WO2019004429A1 - Thermoelectric conversion module and method for manufacturing thermoelectric conversion module - Google Patents

Thermoelectric conversion module and method for manufacturing thermoelectric conversion module Download PDF

Info

Publication number
WO2019004429A1
WO2019004429A1 PCT/JP2018/024805 JP2018024805W WO2019004429A1 WO 2019004429 A1 WO2019004429 A1 WO 2019004429A1 JP 2018024805 W JP2018024805 W JP 2018024805W WO 2019004429 A1 WO2019004429 A1 WO 2019004429A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermoelectric conversion
electrode portion
insulating layer
conversion element
glass
Prior art date
Application number
PCT/JP2018/024805
Other languages
French (fr)
Japanese (ja)
Inventor
皓也 新井
雅人 駒崎
黒光 祥郎
Original Assignee
三菱マテリアル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2018121097A external-priority patent/JP7196432B2/en
Application filed by 三菱マテリアル株式会社 filed Critical 三菱マテリアル株式会社
Priority to CN201880040259.5A priority Critical patent/CN110770924B/en
Priority to KR1020197037988A priority patent/KR102444696B1/en
Priority to EP18825073.2A priority patent/EP3648186A4/en
Priority to US16/623,545 priority patent/US11380832B2/en
Publication of WO2019004429A1 publication Critical patent/WO2019004429A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N11/00Generators or motors not provided for elsewhere; Alleged perpetua mobilia obtained by electric or magnetic means
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/01Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/10Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
    • H10N10/17Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects characterised by the structure or configuration of the cell or thermocouple forming the device
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/81Structural details of the junction
    • H10N10/817Structural details of the junction the junction being non-separable, e.g. being cemented, sintered or soldered

Definitions

  • the present invention relates to a thermoelectric conversion module in which a plurality of thermoelectric conversion elements are electrically connected, and a method of manufacturing the thermoelectric conversion module.
  • the present application claims priority based on Japanese Patent Application No. 2017-127539 filed on June 29, 2017, and Japanese Patent Application No. 20812-1097 filed on June 26, 2018, on June 29, 2017. , The contents of which are incorporated herein.
  • the thermoelectric conversion element is an electronic element capable of mutually converting thermal energy and electrical energy by the Seebeck effect or Peltier effect.
  • the Seebeck effect is a phenomenon in which an electromotive force is generated when a temperature difference is generated between both ends of a thermoelectric conversion element, and thermal energy is converted into electrical energy.
  • the electromotive force generated by the Seebeck effect is determined by the characteristics of the thermoelectric conversion element. In recent years, development of thermoelectric generation utilizing this effect has been brisk.
  • the Peltier effect is a phenomenon in which when an electrode or the like is formed at both ends of a thermoelectric conversion element to generate a potential difference between the electrodes, a temperature difference occurs at both ends of the thermoelectric conversion element, and electrical energy is converted to thermal energy.
  • An element having such an effect is particularly called a Peltier element, and is used for cooling and temperature control of precision instruments, small refrigerators and the like.
  • thermoelectric conversion module using the above-mentioned thermoelectric conversion element, for example, one having a structure in which an n-type thermoelectric conversion element and a p-type thermoelectric conversion element are alternately connected in series is proposed.
  • heat transfer plates are disposed respectively on one end side and the other end side of a plurality of thermoelectric conversion elements, and the thermoelectric conversion elements are connected in series by the electrode portions disposed on the heat transfer plate.
  • the insulated circuit board provided with the insulating layer and the electrode part may be used as the above-mentioned heat transfer plate.
  • thermoelectric conversion element a temperature difference is caused between the heat transfer plate disposed on one end side of the thermoelectric conversion element and the heat transfer plate disposed on the other end side of the thermoelectric conversion element, whereby electric energy is obtained by the Seebeck effect. Can be generated.
  • thermoelectric conversion element Alternatively, by supplying a current to the thermoelectric conversion element, between the heat transfer plate disposed at one end of the thermoelectric conversion element and the heat transfer plate disposed at the other end of the thermoelectric conversion element by the Peltier effect. It is possible to generate a temperature difference.
  • thermoelectric conversion module in order to improve the thermoelectric conversion efficiency, it is necessary to suppress the electric resistance in the electrode part connected to the thermoelectric conversion element to a low level. For this reason, conventionally, when joining a thermoelectric conversion element and an electrode part, Ag paste etc. which were especially excellent in conductivity are used. Moreover, an electrode part itself may be formed with Ag paste, and it may join with a thermoelectric conversion element.
  • the sintered body of Ag paste has a relatively large number of pores, the electrical resistance can not be suppressed sufficiently low.
  • thermoelectric conversion module in a medium temperature range of 350 ° C. or more, sintering progresses gradually in the sintered body of Ag paste, the structure of the sintered body changes, and the thermoelectric conversion element is generated by the gas existing in the pores. Was likely to deteriorate.
  • liquid phase sintering by heating to the melting point (960 ° C.) of silver or more. Under such high temperature conditions, thermoelectric conversion is performed at the time of bonding The element may be degraded by heat.
  • Patent Document 1 a method is proposed in which an electrode portion is formed using a silver solder having a melting point lower than that of silver, and the thermoelectric conversion elements are joined. Further, in Patent Document 2, in order to suppress deterioration of the thermoelectric conversion element due to the gas in the pores, a dense film is formed by applying a glass solution to the entire outer peripheral surface of the bonding layer and drying in air. A method has been proposed.
  • the melting point of the silver solder used is such that the silver solder does not melt even at the operating temperature of the thermoelectric conversion module. For example, 750 to 800 ° C. is preferred (see Patent Document 1, paragraph 0023).
  • the thermoelectric conversion elements are joined under such relatively high temperature conditions, there is also a possibility that the characteristics of the thermoelectric conversion elements may deteriorate due to the heat at the time of joining.
  • thermoelectric conversion element may be deteriorated by heat at the time of bonding.
  • thermoelectric conversion module excellent in the thermoelectric conversion efficiency
  • thermoelectric conversion module of the present invention comprises a plurality of thermoelectric conversion elements, a first electrode portion disposed on one end side of the thermoelectric conversion elements, and a second on the other end side.
  • a thermoelectric conversion module comprising: an electrode portion, wherein a plurality of the thermoelectric conversion elements are electrically connected via the first electrode portion and the second electrode portion, wherein one end side of the thermoelectric conversion element A first insulating layer at least one surface of which is made of alumina, and the first electrode portion made of a sintered body of Ag formed on one surface of the first insulating layer.
  • An insulating circuit substrate is disposed, a glass component is present at an interface between the first electrode portion and the first insulating layer, and at least the thermoelectric conversion element is disposed in the first electrode portion.
  • Thickness is 30 ⁇ m or more, and the porosity is less than 10%. It is characterized in that there is a.
  • the first insulating layer at least one surface of which is made of alumina on one end side of the thermoelectric conversion element, and Ag formed on one surface of the first insulating layer
  • a first insulating circuit substrate including the first electrode portion made of a sintered body is disposed, and the first electrode portion has a thickness of 30 ⁇ m or more at least in a region where the thermoelectric conversion element is disposed Since the porosity is less than 10%, the first electrode portion is dense and thick, and the electrical resistance can be reduced. Moreover, since there are few pores, deterioration of the thermoelectric conversion element by the gas of the pores can be suppressed.
  • the bonding temperature (baking temperature) can be set to a relatively low temperature condition, and deterioration of the thermoelectric conversion element at the time of bonding can be suppressed.
  • the first electrode portion itself is made of Ag, it does not melt even at an operating temperature of about 500 to 800 ° C., and can be stably operated.
  • the surface (one surface) on which the first electrode portion is formed is made of alumina, and the glass component is present at the interface between the first electrode portion and the first insulating layer. Since the glass component and the alumina react with each other, the first electrode portion and the first insulating layer are strongly bonded to each other, and the bonding reliability is excellent.
  • the first electrode portion is composed of a glass-containing region and a non-glass-containing region from the first insulating layer side in the stacking direction, and the glass-containing region is stacked
  • the thickness in the direction is Tg
  • the thickness in the lamination direction of the non-glass-containing region is Ta
  • Ta / (Ta + Tg) is more than 0 and not more than 0.5.
  • the first electrode portion has a structure in which the glass-containing region and the non-glass-containing region are stacked, and the thickness in the stacking direction of the glass-containing region is Tg, and the stacking direction of the non-glass-containing region
  • Ta has a thickness of Ta
  • Ta / (Ta + Tg) is limited to 0.5 or less, so it is possible to suppress the occurrence of peeling at the interface between the glass-containing region and the non-glass-containing region.
  • Ta / (Ta + Tg) is more than 0, no glass component exists in the bonding surface with the thermoelectric conversion element, and the bonding property between the thermoelectric conversion element and the first electrode portion is improved. Is possible.
  • the second insulating layer at least one surface of which is made of alumina and the other surface of the second insulating layer are formed on the other end side of the thermoelectric conversion element.
  • a second insulating circuit substrate including the second electrode portion made of a sintered body of Ag, and a glass component is present at an interface between the second electrode portion and the second insulating layer.
  • the second electrode portion may have a thickness of 30 ⁇ m or more and a porosity of less than 10% at least in a region where the thermoelectric conversion element is disposed.
  • a second insulating circuit substrate having two electrode portions, and the second electrode portion of the second insulating circuit substrate also has a thickness at least in a region where the thermoelectric conversion element is disposed. Since the porosity is 30 ⁇ m or more and the porosity is less than 10%, the second electrode portion is formed dense and thick, and the electrical resistance becomes low. Moreover, since there are few pores, deterioration of the thermoelectric conversion element by the gas of the pores can be suppressed.
  • the bonding temperature (baking temperature) can be set to a relatively low temperature condition, and deterioration of the thermoelectric conversion element at the time of bonding can be suppressed.
  • the second electrode portion itself is made of Ag, it does not melt even at an operating temperature of about 500 to 800 ° C., and can be stably operated.
  • the surface (one surface) on which the second electrode portion is formed is made of alumina, and the glass component is present at the interface between the second electrode portion and the second insulating layer. Since the glass component and the alumina react with each other, the second electrode portion and the second insulating layer are strongly bonded to each other, and the bonding reliability is excellent.
  • the second electrode portion is composed of a glass-containing region and a non-glass-containing region from the second insulating layer side in the stacking direction, and the glass-containing region is stacked
  • the thickness in the direction is Tg
  • the thickness in the laminating direction of the non-glass-containing region is Ta
  • the second electrode portion has a structure in which the glass-containing region and the non-glass-containing region are stacked, and the thickness in the stacking direction of the glass-containing region is Tg, and the stacking direction of the non-glass-containing region
  • Ta has a thickness of Ta
  • Ta / (Ta + Tg) is limited to 0.5 or less, so it is possible to suppress the occurrence of peeling at the interface between the glass-containing region and the non-glass-containing region.
  • Ta / (Ta + Tg) is more than 0, no glass component exists in the bonding surface with the thermoelectric conversion element, and the bonding property between the thermoelectric conversion element and the second electrode portion is improved. Is possible.
  • thermoelectric conversion module comprises a plurality of thermoelectric conversion elements, a first electrode portion disposed on one end side of the thermoelectric conversion elements, and a second electrode portion disposed on the other end side. It is a manufacturing method of the thermoelectric conversion module which has a plurality of said thermoelectric conversion elements electrically connected via said 1st electrode part and said 2nd electrode part, and said thermoelectric conversion module is said thermoelectric conversion A first insulating layer, at least one surface of which is made of alumina, on one end side of the device, and the first electrode portion made of a sintered body of Ag formed on one surface of the first insulating layer A first insulating circuit substrate is disposed, and an Ag paste application step of applying an Ag paste containing Ag to a thickness of 30 ⁇ m or more on one surface of the first insulating layer, and firing the Ag paste Firing step to form a first electrode portion, Laminating the first insulating layer on one end side of the thermoelectric conversion element via the first electrode portion, pressurizing the
  • the heating load is set to 300 ° C. or higher, within a range of 20 MPa or more and 50 MPa or less.
  • the thickness can be 30 ⁇ m or more and the porosity can be less than 10%.
  • the glass-containing Ag paste is applied to at least the lowermost layer in contact with the first insulating layer, so that the glass component of the glass-containing Ag paste and alumina react with each other.
  • the insulating layer and the first electrode portion can be reliably bonded.
  • an Ag paste containing no glass component is applied to the uppermost layer of the first electrode portion in contact with the thermoelectric conversion element. It may be In this case, since the Ag paste containing no glass component is applied to the uppermost layer in contact with the thermoelectric conversion element, a glass non-containing region containing no glass component is provided on the thermoelectric conversion element side of the first electrode portion. It becomes possible to form reliably and to improve the bondability of the 1st electrode part and the thermoelectric conversion element.
  • the thermoelectric conversion element may be disposed after disposing an Ag bonding material on the first electrode portion in the laminating step.
  • the thermoelectric conversion element is disposed, and then the thermoelectric conversion element is joined under the above-described conditions.
  • the Ag bonding material applied on the electrode portion can also be densified to have a porosity of less than 10%. Moreover, it becomes possible to improve the bondability of the said 1st electrode part and the said thermoelectric conversion element.
  • the thermoelectric conversion module includes a first insulating layer having at least one surface made of alumina on one end side of the thermoelectric conversion element, and the first insulating layer.
  • a first insulating circuit board comprising the first electrode portion made of a sintered body of Ag formed on one side of the first surface, and at least one side of the thermoelectric conversion element is alumina on the other side of the thermoelectric conversion element
  • a second insulating circuit substrate comprising a second insulating layer constituted by the second insulating layer and the second electrode portion made of a sintered body of Ag formed on one surface of the second insulating layer
  • an Ag paste containing Ag is applied to one surface of the first insulating layer and the second insulating layer with a thickness of 30 ⁇ m or more, and at least the first insulating layer and the first insulating layer 2 At the lowest layer in contact with the insulating layer A glass-containing Ag paste is applied, and in the firing step,
  • thermoelectric conversion element bonding step While laminating the first insulating layer through the first electrode portion, laminating the second insulating layer through the second electrode portion on the other end side of the thermoelectric conversion element, and in the thermoelectric conversion element bonding step
  • the first insulating layer, the thermoelectric conversion element, and the second insulating layer are pressurized and heated in the stacking direction, and the first electrode portion and the thermoelectric conversion element, and the thermoelectric conversion element and the second
  • the pressure load is in the range of 20 MPa to 50 MPa
  • the heating temperature is 300 ° C. or more
  • the first electrode part and the second electrode part are ,
  • the thickness may be 30 ⁇ m or more, and the porosity may be less than 10%.
  • the thickness is at least 30 ⁇ m and at least in the region where the thermoelectric conversion element is disposed.
  • the porosity can be less than 10%.
  • the glass-containing Ag paste is applied to at least the lowermost layer in contact with the first insulating layer and the second insulating layer, so that the glass component of the glass-containing Ag paste reacts with alumina.
  • thermoelectric conversion module in the method of manufacturing a thermoelectric conversion module according to the present invention, in the Ag paste application step, an Ag paste containing no glass component is applied to the uppermost layer of the second electrode portion in contact with the thermoelectric conversion element. It is also good. In this case, since the Ag paste containing no glass component is applied to the uppermost layer of the second electrode portion in contact with the thermoelectric conversion element, the glass component is applied to the thermoelectric conversion element side of the second electrode portion. It is possible to reliably form the non-glass-containing region which is not included, and to improve the bonding property between the first electrode portion and the thermoelectric conversion element.
  • the thermoelectric conversion element may be disposed after disposing an Ag bonding material on the second electrode portion.
  • the thermoelectric conversion element is disposed, and thereafter, the thermoelectric conversion element is joined under the above-described conditions.
  • the Ag bonding material applied on the electrode portion can also be densified to have a porosity of less than 10%. Moreover, it becomes possible to improve the bondability of the said 2nd electrode part and the said thermoelectric conversion element.
  • the present invention provides a thermoelectric conversion module which has low electric resistance in the electrode portion and suppresses deterioration of the thermoelectric conversion element at the time of bonding, and which has excellent thermoelectric conversion efficiency, and a method of manufacturing the thermoelectric conversion module. can do.
  • thermoelectric conversion module which is embodiment of this invention. It is a schematic explanatory drawing which shows the glass content area
  • thermoelectric conversion module 10 is arranged on a plurality of columnar thermoelectric conversion elements 11 and one end side (lower side in FIG. 1) of the thermoelectric conversion elements 11 in the length direction.
  • a first heat transfer plate 20 is provided, and a second heat transfer plate 30 disposed on the other end side (upper side in FIG. 1) of the thermoelectric conversion elements 11 in the longitudinal direction.
  • the first electrode portion 25 is formed on the first heat transfer plate 20 disposed on one end side of the thermoelectric conversion element 11, and disposed on the other end side of the thermoelectric conversion element 11.
  • a second electrode portion 35 is formed on the second heat transfer plate 30.
  • the plurality of columnar thermoelectric conversion elements 11 are electrically connected in series by the first electrode portion 25 and the second electrode portion 35. It is done.
  • the first heat transfer plate 20 includes a first insulating layer 21 and a first electrode portion 25 formed on one surface (upper surface in FIG. 1) of the first insulating layer 21. It consists of Here, in the first insulating layer 21 of the first heat transfer plate 20 (first insulating circuit board), at least the surface (one surface) on which the first electrode portion 25 is formed is made of alumina. In the present embodiment, the entire first insulating layer 21 is made of alumina. In the first insulating layer 21, the interface with the silver paste may be alumina, and for example, a substrate whose surface is alumina by oxidizing aluminum nitride may be used as the first insulating layer 21. The thickness of alumina may be in the range of 1 ⁇ m to 2000 ⁇ m. The thickness of the first insulating layer 21 may be in the range of 100 ⁇ m to 2000 ⁇ m.
  • the first electrode portion 25 is formed of a sintered body of Ag, and the lowermost layer in contact with at least one surface of the first insulating layer 21 made of alumina is formed of a sintered body of a glass-containing Ag paste containing a glass component. It is done. In the present embodiment, the entire first electrode portion 25 is formed of a sintered body of glass-containing Ag paste. Further, the first electrode portion 25 is formed in a pattern on one surface (upper surface in FIG. 1) of the first insulating layer 21.
  • thickness is 30 micrometers or more and porosity P is less than 10% in the area
  • the porosity P can be reduced to 0%.
  • the porosity P of the first electrode portion 25 can be calculated as follows.
  • the lowermost layer in contact with at least one surface of the first insulating layer 21 made of alumina is formed of a sintered body of glass-containing Ag paste containing a glass component.
  • a glass component is present at the interface between the first insulating layer 21 and the first electrode portion 25.
  • the entire first electrode portion 25 is formed of a sintered body of glass-containing Ag paste, and glass particles are dispersed inside the first electrode portion 25. The glass particles are present at the interface between the first insulating layer 21 (alumina) and the first electrode portion 25. Further, part of the glass component is intruding into the first insulating layer 21 (alumina) side.
  • the first electrode portion 25 does not have a glass component and a glass containing region 25A having a glass component from the side of the first insulating layer 21 in the stacking direction.
  • Ta / (Ta + Tg) exceeds 0, 0 It is preferable that it is less than or equal to .5.
  • Ta / (Ta + Tg) is more preferably in the range of 0.17 or more and 0.83 or less, and still more preferably in the range of 0.33 or more and 0.67 or less. As shown in FIG.
  • the thickness Tg of the glass-containing region 25 ⁇ / b> A in the stacking direction is the thickness from the first insulating layer 21 to the glass particles 27 located at the farthest position in the stacking direction.
  • the thickness Ta of the non-glass-containing region 25B in the stacking direction is a value obtained by subtracting the thickness Tg of the glass-containing region 25A in the stacking direction from the thickness of the first electrode portion 25.
  • the second heat transfer plate 30 includes a second insulating layer 31 and a second electrode portion 35 formed on one surface (a lower surface in FIG. 1) of the second insulating layer 31. It consists of Here, the second insulating layer 31 of the second heat transfer plate 30 (second insulating circuit substrate) can have the same configuration as that of the first insulating layer 21 described above.
  • the second electrode portion 35 is formed of a sintered body of Ag, and the lowermost layer in contact with at least one surface of the second insulating layer 31 made of alumina is formed of a sintered body of a glass-containing Ag paste containing a glass component. It is done. In the present embodiment, the entire second electrode portion 35 is formed of a sintered body of glass-containing Ag paste. In addition, the second electrode portion 35 is formed in a pattern on one surface (the lower surface in FIG. 1) of the second insulating layer 31.
  • thickness is 30 micrometers or more and porosity P is less than 10% at least in a field where thermoelectric conversion element 11 is arranged. It is preferable that the upper limit of the thickness of the area
  • positioned at least is 70 micrometers or less.
  • the porosity P can be reduced to 0%.
  • the porosity P of the second electrode portion 35 can be calculated by the same method as that of the first electrode portion 25.
  • the lowermost layer in contact with at least one surface of the second insulating layer 31 made of alumina is formed of a sintered body of glass-containing Ag paste containing a glass component.
  • a glass component is present at the interface between the second insulating layer 31 and the second electrode portion 35.
  • the entire second electrode portion 35 is formed of a sintered body of glass-containing Ag paste, and glass particles are present inside the second electrode portion 35. The glass particles are present at the interface between the second insulating layer 31 (alumina) and the first electrode portion 25. Further, part of the glass component is intruding into the second insulating layer 31 (alumina) side.
  • the second electrode portion 35 has a glass-containing region 35A having a glass component and a glass having no glass component from the second insulating layer 31 side in the stacking direction.
  • Ta / (Ta + Tg) exceeds 0, 0 It is preferable that it is less than or equal to .5.
  • Ta / (Ta + Tg) is more preferably in the range of 0.17 or more and 0.83 or less, and still more preferably in the range of 0.33 or more and 0.67 or less. As shown in FIG.
  • the thickness Tg of the glass-containing region 35 ⁇ / b> A in the stacking direction is the thickness from the second insulating layer 31 to the glass particles 37 located farthest in the stacking direction.
  • the thickness Ta of the non-glass-containing region 35B in the stacking direction is a value obtained by subtracting the thickness Tg of the glass-containing region 35A in the stacking direction from the thickness of the second electrode portion 35.
  • the thermoelectric conversion element 11 has an n-type thermoelectric conversion element 11a and a p-type thermoelectric conversion element 11b, and these n-type thermoelectric conversion elements 11a and p-type thermoelectric conversion elements 11b are alternately arranged.
  • Metallized layers (not shown) are respectively formed on one end surface and the other end surface of the thermoelectric conversion element 11.
  • the metallized layer it is possible to use, for example, nickel, silver, cobalt, tungsten, molybdenum or the like, or a non-woven fabric or the like made of these metal fibers.
  • the outermost surface of the metallized layer (the bonding surface with the first electrode portion 25 and the second electrode portion 35) is preferably made of Au or Ag.
  • the n-type thermoelectric conversion element 11a and the p-type thermoelectric conversion element 11b are, for example, sintered bodies of tellurium compound, skutterudite, filled skutterudite, Heusler, half-Heusler, clathrate, silicide, oxide, silicon germanium, etc. It is configured.
  • a material of the n-type thermoelectric conversion element 11 a for example, Bi 2 Te 3 , PbTe, La 3 Te 4 , CoSb 3 , FeVAl, ZrNiSn, Ba 8 Al 16 Si 30 , Mg 2 Si, FeSi 2 , SrTiO 3 , CaMnO 3 , ZnO, SiGe and the like are used.
  • TAGS Ag-Sb-Ge-Te
  • TAGS Ag-Sb-Ge-Te
  • thermoelectric conversion module 10 Next, a method of manufacturing the above-described thermoelectric conversion module 10 according to the present embodiment will be described with reference to FIGS. 3 and 4.
  • an Ag paste containing Ag is applied to one surface of the first insulating layer 21 and one surface of the second insulating layer 31 to a thickness exceeding 30 ⁇ m.
  • the coating thickness is preferably 40 ⁇ m or more.
  • the coating method is not particularly limited, and various means such as a screen printing method, an offset printing method, and a photosensitive process can be adopted.
  • a glass-containing Ag paste having a glass component is applied to the lowermost layer in contact with at least the first insulating layer 21 and the second insulating layer 31.
  • the application and drying of the paste may be repeatedly performed in order to make the application thickness exceed 30 ⁇ m.
  • the glass-containing paste may be applied to the lowermost layer in contact with the first insulating layer 21 and the second insulating layer 31, and thereafter, an Ag paste containing no glass component may be applied.
  • the first glass-containing paste is applied to the lowermost layer in contact with the first insulating layer 21 and the second insulating layer 31, and the content of glass is smaller on the first glass-containing paste than in the first glass-containing paste.
  • a second glass-containing paste may be applied, and an Ag paste not containing a glass component may be applied on the second glass-containing paste.
  • coating a paste in multiple times after drying the applied paste, it is preferable to apply the following paste. Furthermore, after firing the applied paste once, the next paste may be applied.
  • the thickness of the non-glass-containing regions 25B and 35B is controlled by adjusting the application thickness of the Ag paste. Accordingly, it is preferable to set the above-mentioned Ta / (Ta + Tg) in the range of more than 0 and 0.5 or less.
  • the glass-containing Ag pastes 45 and 55 are respectively applied to one surface of the first insulating layer 21 and one surface of the second insulating layer 31. It is applied at a thickness of more than 30 ⁇ m.
  • a glass-containing Ag paste for forming the first electrode unit 25 and the second electrode unit 35 will be described.
  • a paste containing silver as a conductive metal as a main component and containing a glass frit for bonding to a ceramic substrate can be used.
  • LTCC manufactured by Daiken Kagaku Kogyo Co., Ltd.
  • a paste for glass a glass-containing Ag paste such as TDPAG-TS1002 manufactured by AS ONE Corporation, or DD-1240D manufactured by Kyoto Elex. In this embodiment, DD-1240D manufactured by Kyoto Elex Co., Ltd. is used.
  • annealing may be performed after the firing step S02. By performing the annealing, the first electrode portion 25 and the second electrode portion 35 can be made into a more dense fired body.
  • the annealing conditions may be 700 to 850 ° C. for 1 to 24 hours.
  • the first insulating layer 21 is disposed on one end side (the lower side in FIG. 4C) of the thermoelectric conversion element 11 via the first electrode portion 25 and the other end side of the thermoelectric conversion element 11 (FIG.
  • the second insulating layer 31 is disposed on the upper side in 4 (c) via the second electrode portion 35.
  • thermoelectric conversion element bonding step S04 Next, the first insulating layer 21, the thermoelectric conversion element 11, and the second insulating layer 31 are pressurized and heated in the stacking direction, and the thermoelectric conversion element 11 and the first electrode portion 25, and the thermoelectric conversion element 11 and the first The two electrode parts 35 are joined.
  • the thermoelectric conversion element 11 is bonded to the first electrode 25 and the second electrode 35 by solid phase diffusion bonding. Then, in a region where at least the thermoelectric conversion element 11 of the first electrode portion 25 is disposed, the thickness is 30 ⁇ m or more, and the porosity P is less than 10%. Similarly, in at least a region of the second electrode portion 35 where the thermoelectric conversion element 11 is disposed, the thickness is 30 ⁇ m or more, and the porosity P is less than 10%.
  • thermoelectric conversion element bonding step S04 the heating load is set to 300 ° C. or higher in a pressure load range of 20 MPa to 50 MPa. Further, in the present embodiment, the atmosphere is set to a vacuum atmosphere within the range of 5 minutes to 60 minutes at the above-mentioned heating temperature.
  • the pressure load in the thermoelectric conversion element bonding step S04 is less than 20 MPa, there is a possibility that the porosity P of the first electrode portion 25 and the second electrode portion 35 can not be less than 10%.
  • the pressure load in the thermoelectric conversion element bonding step S04 exceeds 50 MPa, cracking may occur in the thermoelectric conversion element 11 and the first insulating layer 21 and the second insulating layer 31 made of alumina.
  • the pressure load in the thermoelectric conversion element bonding step S04 is set in the range of 20 MPa or more and 50 MPa or less.
  • thermoelectric conversion element joining process S04 in order to make porosity P of the 1st electrode part 25 and the 2nd electrode part 35 certainly less than 10%, it is preferable to make the minimum of the pressurization load in thermoelectric conversion element joining process S04 into 20 MPa or more, It is more preferable to set it as 30 MPa or more.
  • the upper limit of the pressing load in the thermoelectric conversion element bonding step S04 is 50 MPa or less It is preferable to set the pressure to 40 MPa or less.
  • thermoelectric conversion element bonding step S04 if the heating temperature in the thermoelectric conversion element bonding step S04 is less than 300 ° C., there is a possibility that the thermoelectric conversion element 11 can not be bonded to the first electrode portion 25 and the second electrode portion 35. Moreover, it is preferable that the heating temperature in thermoelectric conversion element joining process S04 shall be 500 degrees C or less. If the temperature exceeds 500 ° C., the thermoelectric conversion element 11 may be thermally decomposed to deteriorate the characteristics. In order to ensure that the thermoelectric conversion element 11 is joined to the first electrode portion 25 and the second electrode portion 35, the lower limit of the heating temperature in the thermoelectric conversion element bonding step S04 is preferably 350 ° C. or more. On the other hand, in order to reliably suppress the thermal decomposition of the thermoelectric conversion element 11, it is more preferable to set the upper limit of the heating temperature in the thermoelectric conversion element bonding step S04 to 400 ° C. or less.
  • thermoelectric conversion module 10 according to this embodiment shown in FIG. 4D is manufactured.
  • the first heat transfer plate 20 side is used as a low temperature portion
  • the second heat transfer plate 30 side is used as a high temperature portion. Conversion with electrical energy is performed.
  • thermoelectric conversion module 10 configured as described above, at one end side of the thermoelectric conversion element 11, the first insulating layer 21 at least one surface of which is made of alumina, and the first insulating layer 21.
  • a first heat transfer plate 20 (first insulating circuit board) including a first electrode portion 25 formed of a sintered body of Ag formed on one surface of the insulating layer 21 is disposed, and the first electrode portion 25 is provided. Since the thickness is 30 ⁇ m or more and the porosity P is less than 10% at least in the region where the thermoelectric conversion element 11 is disposed, the first electrode portion 25 is dense and thick, and the electric Resistance is lowered. Moreover, since there are few pores, deterioration of the thermoelectric conversion element 11 by the gas of the pores can be suppressed.
  • the bonding temperature (baking temperature) can be set to a relatively low temperature condition of 400 ° C. or less, for example. Deterioration of the thermoelectric conversion element 11 at the time can be suppressed. Furthermore, since a brazing material such as silver brazing is not used at the time of joining, no liquid phase is generated, and height variations occurring when using thermoelectric conversion elements having different thermal expansion coefficients for P-type and N-type, etc. It is possible to suppress. Further, since the first electrode portion 25 itself is made of Ag, it does not melt even at an operating temperature of about 500 to 800 ° C., and can be stably operated.
  • the surface of the first insulating layer 21 on which the first electrode portion 25 is formed is made of alumina, and a glass component is present at the interface between the first electrode portion 25 and the first insulating layer 21. Therefore, the reaction between the glass component and the alumina causes the first electrode portion 25 and the first insulating layer 21 to be strongly bonded, and the bonding reliability is excellent.
  • the first electrode portion 25 has a structure in which the glass-containing region and the non-glass-containing region are stacked, and the thickness of the glass-containing region in the stacking direction is Tg.
  • Ta / (Ta + Tg) is limited to 0.5 or less when the thickness in the laminating direction is Ta, the occurrence of peeling at the interface between the glass-containing region and the non-glass-containing region is suppressed It becomes possible. Further, if Ta / (Ta + Tg) exceeds 0, no glass component is present on the bonding surface with the thermoelectric conversion element 11, and the bonding reliability between the thermoelectric conversion element 11 and the first electrode portion 25 is improved. Is possible. Furthermore, in this case, since the glass component is not present on the surface of the first electrode portion 25, it is possible to improve the bonding reliability.
  • the second insulating circuit board is disposed on the other end side of the thermoelectric conversion element 11, and at least the thermoelectric conversion element 11 is disposed also on the second electrode portion 35 of the second insulating circuit board.
  • the thickness is 30 ⁇ m or more, and the porosity P is less than 10%. Therefore, the second electrode portion 35 is formed dense and thick, and the electric resistance becomes low. Moreover, since there are few pores, deterioration of the thermoelectric conversion element 11 by the gas of the pores can be suppressed.
  • the bonding temperature (baking temperature) can be set to a relatively low temperature condition of 400 ° C. or less, for example. Deterioration of the thermoelectric conversion element 11 at the time can be suppressed. Further, since the second electrode portion 35 itself is made of Ag, it does not melt even at an operating temperature of about 500 to 800 ° C., and can be stably operated. Further, the surface of the second insulating layer 31 on which the second electrode portion 35 is formed is made of alumina, and a glass component is present at the interface between the second insulating layer 31 and the second electrode portion 35. Since the glass component and the alumina react with each other, the second electrode portion 35 and the second insulating layer 31 are firmly bonded to each other, and the bonding reliability is excellent.
  • the second electrode portion 35 has a structure in which the glass-containing region and the non-glass-containing region are stacked, and the thickness of the glass-containing region in the stacking direction is Tg.
  • Ta / (Ta + Tg) is limited to 0.5 or less when the thickness in the laminating direction is Ta, the occurrence of peeling at the interface between the glass-containing region and the non-glass-containing region is suppressed It becomes possible.
  • Ta / (Ta + Tg) exceeds 0, no glass component exists on the bonding surface with the thermoelectric conversion element 11, and the bonding reliability between the thermoelectric conversion element 11 and the second electrode portion 35 is improved. Is possible. Furthermore, in this case, since no glass component is present on the surface of the second electrode portion 35, it is possible to improve the bonding reliability.
  • the heating load is set to 300 ° C. or higher, within the range of 20 MPa to 50 MPa.
  • the thickness can be 30 ⁇ m or more and the porosity P can be less than 10% in a region where at least the thermoelectric conversion element 11 of the electrode 25 and the second electrode 35 is disposed.
  • the glass-containing Ag paste is applied to one surface of the first insulating layer 21 and the second insulating layer 31 and fired, the glass component and the alumina react with each other.
  • the 1st insulating layer 21 and the 1st electrode part 25 and the 2nd insulating layer 31 and the 2nd electrode part 35 can be joined certainly.
  • thermoelectric conversion element 11 is directly stacked on the first electrode unit 25 and the second electrode unit 35 in the stacking step S03 and described as solid phase diffusion bonding, but the present invention is limited thereto
  • the thermoelectric conversion element 11 may be disposed and bonded using the Ag bonding material.
  • the first bonding layer 27 is formed between the first electrode portion 25 and the thermoelectric conversion element 11
  • the second bonding layer is formed between the second electrode portion 35 and the thermoelectric conversion element 11. 37 are formed.
  • the porosity is less than 10% also in the first bonding layer 27 and the second bonding layer 37.
  • the second heat transfer plate 30 is provided with the second insulated circuit board on the other end side of the thermoelectric conversion element 11 in the present embodiment, the present invention is not limited to this.
  • the second heat transfer plate may be configured by disposing the second electrode portion on the other end side of the conversion element 11 and stacking the insulating substrate and pressing the insulating substrate in the stacking direction.
  • thermoelectric conversion module was produced by the method similar to embodiment mentioned above.
  • examples 1 to 3 and the comparative examples 1 to 5 12 half pairs of PN pairs were used as the thermoelectric conversion elements, using 3 mm ⁇ 3 mm ⁇ 5 mmt half-Heussler elements with Ni underlying gold electrodes.
  • the insulating layer alumina having a thickness of 0.635 mm was used.
  • a glass-containing Ag paste for forming the first electrode portion DD-1240D manufactured by Kyoto Elex Co., Ltd. was used.
  • the heating conditions for forming the first electrode portion were a temperature of 850 ° C. and a holding time of 10 minutes.
  • the thickness of the first electrode portion, the heating temperature at the time of bonding between the thermoelectric conversion element and the first electrode portion, and the pressure load were as described in Table 1.
  • the bonding atmosphere was as shown in Table 1, and in the bonding of the thermoelectric conversion element and the first electrode part and the second electrode part, the thermoelectric conversion element was directly laminated and bonded to the first electrode part and the second electrode part.
  • the second electrode portion has the same configuration as the first electrode portion.
  • thermoelectric conversion modules After mechanically polishing the cross section of the first electrode portion of each of the obtained thermoelectric conversion modules, Ar ion etching (Cross Section Polisher SM-09010 manufactured by Nippon Denshi Co., Ltd.) is performed, EPMA analysis is performed, and metal and oxygen coexist
  • the region to be treated was a glass component. And the presence or absence of the glass component in the interface of a 1st electrode part and a 1st insulating layer was confirmed.
  • glass components were all confirmed at the interface.
  • thermoelectric conversion module Under the atmosphere, the temperature of the heating iron plate in contact with the first heat transfer plate side of the manufactured thermoelectric conversion module is 550 ° C, and the temperature of the cooling iron plate in contact with the second heat conduction plate side is 50 ° C. ) was measured (initial resistance).
  • the temperature difference was continuously applied to the thermoelectric conversion module, the rate of increase from the initial value of the internal resistance with respect to time elapsed was calculated, and the durability of the thermoelectric conversion module after 24 hours elapsed was evaluated (internal resistance increase rate).
  • a variable resistance is placed between the output terminals of the thermoelectric conversion module with the temperature difference as described above, and the resistance is changed to measure the current value and the voltage value.
  • the voltage value when the current value is 0 is defined as the open circuit voltage
  • the current value when the voltage value is 0 is defined as the maximum current.
  • the open circuit voltage and the maximum current are connected in a straight line, and the slope of the straight line is taken as the internal resistance of the thermoelectric conversion module. The evaluation results are shown in Table 1.
  • thermoelectric conversion modules After mechanically polishing the cross section of the first electrode part of each of the obtained thermoelectric conversion modules, Ar ion etching (cross section polisher SM-09010 manufactured by Nippon Denshi Co., Ltd.) is performed, and a laser microscope (VKX-200 manufactured by Keyence Co., Ltd.) Cross-sectional observation was performed using Then, the obtained image was subjected to a binarization treatment, and the white portion was made Ag, and the black portion was made pores. The area of the black part was determined from the binarized image, and the porosity was calculated by the following equation.
  • Comparative Example 1 in which the thickness of the first electrode portion was 30 ⁇ m or less, the initial resistance was high. In Comparative Example 1, the initial resistance was high, so the rate of increase in internal resistance was not measured. In Comparative Example 2 in which the heating temperature was low, the porosity was 10% or more, and the internal resistance increase rate was high. Moreover, in Comparative Example 3 in which the pressing load was less than 20 MPa, the porosity was high and the initial resistance was also high. In Comparative Example 3, the initial resistance was high, so the rate of increase in internal resistance was not measured. In Comparative Example 4 in which the bonding temperature was even lower than Comparative Example 2, bonding of the thermoelectric conversion elements could not be performed.
  • Comparative Example 5 in which the bonding load exceeded 50 MPa, cracking occurred in the first insulating layer. Therefore, in Comparative Example 4 and Comparative Example 5, the thickness, the porosity, and the electrical resistance of the first electrode portion are not evaluated. On the other hand, in Inventive Examples 1 to 3, it was found that a thermoelectric conversion module was obtained in which the thickness of the first electrode portion is 30 ⁇ m or more and the porosity is less than 10% and the initial resistance and the internal resistance increase rate are also low. .
  • thermoelectric conversion module was produced by the method similar to embodiment mentioned above.
  • a 12 mm pair of PN pairs was used as a thermoelectric conversion element, using a half-Heussler element with a Ni base gold electrode of 3 mm ⁇ 3 mm ⁇ 5 mmt.
  • As the insulating layer alumina having a thickness of 0.635 mm was used.
  • the thickness of the first electrode portion was measured, and the value obtained by subtracting the thickness Tg of the glass-containing region from the thickness of the first electrode portion was taken as the thickness Ta of the non-glass-containing region. In addition, it was observed whether a glass component was present on the surface of the first electrode portion.
  • thermoelectric conversion modules Presence or absence of peeling
  • VK X-200 manufactured by Keyence Corporation
  • the thickness in the laminating direction of the glass-containing region is Tg
  • the thickness in the laminating direction of the non-glass-containing region is Ta
  • Ta / (Ta + Tg) is more than 0 and 0.5 or less

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

This thermoelectric conversion module (10) is formed by electrically connecting a plurality of thermoelectric conversion elements (11) through first electrode parts (25) disposed on one end sides of the thermoelectric conversion elements (11) and a second electrode part (35) disposed on the other end sides. A first insulating circuit board (20) is disposed on the one end sides of the thermoelectric conversion elements (11), the first insulating circuit board (20) being provided with: a first insulating layer (21), of which at least one surface is formed of alumina; and the first electrode parts (25), which are formed on one surface of the first insulating layer (21) and composed of a fired body of Ag. In addition, a glass component is present in the interface between the first electrode parts (25) and the first insulating layer (21), and the first electrode parts (25) each have a thickness of at least 30 μm and a porosity of less than 10% in at least the region in which the thermoelectric conversion element (11) is disposed.

Description

熱電変換モジュール、及び、熱電変換モジュールの製造方法Thermoelectric conversion module and method of manufacturing thermoelectric conversion module
 この発明は、複数の熱電変換素子が電気的に接続してなる熱電変換モジュール、及び、熱電変換モジュールの製造方法に関するものである。
 本願は、2017年6月29日に、日本に出願された特願2017-127539号、及び2018年6月26日に、日本に出願された特願2018-121097号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a thermoelectric conversion module in which a plurality of thermoelectric conversion elements are electrically connected, and a method of manufacturing the thermoelectric conversion module.
The present application claims priority based on Japanese Patent Application No. 2017-127539 filed on June 29, 2017, and Japanese Patent Application No. 20812-1097 filed on June 26, 2018, on June 29, 2017. , The contents of which are incorporated herein.
 熱電変換素子は、ゼーベック効果あるいはペルティエ効果によって、熱エネルギーと電気エネルギーとを相互に変換可能な電子素子である。
 ゼーベック効果は、熱電変換素子の両端に温度差を生じさせると起電力が発生する現象であり、熱エネルギーを電気エネルギーに変換する。ゼーベック効果により発生する起電力は、熱電変換素子の特性によって決まる。近年では、この効果を利用した熱電発電の開発が盛んである。
 ペルティエ効果は、熱電変換素子の両端に電極等を形成して電極間で電位差を生じさせると、熱電変換素子の両端に温度差が生じる現象であり、電気エネルギーを熱エネルギーに変換する。このような効果をもつ素子は特にペルティエ素子と呼ばれ、精密機器や小型冷蔵庫などの冷却や温度制御に利用されている。
The thermoelectric conversion element is an electronic element capable of mutually converting thermal energy and electrical energy by the Seebeck effect or Peltier effect.
The Seebeck effect is a phenomenon in which an electromotive force is generated when a temperature difference is generated between both ends of a thermoelectric conversion element, and thermal energy is converted into electrical energy. The electromotive force generated by the Seebeck effect is determined by the characteristics of the thermoelectric conversion element. In recent years, development of thermoelectric generation utilizing this effect has been brisk.
The Peltier effect is a phenomenon in which when an electrode or the like is formed at both ends of a thermoelectric conversion element to generate a potential difference between the electrodes, a temperature difference occurs at both ends of the thermoelectric conversion element, and electrical energy is converted to thermal energy. An element having such an effect is particularly called a Peltier element, and is used for cooling and temperature control of precision instruments, small refrigerators and the like.
 上述の熱電変換素子を用いた熱電変換モジュールとしては、例えば、n型熱電変換素子とp型熱電変換素子とを交互に直列接続した構造のものが提案されている。
 このような熱電変換モジュールにおいては、複数の熱電変換素子の一端側及び他端側にそれぞれ伝熱板が配置され、この伝熱板に配設された電極部によって熱電変換素子同士が直列接続された構造とされている。なお、上述の伝熱板として、絶縁層と電極部とを備えた絶縁回路基板を用いることがある。
As a thermoelectric conversion module using the above-mentioned thermoelectric conversion element, for example, one having a structure in which an n-type thermoelectric conversion element and a p-type thermoelectric conversion element are alternately connected in series is proposed.
In such a thermoelectric conversion module, heat transfer plates are disposed respectively on one end side and the other end side of a plurality of thermoelectric conversion elements, and the thermoelectric conversion elements are connected in series by the electrode portions disposed on the heat transfer plate. Structure. In addition, as the above-mentioned heat transfer plate, the insulated circuit board provided with the insulating layer and the electrode part may be used.
 そして、熱電変換素子の一端側に配設された伝熱板と熱電変換素子の他端側に配設された伝熱板との間で温度差を生じさせることで、ゼーベック効果によって、電気エネルギーを発生させることができる。あるいは、熱電変換素子に電流を流すことで、ペルティエ効果によって、熱電変換素子の一端側に配設された伝熱板と熱電変換素子の他端側に配設された伝熱板との間に温度差を生じさせることが可能となる。 Then, a temperature difference is caused between the heat transfer plate disposed on one end side of the thermoelectric conversion element and the heat transfer plate disposed on the other end side of the thermoelectric conversion element, whereby electric energy is obtained by the Seebeck effect. Can be generated. Alternatively, by supplying a current to the thermoelectric conversion element, between the heat transfer plate disposed at one end of the thermoelectric conversion element and the heat transfer plate disposed at the other end of the thermoelectric conversion element by the Peltier effect. It is possible to generate a temperature difference.
 ここで、上述の熱電変換モジュールにおいては、熱電変換効率を向上させるために、熱電変換素子と接続された電極部における電気抵抗を低く抑える必要がある。
 このため、従来、熱電変換素子と電極部とを接合する際には、導電性に特に優れたAgペースト等が用いられている。また、電極部自体をAgペーストで形成し、熱電変換素子と接合することもある。
Here, in the above-mentioned thermoelectric conversion module, in order to improve the thermoelectric conversion efficiency, it is necessary to suppress the electric resistance in the electrode part connected to the thermoelectric conversion element to a low level.
For this reason, conventionally, when joining a thermoelectric conversion element and an electrode part, Ag paste etc. which were especially excellent in conductivity are used. Moreover, an electrode part itself may be formed with Ag paste, and it may join with a thermoelectric conversion element.
 しかしながら、Agペーストの焼成体は、気孔が比較的多いことから、電気抵抗を十分に低く抑えることができない。また、350℃以上の中温域で熱電変換モジュールを使用した際に、Agペーストの焼成体において徐々に焼結が進行し、焼成体の組織が変化し、気孔内に存在するガスによって熱電変換素子が変質してしまうおそれがあった。
 Agペーストの焼成体を緻密化して気孔を少なくするためには、銀の融点(960℃)以上に加熱して液相焼結することが考えられるが、このような高温条件では接合時に熱電変換素子が熱で劣化してしまうおそれがあった。
However, since the sintered body of Ag paste has a relatively large number of pores, the electrical resistance can not be suppressed sufficiently low. In addition, when using a thermoelectric conversion module in a medium temperature range of 350 ° C. or more, sintering progresses gradually in the sintered body of Ag paste, the structure of the sintered body changes, and the thermoelectric conversion element is generated by the gas existing in the pores. Was likely to deteriorate.
In order to reduce the number of pores by densifying the sintered body of Ag paste, it is conceivable to perform liquid phase sintering by heating to the melting point (960 ° C.) of silver or more. Under such high temperature conditions, thermoelectric conversion is performed at the time of bonding The element may be degraded by heat.
 そこで、例えば特許文献1においては、銀よりも融点の低い銀ロウを用いて電極部を構成し、熱電変換素子を接合する方法が提案されている。
 また、特許文献2においては、気孔中のガスによる熱電変換素子の劣化を抑制するために、接合層の外周面全体にガラス溶液を塗布して空気中で乾燥することによって緻密質被膜を形成する方法が提案されている。
Therefore, for example, in Patent Document 1, a method is proposed in which an electrode portion is formed using a silver solder having a melting point lower than that of silver, and the thermoelectric conversion elements are joined.
Further, in Patent Document 2, in order to suppress deterioration of the thermoelectric conversion element due to the gas in the pores, a dense film is formed by applying a glass solution to the entire outer peripheral surface of the bonding layer and drying in air. A method has been proposed.
特開2013-197265号公報JP, 2013-197265, A 特開2012-231025号公報JP 2012-231025 A
 ここで、特許文献1に記載された方法においては、銀よりも融点の低い銀ロウを用いているが、熱電変換モジュールの作動温度でも銀ロウが溶融しないように、使用する銀ロウの融点は例えば750~800℃が好ましいとされている(特許文献1段落番号0023参照)。このような比較的高温条件で熱電変換素子を接合した場合には、やはり、接合時の熱によって熱電変換素子の特性が劣化してしまうおそれがある。 Here, in the method described in Patent Document 1, although silver solder having a melting point lower than that of silver is used, the melting point of the silver solder used is such that the silver solder does not melt even at the operating temperature of the thermoelectric conversion module. For example, 750 to 800 ° C. is preferred (see Patent Document 1, paragraph 0023). When the thermoelectric conversion elements are joined under such relatively high temperature conditions, there is also a possibility that the characteristics of the thermoelectric conversion elements may deteriorate due to the heat at the time of joining.
 また、特許文献2に記載された方法においては、銀ペーストを用いて500~800℃で接合を行っているが、この場合、接合時の熱によって熱電変換素子が劣化してしまうおそれがある。 Further, in the method described in Patent Document 2, bonding is performed at 500 to 800 ° C. using a silver paste, but in this case, there is a possibility that the thermoelectric conversion element may be deteriorated by heat at the time of bonding.
 この発明は、前述した事情に鑑みてなされたものであって、電極部における電気抵抗が低く、かつ、接合時における熱電変換素子の劣化が抑えられており、熱電変換効率に優れた熱電変換モジュール、及び、熱電変換モジュールの製造方法を提供することを目的とする。 This invention is made in view of the situation mentioned above, and the electric resistance in an electrode part is low, and degradation of the thermoelectric conversion element at the time of joining is suppressed, and the thermoelectric conversion module excellent in the thermoelectric conversion efficiency An object of the present invention is to provide a method of manufacturing a thermoelectric conversion module.
 上記課題を解決するために、本発明の熱電変換モジュールは、複数の熱電変換素子と、これら熱電変換素子の一端側に配設された第1電極部及び他端側に配設された第2電極部と、を有し、前記第1電極部及び前記第2電極部を介して複数の前記熱電変換素子が電気的に接続してなる熱電変換モジュールであって、前記熱電変換素子の一端側には、少なくとも一方の面がアルミナで構成された第1絶縁層と、この第1絶縁層の一方の面に形成されたAgの焼成体からなる前記第1電極部と、を備えた第1絶縁回路基板が配設されており、前記第1電極部と前記第1絶縁層との界面には、ガラス成分が存在しており、前記第1電極部は、少なくとも前記熱電変換素子が配置された領域において、厚さが30μm以上とされ、気孔率が10%未満とされていることを特徴としている。 In order to solve the above problems, the thermoelectric conversion module of the present invention comprises a plurality of thermoelectric conversion elements, a first electrode portion disposed on one end side of the thermoelectric conversion elements, and a second on the other end side. A thermoelectric conversion module, comprising: an electrode portion, wherein a plurality of the thermoelectric conversion elements are electrically connected via the first electrode portion and the second electrode portion, wherein one end side of the thermoelectric conversion element A first insulating layer at least one surface of which is made of alumina, and the first electrode portion made of a sintered body of Ag formed on one surface of the first insulating layer. An insulating circuit substrate is disposed, a glass component is present at an interface between the first electrode portion and the first insulating layer, and at least the thermoelectric conversion element is disposed in the first electrode portion. Thickness is 30 μm or more, and the porosity is less than 10%. It is characterized in that there is a.
 本発明の熱電変換モジュールによれば、前記熱電変換素子の一端側に、少なくとも一方の面がアルミナで構成された第1絶縁層と、この第1絶縁層の一方の面に形成されたAgの焼成体からなる前記第1電極部と、を備えた第1絶縁回路基板が配設され、前記第1電極部は、少なくとも前記熱電変換素子が配置された領域において、厚さが30μm以上とされ、気孔率が10%未満とされているので、第1電極部が緻密で厚く形成されており、電気抵抗を低くすることができる。また、気孔が少ないため、気孔のガスによる熱電変換素子の劣化を抑えることができる。 According to the thermoelectric conversion module of the present invention, the first insulating layer at least one surface of which is made of alumina on one end side of the thermoelectric conversion element, and Ag formed on one surface of the first insulating layer A first insulating circuit substrate including the first electrode portion made of a sintered body is disposed, and the first electrode portion has a thickness of 30 μm or more at least in a region where the thermoelectric conversion element is disposed Since the porosity is less than 10%, the first electrode portion is dense and thick, and the electrical resistance can be reduced. Moreover, since there are few pores, deterioration of the thermoelectric conversion element by the gas of the pores can be suppressed.
 さらに、第1電極部は、Agペーストの焼成体とされているので、接合温度(焼成温度)を比較的低温条件とすることができ、接合時の熱電変換素子の劣化を抑制することができる。また、第1電極部自体は、Agで構成されているので、500~800℃程度の作動温度でも溶融することはなく、安定して作動させることができる。
 また、第1絶縁層のうち第1電極部が形成される面(一方の面)がアルミナで構成されており、前記第1電極部と前記第1絶縁層との界面には、ガラス成分が存在しているので、ガラス成分とアルミナとが反応することで、第1電極部と第1絶縁層とが強固に接合されており、接合信頼性に優れている。
Furthermore, since the first electrode portion is a sintered body of Ag paste, the bonding temperature (baking temperature) can be set to a relatively low temperature condition, and deterioration of the thermoelectric conversion element at the time of bonding can be suppressed. . Further, since the first electrode portion itself is made of Ag, it does not melt even at an operating temperature of about 500 to 800 ° C., and can be stably operated.
In the first insulating layer, the surface (one surface) on which the first electrode portion is formed is made of alumina, and the glass component is present at the interface between the first electrode portion and the first insulating layer. Since the glass component and the alumina react with each other, the first electrode portion and the first insulating layer are strongly bonded to each other, and the bonding reliability is excellent.
 ここで、本発明の熱電変換モジュールにおいては、前記第1電極部は、積層方向において、前記第1絶縁層側から、ガラス含有領域とガラス非含有領域と、からなり、前記ガラス含有領域の積層方向の厚さをTg、前記ガラス非含有領域の積層方向の厚さをTaとしたとき、Ta/(Ta+Tg)が0を超え、0.5以下であることが好ましい。
 この場合、前記第1電極部が、ガラス含有領域とガラス非含有領域とが積層された構造とされており、前記ガラス含有領域の積層方向の厚さをTg、前記ガラス非含有領域の積層方向の厚さをTaとしたとき、Ta/(Ta+Tg)が0.5以下に制限されているので、ガラス含有領域とガラス非含有領域の界面での剥離の発生を抑制することが可能となる。また、Ta/(Ta+Tg)が0超えとされているので、前記熱電変換素子との接合面にガラス成分が存在せず、前記熱電変換素子と前記第1電極部との接合性を向上させることが可能となる。
Here, in the thermoelectric conversion module according to the present invention, the first electrode portion is composed of a glass-containing region and a non-glass-containing region from the first insulating layer side in the stacking direction, and the glass-containing region is stacked When the thickness in the direction is Tg, and the thickness in the lamination direction of the non-glass-containing region is Ta, it is preferable that Ta / (Ta + Tg) is more than 0 and not more than 0.5.
In this case, the first electrode portion has a structure in which the glass-containing region and the non-glass-containing region are stacked, and the thickness in the stacking direction of the glass-containing region is Tg, and the stacking direction of the non-glass-containing region When Ta has a thickness of Ta, Ta / (Ta + Tg) is limited to 0.5 or less, so it is possible to suppress the occurrence of peeling at the interface between the glass-containing region and the non-glass-containing region. Moreover, since Ta / (Ta + Tg) is more than 0, no glass component exists in the bonding surface with the thermoelectric conversion element, and the bonding property between the thermoelectric conversion element and the first electrode portion is improved. Is possible.
 また、本発明の熱電変換モジュールにおいては、前記熱電変換素子の他端側に、少なくとも一方の面がアルミナで構成された第2絶縁層と、この第2絶縁層の一方の面に形成されたAgの焼成体からなる前記第2電極部と、を備えた第2絶縁回路基板が配設されており、前記第2電極部と前記第2絶縁層との界面には、ガラス成分が存在しており、前記第2電極部は、少なくとも前記熱電変換素子が配置された領域において、厚さが30μm以上とされ、気孔率が10%未満とされている構成としてもよい。 In the thermoelectric conversion module according to the present invention, the second insulating layer at least one surface of which is made of alumina and the other surface of the second insulating layer are formed on the other end side of the thermoelectric conversion element. And a second insulating circuit substrate including the second electrode portion made of a sintered body of Ag, and a glass component is present at an interface between the second electrode portion and the second insulating layer. The second electrode portion may have a thickness of 30 μm or more and a porosity of less than 10% at least in a region where the thermoelectric conversion element is disposed.
 この場合、前記熱電変換素子の他端側に、少なくとも一方の面がアルミナで構成された第2絶縁層と、この第2絶縁層の一方の面に形成されたAgの焼成体からなる前記第2電極部と、を備えた第2絶縁回路基板が配設されており、この第2絶縁回路基板の前記第2電極部についても、少なくとも前記熱電変換素子が配置された領域において、厚さが30μm以上とされ、気孔率が10%未満とされているので、第2電極部が緻密で厚く形成されており、電気抵抗が低くなる。また、気孔が少ないため、気孔のガスによる熱電変換素子の劣化を抑えることができる。 In this case, the second insulating layer at least one surface of which is made of alumina on the other end side of the thermoelectric conversion element, and the sintered body of Ag formed on one surface of the second insulating layer And a second insulating circuit substrate having two electrode portions, and the second electrode portion of the second insulating circuit substrate also has a thickness at least in a region where the thermoelectric conversion element is disposed. Since the porosity is 30 μm or more and the porosity is less than 10%, the second electrode portion is formed dense and thick, and the electrical resistance becomes low. Moreover, since there are few pores, deterioration of the thermoelectric conversion element by the gas of the pores can be suppressed.
 さらに、第2電極部は、Agペーストの焼成体とされているので、接合温度(焼成温度)を比較的低温条件とすることができ、接合時の熱電変換素子の劣化を抑制することができる。また、第2電極部自体は、Agで構成されているので、500~800℃程度の作動温度でも溶融することはなく、安定して作動させることができる。
 また、第2絶縁層のうち第2電極部が形成される面(一方の面)がアルミナで構成されており、前記第2電極部と前記第2絶縁層との界面には、ガラス成分が存在しているので、ガラス成分とアルミナとが反応することで、第2電極部と第2絶縁層とが強固に接合されており、接合信頼性に優れている。
Furthermore, since the second electrode portion is a sintered body of Ag paste, the bonding temperature (baking temperature) can be set to a relatively low temperature condition, and deterioration of the thermoelectric conversion element at the time of bonding can be suppressed. . Further, since the second electrode portion itself is made of Ag, it does not melt even at an operating temperature of about 500 to 800 ° C., and can be stably operated.
In the second insulating layer, the surface (one surface) on which the second electrode portion is formed is made of alumina, and the glass component is present at the interface between the second electrode portion and the second insulating layer. Since the glass component and the alumina react with each other, the second electrode portion and the second insulating layer are strongly bonded to each other, and the bonding reliability is excellent.
 ここで、本発明の熱電変換モジュールにおいては、前記第2電極部は、積層方向において、前記第2絶縁層側から、ガラス含有領域とガラス非含有領域と、からなり、前記ガラス含有領域の積層方向の厚さをTg、前記ガラス非含有領域の積層方向の厚さをTaとした時、Ta/(Ta+Tg)が0を超え0.5以下であることが好ましい。
 この場合、前記第2電極部が、ガラス含有領域とガラス非含有領域とが積層された構造とされており、前記ガラス含有領域の積層方向の厚さをTg、前記ガラス非含有領域の積層方向の厚さをTaとしたとき、Ta/(Ta+Tg)が0.5以下に制限されているので、ガラス含有領域とガラス非含有領域の界面での剥離の発生を抑制することが可能となる。また、Ta/(Ta+Tg)が0超えとされているので、前記熱電変換素子との接合面にガラス成分が存在せず、前記熱電変換素子と前記第2電極部との接合性を向上させることが可能となる。
Here, in the thermoelectric conversion module according to the present invention, the second electrode portion is composed of a glass-containing region and a non-glass-containing region from the second insulating layer side in the stacking direction, and the glass-containing region is stacked When the thickness in the direction is Tg, and the thickness in the laminating direction of the non-glass-containing region is Ta, it is preferable that Ta / (Ta + Tg) is more than 0 and 0.5 or less.
In this case, the second electrode portion has a structure in which the glass-containing region and the non-glass-containing region are stacked, and the thickness in the stacking direction of the glass-containing region is Tg, and the stacking direction of the non-glass-containing region When Ta has a thickness of Ta, Ta / (Ta + Tg) is limited to 0.5 or less, so it is possible to suppress the occurrence of peeling at the interface between the glass-containing region and the non-glass-containing region. Moreover, since Ta / (Ta + Tg) is more than 0, no glass component exists in the bonding surface with the thermoelectric conversion element, and the bonding property between the thermoelectric conversion element and the second electrode portion is improved. Is possible.
 本発明の熱電変換モジュールの製造方法は、複数の熱電変換素子と、これら熱電変換素子の一端側に配設された第1電極部及び他端側に配設された第2電極部と、を有し、前記第1電極部及び前記第2電極部を介して複数の前記熱電変換素子が電気的に接続してなる熱電変換モジュールの製造方法であって、前記熱電変換モジュールは、前記熱電変換素子の一端側に、少なくとも一方の面がアルミナで構成された第1絶縁層と、この第1絶縁層の一方の面に形成されたAgの焼成体からなる前記第1電極部と、を備えた第1絶縁回路基板が配設されており、前記第1絶縁層の一方の面に、Agを含むAgペーストを30μm以上の厚さで塗布するAgペースト塗布工程と、前記Agペーストを焼成して第1電極部を形成する焼成工程と、前記熱電変換素子の一端側に前記第1電極部を介して前記第1絶縁層を積層する積層工程と、前記熱電変換素子と前記第1絶縁層とを積層方向に加圧するとともに加熱して、前記熱電変換素子を接合する熱電変換素子接合工程と、を有し、前記Agペースト塗布工程においては、少なくとも前記第1絶縁層と接する最下層には、ガラス含有Agペーストを塗布し、前記熱電変換素子接合工程においては、加圧荷重が20MPa以上50MPa以下の範囲内、加熱温度が300℃以上とされており、前記第1電極部は、少なくとも前記熱電変換素子が配置された領域において、厚さが30μm以上とされ、気孔率が10%未満とされることを特徴としている。 The method for manufacturing a thermoelectric conversion module according to the present invention comprises a plurality of thermoelectric conversion elements, a first electrode portion disposed on one end side of the thermoelectric conversion elements, and a second electrode portion disposed on the other end side. It is a manufacturing method of the thermoelectric conversion module which has a plurality of said thermoelectric conversion elements electrically connected via said 1st electrode part and said 2nd electrode part, and said thermoelectric conversion module is said thermoelectric conversion A first insulating layer, at least one surface of which is made of alumina, on one end side of the device, and the first electrode portion made of a sintered body of Ag formed on one surface of the first insulating layer A first insulating circuit substrate is disposed, and an Ag paste application step of applying an Ag paste containing Ag to a thickness of 30 μm or more on one surface of the first insulating layer, and firing the Ag paste Firing step to form a first electrode portion, Laminating the first insulating layer on one end side of the thermoelectric conversion element via the first electrode portion, pressurizing the heating element and the first insulating layer in the laminating direction and heating the same; A thermoelectric conversion element bonding step of bonding a thermoelectric conversion element, and in the Ag paste application step, a glass-containing Ag paste is applied to at least the lowermost layer in contact with the first insulating layer, and the thermoelectric conversion element In the bonding step, the pressure load is in the range of 20 MPa to 50 MPa, the heating temperature is 300 ° C. or higher, and the first electrode portion has a thickness at least in the region where the thermoelectric conversion element is disposed. It is characterized in that it is 30 μm or more and the porosity is less than 10%.
 このような構成とされた熱電変換モジュールの製造方法によれば、前記熱電変換素子接合工程において、加圧荷重が20MPa以上50MPa以下の範囲内、加熱温度が300℃以上とされているので、前記第1電極部の少なくとも前記熱電変換素子が配置された領域において、その厚さを30μm以上、かつ、気孔率を10%未満とすることができる。また、比較的低温条件とされているので、接合時(焼成時)における熱電変換素子の劣化を抑制することができる。
 また、前記Agペースト塗布工程において、少なくとも前記第1絶縁層と接する最下層にはガラス含有Agペーストを塗布しているので、ガラス含有Agペーストのガラス成分とアルミナとが反応することにより、第1絶縁層と第1電極部とを確実に接合することができる。
According to the method of manufacturing a thermoelectric conversion module configured as described above, in the step of bonding the thermoelectric conversion element, the heating load is set to 300 ° C. or higher, within a range of 20 MPa or more and 50 MPa or less. In at least a region of the first electrode portion where the thermoelectric conversion element is disposed, the thickness can be 30 μm or more and the porosity can be less than 10%. Moreover, since it is set as comparatively low temperature conditions, deterioration of the thermoelectric conversion element at the time of joining (at the time of baking) can be suppressed.
Further, in the Ag paste application step, the glass-containing Ag paste is applied to at least the lowermost layer in contact with the first insulating layer, so that the glass component of the glass-containing Ag paste and alumina react with each other. The insulating layer and the first electrode portion can be reliably bonded.
 ここで、本発明の熱電変換モジュールの製造方法においては、前記Agペースト塗布工程において、前記第1電極部のうち前記熱電変換素子と接する最上層に、ガラス成分を含まないAgペーストを塗布する構成としてもよい。
 この場合、前記熱電変換素子と接する最上層に、ガラス成分を含まないAgペーストを塗布しているので、前記第1電極部の前記熱電変換素子側に、ガラス成分を含まないガラス非含有領域を確実に形成することができ、前記第1電極部と前記熱電変換素子との接合性を向上させることが可能となる。
Here, in the method of manufacturing a thermoelectric conversion module according to the present invention, in the Ag paste applying step, an Ag paste containing no glass component is applied to the uppermost layer of the first electrode portion in contact with the thermoelectric conversion element. It may be
In this case, since the Ag paste containing no glass component is applied to the uppermost layer in contact with the thermoelectric conversion element, a glass non-containing region containing no glass component is provided on the thermoelectric conversion element side of the first electrode portion. It becomes possible to form reliably and to improve the bondability of the 1st electrode part and the thermoelectric conversion element.
 また、本発明の熱電変換モジュールの製造方法においては、前記積層工程では、前記第1電極部の上にAg接合材を配設した後に、前記熱電変換素子を配設する構成としてもよい。
 この場合、前記第1電極部の上にAg接合材を配設した後に、前記熱電変換素子を配設しており、その後、上述の条件で熱電変換素子を接合しているので、前記第1電極部の上に塗布したAg接合材も緻密化し、気孔率を10%未満とすることができる。また、前記第1電極部と前記熱電変換素子との接合性を向上させることが可能となる。
In the method of manufacturing a thermoelectric conversion module according to the present invention, the thermoelectric conversion element may be disposed after disposing an Ag bonding material on the first electrode portion in the laminating step.
In this case, after the Ag bonding material is disposed on the first electrode portion, the thermoelectric conversion element is disposed, and then the thermoelectric conversion element is joined under the above-described conditions. The Ag bonding material applied on the electrode portion can also be densified to have a porosity of less than 10%. Moreover, it becomes possible to improve the bondability of the said 1st electrode part and the said thermoelectric conversion element.
 また、本発明の熱電変換モジュールの製造方法においては、前記熱電変換モジュールは、前記熱電変換素子の一端側に、少なくとも一方の面がアルミナで構成された第1絶縁層と、この第1絶縁層の一方の面に形成されたAgの焼成体からなる前記第1電極部と、を備えた第1絶縁回路基板が配設され、前記熱電変換素子の他端側に、少なくとも一方の面がアルミナで構成された第2絶縁層と、この第2絶縁層の一方の面に形成されたAgの焼成体からなる前記第2電極部と、を備えた第2絶縁回路基板が配設されており、前記Agペースト塗布工程では、前記第1絶縁層及び前記第2絶縁層の一方の面に、Agを含むAgペーストを30μm以上の厚さで塗布するともに、少なくとも前記第1絶縁層及び前記第2絶縁層と接する最下層には、ガラス含有Agペーストを塗布し、前記焼成工程では、前記Agペーストを焼成して前記第1電極部及び前記第2電極部を形成し、前記積層工程では、前記熱電変換素子の一端側に前記第1電極部を介して前記第1絶縁層を積層するとともに、前記熱電変換素子の他端側に前記第2電極部を介して前記第2絶縁層を積層し、前記熱電変換素子接合工程では、前記第1絶縁層と前記熱電変換素子と前記第2絶縁層を、積層方向に加圧するとともに加熱して、前記第1電極部と前記熱電変換素子、及び、前記熱電変換素子と前記第2電極部を接合し、前記熱電変換素子接合工程においては、加圧荷重が20MPa以上50MPa以下の範囲内、加熱温度が300℃以上とされており、前記第1電極部及び前記第2電極部は、少なくとも前記熱電変換素子が配置された領域において、厚さが30μm以上とされ、気孔率が10%未満とされる構成としてもよい。 Further, in the method of manufacturing a thermoelectric conversion module according to the present invention, the thermoelectric conversion module includes a first insulating layer having at least one surface made of alumina on one end side of the thermoelectric conversion element, and the first insulating layer. A first insulating circuit board comprising the first electrode portion made of a sintered body of Ag formed on one side of the first surface, and at least one side of the thermoelectric conversion element is alumina on the other side of the thermoelectric conversion element A second insulating circuit substrate comprising a second insulating layer constituted by the second insulating layer and the second electrode portion made of a sintered body of Ag formed on one surface of the second insulating layer In the Ag paste application step, an Ag paste containing Ag is applied to one surface of the first insulating layer and the second insulating layer with a thickness of 30 μm or more, and at least the first insulating layer and the first insulating layer 2 At the lowest layer in contact with the insulating layer A glass-containing Ag paste is applied, and in the firing step, the Ag paste is fired to form the first electrode portion and the second electrode portion, and in the laminating step, the first electrode portion and the second electrode portion are formed on one end side of the thermoelectric conversion element. While laminating the first insulating layer through the first electrode portion, laminating the second insulating layer through the second electrode portion on the other end side of the thermoelectric conversion element, and in the thermoelectric conversion element bonding step The first insulating layer, the thermoelectric conversion element, and the second insulating layer are pressurized and heated in the stacking direction, and the first electrode portion and the thermoelectric conversion element, and the thermoelectric conversion element and the second The electrode parts are joined, and in the thermoelectric conversion element bonding step, the pressure load is in the range of 20 MPa to 50 MPa, the heating temperature is 300 ° C. or more, and the first electrode part and the second electrode part are , At least the thermoelectric In a region where the conversion element is disposed, the thickness may be 30 μm or more, and the porosity may be less than 10%.
 この場合、前記熱電変換素子の他端側に配設される第2絶縁回路基板の第2電極部においても、少なくとも前記熱電変換素子が配置された領域において、その厚さを30μm以上、かつ、気孔率を10%未満とすることができる。また、比較的低温条件とされているので、接合時(焼成時)における熱電変換素子の劣化を抑制することができる。
 また、前記Agペースト塗布工程において、少なくとも前記第1絶縁層及び第2絶縁層と接する最下層にはガラス含有Agペーストを塗布しているので、ガラス含有Agペーストのガラス成分とアルミナとが反応することにより、第1絶縁層と第1電極部、及び、第2絶縁層と第2電極部を確実に接合することができる。
In this case, also in the second electrode portion of the second insulating circuit board disposed on the other end side of the thermoelectric conversion element, the thickness is at least 30 μm and at least in the region where the thermoelectric conversion element is disposed. The porosity can be less than 10%. Moreover, since it is set as comparatively low temperature conditions, deterioration of the thermoelectric conversion element at the time of joining (at the time of baking) can be suppressed.
Further, in the Ag paste application step, the glass-containing Ag paste is applied to at least the lowermost layer in contact with the first insulating layer and the second insulating layer, so that the glass component of the glass-containing Ag paste reacts with alumina. Thus, the first insulating layer and the first electrode portion, and the second insulating layer and the second electrode portion can be reliably joined.
 さらに、本発明の熱電変換モジュールの製造方法においては、前記Agペースト塗布工程において、前記第2電極部のうち前記熱電変換素子と接する最上層に、ガラス成分を含まないAgペーストを塗布する構成としてもよい。
 この場合、前記第2電極部のうち前記熱電変換素子と接する最上層に、ガラス成分を含まないAgペーストを塗布しているので、前記第2電極部の前記熱電変換素子側に、ガラス成分を含まないガラス非含有領域を確実に形成することができ、前記第1電極部と前記熱電変換素子との接合性を向上させることが可能となる。
Furthermore, in the method of manufacturing a thermoelectric conversion module according to the present invention, in the Ag paste application step, an Ag paste containing no glass component is applied to the uppermost layer of the second electrode portion in contact with the thermoelectric conversion element. It is also good.
In this case, since the Ag paste containing no glass component is applied to the uppermost layer of the second electrode portion in contact with the thermoelectric conversion element, the glass component is applied to the thermoelectric conversion element side of the second electrode portion. It is possible to reliably form the non-glass-containing region which is not included, and to improve the bonding property between the first electrode portion and the thermoelectric conversion element.
 また、本発明の熱電変換モジュールの製造方法においては、前記第2電極部の上にAg接合材を配設した後に、前記熱電変換素子を配設する構成としてもよい。
 この場合、前記第2電極部の上にAg接合材を配設した後に、前記熱電変換素子を配設しており、その後、上述の条件で熱電変換素子を接合しているので、前記第2電極部の上に塗布したAg接合材も緻密化し、気孔率を10%未満とすることができる。また、前記第2電極部と前記熱電変換素子との接合性を向上させることが可能となる。
In the method of manufacturing a thermoelectric conversion module according to the present invention, the thermoelectric conversion element may be disposed after disposing an Ag bonding material on the second electrode portion.
In this case, after the Ag bonding material is disposed on the second electrode portion, the thermoelectric conversion element is disposed, and thereafter, the thermoelectric conversion element is joined under the above-described conditions. The Ag bonding material applied on the electrode portion can also be densified to have a porosity of less than 10%. Moreover, it becomes possible to improve the bondability of the said 2nd electrode part and the said thermoelectric conversion element.
 本発明によれば、電極部における電気抵抗が低く、かつ、接合時における熱電変換素子の劣化が抑えられており、熱電変換効率に優れた熱電変換モジュール、及び、熱電変換モジュールの製造方法を提供することができる。 According to the present invention, the present invention provides a thermoelectric conversion module which has low electric resistance in the electrode portion and suppresses deterioration of the thermoelectric conversion element at the time of bonding, and which has excellent thermoelectric conversion efficiency, and a method of manufacturing the thermoelectric conversion module. can do.
本発明の実施形態である熱電変換モジュールの概略説明図である。It is a schematic explanatory drawing of the thermoelectric conversion module which is embodiment of this invention. 第1電極部及び第2電極部におけるガラス含有量領域とガラス非含有領域を示す概略説明図である。It is a schematic explanatory drawing which shows the glass content area | region and the non-glass containing area | region in a 1st electrode part and a 2nd electrode part. 本発明の実施形態である熱電変換モジュールの製造方法を示すフロー図である。It is a flowchart which shows the manufacturing method of the thermoelectric conversion module which is embodiment of this invention. 本発明の実施形態である熱電変換モジュールの製造方法の概略説明図である。It is a schematic explanatory drawing of the manufacturing method of the thermoelectric conversion module which is embodiment of this invention. 本発明の他の実施形態である熱電変換モジュールの概略説明図である。It is a schematic explanatory drawing of the thermoelectric conversion module which is other embodiment of this invention.
 以下に、本発明の実施形態について添付した図面を参照して説明する。なお、以下に示す各実施形態は、発明の趣旨をより良く理解させるために具体的に説明するものであり、特に指定のない限り、本発明を限定するものではない。また、以下の説明で用いる図面は、本発明の特徴をわかりやすくするために、便宜上、要部となる部分を拡大して示している場合があり、各構成要素の寸法比率などが実際と同じであるとは限らない。 Hereinafter, embodiments of the present invention will be described with reference to the attached drawings. Each embodiment shown below is concretely described in order to understand the meaning of the invention better, and does not limit the present invention unless otherwise specified. Further, in the drawings used in the following description, for the sake of easy understanding of the features of the present invention, the main parts may be enlarged for convenience, and the dimensional ratio of each component may be the same as the actual one. Not necessarily.
 本実施形態に係る熱電変換モジュール10は、図1に示すように、複数の柱状をなす熱電変換素子11と、この熱電変換素子11の長さ方向の一端側(図1において下側)に配設された第1伝熱板20と、熱電変換素子11の長さ方向の他端側(図1において上側)に配設された第2伝熱板30と、を備えている。
 ここで、図1に示すように、熱電変換素子11の一端側に配設された第1伝熱板20には第1電極部25が形成され、熱電変換素子11の他端側に配設された第2伝熱板30には第2電極部35が形成されており、これら第1電極部25及び第2電極部35によって、複数の柱状をなす熱電変換素子11が電気的に直列接続されている。
As shown in FIG. 1, the thermoelectric conversion module 10 according to the present embodiment is arranged on a plurality of columnar thermoelectric conversion elements 11 and one end side (lower side in FIG. 1) of the thermoelectric conversion elements 11 in the length direction. A first heat transfer plate 20 is provided, and a second heat transfer plate 30 disposed on the other end side (upper side in FIG. 1) of the thermoelectric conversion elements 11 in the longitudinal direction.
Here, as shown in FIG. 1, the first electrode portion 25 is formed on the first heat transfer plate 20 disposed on one end side of the thermoelectric conversion element 11, and disposed on the other end side of the thermoelectric conversion element 11. A second electrode portion 35 is formed on the second heat transfer plate 30. The plurality of columnar thermoelectric conversion elements 11 are electrically connected in series by the first electrode portion 25 and the second electrode portion 35. It is done.
 第1伝熱板20は、第1絶縁層21と、この第1絶縁層21の一方の面(図1において上面)に形成された第1電極部25と、を備えた第1絶縁回路基板で構成されている。
 ここで、第1伝熱板20(第1絶縁回路基板)の第1絶縁層21においては、少なくとも第1電極部25が形成される面(一方の面)が、アルミナで構成されている。本実施形態では、第1絶縁層21全体がアルミナで構成されている。
なお、第1絶縁層21においては銀ペーストとの界面がアルミナであれば良いため、例えば、窒化アルミニウムを酸化させて表面がアルミナとなっている基板を第1絶縁層21として用いても良い。アルミナの厚さは、1μm以上2000μm以下の範囲内とするとよい。
 なお、第1絶縁層21の厚さは、100μm以上2000μm以下の範囲内とするとよい。
The first heat transfer plate 20 includes a first insulating layer 21 and a first electrode portion 25 formed on one surface (upper surface in FIG. 1) of the first insulating layer 21. It consists of
Here, in the first insulating layer 21 of the first heat transfer plate 20 (first insulating circuit board), at least the surface (one surface) on which the first electrode portion 25 is formed is made of alumina. In the present embodiment, the entire first insulating layer 21 is made of alumina.
In the first insulating layer 21, the interface with the silver paste may be alumina, and for example, a substrate whose surface is alumina by oxidizing aluminum nitride may be used as the first insulating layer 21. The thickness of alumina may be in the range of 1 μm to 2000 μm.
The thickness of the first insulating layer 21 may be in the range of 100 μm to 2000 μm.
 第1電極部25は、Agの焼成体で構成されており、少なくともアルミナからなる第1絶縁層21の一方の面に接する最下層は、ガラス成分を含有するガラス含有Agペーストの焼成体で構成されている。本実施形態では、第1電極部25全体がガラス含有Agペーストの焼成体で構成されている。また、第1電極部25は、第1絶縁層21の一方の面(図1において上面)にパターン状に形成されている。 The first electrode portion 25 is formed of a sintered body of Ag, and the lowermost layer in contact with at least one surface of the first insulating layer 21 made of alumina is formed of a sintered body of a glass-containing Ag paste containing a glass component. It is done. In the present embodiment, the entire first electrode portion 25 is formed of a sintered body of glass-containing Ag paste. Further, the first electrode portion 25 is formed in a pattern on one surface (upper surface in FIG. 1) of the first insulating layer 21.
 そして、この第1電極部25においては、少なくとも熱電変換素子11が配置された領域において、厚さが30μm以上とされ、気孔率Pが10%未満とされている。
 第1電極部25の少なくとも熱電変換素子11が配置された領域の厚さの上限は70μmであることが好ましい。また、気孔率Pは0%まで低減することが可能である。
 なお、第1電極部25の気孔率Pは、以下のようにして算出することができる。第1電極部25の断面を機械研磨した後、Arイオンエッチング(日本電子株式会社製クロスセクションポリッシャSM-09010)を行い、レーザ顕微鏡(株式会社キーエンス製VKX-200)を用いて断面観察を実施した。そして、得られた画像を二値化処理し、白色部をAg、黒色部を気孔とした。二値化した画像から、黒色部の面積を求め、以下に示す式で気孔率を算出した。5箇所の断面で測定し、各断面の気孔率を算術平均して第1電極部25の気孔率Pとした。
 気孔率P=黒色部(気孔)面積/第1電極部25の観察面積
And in this 1st electrode part 25, thickness is 30 micrometers or more and porosity P is less than 10% in the area | region where the thermoelectric conversion element 11 is arrange | positioned at least.
It is preferable that the upper limit of the thickness of the area | region where the thermoelectric conversion element 11 of the 1st electrode part 25 is arrange | positioned at least is 70 micrometers. In addition, the porosity P can be reduced to 0%.
The porosity P of the first electrode portion 25 can be calculated as follows. After mechanically polishing the cross section of the first electrode unit 25, Ar ion etching (Cross section polisher SM-09010 manufactured by Nippon Denshi Co., Ltd.) is performed, and cross sectional observation is performed using a laser microscope (VKX-200 manufactured by Keyence Inc.) did. Then, the obtained image was subjected to a binarization treatment, and the white portion was made Ag, and the black portion was made pores. The area of the black part was determined from the binarized image, and the porosity was calculated by the following equation. The porosity of each cross section was arithmetically averaged to determine the porosity P of the first electrode portion 25.
Porosity P = black area (pores) area / observed area of the first electrode portion 25
 ここで、第1電極部25は、上述のように、少なくともアルミナからなる第1絶縁層21の一方の面に接する最下層がガラス成分を含有するガラス含有Agペーストの焼成体で構成されていることから、第1絶縁層21と第1電極部25との界面には、ガラス成分が存在している。
 本実施形態では、第1電極部25全体がガラス含有Agペーストの焼成体で構成されており、第1電極部25の内部にガラス粒子が分散している。そして、このガラス粒子は、第1絶縁層21(アルミナ)と第1電極部25の界面に存在している。また、ガラス成分の一部が第1絶縁層21(アルミナ)側へと入り込んでいる。
Here, in the first electrode portion 25, as described above, the lowermost layer in contact with at least one surface of the first insulating layer 21 made of alumina is formed of a sintered body of glass-containing Ag paste containing a glass component. Thus, a glass component is present at the interface between the first insulating layer 21 and the first electrode portion 25.
In the present embodiment, the entire first electrode portion 25 is formed of a sintered body of glass-containing Ag paste, and glass particles are dispersed inside the first electrode portion 25. The glass particles are present at the interface between the first insulating layer 21 (alumina) and the first electrode portion 25. Further, part of the glass component is intruding into the first insulating layer 21 (alumina) side.
 また、本実施形態においては、図2に示すように、第1電極部25は、積層方向において、第1絶縁層21側から、ガラス成分を有するガラス含有領域25Aとガラス成分を有さないガラス非含有領域25Bと、からなり、ガラス含有領域25Aの積層方向の厚さをTg、ガラス非含有領域25Bの積層方向の厚さをTaとしたとき、Ta/(Ta+Tg)が0を超え、0.5以下であることが好ましい。Ta/(Ta+Tg)は0.17以上0.83以下の範囲であることがより好ましく、0.33以上0.67以下の範囲とすることがさらに好ましい。
 なお、図2に示すように、ガラス含有領域25Aの積層方向の厚さTgは、第1絶縁層21から積層方向に最も離れた位置に存在するガラス粒子27までの厚さとする。
 また、ガラス非含有領域25Bの積層方向の厚さTaは、第1電極部25の厚さからガラス含有領域25Aの積層方向の厚さTgを引いた値とする。
Further, in the present embodiment, as shown in FIG. 2, the first electrode portion 25 does not have a glass component and a glass containing region 25A having a glass component from the side of the first insulating layer 21 in the stacking direction. When the thickness in the stacking direction of the glass-containing region 25A is Tg, and the thickness in the stacking direction of the non-glass-containing region 25B is Ta, Ta / (Ta + Tg) exceeds 0, 0 It is preferable that it is less than or equal to .5. Ta / (Ta + Tg) is more preferably in the range of 0.17 or more and 0.83 or less, and still more preferably in the range of 0.33 or more and 0.67 or less.
As shown in FIG. 2, the thickness Tg of the glass-containing region 25 </ b> A in the stacking direction is the thickness from the first insulating layer 21 to the glass particles 27 located at the farthest position in the stacking direction.
The thickness Ta of the non-glass-containing region 25B in the stacking direction is a value obtained by subtracting the thickness Tg of the glass-containing region 25A in the stacking direction from the thickness of the first electrode portion 25.
 第2伝熱板30は、第2絶縁層31と、この第2絶縁層31の一方の面(図1において下面)に形成された第2電極部35と、を備えた第2絶縁回路基板で構成されている。
 ここで、第2伝熱板30(第2絶縁回路基板)の第2絶縁層31は、上述した第1絶縁層21と同様の構成とすることができる。
The second heat transfer plate 30 includes a second insulating layer 31 and a second electrode portion 35 formed on one surface (a lower surface in FIG. 1) of the second insulating layer 31. It consists of
Here, the second insulating layer 31 of the second heat transfer plate 30 (second insulating circuit substrate) can have the same configuration as that of the first insulating layer 21 described above.
 第2電極部35は、Agの焼成体で構成されており、少なくともアルミナからなる第2絶縁層31の一方の面に接する最下層は、ガラス成分を含有するガラス含有Agペーストの焼成体で構成されている。本実施形態では、第2電極部35全体がガラス含有Agペーストの焼成体で構成されている。また、第2電極部35は、第2絶縁層31の一方の面(図1において下面)にパターン状に形成されている。 The second electrode portion 35 is formed of a sintered body of Ag, and the lowermost layer in contact with at least one surface of the second insulating layer 31 made of alumina is formed of a sintered body of a glass-containing Ag paste containing a glass component. It is done. In the present embodiment, the entire second electrode portion 35 is formed of a sintered body of glass-containing Ag paste. In addition, the second electrode portion 35 is formed in a pattern on one surface (the lower surface in FIG. 1) of the second insulating layer 31.
 そして、第2電極部35においては、少なくとも熱電変換素子11が配置された領域において、厚さが30μm以上とされ、気孔率Pが10%未満とされている。
 第2電極部35の少なくとも熱電変換素子11が配置された領域の厚さの上限は70μm以下であることが好ましい。また、気孔率Pは0%まで低減することが可能である。
 なお、第2電極部35の気孔率Pは、第1電極部25と同様の方法で算出することができる。
And in the 2nd electrode part 35, thickness is 30 micrometers or more and porosity P is less than 10% at least in a field where thermoelectric conversion element 11 is arranged.
It is preferable that the upper limit of the thickness of the area | region where the thermoelectric conversion element 11 of the 2nd electrode part 35 is arrange | positioned at least is 70 micrometers or less. In addition, the porosity P can be reduced to 0%.
The porosity P of the second electrode portion 35 can be calculated by the same method as that of the first electrode portion 25.
 ここで、第2電極部35は、上述のように、少なくともアルミナからなる第2絶縁層31の一方の面に接する最下層がガラス成分を含有するガラス含有Agペーストの焼成体で構成されていることから、第2絶縁層31と第2電極部35との界面には、ガラス成分が存在している。
 本実施形態では、第2電極部35全体がガラス含有Agペーストの焼成体で構成されており、第2電極部35の内部にガラス粒子が存在している。そして、このガラス粒子は、第2絶縁層31(アルミナ)と第1電極部25の界面に存在している。また、ガラス成分の一部が第2絶縁層31(アルミナ)側へと入り込んでいる。
Here, in the second electrode portion 35, as described above, the lowermost layer in contact with at least one surface of the second insulating layer 31 made of alumina is formed of a sintered body of glass-containing Ag paste containing a glass component. Thus, a glass component is present at the interface between the second insulating layer 31 and the second electrode portion 35.
In the present embodiment, the entire second electrode portion 35 is formed of a sintered body of glass-containing Ag paste, and glass particles are present inside the second electrode portion 35. The glass particles are present at the interface between the second insulating layer 31 (alumina) and the first electrode portion 25. Further, part of the glass component is intruding into the second insulating layer 31 (alumina) side.
 また、本実施形態においては、図2に示すように、第2電極部35は、積層方向において、第2絶縁層31側から、ガラス成分を有するガラス含有領域35Aとガラス成分を有さないガラス非含有領域35Bと、からなり、ガラス含有領域35Aの積層方向の厚さをTg、ガラス非含有領域35Bの積層方向の厚さをTaとしたとき、Ta/(Ta+Tg)が0を超え、0.5以下であることが好ましい。Ta/(Ta+Tg)は0.17以上0.83以下の範囲であることがより好ましく、0.33以上0.67以下の範囲とすることがさらに好ましい。
 なお、図2に示すように、ガラス含有領域35Aの積層方向の厚さTgは、第2絶縁層31から積層方向に最も離れた位置に存在するガラス粒子37までの厚さとする。
また、ガラス非含有領域35Bの積層方向の厚さTaは、第2電極部35の厚さからガラス含有領域35Aの積層方向の厚さTgを引いた値とする。
Further, in the present embodiment, as shown in FIG. 2, the second electrode portion 35 has a glass-containing region 35A having a glass component and a glass having no glass component from the second insulating layer 31 side in the stacking direction. When the thickness in the stacking direction of the glass-containing region 35A is Tg and the thickness in the stacking direction of the non-glass-containing region 35B is Ta, Ta / (Ta + Tg) exceeds 0, 0 It is preferable that it is less than or equal to .5. Ta / (Ta + Tg) is more preferably in the range of 0.17 or more and 0.83 or less, and still more preferably in the range of 0.33 or more and 0.67 or less.
As shown in FIG. 2, the thickness Tg of the glass-containing region 35 </ b> A in the stacking direction is the thickness from the second insulating layer 31 to the glass particles 37 located farthest in the stacking direction.
Further, the thickness Ta of the non-glass-containing region 35B in the stacking direction is a value obtained by subtracting the thickness Tg of the glass-containing region 35A in the stacking direction from the thickness of the second electrode portion 35.
 熱電変換素子11は、n型熱電変換素子11aとp型熱電変換素子11bとを有しており、これらn型熱電変換素子11aとp型熱電変換素子11bが交互に配列されている。
 なお、この熱電変換素子11の一端面及び他端面には、メタライズ層(図示なし)がそれぞれ形成されている。メタライズ層としては、例えば、ニッケル、銀、コバルト、タングステン、モリブデン等や、あるいはそれらの金属繊維でできた不織布等を用いることができる。なお、メタライズ層の最表面(第1電極部25及び第2電極部35との接合面)は、Au又はAgで構成されていることが好ましい。
The thermoelectric conversion element 11 has an n-type thermoelectric conversion element 11a and a p-type thermoelectric conversion element 11b, and these n-type thermoelectric conversion elements 11a and p-type thermoelectric conversion elements 11b are alternately arranged.
Metallized layers (not shown) are respectively formed on one end surface and the other end surface of the thermoelectric conversion element 11. As the metallized layer, it is possible to use, for example, nickel, silver, cobalt, tungsten, molybdenum or the like, or a non-woven fabric or the like made of these metal fibers. The outermost surface of the metallized layer (the bonding surface with the first electrode portion 25 and the second electrode portion 35) is preferably made of Au or Ag.
 n型熱電変換素子11a及びp型熱電変換素子11bは、例えば、テルル化合物、スクッテルダイト、充填スクッテルダイト、ホイスラー、ハーフホイスラー、クラストレート、シリサイド、酸化物、シリコンゲルマニウム等の焼結体で構成されている。
 n型熱電変換素子11aの材料として、例えば、BiTe、PbTe、LaTe、CoSb、FeVAl、ZrNiSn、BaAl16Si30、MgSi、FeSi、SrTiO、CaMnO、ZnO、SiGeなどが用いられる。
また、p型熱電変換素子11bの材料として、例えば、BiTe、SbTe、PbTe、TAGS(=Ag‐Sb‐Ge‐Te)、ZnSb、CoSb、CeFeSb12、Yb14MnSb11、FeVAl、MnSi1.73、FeSi、NaxCoO、CaCo、BiSrCo、SiGeなどが用いられる。
 なお、ドーパントによりn型とp型の両方をとれる化合物と、n型かp型のどちらか一方のみの性質をもつ化合物がある。
The n-type thermoelectric conversion element 11a and the p-type thermoelectric conversion element 11b are, for example, sintered bodies of tellurium compound, skutterudite, filled skutterudite, Heusler, half-Heusler, clathrate, silicide, oxide, silicon germanium, etc. It is configured.
As a material of the n-type thermoelectric conversion element 11 a, for example, Bi 2 Te 3 , PbTe, La 3 Te 4 , CoSb 3 , FeVAl, ZrNiSn, Ba 8 Al 16 Si 30 , Mg 2 Si, FeSi 2 , SrTiO 3 , CaMnO 3 , ZnO, SiGe and the like are used.
Moreover, as a material of the p-type thermoelectric conversion element 11b, for example, Bi 2 Te 3 , Sb 2 Te 3 , PbTe, TAGS (= Ag-Sb-Ge-Te), Zn 4 Sb 3 , CoSb 3 , CeFe 4 Sb 12 Yb 14 MnSb 11 , FeVAl, MnSi 1.73 , FeSi 2 , NaxCoO 2 , Ca 3 Co 4 O 7 , Bi 2 Sr 2 Co 2 O 7 , SiGe or the like is used.
There are a compound which can take both n-type and p-type depending on a dopant and a compound having only n-type or p-type property.
 次に、上述した本実施形態である熱電変換モジュール10の製造方法について、図3及び図4を参照して説明する。 Next, a method of manufacturing the above-described thermoelectric conversion module 10 according to the present embodiment will be described with reference to FIGS. 3 and 4.
(Agペースト塗布工程S01)
 まず、第1絶縁層21の一方の面、及び、第2絶縁層31の一方の面に、Agを含むAgペーストを、それぞれ30μmを超える厚さで塗布する。なお、塗布厚さは40μm以上とすることが好ましい。ここで、塗布方法に特に制限はなく、スクリーン印刷法、オフセット印刷法、感光性プロセス等の種々の手段を採用することができる。このとき、少なくとも第1絶縁層21及び第2絶縁層31と接する最下層には、ガラス成分を有するガラス含有Agペーストを塗布する。
 ここで、塗布厚さを30μm超えとするために、ペーストの塗布と乾燥とを繰り返し実施してもよい。この場合、第1絶縁層21及び第2絶縁層31と接する最下層にガラス含有ペーストを塗布し、その後はガラス成分を含有しないAgペーストを塗布してもよい。
(Ag paste application step S01)
First, an Ag paste containing Ag is applied to one surface of the first insulating layer 21 and one surface of the second insulating layer 31 to a thickness exceeding 30 μm. The coating thickness is preferably 40 μm or more. Here, the coating method is not particularly limited, and various means such as a screen printing method, an offset printing method, and a photosensitive process can be adopted. At this time, a glass-containing Ag paste having a glass component is applied to the lowermost layer in contact with at least the first insulating layer 21 and the second insulating layer 31.
Here, the application and drying of the paste may be repeatedly performed in order to make the application thickness exceed 30 μm. In this case, the glass-containing paste may be applied to the lowermost layer in contact with the first insulating layer 21 and the second insulating layer 31, and thereafter, an Ag paste containing no glass component may be applied.
 また、熱電変換素子11と接する最上層に、ガラス成分を含まないAgペーストを塗布してもよい。
 さらに、第1絶縁層21及び第2絶縁層31と接する最下層に第1ガラス含有ペーストを塗布し、この第1ガラス含有ペーストの上に、第1ガラス含有ペーストよりもガラスの含有量の少ない第2ガラス含有ペーストを塗布し、この第2ガラス含有ペーストの上に、ガラス成分を含まないAgペーストを塗布してもよい。
 なお、ペーストを複数回塗布する際には、塗布したペーストを乾燥させた後に、次のペーストを塗布することが好ましい。さらに、塗布したペーストを一旦焼成した後に、次のペーストを塗布してもよい。
Moreover, you may apply | coat Ag paste which does not contain a glass component in the uppermost layer which contact | connects the thermoelectric conversion element 11. As shown in FIG.
Furthermore, the first glass-containing paste is applied to the lowermost layer in contact with the first insulating layer 21 and the second insulating layer 31, and the content of glass is smaller on the first glass-containing paste than in the first glass-containing paste. A second glass-containing paste may be applied, and an Ag paste not containing a glass component may be applied on the second glass-containing paste.
In addition, when apply | coating a paste in multiple times, after drying the applied paste, it is preferable to apply the following paste. Furthermore, after firing the applied paste once, the next paste may be applied.
 ここで、熱電変換素子11と接する最上層に、ガラス成分を含まないAgペーストを塗布する場合には、Agペーストの塗布厚さを調整してガラス非含有領域25B,35Bの厚さを制御することにより、上述のTa/(Ta+Tg)を、0を超え、0.5以下の範囲内とすることが好ましい。 Here, in the case of applying an Ag paste containing no glass component to the uppermost layer in contact with the thermoelectric conversion element 11, the thickness of the non-glass-containing regions 25B and 35B is controlled by adjusting the application thickness of the Ag paste. Accordingly, it is preferable to set the above-mentioned Ta / (Ta + Tg) in the range of more than 0 and 0.5 or less.
 なお、本実施形態では、図4(a)に示すように、第1絶縁層21の一方の面、及び、第2絶縁層31の一方の面に、ガラス含有Agペースト45、55を、それぞれ30μmを超える厚さで塗布している。
 ここで、本実施形態において、第1電極部25及び第2電極部35を形成するガラス含有Agペーストについて説明する。
In the present embodiment, as shown in FIG. 4A, the glass-containing Ag pastes 45 and 55 are respectively applied to one surface of the first insulating layer 21 and one surface of the second insulating layer 31. It is applied at a thickness of more than 30 μm.
Here, in the present embodiment, a glass-containing Ag paste for forming the first electrode unit 25 and the second electrode unit 35 will be described.
 ガラス含有Agペーストとしては、導電性金属としての銀を主成分とし、セラミックス基板への接合のためのガラスフリットが含有されているペーストを用いることができ、例えば、大研科学工業株式会社製LTCC用ペーストや、アズワン株式会社製TDPAG-TS1002、京都エレックス社製DD-1240Dといったようなガラス含有Agペーストを用いることができる。本実施形態では、京都エレックス社製DD-1240Dを用いた。 As the glass-containing Ag paste, a paste containing silver as a conductive metal as a main component and containing a glass frit for bonding to a ceramic substrate can be used. For example, LTCC manufactured by Daiken Kagaku Kogyo Co., Ltd. For example, it is possible to use a paste for glass, a glass-containing Ag paste such as TDPAG-TS1002 manufactured by AS ONE Corporation, or DD-1240D manufactured by Kyoto Elex. In this embodiment, DD-1240D manufactured by Kyoto Elex Co., Ltd. is used.
(焼成工程S02)
 次に、第1絶縁層21の一方の面、及び、第2絶縁層31の一方の面に、それぞれAgペースト(ガラス含有Agペースト45、55)を塗布した状態で、加熱処理を行い、Agペースト(ガラス含有Agペースト45、55)を焼成する。なお、焼成前にAgペースト(ガラス含有Agペースト45、55)の溶媒を除去する乾燥処理を実施してもよい。これにより、図4(b)に示す第1電極部25及び第2電極部35が形成される。
 この焼成工程S02においては、大気雰囲気、加熱温度は800℃以上900℃以下、加熱温度での保持時間は10分以上60分以下の条件で、焼成を行うことが好ましい。
 なお、焼成工程S02後に、アニールを行ってもよい。アニールを行うことによって、第1電極部25及び第2電極部35をより緻密な焼成体とすることができる。アニールの条件は700~850℃で、1~24時間の条件で行うとよい。
(Firing step S02)
Next, heat treatment is performed in a state in which Ag paste (glass-containing Ag paste 45, 55) is applied to one surface of the first insulating layer 21 and one surface of the second insulating layer 31, respectively. The paste (glass-containing Ag paste 45, 55) is fired. In addition, you may implement the drying process which removes the solvent of Ag paste (glass containing Ag paste 45, 55) before baking. Thereby, the 1st electrode part 25 and the 2nd electrode part 35 which are shown in Drawing 4 (b) are formed.
In the firing step S02, firing is preferably performed under the conditions of an air atmosphere, a heating temperature of 800 ° C. to 900 ° C., and a holding time of 10 minutes to 60 minutes at the heating temperature.
Note that annealing may be performed after the firing step S02. By performing the annealing, the first electrode portion 25 and the second electrode portion 35 can be made into a more dense fired body. The annealing conditions may be 700 to 850 ° C. for 1 to 24 hours.
(積層工程S03)
 次に、熱電変換素子11の一端側(図4(c)において下側)に第1電極部25を介して第1絶縁層21を配設するとともに、熱電変換素子11の他端側(図4(c)において上側)に第2電極部35を介して第2絶縁層31を配設する。
(Lamination process S03)
Next, the first insulating layer 21 is disposed on one end side (the lower side in FIG. 4C) of the thermoelectric conversion element 11 via the first electrode portion 25 and the other end side of the thermoelectric conversion element 11 (FIG. The second insulating layer 31 is disposed on the upper side in 4 (c) via the second electrode portion 35.
(熱電変換素子接合工程S04)
 次に、第1絶縁層21と熱電変換素子11と第2絶縁層31とを積層方向に加圧するとともに加熱して、熱電変換素子11と第1電極部25、及び、熱電変換素子11と第2電極部35とを接合する。なお、本実施形態では、熱電変換素子11と第1電極部25及び第2電極部35を固相拡散接合している。
 そして、第1電極部25の少なくとも熱電変換素子11が配置された領域において、厚さが30μm以上とされ、気孔率Pが10%未満とされる。同様に、第2電極部35の少なくとも熱電変換素子11が配置された領域において、厚さが30μm以上とされ、気孔率Pが10%未満とされる。
(Thermoelectric conversion element bonding step S04)
Next, the first insulating layer 21, the thermoelectric conversion element 11, and the second insulating layer 31 are pressurized and heated in the stacking direction, and the thermoelectric conversion element 11 and the first electrode portion 25, and the thermoelectric conversion element 11 and the first The two electrode parts 35 are joined. In the present embodiment, the thermoelectric conversion element 11 is bonded to the first electrode 25 and the second electrode 35 by solid phase diffusion bonding.
Then, in a region where at least the thermoelectric conversion element 11 of the first electrode portion 25 is disposed, the thickness is 30 μm or more, and the porosity P is less than 10%. Similarly, in at least a region of the second electrode portion 35 where the thermoelectric conversion element 11 is disposed, the thickness is 30 μm or more, and the porosity P is less than 10%.
 この熱電変換素子接合工程S04においては、加圧荷重が20MPa以上50MPa以下の範囲内、加熱温度が300℃以上とされている。また、本実施形態においては、上述の加熱温度での保持時間が5分以上60分以下の範囲内、雰囲気が真空雰囲気とされている。 In this thermoelectric conversion element bonding step S04, the heating load is set to 300 ° C. or higher in a pressure load range of 20 MPa to 50 MPa. Further, in the present embodiment, the atmosphere is set to a vacuum atmosphere within the range of 5 minutes to 60 minutes at the above-mentioned heating temperature.
 ここで、熱電変換素子接合工程S04における加圧荷重が20MPa未満では、第1電極部25及び第2電極部35の気孔率Pを10%未満とすることができないおそれがあった。一方、熱電変換素子接合工程S04における加圧荷重が50MPaを超えると、熱電変換素子11やアルミナからなる第1絶縁層21及び第2絶縁層31に割れが発生するおそれがあった。
 このため、本実施形態では、熱電変換素子接合工程S04における加圧荷重を20MPa以上50MPa以下の範囲内に設定している。
 なお、第1電極部25及び第2電極部35の気孔率Pを確実に10%未満とするためには、熱電変換素子接合工程S04における加圧荷重の下限を20MPa以上とすることが好ましく、30MPa以上とすることがさらに好ましい。一方、熱電変換素子11やアルミナからなる第1絶縁層21及び第2絶縁層31における割れの発生を確実に抑制するためには、熱電変換素子接合工程S04における加圧荷重の上限を50MPa以下とすることが好ましく、40MPa以下とすることがさらに好ましい。
Here, when the pressure load in the thermoelectric conversion element bonding step S04 is less than 20 MPa, there is a possibility that the porosity P of the first electrode portion 25 and the second electrode portion 35 can not be less than 10%. On the other hand, when the pressure load in the thermoelectric conversion element bonding step S04 exceeds 50 MPa, cracking may occur in the thermoelectric conversion element 11 and the first insulating layer 21 and the second insulating layer 31 made of alumina.
For this reason, in the present embodiment, the pressure load in the thermoelectric conversion element bonding step S04 is set in the range of 20 MPa or more and 50 MPa or less.
In addition, in order to make porosity P of the 1st electrode part 25 and the 2nd electrode part 35 certainly less than 10%, it is preferable to make the minimum of the pressurization load in thermoelectric conversion element joining process S04 into 20 MPa or more, It is more preferable to set it as 30 MPa or more. On the other hand, in order to reliably suppress the occurrence of cracks in the thermoelectric conversion element 11 and the first insulating layer 21 and the second insulating layer 31 made of alumina, the upper limit of the pressing load in the thermoelectric conversion element bonding step S04 is 50 MPa or less It is preferable to set the pressure to 40 MPa or less.
 また、熱電変換素子接合工程S04における加熱温度が300℃未満では、熱電変換素子11と第1電極部25及び第2電極部35と接合できないおそれがあった。
 また、熱電変換素子接合工程S04における加熱温度は500℃以下とすることが好ましい。500℃を超えると、熱電変換素子11が熱分解して特性が劣化するおそれがある。
 なお、確実に熱電変換素子11と第1電極部25及び第2電極部35とを接合するためには、熱電変換素子接合工程S04における加熱温度の下限を350℃以上とすることが好ましい。一方、熱電変換素子11の熱分解を確実に抑制するためには、熱電変換素子接合工程S04における加熱温度の上限を400℃以下とすることがより好ましい。
In addition, if the heating temperature in the thermoelectric conversion element bonding step S04 is less than 300 ° C., there is a possibility that the thermoelectric conversion element 11 can not be bonded to the first electrode portion 25 and the second electrode portion 35.
Moreover, it is preferable that the heating temperature in thermoelectric conversion element joining process S04 shall be 500 degrees C or less. If the temperature exceeds 500 ° C., the thermoelectric conversion element 11 may be thermally decomposed to deteriorate the characteristics.
In order to ensure that the thermoelectric conversion element 11 is joined to the first electrode portion 25 and the second electrode portion 35, the lower limit of the heating temperature in the thermoelectric conversion element bonding step S04 is preferably 350 ° C. or more. On the other hand, in order to reliably suppress the thermal decomposition of the thermoelectric conversion element 11, it is more preferable to set the upper limit of the heating temperature in the thermoelectric conversion element bonding step S04 to 400 ° C. or less.
 以上のようにして、図4(d)に示す本実施形態である熱電変換モジュール10が製造される。
このようにして得られた本実施形態である熱電変換モジュール10においては、例えば、第1伝熱板20側を低温部とし、第2伝熱板30側を高温部として使用され、熱エネルギーと電気エネルギーとの変換が実施される。
As described above, the thermoelectric conversion module 10 according to this embodiment shown in FIG. 4D is manufactured.
In the thermoelectric conversion module 10 according to this embodiment obtained in this manner, for example, the first heat transfer plate 20 side is used as a low temperature portion, and the second heat transfer plate 30 side is used as a high temperature portion. Conversion with electrical energy is performed.
 以上のような構成とされた本実施形態である熱電変換モジュール10においては、熱電変換素子11の一端側には、少なくとも一方の面がアルミナで構成された第1絶縁層21と、この第1絶縁層21の一方の面に形成されたAgの焼成体からなる第1電極部25と、を備えた第1伝熱板20(第1絶縁回路基板)が配設され、第1電極部25は、少なくとも熱電変換素子11が配置された領域において、厚さが30μm以上とされ、気孔率Pが10%未満とされているので、第1電極部25が緻密で厚く形成されており、電気抵抗が低くなる。また、気孔が少ないため、気孔のガスによる熱電変換素子11の劣化を抑えることができる。 In the thermoelectric conversion module 10 according to the present embodiment configured as described above, at one end side of the thermoelectric conversion element 11, the first insulating layer 21 at least one surface of which is made of alumina, and the first insulating layer 21. A first heat transfer plate 20 (first insulating circuit board) including a first electrode portion 25 formed of a sintered body of Ag formed on one surface of the insulating layer 21 is disposed, and the first electrode portion 25 is provided. Since the thickness is 30 μm or more and the porosity P is less than 10% at least in the region where the thermoelectric conversion element 11 is disposed, the first electrode portion 25 is dense and thick, and the electric Resistance is lowered. Moreover, since there are few pores, deterioration of the thermoelectric conversion element 11 by the gas of the pores can be suppressed.
 さらに、第1電極部25は、Agペースト(ガラス含有Agペースト45)の焼成体とされているので、接合温度(焼成温度)を例えば400℃以下と比較的低温条件とすることができ、接合時の熱電変換素子11の劣化を抑制することができる。
 さらに、接合時に銀ろうのようなろう材を使用していないので、液相が発生せず、P型とN型に熱膨張係数が異なる熱電変換素子を用いた際等に生じる高さばらつきを抑制することが可能である。
 また、第1電極部25自体は、Agで構成されているので、500~800℃程度の作動温度でも溶融することはなく、安定して作動させることができる。
さらに、第1絶縁層21のうち第1電極部25が形成される面がアルミナで構成されており、第1電極部25と第1絶縁層21との界面にはガラス成分が存在しているので、ガラス成分とアルミナとが反応することで、第1電極部25と第1絶縁層21とが強固に接合されており、接合信頼性に優れている。
Furthermore, since the first electrode portion 25 is a fired body of Ag paste (glass-containing Ag paste 45), the bonding temperature (baking temperature) can be set to a relatively low temperature condition of 400 ° C. or less, for example. Deterioration of the thermoelectric conversion element 11 at the time can be suppressed.
Furthermore, since a brazing material such as silver brazing is not used at the time of joining, no liquid phase is generated, and height variations occurring when using thermoelectric conversion elements having different thermal expansion coefficients for P-type and N-type, etc. It is possible to suppress.
Further, since the first electrode portion 25 itself is made of Ag, it does not melt even at an operating temperature of about 500 to 800 ° C., and can be stably operated.
Furthermore, the surface of the first insulating layer 21 on which the first electrode portion 25 is formed is made of alumina, and a glass component is present at the interface between the first electrode portion 25 and the first insulating layer 21. Therefore, the reaction between the glass component and the alumina causes the first electrode portion 25 and the first insulating layer 21 to be strongly bonded, and the bonding reliability is excellent.
 さらに、本実施形態において、第1電極部25が、ガラス含有領域とガラス非含有領域とが積層された構造とされており、ガラス含有領域の積層方向の厚さをTg、ガラス非含有領域の積層方向の厚さをTaとしたとき、Ta/(Ta+Tg)が0.5以下に制限されている場合には、ガラス含有領域とガラス非含有領域の界面での剥離の発生を抑制することが可能となる。
 また、Ta/(Ta+Tg)が0を超えていれば、熱電変換素子11との接合面にガラス成分が存在せず、熱電変換素子11と第1電極部25との接合信頼性を向上させることが可能となる。さらに、この場合、第1電極部25の表面にガラス成分が存在していないので、接合信頼性を向上させることが可能となる。
Furthermore, in the present embodiment, the first electrode portion 25 has a structure in which the glass-containing region and the non-glass-containing region are stacked, and the thickness of the glass-containing region in the stacking direction is Tg. When Ta / (Ta + Tg) is limited to 0.5 or less when the thickness in the laminating direction is Ta, the occurrence of peeling at the interface between the glass-containing region and the non-glass-containing region is suppressed It becomes possible.
Further, if Ta / (Ta + Tg) exceeds 0, no glass component is present on the bonding surface with the thermoelectric conversion element 11, and the bonding reliability between the thermoelectric conversion element 11 and the first electrode portion 25 is improved. Is possible. Furthermore, in this case, since the glass component is not present on the surface of the first electrode portion 25, it is possible to improve the bonding reliability.
 また、本実施形態においては、熱電変換素子11の他端側に第2絶縁回路基板が配設され、この第2絶縁回路基板の第2電極部35についても、少なくとも熱電変換素子11が配置された領域において、厚さが30μm以上とされ、気孔率Pが10%未満とされているので、第2電極部35が緻密で厚く形成されており、電気抵抗が低くなる。また、気孔が少ないため、気孔のガスによる熱電変換素子11の劣化を抑えることができる。 Moreover, in the present embodiment, the second insulating circuit board is disposed on the other end side of the thermoelectric conversion element 11, and at least the thermoelectric conversion element 11 is disposed also on the second electrode portion 35 of the second insulating circuit board. In the above region, the thickness is 30 μm or more, and the porosity P is less than 10%. Therefore, the second electrode portion 35 is formed dense and thick, and the electric resistance becomes low. Moreover, since there are few pores, deterioration of the thermoelectric conversion element 11 by the gas of the pores can be suppressed.
 さらに、第2電極部35は、Agペースト(ガラス含有Agペースト55)の焼成体とされているので、接合温度(焼成温度)を例えば400℃以下と比較的低温条件とすることができ、接合時の熱電変換素子11の劣化を抑制することができる。また、第2電極部35自体は、Agで構成されているので、500~800℃程度の作動温度でも溶融することはなく、安定して作動させることができる。
 また、第2絶縁層31のうち第2電極部35が形成される面がアルミナで構成されており、第2絶縁層31と第2電極部35との界面には、ガラス成分が存在しているので、ガラス成分とアルミナとが反応することで、第2電極部35と第2絶縁層31とが強固に接合されており、接合信頼性に優れている。
Furthermore, since the second electrode portion 35 is a fired body of Ag paste (glass-containing Ag paste 55), the bonding temperature (baking temperature) can be set to a relatively low temperature condition of 400 ° C. or less, for example. Deterioration of the thermoelectric conversion element 11 at the time can be suppressed. Further, since the second electrode portion 35 itself is made of Ag, it does not melt even at an operating temperature of about 500 to 800 ° C., and can be stably operated.
Further, the surface of the second insulating layer 31 on which the second electrode portion 35 is formed is made of alumina, and a glass component is present at the interface between the second insulating layer 31 and the second electrode portion 35. Since the glass component and the alumina react with each other, the second electrode portion 35 and the second insulating layer 31 are firmly bonded to each other, and the bonding reliability is excellent.
 さらに、本実施形態において、第2電極部35が、ガラス含有領域とガラス非含有領域とが積層された構造とされており、ガラス含有領域の積層方向の厚さをTg、ガラス非含有領域の積層方向の厚さをTaとしたとき、Ta/(Ta+Tg)が0.5以下に制限されている場合には、ガラス含有領域とガラス非含有領域の界面での剥離の発生を抑制することが可能となる。
 また、Ta/(Ta+Tg)が0を超えていれば、熱電変換素子11との接合面にガラス成分が存在せず、熱電変換素子11と第2電極部35との接合信頼性を向上させることが可能となる。さらに、この場合、第2電極部35の表面にガラス成分が存在していないので、接合信頼性を向上させることが可能となる。
Furthermore, in the present embodiment, the second electrode portion 35 has a structure in which the glass-containing region and the non-glass-containing region are stacked, and the thickness of the glass-containing region in the stacking direction is Tg. When Ta / (Ta + Tg) is limited to 0.5 or less when the thickness in the laminating direction is Ta, the occurrence of peeling at the interface between the glass-containing region and the non-glass-containing region is suppressed It becomes possible.
In addition, if Ta / (Ta + Tg) exceeds 0, no glass component exists on the bonding surface with the thermoelectric conversion element 11, and the bonding reliability between the thermoelectric conversion element 11 and the second electrode portion 35 is improved. Is possible. Furthermore, in this case, since no glass component is present on the surface of the second electrode portion 35, it is possible to improve the bonding reliability.
 本実施形態である熱電変換モジュールの製造方法によれば、熱電変換素子接合工程S04においては、加圧荷重が20MPa以上50MPa以下の範囲内、加熱温度が300℃以上とされているので、第1電極部25及び第2電極部35の少なくとも熱電変換素子11が配置された領域において、その厚さを30μm以上、かつ、気孔率Pを10%未満とすることができる。また、比較的低温条件とされているので、接合時における熱電変換素子11の劣化を抑制することができる。
 また、第1絶縁層21及び第2絶縁層31のうちアルミナで構成された一方の面にガラス含有Agペーストを塗布して焼成しているので、ガラス成分とアルミナとが反応することにより、第1絶縁層21と第1電極部25、及び、第2絶縁層31と第2電極部35を確実に接合することができる。
According to the method of manufacturing the thermoelectric conversion module of the present embodiment, in the thermoelectric conversion element bonding step S04, the heating load is set to 300 ° C. or higher, within the range of 20 MPa to 50 MPa. The thickness can be 30 μm or more and the porosity P can be less than 10% in a region where at least the thermoelectric conversion element 11 of the electrode 25 and the second electrode 35 is disposed. Moreover, since it is set as comparatively low temperature conditions, deterioration of the thermoelectric conversion element 11 at the time of joining can be suppressed.
In addition, since the glass-containing Ag paste is applied to one surface of the first insulating layer 21 and the second insulating layer 31 and fired, the glass component and the alumina react with each other. The 1st insulating layer 21 and the 1st electrode part 25 and the 2nd insulating layer 31 and the 2nd electrode part 35 can be joined certainly.
 以上、本発明の一実施形態について説明したが、本発明はこれに限定されることはなく、その発明の技術的思想を逸脱しない範囲で適宜変更可能である。 As mentioned above, although one Embodiment of this invention was described, this invention is not limited to this, It can change suitably in the range which does not deviate from the technical idea of the invention.
 例えば、本実施形態では、積層工程S03において、第1電極部25及び第2電極部35に熱電変換素子11を直接積層して固相拡散接合するものとして説明したが、これに限定されることはなく、第1電極部25及び第2電極部35の上にAg接合材を配設した後に、熱電変換素子11を配設し、Ag接合材を用いて接合してもよい。
 この場合、図5に示すように、第1電極部25と熱電変換素子11の間に第1接合層27が形成されるとともに第2電極部35と熱電変換素子11の間に第2接合層37が形成される。なお、熱電変換素子接合工程S04において、上述の条件で加圧加熱処理が実施されることから、第1接合層27及び第2接合層37においても、気孔率は10%未満となる。
For example, in the present embodiment, the thermoelectric conversion element 11 is directly stacked on the first electrode unit 25 and the second electrode unit 35 in the stacking step S03 and described as solid phase diffusion bonding, but the present invention is limited thereto Alternatively, after the Ag bonding material is disposed on the first electrode portion 25 and the second electrode portion 35, the thermoelectric conversion element 11 may be disposed and bonded using the Ag bonding material.
In this case, as shown in FIG. 5, the first bonding layer 27 is formed between the first electrode portion 25 and the thermoelectric conversion element 11, and the second bonding layer is formed between the second electrode portion 35 and the thermoelectric conversion element 11. 37 are formed. In the thermoelectric conversion element bonding step S04, since the pressure heating process is performed under the above-described conditions, the porosity is less than 10% also in the first bonding layer 27 and the second bonding layer 37.
 また、本実施形態では、熱電変換素子11の他端側に第2伝熱板30として第2絶縁回路基板を配設するものとして説明したが、これに限定されることはなく、例えば、熱電変換素子11の他端側に第2電極部を配置するとともに絶縁基板を積層し、この絶縁基板を積層方向に押圧することによって、第2伝熱板を構成する構成としてもよい。 Further, although the second heat transfer plate 30 is provided with the second insulated circuit board on the other end side of the thermoelectric conversion element 11 in the present embodiment, the present invention is not limited to this. For example, The second heat transfer plate may be configured by disposing the second electrode portion on the other end side of the conversion element 11 and stacking the insulating substrate and pressing the insulating substrate in the stacking direction.
 本発明の有効性を確認するために行った確認実験について説明する。 A confirmation experiment conducted to confirm the effectiveness of the present invention will be described.
<実施例1>
 上述した実施形態と同様の方法で熱電変換モジュールを作製した。
 本発明例1~3及び比較例1~5では、熱電変換素子として、3mm×3mm×5mmtのNi下地金電極付きハーフホイッスラー素子を用い、PN対を12対用いた。絶縁層として厚さ0.635mmのアルミナを用いた。第1電極部を形成するガラス含有Agペーストとしては、京都エレックス社製DD-1240Dを用いた。第1電極部を形成する際の加熱条件は、温度:850℃、保持時間:10分とした。第1電極部の厚さ、熱電変換素子と第1電極部との接合時の加熱温度、加圧荷重は表1記載の通りとした。
 なお、接合雰囲気は表1記載の通りとし、熱電変換素子と第1電極部及び第2電極部との接合において、熱電変換素子と第1電極部及び第2電極部とを直接積層し接合した。
 また、第2電極部は第1電極部と同様の構成とした。
Example 1
The thermoelectric conversion module was produced by the method similar to embodiment mentioned above.
In the invention examples 1 to 3 and the comparative examples 1 to 5, 12 half pairs of PN pairs were used as the thermoelectric conversion elements, using 3 mm × 3 mm × 5 mmt half-Heussler elements with Ni underlying gold electrodes. As the insulating layer, alumina having a thickness of 0.635 mm was used. As a glass-containing Ag paste for forming the first electrode portion, DD-1240D manufactured by Kyoto Elex Co., Ltd. was used. The heating conditions for forming the first electrode portion were a temperature of 850 ° C. and a holding time of 10 minutes. The thickness of the first electrode portion, the heating temperature at the time of bonding between the thermoelectric conversion element and the first electrode portion, and the pressure load were as described in Table 1.
The bonding atmosphere was as shown in Table 1, and in the bonding of the thermoelectric conversion element and the first electrode part and the second electrode part, the thermoelectric conversion element was directly laminated and bonded to the first electrode part and the second electrode part. .
In addition, the second electrode portion has the same configuration as the first electrode portion.
(ガラス成分の有無)
 得られた各熱電変換モジュールの第1電極部の断面を機械研磨した後、Arイオンエッチング(日本電子株式会社製クロスセクションポリッシャSM-09010)を行い、EPMA分析を実施し、金属と酸素が共存する領域をガラス成分とした。そして、第1電極部と第1絶縁層との界面におけるガラス成分の有無を確認した。その結果、本発明例1~3、比較例1~3においては、すべて界面にガラス成分が確認された。
(With or without glass component)
After mechanically polishing the cross section of the first electrode portion of each of the obtained thermoelectric conversion modules, Ar ion etching (Cross Section Polisher SM-09010 manufactured by Nippon Denshi Co., Ltd.) is performed, EPMA analysis is performed, and metal and oxygen coexist The region to be treated was a glass component. And the presence or absence of the glass component in the interface of a 1st electrode part and a 1st insulating layer was confirmed. As a result, in the invention examples 1 to 3 and the comparative examples 1 to 3, glass components were all confirmed at the interface.
(電気抵抗)
 大気下で、作製した熱電変換モジュールの第1伝熱板側へ接する加熱用の鉄板温度を550℃、第2伝熱板側へ接する冷却用の鉄板温度を50℃とし、電気抵抗(内部抵抗)を測定した(初期抵抗)。
 また、熱電変換モジュールへ温度差を与え続け、時間経過に対する内部抵抗の初期値からの上昇率を計算し、24時間経過後の熱電変換モジュールの耐久性を評価した(内部抵抗上昇率)。
 なお、内部抵抗は、上述のような温度差を与えた状態で、熱電変換モジュールの出力端子間に可変抵抗を設置し、抵抗を変化させて電流値と電圧値を測定し、横軸を電流値、縦軸を電圧値としたグラフを作成し、このグラフにおいて、電流値が0のときの電圧値を開放電圧とし、電圧値が0のときの電流値を最大電流とし、このグラフにおいて、開放電圧と最大電流を直線で結び、その直線の傾きを熱電変換モジュールの内部抵抗とした。評価結果を表1に示す。
(Electric resistance)
Under the atmosphere, the temperature of the heating iron plate in contact with the first heat transfer plate side of the manufactured thermoelectric conversion module is 550 ° C, and the temperature of the cooling iron plate in contact with the second heat conduction plate side is 50 ° C. ) Was measured (initial resistance).
In addition, the temperature difference was continuously applied to the thermoelectric conversion module, the rate of increase from the initial value of the internal resistance with respect to time elapsed was calculated, and the durability of the thermoelectric conversion module after 24 hours elapsed was evaluated (internal resistance increase rate).
In the internal resistance, a variable resistance is placed between the output terminals of the thermoelectric conversion module with the temperature difference as described above, and the resistance is changed to measure the current value and the voltage value. In the graph, the voltage value when the current value is 0 is defined as the open circuit voltage, and the current value when the voltage value is 0 is defined as the maximum current. The open circuit voltage and the maximum current are connected in a straight line, and the slope of the straight line is taken as the internal resistance of the thermoelectric conversion module. The evaluation results are shown in Table 1.
(第1電極部の気孔率及び厚さ)
 得られた各熱電変換モジュールの第1電極部の断面を機械研磨した後、Arイオンエッチング(日本電子株式会社製クロスセクションポリッシャSM-09010)を行い、レーザ顕微鏡(株式会社キーエンス製VKX-200)を用いて断面観察を実施した。そして、得られた画像を二値化処理し、白色部をAg、黒色部を気孔とした。二値化した画像から、黒色部の面積を求め、以下に示す式で気孔率を算出した。5箇所の断面で測定し、各断面の気孔率を算術平均して第1電極部の気孔率とした。気孔率が10%以上の場合を「B」、10%未満の場合を「A」と評価した。
 気孔率P=黒色部(気孔)面積/第1電極部25の観察面積
 また、第1電極部の厚さは、上記レーザ顕微鏡を用い、測定した。結果を表1に示す。
(Porosity and thickness of the first electrode portion)
After mechanically polishing the cross section of the first electrode part of each of the obtained thermoelectric conversion modules, Ar ion etching (cross section polisher SM-09010 manufactured by Nippon Denshi Co., Ltd.) is performed, and a laser microscope (VKX-200 manufactured by Keyence Co., Ltd.) Cross-sectional observation was performed using Then, the obtained image was subjected to a binarization treatment, and the white portion was made Ag, and the black portion was made pores. The area of the black part was determined from the binarized image, and the porosity was calculated by the following equation. It measured by the cross section of five places, and the porosity of each cross section was carried out arithmetic mean, and it was set as the porosity of the 1st electrode part. The case where the porosity was 10% or more was evaluated as "B", and the case less than 10% was evaluated as "A".
Porosity P = area of black part (pores) / area of observation of first electrode 25 The thickness of the first electrode was measured using the above-mentioned laser microscope. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 第1電極部の厚さが30μm以下であった比較例1では、初期抵抗が高かった。なお、比較例1では初期抵抗が高かったため、内部抵抗上昇率を測定しなかった。加熱温度が低い比較例2では、気孔率が10%以上であり、内部抵抗上昇率が高かった。また、加圧荷重が20MPa未満であった比較例3では気孔率が高く、初期抵抗も高かった。なお、比較例3では初期抵抗が高かったため、内部抵抗上昇率を測定しなかった。接合温度が比較例2よりもさらに低い比較例4では、熱電変換素子の接合ができなかった。接合荷重が50MPaを超えた比較例5では第1絶縁層に割れが生じた。よって、比較例4及び比較例5では、第1電極部の厚さ、気孔率及び電気抵抗については評価していない。
 一方、本発明例1~3においては、第1電極部の厚さが30μm以上、気孔率が10%未満であり、初期抵抗及び内部抵抗上昇率も低い熱電変換モジュールが得られることが分かった。
In Comparative Example 1 in which the thickness of the first electrode portion was 30 μm or less, the initial resistance was high. In Comparative Example 1, the initial resistance was high, so the rate of increase in internal resistance was not measured. In Comparative Example 2 in which the heating temperature was low, the porosity was 10% or more, and the internal resistance increase rate was high. Moreover, in Comparative Example 3 in which the pressing load was less than 20 MPa, the porosity was high and the initial resistance was also high. In Comparative Example 3, the initial resistance was high, so the rate of increase in internal resistance was not measured. In Comparative Example 4 in which the bonding temperature was even lower than Comparative Example 2, bonding of the thermoelectric conversion elements could not be performed. In Comparative Example 5 in which the bonding load exceeded 50 MPa, cracking occurred in the first insulating layer. Therefore, in Comparative Example 4 and Comparative Example 5, the thickness, the porosity, and the electrical resistance of the first electrode portion are not evaluated.
On the other hand, in Inventive Examples 1 to 3, it was found that a thermoelectric conversion module was obtained in which the thickness of the first electrode portion is 30 μm or more and the porosity is less than 10% and the initial resistance and the internal resistance increase rate are also low. .
<実施例2>
 次に、上述した実施形態と同様の方法で熱電変換モジュールを作製した。
熱電変換素子として、3mm×3mm×5mmtのNi下地金電極付きハーフホイッスラー素子を用い、PN対を12対用いた。絶縁層として厚さ0.635mmのアルミナを用いた。
Example 2
Next, the thermoelectric conversion module was produced by the method similar to embodiment mentioned above.
A 12 mm pair of PN pairs was used as a thermoelectric conversion element, using a half-Heussler element with a Ni base gold electrode of 3 mm × 3 mm × 5 mmt. As the insulating layer, alumina having a thickness of 0.635 mm was used.
 ここで、Agペースト塗布工程においては、表2に示すように、ガラス含有Agペースト(京都エレックス社製DD-1240D-01)、ガラス成分を含まないAgペーストを塗布した。なお、ガラス含有ペーストを塗布した後に、温度:850℃、保持時間:10分の条件で焼成を行い、その後、ガラス成分を含まないAgペーストを塗布し、温度:850℃、保持時間:10分の条件で焼成を行った。 Here, in the Ag paste application step, as shown in Table 2, a glass-containing Ag paste (DD-1240D-01 manufactured by Kyoto Elex Co., Ltd.) and an Ag paste containing no glass component were applied. In addition, after apply | coating a glass containing paste, it bakes on conditions of temperature: 850 degreeC, holding time: 10 minutes, Then, Ag paste which does not contain a glass component is apply | coated, Temperature: 850 degreeC, holding time: 10 minutes Baking was performed under the conditions of
(ガラス非含有領域の第1電極部における厚さ割合、第1電極部表面のガラス成分の有無)
 得られた各熱電変換モジュールの第1電極部の断面を機械研磨した後、Arイオンエッチング(日本電子株式会社製クロスセクションポリッシャSM-09010)を行い、EPMA分析を実施し、金属と酸素が共存する領域をガラス成分とした。測定は、50μmの範囲で行い、倍率は2000倍で行った。そして、絶縁層から積層方向に最も離れた位置に存在するガラス粒子までの距離をガラス含有領域の厚さTgとした。また、第1電極部の厚さを測定し、第1電極部の厚さからガラス含有領域の厚さTgを引いた値を、ガラス非含有領域の厚さTaとした。また、第1電極部の表面にガラス成分が存在するかを観察した。
(Thickness ratio of the first electrode portion in the non-glass-containing region, presence or absence of glass component on the surface of the first electrode portion)
After mechanically polishing the cross section of the first electrode portion of each of the obtained thermoelectric conversion modules, Ar ion etching (Cross Section Polisher SM-09010 manufactured by Nippon Denshi Co., Ltd.) is performed, EPMA analysis is performed, and metal and oxygen coexist The region to be treated was a glass component. The measurement was performed in the range of 50 μm, and the magnification was 2000 ×. Then, the distance from the insulating layer to the glass particle present at the most distant position in the stacking direction was taken as the thickness Tg of the glass-containing region. Further, the thickness of the first electrode portion was measured, and the value obtained by subtracting the thickness Tg of the glass-containing region from the thickness of the first electrode portion was taken as the thickness Ta of the non-glass-containing region. In addition, it was observed whether a glass component was present on the surface of the first electrode portion.
(剥離の有無)
 得られた各熱電変換モジュールの第1電極部の断面を、レーザ顕微鏡(株式会社キーエンス製VK X‐200)を用い、第1電極部の端部において、ガラス非含有領域がガラス含有領域から10μm以上剥離した場合を「有」と評価した。
(Presence or absence of peeling)
Using a laser microscope (VK X-200 manufactured by Keyence Corporation), the cross section of the first electrode portion of each of the obtained thermoelectric conversion modules is 10 μm from the glass-containing region at the end of the first electrode portion The case where it peeled above was evaluated as "presence".
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 ガラス含有領域の積層方向の厚さをTg、ガラス非含有領域の積層方向の厚さをTaとした時、Ta/(Ta+Tg)を、0を超え、0.5以下とした場合には、ガラス含有領域とガラス非含有領域との境界での剥離の発生を抑制することができた。 Assuming that the thickness in the laminating direction of the glass-containing region is Tg, and the thickness in the laminating direction of the non-glass-containing region is Ta, if Ta / (Ta + Tg) is more than 0 and 0.5 or less, glass It was possible to suppress the occurrence of peeling at the boundary between the containing region and the non-glass-containing region.
10 熱電変換モジュール
11 熱電変換素子
20 第1伝熱板(第1絶縁回路基板)
21 第1絶縁層 
25 第1電極部
30 第2伝熱板(第2絶縁回路基板)
31 第2絶縁層 
35 第2電極部
10 thermoelectric conversion module 11 thermoelectric conversion element 20 first heat transfer plate (first insulating circuit board)
21 first insulating layer
25 first electrode unit 30 second heat transfer plate (second insulated circuit board)
31 2nd insulating layer
35 2nd electrode part

Claims (10)

  1.  複数の熱電変換素子と、これら熱電変換素子の一端側に配設された第1電極部及び他端側に配設された第2電極部と、を有し、前記第1電極部及び前記第2電極部を介して複数の前記熱電変換素子が電気的に接続してなる熱電変換モジュールであって、
     前記熱電変換素子の一端側には、少なくとも一方の面がアルミナで構成された第1絶縁層と、この第1絶縁層の一方の面に形成されたAgの焼成体からなる前記第1電極部と、を備えた第1絶縁回路基板が配設されており、
     前記第1電極部と前記第1絶縁層との界面には、ガラス成分が存在しており、
     前記第1電極部は、少なくとも前記熱電変換素子が配置された領域において、厚さが30μm以上とされ、気孔率が10%未満とされていることを特徴とする熱電変換モジュール。
    A plurality of thermoelectric conversion elements, a first electrode portion disposed on one end side of the thermoelectric conversion elements, and a second electrode portion disposed on the other end side; the first electrode portion and the first electrode portion A thermoelectric conversion module in which a plurality of the thermoelectric conversion elements are electrically connected via a two-electrode unit,
    The first electrode portion comprising a first insulating layer at least one surface of which is made of alumina on one end side of the thermoelectric conversion element, and a sintered body of Ag formed on one surface of the first insulating layer And a first insulating circuit board provided with
    A glass component is present at the interface between the first electrode portion and the first insulating layer,
    The thermoelectric conversion module, wherein the first electrode portion has a thickness of 30 μm or more and a porosity of less than 10% at least in a region where the thermoelectric conversion element is disposed.
  2.  前記第1電極部は、積層方向において、前記第1絶縁層側から、ガラス含有領域とガラス非含有領域と、からなり、前記ガラス含有領域の積層方向の厚さをTg、前記ガラス非含有領域の積層方向の厚さをTaとした時、Ta/(Ta+Tg)が0を超え、0.5以下であることを特徴とする請求項1に記載の熱電変換モジュール。 The first electrode portion is composed of a glass-containing region and a non-glass-containing region from the first insulating layer side in the stacking direction, and the thickness of the glass-containing region in the stacking direction is Tg, the non-glass-containing region 2. The thermoelectric conversion module according to claim 1, wherein Ta / (Ta + Tg) is more than 0 and not more than 0.5, where Ta is a thickness in the laminating direction of Ta.
  3.  前記熱電変換素子の他端側に、少なくとも一方の面がアルミナで構成された第2絶縁層と、この第2絶縁層の一方の面に形成されたAgの焼成体からなる前記第2電極部と、を備えた第2絶縁回路基板が配設されており、
     前記第2電極部と前記第2絶縁層との界面には、ガラス成分が存在しており、
    前記第2電極部は、少なくとも前記熱電変換素子が配置された領域において、厚さが30μm以上とされ、気孔率が10%未満とされていることを特徴とする請求項1又は請求項2に記載の熱電変換モジュール。
    The second electrode portion comprising a second insulating layer at least one surface of which is made of alumina on the other end side of the thermoelectric conversion element, and a sintered body of Ag formed on one surface of the second insulating layer And a second insulating circuit board provided with
    A glass component is present at the interface between the second electrode portion and the second insulating layer,
    The second electrode portion has a thickness of 30 μm or more and a porosity of less than 10% at least in a region where the thermoelectric conversion element is disposed. Thermoelectric conversion module described.
  4.  前記第2電極部は、積層方向において、前記第2絶縁層側から、ガラス含有領域とガラス非含有領域と、からなり、前記ガラス含有領域の積層方向の厚さをTg、前記ガラス非含有領域の積層方向の厚さをTaとした時、Ta/(Ta+Tg)が0を超え、0.5以下であることを特徴とする請求項3に記載の熱電変換モジュール。 The second electrode portion is composed of a glass-containing region and a non-glass-containing region from the second insulating layer side in the stacking direction, and the thickness of the glass-containing region in the stacking direction is Tg, the non-glass-containing region 4. The thermoelectric conversion module according to claim 3, wherein Ta / (Ta + Tg) is more than 0 and not more than 0.5, where Ta is a thickness in the laminating direction of Ta.
  5.  複数の熱電変換素子と、これら熱電変換素子の一端側に配設された第1電極部及び他端側に配設された第2電極部と、を有し、前記第1電極部及び前記第2電極部を介して複数の前記熱電変換素子が電気的に接続してなる熱電変換モジュールの製造方法であって、
     前記熱電変換モジュールは、前記熱電変換素子の一端側に、少なくとも一方の面がアルミナで構成された第1絶縁層と、この第1絶縁層の一方の面に形成されたAgの焼成体からなる前記第1電極部と、を備えた第1絶縁回路基板が配設されており、
     前記第1絶縁層の一方の面に、Agを含むAgペーストを30μm以上の厚さで塗布するAgペースト塗布工程と、
     前記Agペーストを焼成して第1電極部を形成する焼成工程と、
     前記熱電変換素子の一端側に前記第1電極部を介して前記第1絶縁層を積層する積層工程と、
     前記熱電変換素子と前記第1絶縁層とを積層方向に加圧するとともに加熱して、前記熱電変換素子を接合する熱電変換素子接合工程と、
     を有し、
     前記Agペースト塗布工程においては、少なくとも前記第1絶縁層と接する最下層には、ガラス含有Agペーストを塗布し、
     前記熱電変換素子接合工程においては、加圧荷重が20MPa以上50MPa以下の範囲内、加熱温度が300℃以上とされており、
     前記第1電極部は、少なくとも前記熱電変換素子が配置された領域において、厚さが30μm以上とされ、気孔率が10%未満とされることを特徴とする熱電変換モジュールの製造方法。
    A plurality of thermoelectric conversion elements, a first electrode portion disposed on one end side of the thermoelectric conversion elements, and a second electrode portion disposed on the other end side; the first electrode portion and the first electrode portion It is a manufacturing method of the thermoelectric conversion module formed by electrically connecting a plurality of the above-mentioned thermoelectric conversion elements via two electrode parts,
    The thermoelectric conversion module comprises, on one end side of the thermoelectric conversion element, a first insulating layer at least one surface of which is made of alumina, and a sintered body of Ag formed on one surface of the first insulating layer. A first insulating circuit board including the first electrode portion;
    An Ag paste applying step of applying an Ag paste containing Ag to a thickness of 30 μm or more on one surface of the first insulating layer;
    A firing step of firing the Ag paste to form a first electrode portion;
    Stacking the first insulating layer on one end side of the thermoelectric conversion element via the first electrode portion;
    A thermoelectric conversion element bonding step of pressing and heating the thermoelectric conversion element and the first insulating layer in the stacking direction and bonding the thermoelectric conversion elements;
    Have
    In the Ag paste application step, a glass-containing Ag paste is applied to at least the lowermost layer in contact with the first insulating layer,
    In the thermoelectric conversion element bonding step, the pressure load is in the range of 20 MPa or more and 50 MPa or less, and the heating temperature is 300 ° C. or more,
    The method of manufacturing a thermoelectric conversion module, wherein the first electrode portion has a thickness of 30 μm or more and a porosity of less than 10% at least in a region where the thermoelectric conversion element is disposed.
  6.  前記Agペースト塗布工程において、前記第1電極部のうち前記熱電変換素子と接する最上層に、ガラス成分を含まないAgペーストを塗布することを特徴とする請求項5に記載の熱電変換モジュールの製造方法。 In the said Ag paste application | coating process, Ag paste which does not contain a glass component is apply | coated to the uppermost layer which contact | connects the said thermoelectric conversion element among the said 1st electrode parts, Manufacture of the thermoelectric conversion module of Claim 5 characterized by the above-mentioned. Method.
  7.  前記積層工程では、前記第1電極部の上にAg接合材を配設した後に、前記熱電変換素子を配設することを特徴とする請求項5又は請求項6に記載の熱電変換モジュールの製造方法。 In the said lamination process, after arrange | positioning Ag joining material on the said 1st electrode part, the said thermoelectric conversion element is arrange | positioned, The manufacturing of the thermoelectric conversion module of Claim 5 or 6 characterized by the above-mentioned. Method.
  8.  前記熱電変換モジュールは、前記熱電変換素子の一端側に、少なくとも一方の面がアルミナで構成された第1絶縁層と、この第1絶縁層の一方の面に形成されたAgの焼成体からなる前記第1電極部と、を備えた第1絶縁回路基板が配設され、前記熱電変換素子の他端側に、少なくとも一方の面がアルミナで構成された第2絶縁層と、この第2絶縁層の一方の面に形成されたAgの焼成体からなる前記第2電極部と、を備えた第2絶縁回路基板が配設されており、
     前記Agペースト塗布工程では、前記第1絶縁層及び前記第2絶縁層の一方の面に、Agを含むAgペーストを30μm以上の厚さで塗布するともに、少なくとも前記第1絶縁層及び前記第2絶縁層と接する最下層には、ガラス含有Agペーストを塗布し、
     前記焼成工程では、前記Agペーストを焼成して前記第1電極部及び前記第2電極部を形成し、
     前記積層工程では、前記熱電変換素子の一端側に前記第1電極部を介して前記第1絶縁層を積層するとともに、前記熱電変換素子の他端側に前記第2電極部を介して前記第2絶縁層を積層し、
     前記熱電変換素子接合工程では、前記第1絶縁層と前記熱電変換素子と前記第2絶縁層を、積層方向に加圧するとともに加熱して、前記第1電極部と前記熱電変換素子、及び、前記熱電変換素子と前記第2電極部を接合し、
     前記熱電変換素子接合工程においては、加圧荷重が20MPa以上50MPa以下の範囲内、加熱温度が300℃以上とされており、前記第1電極部及び前記第2電極部は、少なくとも前記熱電変換素子が配置された領域において、厚さが30μm以上とされ、気孔率が10%未満とされることを特徴とする請求項5から請求項7のいずれか一項に記載の熱電変換モジュールの製造方法。
    The thermoelectric conversion module comprises, on one end side of the thermoelectric conversion element, a first insulating layer at least one surface of which is made of alumina, and a sintered body of Ag formed on one surface of the first insulating layer. A first insulating circuit substrate including the first electrode portion, and a second insulating layer having at least one surface made of alumina on the other end side of the thermoelectric conversion element, and the second insulating layer A second insulating circuit substrate including the second electrode portion made of a sintered body of Ag formed on one surface of the layer;
    In the Ag paste application step, an Ag paste containing Ag is applied to one surface of the first insulating layer and the second insulating layer with a thickness of 30 μm or more, and at least the first insulating layer and the second Apply a glass-containing Ag paste to the lowermost layer in contact with the insulating layer,
    In the firing step, the Ag paste is fired to form the first electrode portion and the second electrode portion.
    In the laminating step, the first insulating layer is laminated on one end side of the thermoelectric conversion element via the first electrode portion, and the second insulating portion is formed on the other end side of the thermoelectric conversion element. 2 stacked insulating layers,
    In the thermoelectric conversion element bonding step, the first insulating layer, the thermoelectric conversion element, and the second insulating layer are pressurized and heated in the stacking direction, and the first electrode portion, the thermoelectric conversion element, and Joining the thermoelectric conversion element and the second electrode portion,
    In the thermoelectric conversion element bonding step, the pressure load is in the range of 20 MPa to 50 MPa, and the heating temperature is 300 ° C. or higher, and at least the thermoelectric conversion element of the first electrode portion and the second electrode portion The method for manufacturing a thermoelectric conversion module according to any one of claims 5 to 7, wherein the thickness is set to 30 μm or more and the porosity is set to less than 10% in the region where the second layer is arranged. .
  9.  前記Agペースト塗布工程において、前記第2電極部のうち前記熱電変換素子と接する最上層に、ガラス成分を含まないAgペーストを塗布することを特徴とする請求項8に記載の熱電変換モジュールの製造方法。 In the said Ag paste application | coating process, Ag paste which does not contain a glass component is apply | coated to the uppermost layer which contact | connects the said thermoelectric conversion element among the said 2nd electrode parts, The manufacture of the thermoelectric conversion module of Claim 8 characterized by the above-mentioned. Method.
  10.  前記積層工程では、前記第2電極部の上にAg接合材を配設した後に、前記熱電変換素子を配設することを特徴とする請求項8又は請求項9に記載の熱電変換モジュールの製造方法。 The said thermoelectric conversion element is arrange | positioned after arrange | positioning Ag joining material on the said 2nd electrode part in the said lamination process, The manufacturing of the thermoelectric conversion module of Claim 8 or 9 characterized by the above-mentioned. Method.
PCT/JP2018/024805 2017-06-29 2018-06-29 Thermoelectric conversion module and method for manufacturing thermoelectric conversion module WO2019004429A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201880040259.5A CN110770924B (en) 2017-06-29 2018-06-29 Thermoelectric conversion module and method for manufacturing thermoelectric conversion module
KR1020197037988A KR102444696B1 (en) 2017-06-29 2018-06-29 Thermoelectric conversion module, and method of manufacturing the thermoelectric conversion module
EP18825073.2A EP3648186A4 (en) 2017-06-29 2018-06-29 Thermoelectric conversion module and method for manufacturing thermoelectric conversion module
US16/623,545 US11380832B2 (en) 2017-06-29 2018-06-29 Thermoelectric conversion module and method for producing thermoelectric conversion module

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017127539 2017-06-29
JP2017-127539 2017-06-29
JP2018-121097 2018-06-26
JP2018121097A JP7196432B2 (en) 2017-06-29 2018-06-26 Thermoelectric conversion module and method for manufacturing thermoelectric conversion module

Publications (1)

Publication Number Publication Date
WO2019004429A1 true WO2019004429A1 (en) 2019-01-03

Family

ID=64742845

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/024805 WO2019004429A1 (en) 2017-06-29 2018-06-29 Thermoelectric conversion module and method for manufacturing thermoelectric conversion module

Country Status (1)

Country Link
WO (1) WO2019004429A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012231024A (en) * 2011-04-26 2012-11-22 Toto Ltd Thermoelectric conversion module
JP2012231025A (en) 2011-04-26 2012-11-22 Toto Ltd Thermoelectric conversion module
JP2013197265A (en) 2012-03-19 2013-09-30 Toto Ltd Thermoelectric conversion module
JP2015122464A (en) * 2013-12-25 2015-07-02 株式会社小松プロセス Thermoelectric conversion material, circuit manufacturing method and thermoelectric conversion module
WO2015174462A1 (en) * 2014-05-16 2015-11-19 国立研究開発法人産業技術総合研究所 Thermoelectric conversion element and thermoelectric conversion module
JP2017059823A (en) * 2015-09-18 2017-03-23 三菱マテリアル株式会社 Thermoelectric conversion module and thermoelectric conversion device
JP2017127539A (en) 2016-01-21 2017-07-27 株式会社アサヒ製作所 Drying machine and drying system
JP2018121097A (en) 2015-06-05 2018-08-02 シャープ株式会社 Solid-state relay and electric power triac chip

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012231024A (en) * 2011-04-26 2012-11-22 Toto Ltd Thermoelectric conversion module
JP2012231025A (en) 2011-04-26 2012-11-22 Toto Ltd Thermoelectric conversion module
JP2013197265A (en) 2012-03-19 2013-09-30 Toto Ltd Thermoelectric conversion module
JP2015122464A (en) * 2013-12-25 2015-07-02 株式会社小松プロセス Thermoelectric conversion material, circuit manufacturing method and thermoelectric conversion module
WO2015174462A1 (en) * 2014-05-16 2015-11-19 国立研究開発法人産業技術総合研究所 Thermoelectric conversion element and thermoelectric conversion module
JP2018121097A (en) 2015-06-05 2018-08-02 シャープ株式会社 Solid-state relay and electric power triac chip
JP2017059823A (en) * 2015-09-18 2017-03-23 三菱マテリアル株式会社 Thermoelectric conversion module and thermoelectric conversion device
JP2017127539A (en) 2016-01-21 2017-07-27 株式会社アサヒ製作所 Drying machine and drying system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3648186A4

Similar Documents

Publication Publication Date Title
JP6750404B2 (en) Thermoelectric conversion module, thermoelectric conversion device, and method for manufacturing thermoelectric conversion module
KR102444696B1 (en) Thermoelectric conversion module, and method of manufacturing the thermoelectric conversion module
JP7163631B2 (en) Thermoelectric conversion module and method for manufacturing thermoelectric conversion module
CN111433923B (en) Insulating heat transfer substrate, thermoelectric conversion module, and method for manufacturing insulating heat transfer substrate
WO2017047627A1 (en) Thermoelectric conversion module and thermoelectric conversion device
WO2019244692A1 (en) Thermoelectric conversion module and method for manufacturing thermoelectric conversion module
WO2019004429A1 (en) Thermoelectric conversion module and method for manufacturing thermoelectric conversion module
WO2019009202A1 (en) Thermoelectric conversion module and method for producing thermoelectric conversion module
JP7248091B2 (en) Thermoelectric conversion module and method for manufacturing thermoelectric conversion module
KR102340798B1 (en) Thermoelectric element and module thermoelectric module comprising the same
WO2022168777A1 (en) Thermoelectric conversion module, and method for producing thermoelectric conversion module
WO2019111997A1 (en) Insulating heat-transfer substrate, thermoelectric conversion module, and method for manufacturing insulating heat-transfer substrate
WO2021157565A1 (en) Thermoelectric conversion structure
CN116784019A (en) Thermoelectric conversion module and method for manufacturing thermoelectric conversion module

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18825073

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197037988

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018825073

Country of ref document: EP

Effective date: 20200129