WO2019004399A1 - Grab bucket - Google Patents
Grab bucket Download PDFInfo
- Publication number
- WO2019004399A1 WO2019004399A1 PCT/JP2018/024719 JP2018024719W WO2019004399A1 WO 2019004399 A1 WO2019004399 A1 WO 2019004399A1 JP 2018024719 W JP2018024719 W JP 2018024719W WO 2019004399 A1 WO2019004399 A1 WO 2019004399A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- working fluid
- space
- cylinder
- cylinder tube
- frame
- Prior art date
Links
- 239000012530 fluid Substances 0.000 claims abstract description 86
- 230000007246 mechanism Effects 0.000 claims description 6
- 230000000149 penetrating effect Effects 0.000 claims description 3
- 230000006866 deterioration Effects 0.000 abstract description 4
- 230000004048 modification Effects 0.000 description 16
- 238000012986 modification Methods 0.000 description 16
- 238000003860 storage Methods 0.000 description 11
- 238000012546 transfer Methods 0.000 description 9
- 210000000078 claw Anatomy 0.000 description 7
- 238000010586 diagram Methods 0.000 description 5
- 230000008859 change Effects 0.000 description 4
- 238000004891 communication Methods 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 238000007664 blowing Methods 0.000 description 2
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000035939 shock Effects 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 230000007723 transport mechanism Effects 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000005347 demagnetization Effects 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B66—HOISTING; LIFTING; HAULING
- B66C—CRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
- B66C3/00—Load-engaging elements or devices attached to lifting or lowering gear of cranes or adapted for connection therewith and intended primarily for transmitting lifting forces to loose materials; Grabs
- B66C3/06—Grabs actuated by a single rope or chain
Definitions
- the present invention relates to a grab bucket, a cylinder device, and a grab bucket assembly.
- a grab bucket is known as an apparatus used for transferring loose materials such as wood chips, powdery ores, and earth and sand.
- the grab bucket is moved by a crane or the like.
- the shell of the grab bucket performs an opening / closing operation by operating a hydraulic valve or the like by transmitting a signal wirelessly, for example.
- the grab bucket has, for example, a hydraulic cylinder.
- the shell is opened and closed by the movement of the piston of the hydraulic cylinder or the like.
- Oil which is the working fluid of the hydraulic cylinder, is filled inside the cylinder.
- an external oil dam in communication with the inside of the cylinder is required.
- Patent No. 3700161 gazette JP, 2010-285226, A
- the cylinder device requires a flow path connecting both sides of the piston in addition to the through hole formed in the piston.
- This flow path was formed by a pressure resistant hose disposed outside the cylinder body.
- a pressure resistant hose disposed outside the cylinder body.
- a large change in pressure of the working fluid oil causes a large pressure fluctuation.
- the pressure-resistant hose repeatedly deforms and deteriorates with use.
- leakage or the like may occur due to repeated pressure fluctuation.
- a pressure resistant hose is provided outside the cylinder, it may be damaged or deteriorated due to an impact due to contact with other devices or foreign matter.
- an object of the present invention is to control degradation accompanying use of a grab bucket.
- the present invention provides a grab bucket, a cylinder tube extending from a first end to a second end and being filled with a working fluid, and closing an inner space of the cylinder tube to form a first space and a first space.
- the piston is movable in the axial direction of the cylinder tube into two spaces, and is formed with a through hole penetrating from the first end to the second end, and protrudes from the piston from the first end ,
- a first closing block closing the first end of the cylinder tube, a second closing block closing the second end of the cylinder tube, and the first end side of the through hole
- a check plate for closing the flow of the working fluid toward the second end a container wall forming a working fluid holding space between the outer surface of the cylinder tube, and a front
- a cylinder device comprising a working fluid circuit for causing the working fluid to flow between the working fluid holding space and the first space and between the working fluid holding space and the second space;
- a connecting body for connecting the shell and the first frame on both sides with respect to
- a cylinder tube extending from a first end to a second end and filled with a working fluid, closing an inner space of the cylinder tube and dividing it into a first space and a second space
- a piston movable in the axial direction of the cylinder tube and having a through hole formed to penetrate from the first end to the second end, a rod extending from the piston and extending beyond the first end, and A first closing block for closing the first end of the cylinder tube, a second closing block for closing the second end of the cylinder tube, and a direction from the first end to the second end of the through hole
- a check plate for closing the flow of the working fluid, a container wall forming a working fluid holding space between the outer surface of the cylinder tube, the working fluid holding space, and A working fluid circuit for causing the working fluid to flow between the inner space of the cylinder tube on the first end side and between the working fluid holding space and the inner space of the cylinder tube on the second end side; It is characterized by having
- a container in the grab bucket part assembly, a container, a base housed inside the container, a carry-out mechanism for carrying the base out of the container, and a first end to a second end
- a cylinder tube which is filled with the working fluid and which is closed in the inner space of the cylinder tube to be moved in the axial direction of the cylinder tube and which penetrates from the first end to the second end
- a piston a rod extending from the piston and extending beyond the first end, a first closing block closing the first end of the cylinder, and a second closing the second end of the cylinder A closing block, a check plate for closing the flow of the working fluid from the first end to the second end of the through hole, and a volume forming a working fluid holding space
- the working fluid flows between a wall, the working fluid holding space and the inner space of the cylinder on the first end side, and between the working fluid holding space and the inner space of the cylinder on the second end side.
- a second frame fixed to the base and fixed to the second end of the cylinder device; and the second frame fixed to the base and pivotable about an axis perpendicular to the cylinder A pair of shells that can be supported by the support on the frame respectively, and a connector fixed to the base and capable of connecting the shells to the first frame on both sides with respect to the support. Have And wherein the door.
- FIG. 1 is a side view of an embodiment of a grab bucket according to the present invention. It is a longitudinal section of a cylinder device used for one embodiment of a grab bucket concerning the present invention. It is a cross-sectional view of a cylinder apparatus used for one embodiment of a grab bucket concerning the present invention. It is a longitudinal cross-sectional view of the attachment part to the 2nd frame of the cylinder apparatus used for one embodiment of the grab bucket concerning the present invention. It is a hydraulic circuit figure of a cylinder device used for one embodiment of a grab bucket concerning the present invention. It is a hydraulic circuit diagram of the modification of the cylinder apparatus used for one embodiment of the grab bucket concerning the present invention.
- FIG. 1 is a perspective view during assembly of an embodiment of a grab bucket according to the present invention
- FIG. 1 is a side view of an embodiment of a grab bucket according to the present invention.
- the grab bucket 10 of the present embodiment has a cylinder device 20, a first frame 11, a second frame 12, a pair of shells 13 and a movable frame 14.
- the cylinder device 20 is a so-called hydraulic cylinder device in which the working fluid is oil.
- the rod 40 protrudes from the first end 91 side of the cylinder device 20.
- the movable frame 14 is fixed to an end of the rod 40 which protrudes from the first end 91 side of the cylinder device 20.
- the movable frame 14 is disposed to face the first frame 11.
- a wire 16 is coupled to the movable frame 14.
- the wire 16 is hung on a hanger 17.
- the hanger 17 is moved up and down by, for example, a hook of a crane.
- Each of the first frame 11 and the movable frame 14 incorporates a sheave 94 therein.
- One end of the wire 16 is hung on a hanger 17.
- the other end of the wire 16 is fixed to the movable frame 14 via a sheave 94.
- the second frame 12 is fixed to the second end 92 side of the cylinder device 20.
- the pair of shells 13 is rotatably supported by the shaft 93 of the second frame 12 respectively.
- a connector 15 extending between the first frame 11 and a shaft 93 which is a support portion of the second frame 12 of each shell 13 is attached to both sides.
- FIG. 2 is a longitudinal sectional view of the cylinder device in the present embodiment.
- FIG. 3 is a cross-sectional view of the cylinder device in the present embodiment.
- the cylinder device 20 comprises a cylinder tube 23, a piston 41, a rod 40, a first closing block 21, a second closing block 22, a check plate 43 and a container wall 30.
- the cylinder tube 23 is formed in a cylindrical shape extending from the first end 91 to the second end 92.
- the internal space of the cylinder tube 23 is filled with the working fluid.
- the piston 41 closes the internal space of the cylinder tube 23.
- the piston 41 divides the internal space of the cylinder tube 23 into a first space 48 on the first end 91 side and a second space 49 on the second end 92 side.
- the piston 41 is formed, for example, in a disk shape.
- the piston 41 is fixed to one end of the rod 40.
- the piston 41 is formed with a through hole 42 penetrating in the axial direction of the cylinder tube 23.
- a check plate 43 is mounted on the upper surface of the through hole 42.
- the check plate 43 is, for example, an annular plate.
- the check plate 43 closes the flow from the first end 91 side to the second end 92 side of the cylinder tube 23 through the through hole 42.
- the opposite end of the end of the rod 40 fixed to the piston 41 protrudes from the first end 91 of the cylinder tube 23.
- the first closing block 21 closes the first end 91 of the cylinder tube 23.
- the second closing block 22 closes the second end 92 of the cylinder tube 23.
- the container wall 30 forms a space with the outer surface 24 of the cylinder tube 23. This space is called a working fluid holding space 31.
- the container wall 30 is, for example, a cylinder.
- the first closing block 21 is formed with a first flow passage 26 communicating with the first space 48 inside the cylinder tube 23 and the working fluid holding space 31.
- a second flow passage 25 communicating with the second space 49 inside the cylinder tube 23 and the working fluid holding space 31 is formed in the second closing block 22.
- a logic valve 51 is inserted in the middle of the first flow path 26.
- a part of the working fluid circuit that controls the logic valve 51 is stored in the circuit storage block 27.
- the circuit storage block 27 is fixed to the first closing block 21.
- the circuit storage block 27 is provided with a button 28.
- a discharge valve 32 for working fluid is attached to the logic valve 51.
- the discharge pipe 32 extends the working fluid holding space 31. Since the discharge pipe 32 extends the working fluid holding space 31, the working fluid that has passed the logic valve 51 is not discharged to the air layer formed above the working fluid holding space 31. As a result, mixing and generation of air bubbles in the working fluid is suppressed.
- a fixing claw 60 for fixing to the second frame 12 is provided.
- the fixing claw 60 is formed integrally with, for example, the second closing block 22.
- a pin fixing hole 61 is formed in the fixing claw 60.
- FIG. 4 is a longitudinal cross-sectional view of an attachment portion of the cylinder device to the second frame in the present embodiment.
- the second frame 12 includes a first lateral support member 67, a second lateral support member 68, and an axial support member 66.
- the first lateral support member 67 and the second lateral support member 68 are, for example, flat plates perpendicular to the axis of the cylinder tube 23.
- the first lateral support member 67 and the second lateral support member 68 are formed with holes into which the cylinder device 20 is fitted.
- the hole formed in the first lateral support member 67 is fitted, for example, in the largest diameter part of the second closing block 22 of the cylinder device 20.
- the hole formed in the second lateral support member 68 is fitted, for example, in the tip portion of the fixing claw 60 of the cylinder device 20.
- the axial support member 66 is, for example, erected on the second lateral support member 68.
- the axial support member 66 is formed with a hole through which the fixing pin 63 can pass.
- the fixing pin 63 is inserted into the hole formed in the axial support member 66 and the pin fixing hole 61 of the fixing claw 60.
- the pin head 65 formed on one end of the fixing pin 63 and the pin fixing pin 64 inserted in the end opposite to the pin head 65, the pin for fixing the pin fixing hole 61 in the depth direction The movement of 63 is limited.
- the fixing pin 63 can pass through the access port 62 formed in the second frame 12 to reach the pin fixing hole 61.
- the cylinder device 20 is held so as to restrict the relative movement of the cylinder device 20 relative to the second frame 12 in the axial and lateral directions.
- the second closing block 22 is provided with a flange and the flange is fixed by screwing it to the second frame or the like, a certain amount of space is required for working at the flange portion.
- the cylinder device 20 can be fixed by inserting the fixing pin 63 and fixing one end of the fixing pin 63. For this reason, the fixing
- FIG. 5 is a circuit diagram of a working fluid circuit of the cylinder device in the present embodiment.
- the working fluid circuit of the present embodiment includes a logic valve 51, a solenoid valve 53, a bypass check valve 54, a bypass throttle 56, and a pressure valve 52.
- the logic valve 51 is inserted in a flow path connecting the first space 48 of the cylinder tube 23 and the working fluid holding space 31.
- the solenoid valve 53 is provided between the first space 48 and the pilot port of the logic valve 51.
- a throttle 57 may be inserted between the solenoid valve 53 and the first space 48.
- the bypass check valve 54 is provided between the solenoid valve 53 and the pilot port of the logic valve 51.
- the bypass check valve 54 shuts off the flow from the pilot port of the logic valve 51 to the solenoid valve 53 side.
- the bypass throttle 56 is provided in parallel with the pressure valve 52 and the bypass check valve 54.
- the pressure valve 52 is closed when the pressure in the first space 48 of the cylinder tube 23 is equal to or higher than a predetermined value, and the pilot of the logic valve 51 is closed when the pressure in the first space 48 is lower than the predetermined value. Communication between the port and the solenoid valve 53 is established.
- the bypass throttle 56 establishes communication between the pilot port of the logic valve 51 and the solenoid valve 53 regardless of the switching set pressure of the pressure valve 52.
- the shell 13 is in an open state.
- the rod 40 is pulled out most from the cylinder tube 23.
- the volume of the first space 48 is the smallest, and the volume of the second space 49 is the largest.
- the electromagnetic valve 53 is in a closed state by demagnetization.
- the grab bucket 10 While the shell 13 is open, the grab bucket 10 is lowered to the upper surface of the cargo to be transported by operating a crane or the like that suspends the hanger 17 or the like.
- the movable frame 14 After landing the cargo with the shell 13 of the grab bucket 10 open, when the crane is further lowered, the movable frame 14 is lowered by its own weight.
- the movable frame 14 stops approaching the second frame 12 due to the contact of the movable frame 14 with the second frame 12 or the like. Thereby, the check plate 43 inside the cylinder tube 23 is closed, and the movement of the working fluid from the second space 49 to the first space 48 through the through hole 42 is stopped.
- the hanger 17 is raised.
- the rod 40 is pulled up from the cylinder tube 23 by the lifting of the hanger 17.
- the pressure in the first space 48 of the cylinder tube 23 rises. Since the solenoid valve 53 is closed, the pressure in the first space 48 of the cylinder tube 23 is transmitted to the pilot port of the logic valve 51, and the logic valve 51 is in a closed state. As a result, the working fluid in the first space 48 does not move, and the cylinder tube 23 is pulled up with the rod 40. As a result, the shell 13 is closed and a gripping operation is performed.
- the hanger 17 While holding the cargo in the closed space of the shell 13, the hanger 17 is moved by a crane or the like to move the grab bucket 10 above the cargo transfer destination.
- the shell 13 is opened. The opening operation of the shell 13 is performed by exciting the solenoid valve 53 to open it.
- the solenoid valve 53 When the solenoid valve 53 is closed, the first space 48 of the cylinder tube 23 is at high pressure. As a result, the pressure valve 52 is in a closed state. In this state, when the solenoid valve 53 is excited to open, the working fluid in the flow path connected to the pilot port of the logic valve 51 holds the working fluid at the speed set by the bypass throttle 56, that is, low speed. I will escape to space 31. As a result, the pressure at the pilot port of the logic valve 51 gradually decreases. As a result, the logic valve 51 opens gently. Therefore, the working fluid is slowly discharged to the working fluid holding space 31 via the logic valve 51.
- the logic valve 51 gradually opens, and the pressure in the first space 48 of the cylinder tube 23 decreases. That is, the pressure in the first space 48 of the cylinder tube 23 is depressurized.
- the pressure valve 52 opens when the pressure in the reduced first space 48 falls below a predetermined pressure.
- the pressure valve 52 is in the open state, the working fluid is discharged at a flow rate higher than that of the bypass throttle 56 alone. Therefore, opening and closing of the logic valve 51 responds at high speed following opening and closing of the solenoid valve 53.
- the grab bucket of the present embodiment when the pressure in the first space 48 inside the cylinder tube 23, that is, the space on the rod 40 side at least until the movable frame 14 contacts the first frame 11, is high.
- the flow of the working fluid from the first space 48 to the second space 49 is gentle. Therefore, the rapid movement of the rod 40 is suppressed, and the impact such as the collision of the movable frame 14 with the first frame 11 is suppressed. As a result, damage to the grab bucket is suppressed. Further, the noise due to the collision of the movable frame 14 with the first frame 11 is also reduced. Therefore, the shock absorption structure of the first frame 11 and the movable frame 14 can be simplified and the cost can be reduced.
- the opening / closing operation of the shell 13 can be performed at high speed by the high-speed opening / closing operation of the logic valve 51.
- the opening operation of the solenoid valve 53 can be manually performed by pressing a button provided on the circuit storage block 27.
- FIG. 6 is a circuit diagram of a modification of the working fluid circuit of the cylinder device in the present embodiment.
- the pressure valve 52 in FIG. 5 is replaced with a pressure valve 50 and a relief valve 59 having a lower switching set pressure.
- the relief valve 59 starts blowing, and the back pressure of the relief valve 59 is input to the pressure valve 50.
- the pressure valve 50 is closed.
- the relief valve 59 stops blowing and the pressure valve 50 opens.
- FIG. 7 is a circuit diagram of another modification of the working fluid circuit of the cylinder device in the present embodiment.
- the working fluid circuit of this modification includes a logic valve 51, a solenoid valve 55, a first throttle 81, a second throttle 82, and a pressure valve 52.
- the logic valve 51 is inserted in a flow path connecting the first space 48 of the cylinder tube 23 and the working fluid holding space 31.
- the first throttle 81 is inserted in a flow path connecting the first space 48 of the cylinder tube 23 and the pilot port of the logic valve 51.
- the second throttle 82 is inserted in a flow path connecting the pilot port of the logic valve 51 and the solenoid valve 55.
- the solenoid valve 55 is inserted in a flow path connecting the second throttle 82 and the working fluid holding space 31. Thereby, the pilot port of the logic valve 51 is connected to the flow path between the first throttle 81 and the second throttle 82.
- the pressure sensor of the pressure valve 52 is connected to the flow passage between the first throttle 81 and the second throttle 82.
- the pressure valve 52 opens to form a flow path that bypasses the second throttle 82 if the pressure between the first throttle 81 and the second throttle 82 is less than a predetermined pressure.
- the flow path of the working fluid outside the cylinder tube 23 is realized by the working fluid holding space 31 formed integrally with the cylinder tube 23. For this reason, it is not necessary to use external parts, such as a pressure hose. Therefore, parts that easily change shape due to pressure changes, such as hoses, are reduced. As a result, even if a pressure change occurs with use, it is possible to suppress the deterioration of the component or the connection portion of the component.
- the flow path of the working fluid outside the cylinder tube 23 is formed integrally with the cylinder tube 23, the external parts such as the hose may receive an impact due to contact with other devices or the like, causing deterioration or damage. Can reduce the possibility of
- FIG. 8 is a longitudinal sectional view of a modification of the cylinder device in the present embodiment.
- FIG. 9 is a cross-sectional view of a modification of the cylinder device in the present embodiment.
- the solenoid valve storage block 29 is attached to the second closing block 22.
- the solenoid valve storage block 29 houses a solenoid valve 53 (or a solenoid valve 55).
- a pilot line 58 extends through the hydraulic fluid holding space 31 to the solenoid valve storage block 29.
- the solenoid valve 53 can be disposed on the second end 92 side of the cylinder device 20, that is, on the side closer to the second frame 12.
- the grab bucket 10 of the present embodiment is used in a posture in which the second frame 12 is vertically lower than the first frame 11. Therefore, in the present modification, the solenoid valve 53 is disposed at a lower position.
- the button 28 since the button 28 is at a low position and easy to access, when the manual opening operation of the solenoid valve 53 is required, such as during a test or in an emergency, the button 28 can be easily operated. In addition, it is safe because workers do not have to go up to a high position.
- FIG. 10 is a perspective view during and after assembly of the grab bucket in the present embodiment.
- parts such as the cylinder device 20 of the grab bucket 10, the first frame 11, the second frame 12, the pair of shells 13, the movable frame 14 and the like are manufactured.
- these components are stored in the container 70.
- the components of the grab bucket 10 are stored in the container 70, the components are fixed to the base 71.
- the base 71 is also housed in the container 70.
- the first frame 11, the second frame 12, the movable frame 14 and the cylinder device 20 may be in an assembled state.
- a wheel 72 is attached to the lower surface of the base 71 in order to store the base 71 inside the container 70 and to draw the container 70 to the outside. Also, two rails 73 extend on the floor surface of the container 70.
- An upper and lower transfer mechanism, a horizontal direction transfer mechanism, a rotating mechanism and other jigs for assembling the grab bucket 10 may be fixed to the base 71.
- the upper and lower transport mechanism, the horizontal transport mechanism, and the rotation mechanism may be realized by one device or may be realized by a plurality of devices. Alternatively, a plurality of devices may be used in combination.
- the base 71 may have, for example, a frame structure in which rods are combined.
- the base 71 may have a panel structure. In the case of the panel structure, the panel may be opened at the time of assembly. An open panel may be used as a workbench. An open panel may be used as part of a jig for assembly.
- the base 71 is pulled out of the container 70. Since the lower wheel 72 is on the rail 73, the base 71 can be pulled out with a small force.
- the winch or the like may be detachably attached to the base 71 and placed, and may be used for moving the base 71. Also, the base 71 may roll off by jacking up one end of the rail 73. The base 71 may be pushed out using a jack.
- the shells 13 are horizontally rotated using, for example, a rotating jig so as to face each other. As a result, the pair of shells 13 are in an attitude facing each other. Also, the posture of the assembly of the first frame 11, the second frame 12, the movable frame 14 and the cylinder device 20 is raised.
- the gantry 74 may be a part of the base 71, or may be easily assembled using parts constituting the base 71.
- the shell 13 is attached to a predetermined position of the second frame 12 while the assembly of the first frame 11, the second frame 12, the movable frame 14 and the cylinder device 20 is moved vertically and held. Thereafter, the coupling body 15 is attached and the grab bucket 10 is completed.
- the grab bucket 10 can be easily installed at an installation place or the like. It can be assembled.
- a container having a length of 40 feet (12, 192 mm), a width of 8 feet (2, 438 mm), and a height of 9 feet, 6 inches (2, 896 mm) is used as the container 70.
- the cost of the container itself and the cost of transporting the container can be made much smaller than using a special storage case. For this reason, if the assembly cost of the grab bucket 10 is small, the cost required to install the product can be extremely reduced.
- the parts of the grab bucket 10 are preferably unitized and modularized in advance.
- a lifting device capable of lifting, rotating and horizontally moving
- a unloading device capable of horizontally moving and rotating.
- lifting tools and jigs that can be transported and assembled only by human power be prepared so as not to use external power as much as possible.
- the maximum mass of unitization it is preferable to set the maximum mass of unitization so that there is no problem if it is taken to any transport destination. For example, when using a power winch, it is preferable to make the unit less than 3 t when it is assumed that one of the transport destinations is a country where a 3 t or more crane is treated as a mobile crane and manufacturing inspection is required.
- the power may be human power.
- the base 71 is carried out of the container 70 by moving the wheels 72 attached to the base 71 to the rails 73.
- the base 71 may be transported by running the wheels 72 on the upper surface of the plate.
- auxiliary parts may be attached to the respective parts in order to facilitate transportation and positioning.
- Auxiliary parts are removed by melting, cutting, unscrewing, etc. after assembly is complete or during assembly.
- the change of the posture of the part may be facilitated.
- the posture when fixed to the base 71, when the support is removed, the posture may be easy to assemble.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Load-Engaging Elements For Cranes (AREA)
Abstract
[Problem] To suppress deterioration caused by the use of a grab bucket. [Solution] This grab bucket is provided with a cylinder device 20, a first frame, a second frame, a pair of shells, and a connection body. The first frame is disposed on the upper end 91 side of the cylinder device 20. The second frame is affixed to the lower end side of the cylinder device 20. The pair of shells are individually supported on the second frame by shafts so that the pair of shells can pivot on a shaft perpendicular to the cylinder device 20. The connection body connects the shells and first frame on both sides of a support section. The cylinder device 20 has integrally formed therein an operating fluid holding space 31 formed by the outer surface 24 of a cylinder tube and a container wall 30.
Description
本発明は、グラブバケット、シリンダー装置、および、グラブバケット部品集合体に関する。
The present invention relates to a grab bucket, a cylinder device, and a grab bucket assembly.
木材チップ、粉状鉱石、土砂などのバラ物の移送に用いる装置として、グラブバケットが知られている。グラブバケットは、クレーンなどで移動される。グラブバケットのシェルは、たとえば無線により信号を伝達することにより油圧弁などを操作することにより、開放・閉止動作を行う。
A grab bucket is known as an apparatus used for transferring loose materials such as wood chips, powdery ores, and earth and sand. The grab bucket is moved by a crane or the like. The shell of the grab bucket performs an opening / closing operation by operating a hydraulic valve or the like by transmitting a signal wirelessly, for example.
グラブバケットは、たとえば油圧シリンダーを有している。油圧シリンダーのピストンの動きなどによって、シェルが開閉される。油圧シリンダーの作動流体である油は、シリンダー内部に充填されている。シリンダーの動作のためには、シリンダー内部と連通した外部の油ダメ(タンク)が必要である。
The grab bucket has, for example, a hydraulic cylinder. The shell is opened and closed by the movement of the piston of the hydraulic cylinder or the like. Oil, which is the working fluid of the hydraulic cylinder, is filled inside the cylinder. For operation of the cylinder, an external oil dam (tank) in communication with the inside of the cylinder is required.
シリンダー装置には、ピストンに形成された貫通孔以外にピストンの両側をつなぐ流路が必要である。この流路は、シリンダー本体の外部に配置された耐圧ホースによって形成されていた。しかし、耐圧ホースとはいえ、作動流体である油の圧力の大きな変化によって、大きな圧力変動を受ける。このため、耐圧ホースは、使用に伴い変形を繰り返し、劣化する。また、耐圧ホースの取り付け部分は、繰り返し受ける圧力変動により、漏れなどが生じる場合がある。さらに、耐圧ホースをシリンダーの外部に設けると、他の機器・異物と接触などすることにより、衝撃を受けて、劣化・損傷する場合がある。
The cylinder device requires a flow path connecting both sides of the piston in addition to the through hole formed in the piston. This flow path was formed by a pressure resistant hose disposed outside the cylinder body. However, even with a pressure-resistant hose, a large change in pressure of the working fluid oil causes a large pressure fluctuation. For this reason, the pressure-resistant hose repeatedly deforms and deteriorates with use. In addition, in the mounting portion of the pressure-resistant hose, leakage or the like may occur due to repeated pressure fluctuation. Furthermore, if a pressure resistant hose is provided outside the cylinder, it may be damaged or deteriorated due to an impact due to contact with other devices or foreign matter.
そこで、本発明は、グラブバケットの使用に伴う劣化を抑制することを目的とする。
Then, an object of the present invention is to control degradation accompanying use of a grab bucket.
上述の目的を達成するため、本発明は、グラブバケットにおいて、第1端から第2端に延びて作動流体が充填されるシリンダーチューブと、前記シリンダーチューブの内側空間を塞いで第1空間と第2空間とに仕切り前記シリンダーチューブの軸方向に移動可能であって前記第1端側から前記第2端側に貫通した貫通孔が形成されたピストンと、前記ピストンから前記第1端よりも突出して延びるロッドと、前記シリンダーチューブの前記第1端を閉鎖する第1閉鎖ブロックと、前記シリンダーチューブの前記第2端を閉鎖する第2閉鎖ブロックと、前記貫通孔の前記第1端側から前記第2端側に向かう前記作動流体の流れを閉止するチェックプレートと、前記シリンダーチューブの外面との間に作動流体保持空間を形成する容器壁と、前記作動流体保持空間と前記第1空間との間および前記作動流体保持空間と前記第2空間との間に前記作動流体を流れさせる作動流体回路と、を備えたシリンダー装置と、前記シリンダー装置の前記第1端側に配置された第1フレームと、前記シリンダー装置の前記第2端側に固定された第2フレームと、前記シリンダーチューブに垂直な軸を中心とする回動可能に前記第2フレームにそれぞれ支持部で支持された一対のシェルと、前記支持部に対して両側でそれぞれの前記シェルと第1フレームとを連結する連結体と、を有することを特徴とする。
In order to achieve the above-described object, the present invention provides a grab bucket, a cylinder tube extending from a first end to a second end and being filled with a working fluid, and closing an inner space of the cylinder tube to form a first space and a first space. The piston is movable in the axial direction of the cylinder tube into two spaces, and is formed with a through hole penetrating from the first end to the second end, and protrudes from the piston from the first end , A first closing block closing the first end of the cylinder tube, a second closing block closing the second end of the cylinder tube, and the first end side of the through hole A check plate for closing the flow of the working fluid toward the second end, a container wall forming a working fluid holding space between the outer surface of the cylinder tube, and a front A cylinder device comprising a working fluid circuit for causing the working fluid to flow between the working fluid holding space and the first space and between the working fluid holding space and the second space; A first frame disposed on the first end side, a second frame fixed to the second end side of the cylinder device, and the second frame rotatably pivotable about an axis perpendicular to the cylinder tube , And a connecting body for connecting the shell and the first frame on both sides with respect to the support portion.
また、本発明は、シリンダー装置において、第1端から第2端に延びて作動流体が充填されるシリンダーチューブと、前記シリンダーチューブの内側空間を塞いで第1空間と第2空間とに仕切り前記シリンダーチューブの軸方向に移動可能であって前記第1端側から前記第2端側に貫通した貫通孔が形成されたピストンと、前記ピストンから前記第1端よりも突出して延びるロッドと、前記シリンダーチューブの前記第1端を閉鎖する第1閉鎖ブロックと、前記シリンダーチューブの前記第2端を閉鎖する第2閉鎖ブロックと、前記貫通孔の前記第1端側から前記第2端側に向かう前記作動流体の流れを閉止するチェックプレートと、前記シリンダーチューブの外面との間に作動流体保持空間を形成する容器壁と、前記作動流体保持空間と前記第1端側の前記シリンダーチューブの内側空間との間および前記作動流体保持空間と前記第2端側の前記シリンダーチューブの内側空間との間に前記作動流体を流れさせる作動流体回路と、を有することを特徴とする。
Further, according to the present invention, in a cylinder device, a cylinder tube extending from a first end to a second end and filled with a working fluid, closing an inner space of the cylinder tube and dividing it into a first space and a second space A piston movable in the axial direction of the cylinder tube and having a through hole formed to penetrate from the first end to the second end, a rod extending from the piston and extending beyond the first end, and A first closing block for closing the first end of the cylinder tube, a second closing block for closing the second end of the cylinder tube, and a direction from the first end to the second end of the through hole A check plate for closing the flow of the working fluid, a container wall forming a working fluid holding space between the outer surface of the cylinder tube, the working fluid holding space, and A working fluid circuit for causing the working fluid to flow between the inner space of the cylinder tube on the first end side and between the working fluid holding space and the inner space of the cylinder tube on the second end side; It is characterized by having.
また、本発明は、グラブバケット部品集合体において、コンテナと、前記コンテナの内部に収納された基台と、前記基台を前記コンテナの外部に搬出する搬出機構と、第1端から第2端に延びて作動流体が充填されるシリンダーチューブと、前記シリンダーチューブの内側空間を塞いで前記シリンダーチューブの軸方向に移動可能であって前記第1端側から前記第2端側に貫通した貫通孔が形成されたピストンと、前記ピストンから前記第1端よりも突出して延びるロッドと、前記シリンダーの前記第1端を閉鎖する第1閉鎖ブロックと、前記シリンダーの前記第2端を閉鎖する第2閉鎖ブロックと、前記貫通孔の前記第1端側から前記第2端側に向かう前記作動流体の流れを閉止するチェックプレートと、作動流体保持空間を形成する容器壁と、前記作動流体保持空間と前記第1端側の前記シリンダーの内側空間との間および前記作動流体保持空間と前記第2端側の前記シリンダーの内側空間との間に前記作動流体を流れさせる作動流体回路と、を備えて前記基台に固定されたシリンダー装置と、前記基台に固定されて前記シリンダー装置の前記第1端側に配置されることができる第1フレームと、前記基台に固定されて前記シリンダー装置の前記第2端側に固定されることができる第2フレームと、前記基台に固定されて前記シリンダーに垂直な軸を中心とする回動可能に前記第2フレームにそれぞれ支持部で支持されることができる一対のシェルと、前記基台に固定されて前記支持部に対して両側でそれぞれの前記シェルと第1フレームとを連結可能な連結体と、を有することを特徴とする。
Further, according to the present invention, in the grab bucket part assembly, a container, a base housed inside the container, a carry-out mechanism for carrying the base out of the container, and a first end to a second end And a cylinder tube which is filled with the working fluid and which is closed in the inner space of the cylinder tube to be moved in the axial direction of the cylinder tube and which penetrates from the first end to the second end A piston, a rod extending from the piston and extending beyond the first end, a first closing block closing the first end of the cylinder, and a second closing the second end of the cylinder A closing block, a check plate for closing the flow of the working fluid from the first end to the second end of the through hole, and a volume forming a working fluid holding space The working fluid flows between a wall, the working fluid holding space and the inner space of the cylinder on the first end side, and between the working fluid holding space and the inner space of the cylinder on the second end side. A cylinder device fixed to the base, the first frame being fixed to the base and capable of being disposed on the first end side of the cylinder device; A second frame fixed to the base and fixed to the second end of the cylinder device; and the second frame fixed to the base and pivotable about an axis perpendicular to the cylinder A pair of shells that can be supported by the support on the frame respectively, and a connector fixed to the base and capable of connecting the shells to the first frame on both sides with respect to the support. Have And wherein the door.
本発明によれば、グラブバケットの使用に伴う劣化を抑制できる。
ADVANTAGE OF THE INVENTION According to this invention, the deterioration accompanying use of a grab bucket can be suppressed.
本発明に係るグラブバケットの一実施の形態を、図面を参照して説明する。なお、この実施の形態は単なる例示であり、本発明はこれに限定されない。同一または類似の構成には同一の符号を付し、重複する説明は省略する。
An embodiment of a grab bucket according to the present invention will be described with reference to the drawings. Note that this embodiment is merely an example, and the present invention is not limited to this. The same or similar configurations will be denoted by the same reference symbols, and overlapping descriptions will be omitted.
図1は、本発明に係るグラブバケットの一実施の形態の側面図である。
FIG. 1 is a side view of an embodiment of a grab bucket according to the present invention.
本実施の形態のグラブバケット10は、シリンダー装置20と第1フレーム11と第2フレーム12と一対のシェル13と可動フレーム14とを有している。シリンダー装置20は、作動流体が油のいわゆる油圧シリンダー装置である。シリンダー装置20の第1端91側から、ロッド40が突出している。
The grab bucket 10 of the present embodiment has a cylinder device 20, a first frame 11, a second frame 12, a pair of shells 13 and a movable frame 14. The cylinder device 20 is a so-called hydraulic cylinder device in which the working fluid is oil. The rod 40 protrudes from the first end 91 side of the cylinder device 20.
ロッド40のシリンダー装置20の第1端91側から突出した方の端部には可動フレーム14が固定されている。可動フレーム14は、第1フレーム11に対向するように配置されている。可動フレーム14には、ワイヤー16が結合されている。ワイヤー16は、ハンガー17に掛けられている。ハンガー17は、たとえばクレーンのフックなどで上下に移動される。第1フレーム11および可動フレーム14は、それぞれにシーブ94を内蔵している。ワイヤー16の一端は、ハンガー17に掛けられている。ワイヤー16のもう一方の端部はシーブ94を経由して可動フレーム14に固定されている。
The movable frame 14 is fixed to an end of the rod 40 which protrudes from the first end 91 side of the cylinder device 20. The movable frame 14 is disposed to face the first frame 11. A wire 16 is coupled to the movable frame 14. The wire 16 is hung on a hanger 17. The hanger 17 is moved up and down by, for example, a hook of a crane. Each of the first frame 11 and the movable frame 14 incorporates a sheave 94 therein. One end of the wire 16 is hung on a hanger 17. The other end of the wire 16 is fixed to the movable frame 14 via a sheave 94.
第2フレーム12は、シリンダー装置20の第2端92側に固定されている。一対のシェル13は、それぞれ第2フレーム12の軸93に回動可能に支持されている。それぞれのシェル13の第2フレーム12の支持部である軸93に対して両側には、第1フレーム11との間に延びる連結体15が取り付けられている。
The second frame 12 is fixed to the second end 92 side of the cylinder device 20. The pair of shells 13 is rotatably supported by the shaft 93 of the second frame 12 respectively. A connector 15 extending between the first frame 11 and a shaft 93 which is a support portion of the second frame 12 of each shell 13 is attached to both sides.
図2は、本実施の形態におけるシリンダー装置の縦断面図である。図3は、本実施の形態におけるシリンダー装置の横断面図である。
FIG. 2 is a longitudinal sectional view of the cylinder device in the present embodiment. FIG. 3 is a cross-sectional view of the cylinder device in the present embodiment.
シリンダー装置20は、シリンダーチューブ23とピストン41とロッド40と第1閉鎖ブロック21と第2閉鎖ブロック22とチェックプレート43と容器壁30とを有している。シリンダーチューブ23は、第1端91から第2端92に延びる円筒状に形成されている。シリンダーチューブ23の内部空間には作動流体が充填される。
The cylinder device 20 comprises a cylinder tube 23, a piston 41, a rod 40, a first closing block 21, a second closing block 22, a check plate 43 and a container wall 30. The cylinder tube 23 is formed in a cylindrical shape extending from the first end 91 to the second end 92. The internal space of the cylinder tube 23 is filled with the working fluid.
ピストン41は、シリンダーチューブ23の内部空間を閉塞する。ピストン41は、シリンダーチューブ23の内部空間を第1端91側の第1空間48と第2端92側の第2空間49とに仕切っている。ピストン41は、たとえば円板状に形成されている。ピストン41は、ロッド40の一方の端部に固定されている。ピストン41には、シリンダーチューブ23の軸方向に貫通する貫通孔42が形成されている。貫通孔42の上面には、チェックプレート43が載置されている。チェックプレート43は、たとえば環状の板である。チェックプレート43は、貫通孔42を通り、シリンダーチューブ23の第1端91側から第2端92側へ向かう流れを閉止する。ロッド40のピストン41に固定された端部の反対側の端部は、シリンダーチューブ23の第1端91から突出して延びている。
The piston 41 closes the internal space of the cylinder tube 23. The piston 41 divides the internal space of the cylinder tube 23 into a first space 48 on the first end 91 side and a second space 49 on the second end 92 side. The piston 41 is formed, for example, in a disk shape. The piston 41 is fixed to one end of the rod 40. The piston 41 is formed with a through hole 42 penetrating in the axial direction of the cylinder tube 23. A check plate 43 is mounted on the upper surface of the through hole 42. The check plate 43 is, for example, an annular plate. The check plate 43 closes the flow from the first end 91 side to the second end 92 side of the cylinder tube 23 through the through hole 42. The opposite end of the end of the rod 40 fixed to the piston 41 protrudes from the first end 91 of the cylinder tube 23.
第1閉鎖ブロック21は、シリンダーチューブ23の第1端91を閉鎖している。第2閉鎖ブロック22は、シリンダーチューブ23の第2端92を閉鎖している。
The first closing block 21 closes the first end 91 of the cylinder tube 23. The second closing block 22 closes the second end 92 of the cylinder tube 23.
容器壁30は、シリンダーチューブ23の外面24との間に空間を形成している。この空間を作動流体保持空間31と呼ぶ。容器壁30は、たとえば円筒である。
The container wall 30 forms a space with the outer surface 24 of the cylinder tube 23. This space is called a working fluid holding space 31. The container wall 30 is, for example, a cylinder.
第1閉鎖ブロック21には、シリンダーチューブ23の内側の第1空間48および作動流体保持空間31と連通する第1流路26が形成されている。第2閉鎖ブロック22には、シリンダーチューブ23の内側の第2空間49および作動流体保持空間31と連通する第2流路25が形成されている。
The first closing block 21 is formed with a first flow passage 26 communicating with the first space 48 inside the cylinder tube 23 and the working fluid holding space 31. A second flow passage 25 communicating with the second space 49 inside the cylinder tube 23 and the working fluid holding space 31 is formed in the second closing block 22.
第1流路26の途中には、ロジック弁51が挿入されいる。ロジック弁51を制御する作動流体回路の一部は回路収納ブロック27に収納されている。回路収納ブロック27は、第1閉鎖ブロック21に固定されている。回路収納ブロック27には、ボタン28が設けられている。
A logic valve 51 is inserted in the middle of the first flow path 26. A part of the working fluid circuit that controls the logic valve 51 is stored in the circuit storage block 27. The circuit storage block 27 is fixed to the first closing block 21. The circuit storage block 27 is provided with a button 28.
ロジック弁51には、作動流体の排出管32が取り付けられている。排出管32は、作動流体保持空間31を延びている。排出管32が作動流体保持空間31を延びているため、ロジック弁51を通過した作動流体が作動流体保持空間31の上方に形成された空気層に排出されなくなる。その結果、作動流体内への気泡の混入・生成が抑制される。
A discharge valve 32 for working fluid is attached to the logic valve 51. The discharge pipe 32 extends the working fluid holding space 31. Since the discharge pipe 32 extends the working fluid holding space 31, the working fluid that has passed the logic valve 51 is not discharged to the air layer formed above the working fluid holding space 31. As a result, mixing and generation of air bubbles in the working fluid is suppressed.
シリンダー装置20の第2端92側には、第2フレーム12への固定用の固定用爪60が設けられている。固定用爪60は、たとえば第2閉鎖ブロック22と一体として形成されている。固定用爪60には、ピン固定穴61が形成されている。
At the second end 92 side of the cylinder device 20, a fixing claw 60 for fixing to the second frame 12 is provided. The fixing claw 60 is formed integrally with, for example, the second closing block 22. A pin fixing hole 61 is formed in the fixing claw 60.
図4は、本実施の形態におけるシリンダー装置の第2フレームへの取り付け部分の縦断面図である。
FIG. 4 is a longitudinal cross-sectional view of an attachment portion of the cylinder device to the second frame in the present embodiment.
第2フレーム12は、第1横方向支持部材67と第2横方向支持部材68と軸方向支持部材66とを有している。第1横方向支持部材67と第2横方向支持部材68は、たとえばシリンダーチューブ23の軸に垂直な平板である。
The second frame 12 includes a first lateral support member 67, a second lateral support member 68, and an axial support member 66. The first lateral support member 67 and the second lateral support member 68 are, for example, flat plates perpendicular to the axis of the cylinder tube 23.
第1横方向支持部材67と第2横方向支持部材68には、シリンダー装置20が嵌合する穴が形成されている。第1横方向支持部材67に形成された穴は、たとえばシリンダー装置20の第2閉鎖ブロック22の最も径が大きい部分に嵌合される。第2横方向支持部材68に形成された穴は、たとえばシリンダー装置20の固定用爪60の先端部分に嵌合される。
The first lateral support member 67 and the second lateral support member 68 are formed with holes into which the cylinder device 20 is fitted. The hole formed in the first lateral support member 67 is fitted, for example, in the largest diameter part of the second closing block 22 of the cylinder device 20. The hole formed in the second lateral support member 68 is fitted, for example, in the tip portion of the fixing claw 60 of the cylinder device 20.
軸方向支持部材66は、たとえば第2横方向支持部材68に立設されている。軸方向支持部材66には、固定用ピン63が通過可能な穴が形成されている。固定用ピン63は、軸方向支持部材66に形成された穴、および、固定用爪60のピン固定穴61に挿入される。固定用ピン63の一方の端部に形成されたピンヘッド65およびピンヘッド65に対して反対側の端部に挿入された棒状のピン止め64によって、ピン固定穴61の深さ方向への固定用ピン63の移動が制限される。固定用ピン63は、第2フレーム12に形成されたアクセス口62を通過してピン固定穴61まで到達できる。
The axial support member 66 is, for example, erected on the second lateral support member 68. The axial support member 66 is formed with a hole through which the fixing pin 63 can pass. The fixing pin 63 is inserted into the hole formed in the axial support member 66 and the pin fixing hole 61 of the fixing claw 60. The pin head 65 formed on one end of the fixing pin 63 and the pin fixing pin 64 inserted in the end opposite to the pin head 65, the pin for fixing the pin fixing hole 61 in the depth direction The movement of 63 is limited. The fixing pin 63 can pass through the access port 62 formed in the second frame 12 to reach the pin fixing hole 61.
このように固定用ピン63の移動が制限されることにより、固定用爪60、すなわち、シリンダー装置20全体の軸方向への移動が制限される。また、シリンダーチューブ23の軸に垂直な方向には、軸方向の2か所で第1横方向支持部材67と第2横方向支持部材68とによって、シリンダー装置20の移動が制限されている。このように、本実施の形態では、シリンダー装置20の軸方向および横方向への第2フレーム12に対する相対的な動きを制限するように保持されている。
By restricting the movement of the fixing pin 63 in this manner, the axial movement of the fixing claw 60, that is, the entire cylinder device 20 is restricted. In addition, the movement of the cylinder device 20 is restricted by the first lateral support member 67 and the second lateral support member 68 at two places in the axial direction in the direction perpendicular to the axis of the cylinder tube 23. Thus, in the present embodiment, the cylinder device 20 is held so as to restrict the relative movement of the cylinder device 20 relative to the second frame 12 in the axial and lateral directions.
たとえば第2閉鎖ブロック22にフランジを設けて、そのフランジを第2フレームとねじ止めすることなどによって固定する場合、フランジ部分での作業のため、ある程度の広い空間が必要になる。一方、本実施の形態では、シリンダー装置20の固定は、固定用ピン63の挿入、および、固定用ピン63の一方の端部の固定によって行うことができる。このため、シリンダー装置20の第2フレーム12への固定部分を小さくすることができる。また、組立・分解が容易である。
If, for example, the second closing block 22 is provided with a flange and the flange is fixed by screwing it to the second frame or the like, a certain amount of space is required for working at the flange portion. On the other hand, in the present embodiment, the cylinder device 20 can be fixed by inserting the fixing pin 63 and fixing one end of the fixing pin 63. For this reason, the fixing | fixed part to the 2nd flame | frame 12 of the cylinder apparatus 20 can be made small. Also, assembly and disassembly are easy.
図5は、本実施の形態におけるシリンダー装置の作動流体回路の回路図である。
FIG. 5 is a circuit diagram of a working fluid circuit of the cylinder device in the present embodiment.
本実施の形態の作動流体回路は、ロジック弁51と電磁弁53とバイパス逆止弁54とバイパス絞り56と圧力弁52とを有している。ロジック弁51は、シリンダーチューブ23の第1空間48と作動流体保持空間31との間をつなぐ流路に挿入されている。
The working fluid circuit of the present embodiment includes a logic valve 51, a solenoid valve 53, a bypass check valve 54, a bypass throttle 56, and a pressure valve 52. The logic valve 51 is inserted in a flow path connecting the first space 48 of the cylinder tube 23 and the working fluid holding space 31.
電磁弁53は、第1空間48とロジック弁51のパイロットポートとの間に設けられている。電磁弁53と第1空間48との間には、絞り57が挿入されていてもよい。
The solenoid valve 53 is provided between the first space 48 and the pilot port of the logic valve 51. A throttle 57 may be inserted between the solenoid valve 53 and the first space 48.
バイパス逆止弁54は、電磁弁53とロジック弁51のパイロットポートとの間に設けられている。バイパス逆止弁54は、ロジック弁51のパイロットポートから電磁弁53側への流れを閉止する。バイパス絞り56は、圧力弁52およびバイパス逆止弁54と並列に設けられている。圧力弁52は、シリンダーチューブ23の第1空間48の圧力が所定の値以上の場合には閉止状態となり、第1空間48の内部の圧力が所定の値未満の場合にはロジック弁51のパイロットポートと電磁弁53との間を連通させる。なお、バイパス絞り56は、圧力弁52の切換設定圧力にかかわらず、ロジック弁51のパイロットポートと電磁弁53との間を連通させている。
The bypass check valve 54 is provided between the solenoid valve 53 and the pilot port of the logic valve 51. The bypass check valve 54 shuts off the flow from the pilot port of the logic valve 51 to the solenoid valve 53 side. The bypass throttle 56 is provided in parallel with the pressure valve 52 and the bypass check valve 54. The pressure valve 52 is closed when the pressure in the first space 48 of the cylinder tube 23 is equal to or higher than a predetermined value, and the pilot of the logic valve 51 is closed when the pressure in the first space 48 is lower than the predetermined value. Communication between the port and the solenoid valve 53 is established. The bypass throttle 56 establishes communication between the pilot port of the logic valve 51 and the solenoid valve 53 regardless of the switching set pressure of the pressure valve 52.
次に、このグラブバケット10の動作を説明する。
Next, the operation of the grab bucket 10 will be described.
まず、シェル13が開いた状態とする。この状態では、ロッド40は、シリンダーチューブ23から最も引き抜かれた状態である。シリンダーチューブ23の内部の空間は、第1空間48の体積が最小で、第2空間49の体積が最大となっている。この状態で電磁弁53は、消磁で閉の状態である。
First, the shell 13 is in an open state. In this state, the rod 40 is pulled out most from the cylinder tube 23. In the space inside the cylinder tube 23, the volume of the first space 48 is the smallest, and the volume of the second space 49 is the largest. In this state, the electromagnetic valve 53 is in a closed state by demagnetization.
シェル13が開いた状態でハンガー17を吊っているクレーンなどを操作して、グラブバケット10を搬送対象の貨物の上面に下降させる。グラブバケット10のシェル13を開いた状態で貨物に着床させた後、さらにクレーンを下降させると、可動フレーム14は自重によって下降する。さらに下降すると、可動フレーム14が第2フレーム12に接触することなどによって、可動フレーム14の第2フレーム12への接近は停止する。これにより、シリンダーチューブ23の内部のチェックプレート43が閉止し、第2空間49から第1空間48への貫通孔42を通っての作動流体の移動が停止する。
While the shell 13 is open, the grab bucket 10 is lowered to the upper surface of the cargo to be transported by operating a crane or the like that suspends the hanger 17 or the like. After landing the cargo with the shell 13 of the grab bucket 10 open, when the crane is further lowered, the movable frame 14 is lowered by its own weight. When the movable frame 14 further descends, the movable frame 14 stops approaching the second frame 12 due to the contact of the movable frame 14 with the second frame 12 or the like. Thereby, the check plate 43 inside the cylinder tube 23 is closed, and the movement of the working fluid from the second space 49 to the first space 48 through the through hole 42 is stopped.
次に、ハンガー17を上昇させる。ハンガー17の上昇によりロッド40がシリンダーチューブ23から引き上げられる。シリンダーチューブ23からロッド40が引き上げられると、シリンダーチューブ23の第1空間48の圧力が上昇する。電磁弁53を閉としているため、シリンダーチューブ23の第1空間48の圧力がロジック弁51のパイロットポートに伝達され、ロジック弁51は閉じた状態である。その結果、第1空間48の内部の作動流体は移動せず、シリンダーチューブ23はロッド40とともに引き上げられる。その結果、シェル13が閉じ、掴み操作が行われる。
Next, the hanger 17 is raised. The rod 40 is pulled up from the cylinder tube 23 by the lifting of the hanger 17. When the rod 40 is pulled up from the cylinder tube 23, the pressure in the first space 48 of the cylinder tube 23 rises. Since the solenoid valve 53 is closed, the pressure in the first space 48 of the cylinder tube 23 is transmitted to the pilot port of the logic valve 51, and the logic valve 51 is in a closed state. As a result, the working fluid in the first space 48 does not move, and the cylinder tube 23 is pulled up with the rod 40. As a result, the shell 13 is closed and a gripping operation is performed.
シェル13が閉じた状態となると、シェル13の閉じ動作が終了する。シェル13が閉じた状態で、第1フレーム11と可動フレーム14との間には隙間がある。この状態では、シリンダーチューブ23の第1空間48には、高圧が発生している。
When the shell 13 is in the closed state, the closing operation of the shell 13 ends. With the shell 13 closed, there is a gap between the first frame 11 and the movable frame 14. In this state, high pressure is generated in the first space 48 of the cylinder tube 23.
シェル13の閉じた空間に貨物を保持したまま、クレーンなどによってハンガー17を移動させ、グラブバケット10を貨物の搬送先の上方に移動させる。グラブバケット10が搬送先の上方まで移動したら、シェル13の開放動作を行う。シェル13の開放動作は、電磁弁53を励磁して開とすることにより行う。
While holding the cargo in the closed space of the shell 13, the hanger 17 is moved by a crane or the like to move the grab bucket 10 above the cargo transfer destination. When the grab bucket 10 moves to the upper side of the transfer destination, the shell 13 is opened. The opening operation of the shell 13 is performed by exciting the solenoid valve 53 to open it.
電磁弁53が閉状態では、シリンダーチューブ23の第1空間48は、高圧である。その結果、圧力弁52が閉じた状態である。この状態で、電磁弁53を励磁して開とすると、バイパス絞り56で設定された速度、すなわち、低い速度、で、ロジック弁51のパイロットポートにつながった流路の作動流体は、作動流体保持空間31に逃げていく。これにより、ロジック弁51のパイロットポートの圧力は、緩やかに減少していく。その結果、ロジック弁51が緩やかに開口する。したがって、作動流体は、緩やかにロジック弁51を介して作動流体保持空間31に排出される。
When the solenoid valve 53 is closed, the first space 48 of the cylinder tube 23 is at high pressure. As a result, the pressure valve 52 is in a closed state. In this state, when the solenoid valve 53 is excited to open, the working fluid in the flow path connected to the pilot port of the logic valve 51 holds the working fluid at the speed set by the bypass throttle 56, that is, low speed. I will escape to space 31. As a result, the pressure at the pilot port of the logic valve 51 gradually decreases. As a result, the logic valve 51 opens gently. Therefore, the working fluid is slowly discharged to the working fluid holding space 31 via the logic valve 51.
ロジック弁51は徐々に開放状態となり、シリンダーチューブ23の第1空間48の圧力は低下していく。つまり、シリンダーチューブ23の第1空間48の圧力は、いわゆる圧抜きされる。作動流体が緩やかに排出されて可動フレーム14と第フレーム11とが接触すると、シリンダーチューブ23の第1空間48の圧力は急速に低下する。低下した第1空間48の圧力が所定の圧力未満となると、圧力弁52は開放する。圧力弁52が開放状態となると、バイパス絞り56のみでの排出よりも高い流量で作動流体は排出される。したがって、ロジック弁51の開閉は、電磁弁53の開閉に追随して、早いスピードで応答する。
The logic valve 51 gradually opens, and the pressure in the first space 48 of the cylinder tube 23 decreases. That is, the pressure in the first space 48 of the cylinder tube 23 is depressurized. When the working fluid is slowly discharged and the movable frame 14 and the first frame 11 contact, the pressure in the first space 48 of the cylinder tube 23 decreases rapidly. The pressure valve 52 opens when the pressure in the reduced first space 48 falls below a predetermined pressure. When the pressure valve 52 is in the open state, the working fluid is discharged at a flow rate higher than that of the bypass throttle 56 alone. Therefore, opening and closing of the logic valve 51 responds at high speed following opening and closing of the solenoid valve 53.
このように、本実施の形態のグラブバケットでは、少なくとも可動フレーム14が第1フレーム11に接触するまでの、シリンダーチューブ23の内部の第1空間48、すなわち、ロッド40側空間の圧力が高いときには、第1空間48から第2空間49への作動流体の流れが緩やかである。したがって、ロッド40の急激な動作が抑制され、可動フレーム14の第1フレーム11との衝突などの衝撃が抑制される。その結果、グラブバケットの損傷が抑制される。また、可動フレーム14の第1フレーム11との衝突による騒音も低減される。したがって、第1フレーム11および可動フレーム14の耐衝撃吸収構造を簡略化し、コストを低減することができる。
As described above, in the grab bucket of the present embodiment, when the pressure in the first space 48 inside the cylinder tube 23, that is, the space on the rod 40 side at least until the movable frame 14 contacts the first frame 11, is high. The flow of the working fluid from the first space 48 to the second space 49 is gentle. Therefore, the rapid movement of the rod 40 is suppressed, and the impact such as the collision of the movable frame 14 with the first frame 11 is suppressed. As a result, damage to the grab bucket is suppressed. Further, the noise due to the collision of the movable frame 14 with the first frame 11 is also reduced. Therefore, the shock absorption structure of the first frame 11 and the movable frame 14 can be simplified and the cost can be reduced.
また、可動フレーム14が第1フレーム11に接触して十分圧抜きされた後、シリンダーチューブ23の内部の第1空間48、すなわち、ロッド40側空間の圧力が所定の圧力より低いときには、第1空間48から第2空間49への作動流体の流れが速やかである。したがって、衝撃・損傷のおそれが少ないときには、ロジック弁51の高速な開閉動作により、シェル13の開放・停止動作を高速で行うことができる。
After the movable frame 14 contacts the first frame 11 and is sufficiently depressurized, the pressure in the first space 48 inside the cylinder tube 23, ie, the space on the rod 40 side, is lower than the predetermined pressure, the first The flow of the working fluid from the space 48 to the second space 49 is rapid. Therefore, when the risk of shock and damage is small, the opening / closing operation of the shell 13 can be performed at high speed by the high-speed opening / closing operation of the logic valve 51.
さらに、シェル13の開放動作を低速および高速に切り替えるために、1つの電磁弁しか用いていない。このため、制御装置が単純になる。その結果、シェル13の開放動作の制御装置のコストが低下し、信頼性が向上する。
Furthermore, only one solenoid valve is used to switch the opening operation of the shell 13 to low speed and high speed. This simplifies the control device. As a result, the cost of the control device for the opening operation of the shell 13 is reduced, and the reliability is improved.
試験時、あるいは、緊急時など、電磁弁53の励磁が行えない場合には、回路収納ブロック27に設けられたボタンを押すことによって、電磁弁53の開動作を手動で行うことができる。
When excitation of the solenoid valve 53 can not be performed, such as at the time of a test or at the time of emergency, the opening operation of the solenoid valve 53 can be manually performed by pressing a button provided on the circuit storage block 27.
図6は、本実施の形態におけるシリンダー装置の作動流体回路の変形例の回路図である。
FIG. 6 is a circuit diagram of a modification of the working fluid circuit of the cylinder device in the present embodiment.
この変形例では、図5における圧力弁52を、より切換設定圧力が低い圧力弁50およびリリーフ弁59に置き換えたものである。高圧設定値以上では、リリーフ弁59が吹き始め、リリーフ弁59の背圧が圧力弁50に入力される。その結果、圧力弁50は、閉状態となる。低圧設定値以下になると、リリーフ弁59は吹止まり、圧力弁50は開状態となる。
In this modification, the pressure valve 52 in FIG. 5 is replaced with a pressure valve 50 and a relief valve 59 having a lower switching set pressure. Above the high pressure set value, the relief valve 59 starts blowing, and the back pressure of the relief valve 59 is input to the pressure valve 50. As a result, the pressure valve 50 is closed. When the pressure falls below the low pressure set value, the relief valve 59 stops blowing and the pressure valve 50 opens.
切換圧力が非常に高い圧力弁は、いわゆる汎用品では少ない。このため、切換圧力が非常に高い圧力弁を用いることは、コストの増加につながる。一方、本変形例では、切換圧力が非常に高い圧力弁の代わりに、リリーフ弁59および圧力弁50すなわち油圧切換弁を用いている。油圧切換弁は、汎用品が豊富にある。このため、安価で信頼性が高い。したがって、本変形例は、作動流体回路全体のコストを低減し、信頼性を向上することができる。
Pressure valves with very high switching pressure are less for so-called general purpose products. Therefore, using a pressure valve with a very high switching pressure leads to an increase in cost. On the other hand, in this modification, instead of the pressure valve whose switching pressure is very high, the relief valve 59 and the pressure valve 50, that is, the hydraulic switching valve are used. Hydraulic switching valves are abundant in general-purpose products. Therefore, it is inexpensive and highly reliable. Therefore, this modification can reduce the cost of the entire working fluid circuit and improve the reliability.
図7は、本実施の形態におけるシリンダー装置の作動流体回路の他の変形例の回路図である。
FIG. 7 is a circuit diagram of another modification of the working fluid circuit of the cylinder device in the present embodiment.
この変形例の作動流体回路は、ロジック弁51と電磁弁55と第1の絞り81および第2の絞り82と圧力弁52とを有する。ロジック弁51は、シリンダーチューブ23の第1空間48と作動流体保持空間31との間をつなぐ流路に挿入されている。第1の絞り81は、シリンダーチューブ23の第1空間48とロジック弁51のパイロットポートとの間をつなぐ流路に挿入されている。第2の絞り82は、ロジック弁51のパイロットポートと電磁弁55との間をつなぐ流路に挿入されている。電磁弁55は、第2の絞り82と作動流体保持空間31との間をつなぐ流路に挿入されている。これにより、ロジック弁51のパイロットポートは、第1の絞り81と第2の絞り82との間の流路に連結されている。
The working fluid circuit of this modification includes a logic valve 51, a solenoid valve 55, a first throttle 81, a second throttle 82, and a pressure valve 52. The logic valve 51 is inserted in a flow path connecting the first space 48 of the cylinder tube 23 and the working fluid holding space 31. The first throttle 81 is inserted in a flow path connecting the first space 48 of the cylinder tube 23 and the pilot port of the logic valve 51. The second throttle 82 is inserted in a flow path connecting the pilot port of the logic valve 51 and the solenoid valve 55. The solenoid valve 55 is inserted in a flow path connecting the second throttle 82 and the working fluid holding space 31. Thereby, the pilot port of the logic valve 51 is connected to the flow path between the first throttle 81 and the second throttle 82.
圧力弁52の圧力センサーは、第1の絞り81と第2の絞り82との間の流路に連結されている。圧力弁52は、第1の絞り81と第2の絞り82との間の圧力が所定の圧力未満の場合に、第2の絞り82をバイパスする流路を形成するように開く。
The pressure sensor of the pressure valve 52 is connected to the flow passage between the first throttle 81 and the second throttle 82. The pressure valve 52 opens to form a flow path that bypasses the second throttle 82 if the pressure between the first throttle 81 and the second throttle 82 is less than a predetermined pressure.
この変形例でも、上述の実施の形態と同様の動作をする。
Also in this modification, the same operation as that of the above-described embodiment is performed.
本実施の形態のグラブバケットでは、シリンダーチューブ23の外部での作動流体の流路は、シリンダーチューブ23と一体として形成された作動流体保持空間31によって実現されている。このため、耐圧ホースなどの外部部品を使用する必要がない。したがって、ホースなどの圧力変化で容易に形状変化する部品が減少する。その結果、使用に伴って圧力変化が生じても、部品や部品の結合部分の劣化を抑制することができる。
In the grab bucket of the present embodiment, the flow path of the working fluid outside the cylinder tube 23 is realized by the working fluid holding space 31 formed integrally with the cylinder tube 23. For this reason, it is not necessary to use external parts, such as a pressure hose. Therefore, parts that easily change shape due to pressure changes, such as hoses, are reduced. As a result, even if a pressure change occurs with use, it is possible to suppress the deterioration of the component or the connection portion of the component.
また、シリンダーチューブ23と一体としてシリンダーチューブ23の外部での作動流体の流路が形成されているため、ホースなどの外部部品が他の機器と接触することなどにより衝撃を受けて、劣化・損傷する可能性を低減できる。
In addition, since the flow path of the working fluid outside the cylinder tube 23 is formed integrally with the cylinder tube 23, the external parts such as the hose may receive an impact due to contact with other devices or the like, causing deterioration or damage. Can reduce the possibility of
図8は、本実施の形態におけるシリンダー装置の変形例の縦断面図である。図9は、本実施の形態におけるシリンダー装置の変形例の横断面図である。
FIG. 8 is a longitudinal sectional view of a modification of the cylinder device in the present embodiment. FIG. 9 is a cross-sectional view of a modification of the cylinder device in the present embodiment.
本変形例のシリンダー装置20は、第2閉鎖ブロック22に電磁弁収納ブロック29が取り付けられている。電磁弁収納ブロック29には、電磁弁53(または電磁弁55)が収納されている。電磁弁収納ブロック29には、作動流体保持空間31を通過してパイロットライン58が延びている。このように、電磁弁53をシリンダー装置20の第2端92側、すなわち、第2フレーム12に近い側に配置することもできる。
In the cylinder device 20 of the present modification, the solenoid valve storage block 29 is attached to the second closing block 22. The solenoid valve storage block 29 houses a solenoid valve 53 (or a solenoid valve 55). A pilot line 58 extends through the hydraulic fluid holding space 31 to the solenoid valve storage block 29. Thus, the solenoid valve 53 can be disposed on the second end 92 side of the cylinder device 20, that is, on the side closer to the second frame 12.
本実施の形態のグラブバケット10は、基本的に、第1フレーム11に対して第2フレーム12が鉛直下方になるような姿勢で用いられる。したがって、本変形例において、電磁弁53はより低い位置に配置されることになる。
Basically, the grab bucket 10 of the present embodiment is used in a posture in which the second frame 12 is vertically lower than the first frame 11. Therefore, in the present modification, the solenoid valve 53 is disposed at a lower position.
本変形例では、ボタン28が低い位置にありアクセスしやすいため、試験時、あるいは、緊急時など、電磁弁53の手動による開動作が必要な場合にボタン28の操作が容易である。また、高い位置に作業員が上る必要がないため、安全である。
In this modification, since the button 28 is at a low position and easy to access, when the manual opening operation of the solenoid valve 53 is required, such as during a test or in an emergency, the button 28 can be easily operated. In addition, it is safe because workers do not have to go up to a high position.
次に、このグラブバケット10の製造方法について説明する。
Next, a method of manufacturing the grab bucket 10 will be described.
図10は、本実施の形態におけるグラブバケットの組立中および組み立て後の斜視図である。
FIG. 10 is a perspective view during and after assembly of the grab bucket in the present embodiment.
まず、グラブバケット10のシリンダー装置20、第1フレーム11、第2フレーム12、一対のシェル13、可動フレーム14などの部品を製造する。次に、図10(a)に示すように、これらの部品をコンテナ70に収納する。コンテナ70内にグラブバケット10の部品を収納する際には、基台71に固定する。基台71もコンテナ70内に収納される。第1フレーム11、第2フレーム12、可動フレーム14およびシリンダー装置20は、組み立てた状態としておいてもよい。
First, parts such as the cylinder device 20 of the grab bucket 10, the first frame 11, the second frame 12, the pair of shells 13, the movable frame 14 and the like are manufactured. Next, as shown in FIG. 10A, these components are stored in the container 70. When the components of the grab bucket 10 are stored in the container 70, the components are fixed to the base 71. The base 71 is also housed in the container 70. The first frame 11, the second frame 12, the movable frame 14 and the cylinder device 20 may be in an assembled state.
基台71をコンテナ70の内部に収納し、コンテナ70を外部に引き出すために、基台71の下面には車輪72が取り付けられている。また、コンテナ70の床面には、2本のレール73が延びている。基台71には、グラブバケット10を組み立てるための、上下搬送機構、水平方向搬送機構、回転機構その他の治具を固定しておいてもよい。上下搬送機構、水平方向搬送機構、回転機構は、一つの装置で実現してもよいし、複数の装置で実現してもよい。あるいは複数の装置を組み合わせて用いてもよい。基台71は、たとえば棒を組み合わせたフレーム構造としてもよい。また、基台71は、パネル構造であってもよい。パネル構造の場合は、組み立て時にパネルを開放してもよい。開放したパネルは作業台として用いてもよい。開放したパネルを組み立て用の治具の一部として用いてもよい。
A wheel 72 is attached to the lower surface of the base 71 in order to store the base 71 inside the container 70 and to draw the container 70 to the outside. Also, two rails 73 extend on the floor surface of the container 70. An upper and lower transfer mechanism, a horizontal direction transfer mechanism, a rotating mechanism and other jigs for assembling the grab bucket 10 may be fixed to the base 71. The upper and lower transport mechanism, the horizontal transport mechanism, and the rotation mechanism may be realized by one device or may be realized by a plurality of devices. Alternatively, a plurality of devices may be used in combination. The base 71 may have, for example, a frame structure in which rods are combined. The base 71 may have a panel structure. In the case of the panel structure, the panel may be opened at the time of assembly. An open panel may be used as a workbench. An open panel may be used as part of a jig for assembly.
次に、図10(b)に示すように、基台71をコンテナ70から引き出す。基台71は、下部の車輪72がレール73に乗っているので、小さな力で引き出しことができる。基台71にウィンチなどを着脱可能に取り付けて置き、基台71の移動に用いてもよい。また、レール73の一端をジャッキアップすることにより、基台71が転がり出るようにしてもよい。ジャッキを用いて基台71を押し出してもよい。
Next, as shown in FIG. 10 (b), the base 71 is pulled out of the container 70. Since the lower wheel 72 is on the rail 73, the base 71 can be pulled out with a small force. The winch or the like may be detachably attached to the base 71 and placed, and may be used for moving the base 71. Also, the base 71 may roll off by jacking up one end of the rail 73. The base 71 may be pushed out using a jack.
基台71をコンテナ70から引き出した後、図10(c)に示すように、シェル13を互いに対向するように、たとえば回転治具を用いて、水平方向に回動させる。これにより、一対のシェル13が互いに対向する姿勢となる。また、第1フレーム11、第2フレーム12、可動フレーム14およびシリンダー装置20の組立体の姿勢を起こす。
After the base 71 is pulled out of the container 70, as shown in FIG. 10C, the shells 13 are horizontally rotated using, for example, a rotating jig so as to face each other. As a result, the pair of shells 13 are in an attitude facing each other. Also, the posture of the assembly of the first frame 11, the second frame 12, the movable frame 14 and the cylinder device 20 is raised.
次に、図10(d)に示すように、架台74を用いて、第1フレーム11、第2フレーム12、可動フレーム14およびシリンダー装置20の組立体を鉛直上方に移動させる。架台74は、基台71の一部であってもよいし、基台71を構成する部品を用いて、簡便に組み立てられるものであってもよい。
Next, as shown in FIG. 10D, the assembly of the first frame 11, the second frame 12, the movable frame 14 and the cylinder device 20 is moved vertically upward using the rack 74. The gantry 74 may be a part of the base 71, or may be easily assembled using parts constituting the base 71.
第1フレーム11、第2フレーム12、可動フレーム14およびシリンダー装置20の組立体を鉛直上方に移動させて保持した状態で、シェル13を第2フレーム12の所定の位置に取り付ける。その後、連結体15を取り付けるなどして、グラブバケット10が完成する。
The shell 13 is attached to a predetermined position of the second frame 12 while the assembly of the first frame 11, the second frame 12, the movable frame 14 and the cylinder device 20 is moved vertically and held. Thereafter, the coupling body 15 is attached and the grab bucket 10 is completed.
このように、グラブバケット10の部品集合体を基台71とともにコンテナ70に収納し、基台71をコンテナ70の外部に搬出できるようにしておくことにより、設置場所などでグラブバケット10を容易に組み立てることができる。
As described above, by storing the assembly of parts of the grab bucket 10 together with the base 71 in the container 70 so that the base 71 can be carried out of the container 70, the grab bucket 10 can be easily installed at an installation place or the like. It can be assembled.
コンテナ70として、たとえば長さが40フィート(12,192mm)、幅が8フィート(2,438mm)、高さが9フィート6インチ(2,896mm)のコンテナを用いる。このようなISOで規格化され、広く普及したコンテナ70を用いることにより、特別な収納筐体を用いるよりも、コンテナ自体のコスト、コンテナなの輸送コストを非常に小さくできる。このため、グラブバケット10の組立コストが小さければ、製品の設置までに要するコストを非常に小さくできる。
For example, a container having a length of 40 feet (12, 192 mm), a width of 8 feet (2, 438 mm), and a height of 9 feet, 6 inches (2, 896 mm) is used as the container 70. By using the ISO standardized and widely spread container 70, the cost of the container itself and the cost of transporting the container can be made much smaller than using a special storage case. For this reason, if the assembly cost of the grab bucket 10 is small, the cost required to install the product can be extremely reduced.
グラブバケット10の部品は、あらかじめユニット化・モジュール化しておくことが好ましい。コンテナ70の中から搬出・保管・組立することができるための部材や機材、治工具のほかに、吊上・回転・水平移動できる揚荷装置や水平移動や回転のできる搬出装置のすべてをコンテナ内に内蔵させることにより、搬送先で特別の治工具や大容量の揚荷装置・搬出装置を用いることなく、工場で組み立てた品質と同等の完成品を搬送先で搬送先の法令にのっとり、安全に組立できることができる。なお、搬送先で容易に入手可能な部品、治具等は、搬送先で調達してもよい。
The parts of the grab bucket 10 are preferably unitized and modularized in advance. In addition to parts, materials, tools and tools for carrying out, storage and assembly from inside the container 70, it is also possible to use a lifting device capable of lifting, rotating and horizontally moving, and a unloading device capable of horizontally moving and rotating. By incorporating in the inside, without using special tools and large-capacity loading and unloading equipment at the transfer destination, the finished product equal to the quality assembled at the factory is covered by the transfer destination law at the transfer destination, It can be assembled safely. The parts, jigs, etc. which can be easily obtained at the transfer destination may be procured at the transfer destination.
できるだけ、外部動力を用いないように、人力のみで搬送・組み立てられるような吊具・治具がそろっていた方が好ましい。また、国により法令が異なるため、いずれの搬送先に持って行っても問題ないようにユニット化の最大質量を設定しておくことが好ましい。たとえば、動力ウィンチを使う場合、3t以上のクレーンが移動式クレーン扱いで製造検査が必要となる国が搬送先の一つとして想定される場合には、ユニットを3t未満にしておくことが好ましい。あるいは、この場合、動力を人力によるものとしてもよい。
It is preferable that lifting tools and jigs that can be transported and assembled only by human power be prepared so as not to use external power as much as possible. In addition, since the laws differ depending on the country, it is preferable to set the maximum mass of unitization so that there is no problem if it is taken to any transport destination. For example, when using a power winch, it is preferable to make the unit less than 3 t when it is assumed that one of the transport destinations is a country where a 3 t or more crane is treated as a mobile crane and manufacturing inspection is required. Alternatively, in this case, the power may be human power.
本実施の形態では、基台71に取り付けた車輪72をレール73に移動させることにより、基台71をコンテナ70から搬出している。しかし、たとえば、車輪72を板の上面に走らせることにより、基台71を搬送してもよい。
In the present embodiment, the base 71 is carried out of the container 70 by moving the wheels 72 attached to the base 71 to the rails 73. However, for example, the base 71 may be transported by running the wheels 72 on the upper surface of the plate.
また、組み立ての際に、運搬・位置決めを容易にするために、それぞれの部品に補助部品を取り付けておいてもよい。補助部品は、組み立て終了後、あるいは組み立ての途中で、溶断、切断、ネジを外すこと、などによって、取り外す。
In addition, at the time of assembly, auxiliary parts may be attached to the respective parts in order to facilitate transportation and positioning. Auxiliary parts are removed by melting, cutting, unscrewing, etc. after assembly is complete or during assembly.
部品、あるいは、補助部品の表面に湾曲部を設けておくことにより、部品の姿勢の変更が容易になるようにしておいてもよい。また、基台71への固定の際に、支持を取り除くと、組み立てが容易な姿勢となるようにしておいてもよい。
By providing a curved portion on the surface of the part or the auxiliary part, the change of the posture of the part may be facilitated. In addition, when fixed to the base 71, when the support is removed, the posture may be easy to assemble.
10…グラブバケット、11…第1フレーム、12…第2フレーム、13…シェル、14…可動フレーム、15…連結体、16…ワイヤー、17…ハンガー、20…シリンダー装置、21…第1閉鎖ブロック、22…第2閉鎖ブロック、23…シリンダーチューブ、24…外面、25…第2流路、26…第1流路、27…回路収納ブロック、28…ボタン、29…電磁弁収納ブロック、30…容器壁、31…作動流体保持空間、32…排出管、40…ロッド、41…ピストン、42…貫通孔、43…チェックプレート、48…第1空間、49…第2空間、50…圧力弁、51…ロジック弁、52…圧力弁、53…電磁弁、54…バイパス逆止弁、55…電磁弁、56…バイパス絞り、57…絞り、58…パイロットライン、59…リリーフ弁、60…固定用爪、61…ピン固定穴、62…アクセス口、63…固定用ピン、64…ピン止め、65…ピンヘッド、66…軸方向支持部材、67…第1横方向支持部材、68…第2横方向支持部材、70…コンテナ、71…基台、72…車輪、73…レール、74…架台、81…第1の絞り、82…第2の絞り、91…第1端、92…第2端、93…軸、94…シーブ、95…電磁弁
DESCRIPTION OF SYMBOLS 10 ... Grab bucket, 11 ... 1st frame, 12 ... 2nd frame, 13 ... Shell, 14 ... Movable frame, 15 ... Coupling body, 16 ... Wire, 17 ... Hanger, 20 ... Cylinder apparatus, 21 ... 1st closing block , 22: second closing block, 23: cylinder tube, 24: outer surface, 25: second flow passage, 26: first flow passage, 27: circuit storage block, 28: button, 29: solenoid valve storage block, 30: Container wall, 31: Working fluid holding space, 32: Discharge pipe, 40: Rod, 41: Piston, 42: Through hole, 43: Check plate, 48: First space, 49: Second space, 50: Pressure valve, 51 ... logic valve, 52 ... pressure valve, 53 ... solenoid valve, 54 ... bypass check valve, 55 ... solenoid valve, 56 ... bypass throttle, 57 ... throttle, 58 ... pilot line, 59 ... relief valve DESCRIPTION OF SYMBOLS 60 ... nail | claw for fixing, 61 ... pin fixing hole, 62 ... access port, 63 ... pin for fixing, 64 ... pinning, 65 ... pin head, 66 ... axial direction supporting member, 67 ... 1st horizontal direction supporting member, 68 ... Second lateral support member 70: container 71: base 72: wheel 73: rail 74: mount frame 81: first aperture 82: second aperture 91: first end 92: 92 Second end, 93 ... axis, 94 ... sieve, 95 ... solenoid valve
Claims (6)
- 第1端から第2端に延びて作動流体が充填されるシリンダーチューブと、前記シリンダーチューブの内側空間を塞いで第1空間と第2空間とに仕切り前記シリンダーチューブの軸方向に移動可能であって前記第1端側から前記第2端側に貫通した貫通孔が形成されたピストンと、前記ピストンから前記第1端よりも突出して延びるロッドと、前記シリンダーチューブの前記第1端を閉鎖する第1閉鎖ブロックと、前記シリンダーチューブの前記第2端を閉鎖する第2閉鎖ブロックと、前記貫通孔の前記第1端側から前記第2端側に向かう前記作動流体の流れを閉止するチェックプレートと、前記シリンダーチューブの外面との間に作動流体保持空間を形成する容器壁と、前記作動流体保持空間と前記第1空間との間および前記作動流体保持空間と前記第2空間との間に前記作動流体を流れさせる作動流体回路と、を備えたシリンダー装置と、
前記シリンダー装置の前記第1端側に配置された第1フレームと、
前記シリンダー装置の前記第2端側に固定された第2フレームと、
前記シリンダーチューブに垂直な軸を中心とする回動可能に前記第2フレームにそれぞれ支持部で支持された一対のシェルと、
前記支持部に対して両側でそれぞれの前記シェルと第1フレームとを連結する連結体と、
を有することを特徴とするグラブバケット。 A cylinder tube which extends from the first end to the second end and is filled with a working fluid, and which covers the inner space of the cylinder tube and divides it into the first space and the second space, and is movable in the axial direction of the cylinder tube A piston having a through hole penetrating from the first end to the second end, a rod extending from the piston and extending beyond the first end, and closing the first end of the cylinder tube A first closing block, a second closing block closing the second end of the cylinder tube, and a check plate closing the flow of the working fluid from the first end to the second end of the through hole And a container wall forming a working fluid holding space between the outer surface of the cylinder tube and the working fluid holding space between the working fluid holding space and the first space A cylinder device and a hydraulic fluid circuit to flow the working fluid between the second space and,
A first frame disposed on the first end side of the cylinder device;
A second frame fixed to the second end of the cylinder device;
A pair of shells rotatably supported by the second frame on the second frame so as to be pivotable about an axis perpendicular to the cylinder tube;
A connector connecting the shell and the first frame on both sides with respect to the support portion;
A grab bucket characterized by having: - 第1閉鎖ブロックには、前記シリンダーチューブの内側空間および前記作動流体保持空間と連通する第1流路が形成されていて、
第2閉鎖ブロックには、前記シリンダーチューブの内側空間および前記作動流体保持空間と連通する第2流路が形成されている、
ことを特徴とする請求項1に記載のグラブバケット。 The first closing block is formed with a first flow passage communicating with the inner space of the cylinder tube and the working fluid holding space,
A second flow passage communicating with the inner space of the cylinder tube and the working fluid holding space is formed in the second closing block.
The grab bucket according to claim 1, characterized in that: - 前記作動流体回路は、
前記第1空間と作動流体保持空間との間をつなぐ流路に挿入されたロジック弁と、
前記第1空間と前記ロジック弁のパイロットポートとの間に設けられた電磁弁と、
前記電磁弁と前記パイロットポートとの間に設けられて前記パイロットポートから前記電磁弁側への流れを閉止するバイパス逆止弁と、
前記バイパス逆止弁と並列に設けられた絞りと、
前記第1空間の内部の圧力が所定の値以上の場合には閉止状態となり、前記第1空間の内部の圧力が所定の値未満の場合には前記パイロットポートと前記電磁弁との間を連通させる圧力弁と、
を備えることを特徴とする請求項1または請求項2に記載のグラブバケット。 The working fluid circuit is
A logic valve inserted in a flow path connecting the first space and the working fluid holding space;
A solenoid valve provided between the first space and the pilot port of the logic valve;
A bypass check valve provided between the solenoid valve and the pilot port for closing the flow from the pilot port to the solenoid valve side;
A throttle provided in parallel with the bypass check valve;
When the pressure inside the first space is above a predetermined value, it is in the closed state, and when the pressure inside the first space is below the predetermined value, the pilot port and the solenoid valve are communicated. Pressure valve, and
The grab bucket according to claim 1 or 2, further comprising: - 前記作動流体回路は、
前記第1空間と作動流体保持空間との間をつなぐ流路に挿入されたロジック弁と、
前記第1空間と前記ロジック弁のパイロットポートとの間に設けられた第1の絞りと、
前記第1の絞りと前記第2空間との間に設けられた電磁弁と、
前記電磁弁と前記第1の絞りとの間に設けられた第2の絞りと、
前記第2の絞りと並列に設けられて、前記第1の絞りと前記第2の絞りとの間の流路の圧力が所定の値以上の場合には閉止状態となり、前記第1の絞りと前記第2の絞りとの間の流路の圧力が所定の値未満の場合には前記第1の絞りと前記電磁弁との間を連通させる制御弁と、
を備えることを特徴とする請求項1または請求項2に記載のグラブバケット。 The working fluid circuit is
A logic valve inserted in a flow path connecting the first space and the working fluid holding space;
A first throttle provided between the first space and the pilot port of the logic valve;
A solenoid valve provided between the first throttle and the second space;
A second throttle provided between the solenoid valve and the first throttle;
Provided in parallel with the second throttle, the pressure in the flow path between the first throttle and the second throttle is closed when the pressure is equal to or higher than a predetermined value, and the first throttle and the second throttle A control valve that causes the first throttle and the solenoid valve to communicate with each other when the pressure in the flow passage between the second throttle and the second throttle is less than a predetermined value;
The grab bucket according to claim 1 or 2, further comprising: - 第1端から第2端に延びて作動流体が充填されるシリンダーチューブと、
前記シリンダーチューブの内側空間を塞いで第1空間と第2空間とに仕切り前記シリンダーの軸方向に移動可能であって前記第1端側から前記第2端側に貫通した貫通孔が形成されたピストンと、
前記ピストンから前記第1端よりも突出して延びるロッドと、
前記シリンダーの前記第1端を閉鎖する第1閉鎖ブロックと、
前記シリンダーの前記第2端を閉鎖する第2閉鎖ブロックと、
前記貫通孔の前記第1端側から前記第2端側に向かう前記作動流体の流れを閉止するチェックプレートと、
前記シリンダーチューブの外面との間に作動流体保持空間を形成する容器壁と、
前記作動流体保持空間と前記第1端側の前記シリンダーチューブの内側空間との間および前記作動流体保持空間と前記第2端側の前記シリンダーチューブの内側空間との間に前記作動流体を流れさせる作動流体回路と、
を有することを特徴とするシリンダー装置。 A cylinder tube extending from the first end to the second end and being filled with the working fluid;
The inner space of the cylinder tube is closed to divide the space into a first space and a second space, and a through hole is formed that is movable in the axial direction of the cylinder and penetrates from the first end to the second end. With the piston,
A rod projecting from the piston and extending beyond the first end;
A first closing block closing the first end of the cylinder;
A second closing block closing the second end of the cylinder;
A check plate for closing the flow of the working fluid from the first end side of the through hole toward the second end side;
A container wall defining a working fluid holding space between the cylinder tube and the outer surface of the cylinder tube;
The working fluid is caused to flow between the working fluid holding space and the inner space of the cylinder tube on the first end side, and between the working fluid holding space and the inner space of the cylinder tube on the second end side. Working fluid circuit,
A cylinder device characterized by having. - コンテナと、
前記コンテナの内部に収納された基台と、
前記基台を前記コンテナの外部に搬出する搬出機構と、
第1端から第2端に延びて作動流体が充填されるシリンダーチューブと、前記シリンダーの内側空間を塞いで前記シリンダーチューブの軸方向に移動可能であって前記第1端側から前記第2端側に貫通した貫通孔が形成されたピストンと、前記ピストンから前記第1端よりも突出して延びるロッドと、前記シリンダーの前記第1端を閉鎖する第1閉鎖ブロックと、前記シリンダーチューブの前記第2端を閉鎖する第2閉鎖ブロックと、前記貫通孔の前記第1端側から前記第2端側に向かう前記作動流体の流れを閉止するチェックプレートと、作動流体保持空間を形成する容器壁と、前記作動流体保持空間と前記第1端側の前記シリンダーの内側空間との間および前記作動流体保持空間と前記第2端側の前記シリンダーチューブの内側空間との間に前記作動流体を流れさせる作動流体回路と、を備えて前記基台に固定されたシリンダー装置と、
前記基台に固定されて前記シリンダー装置の前記第1端側に配置されることができる第1フレームと、
前記基台に固定されて前記シリンダー装置の前記第2端側に固定されることができる第2フレームと、
前記基台に固定されて前記シリンダーに垂直な軸を中心とする回動可能に前記第2フレームにそれぞれ支持部で支持されることができる一対のシェルと、
前記基台に固定されて前記支持部に対して両側でそれぞれの前記シェルと第1フレームとを連結可能な連結体と、
を有することを特徴とするグラブバケット部品集合体。
Container and
A base housed inside the container;
An unloading mechanism for unloading the base to the outside of the container;
A cylinder tube which extends from the first end to the second end and is filled with the working fluid, and is capable of closing the inner space of the cylinder and being movable in the axial direction of the cylinder tube, from the first end to the second end A piston having a through hole formed in the side, a rod extending from the piston and extending beyond the first end, a first closing block for closing the first end of the cylinder, and the first of the cylinder tubes A second closing block closing the two ends, a check plate closing the flow of the working fluid from the first end to the second end of the through hole, and a container wall forming a working fluid holding space Between the working fluid holding space and the inner space of the cylinder at the first end and between the working fluid holding space and the inner space of the cylinder tube at the second end A cylinder device that is secured to the base provided with a working fluid circuit to flow the working fluid,
A first frame fixed to the base and disposed on the first end of the cylinder device;
A second frame fixed to the base and fixed to the second end of the cylinder device;
A pair of shells fixed to the base and capable of being rotatably supported by the second frame on the second frame so as to be pivotable about an axis perpendicular to the cylinder;
A connector fixed to the base and capable of connecting the shell and the first frame on both sides with respect to the support;
A grab bucket part assembly characterized by having:
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017127383A JP2020152458A (en) | 2017-06-29 | 2017-06-29 | Grab bucket, cylinder device, and grab bucket component assembly |
JP2017-127383 | 2017-06-29 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019004399A1 true WO2019004399A1 (en) | 2019-01-03 |
Family
ID=64742390
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/024719 WO2019004399A1 (en) | 2017-06-29 | 2018-06-28 | Grab bucket |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2020152458A (en) |
WO (1) | WO2019004399A1 (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4886575U (en) * | 1972-01-24 | 1973-10-19 | ||
JPS49111366A (en) * | 1973-02-28 | 1974-10-23 | ||
US4381872A (en) * | 1981-03-26 | 1983-05-03 | Mcginnes Manufacturing Company | Remote controlled clamshell bucket apparatus and method of using same |
JP2004331338A (en) * | 2003-05-09 | 2004-11-25 | Tobu Jukogyo Co Ltd | Grab bucket |
JP2010285226A (en) * | 2009-06-09 | 2010-12-24 | Tobu Jukogyo Co Ltd | Hydraulic control cylinder device for single rope type grab bucket |
-
2017
- 2017-06-29 JP JP2017127383A patent/JP2020152458A/en active Pending
-
2018
- 2018-06-28 WO PCT/JP2018/024719 patent/WO2019004399A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4886575U (en) * | 1972-01-24 | 1973-10-19 | ||
JPS49111366A (en) * | 1973-02-28 | 1974-10-23 | ||
US4381872A (en) * | 1981-03-26 | 1983-05-03 | Mcginnes Manufacturing Company | Remote controlled clamshell bucket apparatus and method of using same |
JP2004331338A (en) * | 2003-05-09 | 2004-11-25 | Tobu Jukogyo Co Ltd | Grab bucket |
JP2010285226A (en) * | 2009-06-09 | 2010-12-24 | Tobu Jukogyo Co Ltd | Hydraulic control cylinder device for single rope type grab bucket |
Also Published As
Publication number | Publication date |
---|---|
JP2020152458A (en) | 2020-09-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU612527B2 (en) | Suction device | |
CN102471038A (en) | Moving device for vacuum absorption | |
JP7109780B2 (en) | Container suspension system | |
CN115818033A (en) | Container and cargo handling method for container | |
CN105883673A (en) | Rapid maneuvering loading and unloading transport cart for containers | |
CN101638155B (en) | Packaging machine and method for equipping tool in the packaging machine | |
US20230264934A1 (en) | Forklift, cargo handling system, loading method, and forklift control device | |
WO2019004399A1 (en) | Grab bucket | |
JPH04280793A (en) | Vacuum jacking device | |
CN106185720A (en) | Large Copacity portable packed barium sulfate transporter | |
CN201068381Y (en) | Side-suction type cardboard box carrying and stacking device | |
JP2017119568A (en) | Elevator shock absorbing device | |
KR102439230B1 (en) | Carrier cart with transmission function of elevator control cable | |
CN105545836B (en) | Subframe leveling hydraulic control system for leveling of dumper | |
CN103895616B (en) | Swing type Telescopic support leg device and the Self-loading-unloading transport vehicle of container side | |
JP2017020603A (en) | Fluid material shipping facility and fluid material shipping method | |
CN117302783A (en) | Large-volume liquid tank container capable of interconnection and intercommunication | |
JPS6335548B2 (en) | ||
KR100498102B1 (en) | A rotatable hydraulic hook apparatus capable of absorbing shock | |
CN214888087U (en) | Cylinder bottom base of forklift hydraulic cylinder | |
CN205709466U (en) | Load and unload chemical fertilizer special hanger in bulk | |
CN110265167B (en) | Nuclear sample receiving and transmitting device | |
CN212402182U (en) | Air pillow and logistics equipment with same | |
CN209080923U (en) | A kind of adsorbent equipment applied to machining | |
CN211418335U (en) | Satellite transport case |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18824122 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18824122 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |