WO2019004077A1 - Harvesting machine - Google Patents
Harvesting machine Download PDFInfo
- Publication number
- WO2019004077A1 WO2019004077A1 PCT/JP2018/023790 JP2018023790W WO2019004077A1 WO 2019004077 A1 WO2019004077 A1 WO 2019004077A1 JP 2018023790 W JP2018023790 W JP 2018023790W WO 2019004077 A1 WO2019004077 A1 WO 2019004077A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- conversion
- value
- yield
- threshold
- conversion ratio
- Prior art date
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01D—HARVESTING; MOWING
- A01D41/00—Combines, i.e. harvesters or mowers combined with threshing devices
- A01D41/02—Self-propelled combines
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01D—HARVESTING; MOWING
- A01D41/00—Combines, i.e. harvesters or mowers combined with threshing devices
- A01D41/12—Details of combines
- A01D41/127—Control or measuring arrangements specially adapted for combines
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01F—PROCESSING OF HARVESTED PRODUCE; HAY OR STRAW PRESSES; DEVICES FOR STORING AGRICULTURAL OR HORTICULTURAL PRODUCE
- A01F12/00—Parts or details of threshing apparatus
- A01F12/46—Mechanical grain conveyors
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01F—PROCESSING OF HARVESTED PRODUCE; HAY OR STRAW PRESSES; DEVICES FOR STORING AGRICULTURAL OR HORTICULTURAL PRODUCE
- A01F12/00—Parts or details of threshing apparatus
- A01F12/60—Grain tanks
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01G—WEIGHING
- G01G19/00—Weighing apparatus or methods adapted for special purposes not provided for in the preceding groups
- G01G19/52—Weighing apparatus combined with other objects, e.g. furniture
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01G—WEIGHING
- G01G19/00—Weighing apparatus or methods adapted for special purposes not provided for in the preceding groups
- G01G19/64—Percentage-indicating weighing apparatus, i.e. for expressing the weight as a percentage of a predetermined or initial weight
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60Y—INDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
- B60Y2200/00—Type of vehicle
- B60Y2200/20—Off-Road Vehicles
- B60Y2200/22—Agricultural vehicles
- B60Y2200/222—Harvesters
Definitions
- the present invention relates to a harvester.
- Japanese Unexamined Patent Publication No. 2017-077204 is provided with a throwing plate (in the literature, "rotary blade plate”) for releasing grains sent from a threshing apparatus by a screw conveyor from a grain outlet,
- a throwing plate in the literature, "rotary blade plate” for releasing grains sent from a threshing apparatus by a screw conveyor from a grain outlet
- a combine is disclosed in which a yield sensor (“literary sensor” in the literature) is provided inside the tank.
- the grains emitted by the throwing plate impinge on the yield sensor and the impact of the impact is detected by the strain gauges of the yield sensor.
- the distortion amount of the yield sensor is converted to a voltage, and the grain amount is calculated by the control unit.
- the amount of grains released to the grain tank decreases, grains may be released in a state of being biased to the side where the threshing device is located among the grain discharge ports.
- the pressure distribution applied to the yield sensor varies, and the strain amount of the yield sensor may be smaller than the actual amount of grain.
- the detected amount detected by the yield sensor does not have a linear proportional relationship with the actual grain yield, and an error between the calculated yield value and the actual yield based on the detected amount Was likely to occur.
- a harvester comprises a threshing device, a grain tank for storing grains collected by the grain threshing device, a grain conveyance path for conveying grains from the grain throttling device to the grain tank, and the grain A yield sensor for detecting a pressure based on the amount of grain passing through a grain transfer path, a yield conversion unit for converting a detection value detected by the yield sensor into a yield value representing a yield, and the yield A storage unit storing a plurality of conversion tables having different conversion ratios to be converted into values, the yield conversion unit converting the plurality of conversion tables according to the magnitude of the detection value when converting the detection value And one conversion table is selected and used for conversion.
- the yield conversion unit can convert the detected value into the yield value while switching the conversion ratio.
- the conversion table has a conversion ratio optimized such that the actual yield and the yield value are close to each other within the detection range within a specific range
- the yield conversion unit is optimum according to the range of detection values. You can select a conversion table. As a result, it is possible to accurately calculate the yield of grains discharged from the grain transfer path to the grain tank based on the detection value of the yield sensor.
- the conversion table select a conversion table with a smaller conversion ratio as the detected value is larger, and select a conversion table with a larger conversion ratio as the detected value is smaller.
- the yield conversion unit should select a conversion table having a large conversion ratio, even when the amount of released grain is small and the amount of distortion of the yield sensor decreases relative to the actual amount of released grain. By this, the accuracy of the yield value calculated from the detected value is improved.
- a second table used when it is between a large second threshold and a third table used when the detected value is larger than the second threshold are stored, and the conversion in the first table is performed.
- the ratio is a constant value
- the conversion ratio in the third table is a constant value of a value different from the conversion ratio of the first table
- the conversion ratio in the second table is the value of the first table. It is preferable that the conversion ratio and the conversion ratio of the third table linearly change according to the detected value so as to be linearly complemented.
- the detection value may slightly change while crossing the first threshold or the second threshold, and the selection of the conversion table may be switched. At this time, if the value of the conversion ratio changes significantly due to switching of the conversion table, the yield value calculated based on the detected value may change significantly, and a large error may occur with respect to the actual yield. With this configuration, even if the detection value changes slightly while crossing the first threshold or the second threshold and the selection of the conversion table is switched, the value of the conversion ratio hardly changes, and the yield The change in value is also small. Therefore, a large error does not occur in the yield value calculated from the detected value and the actual yield, and the accuracy of the yield value is improved.
- the plurality of conversion tables are used when the detection value is between a third threshold larger than the second threshold and a fourth threshold larger than the third threshold.
- Four tables and a fifth table used when the detected value is larger than the fourth threshold are stored, and the conversion ratio in the fifth table is the conversion ratio of the first table and the conversion ratio.
- the conversion ratio of the third table is a fixed value different from the conversion ratio, and the conversion ratio of the fourth table is such that it linearly complements the conversion ratio of the third table and the conversion ratio of the fifth table.
- the proportional change rate of the conversion ratio in the second table is proportional to the change rate of the conversion ratio in the fourth table.
- Ri is also a large and suitable.
- the grain is pressed against the yield sensor evenly, and the pressure distribution applied to the yield sensor becomes stable, so the detected value by the yield sensor and the actual yield Approaches a linear proportional relationship.
- the change in conversion ratio is smaller than when the detected value changes between the first threshold and the second threshold. It becomes loose.
- the change in the yield value calculated from the detected value also approaches linear proportionality as much as possible. As a result, the accuracy of the yield value when the amount of kernel release is large is improved.
- FIG. 2 is a longitudinal side view of a grain release device and a yield sensor. It is a block diagram showing a yield calculation unit. It is a figure which shows the conversion table which converts the detected value and yield value of a load cell. It is a graph which shows the relationship between the detected value of a load cell, and a conversion ratio. It is a graph which shows the relationship between the detected value of a load cell, and a yield value. It is a figure which shows another embodiment of the conversion table which converts the detected value and yield value of a load cell.
- FIG. 10 is a plan view of another embodiment of a grain emission device and yield sensor.
- the left side or the right side in the machine body width direction defines left and right in a state in which the machine body travels in the direction of travel.
- FIG. 1 and 2 show a conventional combine that is an example of a harvester.
- An airframe frame 1 in which a plurality of steel materials are connected is provided in a harvester, and a pair of left and right crawler traveling devices 2 is provided in a lower portion of the airframe frame 1.
- An engine E is mounted on the front right portion of the fuselage frame 1, and a driving cabin 3 is provided above the engine E.
- a reaper 4 is attached to the front of the machine frame 1 so as to be able to move up and down.
- a threshing device 6 for threshing the whole of the reaping grain gutter supplied from the reaper 4 by the conveying feeder 5 at the rear of the airframe frame 1 And are mounted side by side in the left-right direction.
- the unloader 8 mounted adjacent to the grain tank 7 discharges the grain stored in the grain tank 7 to the outside.
- a weight sensor 40 is provided at the front lower end of the grain tank 7, and the weight sensor 40 detects the grain yield based on the total weight of the grain tank 7.
- the threshing device 6 and the grain tank 7 are connected by a grain conveyance path 10.
- a first thing conveyance screw 10A provided at the bottom of the threshing device 6, a lifting conveyor 10B disposed between the threshing device 6 and the grain tank 7, and the grain tank 7 And a transverse feed screw 10C penetrating the front upper portion of the left side wall.
- the lift conveyor 10B is a bucket conveyor, and an endless rotation chain 10E is wound around a sprocket 10D so as to extend across the transport direction both ends of the lift conveyor 10B, and a plurality of buckets 10F are provided on the outer peripheral side of the endless rotation chain 10E It is provided at regular intervals.
- the grains collected at the bottom of the threshing device 6 are discharged to the right lateral side outward of the threshing device 6 by the one-piece conveying screw 10A, and then transported upward of the grain tank 7 by the lifting conveyor 10B. And transported from the outside to the inside of the grain tank 7 by the crossfeed screw 10C.
- a grain discharging device 11 for splashing grains to the inside of the grain tank 7 is provided at the end region of the grain conveyance path 10.
- the grain releasing apparatus 11 is provided with a releasing rotating body 12 and a releasing case 13 which covers the periphery of the releasing rotating body 12.
- the discharge rotary body 12 has a rotary shaft 12A extended from the transverse feed screw 10C to the end in the conveying direction, and a rotary blade 12B having a throw plate 12B extending in one direction in the range from the rotary shaft 12A to the inner side of the discharge case 13 It is.
- a discharge port 13A is formed in a C shape on the rear side of the release case 13 in a side view of the airframe.
- the discharge port 13A is formed larger in the axial direction P of the discharge rotating body 12 than the width of the anchor plate 12B.
- the throwing plate 12B rotates in the direction indicated by the arrow R, and the grain transported to the discharge case 13 is pushed out of the discharge port 13A into the grain tank 7 by the throwing plate 12B.
- a protrusion 12C is provided in a state of extending from the rotation shaft 12A to the opposite side to the side where the anchor plate 12B is located.
- the rotation of the projection 12C is detected by the rotation sensor 21 (FIG. 5), and a rotation pulse is generated at the timing when the projection 12C passes the rotation sensor 21, and one rotation is counted.
- a yield sensor 20 for measuring the amount of release of the grain is provided in a state of being supported by the support frame 22 in a state of facing the discharge port 13A.
- the yield sensor 20 is provided with a flat detection plate 20A and a load cell 20B via a spacer 20C.
- a spacer 20D is provided between the load cell 20B and the support frame 22.
- the spacer 20C is provided in contact with the upper end on one end side of the load cell 20B, and the spacer 20D is provided in contact with the lower end on the other end side of the load cell 20B.
- the grain is discharged from the outlet 13A by the throwing plate 12B and pressed against the detection plate 20A.
- the pressing force of the kernel causes the load cell 20B to be distorted to generate an electric signal.
- This electrical signal is used as a detection signal for evaluating the grain yield, and, for example, the electrical signal is represented by a voltage value or a current value.
- the pressing force of the grain on the detection plate 20A increases and the detection signal of the load cell 20B also increases.
- the release amount of the grain transported from the grain transport path 10 When the release amount of the grain transported from the grain transport path 10 is large, the grain discharged from the discharge port 13A is splashed evenly from the entire width in the left and right width of the discharge port 13A. Along with this, since the grain is uniformly pressed against the detection plate 20A, the pressure distribution applied to the detection plate 20A becomes uniform. Therefore, if the release amount of kernels is large, the strain amount applied to the load cell 20B is proportional to the release amount of kernels. However, when the release amount of the kernel transported from the kernel transport path 10 is small, the kernel discharged from the outlet 13A is released in a state of being biased to the side where the threshing device 6 is located among the outlets 13A. Be done.
- the yield calculation unit 30 for calculating the yield value based on the detection signal of the load cell 20B will be described based on FIGS. 5 to 8.
- the yield calculation unit 30 is, for example, a module incorporated in a microcomputer mounted on the machine.
- the yield calculation unit 30 stores the input signal processing unit 31 which is an input interface, the yield conversion unit 32 which calculates the yield value based on the detection signal of the load cell 20B, and the conversion table T used for calculating the yield value.
- a storage unit 33 is provided.
- the input signal processing unit 31 is connected to the yield sensor 20 and the rotation sensor 21, and the detection signal of the load cell 20 B and the rotation pulse of the rotation sensor 21 are input to the input signal processing unit 31. By dividing the sequential waveform of the detection signal into each rotation pulse, the waveform of the detection signal in the section of one rotation can be obtained.
- the grains sent from the crossfeed screw 10C are pushed out of the discharge port 13A to the outside of the discharge case 13 by the rotation of the throwing plate 12B and pressed against the detection plate 20A.
- the detection signal at this time has a maximum value in one rotation of the throwing plate 12B.
- the input signal processing unit 31 obtains the maximum value of the detection signal from the waveform of the detection signal for each rotation, and the maximum value of the detection signal is output to the yield conversion unit 32 as the detection value X.
- the detection signal since the projection 12C is provided on the side opposite to the side where the throwing plate 12B is located from the rotation shaft 12A, the detection signal has a maximum value near the center of the section for one rotation.
- the storage unit 33 stores a plurality of conversion tables T as shown in FIG.
- Each conversion table T has information in which the detection value X and the conversion ratio A are linked over an arbitrary range of the detection value X.
- the detected value X is output by the input signal processing unit 31, and one conversion table T including the detected value X within the detection range is selected by the yield conversion unit 32 from the plurality of conversion tables T.
- the number of tables is a numerical value determined as appropriate, but in the present embodiment, the five conversion tables T from the first table T1 to the fifth table T5 are stored in the storage unit 33 in a state in which they have different conversion ratios A. It is done.
- Five conversion tables T are divided by a first threshold X1, a second threshold X2, a third threshold X3, and a fourth threshold X4 according to the range of the detection value X.
- the first threshold value X1, the second threshold value X2, the third threshold value X3, and the fourth threshold value X4 are numerical values appropriately determined.
- the conversion table T having a large conversion ratio is selected and used for conversion by the yield conversion unit 32.
- the conversion table T having a small conversion ratio is selected. It is used for the conversion of the yield conversion unit 32.
- the yield conversion unit 32 selects the first table T1
- the yield The conversion table T is selected in a pattern that the conversion unit 32 selects the second table T2.
- the first threshold X1, the second threshold X2, the third threshold X3, and the fourth threshold X4 are the second table T2, the third table T3, the fourth table T4, and the fifth table T5. It is set as the lower limit value.
- the yield conversion unit 32 obtains the conversion ratio A from the conversion table T selected based on the detection value X, and multiplies the conversion ratio A by the detection value X based on the following formula to calculate the yield value V. .
- Yield value V (A ⁇ X) + p
- the yield value V represents the grain yield per unit travel distance of the harvester.
- p is an additional coefficient, and can be set to any value including zero and negative values.
- the detection range of the first table T1, the third table T3 and the fifth table T5 is a range in which a linear proportional relationship is easily established by the relationship between the detection value X and the actual yield. For this reason, the first table T1, the third table T3 and the fifth table T5 respectively have single conversion ratios A10, A30, A50 so as to be constant over the entire range within the detection range. As shown in the graphs of FIGS. 6 and 8, the relationship between the detected value X (1 to 9) and the yield value V (V10 to V19) in the first table T1 is a linear proportional relationship.
- the relationship between the detected value X (20 to 29) and the yield value V (V30 to V39) in the third table T3 is also a linear proportional relationship
- the relationship with (V50 or more) is also a linear proportional relationship.
- the conversion ratios A10, A30, and A50 are numerical values appropriately determined by experiments.
- the selection of the conversion table T may be switched when the detection value X slightly changes while crossing any of the first threshold X1, the second threshold X2, the third threshold X3, and the fourth threshold X4. At this time, if the value of the conversion ratio A changes to a different value, even if the change in the detected value X is small, the value of the yield value V changes in a step shape, and the yield value V may deviate from the actual yield. There is. For example, as indicated by the broken line in the graph of FIG. 8, in the detection range of the second table T2, the yield value is calculated even with the same detection value X between the conversion ratio A10 and the conversion ratio A30. V takes different values. Therefore, the second table T2 and the fourth table T4 are configured such that the value of the conversion ratio A does not change significantly with respect to the change of the detection value X.
- the second table T2 is configured such that the conversion ratios A20 to A29 of the second table T2 change in proportion to the detection value X in a state in which the conversion ratio A10 and the conversion ratio A30 are linearly complemented.
- the fourth table T4 is configured such that the conversion ratios A40 to A49 of the fourth table T4 change in proportion to the detection value X in a state in which the conversion ratio A30 and the conversion ratio A50 are linearly complemented. . Therefore, as shown in the graphs of FIGS. 6 and 8, as the detected value X increases, the values of the conversion ratios A20 to A29 gradually decrease, and the values of the conversion ratios A40 to A49 also gradually decrease. It becomes smaller. As shown in the graphs of FIGS.
- the relationship between the detected value X (10 to 19) and the yield value V (V20 to V29) in the second table T2 is drawn by a quadratic curve of the graph It becomes a relationship.
- the relationship between the detection value X (30 to 39) and the yield value V (V40 to V49) in the fourth table T4 is also a relationship drawn by a quadratic curve of the graph.
- the conversion ratio in the conversion table T on the side where the detection value X is smaller is the conversion ratio on the side where the detection value X is smaller.
- the conversion table T is configured to be smaller than the proportional change rate of A.
- the proportional change rate of the conversion ratio A in the fourth table T4 on the side where the detected value X is larger is smaller than the proportional change rate of the conversion ratio A in the second table T2 on the side where the detected value X is smaller.
- the concept of the conversion table T is applied to the calculation of the total weight of kernels by the weight sensor 40 shown in FIG.
- the yield conversion unit 32 selects one conversion table selected from a plurality of conversion tables having different conversion ratios according to the magnitude of the detection value of the weight sensor 40 based on the same idea as the conversion table T. To convert the detected value of the weight sensor 40 into a yield value.
- the present invention is not limited to this embodiment, and the number of tables may be two or more.
- the conversion ratio A in one conversion table may be a constant value, and the conversion ratio A in the other conversion table may change in proportion.
- the conversion ratio A may not be stepless but may change stepwise.
- the conversion table T is configured by a plurality of conversion tables, but is not limited to this embodiment.
- one conversion table T may be configured by a plurality of sub-tables, and only one conversion table T may be stored in the storage unit 33.
- the first threshold X1, the second threshold X2, the third threshold X3, and the fourth threshold X4 correspond to the second table T2, the third table T3, the fourth table T4, and the fifth table T5.
- the lower limit value of the detection value X is set, but to which conversion table the values of the first threshold value X1, the second threshold value X2, the third threshold value X3, and the fourth threshold value X4 belong can be determined appropriately.
- the first threshold X1, the second threshold X2, the third threshold X3, and the fourth threshold X4 are upper limit values of the detection value X in the first table T1, the second table T2, the third table T3, and the fourth table T4. It may be set. It is also possible to set two thresholds in one conversion table T.
- the yield conversion unit 32 may be configured to select the second table T2, and the detected value X may The yield conversion unit 32 may be configured to select the fourth table T4 when the third threshold X3 or more and the fourth threshold X4 or less.
- the invention is not limited to the above-described embodiment, and the conversion ratios A of all the conversion tables T may be configured with a constant value. In this case, even if the conversion ratios A of the conversion tables T are different values, a large number of conversion tables T designated in a small detection range are arranged so that the change in the conversion ratio A becomes small.
- the configuration may be such that the yield value V changes in small steps.
- the plurality of conversion tables T are configured such that the value of the conversion ratio A falls to the right as the detected value X increases, but the present invention is not limited to this embodiment. .
- the plurality of conversion tables T may be configured such that the value of the conversion ratio A increases as the detected value X increases.
- the yield value V By associating the yield value V with the GPS position information, the yield value V can be used for the distribution of the yield for each minute section of the field. In addition, if there is an error between the integrated value of the yield value V and the yield value calculated from the detection value of the weight sensor 40, each of the past yield values V can be corrected according to the error. .
- the detection plate 20A and the load cell 20B are provided in the yield sensor 20 via the spacer 20C, but the yield sensor 20 detects the grain yield only by the load cell 20B. It may be of such a configuration. Also, the configuration may be such that the yield of grain is detected by a strain gauge sensor instead of the load cell 20B.
- the conversion table T is not limited to the embodiment described above, and can be applied to a yield sensor configured as follows.
- the configuration is also applicable to a configuration in which the outlet 102 is formed in the sidewall 100 of the grain tank and the yield sensor 104 is disposed adjacent to the outlet 102.
- a throwing plate 103 that rotates integrally with the screw conveyor 101 is provided at the upper end of the screw conveyor 101 that rotates in the direction of arrow R to vertically transport the grain from the bottom of the threshing apparatus.
- the grain is splashed from the outlet 102 by the throwing plate 103 and the pressure of the grain is detected by the yield sensor 104.
- the yield sensor 104 is provided with a detection plate 104A and a load cell 104B, and the load cell 104B detects the pressing force of the grain applied to the detection plate 104A.
- the weight sensor 40 is provided at the front lower end of the grain tank 7, but the weight sensor 40 may not be provided.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Environmental Sciences (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Threshing Machine Elements (AREA)
- Combines (AREA)
Abstract
This harvesting machine is provided with a threshing device, a grain tank which stores grain recovered by the threshing device, a grain transport path on which the grain is transported from the threshing device to the grain tank, a harvest amount sensor which detects pressure based on the amount of grain passing through the grain transport path, a yield amount conversion unit which converts a detection value detected by the yield amount sensor to a yield amount value representing the yield amount, and a storage unit in which multiple conversion tables are stored which have different conversion ratios for converting detection values to yield amount values. At the time of conversion of detection values, the yield amount conversion unit selects one of the multiple conversion tables depending on the size of the detection values and uses the selected table for conversion.
Description
本発明は、収穫機に関する。
The present invention relates to a harvester.
例えば、日本国特開2017‐077204号公報に、脱穀装置からスクリューコンベアで送られてきた穀粒を穀粒放出口から放出する投擲板(文献では「回転羽根板」)が設けられ、穀粒タンクの内部に収量センサ(文献では「投口センサ」)が設けられているコンバインが開示されている。投擲板によって放出された穀粒が収量センサに衝突し、衝突の衝撃が収量センサの歪みゲージによって検出される。この収量センサの歪み量が電圧に換算され、穀粒量が制御部によって算出される。
For example, Japanese Unexamined Patent Publication No. 2017-077204 is provided with a throwing plate (in the literature, "rotary blade plate") for releasing grains sent from a threshing apparatus by a screw conveyor from a grain outlet, A combine is disclosed in which a yield sensor ("literary sensor" in the literature) is provided inside the tank. The grains emitted by the throwing plate impinge on the yield sensor and the impact of the impact is detected by the strain gauges of the yield sensor. The distortion amount of the yield sensor is converted to a voltage, and the grain amount is calculated by the control unit.
しかし、穀粒タンクに放出される穀粒の量が少なくなると、穀粒放出口のうち、脱穀装置の位置する側に偏った状態で、穀粒が放出される場合がある。このとき、収量センサに掛かる圧力分布がばらついて、収量センサの歪み量が、実際の穀粒の量に対して少なくなる虞がある。その結果、収量センサで検出される検出量が、実際の穀粒の収量との関係で線形比例の関係とならず、検出量に基づいて算出される収量値と実際の収量との間に誤差が生じる虞があった。
However, when the amount of grains released to the grain tank decreases, grains may be released in a state of being biased to the side where the threshing device is located among the grain discharge ports. At this time, the pressure distribution applied to the yield sensor varies, and the strain amount of the yield sensor may be smaller than the actual amount of grain. As a result, the detected amount detected by the yield sensor does not have a linear proportional relationship with the actual grain yield, and an error between the calculated yield value and the actual yield based on the detected amount Was likely to occur.
上記実情に鑑みて、穀粒搬送経路から穀粒タンクに放出される穀粒の収量を、収量センサの検出値に基づいて精度よく算出することができる収穫機が要望されている。
In view of the above-mentioned situation, there is a demand for a harvester capable of accurately calculating the yield of grains discharged from the grain transfer path to the grain tank based on the detection value of the yield sensor.
本発明による収穫機は、脱穀装置と、前記脱穀装置で回収された穀粒を貯留する穀粒タンクと、前記脱穀装置から前記穀粒タンクに穀粒を搬送する穀粒搬送経路と、前記穀粒搬送経路を通過する穀粒の量に基づく圧力を検出する収量センサと、前記収量センサによって検出された検出値を、収量を表す収量値に変換する収量変換部と、前記検出値を前記収量値に変換する変換比率が異なる複数の変換テーブルが記憶された記憶部と、が備えられ、前記収量変換部は、前記検出値の変換に際して、前記検出値の大小に応じて前記複数の変換テーブルから一つの変換テーブルを選択して変換に用いることを特徴とする。
A harvester according to the present invention comprises a threshing device, a grain tank for storing grains collected by the grain threshing device, a grain conveyance path for conveying grains from the grain throttling device to the grain tank, and the grain A yield sensor for detecting a pressure based on the amount of grain passing through a grain transfer path, a yield conversion unit for converting a detection value detected by the yield sensor into a yield value representing a yield, and the yield A storage unit storing a plurality of conversion tables having different conversion ratios to be converted into values, the yield conversion unit converting the plurality of conversion tables according to the magnitude of the detection value when converting the detection value And one conversion table is selected and used for conversion.
本発明によれば、検出値の大小に応じて複数の変換テーブルから一つを選択することによって、収量変換部が、変換比率を切替えつつ、検出値を収量値に変換できる。特定の範囲内の検出値において、実際の収量と収量値とが近似するように最適化された変換比率を変換テーブルが有する構成によって、収量変換部が、検出値の範囲に応じて、最適な変換テーブルを選択できる。その結果、穀粒搬送経路から穀粒タンクに放出される穀粒の収量を、収量センサの検出値に基づいて精度よく算出することができる。
According to the present invention, by selecting one from the plurality of conversion tables according to the magnitude of the detected value, the yield conversion unit can convert the detected value into the yield value while switching the conversion ratio. According to the configuration in which the conversion table has a conversion ratio optimized such that the actual yield and the yield value are close to each other within the detection range within a specific range, the yield conversion unit is optimum according to the range of detection values. You can select a conversion table. As a result, it is possible to accurately calculate the yield of grains discharged from the grain transfer path to the grain tank based on the detection value of the yield sensor.
本発明において、前記変換テーブルは、前記検出値が大きい程、前記変換比率が小さな変換テーブルを選択し、かつ、前記検出値が小さい程、前記変換比率が大きな変換テーブルを選択すると好適である。
In the present invention, it is preferable that the conversion table select a conversion table with a smaller conversion ratio as the detected value is larger, and select a conversion table with a larger conversion ratio as the detected value is smaller.
本構成であれば、穀粒の放出量が少なく、実際の穀粒の放出量に対して収量センサの歪み量が少なくなる場合でも、大きな変換比率を有する変換テーブルを収量変換部が選択することによって、検出値から算出される収量値の精度が向上する。
With this configuration, the yield conversion unit should select a conversion table having a large conversion ratio, even when the amount of released grain is small and the amount of distortion of the yield sensor decreases relative to the actual amount of released grain. By this, the accuracy of the yield value calculated from the detected value is improved.
本発明において、前記記憶部に、前記複数の変換テーブルとして、前記検出値が第一閾値よりも小さいときに用いられる第一テーブルと、前記検出値が前記第一閾値と前記第一閾値よりも大きな第二閾値との間のときに用いられる第二テーブルと、前記検出値が前記第二閾値よりも大きいときに用いられる第三テーブルと、が記憶されており、前記第一テーブルにおける前記変換比率は一定値であり、前記第三テーブルにおける前記変換比率は、前記第一テーブルの前記変換比率とは異なる値の一定値であり、前記第二テーブルにおける前記変換比率は、前記第一テーブルの前記変換比率と前記第三テーブルの前記変換比率とを線形補完するように、前記検出値に応じて比例変化するものであると好適である。
In the present invention, in the storage unit, as the plurality of conversion tables, a first table used when the detected value is smaller than a first threshold, and the detected value is higher than the first threshold and the first threshold. A second table used when it is between a large second threshold and a third table used when the detected value is larger than the second threshold are stored, and the conversion in the first table is performed. The ratio is a constant value, the conversion ratio in the third table is a constant value of a value different from the conversion ratio of the first table, and the conversion ratio in the second table is the value of the first table. It is preferable that the conversion ratio and the conversion ratio of the third table linearly change according to the detected value so as to be linearly complemented.
検出値が、第一閾値又は第二閾値を跨ぎつつ微小に変化して、変換テーブルの選択が切替わる場合がある。このとき、変換テーブルの切替わりによって、変換比率の値が大きく変化すると、検出値に基づいて算出される収量値が大きく変化し、実際の収量に対して大きな誤差が生じる虞がある。本構成であれば、検出値が第一閾値又は第二閾値を跨ぎつつ微小に変化して、変換テーブルの選択が切替わる場合であっても、変換比率の値が殆ど変化せずに、収量値の変化も微小なものに留まる。このため、検出値から算出される収量値と、実際の収量と、に大きな誤差が生じなくなり、収量値の精度が向上する。
The detection value may slightly change while crossing the first threshold or the second threshold, and the selection of the conversion table may be switched. At this time, if the value of the conversion ratio changes significantly due to switching of the conversion table, the yield value calculated based on the detected value may change significantly, and a large error may occur with respect to the actual yield. With this configuration, even if the detection value changes slightly while crossing the first threshold or the second threshold and the selection of the conversion table is switched, the value of the conversion ratio hardly changes, and the yield The change in value is also small. Therefore, a large error does not occur in the yield value calculated from the detected value and the actual yield, and the accuracy of the yield value is improved.
本発明において、前記記憶部に、前記複数の変換テーブルとして、前記検出値が前記第二閾値よりも大きな第三閾値と前記第三閾値よりも大きな第四閾値との間のときに用いられる第四テーブルと、前記検出値が前記第四閾値よりも大きいときに用いられる第五テーブルと、が記憶されており、前記第五テーブルにおける前記変換比率は、前記第一テーブルの前記変換比率及び前記第三テーブルの前記変換比率とは異なる値の一定値であり、前記第四テーブルにおける前記変換比率は、前記第三テーブルの前記変換比率と前記第五テーブルの前記変換比率とを線形補完するように、前記検出値に応じて比例変化するものであり、前記第二テーブルにおける前記変換比率の比例変化率は、前記第四テーブルにおける前記変換比率の比例変化率よりも大きいと好適である。
In the present invention, in the storage unit, the plurality of conversion tables are used when the detection value is between a third threshold larger than the second threshold and a fourth threshold larger than the third threshold. Four tables and a fifth table used when the detected value is larger than the fourth threshold are stored, and the conversion ratio in the fifth table is the conversion ratio of the first table and the conversion ratio. The conversion ratio of the third table is a fixed value different from the conversion ratio, and the conversion ratio of the fourth table is such that it linearly complements the conversion ratio of the third table and the conversion ratio of the fifth table. And the proportional change rate of the conversion ratio in the second table is proportional to the change rate of the conversion ratio in the fourth table. Ri is also a large and suitable.
穀粒タンクに放出される穀粒の量が多くなると、穀粒が収量センサに万遍なく押し当てられて、収量センサに掛かる圧力分布が安定するので、収量センサによる検出値と実際の収量とが線形比例の関係に近づく。本構成であれば、第三閾値と第四閾値との間で検出値が変化すると、第一閾値と第二閾値との間で検出値が変化する場合と比較して、変換比率の変化が緩やかになる。これにより、検出値から算出される収量値の変化も極力線形比例の状態に近づくようになる。その結果、穀粒の放出量が多いときの収量値の精度が向上する。
If the amount of grain discharged to the grain tank increases, the grain is pressed against the yield sensor evenly, and the pressure distribution applied to the yield sensor becomes stable, so the detected value by the yield sensor and the actual yield Approaches a linear proportional relationship. With this configuration, when the detected value changes between the third threshold and the fourth threshold, the change in conversion ratio is smaller than when the detected value changes between the first threshold and the second threshold. It becomes loose. As a result, the change in the yield value calculated from the detected value also approaches linear proportionality as much as possible. As a result, the accuracy of the yield value when the amount of kernel release is large is improved.
〔収穫機の基本構成〕
本発明による収穫機について、その実施形態を図面に基づいて説明する。なお、本実施形態では、機体横幅方向における左側又は右側は、機体進行方向に向かう状態における左右を定義するものとする。 [Basic configuration of harvester]
An embodiment of a harvester according to the present invention will be described based on the drawings. In the present embodiment, the left side or the right side in the machine body width direction defines left and right in a state in which the machine body travels in the direction of travel.
本発明による収穫機について、その実施形態を図面に基づいて説明する。なお、本実施形態では、機体横幅方向における左側又は右側は、機体進行方向に向かう状態における左右を定義するものとする。 [Basic configuration of harvester]
An embodiment of a harvester according to the present invention will be described based on the drawings. In the present embodiment, the left side or the right side in the machine body width direction defines left and right in a state in which the machine body travels in the direction of travel.
図1及び図2に、収穫機の一例である普通型コンバインが示されている。複数の鋼材を連結した機体フレーム1が収穫機に備えられ、機体フレーム1の下部に左右一対のクローラ走行装置2が設けられている。機体フレーム1における前右部にエンジンEが搭載され、その上方に運転用キャビン3が設けられている。機体フレーム1の前方に刈取部4が昇降自在に装着されている。機体フレーム1の後部において、刈取部4から搬送フィーダ5によって供給された刈取穀稈を全稈投入して脱穀する脱穀装置6と、脱穀装置6によって脱穀された穀粒を貯留する穀粒タンク7と、が左右方向に並んで装着されている。また、穀粒タンク7に隣接して装着されたアンローダ8によって、穀粒タンク7に貯留された穀粒が外部へ排出される。穀粒タンク7の前部下端に重量センサ40が設けられており、重量センサ40は、穀粒タンク7の総重量に基づいて穀粒の収量を検出するものである。
1 and 2 show a conventional combine that is an example of a harvester. An airframe frame 1 in which a plurality of steel materials are connected is provided in a harvester, and a pair of left and right crawler traveling devices 2 is provided in a lower portion of the airframe frame 1. An engine E is mounted on the front right portion of the fuselage frame 1, and a driving cabin 3 is provided above the engine E. A reaper 4 is attached to the front of the machine frame 1 so as to be able to move up and down. A threshing device 6 for threshing the whole of the reaping grain gutter supplied from the reaper 4 by the conveying feeder 5 at the rear of the airframe frame 1 And are mounted side by side in the left-right direction. In addition, the unloader 8 mounted adjacent to the grain tank 7 discharges the grain stored in the grain tank 7 to the outside. A weight sensor 40 is provided at the front lower end of the grain tank 7, and the weight sensor 40 detects the grain yield based on the total weight of the grain tank 7.
〔穀粒搬送経路〕
図3に示されているように、脱穀装置6と穀粒タンク7とは穀粒搬送経路10で結ばれている。穀粒搬送経路10に、脱穀装置6の底部に設けられた一番物搬送スクリュー10Aと、脱穀装置6と穀粒タンク7との間に配置された揚送コンベヤ10Bと、穀粒タンク7の左側壁の前上部を貫通する横送りスクリュー10Cと、が備えられている。揚送コンベヤ10Bはバケットコンベヤであり、無端回動チェーン10Eがスプロケット10Dに巻き掛けられて揚送コンベヤ10Bの搬送方向両端に亘っており、無端回動チェーン10Eの外周側に複数のバケット10Fが一定間隔で設けられている。脱穀装置6の底部で回収された穀粒は、一番物搬送スクリュー10Aによって脱穀装置6の右横側外方に排出されたのち、揚送コンベヤ10Bによって穀粒タンク7の上方に向けて搬送され、横送りスクリュー10Cによって穀粒タンク7の外側から内側へ搬送される。 [Grain transport route]
As shown in FIG. 3, thethreshing device 6 and the grain tank 7 are connected by a grain conveyance path 10. In the grain conveyance path 10, a first thing conveyance screw 10A provided at the bottom of the threshing device 6, a lifting conveyor 10B disposed between the threshing device 6 and the grain tank 7, and the grain tank 7 And a transverse feed screw 10C penetrating the front upper portion of the left side wall. The lift conveyor 10B is a bucket conveyor, and an endless rotation chain 10E is wound around a sprocket 10D so as to extend across the transport direction both ends of the lift conveyor 10B, and a plurality of buckets 10F are provided on the outer peripheral side of the endless rotation chain 10E It is provided at regular intervals. The grains collected at the bottom of the threshing device 6 are discharged to the right lateral side outward of the threshing device 6 by the one-piece conveying screw 10A, and then transported upward of the grain tank 7 by the lifting conveyor 10B. And transported from the outside to the inside of the grain tank 7 by the crossfeed screw 10C.
図3に示されているように、脱穀装置6と穀粒タンク7とは穀粒搬送経路10で結ばれている。穀粒搬送経路10に、脱穀装置6の底部に設けられた一番物搬送スクリュー10Aと、脱穀装置6と穀粒タンク7との間に配置された揚送コンベヤ10Bと、穀粒タンク7の左側壁の前上部を貫通する横送りスクリュー10Cと、が備えられている。揚送コンベヤ10Bはバケットコンベヤであり、無端回動チェーン10Eがスプロケット10Dに巻き掛けられて揚送コンベヤ10Bの搬送方向両端に亘っており、無端回動チェーン10Eの外周側に複数のバケット10Fが一定間隔で設けられている。脱穀装置6の底部で回収された穀粒は、一番物搬送スクリュー10Aによって脱穀装置6の右横側外方に排出されたのち、揚送コンベヤ10Bによって穀粒タンク7の上方に向けて搬送され、横送りスクリュー10Cによって穀粒タンク7の外側から内側へ搬送される。 [Grain transport route]
As shown in FIG. 3, the
図3及び図4に示されているように、穀粒搬送経路10の終端領域に、穀粒を穀粒タンク7の内部に跳ね飛ばす穀粒放出装置11が設けられている。穀粒放出装置11に、放出回転体12と、放出回転体12の周囲を覆う放出ケース13と、が備えられている。放出回転体12は、横送りスクリュー10Cから搬送方向終端側に延長された回転軸12Aと、回転軸12Aから放出ケース13内側の範囲で一方向に延出する投擲板12Bと、を有する回転羽根である。放出ケース13の機体後側に、放出口13Aが、機体側面視でC字状に形成されている。放出口13Aは、放出回転体12の軸芯方向Pで投擲板12Bの幅よりも大きく形成されている。投擲板12Bは矢印Rで示された方向に回転し、放出ケース13に搬送された穀粒は、投擲板12Bによって放出口13Aから穀粒タンク7の内部へ押し出される。
As shown in FIG. 3 and FIG. 4, a grain discharging device 11 for splashing grains to the inside of the grain tank 7 is provided at the end region of the grain conveyance path 10. The grain releasing apparatus 11 is provided with a releasing rotating body 12 and a releasing case 13 which covers the periphery of the releasing rotating body 12. The discharge rotary body 12 has a rotary shaft 12A extended from the transverse feed screw 10C to the end in the conveying direction, and a rotary blade 12B having a throw plate 12B extending in one direction in the range from the rotary shaft 12A to the inner side of the discharge case 13 It is. A discharge port 13A is formed in a C shape on the rear side of the release case 13 in a side view of the airframe. The discharge port 13A is formed larger in the axial direction P of the discharge rotating body 12 than the width of the anchor plate 12B. The throwing plate 12B rotates in the direction indicated by the arrow R, and the grain transported to the discharge case 13 is pushed out of the discharge port 13A into the grain tank 7 by the throwing plate 12B.
回転軸12Aから、投擲板12Bが位置する側と反対側に延出する状態で突起部12Cが備えられている。突起部12Cの回転は回転センサ21(図5)によって検出され、突起部12Cが回転センサ21を通過するタイミングで回転パルスが発生し、一回転がカウントされる。
A protrusion 12C is provided in a state of extending from the rotation shaft 12A to the opposite side to the side where the anchor plate 12B is located. The rotation of the projection 12C is detected by the rotation sensor 21 (FIG. 5), and a rotation pulse is generated at the timing when the projection 12C passes the rotation sensor 21, and one rotation is counted.
〔収量センサ〕
図4に示されているように、放出口13Aに対向する状態で、穀粒の放出量を計測する収量センサ20が、支持フレーム22に支持された状態で設けられている。収量センサ20に、平板状の検知板20Aとロードセル20Bとがスペーサ20Cを介して備えられている。ロードセル20Bと支持フレーム22との間にスペーサ20Dが設けられている。詳細な図示はしないが、スペーサ20Cはロードセル20Bの一端側の上端に接して設けられ、スペーサ20Dはロードセル20Bの他端側の下端に接して設けられている。この構成によって、検知板20Aに荷重が掛かると、ロードセル20Bの歪みが促進される。 [Yield sensor]
As shown in FIG. 4, ayield sensor 20 for measuring the amount of release of the grain is provided in a state of being supported by the support frame 22 in a state of facing the discharge port 13A. The yield sensor 20 is provided with a flat detection plate 20A and a load cell 20B via a spacer 20C. A spacer 20D is provided between the load cell 20B and the support frame 22. Although not shown in detail, the spacer 20C is provided in contact with the upper end on one end side of the load cell 20B, and the spacer 20D is provided in contact with the lower end on the other end side of the load cell 20B. With this configuration, when a load is applied to the detection plate 20A, distortion of the load cell 20B is promoted.
図4に示されているように、放出口13Aに対向する状態で、穀粒の放出量を計測する収量センサ20が、支持フレーム22に支持された状態で設けられている。収量センサ20に、平板状の検知板20Aとロードセル20Bとがスペーサ20Cを介して備えられている。ロードセル20Bと支持フレーム22との間にスペーサ20Dが設けられている。詳細な図示はしないが、スペーサ20Cはロードセル20Bの一端側の上端に接して設けられ、スペーサ20Dはロードセル20Bの他端側の下端に接して設けられている。この構成によって、検知板20Aに荷重が掛かると、ロードセル20Bの歪みが促進される。 [Yield sensor]
As shown in FIG. 4, a
穀粒は、投擲板12Bによって放出口13Aから放出され、検知板20Aに押し当てられる。穀粒の押圧力によってロードセル20Bに歪みが生じて電気信号が発生する。穀粒の収量を評価するための検出信号として、この電気信号が用いられ、例えば電気信号は電圧値や電流値で表される。穀粒搬送経路10から送られてくる穀粒の放出量が多くなる程、検知板20Aに対する穀粒の押圧力は大きくなり、ロードセル20Bの検出信号も大きくなる。
The grain is discharged from the outlet 13A by the throwing plate 12B and pressed against the detection plate 20A. The pressing force of the kernel causes the load cell 20B to be distorted to generate an electric signal. This electrical signal is used as a detection signal for evaluating the grain yield, and, for example, the electrical signal is represented by a voltage value or a current value. As the amount of release of the grain sent from the grain transport path 10 increases, the pressing force of the grain on the detection plate 20A increases and the detection signal of the load cell 20B also increases.
穀粒搬送経路10から搬送される穀粒の放出量が多い場合、放出口13Aから放出される穀粒は、放出口13Aの左右幅における全幅から万遍なく跳ね飛ばされる。これに伴い、穀粒が検知板20Aに万遍なく押し当てられるため、検知板20Aに掛かる圧力分布が均一になる。したがって、穀粒の放出量が多ければ、ロードセル20Bに掛かる歪み量は、穀粒の放出量に比例する。しかし、穀粒搬送経路10から搬送される穀粒の放出量が少ない場合、放出口13Aから放出される穀粒は、放出口13Aのうち、脱穀装置6の位置する側に偏った状態で放出される。この状態で、穀粒が検知板20Aの一部のみに押し当てられるため、検知板20Aに掛かる圧力分布にばらつきや偏りが生じ、ロードセル20Bの歪み量が少なくなる。このことから、ロードセル20Bの検出信号と実際の収量との関係が、線形比例の関係にならない。このような問題を解決するために用いられる変換テーブルについて、以下に説明する。
When the release amount of the grain transported from the grain transport path 10 is large, the grain discharged from the discharge port 13A is splashed evenly from the entire width in the left and right width of the discharge port 13A. Along with this, since the grain is uniformly pressed against the detection plate 20A, the pressure distribution applied to the detection plate 20A becomes uniform. Therefore, if the release amount of kernels is large, the strain amount applied to the load cell 20B is proportional to the release amount of kernels. However, when the release amount of the kernel transported from the kernel transport path 10 is small, the kernel discharged from the outlet 13A is released in a state of being biased to the side where the threshing device 6 is located among the outlets 13A. Be done. In this state, since the grain is pressed against only a part of the detection plate 20A, the pressure distribution applied to the detection plate 20A is uneven or uneven, and the amount of distortion of the load cell 20B is reduced. From this, the relationship between the detection signal of the load cell 20B and the actual yield does not become linear proportional. The conversion table used to solve such a problem is described below.
〔変換テーブル〕
ロードセル20Bの検出信号に基づいて収量値を算出する収量算出ユニット30を、図5乃至図8に基づいて説明する。収量算出ユニット30は、例えば、機体に搭載されたマイクロコンピュータに組み込まれたモジュールである。収量算出ユニット30に、入力インターフェースである入力信号処理部31と、ロードセル20Bの検出信号に基づいて収量値を算出する収量変換部32と、収量値の算出に用いられる変換テーブルTが記憶された記憶部33と、が備えられている。入力信号処理部31は、収量センサ20及び回転センサ21と接続しており、ロードセル20Bの検出信号と回転センサ21の回転パルスとが入力信号処理部31に入力される。検出信号の継時的な波形が回転パルス毎に区切られることによって、一回転分の区間における検出信号の波形が求められる。 [Conversion table]
Theyield calculation unit 30 for calculating the yield value based on the detection signal of the load cell 20B will be described based on FIGS. 5 to 8. The yield calculation unit 30 is, for example, a module incorporated in a microcomputer mounted on the machine. The yield calculation unit 30 stores the input signal processing unit 31 which is an input interface, the yield conversion unit 32 which calculates the yield value based on the detection signal of the load cell 20B, and the conversion table T used for calculating the yield value. A storage unit 33 is provided. The input signal processing unit 31 is connected to the yield sensor 20 and the rotation sensor 21, and the detection signal of the load cell 20 B and the rotation pulse of the rotation sensor 21 are input to the input signal processing unit 31. By dividing the sequential waveform of the detection signal into each rotation pulse, the waveform of the detection signal in the section of one rotation can be obtained.
ロードセル20Bの検出信号に基づいて収量値を算出する収量算出ユニット30を、図5乃至図8に基づいて説明する。収量算出ユニット30は、例えば、機体に搭載されたマイクロコンピュータに組み込まれたモジュールである。収量算出ユニット30に、入力インターフェースである入力信号処理部31と、ロードセル20Bの検出信号に基づいて収量値を算出する収量変換部32と、収量値の算出に用いられる変換テーブルTが記憶された記憶部33と、が備えられている。入力信号処理部31は、収量センサ20及び回転センサ21と接続しており、ロードセル20Bの検出信号と回転センサ21の回転パルスとが入力信号処理部31に入力される。検出信号の継時的な波形が回転パルス毎に区切られることによって、一回転分の区間における検出信号の波形が求められる。 [Conversion table]
The
横送りスクリュー10Cから送られてくる穀粒は、投擲板12Bの回転によって放出口13Aから放出ケース13の外側に押し出されて、検知板20Aに押し当てられる。投擲板12Bが放出口13Aを通過するタイミングで、検知板20Aに押し当てられる穀粒の量が多くなり、検知板20Aに掛かる押圧力が大きくなる。この時の検出信号は、投擲板12Bの一回転の中で最大値となる。入力信号処理部31によって、一回転毎に検出信号の波形から検出信号の最大値が求められ、検出信号の最大値が検出値Xとして収量変換部32へ出力される。本実施形態では、回転軸12Aから、投擲板12Bが位置する側と反対側に、突起部12Cが備えられているため、一回転分の区間の中央付近で検出信号が最大値となる。
The grains sent from the crossfeed screw 10C are pushed out of the discharge port 13A to the outside of the discharge case 13 by the rotation of the throwing plate 12B and pressed against the detection plate 20A. At the timing when the throwing plate 12B passes through the outlet 13A, the amount of grains pressed against the detection plate 20A increases, and the pressing force applied to the detection plate 20A increases. The detection signal at this time has a maximum value in one rotation of the throwing plate 12B. The input signal processing unit 31 obtains the maximum value of the detection signal from the waveform of the detection signal for each rotation, and the maximum value of the detection signal is output to the yield conversion unit 32 as the detection value X. In the present embodiment, since the projection 12C is provided on the side opposite to the side where the throwing plate 12B is located from the rotation shaft 12A, the detection signal has a maximum value near the center of the section for one rotation.
記憶部33に、図6に示されているような複数の変換テーブルTが記憶されている。夫々の変換テーブルTは、検出値Xの任意の範囲に亘って、検出値Xと変換比率Aとが紐付けられた情報を有する。検出値Xが入力信号処理部31によって出力され、検出範囲内に検出値Xを含む変換テーブルTが、収量変換部32によって複数の変換テーブルTから一つ選択される。テーブルの個数は適宜決定される数値であるが、本実施形態では、第一テーブルT1から第五テーブルT5までの五つの変換テーブルTが、夫々異なる変換比率Aを有する状態で記憶部33に記憶されている。五つの変換テーブルTは、検出値Xの範囲に応じて、第一閾値X1、第二閾値X2、第三閾値X3、第四閾値X4で区切られている。ここで、第一閾値X1,第二閾値X2,第三閾値X3,第四閾値X4は、適宜決定される数値である。
The storage unit 33 stores a plurality of conversion tables T as shown in FIG. Each conversion table T has information in which the detection value X and the conversion ratio A are linked over an arbitrary range of the detection value X. The detected value X is output by the input signal processing unit 31, and one conversion table T including the detected value X within the detection range is selected by the yield conversion unit 32 from the plurality of conversion tables T. The number of tables is a numerical value determined as appropriate, but in the present embodiment, the five conversion tables T from the first table T1 to the fifth table T5 are stored in the storage unit 33 in a state in which they have different conversion ratios A. It is done. Five conversion tables T are divided by a first threshold X1, a second threshold X2, a third threshold X3, and a fourth threshold X4 according to the range of the detection value X. Here, the first threshold value X1, the second threshold value X2, the third threshold value X3, and the fourth threshold value X4 are numerical values appropriately determined.
これら複数の変換テーブルTを組み合わせると、図7のグラフに示されているように、検出値Xが大きくなる程、変換比率Aの値が右肩下がりとなる。つまり、検出値Xが小さい場合、大きな変換比率を有する変換テーブルTが選択されて収量変換部32の変換に用いられ、検出値Xが大きくなると、小さな変換比率を有する変換テーブルTが選択されて収量変換部32の変換に用いられる。例えば、検出値Xが第一閾値X1未満の場合に、収量変換部32は第一テーブルT1を選択し、検出値Xが第一閾値X1以上、かつ、第二閾値X2未満の場合に、収量変換部32は第二テーブルT2を選択する、というパターンで変換テーブルTが選択される。本実施形態では、第一閾値X1,第二閾値X2,第三閾値X3,第四閾値X4は、第二テーブルT2,第三テーブルT3,第四テーブルT4,第五テーブルT5における検出値Xの下限値として設定されている。
When the plurality of conversion tables T are combined, as shown in the graph of FIG. 7, as the detected value X becomes larger, the value of the conversion ratio A falls to the right. That is, when the detection value X is small, the conversion table T having a large conversion ratio is selected and used for conversion by the yield conversion unit 32. When the detection value X becomes large, the conversion table T having a small conversion ratio is selected. It is used for the conversion of the yield conversion unit 32. For example, when the detected value X is less than the first threshold X1, the yield conversion unit 32 selects the first table T1, and when the detected value X is greater than or equal to the first threshold X1 and less than the second threshold X2, the yield The conversion table T is selected in a pattern that the conversion unit 32 selects the second table T2. In the present embodiment, the first threshold X1, the second threshold X2, the third threshold X3, and the fourth threshold X4 are the second table T2, the third table T3, the fourth table T4, and the fifth table T5. It is set as the lower limit value.
収量変換部32は、検出値Xに基づいて選択された変換テーブルTから変換比率Aを取得し、変換比率Aと検出値Xとを以下の数式に基づいて掛け合わせ、収量値Vを算出する。
The yield conversion unit 32 obtains the conversion ratio A from the conversion table T selected based on the detection value X, and multiplies the conversion ratio A by the detection value X based on the following formula to calculate the yield value V. .
収量値V=(A・X)+p
収量値Vは、収穫機の単位走行距離当りにおける穀粒の収量を表す。pは、付加係数であり、零値や負の値を含む任意の値を設定できる。 Yield value V = (A · X) + p
The yield value V represents the grain yield per unit travel distance of the harvester. p is an additional coefficient, and can be set to any value including zero and negative values.
収量値Vは、収穫機の単位走行距離当りにおける穀粒の収量を表す。pは、付加係数であり、零値や負の値を含む任意の値を設定できる。 Yield value V = (A · X) + p
The yield value V represents the grain yield per unit travel distance of the harvester. p is an additional coefficient, and can be set to any value including zero and negative values.
第一テーブルT1、第三テーブルT3及び第五テーブルT5の検出範囲は、検出値Xと実際の収量との関係で線形比例の関係が容易に成立する範囲である。このため、第一テーブルT1、第三テーブルT3及び第五テーブルT5は、検出範囲内の全範囲に亘って一定となるように、単一の変換比率A10,A30,A50を夫々有する。図6及び図8のグラフに示されているように、第一テーブルT1における検出値X(1乃至9)と収量値V(V10乃至V19)との関係は、線形比例の関係となる。また、第三テーブルT3における検出値X(20乃至29)と収量値V(V30乃至V39)との関係も線形比例の関係となり、第五テーブルT5における検出値X(40以上)と収量値V(V50以上)との関係も線形比例の関係となる。なお、変換比率A10,A30,A50は、実験によって適宜決定される数値である。
The detection range of the first table T1, the third table T3 and the fifth table T5 is a range in which a linear proportional relationship is easily established by the relationship between the detection value X and the actual yield. For this reason, the first table T1, the third table T3 and the fifth table T5 respectively have single conversion ratios A10, A30, A50 so as to be constant over the entire range within the detection range. As shown in the graphs of FIGS. 6 and 8, the relationship between the detected value X (1 to 9) and the yield value V (V10 to V19) in the first table T1 is a linear proportional relationship. Further, the relationship between the detected value X (20 to 29) and the yield value V (V30 to V39) in the third table T3 is also a linear proportional relationship, and the detected value X (40 or more) and the yield value V in the fifth table T5. The relationship with (V50 or more) is also a linear proportional relationship. The conversion ratios A10, A30, and A50 are numerical values appropriately determined by experiments.
検出値Xが第一閾値X1,第二閾値X2,第三閾値X3,第四閾値X4の何れかの閾値を跨ぎつつ微小に変化して、変換テーブルTの選択が切替わる場合がある。このとき、変換比率Aの値が異なる値に変化すると、検出値Xの変化が微小であっても収量値Vの値がステップ状に変化して、収量値Vが実際の収量と乖離する虞がある。例えば、図8のグラフにおける破線で示されるように、第二テーブルT2の検出範囲において、変換比率A10の場合と変換比率A30の場合とでは、検出値Xが同一の値でも算出される収量値Vは異なる値となる。このため、検出値Xの変化に対して変換比率Aの値が大きく変化しないように、第二テーブルT2及び第四テーブルT4は構成されている。
The selection of the conversion table T may be switched when the detection value X slightly changes while crossing any of the first threshold X1, the second threshold X2, the third threshold X3, and the fourth threshold X4. At this time, if the value of the conversion ratio A changes to a different value, even if the change in the detected value X is small, the value of the yield value V changes in a step shape, and the yield value V may deviate from the actual yield. There is. For example, as indicated by the broken line in the graph of FIG. 8, in the detection range of the second table T2, the yield value is calculated even with the same detection value X between the conversion ratio A10 and the conversion ratio A30. V takes different values. Therefore, the second table T2 and the fourth table T4 are configured such that the value of the conversion ratio A does not change significantly with respect to the change of the detection value X.
第二テーブルT2の変換比率A20乃至A29は、変換比率A10と変換比率A30とを線形補完する状態で、検出値Xに対して比例変化するように、第二テーブルT2が構成されている。また、第四テーブルT4の変換比率A40乃至A49は、変換比率A30と変換比率A50とを線形補完する状態で、検出値Xに対して比例変化するように、第四テーブルT4が構成されている。したがって、図6及び図8のグラフに示されているように、検出値Xの値が大きくなる程、変換比率A20乃至A29の値が徐々に小さくなり、変換比率A40乃至A49の値も徐々に小さくなる。図6及び図8のグラフに示されているように、第二テーブルT2における検出値X(10乃至19)と収量値V(V20乃至V29)との関係は、グラフの二次曲線で描かれる関係となる。また、第四テーブルT4における検出値X(30乃至39)と収量値V(V40乃至V49)との関係も、グラフの二次曲線で描かれる関係となる。
The second table T2 is configured such that the conversion ratios A20 to A29 of the second table T2 change in proportion to the detection value X in a state in which the conversion ratio A10 and the conversion ratio A30 are linearly complemented. Further, the fourth table T4 is configured such that the conversion ratios A40 to A49 of the fourth table T4 change in proportion to the detection value X in a state in which the conversion ratio A30 and the conversion ratio A50 are linearly complemented. . Therefore, as shown in the graphs of FIGS. 6 and 8, as the detected value X increases, the values of the conversion ratios A20 to A29 gradually decrease, and the values of the conversion ratios A40 to A49 also gradually decrease. It becomes smaller. As shown in the graphs of FIGS. 6 and 8, the relationship between the detected value X (10 to 19) and the yield value V (V20 to V29) in the second table T2 is drawn by a quadratic curve of the graph It becomes a relationship. Further, the relationship between the detection value X (30 to 39) and the yield value V (V40 to V49) in the fourth table T4 is also a relationship drawn by a quadratic curve of the graph.
この構成によって、変換テーブルTの選択が切替えられても、検出値Xの連続的な変化に応じて、変換比率A及び収量値Vが、ステップ状に変化せずに無段階に変化し、検出値Xに基づいて算出される収量値Vの精度が向上する。
With this configuration, even if the selection of the conversion table T is switched, the conversion ratio A and the yield value V change steplessly without changing in a step-like manner according to the continuous change of the detection value X, and detection The accuracy of the yield value V calculated based on the value X is improved.
放出口13Aから放出される穀粒の量が多くなる程、検知板20Aに掛かる圧力分布が安定し、ロードセル20Bの歪みが穀粒の放出量に比例し易くなる。このため、変換比率Aが比例変化する構成の変換テーブルTで、検出値Xが大きい側の変換テーブルTにおける変換比率Aの比例変化率が、検出値Xが小さい側の変換テーブルTにおける変換比率Aの比例変化率よりも小さくなるように、変換テーブルTが構成されている。本実施形態では、検出値Xが大きい側の第四テーブルT4における変換比率Aの比例変化率は、検出値Xが小さい側の第二テーブルT2における変換比率Aの比例変化率よりも小さい。これにより、第四テーブルT4の検出範囲内における検出値Xと収量値Vとの関係が極力線形比例の関係に近づく。
As the amount of kernels discharged from the outlet 13A increases, the pressure distribution applied to the detection plate 20A becomes more stable, and the strain of the load cell 20B tends to be proportional to the amount of kernels released. Therefore, in the conversion table T having a configuration in which the conversion ratio A changes in proportion, the conversion ratio in the conversion table T on the side where the detection value X is smaller is the conversion ratio on the side where the detection value X is smaller. The conversion table T is configured to be smaller than the proportional change rate of A. In the present embodiment, the proportional change rate of the conversion ratio A in the fourth table T4 on the side where the detected value X is larger is smaller than the proportional change rate of the conversion ratio A in the second table T2 on the side where the detected value X is smaller. Thereby, the relationship between the detection value X and the yield value V in the detection range of the fourth table T4 approaches the linear proportional relationship as much as possible.
変換テーブルTの考え方は、図1に示される重量センサ40による穀粒の総重量の算出に適用される。例えば、穀粒タンク7の形状等の要因によって、穀粒タンク7の一部に穀粒が偏って溜り始めるような場合に、総重量を検出する重量センサ40の検出値と、実際の穀粒の総重量と、が線形比例の関係にならない虞がある。このような場合、変換テーブルTと同様の考えに基づいて、収量変換部32は、重量センサ40の検出値の大小に応じて、変換比率の異なる複数の変換テーブルから選択された一つの変換テーブルを用いて、重量センサ40の検出値を収量値に変換する。
The concept of the conversion table T is applied to the calculation of the total weight of kernels by the weight sensor 40 shown in FIG. For example, when grains start to be concentrated in a part of the grain tank 7 due to factors such as the shape of the grain tank 7, the detection value of the weight sensor 40 for detecting the total weight, and the actual grain There is a possibility that the total weight of and may not be in linear proportion. In such a case, the yield conversion unit 32 selects one conversion table selected from a plurality of conversion tables having different conversion ratios according to the magnitude of the detection value of the weight sensor 40 based on the same idea as the conversion table T. To convert the detected value of the weight sensor 40 into a yield value.
〔別実施形態〕
本発明は、上記の実施形態に例示された構成に限定されるものではなく、以下、本発明の代表的な別実施形態を例示する。 [Another embodiment]
The present invention is not limited to the configuration exemplified in the above-described embodiment, and hereinafter, another representative embodiment of the present invention will be illustrated.
本発明は、上記の実施形態に例示された構成に限定されるものではなく、以下、本発明の代表的な別実施形態を例示する。 [Another embodiment]
The present invention is not limited to the configuration exemplified in the above-described embodiment, and hereinafter, another representative embodiment of the present invention will be illustrated.
(1)上述した実施形態では、五つの変換テーブルTが記憶部33に記憶されているが、この実施形態に限定されず、テーブルの個数は二つ以上あれば良い。例えば、二つの変換テーブルのうち、一方の変換テーブルにおける変換比率Aが一定値であり、他方の変換テーブルにおける変換比率Aが比例変化する構成であっても良い。このとき、検出値Xの変化によって、変換テーブルが切替えられた場合、変換比率Aが、無段階でなく、ステップ状に変化する構成であっても良い。
(1) In the embodiment described above, five conversion tables T are stored in the storage unit 33, but the present invention is not limited to this embodiment, and the number of tables may be two or more. For example, among the two conversion tables, the conversion ratio A in one conversion table may be a constant value, and the conversion ratio A in the other conversion table may change in proportion. At this time, when the conversion table is switched due to the change of the detection value X, the conversion ratio A may not be stepless but may change stepwise.
(2)上述した実施形態では、変換テーブルTは複数の変換テーブルによって構成されているが、この実施形態に限定されない。例えば、図9に示されているように、一つの変換テーブルTが複数のサブテーブルによって構成され、この変換テーブルTが記憶部33に一つだけ記憶されても良い。
(2) In the embodiment described above, the conversion table T is configured by a plurality of conversion tables, but is not limited to this embodiment. For example, as shown in FIG. 9, one conversion table T may be configured by a plurality of sub-tables, and only one conversion table T may be stored in the storage unit 33.
(3)上述した実施形態では、第一閾値X1,第二閾値X2,第三閾値X3,第四閾値X4は、第二テーブルT2,第三テーブルT3,第四テーブルT4,第五テーブルT5における検出値Xの下限値として設定されているが、第一閾値X1、第二閾値X2、第三閾値X3、第四閾値X4の値が、どの変換テーブルに属するかは、適宜決定できる。例えば、第一閾値X1,第二閾値X2,第三閾値X3,第四閾値X4は、第一テーブルT1,第二テーブルT2,第三テーブルT3,第四テーブルT4における検出値Xの上限値として設定されても良い。また、一つの変換テーブルTに二つの閾値を設定することも可能である。例えば、検出値Xが第一閾値X1以上、かつ、第二閾値X2以下の場合に、収量変換部32は第二テーブルT2を選択する構成とすることも可能であるし、検出値Xが第三閾値X3以上、かつ、第四閾値X4以下の場合に、収量変換部32は第四テーブルT4を選択する構成とすることも可能である。
(3) In the embodiment described above, the first threshold X1, the second threshold X2, the third threshold X3, and the fourth threshold X4 correspond to the second table T2, the third table T3, the fourth table T4, and the fifth table T5. The lower limit value of the detection value X is set, but to which conversion table the values of the first threshold value X1, the second threshold value X2, the third threshold value X3, and the fourth threshold value X4 belong can be determined appropriately. For example, the first threshold X1, the second threshold X2, the third threshold X3, and the fourth threshold X4 are upper limit values of the detection value X in the first table T1, the second table T2, the third table T3, and the fourth table T4. It may be set. It is also possible to set two thresholds in one conversion table T. For example, when the detected value X is equal to or greater than the first threshold X1 and equal to or less than the second threshold X2, the yield conversion unit 32 may be configured to select the second table T2, and the detected value X may The yield conversion unit 32 may be configured to select the fourth table T4 when the third threshold X3 or more and the fourth threshold X4 or less.
(4)上述した実施形態に限定されず、全ての変換テーブルTの変換比率Aが一定値で構成されていても良い。この場合、各変換テーブルTの変換比率Aが夫々異なる値であっても、微小な検出範囲で指定された変換テーブルTが、変換比率Aの変化が微小となるように多数並べられることによって、収量値Vが小さなステップ状に変化するような構成であっても良い。
(4) The invention is not limited to the above-described embodiment, and the conversion ratios A of all the conversion tables T may be configured with a constant value. In this case, even if the conversion ratios A of the conversion tables T are different values, a large number of conversion tables T designated in a small detection range are arranged so that the change in the conversion ratio A becomes small. The configuration may be such that the yield value V changes in small steps.
(5)上述した実施形態では、検出値Xが大きくなるに連れて変換比率Aの値が右肩下がりとなるように、複数の変換テーブルTが構成されているが、この実施形態に限定されない。例えば、複数の変換テーブルTは、検出値Xが大きくなるに連れて変換比率Aの値が右肩上がりとなるように構成されていても良い。
(5) In the embodiment described above, the plurality of conversion tables T are configured such that the value of the conversion ratio A falls to the right as the detected value X increases, but the present invention is not limited to this embodiment. . For example, the plurality of conversion tables T may be configured such that the value of the conversion ratio A increases as the detected value X increases.
(6)収量値Vと、GPSの位置情報と、を紐付けることによって、収量値Vを、圃場の微小区画単位毎における収量の分布に用いることができる。また、収量値Vの積算値と、重量センサ40の検出値から算出される収量値と、の間に誤差があれば、過去の収量値Vの夫々を、誤差に応じて補正することができる。
(6) By associating the yield value V with the GPS position information, the yield value V can be used for the distribution of the yield for each minute section of the field. In addition, if there is an error between the integrated value of the yield value V and the yield value calculated from the detection value of the weight sensor 40, each of the past yield values V can be corrected according to the error. .
(7)上述した実施形態では、収量センサ20に、検知板20Aとロードセル20Bとがスペーサ20Cを介して備えられているが、収量センサ20は、穀粒の収量がロードセル20Bのみによって検出されるような構成であっても良い。また、穀粒の収量が、ロードセル20Bに代わって、歪みゲージセンサによって検出されるような構成であっても良い。
(7) In the embodiment described above, the detection plate 20A and the load cell 20B are provided in the yield sensor 20 via the spacer 20C, but the yield sensor 20 detects the grain yield only by the load cell 20B. It may be of such a configuration. Also, the configuration may be such that the yield of grain is detected by a strain gauge sensor instead of the load cell 20B.
(8)上述した実施形態に限定されず、変換テーブルTは、以下ように構成された収量センサにも適用可能である。例えば、図10に示されているように、放出口102が穀粒タンクの側壁100に形成され、収量センサ104が放出口102に隣接して配置される構成にも適用可能である。この例では、矢印Rの方向に回転して穀粒を脱穀装置の底部から垂直に搬送するスクリューコンベヤ101の上端に、スクリューコンベヤ101と一体回転する投擲板103が設けられている。穀粒は、投擲板103によって放出口102から跳ね飛ばされ、穀粒の圧力が収量センサ104によって検出される。即ち、収量センサ104に、検知板104Aとロードセル104Bとが備えられ、ロードセル104Bが、検知板104Aに掛かる穀粒の押圧力を検出する。
(8) The conversion table T is not limited to the embodiment described above, and can be applied to a yield sensor configured as follows. For example, as shown in FIG. 10, the configuration is also applicable to a configuration in which the outlet 102 is formed in the sidewall 100 of the grain tank and the yield sensor 104 is disposed adjacent to the outlet 102. In this example, a throwing plate 103 that rotates integrally with the screw conveyor 101 is provided at the upper end of the screw conveyor 101 that rotates in the direction of arrow R to vertically transport the grain from the bottom of the threshing apparatus. The grain is splashed from the outlet 102 by the throwing plate 103 and the pressure of the grain is detected by the yield sensor 104. That is, the yield sensor 104 is provided with a detection plate 104A and a load cell 104B, and the load cell 104B detects the pressing force of the grain applied to the detection plate 104A.
(9)上述した実施形態において、穀粒タンク7の前部下端に重量センサ40が設けられているが、重量センサ40は備えられていなくても良い。
(9) In the embodiment described above, the weight sensor 40 is provided at the front lower end of the grain tank 7, but the weight sensor 40 may not be provided.
(10)上述した実施形態では、収穫機として、普通型コンバインを例示したが、自脱側コンバイン等、穀粒を収穫する収穫機全般にも適用可能である。
(10) In the embodiment mentioned above, although a common type combine was illustrated as a harvest machine, it is applicable also to the whole harvest machine which harvests grain, such as a self-removal side combine.
6 :脱穀装置
7 :穀粒タンク
10 :穀粒搬送経路
11 :穀粒放出装置
12 :放出回転体
13 :放出ケース
14 :ロードセル
20 :収量センサ
31 :入力信号処理部
32 :収量変換部
33 :記憶部
T :変換テーブル
X :検出値
A :変換比率
V :収量値 6: threshing device 7: grain tank 10: grain conveyance route 11: grain discharging device 12: discharge rotating body 13: discharge case 14: load cell 20: yield sensor 31: input signal processing unit 32: yield conversion unit 33: Storage part T: Conversion table X: Detection value A: Conversion ratio V: Yield value
7 :穀粒タンク
10 :穀粒搬送経路
11 :穀粒放出装置
12 :放出回転体
13 :放出ケース
14 :ロードセル
20 :収量センサ
31 :入力信号処理部
32 :収量変換部
33 :記憶部
T :変換テーブル
X :検出値
A :変換比率
V :収量値 6: threshing device 7: grain tank 10: grain conveyance route 11: grain discharging device 12: discharge rotating body 13: discharge case 14: load cell 20: yield sensor 31: input signal processing unit 32: yield conversion unit 33: Storage part T: Conversion table X: Detection value A: Conversion ratio V: Yield value
Claims (4)
- 脱穀装置と、
前記脱穀装置で回収された穀粒を貯留する穀粒タンクと、
前記脱穀装置から前記穀粒タンクに穀粒を搬送する穀粒搬送経路と、
前記穀粒搬送経路を通過する穀粒の量に基づく圧力を検出する収量センサと、
前記収量センサによって検出された検出値を、収量を表す収量値に変換する収量変換部と、
前記検出値を前記収量値に変換する変換比率が異なる複数の変換テーブルが記憶された記憶部と、が備えられ、
前記収量変換部は、前記検出値の変換に際して、前記検出値の大小に応じて前記複数の変換テーブルから一つの変換テーブルを選択して変換に用いる収穫機。 A threshing device,
A grain tank for storing grains collected by the threshing device;
A grain transfer path for transferring grains from the threshing device to the grain tank;
A yield sensor for detecting pressure based on the amount of grain passing through the grain transport path;
A yield conversion unit configured to convert a detected value detected by the yield sensor into a yield value representing a yield;
A storage unit storing a plurality of conversion tables having different conversion ratios for converting the detected value into the yield value;
The yield conversion unit selects one conversion table from the plurality of conversion tables according to the magnitude of the detection value when converting the detection value, and is a harvester. - 前記変換テーブルは、前記検出値が大きい程、前記変換比率が小さな変換テーブルを選択し、かつ、前記検出値が小さい程、前記変換比率が大きな変換テーブルを選択する請求項1に記載の収穫機。 The harvester according to claim 1, wherein the conversion table selects a conversion table having a smaller conversion ratio as the detected value is larger, and selects a conversion table having a larger conversion ratio as the detected value is smaller. .
- 前記記憶部に、前記複数の変換テーブルとして、前記検出値が第一閾値よりも小さいときに用いられる第一テーブルと、前記検出値が前記第一閾値と前記第一閾値よりも大きな第二閾値との間のときに用いられる第二テーブルと、前記検出値が前記第二閾値よりも大きいときに用いられる第三テーブルと、が記憶されており、
前記第一テーブルにおける前記変換比率は一定値であり、
前記第三テーブルにおける前記変換比率は、前記第一テーブルの前記変換比率とは異なる値の一定値であり、
前記第二テーブルにおける前記変換比率は、前記第一テーブルの前記変換比率と前記第三テーブルの前記変換比率とを線形補完するように、前記検出値に応じて比例変化するものである請求項2に記載の収穫機。 In the storage unit, as the plurality of conversion tables, a first table used when the detected value is smaller than a first threshold, and a second threshold larger than the first threshold and the first threshold. And a third table used when the detected value is larger than the second threshold, and a second table used when
The conversion ratio in the first table is a constant value,
The conversion ratio in the third table is a constant value different from the conversion ratio of the first table,
The conversion ratio in the second table is proportionally changed according to the detection value so as to linearly complement the conversion ratio of the first table and the conversion ratio of the third table. Harvester described in. - 前記記憶部に、前記複数の変換テーブルとして、前記検出値が前記第二閾値よりも大きな第三閾値と前記第三閾値よりも大きな第四閾値との間のときに用いられる第四テーブルと、前記検出値が前記第四閾値よりも大きいときに用いられる第五テーブルと、が記憶されており、
前記第五テーブルにおける前記変換比率は、前記第一テーブルの前記変換比率及び前記第三テーブルの前記変換比率とは異なる値の一定値であり、
前記第四テーブルにおける前記変換比率は、前記第三テーブルの前記変換比率と前記第五テーブルの前記変換比率とを線形補完するように、前記検出値に応じて比例変化するものであり、
前記第二テーブルにおける前記変換比率の比例変化率は、前記第四テーブルにおける前記変換比率の比例変化率よりも大きい請求項3に記載の収穫機。 A fourth table used as the plurality of conversion tables in the storage unit when the detected value is between a third threshold larger than the second threshold and a fourth threshold larger than the third threshold; A fifth table used when the detected value is larger than the fourth threshold is stored,
The conversion ratio in the fifth table is a fixed value of a value different from the conversion ratio of the first table and the conversion ratio of the third table,
The conversion ratio in the fourth table changes in proportion to the detected value so as to linearly complement the conversion ratio of the third table and the conversion ratio of the fifth table,
The harvester according to claim 3, wherein a proportional change rate of the conversion ratio in the second table is larger than a proportional change rate of the conversion ratio in the fourth table.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020197031223A KR102596706B1 (en) | 2017-06-26 | 2018-06-22 | harvest |
CN201880029840.7A CN110753491B (en) | 2017-06-26 | 2018-06-22 | Harvesting machine |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017-124238 | 2017-06-26 | ||
JP2017124238A JP6754723B2 (en) | 2017-06-26 | 2017-06-26 | Harvester |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019004077A1 true WO2019004077A1 (en) | 2019-01-03 |
Family
ID=64740704
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/023790 WO2019004077A1 (en) | 2017-06-26 | 2018-06-22 | Harvesting machine |
Country Status (4)
Country | Link |
---|---|
JP (1) | JP6754723B2 (en) |
KR (1) | KR102596706B1 (en) |
CN (1) | CN110753491B (en) |
WO (1) | WO2019004077A1 (en) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05115218A (en) * | 1991-10-29 | 1993-05-14 | Iseki & Co Ltd | Apparatus for measuring amount of grain in grain tank |
JP2010271146A (en) * | 2009-05-20 | 2010-12-02 | Jfe Advantech Co Ltd | Laden weight detection device for vehicle |
JP2011223960A (en) * | 2010-04-22 | 2011-11-10 | Yanmar Co Ltd | Combine harvester |
JP2015082983A (en) * | 2013-10-25 | 2015-04-30 | ヤンマー株式会社 | Combine harvester |
WO2016047187A1 (en) * | 2014-09-25 | 2016-03-31 | 株式会社クボタ | Harvesting machine |
WO2016147521A1 (en) * | 2015-03-18 | 2016-09-22 | 株式会社クボタ | Combine, and grain-evaluation control device for combine |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5115218A (en) * | 1974-07-29 | 1976-02-06 | Nippon Steel Corp | GASUHORUDAA |
JPH06269213A (en) * | 1993-03-19 | 1994-09-27 | Seirei Ind Co Ltd | Protector for running speed change gear |
JP5809871B2 (en) * | 2011-07-20 | 2015-11-11 | ヤンマー株式会社 | Combine |
JP5980162B2 (en) * | 2013-04-26 | 2016-08-31 | 株式会社クボタ | Combine |
JP6338434B2 (en) * | 2014-04-22 | 2018-06-06 | ヤンマー株式会社 | Combine |
CN203942803U (en) * | 2014-05-27 | 2014-11-19 | 北京农业智能装备技术研究中心 | For detection of the device of grain yield |
JP6566833B2 (en) | 2015-10-20 | 2019-08-28 | ヤンマー株式会社 | Mapping system, mapping apparatus and computer program |
CN205336872U (en) * | 2016-01-22 | 2016-06-29 | 济南大学 | Intelligent corn combine fault monitoring system based on DSP |
-
2017
- 2017-06-26 JP JP2017124238A patent/JP6754723B2/en active Active
-
2018
- 2018-06-22 WO PCT/JP2018/023790 patent/WO2019004077A1/en active Application Filing
- 2018-06-22 CN CN201880029840.7A patent/CN110753491B/en active Active
- 2018-06-22 KR KR1020197031223A patent/KR102596706B1/en active IP Right Grant
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05115218A (en) * | 1991-10-29 | 1993-05-14 | Iseki & Co Ltd | Apparatus for measuring amount of grain in grain tank |
JP2010271146A (en) * | 2009-05-20 | 2010-12-02 | Jfe Advantech Co Ltd | Laden weight detection device for vehicle |
JP2011223960A (en) * | 2010-04-22 | 2011-11-10 | Yanmar Co Ltd | Combine harvester |
JP2015082983A (en) * | 2013-10-25 | 2015-04-30 | ヤンマー株式会社 | Combine harvester |
WO2016047187A1 (en) * | 2014-09-25 | 2016-03-31 | 株式会社クボタ | Harvesting machine |
WO2016147521A1 (en) * | 2015-03-18 | 2016-09-22 | 株式会社クボタ | Combine, and grain-evaluation control device for combine |
Also Published As
Publication number | Publication date |
---|---|
CN110753491B (en) | 2022-08-16 |
JP6754723B2 (en) | 2020-09-16 |
JP2019004789A (en) | 2019-01-17 |
KR20200019600A (en) | 2020-02-24 |
KR102596706B1 (en) | 2023-11-01 |
CN110753491A (en) | 2020-02-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10412887B2 (en) | Combine harvester including belt cutting unit and control unit | |
JP2019004796A (en) | Combine | |
EP1169905B1 (en) | An elevator for bulk material and related apparatuses | |
JP6566856B2 (en) | Grain quantity measuring device | |
CN108347883B (en) | Combine harvester and grain yield management system for combine harvester | |
WO2019004077A1 (en) | Harvesting machine | |
CN107074452B (en) | Feeding system for agricultural implement | |
JP6733119B2 (en) | combine | |
JP4689653B2 (en) | Combine | |
JP6715595B2 (en) | combine | |
KR102619441B1 (en) | combine | |
JP6832625B2 (en) | Grain yield management system for combine harvesters | |
JP2019004790A (en) | Harvesting machine | |
JP7085978B2 (en) | combine | |
JP2018011545A (en) | combine | |
JP2017063658A (en) | combine | |
CN106982592B (en) | Combine harvester | |
JP7159034B2 (en) | combine | |
JP2005237337A (en) | Combine | |
US1181350A (en) | Grain-saving device for threshing-machines. | |
JP4787576B2 (en) | Combine | |
JP6611178B2 (en) | Control device, combination weighing device, and combination weighing device system for combination weighing device | |
JP6446737B2 (en) | Combine | |
JP2017085971A (en) | combine | |
JP2018050512A (en) | combine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18824429 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20197031223 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18824429 Country of ref document: EP Kind code of ref document: A1 |