,该多个第二电极条341分别对应覆盖位于偶数行(即第2行、第4行、第6行、……)的像素单元。
进一步地,第一偏压电极33还包括与该多个第一电极条331电连接的第一公共导电条332,第二偏压电极34还包括与该多个第二电极条341电连接的第二公共导电条342。其中,该多个第一电极条331和该多个第二电极条341位于显示面板10的有效显示区(图未标),第一公共导电条332和第二公共导电条342位于显示面板10的非显示区(图未标)。
可以理解地,上基板30还可以设有至少一绝缘层或平坦层,以使相邻的电极或走线之间相互绝缘或者使上基板30的内侧变得平坦。
本实施例中,上基板30还设有第一平坦层35和第二平坦层36,第一平坦层35覆盖色阻层32和黑矩阵31,第一偏压电极33和第二偏压电极34形成在第一平坦层35上,第一偏压电极33和第二偏压电极34可以通过对同一透明导电层进行蚀刻图案化制作形成,第二平坦层36覆盖第一偏压电极33和第二偏压电极34。
第一偏压电极33、第二偏压电极34、公共电极25与像素电极24具体可采用氧化铟锡(ITO)、氧化铟锌(IZO)等透明导电材质制成。其中,第一偏压电极33和第二偏压电极34用于施加电压信号以实现该液晶显示装置的宽窄视角切换,公共电极25用于施加画面显示用的公共电压(Vcom),像素电极24用于通过数据线22接收驱动电压(Vdata)以实现画面的不同灰阶显示。
本实施例中,液晶层40中的液晶分子为正性液晶分子,正性液晶分子具备响应快的优点。如图5,在初始状态下,液晶层40内的正性液晶分子呈现 与基板20、30基本平行的平躺姿态,即正性液晶分子的长轴方向与基板20、30的表面基本平行。但在实际应用中,液晶层40内的正性液晶分子与基板20、30之间可以具有较小的初始预倾角,该初始预倾角的范围可为小于或等于10度,即:0°≦θ≦10°。
上基板30的第一偏压电极33和第二偏压电极34用于控制该液晶显示装置进行宽窄视角切换,通过在第一偏压电极33和第二偏压电极34上施加不同的电压信号,可以在第一偏压电极33与像素电极24、公共电极25之间以及在第二偏压电极34与像素电极24、公共电极25之间产生不同的电压差(即偏压),以控制该液晶显示装置在宽视角模式与窄视角模式之间切换。
宽视角模式:请参图5,在宽视角模式下,向公共电极25施加直流公共电压(DC Vcom),Vcom可以为0V;向下基板20的各个像素电极24输出驱动电压(Vdata)并通过不同的电压值来实现灰阶显示(如最暗为L0灰阶且对应为0V,最亮为L255灰阶且对应为5V);向上基板30的第一偏压电极33和第二偏压电极34分别施加电压信号,使第一偏压电极33与公共电极25之间以及第二偏压电极34与公共电极25之间的电压差均小于预设值(如小于1V)。此时由于第一偏压电极33与公共电极25之间以及第二偏压电极34与公共电极25之间的电压差较小,液晶层40中液晶分子的倾斜角度几乎不发生变化,仍保持为接近平躺姿态,因此该液晶显示装置实现正常的宽视角显示。
在宽视角模式下,优选地,向第一偏压电极33和第二偏压电极34均施加与公共电极25的直流公共电压(DC Vcom)相同的直流电压信号,使第一偏压电极33与公共电极25之间以及第二偏压电极34与公共电极25之间的电压差均为零。
在其他实施例中,在宽视角模式下,也可以向第一偏压电极33和第二偏压电极34均施加交流电压信号,只要确保第一偏压电极33与公共电极25之间以及第二偏压电极34与公共电极25之间的电压差均小于预设值(如小于1V)即可。
窄视角模式:请同时参图6与图7,在窄视角模式下,向公共电极25施加直流公共电压(DC Vcom),Vcom可以为0V;向下基板20的各个像素电极24输出驱动电压(Vdata)并通过不同的电压值来实现灰阶显示(如最暗为L0灰 阶且对应为0V,最亮为L255灰阶且对应为5V);向上基板30的第一偏压电极33施加第一交流电压(图中以CF ITO1表示),向上基板30的第二偏压电极34施加第二交流电压(图中以CF ITO2表示),使第一偏压电极33与公共电极25之间以及第二偏压电极34与公共电极25之间的电压差均大于预设值(如大于3V)。此时由于第一偏压电极33与公共电极25之间以及第二偏压电极34与公共电极25之间的电压差较大,会在液晶盒中下基板20与上基板30之间产生较强的垂直电场E(如图6中箭头所示),由于正性液晶分子在电场作用下将沿着平行于电场线的方向旋转,因此正性液晶分子在垂直电场E作用下将发生偏转,使液晶分子与基板20、30之间的倾斜角度增大而翘起,液晶分子从平躺姿态变换为倾斜姿态,使液晶显示装置出现大角度观察漏光,在斜视方向对比度降低且视角变窄,该液晶显示装置最终实现窄视角显示。
优选地,在窄视角模式下,第一偏压电极33上施加的第一交流电压和第二偏压电极34上施加的第二交流电压,其电位对称中心与公共电极25的直流公共电压(DC Vcom)电位相同,即第一交流电压和第二交流电压均围绕DC Vcom为中心波动,且相对于公共电极25的电位压差一致。
本实施例在窄视角模式下,第一偏压电极33的每个第一电极条331覆盖的各个像素单元呈现交替的正负不同极性,第二偏压电极34的每个第二电极条341覆盖的各个像素单元呈现交替的正负不同极性。本实施例在窄视角模式下,输出至各个像素单元的驱动电压的极性采用列反转,即下基板20的第K+1列像素单元的极性与其相邻的第K列、第K+2列像素单元的极性相反(K≥1),每一行中的各个像素单元呈现交替的正负不同极性排列。由于本实施例中,每个第一电极条331和每个第二电极条341均沿着水平方向延伸且各自覆盖一行像素单元,因此每个第一电极条331覆盖的一行中的各个像素单元呈现交替的正负不同极性,每个第二电极条341覆盖的一行中的各个像素单元呈现交替的正负不同极性。
本实施例在窄视角模式下,施加至第一偏压电极33上的第一交流电压的驱动频率和施加至第二偏压电极34上的第二交流电压的驱动频率均为该液晶显示装置的帧频的1/2,即在第一交流电压和第二交流电压的一个周期T内,显示面板10刷新两帧(frame)画面,且输出至各个像素单元的驱动电压的 极性每两帧画面反转一次,即第N+1帧与第N+2帧的显示极性相同,在第N+3帧进行极性反转,第N+4帧与第N+3帧的显示极性相同(N≥0)。
进一步地,本实施例在窄视角模式下,施加至第一偏压电极33上的第一交流电压和施加至第二偏压电极34上的第二交流电压相对于公共电极25上的直流公共电压(DC Vcom)具有相反的极性。本实施例中,施加至第一偏压电极33上的第一交流电压和施加至第二偏压电极34上的第二交流电压均为方波且相对于该公共电极25上的直流公共电压(DC Vcom)呈镜像关系,即在同一帧画面内,第一交流电压和第二交流电压相对于DC Vcom为一正一负。而且,第一交流电压在相邻两帧画面的极性相反,第二交流电压在相邻两帧画面的极性也相反,即第一交流电压和第二交流电压在每相邻两帧画面切换时改变一次极性。具体地,相邻两帧画面之间可以设有空白时间段(blanking time),第一交流电压和第二交流电压可以在该空白时间段进行正负极性切换。
由于第一偏压电极33的每个第一电极条331覆盖的各个像素单元呈现交替的正负不同极性,第二偏压电极34的每个第二电极条341覆盖的各个像素单元也呈现交替的正负不同极性,使位于同一行中正极性和负极性的像素单元与第一偏压电极33或第二偏压电极34相互作用形成的压差下,相邻像素单元呈现的显示效果为亮暗表现。以第一交流电压和第二交流电压为幅值5V的交流方波,显示面板10在显示白画面时施加在各个像素电极24上最大电压为5V(正极性时为+5V,负极性时为-5V)为例,请参图7与图8,图8中每个像素单元内的数值代表在不同帧画面下第一偏压电极33、第二偏压电极34与各个像素电极24之间的压差,从图中可见,每个第一电极条331与其对应覆盖的各个像素电极24之间的压差在0V和10V之间交替变化,同样每个第二电极条341与其对应覆盖的各个像素电极24之间的压差也在0V和10V之间交替变化,且相邻上下两行中高低压差也是错开分布的。
对于同一列像素单元而言,尽管这一列像素单元显示均为正极性或均为负极性,但是由于其会同时与第一偏压电极33、第二偏压电极34作用,所以这一列像素单元显示的效果为相邻像素单元亮暗表现,同一列中的像素单元为亮暗交叉依次排列,而并非传统架构中出现的整列像素单元均偏亮或整 列像素单元均偏暗现象。对于相邻的两列像素单元而言,相邻两列像素单元中的像素单元表现也体现为亮暗差异。对整个画面里的所有像素单元而言,与其中较亮的像素单元所相邻的其它像素单元均为相对偏暗的像素单元,与其中较暗的像素单元相邻的其它像素单元均表现为相对偏亮。所以不会存在传统架构的同一列中的所有像素单元表现总是偏亮或总是偏暗,由集中于同一列且相对相邻列均偏暗的像素单元形成的暗线问题,即宏观为沿着列方向排列的竖纹异常现象。
本实施例在窄视角模式下,施加在第一偏压电极33和第二偏压电极34上的周期性交流电压的波形可以为方波、正弦波、三角波或锯齿波等。
如图5与图6所示,该液晶显示装置还包括驱动电路50,由驱动电路50分别向第一偏压电极33和第二偏压电极34施加所需的电压信号。为了给上基板30的第一偏压电极33和第二偏压电极34施加电压信号,可以在显示面板10的周边非显示区,通过导电胶60将下基板20导通至上基板30,由驱动电路50提供电压信号至下基板20,再由下基板20通过导电胶60将电压信号分别施加在上基板30的第一偏压电极33和第二偏压电极34上。
进一步地,第二平坦层36在外围的非显示区域可以形成有穿孔(图未标),以露出第一偏压电极33或第二偏压电极34,从而便于导电胶60通过对应的穿孔与第一偏压电极33或第二偏压电极34导电连接。
本实施例提供的宽窄视角可切换的液晶显示装置的驱动方法,通过上基板的偏压电极的排列方式与施加信号,搭配下基板的反转驱动方式,可以实现宽窄视角两种模式的切换,同时解决传统架构中存在的竖纹与横纹问题,提高显示装置的显示画质。
在此需要说明的是,本实施例在正常显示的宽视角模式下,输出至各个像素单元的驱动电压的极性反转方式不限,可以采取列反转、行反转或点反转,而且可以采取每一帧画面反转一次极性或每两帧画面反转一次极性等。
[第二实施例]
请参图9和图10,本实施例与上述第一实施例的区别在于,本实施例中,第一偏压电极33的多个第一电极条331和第二偏压电极34的多个第二电极条341均沿着竖直方向延伸,即均沿着数据线22方向延伸。该多个第一电极 条331分别对应覆盖位于奇数列(即第1列、第3列、第5列、……)的像素单元,该多个第二电极条341分别对应覆盖位于偶数列(即第2列、第4列、第6列、……)的像素单元。
如图10所示,本实施例在窄视角模式下,输出至各个像素单元的驱动电压的极性采用行反转,下基板20的第K+1行像素单元的极性与其相邻的第K行、第K+2行像素单元的极性相反(K≥1),每一列中的各个像素单元呈现交替的正负不同极性排列。由于本实施例中,每个第一电极条331和每个第二电极条341均沿着竖直方向延伸且各自覆盖一列像素单元,因此每个第一电极条331覆盖的一列中的各个像素单元呈现交替的正负不同极性,每个第二电极条341覆盖的一列中的各个像素单元呈现交替的正负不同极性。
本实施例在窄视角模式下,施加至第一偏压电极33上的第一交流电压的驱动频率和施加至第二偏压电极34上的第二交流电压的驱动频率均为该液晶显示装置的帧频的1/2,且输出至各个像素单元的驱动电压的极性每两帧画面反转一次。
由于第一偏压电极33的每个第一电极条331覆盖的各个像素单元呈现交替的正负不同极性,第二偏压电极34的每个第二电极条341覆盖的各个像素单元也呈现交替的正负不同极性,使位于同一列中正极性和负极性的像素单元与第一偏压电极33或第二偏压电极34相互作用形成的压差下,相邻像素单元呈现的显示效果为亮暗表现。
对于同一行像素单元而言,尽管这一行像素单元显示均为正极性或均为负极性,但是由于其会同时与第一偏压电极33、第二偏压电极34作用,所以这一行像素单元显示的效果为相邻像素单元亮暗表现,同一行中的像素单元为亮暗交叉依次排列,而并非传统架构中出现的整行像素单元均偏亮或整行像素单元均偏暗现象。对于相邻的两行像素单元而言,相邻两行像素单元中的像素单元表现也体现为亮暗差异。对整个画面里的所有像素单元而言,与其中较亮的像素单元所相邻的其它像素单元均为相对偏暗的像素单元,与其中较暗的像素单元相邻的其它像素单元均表现为相对偏亮。所以不会存在传统架构的同一行中的所有像素单元表现总是偏亮或总是偏暗,由集中于同一行且相对相邻行均偏暗的像素单元形成的暗线问题,即宏观为沿着行方向 排列的横纹异常现象。
本实施例的其余内容可参上述第一实施例的说明,在此不再赘述。
[第三实施例]
请参图11,本实施例与上述第一实施例的区别在于,本实施例在窄视角模式下,输出至各个像素单元的驱动电压的极性采用点反转,任一个像素单元的极性与其相邻的所有其它像素单元的极性相反,因此每个第一电极条331覆盖的一行中的各个像素单元呈现交替的正负不同极性,每个第二电极条341覆盖的一行中的各个像素单元呈现交替的正负不同极性。
本实施例在窄视角模式下,施加至第一偏压电极33上的第一交流电压的驱动频率和施加至第二偏压电极34上的第二交流电压的驱动频率均为该液晶显示装置的帧频的1/2,且输出至各个像素单元的驱动电压的极性每两帧画面反转一次。
本实施例在窄视角模式下,施加至第一偏压电极33上的第一交流电压和施加至第二偏压电极34上的第二交流电压相对于公共电极25上的直流公共电压(DC Vcom)具有相同的极性。本实施例中,施加至第一偏压电极33上的第一交流电压和施加至第二偏压电极34上的第二交流电压均为方波且具有相同的波形,即在同一帧画面内,第一交流电压和第二交流电压相对于DC Vcom均为正或均为负。
由于第一偏压电极33的每个第一电极条331覆盖的各个像素单元呈现交替的正负不同极性,第二偏压电极34的每个第二电极条341覆盖的各个像素单元也呈现交替的正负不同极性,使位于同一行中正极性和负极性的像素单元与第一偏压电极33或第二偏压电极34相互作用形成的压差下,相邻像素单元呈现的显示效果为亮暗表现。对整个画面里的所有像素单元而言,与其中较亮的像素单元所相邻的其它像素单元均为相对偏暗的像素单元,与其中较暗的像素单元相邻的其它像素单元均表现为相对偏亮。所以不会存在传统架构的同一列中的所有像素单元表现总是偏亮或总是偏暗,由集中于同一列且相对相邻列均偏暗的像素单元形成的暗线问题,即宏观为沿着列方向排列的竖纹异常现象。
本实施例的其余内容可参上述第一实施例的说明,在此不再赘述。
[第四实施例]
请参图12,本实施例与上述第一实施例的区别在于,本实施例中,第一偏压电极33的多个第一电极条331和第二偏压电极34的多个第二电极条341均沿着竖直方向延伸,即均沿着数据线22方向延伸。该多个第一电极条331分别对应覆盖位于奇数列(即第1列、第3列、第5列、……)的像素单元,该多个第二电极条341分别对应覆盖位于偶数列(即第2列、第4列、第6列、……)的像素单元。
本实施例在窄视角模式下,输出至各个像素单元的驱动电压的极性采用点反转,任一个像素单元的极性与其相邻的所有其它像素单元的极性相反,因此每个第一电极条331覆盖的一列中的各个像素单元呈现交替的正负不同极性,每个第二电极条341覆盖的一列中的各个像素单元呈现交替的正负不同极性。
本实施例在窄视角模式下,施加至第一偏压电极33上的第一交流电压的驱动频率和施加至第二偏压电极34上的第二交流电压的驱动频率均为该液晶显示装置的帧频的1/2,且输出至各个像素单元的驱动电压的极性每两帧画面反转一次。
本实施例在窄视角模式下,施加至第一偏压电极33上的第一交流电压和施加至第二偏压电极34上的第二交流电压相对于公共电极25上的直流公共电压(DC Vcom)具有相同的极性。本实施例中,施加至第一偏压电极33上的第一交流电压和施加至第二偏压电极34上的第二交流电压均为方波且具有相同的波形,即在同一帧画面内,第一交流电压和第二交流电压相对于DC Vcom均为正或均为负。
由于第一偏压电极33的每个第一电极条331覆盖的各个像素单元呈现交替的正负不同极性,第二偏压电极34的每个第二电极条341覆盖的各个像素单元也呈现交替的正负不同极性,使位于同一列中正极性和负极性的像素单元与第一偏压电极33或第二偏压电极34相互作用形成的压差下,相邻像素单元呈现的显示效果为亮暗表现。对整个画面里的所有像素单元而言,与其中较亮的像素单元所相邻的其它像素单元均为相对偏暗的像素单元,与其中较暗的像素单元相邻的其它像素单元均表现为相对偏亮。所以不会存在传统 架构的同一行中的所有像素单元表现总是偏亮或总是偏暗,由集中于同一行且相对相邻行均偏暗的像素单元形成的暗线问题,即宏观为沿着行方向排列的横纹异常现象。
本实施例的其余内容可参上述第一实施例的说明,在此不再赘述。
[第五实施例]
请参图13,本实施例与上述第一实施例的区别在于,本实施例在窄视角模式下,输出至各个像素单元的驱动电压的极性采用以相邻两个像素单元为一组的点反转方式(即2DOT inversion),相邻两个像素单元的极性相同且与其相邻的所有其它像素单元的极性相反,因此每个第一电极条331覆盖的一行中的各个像素单元呈现交替的正负不同极性,每个第二电极条341覆盖的一行中的各个像素单元呈现交替的正负不同极性。
本实施例在窄视角模式下,施加至第一偏压电极33上的第一交流电压的驱动频率和施加至第二偏压电极34上的第二交流电压的驱动频率均为该液晶显示装置的帧频的1/2,且输出至各个像素单元的驱动电压的极性每两帧画面反转一次。
本实施例在窄视角模式下,施加至第一偏压电极33上的第一交流电压和施加至第二偏压电极34上的第二交流电压相对于公共电极25上的直流公共电压(DC Vcom)具有相同的极性。
本实施例的其余内容及原理可参上述第一实施例和第三实施例的说明,在此不再赘述。
[第六实施例]
请参图14,本实施例与上述第一实施例的区别在于,本实施例中,第一偏压电极33的多个第一电极条331和第二偏压电极34的多个第二电极条341均沿着竖直方向延伸,即均沿着数据线22方向延伸。该多个第一电极条331分别对应覆盖位于奇数列(即第1列、第3列、第5列、……)的像素单元,该多个第二电极条341分别对应覆盖位于偶数列(即第2列、第4列、第6列、……)的像素单元。
本实施例在窄视角模式下,输出至各个像素单元的驱动电压的极性采用 以相邻两个像素单元为一组的点反转方式(即2DOT inversion),相邻两个像素单元的极性相同且与其相邻的所有其它像素单元的极性相反,因此每个第一电极条331覆盖的一列中的各个像素单元呈现交替的正负不同极性,每个第二电极条341覆盖的一列中的各个像素单元呈现交替的正负不同极性。
本实施例在窄视角模式下,施加至第一偏压电极33上的第一交流电压的驱动频率和施加至第二偏压电极34上的第二交流电压的驱动频率均为该液晶显示装置的帧频的1/2,且输出至各个像素单元的驱动电压的极性每两帧画面反转一次。
本实施例在窄视角模式下,施加至第一偏压电极33上的第一交流电压和施加至第二偏压电极34上的第二交流电压相对于公共电极25上的直流公共电压(DC Vcom)具有相同的极性。
本实施例的其余内容及原理可参上述第一实施例和第四实施例的说明,在此不再赘述。
[第七实施例]
请参图15,本实施例与上述第一实施例(参图7)的驱动方式区别在于,本实施例在窄视角模式下,施加至第一偏压电极33上的第一交流电压的驱动频率和施加至第二偏压电极34上的第二交流电压的驱动频率均为该液晶显示装置的帧频的1/4,即在第一交流电压和第二交流电压的一个周期T内,显示面板10刷新四帧(frame)画面,且输出至各个像素单元的驱动电压的极性每四帧画面反转一次,即第N+1帧、第N+2帧、第N+3帧和第N+4帧的显示极性相同,在第N+5帧进行极性反转,第N+8帧、第N+7帧、第N+6帧与第N+5帧的显示极性相同(N≥0)。
本实施例在窄视角模式下,施加至第一偏压电极33上的第一交流电压和施加至第二偏压电极34上的第二交流电压相对于公共电极25上的直流公共电压(DC Vcom)具有相反的极性。具体地,施加至第一偏压电极33上的第一交流电压和施加至第二偏压电极34上的第二交流电压均为方波且相对于该公共电极25上的直流公共电压(DC Vcom)呈镜像关系。
本实施例在窄视角模式下,搭配输出至各个像素单元的驱动电压的极性采用列反转方式,可以避免传统架构的同一列中的所有像素单元表现总是偏 亮或总是偏暗,由集中于同一列且相对相邻列均偏暗的像素单元形成的暗线问题,即宏观为沿着列方向排列的竖纹异常现象。
[第八实施例]
请参图16,本实施例与上述第二实施例(参图10)的驱动方式区别在于,本实施例在窄视角模式下,施加至第一偏压电极33上的第一交流电压的驱动频率和施加至第二偏压电极34上的第二交流电压的驱动频率均为该液晶显示装置的帧频的1/4,即在第一交流电压和第二交流电压的一个周期T内,显示面板10刷新四帧(frame)画面,且输出至各个像素单元的驱动电压的极性每四帧画面反转一次,即第N+1帧、第N+2帧、第N+3帧和第N+4帧的显示极性相同,在第N+5帧进行极性反转,第N+8帧、第N+7帧、第N+6帧与第N+5帧的显示极性相同(N≥0)。
本实施例在窄视角模式下,施加至第一偏压电极33上的第一交流电压和施加至第二偏压电极34上的第二交流电压相对于公共电极25上的直流公共电压(DC Vcom)具有相反的极性。具体地,施加至第一偏压电极33上的第一交流电压和施加至第二偏压电极34上的第二交流电压均为方波且相对于该公共电极25上的直流公共电压(DC Vcom)呈镜像关系。
本实施例在窄视角模式下,搭配输出至各个像素单元的驱动电压的极性采用行反转方式,可以避免传统架构的同一行中的所有像素单元表现总是偏亮或总是偏暗,由集中于同一行且相对相邻行均偏暗的像素单元形成的暗线问题,即宏观为沿着行方向排列的横纹异常现象。
[第九实施例]
请参图17,本实施例与上述第三实施例(参图11)的驱动方式区别在于,本实施例在窄视角模式下,施加至第一偏压电极33上的第一交流电压的驱动频率和施加至第二偏压电极34上的第二交流电压的驱动频率均为该液晶显示装置的帧频的1/4,即在第一交流电压和第二交流电压的一个周期T内,显示面板10刷新四帧(frame)画面,且输出至各个像素单元的驱动电压的极性每四帧画面反转一次,即第N+1帧、第N+2帧、第N+3帧和第N+4帧的显示极性相同,在第N+5帧进行极性反转,第N+8帧、第N+7帧、第N+6帧与第N+5帧的显示极性相同(N≥0)。
本实施例在窄视角模式下,施加至第一偏压电极33上的第一交流电压和施加至第二偏压电极34上的第二交流电压相对于公共电极25上的直流公共电压(DC Vcom)具有相同的极性。具体地,施加至第一偏压电极33上的第一交流电压和施加至第二偏压电极34上的第二交流电压均为方波且具有相同的波形。
本实施例在窄视角模式下,搭配输出至各个像素单元的驱动电压的极性采用点反转方式,可以避免传统架构的同一列中的所有像素单元表现总是偏亮或总是偏暗,由集中于同一列且相对相邻列均偏暗的像素单元形成的暗线问题,即宏观为沿着列方向排列的竖纹异常现象。
[第十实施例]
请参图18,本实施例与上述第四实施例(参图12)的驱动方式区别在于,本实施例在窄视角模式下,施加至第一偏压电极33上的第一交流电压的驱动频率和施加至第二偏压电极34上的第二交流电压的驱动频率均为该液晶显示装置的帧频的1/4,即在第一交流电压和第二交流电压的一个周期T内,显示面板10刷新四帧(frame)画面,且输出至各个像素单元的驱动电压的极性每四帧画面反转一次,即第N+1帧、第N+2帧、第N+3帧和第N+4帧的显示极性相同,在第N+5帧进行极性反转,第N+8帧、第N+7帧、第N+6帧与第N+5帧的显示极性相同(N≥0)。
本实施例在窄视角模式下,施加至第一偏压电极33上的第一交流电压和施加至第二偏压电极34上的第二交流电压相对于公共电极25上的直流公共电压(DC Vcom)具有相同的极性。具体地,施加至第一偏压电极33上的第一交流电压和施加至第二偏压电极34上的第二交流电压均为方波且具有相同的波形。
本实施例在窄视角模式下,搭配输出至各个像素单元的驱动电压的极性采用点反转方式,可以避免传统架构的同一行中的所有像素单元表现总是偏亮或总是偏暗,由集中于同一行且相对相邻行均偏暗的像素单元形成的暗线问题,即宏观为沿着行方向排列的横纹异常现象。
[第十一实施例]
请参图19,本实施例与上述第一实施例(参图7)的驱动方式区别在于, 本实施例在窄视角模式下,施加至第一偏压电极33上的第一交流电压的驱动频率和施加至第二偏压电极34上的第二交流电压的驱动频率均为该液晶显示装置的帧频的1/4,即在第一交流电压和第二交流电压的一个周期T内,显示面板10刷新四帧(frame)画面,且输出至各个像素单元的驱动电压的极性每一帧画面反转一次,即每个像素单元在相邻两帧画面的极性均不同。
本实施例在窄视角模式下,施加至第一偏压电极33上的第一交流电压和施加至第二偏压电极34上的第二交流电压相对于公共电极25上的直流公共电压(DC Vcom)具有相反的极性。具体地,施加至第一偏压电极33上的第一交流电压和施加至第二偏压电极34上的第二交流电压均为方波且相对于该公共电极25上的直流公共电压(DC Vcom)呈镜像关系。
本实施例在窄视角模式下,搭配输出至各个像素单元的驱动电压的极性采用列反转方式,可以避免传统架构的同一列中的所有像素单元表现总是偏亮或总是偏暗,由集中于同一列且相对相邻列均偏暗的像素单元形成的暗线问题,即宏观为沿着列方向排列的竖纹异常现象。
[第十二实施例]
请参图20,本实施例与上述第二实施例(参图10)的驱动方式区别在于,本实施例在窄视角模式下,施加至第一偏压电极33上的第一交流电压的驱动频率和施加至第二偏压电极34上的第二交流电压的驱动频率均为该液晶显示装置的帧频的1/4,即在第一交流电压和第二交流电压的一个周期T内,显示面板10刷新四帧(frame)画面,且输出至各个像素单元的驱动电压的极性每一帧画面反转一次,即每个像素单元在相邻两帧画面的极性均不同。
本实施例在窄视角模式下,施加至第一偏压电极33上的第一交流电压和施加至第二偏压电极34上的第二交流电压相对于公共电极25上的直流公共电压(DC Vcom)具有相反的极性。具体地,施加至第一偏压电极33上的第一交流电压和施加至第二偏压电极34上的第二交流电压均为方波且相对于该公共电极25上的直流公共电压(DC Vcom)呈镜像关系。
本实施例在窄视角模式下,搭配输出至各个像素单元的驱动电压的极性采用行反转方式,可以避免传统架构的同一行中的所有像素单元表现总是偏亮或总是偏暗,由集中于同一行且相对相邻行均偏暗的像素单元形成的暗线 问题,即宏观为沿着行方向排列的横纹异常现象。
[第十三实施例]
请参图21,本实施例与上述第三实施例(参图11)的驱动方式区别在于,本实施例在窄视角模式下,施加至第一偏压电极33上的第一交流电压的驱动频率和施加至第二偏压电极34上的第二交流电压的驱动频率均为该液晶显示装置的帧频的1/4,即在第一交流电压和第二交流电压的一个周期T内,显示面板10刷新四帧(frame)画面,且输出至各个像素单元的驱动电压的极性每一帧画面反转一次,即每个像素单元在相邻两帧画面的极性均不同。
本实施例在窄视角模式下,施加至第一偏压电极33上的第一交流电压和施加至第二偏压电极34上的第二交流电压相对于公共电极25上的直流公共电压(DC Vcom)具有相同的极性。具体地,施加至第一偏压电极33上的第一交流电压和施加至第二偏压电极34上的第二交流电压均为方波且具有相同的波形。
本实施例在窄视角模式下,搭配输出至各个像素单元的驱动电压的极性采用点反转方式,可以避免传统架构的同一列中的所有像素单元表现总是偏亮或总是偏暗,由集中于同一列且相对相邻列均偏暗的像素单元形成的暗线问题,即宏观为沿着列方向排列的竖纹异常现象。
[第十四实施例]
请参图22,本实施例与上述第四实施例(参图12)的驱动方式区别在于,本实施例在窄视角模式下,施加至第一偏压电极33上的第一交流电压的驱动频率和施加至第二偏压电极34上的第二交流电压的驱动频率均为该液晶显示装置的帧频的1/4,即在第一交流电压和第二交流电压的一个周期T内,显示面板10刷新四帧(frame)画面,且输出至各个像素单元的驱动电压的极性每一帧画面反转一次,即每个像素单元在相邻两帧画面的极性均不同。
本实施例在窄视角模式下,施加至第一偏压电极33上的第一交流电压和施加至第二偏压电极34上的第二交流电压相对于公共电极25上的直流公共电压(DC Vcom)具有相同的极性。具体地,施加至第一偏压电极33上的第一交流电压和施加至第二偏压电极34上的第二交流电压均为方波且具有相同的波形。
本实施例在窄视角模式下,搭配输出至各个像素单元的驱动电压的极性采用点反转方式,可以避免传统架构的同一行中的所有像素单元表现总是偏亮或总是偏暗,由集中于同一行且相对相邻行均偏暗的像素单元形成的暗线问题,即宏观为沿着行方向排列的横纹异常现象。
[第十五实施例]
当第一偏压电极33和第二偏压电极34采用ITO、IZO等透明导电材质制成时,由于ITO、IZO的阻抗和负载较大,使得第一偏压电极33和第二偏压电极34上输送的电压波形容易失真和产生信号延迟。如图23所示,上基板30还设有多个第一金属条37和多个第二金属条38,该多个第一金属条37与该多个第一电极条331平行且分别与该多个第一电极条331导电连接,该多个第二金属条38与该多个第二电极条341平行且分别与该多个第二电极条341导电连接。
该多个第一金属条37和该多个第二金属条38可以由Mo、Al、Au、Ag、Cu等电阻率较低的金属制成。这些金属条37、38与黑矩阵31的位置相对应,每一金属条37(或38)可以与开口区对应的电极条331(或341)通过部分接触而导通。
通过设置分别与第一偏压电极33和第二偏压电极34导电连接的第一金属条37和第二金属条38,这些金属条37、38的电阻较小,导通能力较强,大大降低了第一偏压电极33和第二偏压电极34的阻抗与负载,从而解决第一偏压电极33和第二偏压电极34上的信号延迟问题,可减小波形失真现象,避免波形失真或信号衰减导致显示画质异常。
本实施例中,这些金属条37、38和第一电极条331以及第二电极条341均沿着竖直方向延伸,即沿着数据线22所在的方向延伸。
这些金属条37、38在上基板30的具体位置可以不做限制,可根据需要进行调整,具体可参图24a至图24d所示。
如图24a所示,上基板30在朝向液晶层40的一侧设有黑矩阵31、色阻层32、第一平坦层35、第一金属条37、第二金属条38、第一偏压电极33、第二偏压电极34以及第二平坦层36。第一平坦层35覆盖黑矩阵31和色阻层32,然后在第一平坦层35上依次形成第一金属条37、第二金属条38、第 一偏压电极33和第二偏压电极34,再利用第二平坦层36依次覆盖第一金属条37、第二金属条38、第一偏压电极33和第二偏压电极34。
如图24b所示,上基板30在朝向液晶层40的一侧设有黑矩阵31、色阻层32、第一平坦层35、第一偏压电极33、第二偏压电极34、第一金属条37、第二金属条38以及第二平坦层36。第一平坦层35覆盖黑矩阵31和色阻层32,然后在第一平坦层35上依次形成第一偏压电极33、第二偏压电极34、第一金属条37和第二金属条38,再利用第二平坦层36依次覆盖第一偏压电极33、第二偏压电极34、第一金属条37和第二金属条38。
如图24c所示,上基板30在朝向液晶层40的一侧设有黑矩阵31、色阻层32、第一偏压电极33、第二偏压电极34、第一金属条37、第二金属条38以及平坦层39。在黑矩阵31和色阻层32上形成第一偏压电极33、第二偏压电极34、第一金属条37和第二金属条38,再利用平坦层39覆盖第一偏压电极33、第二偏压电极34、第一金属条37和第二金属条38。
如图24d所示,上基板30在朝向液晶层40的一侧设有黑色金属、色阻层32、第一偏压电极33、第二偏压电极34以及平坦层39。黑色金属制作成第一金属条37和第二金属条38,且利用第一金属条37和第二金属条38兼做竖直方向上的黑矩阵(BM),从而节省原有黑矩阵(BM)的制作步骤和成本。在黑色金属和色阻层32上形成第一偏压电极33和第二偏压电极34,再利用平坦层39覆盖第一偏压电极33、第二偏压电极34和黑色金属。
[第十六实施例]
如图25所示,本实施例中,上基板30还设有多个第一金属条37和多个第二金属条38,该多个第一金属条37与该多个第一电极条331平行且分别与该多个第一电极条331导电连接,该多个第二金属条38与该多个第二电极条341平行且分别与该多个第二电极条341导电连接。
该多个第一金属条37和该多个第二金属条38可以由Mo、Al、Au、Ag、Cu等电阻率较低的金属制成。这些金属条37、38与黑矩阵31的位置相对应,每一金属条37(或38)可以与开口区对应的电极条331(或341)通过部分接触而导通。
本实施例中,这些金属条37、38和第一电极条331以及第二电极条341 均沿着水平方向延伸,即沿着扫描线21所在的方向延伸。
这些金属条37、38在上基板30的具体位置可以不做限制,可根据需要进行调整,具体可参图26a至图26d所示。
如图26a所示,上基板30在朝向液晶层40的一侧设有黑矩阵31、色阻层32、第一平坦层35、第一金属条37、第二金属条38、第一偏压电极33、第二偏压电极34以及第二平坦层36。第一平坦层35覆盖黑矩阵31和色阻层32,然后在第一平坦层35上依次形成第一金属条37、第二金属条38、第一偏压电极33和第二偏压电极34,再利用第二平坦层36依次覆盖第一金属条37、第二金属条38、第一偏压电极33和第二偏压电极34。
如图26b所示,上基板30在朝向液晶层40的一侧设有黑矩阵31、色阻层32、第一平坦层35、第一偏压电极33、第二偏压电极34、第一金属条37、第二金属条38以及第二平坦层36。第一平坦层35覆盖黑矩阵31和色阻层32,然后在第一平坦层35上依次形成第一偏压电极33、第二偏压电极34、第一金属条37和第二金属条38,再利用第二平坦层36依次覆盖第一偏压电极33、第二偏压电极34、第一金属条37和第二金属条38。
如图26c所示,上基板30在朝向液晶层40的一侧设有黑矩阵31、色阻层32、第一偏压电极33、第二偏压电极34、第一金属条37、第二金属条38以及平坦层39。在黑矩阵31和色阻层32上形成第一偏压电极33、第二偏压电极34、第一金属条37和第二金属条38,再利用平坦层39覆盖第一偏压电极33、第二偏压电极34、第一金属条37和第二金属条38。
如图26d所示,上基板30在朝向液晶层40的一侧设有黑色金属、色阻层32、第一偏压电极33、第二偏压电极34以及平坦层39。黑色金属制作成第一金属条37和第二金属条38,且利用第一金属条37和第二金属条38兼做水平方向上的黑矩阵(BM),从而节省原有黑矩阵(BM)的制作步骤和成本。在黑色金属和色阻层32上形成第一偏压电极33和第二偏压电极34,再利用平坦层39覆盖第一偏压电极33、第二偏压电极34和黑色金属。
[第十七实施例]
请参图27与图28,本实施例提供的液晶显示装置与上述第一实施例的区别在于,本实施例中的液晶层40采用负性液晶分子。随着技术进步,负性 液晶的性能得到显著提高,应用也越发广泛。本实施例中,如图27所示,在初始状态下,液晶层40内的负性液晶分子相对于基板20、30具有较大的初始预倾角,即负性液晶分子在初始状态相对于基板20、30呈倾斜姿态。
窄视角模式:请参图27,本实施例当施加在第一偏压电极33与公共电极25之间以及第二偏压电极34与公共电极25之间的电压差均小于预定值(如小于1V)时,由于第一偏压电极33与公共电极25之间以及第二偏压电极34与公共电极25之间的电压差较小,液晶层40中液晶分子的倾斜角度几乎不发生变化,仍保持为倾斜姿态,使液晶显示装置出现大角度观察漏光,在斜视方向对比度降低且视角变窄,此时该液晶显示装置实现窄视角显示。即:本实施例在窄视角模式下的驱动方式与上述第一实施例在宽视角模式下的驱动方式对应相同。
宽视角模式:请参图28,本实施例当向第一偏压电极33施加第一交流电压,向第二偏压电极34施加第二交流电压,使第一偏压电极33与公共电极25之间以及第二偏压电极34与公共电极25之间的电压差均大于预设值(如大于3V)时,由于第一偏压电极33与公共电极25之间以及第二偏压电极34与公共电极25之间的电压差较大,会在液晶盒中下基板20与上基板30之间产生较强的垂直电场E(如图28中箭头所示),由于负性液晶分子在电场作用下将沿着垂直于电场线的方向偏转,因此负性液晶分子在垂直电场E作用下发生偏转,使液晶分子与基板20、30之间的倾斜角度减小,液晶显示装置出现大角度漏光现象会相应减少,在斜视方向对比度提高且视角增大,该液晶显示装置最终实现宽视角显示。即:本实施例在宽视角模式下的驱动方式与上述第一实施例在窄视角模式下的驱动方式对应相同。
本实施例的其他结构和原理可以参见上述各个实施例,在此不再赘述。
[第十八实施例]
请参图29a与图29b,为了方便切换宽窄视角,进一步地,该液晶显示装置还设有视角切换按键80,用于切换该液晶显示装置的不同视角模式。视角切换按键80可以为机械按键(如图29a),也可以为虚拟按键(如图29b,通过软件控制或者应用程序来设定)。当用户需要切换宽窄视角时,可通过操作该视角切换按键80向液晶显示装置发出视角切换请求,最终由驱动电路50 控制施加在上基板30的第一偏压电极33和第二偏压电极34上的电压信号,以及搭配控制下基板20的反转驱动方式,来实现宽窄视角的切换,从而用户可以根据的不同防窥需求,自由选择切换宽窄视角,因此本发明实施例的液晶显示装置具有较强的操作灵活性和方便性。
以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
工业实用性
本发明实施例中提供的驱动方法,通过上基板的偏压电极的排列方式与施加信号,搭配下基板的反转驱动方式,可以实现宽窄视角两种模式的切换,同时解决传统架构中存在的竖纹与横纹问题,提高显示装置的显示画质。

Claims (15)

  1. 一种宽窄视角可切换的液晶显示装置的驱动方法,该液晶显示装置包括下基板、上基板和位于该下基板与该上基板之间的液晶层;该下基板设有扫描线、数据线、像素电极和公共电极,该下基板由多条扫描线与多条数据线相互绝缘交叉限定形成多个像素单元;该上基板设有第一偏压电极和第二偏压电极,该第一偏压电极包括电连接在一起的多个第一电极条,该第二偏压电极包括电连接在一起的多个第二电极条,该多个第一电极条与该多个第二电极条呈叉指状相互插入配合,其特征在于,该驱动方法包括:
    在第一种视角模式下,向该公共电极施加直流公共电压,向各个像素单元输出驱动电压并通过不同的电压值实现灰阶显示,向该第一偏压电极和该第二偏压电极施加电压信号,使该第一偏压电极与该公共电极之间以及该第二偏压电极与该公共电极之间的电压差均小于预设值;
    在第二种视角模式下,向该公共电极施加直流公共电压,向各个像素单元输出驱动电压并通过不同的电压值实现灰阶显示,向该第一偏压电极施加第一交流电压,向该第二偏压电极施加第二交流电压,使该第一偏压电极与该公共电极之间以及该第二偏压电极与该公共电极之间的电压差均大于预设值;
    而且在第二种视角模式下,该第一偏压电极的每个第一电极条覆盖的各个像素单元呈现交替的正负不同极性,该第二偏压电极的每个第二电极条覆盖的各个像素单元呈现交替的正负不同极性。
  2. 根据权利要求1所述的驱动方法,其特征在于,该多个第一电极条与该多个第二电极条均沿着水平方向延伸;在第二种视角模式下,输出至各个像素单元的驱动电压的极性采用列反转。
  3. 根据权利要求1所述的驱动方法,其特征在于,该多个第一电极条与该多个第二电极条均沿着竖直方向延伸;在第二种视角模式下,输出至各个像素单元的驱动电压的极性采用行反转。
  4. 根据权利要求2或3所述的驱动方法,其特征在于,在第二种视角模式下,施加至该第一偏压电极上的第一交流电压和施加至该第二偏压电极上 的第二交流电压相对于该公共电极上的直流公共电压具有相反的极性。
  5. 根据权利要求4所述的驱动方法,其特征在于,在第二种视角模式下,施加至该第一偏压电极上的第一交流电压和施加至该第二偏压电极上的第二交流电压均为方波且相对于该公共电极上的直流公共电压呈镜像关系。
  6. 根据权利要求1所述的驱动方法,其特征在于,该多个第一电极条与该多个第二电极条均沿着水平方向或竖直方向延伸;在第二种视角模式下,输出至各个像素单元的驱动电压的极性采用点反转。
  7. 根据权利要求6所述的驱动方法,其特征在于,在第二种视角模式下,施加至该第一偏压电极上的第一交流电压和施加至该第二偏压电极上的第二交流电压相对于该公共电极上的直流公共电压具有相同的极性。
  8. 根据权利要求7所述的驱动方法,其特征在于,在第二种视角模式下,施加至该第一偏压电极上的第一交流电压和施加至该第二偏压电极上的第二交流电压均为方波且具有相同的波形。
  9. 根据权利要求1所述的驱动方法,其特征在于,在第二种视角模式下,施加至该第一偏压电极上的第一交流电压的驱动频率和施加至该第一偏压电极上的第二交流电压的驱动频率均为该液晶显示装置的帧频的1/2,且输出至各个像素单元的驱动电压的极性每两帧画面反转一次。
  10. 根据权利要求1所述的驱动方法,其特征在于,在第二种视角模式下,施加至该第一偏压电极上的第一交流电压的驱动频率和施加至该第一偏压电极上的第二交流电压的驱动频率均为该液晶显示装置的帧频的1/4,且输出至各个像素单元的驱动电压的极性每一帧画面反转一次或每四帧画面反转一次。
  11. 根据权利要求1所述的驱动方法,其特征在于,在第一种视角模式下,向该第一偏压电极和该第二偏压电极均施加与该公共电极的直流公共电压相同的直流电压信号,使该第一偏压电极与该公共电极之间以及该第二偏压电极与该公共电极之间的电压差均为零。
  12. 根据权利要求1所述的驱动方法,其特征在于,该液晶层采用正性液晶分子,第一种视角模式为宽视角模式,第二种视角模式为窄视角模式。
  13. 根据权利要求1所述的驱动方法,其特征在于,该液晶层采用负性液晶分子,第一种视角模式为窄视角模式,第二种视角模式为宽视角模式。
  14. 根据权利要求1所述的驱动方法,其特征在于,该上基板还设有多个第一金属条和多个第二金属条,该多个第一金属条与该多个第一电极条平行且分别与该多个第一电极条导电连接,该多个第二金属条与该多个第二电极条平行且分别与该多个第二电极条导电连接。
  15. 根据权利要求1所述的驱动方法,其特征在于,该液晶显示装置设有视角切换按键,用于切换该液晶显示装置的不同视角模式。
PCT/CN2017/091723 2017-07-04 2017-07-04 宽窄视角可切换的液晶显示装置的驱动方法 WO2019006665A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2017/091723 WO2019006665A1 (zh) 2017-07-04 2017-07-04 宽窄视角可切换的液晶显示装置的驱动方法
US16/626,265 US11187928B2 (en) 2017-07-04 2017-07-04 Method for driving liquid crystal display device capable of switching between wide viewing angle and narrow viewing angle
CN201780002179.6A CN107995958B (zh) 2017-07-04 2017-07-04 宽窄视角可切换的液晶显示装置的驱动方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/091723 WO2019006665A1 (zh) 2017-07-04 2017-07-04 宽窄视角可切换的液晶显示装置的驱动方法

Publications (1)

Publication Number Publication Date
WO2019006665A1 true WO2019006665A1 (zh) 2019-01-10

Family

ID=62041325

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/091723 WO2019006665A1 (zh) 2017-07-04 2017-07-04 宽窄视角可切换的液晶显示装置的驱动方法

Country Status (3)

Country Link
US (1) US11187928B2 (zh)
CN (1) CN107995958B (zh)
WO (1) WO2019006665A1 (zh)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108983462A (zh) * 2018-08-27 2018-12-11 昆山龙腾光电有限公司 液晶显示装置的驱动方法
CN108873417B (zh) * 2018-08-28 2021-06-22 昆山龙腾光电股份有限公司 液晶显示装置的驱动方法
CN109166548B (zh) * 2018-10-08 2020-10-30 昆山龙腾光电股份有限公司 一种宽窄视角切换的液晶显示器
CN110268306B (zh) * 2018-11-05 2022-01-18 昆山龙腾光电股份有限公司 液晶显示装置的驱动方法
CN109298557B (zh) * 2018-11-13 2021-07-13 昆山龙腾光电股份有限公司 显示面板和防窥显示方法及显示装置
CN109633936B (zh) * 2018-12-10 2021-08-17 昆山龙腾光电股份有限公司 液晶显示装置及驱动方法
CN109671409A (zh) * 2019-01-30 2019-04-23 惠科股份有限公司 显示面板的驱动装置、驱动方法、显示设备及存储介质
CN109616075B (zh) * 2019-01-30 2021-04-06 惠科股份有限公司 显示面板的驱动方法、装置、设备及存储介质
CN109584836B (zh) * 2019-01-30 2021-02-19 惠科股份有限公司 显示面板的驱动方法、驱动装置、显示设备以及存储介质
CN110568677B (zh) * 2019-09-12 2022-04-22 京东方科技集团股份有限公司 一种显示面板及其制备方法、显示装置
JP7348808B2 (ja) * 2019-10-24 2023-09-21 シャープ株式会社 液晶表示装置
CN110824798B (zh) * 2019-11-13 2022-05-13 昆山龙腾光电股份有限公司 阵列基板及液晶显示面板
CN111968589A (zh) * 2020-08-11 2020-11-20 Tcl华星光电技术有限公司 显示面板的视角补偿方法及显示面板
CN114360465B (zh) * 2021-12-27 2023-05-26 厦门天马微电子有限公司 一种液晶显示装置及液晶显示装置的驱动方法

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020030782A1 (en) * 2000-09-14 2002-03-14 Yun-Bok Lee In-plane switching mode thin film transistor liquid crystal display device with wide viewing angle
KR20050039981A (ko) * 2003-10-27 2005-05-03 엘지.필립스 엘시디 주식회사 횡전계방식 액정표시소자
CN101097316A (zh) * 2006-06-26 2008-01-02 Lg.菲利浦Lcd株式会社 液晶显示装置及其驱动方法
CN101211032A (zh) * 2006-12-29 2008-07-02 群康科技(深圳)有限公司 液晶显示装置及其显示方法
CN101329465A (zh) * 2008-05-30 2008-12-24 上海广电光电子有限公司 彩膜基板及其制造方法
CN102854670A (zh) * 2012-06-01 2013-01-02 京东方科技集团股份有限公司 液晶显示视角控制方法、液晶显示面板和液晶显示器
CN104298020A (zh) * 2014-10-20 2015-01-21 京东方科技集团股份有限公司 应用于ads显示装置中的阵列基板
CN104317097A (zh) * 2014-10-31 2015-01-28 京东方科技集团股份有限公司 一种coa基板及其制作方法和显示装置
CN104932167A (zh) * 2015-06-25 2015-09-23 深圳市华星光电技术有限公司 蓝相液晶显示装置及其驱动方法
CN105652532A (zh) * 2016-03-07 2016-06-08 友达光电股份有限公司 液晶显示面板以及其驱动方法
CN105807511A (zh) * 2016-04-13 2016-07-27 昆山龙腾光电有限公司 显示面板、显示装置及其驱动方法
CN105807512A (zh) * 2016-04-13 2016-07-27 昆山龙腾光电有限公司 显示面板、显示装置及其驱动方法
CN106646936A (zh) * 2016-11-02 2017-05-10 昆山龙腾光电有限公司 视角可切换的液晶显示装置及驱动方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080051536A (ko) 2006-12-06 2008-06-11 삼성전자주식회사 액정 표시 장치
CN101881911B (zh) * 2009-05-07 2012-08-22 上海天马微电子有限公司 液晶显示装置及其驱动方法
CN102445793B (zh) * 2010-10-14 2015-01-21 上海天马微电子有限公司 液晶显示装置及其驱动方法
WO2012144174A1 (ja) * 2011-04-20 2012-10-26 シャープ株式会社 液晶表示装置
WO2013058157A1 (ja) * 2011-10-18 2013-04-25 シャープ株式会社 液晶表示パネル及び液晶表示装置
CN205301759U (zh) 2016-01-19 2016-06-08 昆山龙腾光电有限公司 一种彩膜基板和液晶显示面板
TWI571671B (zh) * 2016-02-19 2017-02-21 友達光電股份有限公司 液晶顯示面板
TWI607364B (zh) 2016-09-22 2017-12-01 友達光電股份有限公司 觸控顯示面板及其驅動方法
TWI585499B (zh) 2016-10-26 2017-06-01 友達光電股份有限公司 顯示面板

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020030782A1 (en) * 2000-09-14 2002-03-14 Yun-Bok Lee In-plane switching mode thin film transistor liquid crystal display device with wide viewing angle
KR20050039981A (ko) * 2003-10-27 2005-05-03 엘지.필립스 엘시디 주식회사 횡전계방식 액정표시소자
CN101097316A (zh) * 2006-06-26 2008-01-02 Lg.菲利浦Lcd株式会社 液晶显示装置及其驱动方法
CN101211032A (zh) * 2006-12-29 2008-07-02 群康科技(深圳)有限公司 液晶显示装置及其显示方法
CN101329465A (zh) * 2008-05-30 2008-12-24 上海广电光电子有限公司 彩膜基板及其制造方法
CN102854670A (zh) * 2012-06-01 2013-01-02 京东方科技集团股份有限公司 液晶显示视角控制方法、液晶显示面板和液晶显示器
CN104298020A (zh) * 2014-10-20 2015-01-21 京东方科技集团股份有限公司 应用于ads显示装置中的阵列基板
CN104317097A (zh) * 2014-10-31 2015-01-28 京东方科技集团股份有限公司 一种coa基板及其制作方法和显示装置
CN104932167A (zh) * 2015-06-25 2015-09-23 深圳市华星光电技术有限公司 蓝相液晶显示装置及其驱动方法
CN105652532A (zh) * 2016-03-07 2016-06-08 友达光电股份有限公司 液晶显示面板以及其驱动方法
CN105807511A (zh) * 2016-04-13 2016-07-27 昆山龙腾光电有限公司 显示面板、显示装置及其驱动方法
CN105807512A (zh) * 2016-04-13 2016-07-27 昆山龙腾光电有限公司 显示面板、显示装置及其驱动方法
CN106646936A (zh) * 2016-11-02 2017-05-10 昆山龙腾光电有限公司 视角可切换的液晶显示装置及驱动方法

Also Published As

Publication number Publication date
CN107995958A (zh) 2018-05-04
US11187928B2 (en) 2021-11-30
CN107995958B (zh) 2021-01-15
US20200159050A1 (en) 2020-05-21

Similar Documents

Publication Publication Date Title
US11187928B2 (en) Method for driving liquid crystal display device capable of switching between wide viewing angle and narrow viewing angle
CN110824740B (zh) 显示面板、显示面板的视角控制方法及显示装置
CN106646936B (zh) 视角可切换的液晶显示装置及驱动方法
CN107255895B (zh) 阵列基板和液晶显示装置及驱动方法
US10809551B2 (en) Liquid crystal display device having switchable viewing angles and viewing angle switching method thereof
US10649283B2 (en) Liquid crystal display device with switchable viewing angle and viewing angle switching method
CN107193164B (zh) 阵列基板和液晶显示装置及驱动方法
CN107466376B (zh) 视角可切换的液晶显示装置及视角切换方法
CN107797343B (zh) 视角可切换的液晶显示装置及其驱动方法
CN107861278B (zh) 液晶显示装置
CN107966835B (zh) 阵列基板和液晶显示装置及驱动方法
CN107229163B (zh) 宽窄视角可切换的液晶显示装置及驱动方法
CN107942590B (zh) 阵列基板和液晶显示装置及驱动方法
CN107678213B (zh) 阵列基板和液晶显示装置及驱动方法
CN107390403B (zh) 液晶显示装置及驱动方法
CN107678214B (zh) 阵列基板和液晶显示装置及驱动方法
CN108873417B (zh) 液晶显示装置的驱动方法
CN110376773B (zh) 视角可切换液晶显示装置的驱动方法
CN108196380A (zh) 视角可切换的液晶显示装置及驱动方法
CN108490651A (zh) 阵列基板和液晶显示装置及驱动方法
CN206892490U (zh) 宽窄视角可切换的液晶显示装置
JP3774858B2 (ja) 液晶表示装置とその駆動方法
CN109188816B (zh) 阵列基板及其驱动方法和液晶显示装置及其驱动方法
CN110703518B (zh) 液晶显示装置及其驱动方法
TWI704552B (zh) 液晶顯示裝置的驅動方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17916725

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17916725

Country of ref document: EP

Kind code of ref document: A1