WO2019004280A1 - Liquefied gas discharge system and discharge method - Google Patents

Liquefied gas discharge system and discharge method Download PDF

Info

Publication number
WO2019004280A1
WO2019004280A1 PCT/JP2018/024357 JP2018024357W WO2019004280A1 WO 2019004280 A1 WO2019004280 A1 WO 2019004280A1 JP 2018024357 W JP2018024357 W JP 2018024357W WO 2019004280 A1 WO2019004280 A1 WO 2019004280A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
discharge
liquefied gas
floating hose
lng
Prior art date
Application number
PCT/JP2018/024357
Other languages
French (fr)
Japanese (ja)
Inventor
直樹 渡邊
常則 風間
和宏 星野
俊浩 江藤
良治 小木曽
基樹 入倉
隆寛 石神
Original Assignee
千代田化工建設株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 千代田化工建設株式会社 filed Critical 千代田化工建設株式会社
Priority to KR1020207000523A priority Critical patent/KR102476384B1/en
Priority to CN201880043459.6A priority patent/CN110869663B/en
Publication of WO2019004280A1 publication Critical patent/WO2019004280A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B27/00Arrangement of ship-based loading or unloading equipment for cargo or passengers
    • B63B27/24Arrangement of ship-based loading or unloading equipment for cargo or passengers of pipe-lines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B67OPENING, CLOSING OR CLEANING BOTTLES, JARS OR SIMILAR CONTAINERS; LIQUID HANDLING
    • B67DDISPENSING, DELIVERING OR TRANSFERRING LIQUIDS, NOT OTHERWISE PROVIDED FOR
    • B67D7/00Apparatus or devices for transferring liquids from bulk storage containers or reservoirs into vehicles or into portable containers, e.g. for retail sale purposes
    • B67D7/06Details or accessories
    • B67D7/72Devices for applying air or other gas pressure for forcing liquid to delivery point
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C9/00Methods or apparatus for discharging liquefied or solidified gases from vessels not under pressure

Definitions

  • the present invention relates to a discharge system and a discharge method for discharging liquefied gas remaining in a hose at sea after completing transfer of liquefied gas in a floating hose used for transferring liquefied gas from a delivery facility to a receiving facility.
  • Natural gas consists mostly of methane and the other major constituents are nitrogen, ethane, propane and butane.
  • LPG which is a single component or mixed component of each of LNG, ethane, propane and butane which is a main component of methane.
  • the hull is attached to a jetty attached to the land dispensing / receiving facility or in the case of liquefied gas transfer between hulls.
  • the hulls are placed side-by-side and implemented by means of an articulated loading arm or by means of a flexible hose of short length.
  • a step of discharging the liquefied gas remaining in the transfer line connecting the dispensing facility and the receiving facility from the transfer line is generally performed.
  • an inert gas nitrogen gas or the like
  • the present invention has been made in view of the problems of the prior art as described above, and the liquefied gas remaining in the floating hose on the sea is stabilized regardless of the performance of the gas producing apparatus for producing the exhaust gas.
  • the main object of the present invention is to provide a system and method for discharging liquefied gas that can be discharged.
  • a discharge system (5) for liquefied gas remaining in the gas the gas production apparatus (15) producing a discharge gas having a condensation point lower than the liquefied gas, and the gas production apparatus
  • a compressor (22) for compressing the exhaust gas an accumulator container (25) filled with the exhaust gas compressed by the compressor, and the floating hose charged with the exhaust gas filled in the accumulator container
  • an exhaust gas supply line (31) for supplying the hydrogen gas.
  • the filling amount of the discharge gas in the pressure accumulation container can complete the discharge of the liquefied gas remaining in the floating hose by using the entire amount of the discharge gas charged. It is characterized in that it is set.
  • the capacity of the pressure accumulation container can be filled with the amount of the discharge gas necessary to discharge the liquefied gas remaining in the floating hose only once. It is characterized by being set.
  • the size of the pressure accumulation container is prevented from being unnecessarily increased, and a compact installation can be realized.
  • a flow control device (37, 62, 162) which is provided in the discharge gas supply line and adjusts the flow rate of the discharge gas supplied from the pressure accumulation container to the floating hose. Furthermore, it is characterized by having.
  • the flow rate necessary for the exhaust gas can be easily realized, and the liquefied gas remaining in the floating hose on the sea can be discharged more stably.
  • the liquefied gas is liquefied natural gas, and the gas for discharge is nitrogen.
  • a sixth aspect of the present invention is characterized in that the pressure accumulation container is installed in the dispensing facility or the receiving facility together with a device (4) for winding the floating hose.
  • the floating hose used for transfer of liquefied gas is limited, the size required for the pressure accumulation container can be set more reliably.
  • the exhaust gas supply line is connected to a liquefied gas transfer line (32) to which the floating hose is connected in the dispensing facility or the receiving facility. .
  • the eighth aspect of the present invention it is provided on the upstream side of the connection portion (33) of the discharge gas supply line in the liquefied gas transfer line, and blocks the supply of the liquefied gas to the floating hose. And a shutoff valve (51).
  • a part of the liquefied gas transfer line can be diverted for discharging the liquefied gas, and the system configuration becomes simple.
  • the floating hose used for the transfer of liquefied gas from the dispensing facility (1) to the receiving facility (2) which is performed using a floating hose at least a part of which is on the sea (3)
  • a method of discharging liquefied gas remaining in the inside comprising: a manufacturing step of manufacturing a discharge gas having a condensation point lower than that of the liquefied gas; and compressing the discharge gas manufactured in the manufacturing step A compression step, a filling step of filling the pressure-accumulating container (25) with the discharge gas compressed in the compression step, and supplying the discharge gas filled in the pressure-storage container to the floating hose; And D. discharging the liquefied gas remaining in the floating hose.
  • a tenth aspect of the present invention is characterized in that the discharging step is performed using the entire amount of the discharging gas filled in the pressure accumulation container in the filling step.
  • FIG. 1 is an explanatory view showing an application example of a liquefied gas discharge system 5 according to an embodiment of the present invention
  • FIG. 2 is a configuration diagram showing details of the liquefied gas discharge system 5
  • FIG. It is explanatory drawing which shows the discharge method of LNG which remains inside.
  • the transfer of the LNG via the floating hose 3 to the LNG carrier 2 as a receiving facility for receiving the LNG from the FLNG 1 as a dispensing facility for discharging the LNG is performed.
  • the FLNG 1 is a floating type LNG liquefaction facility, and produces LNG by purifying and liquefying natural gas (raw material gas) produced from a gas field on the seabed.
  • the FLNG 1 includes a floating hose 3 for transferring the produced LNG to the LNG ship 2 or the like, and a winding device 4 for housing the same. Further, the FLNG 1 is provided with a discharge system 5 (see FIG. 2) for discharging the LNG remaining in the floating hose 3 after the transfer of the LNG is completed.
  • the floating hose 3 constitutes a transfer line of LNG, and consists of a known flexible hose used in a state in which at least a part thereof is suspended on the sea surface 6.
  • LNG is transferred from the FLNG 1 to the LNG carrier 2
  • the floating hose 3 is delivered from the winding device 4 toward the anchored LNG container 2, and as shown in FIG. 2 (more specifically, it is in a state of being connected to a piping for receiving LNG not shown).
  • the floating hose 3 also includes two LNG supply hoses 3A for supplying LNG from the FLNG 1 to the LNG carrier 2, and one hose for return gas for returning the return gas from the LNG carrier 2 side to the FLNG 1 And 3B.
  • the configuration of the floating hose 3 (number of hoses, diameter, length, etc.) can be variously changed.
  • the LNG vessel 2 is a known LNG tanker used for transporting LNG, and includes an LNG tank 11 capable of storing LNG transferred from the FLNG 1.
  • the discharge system 5 includes a nitrogen production apparatus (gas production apparatus) 15 that produces nitrogen having a condensation point lower than that of LNG.
  • the nitrogen produced by the nitrogen producing apparatus 15 is generally used, for example, for sealing lubricants of compressors in FLNG 1, for preventing backflow of air in main piping in flare and vent equipment, and for combustible gas at maintenance. It can be used for purging and the like.
  • nitrogen produced by the nitrogen producing apparatus 15 is used as a discharge gas for discharging the liquefied gas remaining in the floating hose 3.
  • the nitrogen used as the exhaust gas may be a gas containing nitrogen that does not affect the characteristics (in particular, having a condensation point lower than that of the liquefied gas).
  • nitrogen as the exhaust gas, it becomes possible to divert the existing nitrogen production device 15 used for other applications in the FLNG 1. Further, since nitrogen has a condensation point lower than that of LNG, it does not rapidly condense even when contacting with cryogenic LNG remaining in the floating hose 3 to cause troubles such as hammering.
  • the nitrogen produced by the nitrogen production apparatus 15 is compressed (that is, boosted) by being introduced into the compressor 22 through the nitrogen transport pipe 21. Furthermore, the nitrogen compressed by the compressor 22 is introduced into the pressure accumulation container 25 via the nitrogen transport pipe 24 provided with the valve 23. As a result, the pressure accumulation container 25 is filled with nitrogen at a pressure higher than that of the nitrogen produced by the nitrogen production apparatus 15.
  • the nitrogen filled in the pressure accumulation container 25 is supplied to the floating hose 3 (hose 3A for supplying LNG) through the nitrogen transport pipe (line for supplying the discharge gas) 31.
  • the downstream end of the nitrogen transport pipe 31 extends to the connection site 33 to the LNG transport pipe (line for liquefied gas transport) 32 used in the transfer of LNG, whereby Nitrogen is supplied to the floating hose 3 through a part of the LNG transport pipe 32 (a downstream portion of the connection portion 33 in the LNG transport pipe 32).
  • the nitrogen transport pipe 31 is provided with a flow rate adjusting unit (flow rate adjusting device) 35 for adjusting the flow rate of nitrogen supplied to the floating hose 3.
  • the flow rate adjustment unit 35 includes a flow meter 36 for detecting the flow rate of nitrogen supplied to the floating hose 3 and an upstream side of the flow meter 36, and controls the nitrogen flow rate based on the detection value of the flow meter 36.
  • a flow control valve 37 is provided. Furthermore, in the flow rate adjustment unit 35, the valves 38 and 39 are disposed so as to sandwich the flow meter 36 and the flow control valve 37.
  • Such a flow rate adjusting unit 35 can easily realize the flow rate of nitrogen required for discharging the LNG remaining in the floating hose 3, and can discharge the LNG more stably.
  • the pressure of the pressure accumulation container 25 can be detected by a pressure gauge 42 connected to the nitrogen transport pipe 31 (or pressure accumulation container 25) via the valve 41.
  • valves 51 and 52 are provided on the upstream side and the downstream side of the connection portion 33, respectively. Moreover, the downstream end 53 of the LNG transport pipe 32 is connected to the upstream end 54 of the floating hose 3 (hose 3A for LNG supply). In FIG. 2, the winding device 4 in which the floating hose 3 is accommodated is omitted.
  • the nitrogen production device 15 manufactures an amount of nitrogen necessary for the transfer process (production process).
  • the produced nitrogen is sequentially compressed by the compressor 22 (compression step) and sequentially introduced into the pressure accumulation container 25 (filling step).
  • the valve 23 of the nitrogen transport pipe 24 is in the open state, and the valves 38 and 39 of the nitrogen transport pipe 31 are in the closed state.
  • LNG is supplied from the LNG transport pipe 32 to the LNG supply hose 3A with the valves 51 and 52 open.
  • BOG or the like generated in the LNG vessel 2 is returned to the FLNG 1 side through the return gas hose 3B.
  • valve (shutdown valve) 51 is closed while the valve 52 is kept open.
  • the step of discharging the remaining LNG from the floating hose 3 before the floating hose 3 is separated from the LNG vessel 2 (discharge step) Is required.
  • valves 38 and 39 are opened, and the valve 37 is opened to supply nitrogen from the pressure accumulation container 25 to the floating hose 3 (hose 3A for supplying LNG).
  • the LNG in the floating hose 3 is gradually pushed out to the LNG ship 2 side by the nitrogen supplied from the FLNG 1 side.
  • the pressure of the pressure accumulation vessel 25 is reduced to a pressure close to the pressure of the floating hose, and the valves 38 and 39 are closed to complete the LNG discharge process.
  • the flow rate and pressure necessary for discharging the LNG from the floating hose 3 can be easily facilitated by using the pressure storage container 25 filled with the discharge gas (here, nitrogen). It can be secured. Therefore, regardless of the performance of the nitrogen production unit 15 (that is, even if it is difficult to discharge the LNG from the floating hose 3 by the flow rate and pressure of nitrogen from the existing nitrogen production unit 15), It becomes possible to discharge the remaining LNG stably.
  • the discharge gas here, nitrogen
  • the filling amount of nitrogen in the pressure accumulation container 25 may be set so as to be able to complete the process of discharging the LNG remaining in the floating hose 3 using the total amount of nitrogen charged.
  • control or operation such as stopping the delivery of nitrogen from the pressure accumulation container 25 at an appropriate timing becomes unnecessary.
  • the excess nitrogen is delivered to the LNG carrier 2 to adversely affect the facilities of the LNG carrier 2 (for example, the design of the LNG tank 11 Pressure) can be prevented.
  • excessive nitrogen is returned to FLNG 1 as return gas via return gas hose 3B, thereby preventing troubles such as increasing the concentration of inert gas in the boil-off gas by mixing with boil-off gas generated from the dispensing facility. can do.
  • the pressure of nitrogen in the pressure accumulation container 25 for example, the pressure of the pressure gauge 42
  • it can be determined that the entire amount of nitrogen charged is used.
  • the capacity of the pressure accumulation container 25 may be set so as to be able to be filled with the amount of nitrogen necessary to carry out the process of discharging the LNG remaining in the floating hose 3 only once.
  • the size (volume) of the pressure accumulation container 25 is prevented from becoming unnecessarily large, and a compact installation can be realized.
  • the pressure accumulation container 25 may be installed on the FLNG 1 (or the LNG carrier 2) together with the winding device 4 of the floating hose 3.
  • the size required for the pressure accumulation container 25 can be set more reliably. Therefore, the LNG remaining in the floating hose 3 on the sea can be discharged more stably.
  • Example 1 Next, the simulation result based on the CFD analysis about the discharge process by the above-mentioned discharge system 5 of LNG is explained.
  • the inner diameter was 20 inches
  • the length was 280 m
  • the height difference between the sea surface and the hose end 7 on the LNG vessel 2 side was 25 m.
  • the pressure was 3.0 bara (0.3 MPa)
  • the flow rate was 3.0 kg / s (about 8600 Nm 3 / h).
  • the LNG discharging step by continuing supplying nitrogen to the floating hose 3 for about 3 minutes, the LNG remaining in the floating hose 3 becomes about 10 vol% or less.
  • the total supply amount of nitrogen is about 56 m 3 under the condition of nitrogen of -163 ° C. and 3.0 bara.
  • the pressure accumulation condition of nitrogen is 30 ° C., 25 bara (2.5 MPa), and the pressure of nitrogen in the pressure accumulation container 25 after the discharge step is 4.0 bara.
  • the inner diameter of the cylindrical cross section can be 2300 mm, and the length between tangent lines (see length L in FIG. 2) can be 5000 mm.
  • the pressure of nitrogen to be produced is 6 to 8 bara, and the supply amount thereof is about 1000 to 2000 Nm 3 / h. Is inadequate.
  • Example 2 The simulation result at the time of changing the form of the floating hose 3 on the supply conditions of nitrogen similar to the above-mentioned Example 1 is demonstrated.
  • the inner diameter is 6 inches
  • the length is 280 m
  • the height difference between the sea surface and the hose end portion 7 on the LNG vessel 2 side is 15 m.
  • the total supply amount of nitrogen is 5.2 m 3 under the conditions of nitrogen of -163 ° C. and 3.0 bara.
  • the size of the pressure accumulation container 25 can be, for example, an inner diameter of a cylindrical cross section and 1000 mm, and a length between tangent lines can be 2500 mm.
  • the discharge system 5 can implement a discharge process with respect to the floating hose 3 and the receiving installation 2 of various forms not only in the above-mentioned example.
  • FIG. 4 is a block diagram showing a modification of the liquefied gas discharge system 5 shown in FIG.
  • the same components as those of the discharge system 5 shown in FIG. 2 are denoted by the same reference numerals.
  • the same reference numerals are denoted by the same reference numerals.
  • a restriction orifice 62 is provided on the downstream side of the valve 38 in the flow rate adjustment unit 35 of the nitrogen transport pipe 31, and a branch pipe 131 which branches from the main body of the nitrogen transport pipe 31 and extends in parallel on the upstream side of the valve 38.
  • a similar arrangement (valve 138 and restriction orifice 162) is also provided.
  • the downstream end of the branch pipe 131 is connected to the main body of the nitrogen transport pipe 31 on the upstream side of the valve 39.
  • valves 38 and 39 are first opened, and after the pressure in the pressure accumulation container is gradually decreased, the valve 138 is then opened next, and the flow rates of nitrogen supplied to the floating hose 3 are plural. Adjusted by the restriction orifices 62, 162.
  • FSO Floating Storage & Offloading Unit
  • FSU Floating Storage Unit
  • FSRU Floating Storage & Regasification Unit
  • FPSO FPSO (Floating) Production, Storage & Offloading Unit):
  • a floating production storage and delivery facility etc. can be the delivery facility and the receiving facility, respectively. It is also possible that one of the dispensing facility and the receiving facility is installed on land.
  • the liquefied gas to be discharged is LNG
  • the present invention is not limited to this, but at least as long as transfer is possible using a floating hose, another liquefied gas (for example, LPG (Liquefied Petroleum Gas)) ) May be the target of discharge.
  • LPG Liquefied Petroleum Gas
  • any other gas for example, any gas may be used if it has a condensation point lower than at least the liquefied gas to be discharged Inert gases other than nitrogen, or mixtures thereof may be used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Ocean & Marine Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Loading And Unloading Of Fuel Tanks Or Ships (AREA)

Abstract

[Problem] To enable stable discharge of liquefied gas remaining in a floating hose on the sea, regardless of the capability of a gas producing device which produces a discharge gas. [Solution] A liquefied gas discharge system 5 consists of: a gas producing device 15 which produces a discharge gas having a condensation point lower than that of liquefied gas; a compressor 22 which compresses the discharge gas produced by the gas producing device 15; a pressure accumulating vessel 25 which is filled with the discharge gas that has been compressed by the compressor 22; and a discharge gas supply line 31 for supplying the discharge gas with which the pressure accumulating vessel 25 has been filled to a floating hose 3.

Description

液化ガスの排出システム及び排出方法Liquefied gas discharge system and method
 本発明は、払出設備から受入設備への液化ガスの移送に用いられるフローティングホースにおいて、液化ガスの移送を完了した後に、海上のホース内に残留する液化ガスを排出するための排出システム及び排出方法に関する。 The present invention relates to a discharge system and a discharge method for discharging liquefied gas remaining in a hose at sea after completing transfer of liquefied gas in a floating hose used for transferring liquefied gas from a delivery facility to a receiving facility. About.
 天然ガスは、大半がメタンからなり、他の主な構成要素として、窒素、エタン、プロパン及びブタンがある。液化ガスとしては、メタンが主成分のLNG、エタン、プロパン、ブタンのそれぞれの単成分または混合成分のLPGがある。 Natural gas consists mostly of methane and the other major constituents are nitrogen, ethane, propane and butane. As liquefied gas, there is LPG which is a single component or mixed component of each of LNG, ethane, propane and butane which is a main component of methane.
 従来、陸上払出設備から船体、船体から陸上受入設備または船体から船体への液化ガスの移送では、陸上払出/受入設備に付帯する桟橋に船体を横付け、または船体同士の液化ガス移送の場合には船体同士が横付けして配置され、関節型ローディングアームによって、または長さが短めのフレキシブルホースによって実施される。移送完了後の切り離し作業における安全性の確保等を目的として、払出設備および受入設備の間を結ぶ移送ラインに残留する液化ガスを移送ラインから排出する工程が実施されるのが一般的である。ローディングアーム等から液化ガスを排出する際には、排出用ガスとして不活性ガス(窒素ガス等)が用いられる。 Conventionally, in the transfer of liquefied gas from the land dispensing facility to the hull, from the hull to the land receiving facility or from the hull to the hull, the hull is attached to a jetty attached to the land dispensing / receiving facility or in the case of liquefied gas transfer between hulls. The hulls are placed side-by-side and implemented by means of an articulated loading arm or by means of a flexible hose of short length. In order to ensure the safety in the separation operation after completion of the transfer, a step of discharging the liquefied gas remaining in the transfer line connecting the dispensing facility and the receiving facility from the transfer line is generally performed. When discharging the liquefied gas from the loading arm or the like, an inert gas (nitrogen gas or the like) is used as a discharging gas.
 ところが船体同士の液化ガス移送で船体同士を横付けして配置することは、海が極めて静穏であるという条件下でのみ可能である。よって荒海の場合は、フローティングホースを用いて船体間を少なくとも50m~300mほどの安全な距離だけ離して移送する案が提案されている。また、液化ガス陸上払出/受入設備に付帯する桟橋の代替案として船体間の液化ガス移送と同様のフローティングホースを用いた移送設備の提案がされている。 However, it is possible to arrange the hulls side by side with liquefied gas transfer between the hulls only under the condition that the sea is extremely quiet. Therefore, in the case of a rough sea, it has been proposed to use a floating hose to separate and transport the hulls by a safe distance of at least 50 m to 300 m. Also, as an alternative to a jetty attached to a liquefied gas land delivery / reception facility, a transfer facility using a floating hose similar to liquefied gas transfer between hulls has been proposed.
 フローティングホースを用いる場合、積出ホースが長くなり、また船体とホースの連結部に立ち上がり部分ができる。そのような移送ラインからLNG(Liquefied Natural Gas)等を排出するためには従来と比べ大量の排出用ガスが必要となるため、例えば、LNGと同等の組成を有するガス(デフロストガス(Defrost Gas)や、ボイルオフガス(BOG)など)を用いる手法も考えられる。一方、そのように排出用ガスとしてLNGと同等の組成を有するガスを用いる場合、排出用ガスを移送ラインに注入した際に、移送ライン内に残留する極低温のLNGと接触した排出用ガスが急激に凝縮することにより、ハンマリングなどのトラブルが生じる可能性がある。 When a floating hose is used, the delivery hose becomes longer and there is a rising portion at the connection between the hull and the hose. In order to discharge LNG (Liquefied Natural Gas) or the like from such a transfer line, a large amount of gas for discharge is required as compared with the prior art, for example, a gas having the same composition as LNG (Defrost Gas) Alternatively, a method using boil-off gas (BOG) or the like may be considered. On the other hand, when a gas having the same composition as that of LNG is used as the discharge gas, the discharge gas in contact with the cryogenic LNG remaining in the transfer line when the discharge gas is injected into the transfer line is Rapid condensation may cause troubles such as hammering.
 これに対し、排出用ガスとして不活性ガス(窒素ガス等)を用いる技術が知られており、例えば、運搬船のタンクから受入基地へ液化ガスを移送した後に、移送ラインを構成するローディングアーム内を不活性ガスで自動的に置換するようにした技術が存在する(特許文献1参照)。 On the other hand, a technology using an inert gas (nitrogen gas etc.) as a discharge gas is known, for example, after transferring liquefied gas from a tank of a carrier ship to a receiving base, the inside of a loading arm constituting a transfer line is There is a technique for automatically replacing with an inert gas (see Patent Document 1).
実開平5-34399号公報Japanese Utility Model Application Publication No. 5-34399
 ところで、上記特許文献1に記載された従来技術では、排出用ガスとして用いる不活性ガスを準備する必要があるが、移送ラインのローディングアームに残留する液化ガスを排出することのみを目的とする一方、FLNG(Floating Liquefied Natural Gas)を含む生産基地から運搬船、運搬船から受入基地側への移送ライン全体に残留する液化ガスの排出については目的としていない。また、そのような移送ライン全体に残留する液化ガスを排出するためには、不活性ガスの必要量が大きくなるが、生産基地、運搬船や受入基地に必要量に見合った不活性ガスの製造装置を設置することは、コストに見合わないという問題がある。 By the way, in the prior art described in the above-mentioned patent documents 1, although it is necessary to prepare the inactive gas used as gas for discharge, it aims only at discharging the liquefied gas which remains in the loading arm of a transfer line. It does not aim at the discharge of liquefied gas remaining in the whole transfer line from the production base including the LNG LNG (Floating Liquefied Natural Gas) to the carrier and from the carrier to the receiving base. Also, in order to discharge the liquefied gas remaining in the entire transfer line, the amount of inert gas required increases, but the apparatus for manufacturing inert gas that meets the amount required for production bases, carriers and receiving bases There is a problem that the installation of is not worth the cost.
 一方、生産設備、運搬船または受入基地において他の用途で使用される不活性ガスの製造装置を流用することも考えられるが、移送ラインに残留する液化ガスの排出に必要な流量や圧力を確保することが難しいという問題がある。 On the other hand, it is also conceivable to divert inert gas production equipment used in other applications in production facilities, carrier vessels or receiving bases, but to secure the flow rate and pressure necessary for discharging the liquefied gas remaining in the transfer line. There is a problem that it is difficult.
 特に、海面に浮遊するフローティングホースを移送ラインに用いる場合には、ローディングアーム等を用いる場合と比べて、液化ガスの排出経路により大きな高低差が生じる(例えば、海上のフローティングホース内の液化ガスを海面位置から運搬船上まで押し上げる必要がある)ため、排出用ガスについてより大きな流量や圧力を確保する必要が生じ得る。 In particular, when a floating hose floating on the sea surface is used as a transfer line, a large difference in elevation occurs depending on the discharge path of liquefied gas as compared to the case of using a loading arm or the like (for example, liquefied gas in floating hose on the sea Because it is necessary to push up from the sea level position onto the carrier vessel), it may be necessary to secure a larger flow rate and pressure for the exhaust gas.
 本発明は、このような従来技術の課題を鑑みて案出されたものであり、排出用ガスを製造するガス製造装置の性能に拘わらず、海上のフローティングホース内に残留する液化ガスを安定的に排出可能とする液化ガスの排出システム及び排出方法を提供することを主目的とする。 The present invention has been made in view of the problems of the prior art as described above, and the liquefied gas remaining in the floating hose on the sea is stabilized regardless of the performance of the gas producing apparatus for producing the exhaust gas. The main object of the present invention is to provide a system and method for discharging liquefied gas that can be discharged.
 本発明の第1の側面では、少なくとも一部が海上にあるフローティングホースを用いて行う払出設備(1)から受入設備(2)への液化ガスの移送において、当該移送に用いられた前記フローティングホース(3)内に残留する液化ガスの排出システム(5)であって、前記液化ガスよりも低い凝縮点を有する排出用ガスを製造するガス製造装置(15)と、前記ガス製造装置によって製造された前記排出用ガスを圧縮するコンプレッサ(22)と、前記コンプレッサによって圧縮された前記排出用ガスが充填される蓄圧容器(25)と、前記蓄圧容器に充填された前記排出用ガスを前記フローティングホースに供給するための排出用ガス供給用ライン(31)と、を備えたことを特徴とする。 In the first aspect of the present invention, the floating hose used for the transfer of liquefied gas from the discharge facility (1) to the receiving facility (2) which is performed using a floating hose at least a part of which is on the sea (3) A discharge system (5) for liquefied gas remaining in the gas, the gas production apparatus (15) producing a discharge gas having a condensation point lower than the liquefied gas, and the gas production apparatus A compressor (22) for compressing the exhaust gas, an accumulator container (25) filled with the exhaust gas compressed by the compressor, and the floating hose charged with the exhaust gas filled in the accumulator container And an exhaust gas supply line (31) for supplying the hydrogen gas.
 これによれば、コンプレッサによって圧縮された排出用ガスが充填された蓄圧容器を用いることにより、排出用ガスに必要な流量や圧力を容易に確保することができる。したがって、排出用ガスを製造するガス製造装置の性能に拘わらず、海上のフローティングホース内に残留する液化ガスを安定的に排出することが可能となる。 According to this, it is possible to easily secure the flow rate and pressure necessary for the discharge gas by using the pressure accumulation container filled with the discharge gas compressed by the compressor. Therefore, regardless of the performance of the gas producing apparatus producing the exhaust gas, it is possible to stably discharge the liquefied gas remaining in the floating hose on the sea.
 本発明の第2の側面では、前記蓄圧容器における前記排出用ガスの充填量は、充填された前記排出用ガスの全量を用いて前記フローティングホース内に残留する前記液化ガスの排出を完了可能なように設定されることを特徴とする。 In the second aspect of the present invention, the filling amount of the discharge gas in the pressure accumulation container can complete the discharge of the liquefied gas remaining in the floating hose by using the entire amount of the discharge gas charged. It is characterized in that it is set.
 これによれば、充填された排出用ガスの全量を液化ガスの排出に用いるため、蓄圧容器からの排出用ガスの送出を適切なタイミングで停止する等の制御や操作等が不要となる。また、排出用ガスの使用量の調整が容易となるため、過剰な排出用ガスが受入設備に送出されることにより、受入設備に悪影響を及ぼす(例えば、液化ガスの貯蔵タンクの設計圧を超過する)ことを防止できる。あるいは、過剰な排出用ガスがリターンガスとして受入設備から払出設備に戻って、払出設備から発生するボイルオフガスと混ざることにより、ボイルオフガス中の不活性ガス濃度を増加させるなどのトラブルを防止することができる。 According to this, since the entire amount of the discharged gas for filling is used for discharging the liquefied gas, control or operation such as stopping the delivery of the gas for discharge from the pressure accumulation container at an appropriate timing becomes unnecessary. In addition, since it becomes easy to adjust the amount of exhaust gas used, excessive exhaust gas is sent to the receiving facility, which adversely affects the receiving facility (for example, the design pressure of the storage tank for liquefied gas is exceeded) Can be prevented. Alternatively, the excess exhaust gas is returned from the receiving facility to the dispensing facility as a return gas and mixed with the boil-off gas generated from the dispensing facility to prevent problems such as an increase in the concentration of inert gas in the boil-off gas. Can.
 本発明の第3の側面では、前記蓄圧容器の容量は、前記フローティングホース内に残留する前記液化ガスの排出を1回のみ実施するのに必要な前記排出用ガスの量を充填可能なように設定されることを特徴とする。 In the third aspect of the present invention, the capacity of the pressure accumulation container can be filled with the amount of the discharge gas necessary to discharge the liquefied gas remaining in the floating hose only once. It is characterized by being set.
 これによれば、蓄圧容器のサイズが不必要に大きくなることが防止され、コンパクトな設備を実現することができる。 According to this, the size of the pressure accumulation container is prevented from being unnecessarily increased, and a compact installation can be realized.
 本発明の第4の側面では、前記排出用ガス供給用ラインに設けられ、前記蓄圧容器から前記フローティングホースに供給される前記排出用ガスの流量を調整する流量調整装置(37、62、162)を更に備えたことを特徴とする。 According to a fourth aspect of the present invention, there is provided a flow control device (37, 62, 162) which is provided in the discharge gas supply line and adjusts the flow rate of the discharge gas supplied from the pressure accumulation container to the floating hose. Furthermore, it is characterized by having.
 これによれば、排出用ガスに必要な流量を容易に実現することができ、海上のフローティングホース内に残留する液化ガスをより安定的に排出することが可能となる。 According to this, the flow rate necessary for the exhaust gas can be easily realized, and the liquefied gas remaining in the floating hose on the sea can be discharged more stably.
 本発明の第5の側面では、前記液化ガスは、液化天然ガスであり、前記排出用ガスは、窒素であることを特徴とする。 According to a fifth aspect of the present invention, the liquefied gas is liquefied natural gas, and the gas for discharge is nitrogen.
 これによれば、液化天然ガスの払出設備または受入設備において他の用途で使用される窒素ガスの製造装置を流用することが容易となる。 According to this, it becomes easy to divert the production equipment of nitrogen gas used for other uses in the delivery facility or receiving facility of liquefied natural gas.
 本発明の第6の側面では、前記蓄圧容器は、前記フローティングホースの巻き取り装置(4)と共に前記払出設備または前記受入設備に設置されたことを特徴とする。 A sixth aspect of the present invention is characterized in that the pressure accumulation container is installed in the dispensing facility or the receiving facility together with a device (4) for winding the floating hose.
 これによれば、液化ガスの移送に使用されるフローティングホースが限定されるため、蓄圧容器に必要なサイズをより確実に設定可能となる。 According to this, since the floating hose used for transfer of liquefied gas is limited, the size required for the pressure accumulation container can be set more reliably.
 本発明の第7の側面では、前記排出用ガス供給用ラインは、前記払出設備または前記受入設備において前記フローティングホースが接続される液化ガス移送用ライン(32)に接続されたことを特徴とする。 In the seventh aspect of the present invention, the exhaust gas supply line is connected to a liquefied gas transfer line (32) to which the floating hose is connected in the dispensing facility or the receiving facility. .
 これによれば、液化ガスの移送工程が完了した後に、液化ガスの排出工程に容易に移行することが可能となる。 According to this, it is possible to easily shift to the discharge process of the liquefied gas after the transfer process of the liquefied gas is completed.
 本発明の第8の側面では、前記液化ガス移送用ラインにおける前記排出用ガス供給用ラインの接続部位(33)の上流側に設けられ、前記液化ガスの前記フローティングホースへの供給を遮断するための遮断用弁(51)を更に備えたことを特徴とする。 In the eighth aspect of the present invention, it is provided on the upstream side of the connection portion (33) of the discharge gas supply line in the liquefied gas transfer line, and blocks the supply of the liquefied gas to the floating hose. And a shutoff valve (51).
 これによれば、液化ガス移送用ラインの一部を液化ガスの排出のために流用することができ、システム構成が簡易となる。 According to this, a part of the liquefied gas transfer line can be diverted for discharging the liquefied gas, and the system configuration becomes simple.
 本発明の第9の側面では、少なくとも一部が海上にあるフローティングホースを用いて行う払出設備(1)から受入設備(2)への液化ガスの移送において、当該移送に用いられた前記フローティングホース(3)内に残留する液化ガスの排出方法であって、前記液化ガスよりも低い凝縮点を有する排出用ガスを製造する製造工程と、前記製造工程において製造された前記排出用ガスを圧縮する圧縮工程と、前記圧縮工程において圧縮された前記排出用ガスを蓄圧容器(25)に充填する充填工程と、前記蓄圧容器に充填された前記排出用ガスを前記フローティングホースに供給することにより、前記フローティングホース内に残留する液化ガスを排出する排出工程と、を含むことを特徴とする。 In the ninth aspect of the present invention, the floating hose used for the transfer of liquefied gas from the dispensing facility (1) to the receiving facility (2) which is performed using a floating hose at least a part of which is on the sea (3) A method of discharging liquefied gas remaining in the inside, comprising: a manufacturing step of manufacturing a discharge gas having a condensation point lower than that of the liquefied gas; and compressing the discharge gas manufactured in the manufacturing step A compression step, a filling step of filling the pressure-accumulating container (25) with the discharge gas compressed in the compression step, and supplying the discharge gas filled in the pressure-storage container to the floating hose; And D. discharging the liquefied gas remaining in the floating hose.
 これによれば、コンプレッサによって圧縮された排出用ガスを蓄圧容器に充填することにより、排出用ガスに必要な流量や圧力を容易に確保することができる。したがって、排出用ガスを製造する製造工程を実施するガス製造装置の性能に拘わらず、海上のフローティングホース内に残留する液化ガスを安定的に排出することが可能となる。 According to this, it is possible to easily secure the flow rate and pressure necessary for the discharge gas by filling the discharge gas compressed by the compressor into the pressure accumulation container. Therefore, regardless of the performance of the gas production apparatus that carries out the production process for producing the exhaust gas, it is possible to stably discharge the liquefied gas remaining in the floating hose on the sea.
 本発明の第10の側面では、前記排出工程は、前記充填工程において前記蓄圧容器に充填された前記排出用ガスの全量を用いて行われることを特徴とする。 A tenth aspect of the present invention is characterized in that the discharging step is performed using the entire amount of the discharging gas filled in the pressure accumulation container in the filling step.
 これによれば、充填された排出用ガスの全量を液化ガスの排出に用いるため、蓄圧容器からの排出用ガスの送出を適切なタイミングで停止する等の制御や操作等が不要となる。また、排出用ガスの使用量の調整が容易となるため、過剰な排出用ガスが受入設備に送出されることにより、受入設備に悪影響を及ぼすことを防止できる。あるいは、過剰な排出用ガスがリターンガスとして受入設備から払出設備に戻って、払出設備から発生するボイルオフガスと混ざることにより、ボイルオフガス中の不活性ガス濃度を増加させるなどのトラブルを防止することができる。 According to this, since the entire amount of the discharged gas for filling is used for discharging the liquefied gas, control or operation such as stopping the delivery of the gas for discharge from the pressure accumulation container at an appropriate timing becomes unnecessary. In addition, since it is easy to adjust the amount of exhaust gas used, it is possible to prevent the adverse effect on the receiving facility by sending the excess exhaust gas to the receiving facility. Alternatively, the excess exhaust gas is returned from the receiving facility to the dispensing facility as a return gas and mixed with the boil-off gas generated from the dispensing facility to prevent problems such as an increase in the concentration of inert gas in the boil-off gas. Can.
 このように本発明によれば、簡易な構成により、海上のフローティングホース内に残留する液化ガスを排出することが可能となる。 As described above, according to the present invention, it is possible to discharge liquefied gas remaining in the floating hose on the sea with a simple configuration.
実施形態に係る液化ガスの排出システムの適用例を示す説明図Explanatory drawing which shows the application example of the discharge system of the liquefied gas which concerns on embodiment. 実施形態に係る液化ガスの排出システムの詳細を示す構成図The block diagram which shows the detail of the discharge system of liquefied gas concerning an embodiment フローティングホース内に残留するLNGの排出方法を示す説明図Explanatory drawing which shows the discharge method of LNG which remains in a floating hose 図2に示した液化ガスの排出システムの変形例を示す構成図The block diagram which shows the modification of the discharge system of the liquefied gas shown in FIG. 2
 以下、本発明の実施の形態について図面を参照しながら説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 図1は本発明の実施形態に係る液化ガスの排出システム5の適用例を示す説明図であり、図2は液化ガスの排出システム5の詳細を示す構成図であり、図3はフローティングホース3内に残留するLNGの排出方法を示す説明図である。 FIG. 1 is an explanatory view showing an application example of a liquefied gas discharge system 5 according to an embodiment of the present invention, FIG. 2 is a configuration diagram showing details of the liquefied gas discharge system 5, and FIG. It is explanatory drawing which shows the discharge method of LNG which remains inside.
 LNGの海上輸送では、例えば、図1に示すように、LNGを払い出す払出設備としてのFLNG1からLNGを受け入れる受入設備としてのLNG船2へのフローティングホース3を介したLNGの移送が行われる。 In the sea transportation of LNG, for example, as shown in FIG. 1, the transfer of the LNG via the floating hose 3 to the LNG carrier 2 as a receiving facility for receiving the LNG from the FLNG 1 as a dispensing facility for discharging the LNG is performed.
 FLNG1は、浮体式のLNG液化設備であり、海底のガス田から産出された天然ガス(原料ガス)を海上で精製および液化することによりLNGを生成する。FLNG1は、生成したLNGをLNG船2等に移送するためのフローティングホース3およびそれを収容するための巻き取り装置4を備えている。また、FLNG1は、LNGの移送完了後に、フローティングホース3内に残留するLNGを排出するための排出システム5(図2参照)を備えている。  FLNG 1 is a floating type LNG liquefaction facility, and produces LNG by purifying and liquefying natural gas (raw material gas) produced from a gas field on the seabed. The FLNG 1 includes a floating hose 3 for transferring the produced LNG to the LNG ship 2 or the like, and a winding device 4 for housing the same. Further, the FLNG 1 is provided with a discharge system 5 (see FIG. 2) for discharging the LNG remaining in the floating hose 3 after the transfer of the LNG is completed.
 フローティングホース3は、LNGの移送ラインを構成し、少なくともその一部を海面6に浮遊させた状態で使用される公知のフレキシブルホースからなる。FLNG1からLNG船2にLNGが移送される際には、フローティングホース3は、巻き取り装置4から停泊したLNG船2に向けて繰り出され、図1に示すように、ホース末端部7がLNG船2(より詳細には、図示しないLNG受入用の配管)に接続された状態となる。 The floating hose 3 constitutes a transfer line of LNG, and consists of a known flexible hose used in a state in which at least a part thereof is suspended on the sea surface 6. When LNG is transferred from the FLNG 1 to the LNG carrier 2, the floating hose 3 is delivered from the winding device 4 toward the anchored LNG container 2, and as shown in FIG. 2 (more specifically, it is in a state of being connected to a piping for receiving LNG not shown).
 また、フローティングホース3は、FLNG1からLNG船2にLNGを供給するための2本のLNG供給用ホース3Aと、LNG船2側からのリターンガスをFLNG1に戻すための1本のリターンガス用ホース3Bとから構成される。ただし、フローティングホース3の構成(ホースの本数、径、長さ等)は種々の変更が可能である。 The floating hose 3 also includes two LNG supply hoses 3A for supplying LNG from the FLNG 1 to the LNG carrier 2, and one hose for return gas for returning the return gas from the LNG carrier 2 side to the FLNG 1 And 3B. However, the configuration of the floating hose 3 (number of hoses, diameter, length, etc.) can be variously changed.
 LNG船2は、LNGの輸送に用いられる公知のLNGタンカーであり、FLNG1から移送されるLNGを貯蔵可能なLNGタンク11を備える。 The LNG vessel 2 is a known LNG tanker used for transporting LNG, and includes an LNG tank 11 capable of storing LNG transferred from the FLNG 1.
 図2に示すように、排出システム5は、LNGよりも低い凝縮点を有する窒素を製造する窒素製造装置(ガス製造装置)15を備えている。この窒素製造装置15で製造される窒素は、通常は、例えば、FLNG1におけるコンプレッサ類の潤滑油のシール用、フレア・ベント設備における主配管のエアの逆流防止用、及びメンテナンス時の可燃性ガスのパージ用などに用いることができる。ここでは、フローティングホース3内に残留する液化ガスを排出するための排出用ガスとして、窒素製造装置15により製造された窒素が用いられる。なお、排出用ガスとして用いられる窒素は、その特性(特に、液化ガスよりも低い凝縮点を有すること)に影響を及ぼさない程度の窒素を含むガスであればよい。 As shown in FIG. 2, the discharge system 5 includes a nitrogen production apparatus (gas production apparatus) 15 that produces nitrogen having a condensation point lower than that of LNG. The nitrogen produced by the nitrogen producing apparatus 15 is generally used, for example, for sealing lubricants of compressors in FLNG 1, for preventing backflow of air in main piping in flare and vent equipment, and for combustible gas at maintenance. It can be used for purging and the like. Here, nitrogen produced by the nitrogen producing apparatus 15 is used as a discharge gas for discharging the liquefied gas remaining in the floating hose 3. The nitrogen used as the exhaust gas may be a gas containing nitrogen that does not affect the characteristics (in particular, having a condensation point lower than that of the liquefied gas).
 このように、排出用ガスとして窒素を用いることにより、FLNG1において他の用途で使用される既設の窒素製造装置15を流用することが可能となる。また、窒素は、LNGよりも低い凝縮点を有するため、フローティングホース3内に残留する極低温のLNGと接触した場合でも急激に凝縮してハンマリングなどのトラブルを発生させることもない。 As described above, by using nitrogen as the exhaust gas, it becomes possible to divert the existing nitrogen production device 15 used for other applications in the FLNG 1. Further, since nitrogen has a condensation point lower than that of LNG, it does not rapidly condense even when contacting with cryogenic LNG remaining in the floating hose 3 to cause troubles such as hammering.
 また、排出システム5では、窒素製造装置15によって製造された窒素が、窒素輸送管21を介してコンプレッサ22に導入されることにより圧縮(すなわち、昇圧)される。さらに、コンプレッサ22によって圧縮された窒素は、弁23が設けられた窒素輸送管24を介して蓄圧容器25に導入される。これにより、蓄圧容器25には、窒素製造装置15によって製造された窒素よりも高い圧力の窒素が充填される。 Further, in the discharge system 5, the nitrogen produced by the nitrogen production apparatus 15 is compressed (that is, boosted) by being introduced into the compressor 22 through the nitrogen transport pipe 21. Furthermore, the nitrogen compressed by the compressor 22 is introduced into the pressure accumulation container 25 via the nitrogen transport pipe 24 provided with the valve 23. As a result, the pressure accumulation container 25 is filled with nitrogen at a pressure higher than that of the nitrogen produced by the nitrogen production apparatus 15.
 さらに、排出システム5では、蓄圧容器25に充填された窒素は、窒素輸送管(排出用ガス供給用ライン)31を介してフローティングホース3(LNG供給用ホース3A)に供給される。より詳細には、窒素輸送管31の下流端は、LNGの移送の際に用いられるLNG輸送管(液化ガス移送用ライン)32への接続部位33まで延びており、これにより、蓄圧容器25からの窒素は、LNG輸送管32の一部(LNG輸送管32における接続部位33の下流側部分)を介してフローティングホース3に供給される。このような構成により、後述するLNGの移送工程が完了した後に、LNGの排出工程に容易に移行することが可能となる。 Furthermore, in the discharge system 5, the nitrogen filled in the pressure accumulation container 25 is supplied to the floating hose 3 (hose 3A for supplying LNG) through the nitrogen transport pipe (line for supplying the discharge gas) 31. More specifically, the downstream end of the nitrogen transport pipe 31 extends to the connection site 33 to the LNG transport pipe (line for liquefied gas transport) 32 used in the transfer of LNG, whereby Nitrogen is supplied to the floating hose 3 through a part of the LNG transport pipe 32 (a downstream portion of the connection portion 33 in the LNG transport pipe 32). With such a configuration, it is possible to easily shift to the LNG discharge process after the LNG transfer process described later is completed.
 また、窒素輸送管31には、フローティングホース3に供給される窒素の流量を調整するための流量調整部(流量調整装置)35を備えている。この流量調整部35には、フローティングホース3に供給される窒素の流量を検出する流量計36と、流量計36の上流側に配置され、流量計36の検出値に基づき窒素の流量を制御する流量制御弁37とが設けられている。さらに、流量調整部35では、弁38、39が流量計36および流量制御弁37を挟み込むように配置されている。 In addition, the nitrogen transport pipe 31 is provided with a flow rate adjusting unit (flow rate adjusting device) 35 for adjusting the flow rate of nitrogen supplied to the floating hose 3. The flow rate adjustment unit 35 includes a flow meter 36 for detecting the flow rate of nitrogen supplied to the floating hose 3 and an upstream side of the flow meter 36, and controls the nitrogen flow rate based on the detection value of the flow meter 36. A flow control valve 37 is provided. Furthermore, in the flow rate adjustment unit 35, the valves 38 and 39 are disposed so as to sandwich the flow meter 36 and the flow control valve 37.
 このような流量調整部35により、フローティングホース3内に残留するLNGの排出に必要とされる窒素の流量を容易に実現することができ、LNGをより安定的に排出することが可能となる。なお、蓄圧容器25の圧力は、弁41を介して窒素輸送管31(あるいは蓄圧容器25)に接続された圧力計42によって検出することができる。 Such a flow rate adjusting unit 35 can easily realize the flow rate of nitrogen required for discharging the LNG remaining in the floating hose 3, and can discharge the LNG more stably. The pressure of the pressure accumulation container 25 can be detected by a pressure gauge 42 connected to the nitrogen transport pipe 31 (or pressure accumulation container 25) via the valve 41.
 LNG輸送管32では、接続部位33の上流側および下流側にそれぞれ弁51、52が設けられている。また、LNG輸送管32の下流端53は、フローティングホース3(LNG供給用ホース3A)の上流端54に接続されている。なお、図2では、フローティングホース3が収容される巻き取り装置4は省略されている。 In the LNG transport pipe 32, valves 51 and 52 are provided on the upstream side and the downstream side of the connection portion 33, respectively. Moreover, the downstream end 53 of the LNG transport pipe 32 is connected to the upstream end 54 of the floating hose 3 (hose 3A for LNG supply). In FIG. 2, the winding device 4 in which the floating hose 3 is accommodated is omitted.
 排出システム5では、FLNG1からLNG船2へのLNGの移送工程が実施される前に、その移送工程で必要となる量の窒素が予め窒素製造装置15により製造される(製造工程)。製造された窒素は、コンプレッサ22によって順次圧縮され(圧縮工程)、蓄圧容器25に順次導入される(充填工程)。このとき、窒素輸送管24の弁23は開状態にあり、また、窒素輸送管31の弁38、39は閉状態にある。 In the discharge system 5, before the transfer process of the LNG from the FLNG 1 to the LNG vessel 2 is performed, the nitrogen production device 15 manufactures an amount of nitrogen necessary for the transfer process (production process). The produced nitrogen is sequentially compressed by the compressor 22 (compression step) and sequentially introduced into the pressure accumulation container 25 (filling step). At this time, the valve 23 of the nitrogen transport pipe 24 is in the open state, and the valves 38 and 39 of the nitrogen transport pipe 31 are in the closed state.
 その後、規定された圧力(または容量)で蓄圧容器25への窒素の充填が完了すると、弁23が閉じられ、LNGをフローティングホース3から排出する工程の準備が完了する。 Thereafter, when the filling of the pressure storage container 25 with nitrogen is completed at the defined pressure (or volume), the valve 23 is closed, and the preparation of the step of discharging the LNG from the floating hose 3 is completed.
 次に、LNGの移送工程では、弁51、52を開放した状態でLNG輸送管32からLNG供給用ホース3Aに対してLNGが供給される。このとき、LNGの供給と並行して、LNG船2で発生したBOG等がリターンガス用ホース3Bを介してFLNG1側に戻される。 Next, in the LNG transfer step, LNG is supplied from the LNG transport pipe 32 to the LNG supply hose 3A with the valves 51 and 52 open. At this time, in parallel with the supply of LNG, BOG or the like generated in the LNG vessel 2 is returned to the FLNG 1 side through the return gas hose 3B.
 移送工程が完了すると、弁52を開状態としたままで弁(遮断用弁)51が閉じられる。このとき、フローティングホース3内は、残留したLNGでほぼ満たされた状態にあるため、フローティングホース3をLNG船2から切り離す前に、その残留したLNGをフローティングホース3から排出させる工程(排出工程)が必要となる。 When the transfer process is completed, the valve (shutdown valve) 51 is closed while the valve 52 is kept open. At this time, since the inside of the floating hose 3 is substantially filled with the remaining LNG, the step of discharging the remaining LNG from the floating hose 3 before the floating hose 3 is separated from the LNG vessel 2 (discharge step) Is required.
 LNGの排出工程では、弁38、39が開放され、弁37の開放により、蓄圧容器25からフローティングホース3(LNG供給用ホース3A)に対して窒素が供給される。これにより、図3に示すように、フローティングホース3内のLNGは、FLNG1側から供給された窒素によってLNG船2側に徐々に押し出される。最終的に、フローティングホース3内のLNGが窒素に置換されると蓄圧容器25の圧力がフローティングホースの圧力に近い圧力まで減圧され、弁38、39が閉じられてLNGの排出工程が完了する。 In the process of discharging the LNG, the valves 38 and 39 are opened, and the valve 37 is opened to supply nitrogen from the pressure accumulation container 25 to the floating hose 3 (hose 3A for supplying LNG). Thereby, as shown in FIG. 3, the LNG in the floating hose 3 is gradually pushed out to the LNG ship 2 side by the nitrogen supplied from the FLNG 1 side. Finally, when the LNG in the floating hose 3 is replaced with nitrogen, the pressure of the pressure accumulation vessel 25 is reduced to a pressure close to the pressure of the floating hose, and the valves 38 and 39 are closed to complete the LNG discharge process.
 このように、LNGの排出システム5では、排出用ガス(ここでは、窒素)が充填された蓄圧容器25を用いることにより、フローティングホース3からLNGを排出させるために必要な流量や圧力を容易に確保することができる。したがって、窒素製造装置15の性能に拘わらず(すなわち、既存の窒素製造装置15からの窒素の流量や圧力ではフローティングホース3からLNGを排出させることが難しい場合でも)、海上のフローティングホース3内に残留するLNGを安定的に排出することが可能となる。 As described above, in the LNG discharge system 5, the flow rate and pressure necessary for discharging the LNG from the floating hose 3 can be easily facilitated by using the pressure storage container 25 filled with the discharge gas (here, nitrogen). It can be secured. Therefore, regardless of the performance of the nitrogen production unit 15 (that is, even if it is difficult to discharge the LNG from the floating hose 3 by the flow rate and pressure of nitrogen from the existing nitrogen production unit 15), It becomes possible to discharge the remaining LNG stably.
 この場合、蓄圧容器25における窒素の充填量は、充填された窒素の全量を用いてフローティングホース3内に残留するLNGの排出工程を完了可能なように設定するとよい。これにより、蓄圧容器25からの窒素の送出を適切なタイミングで停止する等の制御や操作等が不要となる。また、排出用ガスとしての窒素の使用量の調整が容易となるため、過剰な窒素がLNG船2に送出されることにより、LNG船2の設備に悪影響を及ぼす(例えば、LNGタンク11の設計圧を超過する)ことを防止できる。さらに、過剰な窒素がリターンガス用ホース3Bを介してリターンガスとしてFLNG1に戻ることにより、払出設備から発生するボイルオフガスと混ざることによりボイルオフガス中の不活性ガス濃度を増加させるなどのトラブルを防止することができる。なお、排出工程では、蓄圧容器25の窒素の圧力(例えば、圧力計42の圧力)が所定の圧力以下となった場合に、充填された窒素の全量が使用されたと判断することができる。 In this case, the filling amount of nitrogen in the pressure accumulation container 25 may be set so as to be able to complete the process of discharging the LNG remaining in the floating hose 3 using the total amount of nitrogen charged. As a result, control or operation such as stopping the delivery of nitrogen from the pressure accumulation container 25 at an appropriate timing becomes unnecessary. In addition, since it is easy to adjust the amount of nitrogen used as the exhaust gas, the excess nitrogen is delivered to the LNG carrier 2 to adversely affect the facilities of the LNG carrier 2 (for example, the design of the LNG tank 11 Pressure) can be prevented. Furthermore, excessive nitrogen is returned to FLNG 1 as return gas via return gas hose 3B, thereby preventing troubles such as increasing the concentration of inert gas in the boil-off gas by mixing with boil-off gas generated from the dispensing facility. can do. In the discharging step, when the pressure of nitrogen in the pressure accumulation container 25 (for example, the pressure of the pressure gauge 42) becomes equal to or less than a predetermined pressure, it can be determined that the entire amount of nitrogen charged is used.
 また、蓄圧容器25の容量は、フローティングホース3内に残留するLNGの排出工程を1回のみ実施するのに必要な窒素の量を充填可能なように設定するとよい。これにより、蓄圧容器25のサイズ(容量)が不必要に大きくなることが防止され、コンパクトな設備を実現することができる。 In addition, the capacity of the pressure accumulation container 25 may be set so as to be able to be filled with the amount of nitrogen necessary to carry out the process of discharging the LNG remaining in the floating hose 3 only once. As a result, the size (volume) of the pressure accumulation container 25 is prevented from becoming unnecessarily large, and a compact installation can be realized.
 また、蓄圧容器25は、フローティングホース3の巻き取り装置4と共にFLNG1(またはLNG船2)に設置するとよい。これにより、LNGの移送に使用されるフローティングホース3が限定されるため、蓄圧容器25に必要なサイズをより確実に設定可能となる。したがって、海上のフローティングホース3内に残留するLNGをより安定的に排出することができる。 Further, the pressure accumulation container 25 may be installed on the FLNG 1 (or the LNG carrier 2) together with the winding device 4 of the floating hose 3. Thereby, since the floating hose 3 used for transfer of LNG is limited, the size required for the pressure accumulation container 25 can be set more reliably. Therefore, the LNG remaining in the floating hose 3 on the sea can be discharged more stably.
(実施例1)
 次に、上述のLNGの排出システム5による排出工程に関するCFD解析に基づくシミュレーション結果について説明する。ここで、フローティングホース3については、内径を20インチとし、長さを280mとし、海面とLNG船2側のホース末端部7との高低差(図3中の長さH参照)を25mとした。また、蓄圧容器25からフローティングホース3への窒素の供給条件については、圧力を3.0bara(0.3MPa)とし、流量を3.0kg/s(約8600Nm/h)とした。
Example 1
Next, the simulation result based on the CFD analysis about the discharge process by the above-mentioned discharge system 5 of LNG is explained. Here, for the floating hose 3, the inner diameter was 20 inches, the length was 280 m, and the height difference between the sea surface and the hose end 7 on the LNG vessel 2 side (see length H in FIG. 3) was 25 m. . Moreover, about the supply conditions of nitrogen from the pressure accumulation container 25 to the floating hose 3, the pressure was 3.0 bara (0.3 MPa), and the flow rate was 3.0 kg / s (about 8600 Nm 3 / h).
 このような条件により、LNGの排出工程では、フローティングホース3に窒素を約3分間供給し続けることにより、フローティングホース3内に残留するLNGが約10vol%以下となった。 Under these conditions, in the LNG discharging step, by continuing supplying nitrogen to the floating hose 3 for about 3 minutes, the LNG remaining in the floating hose 3 becomes about 10 vol% or less.
 LNG船2側に大量の窒素が流れすぎないようにするためには、-163℃、3.0baraの窒素の条件で窒素の総供給量は約56mとなる。この場合、蓄圧容器25については、窒素の蓄圧条件は30℃、25bara(2.5MPa)とし、また、排出工程実施後の蓄圧容器25における窒素の圧力は、4.0baraとすると、蓄圧容器25のサイズについては、例えば、円筒状の断面の内径を2300mmとし、タンジェントライン間の長さ(図2中の長さL参照)を5000mmとすることができる。なお、一般的な窒素製造装置15では、例えば、製造される窒素の圧力は6~8baraであり、また、その供給量は1000~2000Nm/h程度であるため、LNGを排出にそのまま用いるには不十分である。 In order to prevent a large amount of nitrogen from flowing to the LNG vessel 2 side, the total supply amount of nitrogen is about 56 m 3 under the condition of nitrogen of -163 ° C. and 3.0 bara. In this case, regarding the pressure accumulation container 25, the pressure accumulation condition of nitrogen is 30 ° C., 25 bara (2.5 MPa), and the pressure of nitrogen in the pressure accumulation container 25 after the discharge step is 4.0 bara. For example, the inner diameter of the cylindrical cross section can be 2300 mm, and the length between tangent lines (see length L in FIG. 2) can be 5000 mm. In the general nitrogen production apparatus 15, for example, the pressure of nitrogen to be produced is 6 to 8 bara, and the supply amount thereof is about 1000 to 2000 Nm 3 / h. Is inadequate.
(実施例2)
 上述の実施例1と同様の窒素の供給条件で、フローティングホース3の形態を変更した場合のシミュレーション結果について説明する。ここで、フローティングホース3については、内径を6インチとし、長さを280mとし、海面とLNG船2側のホース末端部7との高低差を15mとした。
(Example 2)
The simulation result at the time of changing the form of the floating hose 3 on the supply conditions of nitrogen similar to the above-mentioned Example 1 is demonstrated. Here, as for the floating hose 3, the inner diameter is 6 inches, the length is 280 m, and the height difference between the sea surface and the hose end portion 7 on the LNG vessel 2 side is 15 m.
 上記同様、LNG船2側に大量の窒素が吹き抜けないようにするためには、-163℃、3.0baraの窒素の条件で窒素の総供給量は5.2mとなる。また、蓄圧容器25のサイズについては、例えば、円筒状の断面の内径と1000mmとし、タンジェントライン間の長さを2500mmとすることができる。 As described above, in order to prevent the nitrogen vessel 2 from blowing a large amount of nitrogen, the total supply amount of nitrogen is 5.2 m 3 under the conditions of nitrogen of -163 ° C. and 3.0 bara. Further, the size of the pressure accumulation container 25 can be, for example, an inner diameter of a cylindrical cross section and 1000 mm, and a length between tangent lines can be 2500 mm.
 なお、排出システム5は、上述の例に限らず、種々の形態のフローティングホース3及び受入設備2に対して排出工程を実施することが可能である。 In addition, the discharge system 5 can implement a discharge process with respect to the floating hose 3 and the receiving installation 2 of various forms not only in the above-mentioned example.
 図4は図2に示した液化ガスの排出システム5の変形例を示す構成図である。ここで、図2に示した排出システム5と同様の構成要素については同一の符号が付されている。また、以下で特に言及しない事項については、図2に示した排出システム5と同様とする。 FIG. 4 is a block diagram showing a modification of the liquefied gas discharge system 5 shown in FIG. Here, the same components as those of the discharge system 5 shown in FIG. 2 are denoted by the same reference numerals. Moreover, about the matter which does not mention in particular below, suppose that it is the same as that of the discharge system 5 shown in FIG.
 図4に示した変形例の排出システム5では、図2に示した排出システム5と流量調整部35の構成において異なる。窒素輸送管31の流量調整部35には、弁38の下流側に制限オリフィス62が設けられ、また、弁38の上流側において窒素輸送管31の本体から分岐して並列に延びる分岐配管131にも同様の構成(弁138および制限オリフィス162)が設けられている。分岐配管131の下流端は、弁39の上流側において窒素輸送管31の本体に接続される。 In the discharge system 5 of the modification shown in FIG. 4, the configurations of the discharge system 5 and the flow rate adjustment unit 35 shown in FIG. 2 are different. A restriction orifice 62 is provided on the downstream side of the valve 38 in the flow rate adjustment unit 35 of the nitrogen transport pipe 31, and a branch pipe 131 which branches from the main body of the nitrogen transport pipe 31 and extends in parallel on the upstream side of the valve 38. A similar arrangement (valve 138 and restriction orifice 162) is also provided. The downstream end of the branch pipe 131 is connected to the main body of the nitrogen transport pipe 31 on the upstream side of the valve 39.
 LNGの排出工程では、弁38、39がまず開放状態となり、蓄圧容器の圧力が徐々に低下後、次に弁138が次に開放状態となり、フローティングホース3に供給される窒素の流量が複数の制限オリフィス62、162によって調整される。 In the LNG discharging process, the valves 38 and 39 are first opened, and after the pressure in the pressure accumulation container is gradually decreased, the valve 138 is then opened next, and the flow rates of nitrogen supplied to the floating hose 3 are plural. Adjusted by the restriction orifices 62, 162.
 以上、本発明を特定の実施形態に基づいて説明したが、これらの実施形態はあくまでも例示であって、本発明はこれらの実施形態によって限定されるものではない。上述の実施形態では、FLNGを払出設備とし、LNG船を受入設備とした例を示したが、これに限らず、少なくともフローティングホースを用いたLNGの移送が可能な限りにおいて、任意の設備(例えば、FSO(Floating Storage & Offloading Unit):浮体式貯蔵積出設備、FSU(Floating Storage Unit):浮体式LNG受入基地、FSRU(Floating Storage & Regasification Unit):浮体式貯蔵再ガス化設備、FPSO(Floating Production, Storage & Offloading Unit):浮体式生産貯蔵積出設備など)がそれぞれ払出設備および受入設備となり得る。また、払出設備および受入設備の一方が陸上に設置された構成も可能である。 Although the present invention has been described above based on the specific embodiments, these embodiments are merely examples, and the present invention is not limited by these embodiments. In the above-described embodiment, an example in which FLNG is used as the dispensing facility and an LNG carrier is used as the receiving facility is shown, but the invention is not limited thereto. Any facility (for example, as long as it can transfer LNG using a floating hose) , FSO (Floating Storage & Offloading Unit): Floating storage and unloading facility, FSU (Floating Storage Unit): Floating LNG receiving base, FSRU (Floating Storage & Regasification Unit): Floating storage and regasification unit, FPSO (FPSO (Floating) Production, Storage & Offloading Unit): A floating production storage and delivery facility etc.) can be the delivery facility and the receiving facility, respectively. It is also possible that one of the dispensing facility and the receiving facility is installed on land.
 また、上述の実施形態では、排出対象の液化ガスをLNGとしたが、これに限らず、少なくともフローティングホースを用いた移送が可能な限りにおいて、他の液化ガス(例えば、LPG(Liquefied Petroleum Gas))を排出対象としてもよい。 In the above embodiment, although the liquefied gas to be discharged is LNG, the present invention is not limited to this, but at least as long as transfer is possible using a floating hose, another liquefied gas (for example, LPG (Liquefied Petroleum Gas)) ) May be the target of discharge.
 また、上述の実施形態では、排出用ガスとして窒素を用いた例を示したが、これに限らず、少なくとも排出対象の液化ガスよりも低い凝縮点を有するガスであれば、他のガス(例えば、窒素以外の不活性ガスや、それらの混合ガス)を用いてもよい。 In the above embodiment, an example using nitrogen as the discharge gas is shown, but the present invention is not limited to this, and any other gas (for example, any gas may be used if it has a condensation point lower than at least the liquefied gas to be discharged Inert gases other than nitrogen, or mixtures thereof may be used.
 また、上述の実施形態では、LNGの排出システム5を払出設備(FLNG1)側に設けた例を示したが、これに限らず、排出システム5の構成要素の少なくとも一部を受入設備(LNG船2)側に設けた構成も可能である。その場合、LNGの排出は、LNG供給用ホース3Aに残留するLNGを移送方向に対して逆流させるように実施することができる。 Moreover, in the above-mentioned embodiment, although the example which provided the discharge system 5 of LNG in the discharge | payout apparatus (FLNG1) side was shown, not only this but at least one part of the component of the discharge system 5 is a reception facility (LNG ship 2) A configuration provided on the side is also possible. In that case, the discharge of the LNG can be performed so as to backflow the LNG remaining in the LNG supply hose 3A in the transfer direction.
 なお、上述の実施形態に示した本発明に係る液化ガスの排出システム及び排出方法の各構成要素は、必ずしも全てが必須ではなく、少なくとも本発明の範囲を逸脱しない限りにおいて適宜取捨選択することが可能である。 The components of the liquefied gas discharge system and discharge method according to the present invention described in the above-described embodiment are not necessarily all essential, and can be selected appropriately without departing from the scope of the present invention. It is possible.
1  :FLNG(払出設備)
2  :LNG船(受入設備)
3  :フローティングホース
3A :LNG供給用ホース
3B :リターンガス用ホース
4  :巻き取り装置
5  :排出システム
7  :ホース末端部
11 :LNGタンク
15 :窒素製造装置
21 :窒素輸送管
22 :コンプレッサ
23 :弁
24 :窒素輸送管
25 :蓄圧容器
31 :窒素輸送管(排出用ガス供給用ライン)
32 :LNG輸送管(液化ガス移送用ライン)
33 :接続部位
35 :流量調整部
36 :流量計
37 :流量制御弁(流量調整装置)
38 :弁
39 :弁
41 :弁
42 :圧力計
51 :弁
52 :弁
53 :下流端
54 :上流端
62 :制限オリフィス(流量調整装置)
131:バイパスライン
138:弁
162:制限オリフィス(流量調整装置)
1: FLNG (dispensing equipment)
2: LNG carrier (receiving facility)
3: Floating hose 3A: LNG supply hose 3B: return gas hose 4: winding device 5: discharge system 7: hose end 11: LNG tank 15: nitrogen production device 21: nitrogen transport tube 22: compressor 23: valve 24: Nitrogen transport pipe 25: Accumulating container 31: Nitrogen transport pipe (gas supply line for discharge)
32: LNG transport pipe (liquefied gas transfer line)
33: connection portion 35: flow rate adjusting unit 36: flow meter 37: flow control valve (flow adjusting device)
38: Valve 39: Valve 41: Valve 42: Pressure gauge 51: Valve 52: Valve 53: Downstream end 54: Upstream end 62: Restricted orifice (flow regulating device)
131: bypass line 138: valve 162: restricted orifice (flow regulator)

Claims (10)

  1.  少なくとも一部が海上にあるフローティングホースを用いて行う払出設備から受入設備への液化ガスの移送において、当該移送に用いられた前記フローティングホース内に残留する液化ガスの排出システムであって、
     前記液化ガスよりも低い凝縮点を有する排出用ガスを製造するガス製造装置と、
     前記ガス製造装置によって製造された前記排出用ガスを圧縮するコンプレッサと、
     前記コンプレッサによって圧縮された前記排出用ガスが充填される蓄圧容器と、
     前記蓄圧容器に充填された前記排出用ガスを前記フローティングホースに供給するための排出用ガス供給用ラインと、
    を備えたことを特徴とする液化ガスの排出システム。
    What is claimed is: 1. A system for discharging liquefied gas remaining in the floating hose used for the transfer of liquefied gas from the dispensing facility to the receiving facility performed using a floating hose at least a part of which is on the sea,
    A gas production apparatus for producing an exhaust gas having a condensation point lower than the liquefied gas;
    A compressor for compressing the exhaust gas produced by the gas production apparatus;
    An accumulator container filled with the exhaust gas compressed by the compressor;
    An exhaust gas supply line for supplying the exhaust gas filled in the pressure accumulation container to the floating hose;
    A liquefied gas discharge system characterized by comprising.
  2.  前記蓄圧容器における前記排出用ガスの充填量は、充填された前記排出用ガスの全量を用いて前記フローティングホース内に残留する前記液化ガスの排出を完了可能なように設定されることを特徴とする請求項1に記載の液化ガスの排出システム。 The filling amount of the discharge gas in the pressure accumulation container is set such that discharge of the liquefied gas remaining in the floating hose can be completed using the entire amount of the discharge gas filled. The system for discharging liquefied gas according to claim 1.
  3.  前記蓄圧容器の容量は、前記フローティングホース内に残留する前記液化ガスの排出を1回のみ実施するのに必要な前記排出用ガスの量を充填可能なように設定されることを特徴とする請求項1または請求項2に記載の液化ガスの排出システム。 The capacity of the pressure accumulation container is set to be able to be filled with the amount of the discharge gas necessary to carry out the discharge of the liquefied gas remaining in the floating hose only once. The discharge system of the liquefied gas according to claim 1 or claim 2.
  4.  前記排出用ガス供給用ラインに設けられ、前記蓄圧容器から前記フローティングホースに供給される前記排出用ガスの流量を調整する流量調整装置を更に備えたことを特徴とする請求項1から請求項3のいずれかに記載の液化ガスの排出システム。 4. The fuel cell system according to claim 1, further comprising a flow rate adjusting device provided in the exhaust gas supply line and adjusting the flow rate of the exhaust gas supplied from the pressure accumulation container to the floating hose. The liquefied gas discharge system according to any one of the above.
  5.  前記液化ガスは、液化天然ガスであり、前記排出用ガスは、窒素であることを特徴とする請求項1から請求項4のいずれかに記載の液化ガスの排出システム。 The liquefied gas discharge system according to any one of claims 1 to 4, wherein the liquefied gas is liquefied natural gas, and the discharge gas is nitrogen.
  6.  前記蓄圧容器は、前記フローティングホースの巻き取り装置と共に前記払出設備または前記受入設備に設置されたことを特徴とする請求項1から請求項5のいずれかに記載の液化ガスの排出システム。 The liquefied gas discharge system according to any one of claims 1 to 5, wherein the pressure accumulation container is installed in the dispensing facility or the receiving facility together with a device for winding the floating hose.
  7.  前記排出用ガス供給用ラインは、前記払出設備または前記受入設備において前記フローティングホースが接続される液化ガス移送用ラインに接続されたことを特徴とする請求項1から請求項6のいずれかに記載の液化ガスの排出システム。 7. The discharge gas supply line is connected to a liquefied gas transfer line to which the floating hose is connected in the dispensing facility or the receiving facility. Liquefied gas discharge system.
  8.  前記液化ガス移送用ラインにおける前記排出用ガス供給用ラインの接続部位の上流側に設けられ、前記液化ガスの前記フローティングホースへの供給を遮断するための遮断用弁を更に備えたことを特徴とする請求項7に記載の液化ガスの排出システム。 The fuel cell system further includes a shutoff valve provided upstream of the connection portion of the discharge gas supply line in the liquefied gas transfer line, for shutting off the supply of the liquefied gas to the floating hose. The liquefied gas discharge system according to claim 7.
  9.  少なくとも一部が海上にあるフローティングホースを用いて行う払出設備から受入設備への液化ガスの移送において、当該移送に用いられた前記フローティングホース内に残留する液化ガスの排出方法であって、
     前記液化ガスよりも低い凝縮点を有する排出用ガスを製造する製造工程と、
     前記製造工程において製造された前記排出用ガスを圧縮する圧縮工程と、
     前記圧縮工程において圧縮された前記排出用ガスを蓄圧容器に充填する充填工程と、
     前記蓄圧容器に充填された前記排出用ガスを前記フローティングホースに供給することにより、前記フローティングホース内に残留する液化ガスを排出する排出工程と
    を含むことを特徴とする液化ガスの排出方法。
    A method of discharging liquefied gas remaining in the floating hose used for the transfer, in transfer of liquefied gas from the delivery facility to the receiving facility performed using a floating hose at least a part of which is on the sea,
    A process of manufacturing an exhaust gas having a condensation point lower than the liquefied gas;
    A compression step of compressing the exhaust gas produced in the production step;
    Filling the storage gas container with the discharge gas compressed in the compression step;
    And discharging the liquefied gas remaining in the floating hose by supplying the discharging gas filled in the pressure accumulation container to the floating hose.
  10.  前記排出工程は、前記充填工程において前記蓄圧容器に充填された前記排出用ガスの全量を用いて行われることを特徴とする請求項9に記載の液化ガスの排出方法。 The method for discharging liquefied gas according to claim 9, wherein the discharging step is performed using the whole amount of the discharging gas filled in the pressure accumulation container in the filling step.
PCT/JP2018/024357 2017-06-30 2018-06-27 Liquefied gas discharge system and discharge method WO2019004280A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020207000523A KR102476384B1 (en) 2017-06-30 2018-06-27 Discharge system and discharge method of liquefied gas
CN201880043459.6A CN110869663B (en) 2017-06-30 2018-06-27 Liquefied gas discharge system and discharge method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017128648A JP6709195B2 (en) 2017-06-30 2017-06-30 Liquefied gas discharge system and discharge method
JP2017-128648 2017-06-30

Publications (1)

Publication Number Publication Date
WO2019004280A1 true WO2019004280A1 (en) 2019-01-03

Family

ID=64742338

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/024357 WO2019004280A1 (en) 2017-06-30 2018-06-27 Liquefied gas discharge system and discharge method

Country Status (4)

Country Link
JP (1) JP6709195B2 (en)
KR (1) KR102476384B1 (en)
CN (1) CN110869663B (en)
WO (1) WO2019004280A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114279166A (en) * 2021-12-30 2022-04-05 乔治洛德方法研究和开发液化空气有限公司 Method and device for recovering evaporated argon in liquid argon storage tank and suitable low-temperature argon compressor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5078086A (en) * 1973-11-09 1975-06-25
JPS58178097A (en) * 1982-04-12 1983-10-18 Ishikawajima Harima Heavy Ind Co Ltd Device for draining/purging liquid/gas remaining in loading arm
JPS5968900U (en) * 1982-10-29 1984-05-10 岩谷産業株式会社 Purge device for liquefied combustible gas tank
JP2013011332A (en) * 2011-06-30 2013-01-17 Mitsubishi Heavy Ind Ltd Device for loading fuel
JP2016118301A (en) * 2016-02-22 2016-06-30 三井造船株式会社 Liquefied gas supply connecting structure

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2707878B2 (en) 1991-08-01 1998-02-04 株式会社デンソー Air bag device failure detection device
JP2003254642A (en) * 2002-03-04 2003-09-10 Daikin Ind Ltd Method for removing residual oil
CN101161309A (en) * 2007-11-09 2008-04-16 北京海安高科消防技术有限公司 Combined imputation type nitrogen gas fire extinguisher system apparatus
JP4758456B2 (en) * 2008-05-20 2011-08-31 株式会社新来島どっく Unloading and removing residual oil from liquid cargo of tankers and chemical tankers
JP5894097B2 (en) * 2013-03-08 2016-03-23 三井造船株式会社 Connection mechanism for liquefied gas supply
CN203594974U (en) * 2013-11-08 2014-05-14 山东昌邑石化有限公司 Pressure stabilizing and reclaiming device for high-pressure nitrogen
CN204062466U (en) * 2014-08-08 2014-12-31 武汉武船重型装备工程有限责任公司 A kind of LNG filling station waterborne
KR20160141533A (en) * 2015-06-01 2016-12-09 대우조선해양 주식회사 Natural gas incoming system of flng and incoming method of natural gas
CN105736952B (en) * 2016-01-31 2018-05-25 江苏韩通船舶重工有限公司 A kind of Intelligent Compression natural gas boat host nitrogen purge system and its method of work
CN205856001U (en) * 2016-05-13 2017-01-04 杭州天利空分设备制造有限公司 Offshore platform movable nitrogen-making system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5078086A (en) * 1973-11-09 1975-06-25
JPS58178097A (en) * 1982-04-12 1983-10-18 Ishikawajima Harima Heavy Ind Co Ltd Device for draining/purging liquid/gas remaining in loading arm
JPS5968900U (en) * 1982-10-29 1984-05-10 岩谷産業株式会社 Purge device for liquefied combustible gas tank
JP2013011332A (en) * 2011-06-30 2013-01-17 Mitsubishi Heavy Ind Ltd Device for loading fuel
JP2016118301A (en) * 2016-02-22 2016-06-30 三井造船株式会社 Liquefied gas supply connecting structure

Also Published As

Publication number Publication date
JP2019011814A (en) 2019-01-24
JP6709195B2 (en) 2020-06-10
CN110869663B (en) 2022-02-18
KR20200015727A (en) 2020-02-12
KR102476384B1 (en) 2022-12-09
CN110869663A (en) 2020-03-06

Similar Documents

Publication Publication Date Title
US6237347B1 (en) Method for loading pressurized liquefied natural gas into containers
US7726359B2 (en) Method for transferring a cryogenic fluid
US7841288B2 (en) Storage tank containing liquefied natural gas with butane
KR100991994B1 (en) Lng carrier having lng loading/unloading system
US20110225985A1 (en) Apparatus for transferring a cryogenic fluid
KR20090107805A (en) Method and system for reducing heating value of natural gas
WO2006118458A3 (en) Large distance offshore lng export terminal with boil-off vapour collection and utilization capacities
US7726358B2 (en) Method for loading LNG on a floating vessel
US20200386473A1 (en) Apparatus, system and method for reliquefaction of previously regasified lng
WO2019004280A1 (en) Liquefied gas discharge system and discharge method
KR20140086204A (en) Liquefied natural gas regasification apparatus
KR20120003894U (en) Venting apparatus for cargo tanks
KR200488325Y1 (en) LNG Regasification Apparatus and Ship including the same
KR101775041B1 (en) Floating Storage Unit
Stenning et al. Floating CNG, a simpler way to monetise offshore gas
KR20220036446A (en) Fuel Supplying System And Method For Liquefied Gas Carrier
KR102138408B1 (en) Ship
KR102342200B1 (en) Bunkering Module System and Bunkering Method for a Ship
KR20210057284A (en) gas treatment system and marine structure having the same
KR20090086923A (en) Method and system for suppling natural gas
KR102535973B1 (en) FSU Bidirectional Mooring And ESD Operation Method
EP1918630A1 (en) Method for the regasification of a liquid product such as a liquified natural gas
KR102262123B1 (en) Transportation system for Liquefied Natural Gas
KR102305886B1 (en) A Treatment System of Gas
KR102334731B1 (en) Reliquefaction system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18824115

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20207000523

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 18824115

Country of ref document: EP

Kind code of ref document: A1