WO2019006651A1 - 一种空间定位方法及系统 - Google Patents

一种空间定位方法及系统 Download PDF

Info

Publication number
WO2019006651A1
WO2019006651A1 PCT/CN2017/091616 CN2017091616W WO2019006651A1 WO 2019006651 A1 WO2019006651 A1 WO 2019006651A1 CN 2017091616 W CN2017091616 W CN 2017091616W WO 2019006651 A1 WO2019006651 A1 WO 2019006651A1
Authority
WO
WIPO (PCT)
Prior art keywords
coordinate
unit
code
dimensional
dimensional coordinate
Prior art date
Application number
PCT/CN2017/091616
Other languages
English (en)
French (fr)
Inventor
王勇
Original Assignee
王勇
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 王勇 filed Critical 王勇
Priority to PCT/CN2017/091616 priority Critical patent/WO2019006651A1/zh
Publication of WO2019006651A1 publication Critical patent/WO2019006651A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions

Definitions

  • the present invention relates to the field of spatial positioning, and in particular, to a spatial positioning method and system.
  • the technical problem to be solved by the present invention is to provide a spatial positioning method and system for quickly locating measurement points.
  • the invention discloses a spatial positioning method, comprising the steps of:
  • the method for identifying at least three coordinate coding units on the two-dimensional coordinate code by measuring points includes:
  • At least three coordinate encoding units are identified based on the unit coding element.
  • the method for acquiring three-dimensional coordinates according to the coordinate coding unit includes:
  • the three-dimensional coordinates are obtained by querying the preset data table according to the unit value.
  • the method for establishing a spatial coordinate system according to the two-dimensional coordinate code includes:
  • the origin is set
  • the plane in which the two-dimensional coordinate code is located is an XY plane.
  • the present invention also discloses a spatial positioning system, comprising:
  • a display unit for displaying a two-dimensional coordinate code
  • a detecting unit configured to identify at least three coordinate encoding units on the two-dimensional coordinate code
  • a processing unit configured to acquire three-dimensional coordinates according to the coordinate encoding unit, and acquire three-dimensional coordinates of the positioning measuring instrument according to the three-dimensional coordinates and the angle information of the positioning measuring instrument.
  • the display unit displays the two-dimensional coordinate code
  • the detecting unit acquires an image of the two-dimensional coordinate code in the field of view of the measurement point, performs necessary correction on the acquired image of the two-dimensional coordinate code, and reads out the code of the sub-coded block and The deviation of the center of the field of view of the optical coordinate reader to the coding block, and then obtaining the unit coding element according to the corner points and the edge lines in the image, and identifying at least three coordinates on the two-dimensional coordinate code from the image of the acquired two-dimensional coordinate code
  • the coding unit sends the detected coordinate coding unit to the processing unit for processing, and according to the angle information of the view ray of at least three measurement points on the positioning measuring instrument, the three-dimensional coordinates of the acquisition positioning measuring instrument can be conveniently and simply obtained.
  • the display unit includes a substrate and a two-dimensional coordinate code, the two-dimensional coordinate code is disposed on the substrate, the two-dimensional coordinate code includes a plurality of coordinate coding units, and each of the coordinate coding units is disposed at the a predetermined position of the substrate, each of the coordinate encoding units including a plurality of optical special A unit coded element, each of which encodes an element value defined by an optical property.
  • any set of numbers of the arrangement of the element values of each of the unit coding elements in each coordinate coding unit corresponds to a unique unit value, each of the unit values corresponding to a unique two-dimensional coordinate.
  • each of the unit coding elements is a passive mirror mounted on the substrate, wherein the optical characteristic is one of a shape, a color, a brightness, a grayscale, and a pattern, or a combination thereof.
  • each of said unit coding elements is an optical image of a projector
  • said substrate is a projection screen for carrying an optical image of each of said plurality of said coordinate coding units.
  • each of the unit coding elements is a light source fixed to the substrate, wherein the optical characteristic is one of a color, a brightness, and an illumination level or a combination thereof.
  • each of the unit coding elements is an active illuminator fixed to the substrate to form a display screen from which the unit coded element emits an optical signal.
  • the detecting unit comprises at least three measuring points, and an angle is formed between the viewing angle rays of each of the measuring points.
  • the processing unit includes an image module, the image module is configured to process an image of a two-dimensional coordinate code within a field of view of the measurement point, identify a unit coding element in the image, and acquire coordinates in the image. Coding unit.
  • the processing unit includes a transcoding module, and the transcoding module is configured to process any group of numbers corresponding to the arrangement of the element values in the coordinate encoding unit to correspond to a unique unit value.
  • the processing unit includes a storage module, and the storage module is configured to store a data table, where the data table matches the unit value and the unique corresponding two-dimensional coordinates.
  • the present invention obtains at least three coordinate coding units by using a plurality of sets of optical coordinate readers to obtain at least three coordinate codes by providing and utilizing two-dimensional coordinate codes to provide coordinate information and coordinate information using the two-dimensional coordinate codes as a reference.
  • the three-dimensional coordinates of the unit combined with the angle information of the angle of view of the multiple sets of optical coordinate readers, can quickly and efficiently calculate and determine the three-dimensional coordinates of the measurement points.
  • the relative angle of the optical coordinate reader is fixed and can be effectively calculated.
  • the two-dimensional coordinate code does not need to transmit a signal, can effectively avoid the error caused by the delay of the transmitted signal, thereby making the spatial location of the measurement point more accurate, and the positioning calculation of the measurement point is based on a simple two-dimensional coordinate code.
  • Identification power consumption can be controlled at a lower level, without the need for complex graphics calculators and powerful processing chips to visually identify and spatially reconstruct the surrounding environment, which can effectively reduce the cost of the spatial positioning system, and further effectively
  • the volume and weight of the spatial positioning system are reduced, so that the mobility of the spatial positioning system is better; and when the measuring points are moved, the three-dimensional coordinate information of the two-dimensional coordinate code is read in real time through multiple sets of optical coordinate readers, The three-dimensional coordinates of the measurement points are obtained in real time, combined with the fixed angle information of the optical coordinate reader, so that the movement information of the measurement points can be calculated and obtained in real time.
  • FIG. 1 is a flowchart of a spatial positioning method according to an embodiment of the present invention.
  • FIG. 2 is a flowchart of a spatial positioning method according to an embodiment of the present invention.
  • FIG. 3 is a schematic flow chart of a spatial positioning method according to an embodiment of the present invention.
  • FIG. 4 is a flowchart of a spatial positioning method according to an embodiment of the present invention.
  • FIG. 5 is a schematic flowchart diagram of a spatial positioning method according to an embodiment of the present invention.
  • FIG. 6 is a flowchart of a spatial positioning method according to an embodiment of the present invention.
  • FIG. 7 is a schematic structural diagram of a spatial positioning system according to an embodiment of the present invention.
  • FIG. 8A is a schematic diagram of application of a spatial positioning system according to an embodiment of the present invention.
  • FIG. 8B is a schematic diagram of application of a spatial positioning system according to an embodiment of the present invention.
  • 9A is a schematic view showing the angle between three points of a space in an embodiment of the present invention.
  • 9B is a schematic view showing the angle between three points of a space and a measuring point according to an embodiment of the present invention.
  • FIG. 10 is a schematic diagram of application of a spatial positioning system according to an embodiment of the present invention.
  • FIG. 11 is a schematic diagram of a dot matrix type two-dimensional coordinate code according to an embodiment of the present invention.
  • Figure 12 is a schematic view of a helmet equipped with a plurality of lenses according to an embodiment of the present invention.
  • Figure 13 is a schematic illustration of a two-dimensional coordinate code with grid lines in accordance with an embodiment of the present invention.
  • first and second are used for descriptive purposes only and are not to be construed as indicating or implying a relative importance or implicitly indicating the number of technical features indicated. Thus, features defining “first” and “second” may include one or more of the features either explicitly or implicitly.
  • a plurality means two or more unless otherwise stated.
  • the term “comprises” and its variations are intended to cover a non-exclusive inclusion.
  • connection In the description of the present invention, it should be noted that the terms “installation”, “connected”, and “connected” are to be understood broadly, and may be fixed or detachable, for example, unless otherwise explicitly defined and defined. Connected, or integrally connected; can be mechanical or electrical; can be directly connected, or indirectly connected through an intermediate medium, can be the internal communication of the two components.
  • Connected, or integrally connected can be mechanical or electrical; can be directly connected, or indirectly connected through an intermediate medium, can be the internal communication of the two components.
  • the specific meanings of the above terms in the present invention can be understood on a case-by-case basis.
  • the present invention discloses a spatial positioning method, including the steps:
  • S16 Acquire three-dimensional coordinates of the measurement point according to the three-dimensional coordinates and the angle information.
  • the plurality of sets of optical coordinate readers are used to read at least three coordinate encoding units 26 to obtain at least three coordinate encodings.
  • the three-dimensional coordinates of the unit 26, combined with the angle information of the viewing angle rays of the plurality of sets of optical coordinate readers, can quickly and efficiently calculate and determine the three-dimensional coordinates of the measuring points, and the relative angles of the optical coordinate readers are fixed, which can be effective.
  • the two-dimensional coordinate code 20 does not need to transmit a signal, and can effectively avoid the error caused by the delay of the transmitted signal, thereby making the spatial location of the measurement point more accurate, and the positioning calculation of the measurement point is based on
  • the simple two-dimensional coordinate code 20 recognition power consumption can be controlled at a lower level, without the need for complex graphics calculators and powerful processing chips to visually identify and spatially reconstruct the surrounding environment, which can effectively reduce spatial positioning.
  • the cost of the system further effectively reduces the size and weight of the spatial positioning system, making the spatial positioning system
  • the mobility is better; and when the measuring point moves, the three-dimensional coordinate information of the two-dimensional coordinate code 20 is read in real time through multiple sets of optical coordinate readers, and the three-dimensional coordinates of the measuring points can be obtained in real time, combined with optical coordinate reading.
  • the fixed angle information of the extractor is used to calculate and obtain the movement information of the measuring point in real time; wherein the viewing angle ray is understood as the connection of the lens center point of the optical coordinate reader to the center point of the read coordinate encoding unit 26.
  • the reverse extension lines of the viewing angle rays of the plurality of sets of optical coordinate readers converge at the measuring points; wherein the two-dimensional coordinate codes are optionally disposed on the cylindrical surface, the curved surface or the spherical surface.
  • the method for identifying at least three coordinate coding units on the two-dimensional coordinate code by measuring points includes:
  • S23 Identify at least three coordinate coding units according to the unit coding element.
  • the optical coordinate reader By arranging at least three optical coordinate readers at the measurement point, the optical coordinate reader should be able to observe a portion of the optical two-dimensional code on the positioning substrate, which portion should include a region of at least M*N two-dimensional coordinate code 20.
  • the sub-coded block image acquired by each optical coordinate reader is transmitted to the optical decoder, and the optical decoder performs necessary correction on the encoded block image and reads out the code of the sub-coded block and the field of view of the optical coordinate reader to
  • the deviation of the coded block is obtained from the corner point 21 and the edge line 22 in the image, the unit division code is obtained by the virtual division line 23, and then the unit code element identifies at least three coordinate coding units 26.
  • a preset origin (0, 0), an coordinate axis X and an coordinate axis Y on the above two-dimensional code form an independent two-dimensional coordinate code 20, and the grid lines of the two-dimensional coordinate code 20 need not be pre-drawn.
  • the image processor divides the image into unit coding elements by recognizing the corner points 21 and the edge lines 22 in the image, and the coordinate encoding unit 26 is unique when reading in the upper, lower, left and right directions; thus the optical coordinate reading
  • the extracter can effectively acquire the unique coordinate encoding unit 26 even when rotated relative to the two-dimensional coordinate code 20, wherein the coordinate encoding unit 26 adopts a 5*5 encoding block, and can conveniently read each through the setting of the two-dimensional coordinate system.
  • the coordinates of the central element of the coordinate encoding unit 26 are obtained by the coordinate encoding unit 26 and converted into a unit value 25 of a decimal value, and then can be read from the pre-stored unit value 25 and the two-dimensional coordinate (X, Y) comparison table. Dimensional coordinates to the optical decoder.
  • the two-dimensional coordinate code can be selected as a coordinate code with a grid line, as shown in FIG. 13, the optical decoder can perform simple correction on the coded block image by using the two-dimensional coordinate code of this form.
  • the effective acquisition of the coding unit does not require obtaining the coding unit according to the corner points and the edge lines, which can effectively reduce the computational complexity of the optical decoder, effectively reduce the power consumption of the optical decoder, and further improve the recognition efficiency of the optical decoder. Accuracy; and can reduce the processing requirements of the optical decoder, effectively save hardware costs, and further effectively reduce the size and weight of the spatial positioning system, making the spatial positioning system more mobile.
  • the method for acquiring three-dimensional coordinates according to the coordinate encoding unit include:
  • S43 Query the preset data table according to the unit value to obtain three-dimensional coordinates.
  • a unique element value 24 is obtained by the optical characteristics of each unit coded element in the coordinate encoding unit 26, a unique unit value 25 is obtained from the element value 24, and the optical decoder pre-stores all M*N of the optical two-dimensional code.
  • the position information of the coordinate encoding unit 26 is compared with the stored position information, and the optical decoder obtains a projection point of the optical coordinate reader's field of view on the positioning substrate, and the projection point corresponds to a set of two-dimensionality on the positioning substrate.
  • Coordinate (X, Y) when three optical coordinate readers read out the two-dimensional coordinates (X1, Y1), (X2, Y2), (X3, Y3), plus three The three angle information between the optical coordinate readers is predicted.
  • the mathematical calculation can determine the coordinate points (Xc, Yc, Zc) of the positioning gauge in space, plus the positioning gauge and optical coordinate reading.
  • the relative angle of the picker is fixed, and the positioning gauge can also confirm (Rx, Ry, Rz) at three angles in space, so that the six degrees of freedom of the positioning gauge in the space can be confirmed.
  • a coordinate encoding unit 26 is obtained.
  • a mark element in dark or black is assigned an element value 24 of "1"
  • a mark element in light or white is Specifying an element value 24 to be "0”
  • the element value 24 is represented by a binary number
  • the optical characteristics of each unit coding element determine that the unique element value 24 is 1, 1, 0, 1, 0, 0, 0, 0. , 0,1,0,0,0,1,1,1,1,0,1,1,1,1,0,0, respectively, using a binary number to represent the cell value 25 as "1101000000100011110111100"
  • the binary unit value 25 obtained by converting the value 25 into decimal is 27281340, which is convenient for easy reading and measurement.
  • the isomorphic query preset data table can obtain the two-dimensional coordinates of the central element of the coordinate encoding unit 26 (28, 66). In the same way, the two-dimensional coordinates of the three central elements are read, combined with the three angle information between the optical coordinate readers, and the coordinate point (Xc, which is unique in the space of the positioning measuring instrument can be determined by mathematical calculation. Yc, Zc).
  • the element value 24 can be defined by the perceived or visible optical properties of the marked element, such as color, shape, grayscale, brightness, or a combination thereof, so the element value is 24 It can also be represented by other digital code systems. When the optical characteristics are color and or brightness, and depending on the actual measurement application, the color and or brightness of the marking elements can also be adjusted for easy detection.
  • the method for establishing a spatial coordinate system according to the two-dimensional coordinate code includes:
  • the plane where the two-dimensional coordinate code is located is an XY plane.
  • the spatial coordinate system is established by the two-dimensional coordinate code 20 for the XY plane, which can effectively simplify the calculation capability of the spatial positioning system, further reduce the power consumption, and can effectively reduce the corner point of the two-dimensional coordinate code 20 as the origin.
  • the computational complexity allows the measurement point to be quickly calculated in the spatial position. When the measurement point is moving in real time, the spatial three-dimensional coordinates of the measurement point can be obtained in real time.
  • the present invention also discloses a spatial positioning system 10, comprising:
  • a display unit for displaying a two-dimensional coordinate code
  • a detecting unit configured to identify at least three coordinate encoding units on the two-dimensional coordinate code
  • the processing unit is configured to establish a spatial coordinate system, acquire three-dimensional coordinates according to the coordinate encoding unit, and acquire three-dimensional coordinates of the positioning measuring instrument according to the three-dimensional coordinates and the angle information of the positioning measuring instrument.
  • the two-dimensional coordinate code 20 is displayed by the display unit 11, and the detecting unit 12 acquires an image of the two-dimensional coordinate code 20 in the field of view of the measuring point, and performs necessary correction and reads the image of the acquired two-dimensional coordinate code 20. Encoding the code of the block and the deviation of the center of the field of view of the optical coordinate reader from the coding block, and then obtaining a unit coding element according to the corner point 21 and the edge 22 in the image, and identifying two from the acquired image of the two-dimensional coordinate code 20.
  • At least three coordinate encoding units 26 on the dimensional coordinate code 20 send the detected coordinate encoding unit 26 to the processing unit 13 for processing, according to the angle information of the viewing angle rays of at least three measuring points on the positioning measuring instrument, thereby being convenient and simple.
  • the display unit can be a two-dimensional code photo, a two-dimensional code light box, and a two-dimensional code image displayed on the display screen, and the like, which can be used to display the two-dimensional code.
  • a two-dimensional coordinate code 20 is arranged on the ceiling of the room, and the detecting unit 12 and the processing unit 13 are integrated into a VR (Virtual Reality) helmet, and one wears one.
  • VR Virtual Reality
  • the VR helmet with three measuring lenses on the top, each pointing in a different direction, the sight of the three measuring lenses is not in the same plane, the three measuring lenses will be in Obtaining an image of the two-dimensional coordinate code 20 in the three fields of view on the two-dimensional coordinate code 20, performing correction correction processing on the acquired image of the two-dimensional coordinate code 20 according to the spatial positioning method, and then according to the image in the image
  • the corner point 21 and the edge line 22 obtain a unit coding element, and at least three coordinate coding units 26 on the two-dimensional coordinate code 20 are identified from the acquired image of the two-dimensional coordinate code 20, and the detected coordinate coding unit 26 is transmitted to the VR helmet.
  • the integrated processing unit 13 performs processing to obtain a unique element value 24 according to the optical characteristics of each unit coding element in the coordinate coding; obtaining a unique unit value 25 according to the element value 24; and querying the preset data according to the unit value 25
  • the table can read the two-dimensional coordinates a(x1, y1), b(x2, y2) and c(x3, y3) of the three points.
  • the height of the ceiling is known, so the three lenses actually point to the space. Three defined points; the angle between the three lenses (or the fixed angle of the three lenses on the helmet) is also known. From the above known information, the helmet can be calculated or calculated relative to the ceiling.
  • the angle that is, six degrees of freedom (X, Y, Z, RX, RY, RZ); of course, you can also use the helmet shown in Figure 12, set more lenses, so even if the helmet has a large tilt The angle can also ensure that at least three lenses can effectively capture the coordinate coded image to achieve positioning, and the user can continuously locate in a large movement, and can obtain a stronger immersion.
  • FIG. 9A there are three points P1 (x1, y1, z1), P2 (x2, y2, z2) and P3 (x3, y3, z3), and between two lines P1P2 and P2P3.
  • the cosine of the angle has the following relationship with the coordinates of the three points:
  • the three unknowns X0, Y0 and Z0 in the system of equations can be solved, which is the three-dimensional coordinates of the measuring points.
  • the above spatial positioning device can be applied outdoors, such as an outdoor multi-person VR, AR (Augmented Reality) game. Outside, you can choose to erect the coordinate code on the ground.
  • the lens on the player's helmet can be placed on the rear or side to facilitate pointing the coordinate code. Because the player uses a uniform coordinate code for positioning, they can sense the position between each other. Therefore, in the VR, AR environment to establish a more realistic sense of coordination, can effectively complete the game task together, of course, you can also use the helmet shown in Figure 12, set more lenses, can more effectively improve the positioning accuracy Degree, making the position perception of the player in the game more realistic, can further enhance the fun of the game.
  • the display unit 11 includes a substrate and a two-dimensional coordinate code 20, the two-dimensional coordinate code 20 is disposed on the substrate, and the two-dimensional coordinate code 20 includes a plurality of coordinate encoding units 26, each of the coordinates.
  • the encoding unit 26 is disposed at a predetermined position of the substrate, and each of the coordinate encoding units 26 includes a plurality of unit coding elements having optical characteristics, and each of the unit coding elements presets an element value 24 defined by one optical characteristic.
  • the two-dimensional coordinate code 20 can also be in the form of a dot matrix, and replace the color block with a dot.
  • an LED lamp is used to replace each color block in a corresponding position to form a dot matrix of LED lights, and the LED light is optional. It is infrared light, which is convenient for post-filter filtering. It also keeps the uniqueness of the coordinate encoding unit 26 when reading in the upper, lower, left and right directions.
  • the image can also be meshed according to the recognized points. The intersection of the grid and the LED light is marked as "1", and the intersection of the grid is not marked with the LED light and is marked as "0". In this way, the LED lamp dot matrix is converted into a binary sequence and converted into a decimal value, so that the purpose of reading the coordinates of the query data table can be realized.
  • any set of numbers of the arrangement of the element values 24 of each of the unit code elements in each coordinate encoding unit 26 corresponds to a unique unit value 25, each of which corresponds to a unique two-dimensional coordinate.
  • each of the unit coding elements is a passive mirror mounted on the substrate, wherein the optical characteristic is one of a shape, a color, a brightness, a grayscale, and a pattern, or a combination thereof.
  • each of the unit coding elements is an optical image of a projector
  • the substrate is A projection screen for carrying an optical image of each of the plurality of marker elements in the coordinate encoding unit 26.
  • each of the unit coding elements is a light source fixed to the substrate, wherein the optical characteristic is one of a color, a brightness, and an illumination level or a combination thereof.
  • each of the unit coding elements is an active illuminator fixed to the substrate to form a display screen from which the unit coded element emits an optical signal.
  • the detecting unit 12 includes at least three measuring points, and an angle between the viewing angle rays of each measuring point is set, and an optical coordinate reader of three viewing angle directions can be set at the measuring point, or a An optical coordinate reader to adjust the angle according to a fixed direction.
  • the processing unit 13 includes an image module, the image module is configured to process an image of the two-dimensional coordinate code 20 within the field of view of the measurement point, identify a unit coding element in the image, and acquire the image.
  • the coordinate encoding unit 26, the image module is an optical coordinate reader, optionally a camera, a two-dimensional code reader, and the like.
  • the processing unit 13 includes a transcoding module, and the transcoding module is configured to process any set of numbers corresponding to the arrangement of the element values 24 in the coordinate encoding unit 26 to correspond to a unique unit value 25.
  • the processing unit 13 includes a storage module, and the storage module is configured to store a data table that matches the unit value 25 and the unique corresponding two-dimensional coordinates.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

一种空间定位方法及系统,该方法包括:提供二维坐标码(S11);根据该二维坐标码建立空间坐标系(S12);通过测量点识别二维坐标码上至少三个坐标编码单元(S13);根据该坐标编码单元获取三维坐标(S14);获取测量点的视角射线的角度信息(S15);根据三维坐标和角度信息获取测量点的三维坐标(S16)。该方法用二维坐标码提供坐标信息,利用以二维坐标码作为基准的坐标信息能够快速有效地计算并确定测量点的三维坐标,测量点的定位计算基于简单的二维坐标码的识别,系统的功耗可以控制在较低的水平,能够有效降低空间定位系统的成本。

Description

一种空间定位方法及系统 技术领域
本发明涉及空间定位领域,尤其涉及一种空间定位方法及系统。
背景技术
全球定位技术已经普及,随着互联网,VR、AR技术的发展,对于实现空间精确定位的需求越来越大;但是局部空间,特别是室内的定位无法使用全球定位的系统。
目前采用的空间定位技术有基于基站信号TOA、TDOA、DOA等技术,这几种空间定位技术各有特点,但这些方法都有一个共同的缺点:需要基站主动发出信号;定位接收器通过测量信号到达的时间和角度来计算自身相对基站的位置,测量信号时间差和测量角度上的精度会影响位置计算的精度。
也有采用SLAM和Inside-out技术的定位方法,不依赖于外部预设装置,对周围环境进行视觉识别和空间重建,从而实现感知自身位置和变化的能力;但这种技术需要强大的计算能力,能源消耗也很大。
鉴于此,业内亟需一种能够解决上述问题的方案。
发明内容
本发明所要解决的技术问题是提供一种快速定位测量点的空间定位方法及系统。
本发明的目的是通过以下技术方案来实现的:
根据本发明的一个方面,本发明公开了一种空间定位方法,包括步骤:
提供二维坐标码;
据所述二维坐标码建立空间坐标系;
通过测量点识别所述二维坐标码上至少三个坐标编码单元;
根据所述坐标编码单元获取三维坐标;
获取测量点的视角射线的角度信息;
根据所述三维坐标和所述角度信息获取测量点的三维坐标。
其中,所述通过测量点识别所述二维坐标码上至少三个坐标编码单元的方法包括:
控制所述测量点获取所述测量点视野范围内的二维坐标码的图像;
根据所述图像中的角点和边线获得单位编码元素;
根据所述单位编码元素识别至少三个坐标编码单元。
其中,所述根据所述坐标编码单元获取三维坐标的方法包括:
根据坐标编码单元中每个单位编码元素的光学特征获得唯一的元素值;
根据所述元素值获得唯一的单元值;
根据所述单元值查询预设数据表获得三维坐标。
其中,所述根据所述二维坐标码建立空间坐标系的方法包括:
根据二维坐标码的边角点设为原点;
根据所述二维坐标码所在的平面为XY平面。
根据本发明的另一个方面,本发明还公开了一种空间定位系统,包括:
展示单元,用于展示二维坐标码;
检测单元,用于识别二维坐标码上至少三个坐标编码单元;
处理单元,用于根据所述坐标编码单元获取三维坐标,并根据三维坐标和定位测量仪的角度信息获取定位测量仪的三维坐标。
通过展示单元展示二维坐标码,检测单元获取所述测量点视野范围内的二维坐标码的图像,对获取的二维坐标码的图像进行必要的修正并读取出子编码块的代码和光学坐标读取器视野中心到编码块的偏差,然后根据所述图像中的角点和边线获得单位编码元素,从获取的二维坐标码的图像中识别出二维坐标码上至少三个坐标编码单元,将检测的坐标编码单元发送给处理单元进行处理,根据定位测量仪上至少三个测量点的视角射线的角度信息,从而能够方便简单的获取获取定位测量仪的三维坐标。
其中,所述展示单元包括基板和二维坐标码,所述二维坐标码设在所述基板上,所述二维坐标码包括多个坐标编码单元,每个所述坐标编码单元设在所述基板的预定位置,每个所述坐标编码单元包括多个具有光学特 性的单位编码元素,每个所述单位编码元素预设一个光学特性定义的元素值。
其中,每个坐标编码单元中的每个所述单位编码元素的元素值的排列的任一组数字对应唯一的单元值,每个所述单元值对应唯一的二维坐标。
其中,每个所述单位编码元素是一个安装于所述基板上的被动反射镜,其中所述光学特性是形状、颜色、亮度、灰度和图案中的一个或它们的组合。
其中,每个所述单位编码元素是一个投影机的光学图像,所述基板是一个投影屏幕,用于承载多个所述坐标编码单元中的每个所述标记元素的光学图像。
其中,每个所述单位编码元素是一个固定于所述基板的光源,其中所述光学特性是颜色、亮度和照度级中的一个或它们的组合。
其中,每个所述单位编码元素是一个固定于所述基板的主动的发光体以形成一个显示屏幕,所述单位编码元素从其发出光信号。
其中,所述检测单元包括至少三个测量点,每个所述测量点的视角射线之间设有夹角。
其中,所述处理单元包括图像模块,所述图模块用于处理所述测量点视野范围内的二维坐标码的图像,识别所述图像中的单元编码元素,以及获取所述图像中的坐标编码单元。
其中,所述处理单元包括转码模块,所述转码模块用于处理所述坐标编码单元中的元素值的排列的任一组数字对应唯一的单元值。
其中,所述处理单元包括存储模块,所述存储模块用于存储数据表,所述数据表匹配所述单元值和唯一对应的二维坐标。
本发明由于通过提供并利用二维坐标码提供坐标信息,以二维坐标码作为基准的坐标信息,使用多组光学坐标读取器来读取至少三个坐标编码单元,获得至少三个坐标编码单元的三维坐标,结合多组光学坐标读取器的视角射线的角度信息,能够快速有效的计算并确定测量点的三维坐标,通过光学坐标读取器的相对角度是固定的,能够有效的计算测量点在空间 的六个自由度,二维坐标码无需发射信号,能够有效的避免发射信号延迟带来的误差,从而使得测量点的空间定位更加的准确,测量点的定位计算的基于简单的二维坐标码的识别,功耗可以控制在较低的水平,不需要利用复杂的图形计算器和强大的处理芯片来对周围环境进行视觉识别和空间重建,能够有效的降低空间定位系统的成本,进一步有效的减小空间定位系统的体积和重量,使得空间定位系统的移动性更好;而且当测量点移动时,通过多组光学坐标读取器来实时的读取二维坐标码的三维坐标信息,能够实时的获得测量点的三维坐标,结合光学坐标读取器的固定的角度信息,从而实时有效的计算并得出测量点的移动信息。
附图说明
图1是本发明实施例的空间定位方法的流程图;
图2是本发明实施例的空间定位方法的流程图;
图3是本发明实施例的空间定位方法的流程示意图;
图4是本发明实施例的空间定位方法的流程图;
图5是本发明实施例的空间定位方法的流程示意图;
图6是本发明实施例的空间定位方法的流程图;
图7是本发明实施例的空间定位系统的结构示意图;
图8A是本发明实施例的空间定位系统的应用示意图;
图8B是本发明实施例的空间定位系统的应用示意图;
图9A是本发明实施例的空间三个点夹角示意图;
图9B是本发明实施例的空间三个点与测量点的夹角示意图;
图10是本发明实施例的空间定位系统的应用示意图;
图11是本发明实施例的点阵式的二维坐标码的示意图;
图12是本发明实施例的配备多个镜头的头盔示意图;
图13是本发明实施例的带有网格线的二维坐标码的示意图。
其中:10、空间定位系统,11、展示单元,12、检测单元,13、处理单元,20、二维坐标码,21、角点,22、边线,23、虚拟分割线,24、元素值,25、单元值,26、坐标编码单元。
具体实施方式
这里所公开的具体结构和功能细节仅仅是代表性的,并且是用于描述本发明的示例性实施例的目的。但是本发明可以通过许多替换形式来具体实现,并且不应当被解释成仅仅受限于这里所阐述的实施例。
在本发明的描述中,需要理解的是,术语“中心”、“横向”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本发明的描述中,除非另有说明,“多个”的含义是两个或两个以上。另外,术语“包括”及其任何变形,意图在于覆盖不排他的包含。
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
这里所使用的术语仅仅是为了描述具体实施例而不意图限制示例性实施例。除非上下文明确地另有所指,否则这里所使用的单数形式“一个”、“一项”还意图包括复数。还应当理解的是,这里所使用的术语“包括”和/或“包含”规定所陈述的特征、整数、步骤、操作、单元和/或组件的存在,而不排除存在或添加一个或更多其他特征、整数、步骤、操作、单元、组件和/或其组合。
下面结合附图和较佳的实施例对本发明作进一步说明。
如图1所示,本发明公开了一种空间定位方法,包括步骤:
S11:提供二维坐标码;
S12:据所述二维坐标码建立空间坐标系;
S13:通过测量点识别所述二维坐标码上至少三个坐标编码单元;
S14:根据所述坐标编码单元获取三维坐标;
S15:获取测量点的视角射线的角度信息;
S16:根据所述三维坐标和所述角度信息获取测量点的三维坐标。
通过提供并利用二维坐标码20提供坐标信息,以二维坐标码20作为基准的坐标信息,使用多组光学坐标读取器来读取至少三个坐标编码单元26,获得至少三个坐标编码单元26的三维坐标,结合多组光学坐标读取器的视角射线的角度信息,能够快速有效的计算并确定测量点的三维坐标,通过光学坐标读取器的相对角度是固定的,能够有效的计算测量点在空间的六个自由度,二维坐标码20无需发射信号,能够有效的避免发射信号延迟带来的误差,从而使得测量点的空间定位更加的准确,测量点的定位计算的基于简单的二维坐标码20的识别,功耗可以控制在较低的水平,不需要利用复杂的图形计算器和强大的处理芯片来对周围环境进行视觉识别和空间重建,能够有效的降低空间定位系统的成本,进一步有效的减小空间定位系统的体积和重量,使得空间定位系统的移动性更好;而且当测量点移动时,通过多组光学坐标读取器来实时的读取二维坐标码20的三维坐标信息,能够实时的获得测量点的三维坐标,结合光学坐标读取器的固定的角度信息,从而实时有效的计算并得出测量点的移动信息;其中视角射线理解为光学坐标读取器的镜头中心点到读取的坐标编码单元26的中心点的连线,多组光学坐标读取器的视角射线的反向延长线汇聚于测量点;其中二维坐标码可选的设置在圆柱形表面、弧形表面或球形表面等。
如图2和图3所示,所述通过测量点识别所述二维坐标码上至少三个坐标编码单元的方法包括:
S21:控制所述测量点获取所述测量点视野范围内的二维坐标码的图像;
S22:根据所述图像中的角点和边线获得单位编码元素;
S23:根据所述单位编码元素识别至少三个坐标编码单元。
通过在测量点设置至少三个光学坐标读取器,光学坐标读取器应该都能观察到定位基板上光学二维码的一部分,该部分应该包括至少M*N的二维坐标码20的区域,每个光学坐标读取器采集的子编码块图像传输给光学解码器,光学解码器对编码块图像进行必要的修正并读取出子编码块的代码和光学坐标读取器的视野中心到编码块的偏差,根据所述图像中的角点21和边线22获得虚拟分割线23,通过虚拟分割线23获得单位编码元素,然后所述单位编码元素识别至少三个坐标编码单元26。
图3中设置一个100*100的尺寸,采用5*5的编码方法,每一个5*5的子区块都是唯一的,也就有96*96=9216个不同的5*5编码。不仅如此,这个二维码旋转90度,180度或者270度以后,里面的每个5*5编码仍然是唯一的,所以总共包含了9216*4=36864个5*5编码。
在上述二维码上一个预设的原点(0,0),一个坐标轴X和一个坐标轴Y,形成一个独立的二维坐标码20,二维坐标码20的网格线不需预先绘制,图像处理器通过识别图像中的角点21和边线22把图像分割成单位编码元素,坐标编码单元26在上,下,左,右四个方向读取时都是唯一的;这样光学坐标读取器即使相对二维坐标码20转动时仍然能有效地获取唯一的坐标编码单元26,其中坐标编码单元26采用5*5编码块,通过二维坐标系的设置,能够方便的读出每个坐标编码单元26的中心元素的坐标,将坐标编码单元26获取后转换成十进制数值的单元值25,然后就能从预先储存的单元值25和二维坐标(X,Y)对照表读取二维坐标到光学解码器。
其中,二维坐标码可选的为带有网格线的坐标码,如图13所示,采用这种形式的二维坐标码,光学解码器只需对编码块图像进行简单的修正就能够有效的获取编码单元,不需要根据角点和边线来获取编码单元,能够有效的降低光学解码器的运算复杂度,有效的降低光学解码器的功耗,进一步的提高光学解码器的识别效率和精准度;而且能够降低光学解码器的处理需求,有效的节约硬件成本,进一步有效的减小空间定位系统的体积和重量,使得空间定位系统的移动性更好。
如图4和图5所示,所述根据所述坐标编码单元获取三维坐标的方法 包括:
S41:根据坐标编码单元中每个单位编码元素光学特征获得唯一的元素值;
S42:根据所述元素值获得唯一的单元值;
S43:根据所述单元值查询预设数据表获得三维坐标。
通过坐标编码单元26中每个单位编码元素的光学特征获得唯一的元素值24,根据所述元素值24获得唯一的单元值25,光学解码器预先储存了光学二维码的全部M*N的坐标编码单元26的位置信息,通过与储存的位置信息对比,光学解码器得到该光学坐标读取器的视野中心在定位基板上的投射点,该投射点对应一组在定位基板上的二维坐标(X,Y),当三个光学坐标读取器都读取出视野中心在定位基板上的二维坐标(X1,Y1),(X2,Y2),(X3,Y3),加上三个光学坐标读取器的之间的三个夹角信息是预知的,通过数学计算可以确定定位测量仪在空间唯一的坐标点(Xc,Yc,Zc),加上定位测量仪与光学坐标读取器的相对角度是固定的,定位测量仪在空间的三个角度也可以确认(Rx,Ry,Rz),这样定位测量仪在空间的六个自由度就能确认。
如图5所示,获取了一个坐标编码单元26,在本实施方式中,在黑暗或黑色中的标记元素被指定一个元素值24为“1”,同时,在光亮或白色中的标记元素被指定一个元素值24为“0”,元素值24用二进制数表示,每个单位编码元素的光学特性确定唯一的元素值24为1,1,0,1,0,0,0,0,0,0,1,0,0,0,1,1,1,1,0,1,1,1,1,0,0,分别用二进制数表示单元值25为“1101000000100011110111100”,将二进制的单元值25转换为十进制得的单元值25为27281340,方便容易读出和测量的唯一性,同构查询预设数据表可以得出该坐标编码单元26的中心元素的二维坐标为(28,66),采用同样的方式读取三个中心元素的二维坐标,结合光学坐标读取器的之间的三个夹角信息,通过数学计算可以确定定位测量仪在空间唯一的坐标点(Xc,Yc,Zc)。
值得注意的是,元素值24可以被标记元素的被发觉的或可见的光学特性,如颜色、形状、灰度、亮度或者它们中的结合,定义,因此元素值24 也可以被其它的数字代码系统表示。当光学特性为颜色和或亮度,而且根据实际的测量应用标记元素的颜色和或亮度也可以被调整以便易侦查。
如图6所示,所述根据所述二维坐标码建立空间坐标系的方法包括:
S61:根据二维坐标码的边角点设为原点;
S62:根据所述二维坐标码所在的平面为XY平面。
通过二维坐标码20为XY平面建立空间坐标系,能够有效的简化空间定位系统的计算能力,进一步的降低功耗,而且通过二维坐标码20的边角点设为原点,能够有效的降低计算的复杂度,使得测量点在空间的位置能够快速的进行计算获得,在测量点实时的进行运动时,也能够有效的实时获取测量点的空间三维坐标。
如图7所示,根据本发明的另一个方面,本发明还公开了一种空间定位系统10,包括:
展示单元,用于展示二维坐标码;
检测单元,用于识别二维坐标码上至少三个坐标编码单元;
处理单元,用于建立空间坐标系,根据所述坐标编码单元获取三维坐标,并根据三维坐标和定位测量仪的角度信息获取定位测量仪的三维坐标。
通过展示单元11显示二维坐标码20,检测单元12获取所述测量点视野范围内的二维坐标码20的图像,对获取的二维坐标码20的图像进行必要的修正并读取出子编码块的代码和光学坐标读取器视野中心到编码块的偏差,然后根据所述图像中的角点21和边线22获得单位编码元素,从获取的二维坐标码20的图像中识别出二维坐标码20上至少三个坐标编码单元26,将检测的坐标编码单元26发送给处理单元13进行处理,根据定位测量仪上至少三个测量点的视角射线的角度信息,从而能够方便简单的获取获取定位测量仪的三维坐标;其中展示单元可以是二维码照片、二维码的灯箱,以及显示屏显示的二维码图像等可以用于展示二维码的其他形式。
示例的,如图8A和图8B所示,在房间的天花板上布置二维坐标码20,将检测单元12和处理单元13集成到VR(Virtual Reality,虚拟现实)头盔上,一个人戴着一个VR头盔,顶部配备了三个测量镜头,每个指向不同的方向,三个测量镜头的视线不在同一个平面内,三个测量镜头会在 二维坐标码20上捕捉到三个视野范围内的二维坐标码20的图像,根据上述空间定位方法,对获取的二维坐标码20的图像进行纠偏校正处理,然后根据所述图像中的角点21和边线22获得单位编码元素,从获取的二维坐标码20的图像中识别出二维坐标码20上至少三个坐标编码单元26,将检测的坐标编码单元26发送给VR头盔上集成的处理单元13进行处理,根据坐标编码中每个单位编码元素的光学特征获得唯一的元素值24;根据所述元素值24获得唯一的单元值25;根据所述单元值25查询预设数据表就可以读出三个点的二维坐标a(x1,y1),b(x2,y2)和c(x3,y3),天花板的高度是已知的,所以三个镜头其实是指向了空间三个确定的点;而三个镜头之间的夹角(或者说三个镜头在头盔上的固定角度)也是已知的,通过以上已知的信息,可以推算或者计算出头盔相对于天花板的空间位置和指向角度,也就是六自由度(X,Y,Z,RX,RY,RZ);当然也可以采用如图12所示的头盔,设置更多的镜头,这样即使头盔有较大的倾斜角也能保证至少有三个镜头能有效地捕捉到坐标编码图像而实现定位,用户在较大动作时仍能连续定位,能得到更强烈的沉浸感。
具体的,如图9A所示,有空间三个点P1(x1,y1,z1),P2(x2,y2,z2)与P3(x3,y3,z3),两条直线P1P2和P2P3之间会有夹角θ。该夹角的余弦跟三点的坐标有如下关系:
Figure PCTCN2017091616-appb-000001
假设上述公式可以简写为cosθ=F(P1,P2,P3);如图9B所示,读取三个点Pa,Pb,Pc的坐标(Xa,Ya,Za),(Xb,Yb,Zb)和(Xc,Yc,Zc),加上已知的三条视线的夹角θ1,θ2和θ3,我们可以得到下面的方程组:
cosθ1=F(Pa,P0,Pb)
cosθ2=F(Pb,P0,Pc)
cosθ3=F(Pa,P0,Pc)
通过数值计算方法,可以解出方程组中的三个未知量X0,Y0和Z0,即为测量点的三维坐标。
示例的,如图10所示,可以将上述空间定位装置应用在室外,比如室外多人VR,AR(Augmented Reality,增强显示)游戏。在室外,可以选择将坐标码竖立在地面,游戏者头盔上的镜头可以布置在后方或侧面便于指向坐标码,因为游戏者使用一个统一的坐标码进行定位,他们可以感知互相之间的位置,从而在VR,AR的环境下建立起更真实的协调感,能够有效的共同完成游戏任务,当然也可以采用如图12所示的头盔,设置更多的镜头,能够更加有效的提高定位的精准度,使得游戏中游戏者的位置感知更加的逼真,能够进一步的提高游戏的趣味性。
其中,所述展示单元11包括基板和二维坐标码20,所述二维坐标码20设在所述基板上,所述二维坐标码20包括多个坐标编码单元26,每个所述坐标编码单元26设在所述基板的预定位置,每个所述坐标编码单元26包括多个具有光学特性的单位编码元素,每个所述单位编码元素预设一个光学特性定义的元素值24。
如图11所示,二维坐标码20也可以采用点阵的形式,用点代替色块,比如用LED灯在对应的位置代替每一个色块组成LED灯组成点阵,LED灯可选的是红外光,便于镜头过滤后处理比较方便;同时也保持坐标编码单元26在上,下,左,右四个方向读取时的唯一性;依据识别出的点同样可以对图像进行网格划分,网格的交点有LED灯就标记为”1”,网格的交点没有识别到LED灯就标记为”0”。这样,LED灯点阵就转化成一个二进制序列,转换成十进制数值,就能实现查询数据表读取坐标的目的。
其中,每个坐标编码单元26中的每个所述单位编码元素的元素值24的排列的任一组数字对应唯一的单元值25,每个所述单元值25对应唯一的二维坐标。
其中,每个所述单位编码元素是一个安装于所述基板上的被动反射镜,其中所述光学特性是形状、颜色、亮度、灰度和图案中的一个或它们的组合。
其中,每个所述单位编码元素是一个投影机的光学图像,所述基板是 一个投影屏幕,用于承载多个所述坐标编码单元26中的每个所述标记元素的光学图像。
其中,每个所述单位编码元素是一个固定于所述基板的光源,其中所述光学特性是颜色、亮度和照度级中的一个或它们的组合。
其中,每个所述单位编码元素是一个固定于所述基板的主动的发光体以形成一个显示屏幕,所述单位编码元素从其发出光信号。
其中,所述检测单元12包括至少三个测量点,每个所述测量点的视角射线之间设有夹角,可在测量点设置三个视角方向的光学坐标读取器,也可通过一个光学坐标读取器来根据固定的方向来调整角度。
其中,所述处理单元13包括图像模块,所述图模块用于处理所述测量点视野范围内的二维坐标码20的图像,识别所述图像中的单元编码元素,以及获取所述图像中的坐标编码单元26,图像模块为光学坐标读取器,可选的为摄像头、二维码读取器等。
其中,所述处理单元13包括转码模块,所述转码模块用于处理所述坐标编码单元26中的元素值24的排列的任一组数字对应唯一的单元值25。
其中,所述处理单元13包括存储模块,所述存储模块用于存储数据表,所述数据表匹配所述单元值25和唯一对应的二维坐标。
以上内容是结合具体的优选实施方式对本发明所作的进一步详细说明,不能认定本发明的具体实施只局限于这些说明。对于本发明所属技术领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干简单推演或替换,都应当视为属于本发明的保护范围。

Claims (15)

  1. 一种空间定位方法,其特征在于,包括步骤:
    提供二维坐标码;
    据所述二维坐标码建立空间坐标系;
    通过测量点识别所述二维坐标码上至少三个坐标编码单元;
    根据所述坐标编码单元获取三维坐标;
    获取测量点的视角射线的角度信息;
    根据所述三维坐标和所述角度信息获取测量点的三维坐标。
  2. 如权利要求1所述的一种空间定位方法,其特征在于,所述通过测量点识别所述二维坐标码上至少三个坐标编码单元的方法包括:
    控制所述测量点获取所述测量点视野范围内的二维坐标码的图像;
    根据所述图像中的角点和边线获得单位编码元素;
    根据所述单位编码元素识别至少三个坐标编码单元。
  3. 如权利要求1所述的一种空间定位方法,其特征在于,所述根据所述坐标编码单元获取三维坐标的方法包括:
    根据坐标编码单元中每个单位编码元素光学特征获得唯一的元素值;
    根据所述元素值获得唯一的单元值;
    根据所述单元值查询预设数据表获得三维坐标。
  4. 如权利要求1所述的一种空间定位方法,其特征在于,所述根据所述二维坐标码建立空间坐标系的方法包括:
    根据二维坐标码的边角点设为原点;
    根据所述二维坐标码所在的平面为XY平面。
  5. 一种空间定位系统,其特征在于,包括:
    展示单元,用于展示二维坐标码;
    检测单元,用于识别二维坐标码上至少三个坐标编码单元;
    处理单元,用于根据所述坐标编码单元获取三维坐标,并根据三维坐标和定位测量仪的角度信息获取定位测量仪的三维坐标。
  6. 如权利要求5所述的一种空间定位系统,其特征在于,所述显示单元包括基板和二维坐标码,所述二维坐标码设在所述基板上,所述二维坐标码包括多个坐标编码单元,每个所述坐标编码单元设在所述基板的预 定位置,每个所述坐标编码单元包括多个具有光学特性的单位编码元素,每个所述单位编码元素预设一个光学特性定义的元素值。
  7. 如权利要求6所述的一种空间定位系统,其特征在于,每个坐标编码单元中的每个所述单位编码元素的元素值的排列的任一组数字对应唯一的单元值,每个所述单元值对应唯一的二维坐标。
  8. 如权利要求6所述的一种空间定位系统,其特征在于,每个所述单位编码元素是一个安装于所述基板上的被动反射镜,其中所述光学特性是形状、颜色、亮度、灰度和图案中的一个或它们的组合。
  9. 如权利要求8所述的一种空间定位系统,其特征在于,每个所述单位编码元素是一个投影机的光学图像,所述基板是一个投影屏幕,用于承载多个所述坐标编码单元中的每个所述标记元素的光学图像。
  10. 如权利要求6所述的一种空间定位系统,其特征在于,每个所述单位编码元素是一个固定于所述基板的光源,其中所述光学特性是颜色、亮度和照度级中的一个或它们的组合。
  11. 如权利要求10所述的一种空间定位系统,其特征在于,每个所述单位编码元素是一个固定于所述基板的主动的发光体以形成一个显示屏幕,所述单位编码元素从其发出光信号。
  12. 如权利要求5所述的一种空间定位系统,其特征在于,所述检测单元包括至少三个测量点,每个所述测量点的视角射线之间设有夹角。
  13. 如权利要求5所述的一种空间定位系统,其特征在于,所述处理单元包括图像模块,所述图模块用于处理所述测量点视野范围内的二维坐标码的图像,识别所述图像中的单元编码元素,以及获取所述图像中的坐标编码单元。
  14. 如权利要求5所述的一种空间定位系统,其特征在于,所述处理单元包括转码模块,所述转码模块用于处理所述坐标编码单元中的元素值的排列的任一组数字对应唯一的单元值。
  15. 如权利要求5所述的一种空间定位系统,其特征在于,所述处理单元包括存储模块,所述存储模块用于存储数据表,所述数据表匹配所述单元值和唯一对应的二维坐标。
PCT/CN2017/091616 2017-07-04 2017-07-04 一种空间定位方法及系统 WO2019006651A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/091616 WO2019006651A1 (zh) 2017-07-04 2017-07-04 一种空间定位方法及系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/091616 WO2019006651A1 (zh) 2017-07-04 2017-07-04 一种空间定位方法及系统

Publications (1)

Publication Number Publication Date
WO2019006651A1 true WO2019006651A1 (zh) 2019-01-10

Family

ID=64949510

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/091616 WO2019006651A1 (zh) 2017-07-04 2017-07-04 一种空间定位方法及系统

Country Status (1)

Country Link
WO (1) WO2019006651A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1377488A (zh) * 1999-10-01 2002-10-30 阿诺托股份公司 位置确定-计算
CN1641683A (zh) * 2004-01-16 2005-07-20 微软公司 通过m阵列解码和快速图像匹配的笔划定位
US20060184013A1 (en) * 2004-12-14 2006-08-17 Sky-Trax Incorporated Method and apparatus for determining position and rotational orientation of an object
CN203552062U (zh) * 2013-11-19 2014-04-16 嘉兴海格力思电子科技有限公司 无人电动搬运车室内定位系统
CN105783906A (zh) * 2014-12-25 2016-07-20 财团法人车辆研究测试中心 室内定位系统
CN106500737A (zh) * 2015-09-03 2017-03-15 赫克斯冈技术中心 绝对表面编码/绝对地对区域进行编码

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1377488A (zh) * 1999-10-01 2002-10-30 阿诺托股份公司 位置确定-计算
CN1641683A (zh) * 2004-01-16 2005-07-20 微软公司 通过m阵列解码和快速图像匹配的笔划定位
US20060184013A1 (en) * 2004-12-14 2006-08-17 Sky-Trax Incorporated Method and apparatus for determining position and rotational orientation of an object
CN203552062U (zh) * 2013-11-19 2014-04-16 嘉兴海格力思电子科技有限公司 无人电动搬运车室内定位系统
CN105783906A (zh) * 2014-12-25 2016-07-20 财团法人车辆研究测试中心 室内定位系统
CN106500737A (zh) * 2015-09-03 2017-03-15 赫克斯冈技术中心 绝对表面编码/绝对地对区域进行编码

Similar Documents

Publication Publication Date Title
CN102809354B (zh) 三维双模扫描装置及三维双模扫描系统
Nakazawa et al. Indoor positioning using a high-speed, fish-eye lens-equipped camera in visible light communication
US9536322B1 (en) Implementation of multi-camera tracking applications using rich color transition curve target sequences
CN111052865B (zh) 通过星座图标识和定位照明器
KR101533320B1 (ko) 포인터가 불필요한 3차원 객체 정보 획득 장치
CN108388341B (zh) 一种基于红外摄像机-可见光投影仪的人机交互系统及装置
CN101702233B (zh) 视频帧中基于三点共线标记点的三维定位方法
CN109840949A (zh) 基于光学定位的增强现实图像处理方法和装置
JP2006523067A (ja) 物体上に出力画像を表示する方法
CN210225419U (zh) 光通信装置
JP6601489B2 (ja) 撮像システム、撮像装置、撮像方法、及び撮像プログラム
US20230386081A1 (en) Camera auto-calibration system
JP5556481B2 (ja) 付加情報提供システム及び撮像装置
CN101196986A (zh) 三维掌纹身份鉴别仪及其鉴别方法
Grimm et al. VR/AR input devices and tracking
CN109683774A (zh) 交互式显示系统及交互式显示控制方法
WO2019006651A1 (zh) 一种空间定位方法及系统
CN110490059A (zh) 一种可穿戴智能戒指的手势识别方法、系统及装置
JP2002032784A (ja) 仮想対象物操作装置および仮想対象物操作方法
CN110060349A (zh) 一种扩展增强现实头戴式显示设备视场角的方法
Piérard et al. I-see-3d! an interactive and immersive system that dynamically adapts 2d projections to the location of a user's eyes
JP2008052403A (ja) 2次元位置情報がコード化された模様、当該模様を用いた位置同定システム及び方法
US20130155211A1 (en) Interactive system and interactive device thereof
TWI812865B (zh) 用於實現相對定位的裝置、方法、存儲介質及電子設備
CN116710975A (zh) 提供导航数据以控制机器人的方法、控制机器人的方法、制造至少一个预定义点对称区域的方法和设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17917201

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17917201

Country of ref document: EP

Kind code of ref document: A1