WO2019004019A1 - Photocurable resin composition and production method for image display device - Google Patents

Photocurable resin composition and production method for image display device Download PDF

Info

Publication number
WO2019004019A1
WO2019004019A1 PCT/JP2018/023439 JP2018023439W WO2019004019A1 WO 2019004019 A1 WO2019004019 A1 WO 2019004019A1 JP 2018023439 W JP2018023439 W JP 2018023439W WO 2019004019 A1 WO2019004019 A1 WO 2019004019A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymer
resin composition
photocurable resin
meth
acrylate
Prior art date
Application number
PCT/JP2018/023439
Other languages
French (fr)
Japanese (ja)
Inventor
菅原 直人
林 直樹
高橋 宏
中村 司
Original Assignee
デクセリアルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デクセリアルズ株式会社 filed Critical デクセリアルズ株式会社
Publication of WO2019004019A1 publication Critical patent/WO2019004019A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/44Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • C08F2/48Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light
    • C08F2/50Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light with sensitising agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F291/00Macromolecular compounds obtained by polymerising monomers on to macromolecular compounds according to more than one of the groups C08F251/00 - C08F289/00
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Macromonomer-Based Addition Polymer (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

Provided are a photocurable resin composition which has excellent surface properties and a production method for image display devices which comprises using the photocurable resin composition. A layer (3) of a photocurable resin composition which comprises a polymer having a weight-average molecular weight of 80,000 or higher, a reactive diluent monomer, and a photopolymerization initiator and which has a polymer content of 20-90 wt% is formed on a surface of a light-transmitting cover member (1), which has light transmission properties, or of an image display member (6). Due to the configuration, the amount of a liquid component separating out in the surface is small and excellent surface properties can be obtained.

Description

光硬化性樹脂組成物、及び画像表示装置の製造方法PHOTO-CURABLE RESIN COMPOSITION AND METHOD FOR MANUFACTURING IMAGE DISPLAY DEVICE
 本発明は、光透過性を有する第1の部材と第2の部材とを固定させる光硬化性樹脂組成物、及び画像表示装置の製造方法に関する。本出願は、日本国において2017年6月28日に出願された日本特許出願番号特願2017-125890を基礎として優先権を主張するものであり、この出願は参照されることにより、本出願に援用される。 The present invention relates to a photocurable resin composition for fixing a first member having light transparency and a second member, and a method of manufacturing an image display device. This application claims priority based on Japanese Patent Application No. 2017-125890 filed on Jun. 28, 2017 in Japan, and this application is hereby incorporated by reference. It is incorporated.
 画像表示デバイスと前面板、画像表示デバイスとタッチパネル、前面板とタッチパネルなど、光透過性を有する第1の部材と第2の部材とを光硬化性樹脂組成物の硬化物である光透過性硬化樹脂層で固定する技術が知られている(例えば、特許文献1参照)。 A light transmissive cured product, which is a cured product of a photocurable resin composition, including a first member and a second member having light transmittance such as an image display device and a front plate, an image display device and a touch panel, and a front plate and a touch panel A technique for fixing with a resin layer is known (see, for example, Patent Document 1).
特許第5411394号公報Patent No. 5411394 gazette
 従来の光硬化性樹脂組成物では、第1の部材と第2の部材を貼り合せる際、表面に多くの液状成分が存在するため、部材を貼り合わせた後、部材同士のズレが生じることがあった。 In the conventional photocurable resin composition, when bonding the first member and the second member, many liquid components are present on the surface, so that the members may shift after bonding the members. there were.
 本発明は、このような従来の実情に鑑みて提案されたものであり、優れた表面性を有する光硬化性樹脂組成物、及びこれを用いた画像表示装置の製造方法を提供する。 The present invention has been proposed in view of such conventional circumstances, and provides a photocurable resin composition having excellent surface properties, and a method of manufacturing an image display device using the same.
 本願発明者らは、鋭意検討の結果、重量平均分子量が所定値以上のポリマーを所定量配合することにより、上記課題を解決できることを見出した。 As a result of intensive studies, the inventors of the present invention have found that the above problems can be solved by blending a predetermined amount of a polymer having a weight average molecular weight of a predetermined value or more.
 すなわち、本発明に係る光硬化性樹脂組成物は、重量平均分子量が80000以上であるポリマーと、反応性希釈モノマーと、光重合開始剤とを含有し、前記ポリマーの含有量が、20~90wt%である。 That is, the photocurable resin composition according to the present invention contains a polymer having a weight average molecular weight of 80,000 or more, a reactive dilution monomer, and a photopolymerization initiator, and the content of the polymer is 20 to 90 wt. %.
 また、本発明に係る画像表示装置の製造方法は、光透過性を有する第1の部材又は第2の部材の表面に、重量平均分子量が80000以上であるポリマーと、反応性希釈モノマーと、光重合開始剤とを含有し、前記ポリマーの含有量が、20~90wt%である光硬化性樹脂組成物層を形成する形成工程と、前記光硬化性樹脂組成物層を硬化させ、光透過性硬化樹脂層を形成する硬化工程と、前記光透過性硬化樹脂層上に第2の部材又は第1の部材を貼り合わせる貼合工程とを有する。 In the method of manufacturing an image display device according to the present invention, a polymer having a weight average molecular weight of 80000 or more, a reactive dilution monomer, and light are provided on the surface of the first member or the second member having light transmittance. Forming a photocurable resin composition layer containing a polymerization initiator and having a content of the polymer of 20 to 90 wt%, curing the photocurable resin composition layer, and transmitting light A curing step of forming a cured resin layer, and a bonding step of bonding a second member or a first member on the light transmissive cured resin layer.
 本発明によれば、重量平均分子量が80000以上であるポリマーを配合することにより、表面に生じる液状成分を低減させ、優れた表面性を得ることができる。 According to the present invention, by blending a polymer having a weight average molecular weight of 80,000 or more, it is possible to reduce the liquid component generated on the surface and obtain excellent surface property.
図1は、第1の実施の形態における塗布工程(A)の説明図である。FIG. 1 is an explanatory view of a coating step (A) in the first embodiment. 図2は、第1の実施の形態における塗布工程(A)の説明図である。FIG. 2 is an explanatory view of a coating step (A) in the first embodiment. 図3は、第1の実施の形態における硬化工程(B)の説明図である。FIG. 3 is an explanatory view of a curing step (B) in the first embodiment. 図4は、第1の実施の形態における貼合工程(C)の説明図である。FIG. 4: is explanatory drawing of the bonding process (C) in 1st Embodiment. 図5は、第1の実施の形態における貼合工程(C)の説明図である。FIG. 5: is explanatory drawing of the bonding process (C) in 1st Embodiment. 図6は、第2の実施の形態における塗布工程(AA)の説明図である。FIG. 6 is an explanatory view of a coating step (AA) in the second embodiment. 図7は、第2の実施の形態における硬化工程(BB)の説明図である。FIG. 7 is an explanatory view of a curing step (BB) in the second embodiment. 図8は、第2の実施の形態における硬化工程(BB)の説明図である。FIG. 8 is an explanatory view of a curing step (BB) in the second embodiment. 図9は、第2の実施の形態における貼合工程(CC)の説明図である。FIG. 9: is explanatory drawing of the bonding process (CC) in 2nd Embodiment.
 以下、本発明の実施の形態について、下記順序にて詳細に説明する。
1.光硬化性樹脂組成物
2.画像表示装置の製造方法
3.実施例
Hereinafter, embodiments of the present invention will be described in detail in the following order.
1. Photocurable resin composition2. Method of manufacturing image display device Example
 <1.光硬化性樹脂組成物>
 本実施の形態に係る光硬化性樹脂組成物は、重量平均分子量が80000以上であるポリマー(A)と、反応性希釈モノマー(B)と、光重合開始剤(C)とを含有し、ポリマー(A)の含有量が、20~90wt%である。このような光硬化性樹脂組成物によれば、表面に生じる液状成分を低減させ、優れた表面性を得ることができる。
<1. Photocurable resin composition>
The photocurable resin composition according to the present embodiment contains a polymer (A) having a weight average molecular weight of 80000 or more, a reactive dilution monomer (B), and a photopolymerization initiator (C), and the polymer The content of (A) is 20 to 90 wt%. According to such a photocurable resin composition, the liquid component generated on the surface can be reduced, and excellent surface properties can be obtained.
 <(A)ポリマー>
 ポリマーは、(メタ)アクリル系重合体、ウレタン系重合体、イソプレン系重合体から選ばれる少なくとも1種であることが好ましい。このようなポリマーを用いることにより、優れた表面性を得ることができる。なお、ポリマーの重合形態は、特に制限はなく、ランダム、ブロック、グラフト重合体のいずれであってもよい。なお、本明細書において、「(メタ)アクリル」は、アクリル及びメタクリルの両方又は一方を示すために用いられ、「(メタ)アクリレート」は、アクリレート及びメタクリレートの両方又は一方を示すために用いられる。また、「重合体」は、1種類のモノマーから形成される重合体のみならず、複数種類のモノマーから形成される共重合体を含む意味で用いられる。
<(A) Polymer>
The polymer is preferably at least one selected from a (meth) acrylic polymer, a urethane polymer, and an isoprene polymer. By using such a polymer, excellent surface properties can be obtained. The form of polymerization of the polymer is not particularly limited, and may be any of random, block and graft polymers. In the present specification, “(meth) acrylic” is used to indicate both or one of acrylic and methacrylic, and “(meth) acrylate” is used to indicate both or one of acrylate and methacrylate . Moreover, a "polymer" is used by the meaning included not only the polymer formed from 1 type of monomer but the copolymer formed from multiple types of monomer.
 光硬化性樹脂組成物中、ポリマーの含有量は、20wt%以上90wt%以下であることが好ましく、40質量%以上70質量%以下であることがより好ましい。ポリマーの含有量が上記範囲であることにより、硬化後の表面の液状成分を低減させることが可能となる。また、2種以上のポリマーを併用する場合、その合計量が上記範囲を満たすことが好ましい。 The content of the polymer in the photocurable resin composition is preferably 20 wt% or more and 90 wt% or less, and more preferably 40 wt% or more and 70 wt% or less. When the content of the polymer is in the above range, the liquid component on the surface after curing can be reduced. Moreover, when using together 2 or more types of polymers, it is preferable that the total amount satisfy | fills the said range.
 ポリマーの重量平均分子量Mwは、80000以上であり、より好ましくは100000以上、さらに好ましくは、150000~500000である。これにより、硬化後の表面の液状成分を表面にブリードさせることなく低減させることが可能となるとともに、光硬化性樹脂組成物の反応性を維持することができる。なお、本明細書中、ポリマーの重量平均分子量Mw及び重量平均分子量Mnは、ゲルパーミエーションクロマトグラフィー(GPC)で測定される、標準ポリスチレン分子量換算の値を示す。 The weight average molecular weight Mw of the polymer is 80,000 or more, more preferably 100,000 or more, and still more preferably 150,000 to 500,000. Thereby, the liquid component on the surface after curing can be reduced without bleeding on the surface, and the reactivity of the photocurable resin composition can be maintained. In addition, in this specification, the weight average molecular weight Mw and weight average molecular weight Mn of a polymer show the value of standard polystyrene molecular weight conversion measured by gel permeation chromatography (GPC).
 また、ポリマーの分散度(Mw/Mn)は、通常、粘着材料における保持力やクリープなどの機械的特性を左右するものとして知られているが、本技術の場合は、表面硬化性の観点からポリマーの分散度が考慮される。具体的には、ポリマーの分散度が低いとポリマーと未反応のモノマー類とが分離し易くなる傾向があり、他方、ポリマーの分散度が高いと結果的に分子量の高くないポリマー成分を混入させる結果となる。このようなポリマーの分散度は、モノマー類を(共)重合させる際の諸条件により左右されるが、通常、ポリマーの分子量の上昇に伴い分散度が高くなる傾向にある。しかし、本技術の場合、ポリマーの重量平均分子量が30万を超える場合あっても、その分散度は10以下であることが好ましく、7以上10以下であることがより好ましい。ポリマーの分散度が前述の範囲であれば、分子量と相まって、更に良好な表面性を得ることができる。 In addition, the degree of dispersion (Mw / Mn) of the polymer is usually known to affect mechanical properties such as retention and creep in the adhesive material, but in the case of the present technology, from the viewpoint of surface curability. The degree of dispersion of the polymer is taken into account. Specifically, when the degree of dispersion of the polymer is low, the polymer and unreacted monomers tend to be separated, while when the degree of dispersion of the polymer is high, as a result, a polymer component having a low molecular weight is mixed It results. The degree of dispersion of such a polymer depends on various conditions when (co) polymerizing the monomers, but usually, the degree of dispersion tends to increase as the molecular weight of the polymer increases. However, in the case of the present technology, even if the weight average molecular weight of the polymer exceeds 300,000, the degree of dispersion thereof is preferably 10 or less, and more preferably 7 or more and 10 or less. If the degree of dispersion of the polymer is in the above-mentioned range, it is possible to obtain better surface properties in combination with the molecular weight.
 (メタ)アクリル系重合体は、主鎖に(メタ)アクリレートモノマー由来の繰り返し単位を有する重合体である。(メタ)アクリル系重合体としては、アクリル酸エステル類の共重合体(以下、(メタ)アクリル共重合体);ポリウレタン(メタ)アクリレート、ポリイソプレン(メタ)アクリレート、ポリブタジエン(メタ)アクリレートなどの反応性アクリル系ポリマー又は反応性アクリル系オリゴマーなどが挙げられる。これらの中でも、相溶性の観点から、(メタ)アクリル共重合体、ポリウレタン(メタ)アクリレート、ポリイソプレン(メタ)アクリレートから選ばれる少なくとも1種であることが好ましい。 The (meth) acrylic polymer is a polymer having a repeating unit derived from a (meth) acrylate monomer in the main chain. Examples of (meth) acrylic polymers include copolymers of acrylic esters (hereinafter, (meth) acrylic copolymers); polyurethane (meth) acrylates, polyisoprene (meth) acrylates, polybutadiene (meth) acrylates, etc. Reactive acrylic polymer or reactive acrylic oligomer etc. are mentioned. Among these, from the viewpoint of compatibility, at least one selected from (meth) acrylic copolymers, polyurethane (meth) acrylates and polyisoprene (meth) acrylates is preferable.
 ウレタン系重合体は、主鎖の繰返し単位中にウレタン結合(-NHCOO-)を有する重合体であり、例えば、水酸基成分とイソシアネート成分との反応により得られる。水酸基成分としては、ポリオールが好適に用いられ、イソシアネート成分としては、トリレンジイソシアネートなどの芳香族化合物、テトラメチレンジイソシアネートなどの脂肪族化合物が好適に用いられる。 The urethane polymer is a polymer having a urethane bond (—NHCOO—) in the repeating unit of the main chain, and is obtained, for example, by the reaction of a hydroxyl component and an isocyanate component. As the hydroxyl group component, a polyol is suitably used, and as the isocyanate component, aromatic compounds such as tolylene diisocyanate and aliphatic compounds such as tetramethylene diisocyanate are suitably used.
 イソプレン系重合体は、主鎖の繰返し単位中にイソプレン単位を有する重合体であり、具体的には、イソプレンのホモポリマー、又はイソプレンと他の共重合可能な単量体との共重合体からなる。イソプレンと共重合可能な単量体としては、(メタ)アクリル酸エステル、(メタ)アクリル酸ヒドロキシメチルなどのエチレン性不飽和カルボン酸エステル;1,3-ブタジエン、クロロプレンなどの他のジエン系モノマーなどが挙げられる。 An isoprene-based polymer is a polymer having an isoprene unit in a repeating unit of the main chain, and specifically, from a homopolymer of isoprene or a copolymer of isoprene and another copolymerizable monomer. Become. Examples of monomers copolymerizable with isoprene include ethylenically unsaturated carboxylic acid esters such as (meth) acrylic acid ester and hydroxymethyl (meth) acrylic acid; and other diene-based monomers such as 1,3-butadiene and chloroprene Etc.
 以下、(メタ)アクリル系重合体として、(メタ)アクリル共重合体、ポリウレタン(メタ)アクリレート、ポリイソプレン(メタ)アクリレート、及びポリブタジエン(メタ)アクリレートについて説明する。 Hereinafter, as the (meth) acrylic polymer, a (meth) acrylic copolymer, a polyurethane (meth) acrylate, a polyisoprene (meth) acrylate, and a polybutadiene (meth) acrylate will be described.
 [(メタ)アクリル共重合体]
 (メタ)アクリル共重合体としては、アルキル基の炭素数が1~18の直鎖又は分岐を有する(メタ)アクリル酸アルキルエステルが好ましく、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、イソプロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、ペンチル(メタ)アクリレート、ヘキシル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、オクチル(メタ)アクリレート、イソオクチル(メタ)アクリレート、ノニル(メタ)アクリレート、イソノニル(メタ)アクリレート、デシル(メタ)アクリレート、イソデシル(メタ)アクリレート、ラウリル(メタ)アクリレートなどのモノマー類が挙げられ、これらの中から1種以上を使用することができる。
[(Meth) acrylic copolymer]
The (meth) acrylic copolymer is preferably a linear or branched (meth) acrylic acid alkyl ester having 1 to 18 carbon atoms in the alkyl group, and examples thereof include methyl (meth) acrylate and ethyl (meth) acrylate, Propyl (meth) acrylate, isopropyl (meth) acrylate, n-butyl (meth) acrylate, isobutyl (meth) acrylate, pentyl (meth) acrylate, hexyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, octyl (meth) Monomers such as acrylate, isooctyl (meth) acrylate, nonyl (meth) acrylate, isononyl (meth) acrylate, decyl (meth) acrylate, isodecyl (meth) acrylate, lauryl (meth) acrylate and the like can be mentioned It is possible to use one or more kinds of.
 また、1,6-ヘキサンジオールジアクリレート(HDDA)、1,9-ノナンジオールジアクリレート、1,10-デカンジオールジアクリレート、ペンタエリスリトールトリアクリレートなどの2官能以上の(メタ)アクリレート類を少量使用してもよい。また、イソボルニルアクリレート(IBXA)、ジシクロペンテニルオキシエチルアクリレートなどの環状のモノマー類を少量使用してもよい。 In addition, a small amount of bifunctional or higher (meth) acrylates such as 1,6-hexanediol diacrylate (HDDA), 1,9-nonanediol diacrylate, 1,10-decanediol diacrylate, pentaerythritol triacrylate, etc. You may In addition, cyclic monomers such as isobornyl acrylate (IBXA) and dicyclopentenyloxyethyl acrylate may be used in small amounts.
 また、上記のモノマー類に、カルボン酸基や水酸基を有するモノマー類を含めて共重合反応させることで、他の成分との相溶性が調整され、又は反応性を有するアクリル共重合体を得ることができる。例えば、カルボン酸基を有するモノマー類はアクリル酸であり、水酸基を有する(メタ)アクリレートとしては、例えば、2-ヒドロキシエチル(メタ)アクリルレート、2-ヒドロキシプロピル(メタ)アクリレート、3-ヒドロキシプロピル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、2-ヒドロキシ-3-クロロプロピル(メタ)アクリレート、2-ヒドロキシ-3-フェノキシプロピル(メタ)アクリレート、エチレングリコール(メタ)アクリレート、ポリエチレングリコール(メタ)アクリレート、プロピレングリコール(メタ)アクリレート、ポリプロピレングリコール(メタ)アクリレートなどのアルキレングリコール(メタ)アクリレート、シクロヘキシルジメタノールモノ(メタ)アクリレートなどの水酸基を少なくとも1つ有するモノマー類が挙げられ、これらの中から1種以上を使用することができる。本実施の形態では、ポリマーが、少なくとも、アルキル基の炭素数が1~18の直鎖又は分岐を有するアルキル(メタ)アクリレートと、水酸基を有する(メタ)アクリレートとを構成単量体単位とする重合体であることが好ましい。具体的には、アルキル基の炭素数が8~16の直鎖又は分岐を有するアルキル(メタ)アクリレートと、1つの水酸基を有する(メタ)アクリレートとを構成単量体単位とする重合体であることがより好ましい。このようなポリマーとしては、例えば、2-エチルヘキシルアクリレートと、2-ヒドロキシエチルアクリレートとを構成単量体単位とする重合体が挙げられる。 In addition, copolymerization reaction is carried out including the above-mentioned monomers including monomers having a carboxylic acid group or a hydroxyl group to adjust the compatibility with other components or obtain an acrylic copolymer having reactivity. Can. For example, monomers having a carboxylic acid group are acrylic acid, and as a (meth) acrylate having a hydroxyl group, for example, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 3-hydroxypropyl (Meth) acrylate, 4-hydroxybutyl (meth) acrylate, 2-hydroxy-3-chloropropyl (meth) acrylate, 2-hydroxy-3-phenoxypropyl (meth) acrylate, ethylene glycol (meth) acrylate, polyethylene glycol ( Alkylene glycol (meth) acrylates such as (meth) acrylate, propylene glycol (meth) acrylate and polypropylene glycol (meth) acrylate, less hydroxyl groups such as cyclohexyl dimethanol mono (meth) acrylate Monomers having at least one may be mentioned, and one or more of these can be used. In this embodiment, the polymer has at least a linear or branched alkyl (meth) acrylate having 1 to 18 carbon atoms in the alkyl group and a (meth) acrylate having a hydroxyl group as constituent monomer units. It is preferably a polymer. Specifically, it is a polymer having a linear or branched alkyl (meth) acrylate having 8 to 16 carbon atoms in the alkyl group and a (meth) acrylate having one hydroxyl group as constituent monomer units. Is more preferred. As such a polymer, for example, a polymer having 2-ethylhexyl acrylate and 2-hydroxyethyl acrylate as constituent monomer units can be mentioned.
 [ポリウレタン(メタ)アクリレート]
 ポリウレタン(メタ)アクリレートは、例えば、イソシアネート化合物と、水酸基又はイソシアネート基を有する(メタ)アクリレートと、ポリオール化合物とを反応させることにより得られる。
[Polyurethane (Meth) Acrylate]
The polyurethane (meth) acrylate is obtained, for example, by reacting an isocyanate compound, a (meth) acrylate having a hydroxyl group or an isocyanate group, and a polyol compound.
 イソシアネート化合物としては、例えば、イソホロンジイソシアネート、2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネート、1,3-キシリレンジイソシアネート、1,4-キシリレンジイソシアネート、ジフェニルメタン-4,4’-ジイソシアネートなどのジイソシアネートが挙げられる。 As an isocyanate compound, for example, isophorone diisocyanate, 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, 1,3-xylylene diisocyanate, 1,4-xylylene diisocyanate, diphenylmethane-4,4'-diisocyanate And the like.
 水酸基を有する(メタ)アクリレートとしては、前述と同様、例えば、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、ポリエチレングリコール(メタ)アクリレートなどが挙げられる。イソシアネート基を有する(メタ)アクリレートとしては、例えば、メタクリロイルオキシエチルイソシアネートが挙げられる。 As the (meth) acrylate having a hydroxyl group, for example, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, 4-hydroxybutyl (meth) as described above Acrylate, polyethylene glycol (meth) acrylate and the like. As a (meth) acrylate which has an isocyanate group, methacryloyl oxyethyl isocyanate is mentioned, for example.
 ポリオール化合物としては、例えば、アルキレン型、ポリカーボネート型、ポリエステル型またはポリエーテル型などのポリオール化合物が挙げられ、具体的には、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール、ポリカーボネートジオール、ポリエステルジオール、ポリエーテルジオールなどが挙げられる。 Examples of the polyol compound include polyol compounds such as alkylene type, polycarbonate type, polyester type or polyether type, and specifically, polyethylene glycol, polypropylene glycol, polytetramethylene glycol, polycarbonate diol, polyester diol, poly Ether diol etc. are mentioned.
 [ポリイソプレン(メタ)アクリレート]
 ポリイソプレン(メタ)アクリレートとしては、例えば、ポリイソプレン重合体の無水マレイン酸付加物と2-ヒドロキシエチルメタクリレートとのエステル化物などが挙げられる。
[Polyisoprene (meth) acrylate]
Examples of polyisoprene (meth) acrylates include esterified products of maleic anhydride adduct of polyisoprene polymer and 2-hydroxyethyl methacrylate.
 [ポリブタジエン(メタ)アクリレート]
 ポリブタジエン(メタ)アクリレートは、分子内にポリブタジエン構造を有し、末端に(メタ)アクリロイル基を有する。ポリブタジエン構造は、1,2-ポリブタジエン構造、又は1,4-ポリブタジエン構造のいずれでもよく、両者が混ざって分子内に含有されていてもよい。ポリブタジエン(メタ)アクリレートの具体例としては、2-ヒドロキシエチル(メタ)アクリレートを2,4-トリレンジイソシアネートを介して液状ポリブタジエンの有するヒドロキシル基とウレタン付加反応して得られる液状ポリブタジエン(メタ)アクリレート;エン付加反応により無水マレイン酸を付加したマレイン化ポリブタジエンに2-ヒドロキシ(メタ)アクリレートをエステル化反応して得られる液状ポリブタジエン(メタ)アクリレートなどが挙げられる。
[Polybutadiene (meth) acrylate]
Polybutadiene (meth) acrylate has a polybutadiene structure in the molecule and has a (meth) acryloyl group at the end. The polybutadiene structure may be either a 1,2-polybutadiene structure or a 1,4-polybutadiene structure, and both may be mixed and contained in the molecule. As a specific example of polybutadiene (meth) acrylate, liquid polybutadiene (meth) acrylate obtained by urethane addition reaction of hydroxyl group possessed by liquid polybutadiene with 2-hydroxyethyl (meth) acrylate via 2,4-tolylene diisocyanate Liquid polybutadiene (meth) acrylates obtained by subjecting 2-hydroxy (meth) acrylate to esterification reaction with maleic anhydride added with maleic anhydride by ene addition reaction.
 <(B)反応性希釈モノマー類>
 光硬化性組成物中に反応性を付与する目的で、及び光硬化性組成物の粘性の調整目的のために、反応性希釈モノマー類を使用することができる。反応性希釈モノマーとしては、公知のものを使用することができ、前述のアクリル共重合体にも例示されたアルキル基を有する(メタ)アクリレート、水酸基を有する(メタ)アクリレートなどが挙げられる。
<(B) Reactive Dilution Monomers>
Reactive diluent monomers can be used for the purpose of imparting reactivity into the photocurable composition, and for the purpose of adjusting the viscosity of the photocurable composition. As the reactive diluent monomer, known monomers can be used, and (meth) acrylates having an alkyl group and (meth) acrylates having a hydroxyl group, which are exemplified for the above-mentioned acrylic copolymer, and the like can be mentioned.
 アルキル基を有する(メタ)アクリレートとしては、炭素数5~20の直鎖状又は分岐状のアルキル基を有することが好ましい。具体例としては、例えば、イソステアリル(メタ)アクリレート、イソデシル(メタ)アクリレート、N-オクチル(メタ)アクリレート、ノニル(メタ)アクリレート、デシル(メタ)アクリレート、ラウリル(メタ)アクリレートなどが挙げられ、これらの中から1種以上を使用することができる。 The (meth) acrylate having an alkyl group preferably has a linear or branched alkyl group having 5 to 20 carbon atoms. Specific examples thereof include, for example, isostearyl (meth) acrylate, isodecyl (meth) acrylate, N-octyl (meth) acrylate, nonyl (meth) acrylate, decyl (meth) acrylate, lauryl (meth) acrylate and the like. One or more of these can be used.
 水酸基を有する(メタ)アクリレートとしては、例えば、4-ヒドロキシブチル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、1-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、3-ヒドロキシプロピル(メタ)アクリレート、1-ヒドロキシプロピル(メタ)アクリレートなどが挙げられ、これらの中から1種以上を使用することができる。 As the (meth) acrylate having a hydroxyl group, for example, 4-hydroxybutyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 1-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 3- Hydroxypropyl (meth) acrylate, 1-hydroxypropyl (meth) acrylate and the like can be mentioned, and one or more of these can be used.
 また、反応性希釈モノマーとして、窒素原子を含む複素環式骨格を有する窒素含有環状モノマーを用いてもよい。窒素含有環状モノマーは、窒素原子を含む複素環式骨格を有し、他の反応性希釈モノマーと共重合可能である。窒素含有環状モノマーとしては、例えば、アクリロイルモルホリン、ペンタメチルピペリジニルメタクリレート、テトラメチルピペリジニルメタクリレート、ビニルピロリドンなどが挙げられ、これらの中から1種以上を使用することができる。高い接着力を得る観点から、窒素含有環状化合物として、アクリロイルモルホリンを使用することが好ましい。 In addition, as a reactive diluent monomer, a nitrogen-containing cyclic monomer having a heterocyclic skeleton containing a nitrogen atom may be used. The nitrogen containing cyclic monomer has a heterocyclic backbone containing nitrogen atoms and is copolymerizable with other reactive diluent monomers. Examples of the nitrogen-containing cyclic monomer include acryloyl morpholine, pentamethyl piperidinyl methacrylate, tetramethyl piperidinyl methacrylate, vinyl pyrrolidone and the like, and one or more of these can be used. From the viewpoint of obtaining high adhesion, acryloyl morpholine is preferably used as the nitrogen-containing cyclic compound.
 また、反応性希釈モノマーとして、例えば、イソボルニル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、ジシクロペンテニルオキシエチル(メタ)アクリレートなどの脂環含有(メタ)アクリレート;ベンジル(メタ)アクリレートなどの芳香族(メタ)アクリレート;テトラヒドロフルフリル(メタ)アクリレートなどのヘテロ環含有(メタ)アクリレート;1,6-ヘキサンジオールジアクリレートなどの2官能以上の多官能(メタ)アクリレートを使用することができる。 Moreover, as a reactive diluent monomer, for example, an alicyclic group-containing (meth) such as isobornyl (meth) acrylate, dicyclopentanyl (meth) acrylate, dicyclopentenyl (meth) acrylate, dicyclopentenyl oxyethyl (meth) acrylate, etc. Acrylates; Aromatic (meth) acrylates such as benzyl (meth) acrylate; Heterocycle-containing (meth) acrylates such as tetrahydrofurfuryl (meth) acrylate; Bifunctional or higher polyfunctional (such as 1,6-hexanediol diacrylate ( Meta) acrylates can be used.
 光硬化性樹脂組成物中の反応性希釈モノマーの含有量は、アクリル系共重合体の性能が損なわないように所定粘度まで低下させ、硬化性、接着性などを考慮して決められるが、反応性希釈モノマーの含有量は5~80wt%であることが好ましい。 The content of the reactive diluent monomer in the photocurable resin composition is reduced to a predetermined viscosity so that the performance of the acrylic copolymer is not impaired, and is determined in consideration of the curability, adhesion, etc. The content of the reactive diluent monomer is preferably 5 to 80 wt%.
 <(C)光重合開始剤>
 光重合開始剤としては、例えば、1-ヒドロキシシクロへキシルフェニルケトン(イルガキュア184、BASF社製)、2-ヒドロキシ-1-{4-[4-(2一ヒドロキシ-2-メチル-プロピロニル)ベンジル]フェニル}-2-メチル-1-プロパン-1-オン(イルガキュア127、BASF社製)などのアルキルフェノン系光重合開始剤、2,4,6-トリメチルベンゾイル-ジフェニル-フォスフィンオキサイド(イルガキュアTPO、BASF社製)、ビス(2,4,6-トリメチルベンゾイル)-フェニルフォスフィンオキサイド(イルガキュア819)などのアシルフォスフィンオキサイド系光重合開始剤、ベンゾフェノン及びその誘導体、フェニルグリオキシリックアシッドメチルエステル(イルガキュアMBF、BASF(株))、オキシフェニル酢酸、2-[2-オキソ-2-フェニルアセトキシエトキシ]エチルエステルとオキシフェニル酢酸、2-(2-ヒドロキシエトキシ)エチルエステルの混合物(イルガキュア754)などの分子内水素引き抜き型光重合開始剤を使用することができる。
<(C) Photopolymerization initiator>
As the photopolymerization initiator, for example, 1-hydroxycyclohexyl phenyl ketone (IRGACURE 184, manufactured by BASF AG), 2-hydroxy-1- {4- [4- (2 hydroxy-2-methyl-propyronyl) benzyl Alkyl phenone type photopolymerization initiators such as phenyl} -2-methyl-1-propan-1-one (IRGACURE 127, manufactured by BASF), 2,4,6-trimethylbenzoyl-diphenyl-phosphine oxide (IRGACURE TPO) , BASF AG), acyl phosphine oxide photopolymerization initiators such as bis (2,4,6-trimethyl benzoyl) -phenyl phosphine oxide (IRGACURE 819), benzophenone and derivatives thereof, phenylglyoxylic acid methyl ester (IRGACURE MBF, BA F (Inc.), oxyphenylacetic acid, mixture of 2- [2-oxo-2-phenylacetoxyethoxy] ethyl ester and oxyphenylacetic acid, 2- (2-hydroxyethoxy) ethyl ester (IRGACURE 754), etc. Hydrogen abstraction type photoinitiators can be used.
 光硬化性樹脂組成物中、光重合開始剤の含有量の下限値は、0.1wt%以上10wt%以下であることが好ましく、0.5wt%以上5wt%以下であることがより好ましい。光重合開始剤の含有量が上記範囲であることにより、光照射時に硬化不足となるのを防ぐとともに、開裂によるアウトガスの増加を防ぐことができる。また、2種以上の光重合開始剤を併用する場合、その合計量が上記範囲を満たすことが好ましい。 The lower limit of the content of the photopolymerization initiator in the photocurable resin composition is preferably 0.1 wt% or more and 10 wt% or less, and more preferably 0.5 wt% or more and 5 wt% or less. When the content of the photopolymerization initiator is in the above-described range, it is possible to prevent insufficient curing at the time of light irradiation, and to prevent an increase in outgassing due to cleavage. Moreover, when using 2 or more types of photoinitiators together, it is preferable that the total amount satisfy | fills the said range.
 なお、光硬化性樹脂組成物には、上述した成分に加えて、本発明の効果を損なわない範囲で種々の添加剤を配合することができる。例えば、硬化収縮率を低減させるための液状可塑成分として、例えば、ポリブタジエン系可塑剤、ポリイソプレン系可塑剤、フタル酸エステル系可塑剤及びアジピン酸エステル系可塑剤などを配合することができる。また、タック性を向上させるための粘着付与剤(タッキファイア)として、例えば、テルペン系樹脂、ロジン樹脂、石油樹脂などを配合することができる。また、硬化樹脂の分子量の調整のために連鎖移動剤として、例えば、2-メルカプトエタノール、ラウリルメルカプタン、グリシジルメルカプタン、メルカプト酢酸、チオグリコール酸2-エチルヘキシル、2,3-ジメチルカプト-1-プロパノール、α-メチルスチレンダイマーなどを配合することができる。その他にも、必要に応じて、シランカップリング剤等の接着改善剤、酸化防止剤等の一般的な添加剤を含有することができる。このような光硬化性樹脂組成物は、上述した成分と、必要に応じて添加される各種添加剤とを、公知の混合手法に従って均一に混合することにより調製することができる。 In addition to the components described above, various additives can be added to the photocurable resin composition as long as the effects of the present invention are not impaired. For example, as a liquid plastic component for reducing the cure shrinkage rate, for example, a polybutadiene-based plasticizer, a polyisoprene-based plasticizer, a phthalate ester-based plasticizer, an adipate-based plasticizer and the like can be blended. Moreover, as a tackifier (tackifier) for improving the tackiness, for example, a terpene resin, a rosin resin, a petroleum resin or the like can be blended. Further, as a chain transfer agent for adjusting the molecular weight of the cured resin, for example, 2-mercaptoethanol, lauryl mercaptan, glycidyl mercaptan, mercaptoacetic acid, 2-ethylhexyl thioglycolate, 2,3-dimethyl capto-1-propanol, An α-methylstyrene dimer or the like can be blended. In addition, general additives such as an adhesion improver such as a silane coupling agent and an antioxidant can be contained, if necessary. Such a photocurable resin composition can be prepared by uniformly mixing the components described above and the various additives added as needed according to a known mixing method.
 <2.画像表示装置の製造方法>
 以下、第1の実施の形態、及び第2の実施の形態において示す画像表示装置の製造方法は、第1の部材又は第2の部材の表面に、光透過性硬化樹脂層を形成し、硬化させるものである。
<2. Method of Manufacturing Image Display Device>
Hereinafter, in the method of manufacturing the image display device shown in the first embodiment and the second embodiment, the light transmissive cured resin layer is formed on the surface of the first member or the second member and cured. It is
 すなわち、画像表示装置の製造方法は、光透過性を有する第1の部材又は第2の部材の表面に、重量平均分子量が80000以上であるポリマーと、反応性希釈モノマーと、光重合開始剤とを含有し、前記ポリマーの含有量が、20~90wt%である光硬化性樹脂組成物層を形成する形成工程と、光硬化性樹脂組成物層を硬化させ、光透過性硬化樹脂層を形成する硬化工程と、光透過性硬化樹脂層上に第2の部材又は第1の部材を貼り合わせる貼合工程とを有する。これにより、硬化工程にて光透過性硬化樹脂層表面の液状成分が低減されるため、貼合工程後の部材のズレ発生を抑制することができ、生産性を向上させることが可能となる。 That is, in the method of manufacturing an image display device, a polymer having a weight average molecular weight of 80000 or more, a reactive dilution monomer, and a photopolymerization initiator are provided on the surface of the first member or the second member having light transmittance. Forming a photocurable resin composition layer containing 20% to 90% by weight of the polymer, and curing the photocurable resin composition layer to form a light transmissive cured resin layer And a bonding step of bonding the second member or the first member on the light transmitting cured resin layer. Thereby, since the liquid component on the surface of the light transmitting cured resin layer is reduced in the curing step, the occurrence of displacement of members after the bonding step can be suppressed, and productivity can be improved.
 なお、光透過性硬化樹脂層の形成方法としては、第1の部材又は第2の部材の表面に、液状の光硬化性樹脂組成物を塗布して硬化させても、液状の光硬化性樹脂組成物を紫外線照射により予め所定厚みに硬化させたフィルム又はシートを貼り付けてもよい。 In addition, as a formation method of a light transmittance hardening resin layer, even if it coats and hardens a liquid photocurable resin composition on the surface of a 1st member or a 2nd member, a liquid photocurable resin is made. A film or sheet obtained by curing the composition in advance to a predetermined thickness by ultraviolet irradiation may be attached.
 [第1の実施の形態]
 以下、図1~図5を参照して、塗布工程(A)、硬化工程(B)、及び貼合工程(C)を有する第1の実施の形態について説明する。ここでは、第1の部材として周縁部に遮光層1が形成された光透過性カバー部材2、第2の部材として画像表示部材6を用い、光学部材である表示装置10を製造する方法について説明する。
First Embodiment
Hereinafter, with reference to FIGS. 1 to 5, a first embodiment having a coating step (A), a curing step (B), and a bonding step (C) will be described. Here, a method of manufacturing the display device 10 which is an optical member using the light transmitting cover member 2 having the light shielding layer 1 formed on the periphery as the first member and the image display member 6 as the second member will be described. Do.
 光透過性カバー部材2としては、画像表示部材6に形成された画像が視認可能となるような光透過性があればよく、ガラス、アクリル樹脂、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリカーボネート等の板状材料やシート状材料が挙げられる。これらの材料には、片面又は両面ハードコート処理、反射防止処理などを施すことができる。光透過性カバー部材2の厚さや弾性などの物性は、使用目的に応じて適宜決定することができる。 The light transmitting cover member 2 may have any light transmitting property such that the image formed on the image display member 6 can be visually recognized, and a plate shape of glass, acrylic resin, polyethylene terephthalate, polyethylene naphthalate, polycarbonate, etc. Materials and sheet-like materials can be mentioned. These materials can be subjected to single-sided or double-sided hard coating treatment, antireflection treatment, and the like. Physical properties such as thickness and elasticity of the light transmitting cover member 2 can be appropriately determined according to the purpose of use.
 遮光層1は、画像のコントラストを挙げるため等に設けられるものであり、黒色等に着色された塗料をスクリーン印刷法などで塗布し、乾燥・硬化させたものである。遮光層1の厚みとしては、通常5~100μmであり、この厚みが段差4に相当する。 The light shielding layer 1 is provided to raise the contrast of the image and the like, and is obtained by applying a paint colored in black or the like by a screen printing method, and drying and curing it. The thickness of the light shielding layer 1 is usually 5 to 100 μm, and this thickness corresponds to the step 4.
 画像表示部材6としては、液晶表示パネル、有機EL表示パネル、プラズマ表示パネル、タッチパネル等を挙げることができる。ここで、タッチパネルとは、液晶表示パネルのような表示素子とタッチパッドのような位置入力装置を組み合わせた画像表示・入力パネルを意味する。 Examples of the image display member 6 include a liquid crystal display panel, an organic EL display panel, a plasma display panel, and a touch panel. Here, the touch panel means an image display / input panel in which a display element such as a liquid crystal display panel and a position input device such as a touch pad are combined.
 [塗布工程(A)]
 先ず、塗布工程(A)では、図1に示すように、片面の周縁部に形成された遮光層1を有する光透過性カバー部材2を用意し、図2に示すように、光透過性カバー部材2の表面2aに、液状の光硬化性樹脂組成物を塗布し、光硬化性樹脂組成物層3を形成する。ここで、液状とは、B型粘度計で0.01~100Pa.s(25℃)の粘度を示すものである。
[Coating step (A)]
First, in the application step (A), as shown in FIG. 1, the light transmitting cover member 2 having the light shielding layer 1 formed on the peripheral part of one side is prepared, and as shown in FIG. A liquid photocurable resin composition is applied to the surface 2 a of the member 2 to form a photocurable resin composition layer 3. Here, "liquid" means 0.01 to 100 Pa.s. It shows the viscosity of s (25 ° C.).
 また、塗布工程(A)では、液状の光硬化性樹脂組成物を遮光層1の厚さよりも厚く塗布することが好ましい。具体的には、遮光層1の表面も含め、光透過性カバー部材2の遮光層形成側表面2aの全面に光硬化性樹脂組成物を遮光層1の厚さの好ましくは1.2~50倍、より好ましくは2~30倍の厚さで塗布する。より具体的な塗布厚みは、25~350μmであることが好ましく、50~300μmであることがより好ましい。これにより、光透過性カバー部材2と遮光層1との間の厚み方向の段差4をキャンセルし、光硬化性樹脂組成物層3の貼合面を平坦にすることができる。なお、光硬化性樹脂組成物3の塗布は、必要な厚みが得られるように複数回行ってもよい。 Moreover, in the application step (A), it is preferable to apply a liquid photocurable resin composition thicker than the thickness of the light shielding layer 1. Specifically, the thickness of the light shielding layer 1 is preferably 1.2 to 50, including the surface of the light shielding layer 1 and the entire surface of the light shielding layer forming side 2 a of the light transmitting cover member 2. It is applied at a thickness of twice, more preferably 2 to 30 times. The more specific coating thickness is preferably 25 to 350 μm, and more preferably 50 to 300 μm. Thereby, the level | step difference 4 of the thickness direction between the transparent cover member 2 and the light shielding layer 1 can be canceled, and the bonding surface of the photocurable resin composition layer 3 can be made flat. In addition, application of the photocurable resin composition 3 may be performed several times so that required thickness may be obtained.
 [硬化工程(B)]
 次に、硬化工程(B)では、図3に示すように、光硬化性樹脂組成物層3に対して紫外線を照射し、光硬化性樹脂組成物層3を硬化させ、図4に示すように光透過性硬化樹脂層5を形成する。光透過性硬化樹脂層5の硬化率は、90%以上が好ましく、95%以上がより好ましい。光照射を行う際の光源の種類、出力、照度、積算光量などは特に制限なく、例えば、公知の紫外線照射による(メタ)アクリレートの光ラジカル重合プロセス条件を採用することができる。
[Curing process (B)]
Next, in the curing step (B), as shown in FIG. 3, the photocurable resin composition layer 3 is irradiated with ultraviolet light to cure the photocurable resin composition layer 3 as shown in FIG. The light transmitting cured resin layer 5 is formed on the 90% or more is preferable and 95% or more of the curing rate of the light transmissive cured resin layer 5 is more preferable. There is no particular limitation on the type of light source, the output, the illuminance, the integrated light quantity, and the like when light irradiation is performed, and, for example, photoradical polymerization process conditions of (meth) acrylate by known ultraviolet irradiation can be adopted.
 ここで、硬化率(ゲル分率)とは、光照射前の光硬化性樹脂組成物層中の(メタ)アクリロイル基の存在量に対する光照射後の(メタ)アクリロイル基の存在量の割合(消費量割合)と定義される数値であり、この数値が大きい程、硬化が進行していることを示す。具体的には、硬化率は、光照射前の光硬化性樹脂組成物層のFT-IR測定チャートにおけるベースラインからの1640~1620cm-1の吸収ピーク高さ(X)と、光照射後の光硬化性樹脂組成物層(光透過性硬化樹脂層)のFT-IR測定チャートにおけるベースラインからの1640~1620cm-1の吸収ピーク高さ(Y)とを、下記式に代入することにより算出することができる。
硬化率(%)=[(X-Y)/X]×100
Here, the curing rate (gel fraction) is the ratio of the amount of (meth) acryloyl groups after light irradiation to the amount of (meth) acryloyl groups in the photocurable resin composition layer before light irradiation ( The consumption rate ratio is a numerical value defined, and the larger the numerical value, the more the curing progresses. Specifically, the curing rate is the absorption peak height (X) from 1640 to 1620 cm -1 from the baseline in the FT-IR measurement chart of the photocurable resin composition layer before light irradiation, and the curing rate after light irradiation. Calculated by substituting the absorption peak height (Y) of 1640 to 1620 cm -1 from the baseline in the FT-IR measurement chart of the photocurable resin composition layer (light transmissive cured resin layer) into the following equation. can do.
Curing rate (%) = [(X-Y) / X] × 100
 [貼合工程(C)]
 次に、貼合工程(C)では、図4に示すように、光透過性硬化樹脂層5を天地逆転させ、図5に示すように、画像表示部材6に、光透過性カバー部材2を光透過性硬化樹脂層5側から貼り合わせる。貼り合わせは、公知の圧着装置を用いて、10℃~80℃で加圧することにより行うことができる。これにより、光透過性カバー部材2と画像表示部材6とを光透過性硬化樹脂層5を介して積層させた表示装置10を得ることができる。光透過性硬化樹脂層5は、貼合面の液状成分が少ないため、遮光層1及び表面張力による微小な凹凸の発生を抑制することができる。また、貼り合わせ時の押し込みにより、光透過性硬化樹脂層5が画像表示部材6表面に追従するため、気泡の発生を抑制するとともに凹凸を平坦化させ、部材のズレが発生することによる生産性の低下を防ぐことができる。
[Pasting process (C)]
Next, in the bonding step (C), as shown in FIG. 4, the light transmitting cured resin layer 5 is reversed upside down, and as shown in FIG. It bonds together from the light transmissive cured resin layer 5 side. Bonding can be performed by pressurizing at 10 ° C. to 80 ° C. using a known pressure bonding apparatus. As a result, it is possible to obtain the display device 10 in which the light transmitting cover member 2 and the image display member 6 are laminated via the light transmitting cured resin layer 5. Since the light transmitting cured resin layer 5 has a small amount of liquid components on the bonding surface, the light blocking layer 1 and the generation of fine irregularities due to surface tension can be suppressed. In addition, since the light transmitting cured resin layer 5 follows the surface of the image display member 6 by pressing at the time of bonding, the generation of air bubbles is suppressed and the unevenness is flattened to cause the displacement of the members, which is a productivity. Can be prevented.
 なお、貼合工程(C)後に、必要に応じて、画像表示部材6と光透過性カバー部材2との間に挟持されている光透過性硬化樹脂層5に対して紫外線を照射し、光透過性硬化性樹脂層5の硬化率をさらに高めるようにしてもよい。 In addition, after the bonding step (C), the light transmitting cured resin layer 5 sandwiched between the image display member 6 and the light transmitting cover member 2 is irradiated with ultraviolet light, if necessary, The curing rate of the permeable curable resin layer 5 may be further increased.
 [第2の実施の形態]
 以下、図6~図9を参照して、塗布工程(AA)、仮硬化工程(BB)、及び貼合工程(CC)を有する第2の実施の形態について説明する。第1の実施の形態では、光透過性カバー部材2の遮光層1側形成表面に光硬化性樹脂組成物3を塗布したが、第2の実施の形態では、画像表示部材6表面に光硬化性樹脂組成物3を塗布する。なお、図1~図5及び図6~図9において、同じ符号は同一の構成要素を表すため、ここでは説明を省略する。
Second Embodiment
The second embodiment having the application step (AA), the temporary curing step (BB), and the bonding step (CC) will be described below with reference to FIGS. 6 to 9. In the first embodiment, the photocurable resin composition 3 is applied to the surface on the light shielding layer 1 side of the light transmitting cover member 2, but in the second embodiment, the surface of the image display member 6 is photocured. Resin composition 3 is applied. Note that, in FIGS. 1 to 5 and 6 to 9, the same reference numerals denote the same components, and therefore the description will be omitted here.
 [塗布工程(AA)]
 先ず、塗布工程(AA)では、図6に示すように、画像表示部材6の表面に液状の光硬化性樹脂組成物3を塗布し、光硬化性樹脂組成物層3を形成する。塗布工程(AA)では、第1の実施の形態と同様、液状の光硬化性樹脂組成物を光透過性カバー部材2の遮光層1の厚さよりも厚く塗布することが好ましい。具体的には、画像表示部材6の全面に光硬化性樹脂組成物を遮光層1の厚さの好ましくは1.2~50倍、より好ましくは2~30倍の厚さで塗布する。より具体的な塗布厚みは、25~350μmであることが好ましく、50~300μmであることがより好ましい。これにより、貼合工程(CC)において、光透過性カバー部材2と遮光層1との間の厚み方向の段差4に追従するため、貼合性を向上させることができる。
[Application step (AA)]
First, in the application step (AA), as shown in FIG. 6, the liquid photocurable resin composition 3 is applied to the surface of the image display member 6 to form the photocurable resin composition layer 3. In the coating step (AA), it is preferable to apply a liquid photocurable resin composition thicker than the thickness of the light shielding layer 1 of the light transmitting cover member 2 as in the first embodiment. Specifically, the photocurable resin composition is applied to the entire surface of the image display member 6 with a thickness of the light shielding layer 1 preferably 1.2 to 50 times, more preferably 2 to 30 times. The more specific coating thickness is preferably 25 to 350 μm, and more preferably 50 to 300 μm. Thereby, in the bonding step (CC), in order to follow the step 4 in the thickness direction between the light transmitting cover member 2 and the light shielding layer 1, the bonding property can be improved.
 [硬化工程(BB)]
 次に、硬化工程(BB)では、図7に示すように、光硬化性樹脂組成物層3に対して紫外線を照射し、光硬化性樹脂組成物層3を硬化させ、図8に示すように光透過性硬化樹脂層5を形成する。光透過性硬化樹脂層5の硬化率は、第1の実施形態と同様、90%以上が好ましく、95%以上がより好ましい。光照射を行う際の光源の種類、出力、照度、積算光量などは特に制限なく、例えば、公知の紫外線照射による(メタ)アクリレートの光ラジカル重合プロセス条件を採用することができる。
[Curing process (BB)]
Next, in the curing step (BB), as shown in FIG. 7, the photocurable resin composition layer 3 is irradiated with ultraviolet light to cure the photocurable resin composition layer 3 as shown in FIG. The light transmitting cured resin layer 5 is formed on the As in the first embodiment, the curing rate of the light transmitting cured resin layer 5 is preferably 90% or more, and more preferably 95% or more. There is no particular limitation on the type of light source, the output, the illuminance, the integrated light quantity, and the like when light irradiation is performed, and, for example, photoradical polymerization process conditions of (meth) acrylate by known ultraviolet irradiation can be adopted.
 [貼合工程(CC)]
 次に、貼合工程(CC)では、図9に示すように、画像表示部材6上の光透過性硬化樹脂層5に、光透過性カバー部材2を貼り合わせる。貼り合わせは、公知の圧着装置を用いて、10℃~80℃で加圧することにより行うことができる。これにより、光透過性カバー部材2と画像表示部材6とを光透過性硬化樹脂層5を介して積層させた表示装置10を得ることができる。光透過性硬化樹脂層5は、貼合面の液状成分が少ないため、後の工程において部材のズレが発生することによる生産性の低下を防ぐことができる。
[Pasting process (CC)]
Next, in the bonding step (CC), as shown in FIG. 9, the light transmitting cover member 2 is bonded to the light transmitting cured resin layer 5 on the image display member 6. Bonding can be performed by pressurizing at 10 ° C. to 80 ° C. using a known pressure bonding apparatus. As a result, it is possible to obtain the display device 10 in which the light transmitting cover member 2 and the image display member 6 are laminated via the light transmitting cured resin layer 5. Since the light transmitting cured resin layer 5 has a small amount of liquid component on the bonding surface, it is possible to prevent the decrease in productivity due to the occurrence of displacement of members in the subsequent steps.
 なお、貼合工程(C)後に、必要に応じて、画像表示部材6と光透過性カバー部材2との間に挟持されている光透過性硬化樹脂層5に対して紫外線を照射し、光透過性硬化性樹脂層5の硬化率をさらに高めるようにしてもよい。 In addition, after the bonding step (C), the light transmitting cured resin layer 5 sandwiched between the image display member 6 and the light transmitting cover member 2 is irradiated with ultraviolet light, if necessary, The curing rate of the permeable curable resin layer 5 may be further increased.
 [第3の実施の形態]
 前述した第1及び第2の実施の形態では、第1の部材又は第2の部材の表面の光硬化性樹脂組成物層を硬化させ、光透過性硬化樹脂層を形成した後、光透過性硬化樹脂層上に第2の部材又は第1の部材を貼り合わせることとしたが、第3の実施の形態では、第1の部材又は第2の部材の表面の光硬化性樹脂組成物層上に第2の部材又は第1の部材を貼り合わせた後、光硬化性樹脂組成物層を硬化させ、光透過性硬化樹脂層を形成する。
Third Embodiment
In the first and second embodiments described above, after the photocurable resin composition layer on the surface of the first member or the second member is cured to form a light transmitting cured resin layer, the light transmitting property is obtained. Although the second member or the first member is attached to the cured resin layer, in the third embodiment, the photocurable resin composition layer on the surface of the first member or the second member is used. After bonding the second member or the first member to each other, the photocurable resin composition layer is cured to form a light transmissive cured resin layer.
 すなわち、第3の実施の形態に係る画像表示装置の製造方法は、光透過性を有する第1の部材又は第2の部材の表面に、重量平均分子量が80000以上であるポリマーと、反応性希釈モノマーと、光重合開始剤とを含有し、ポリマーの含有量が、20~90wt%である光硬化性樹脂組成物層を形成する形成工程と、光硬化性樹脂組成物層上に第2の部材又は第1の部材を貼り合わせる貼合工程と、光硬化性樹脂組成物層を硬化させ、光透過性硬化樹脂層を形成する硬化工程とを有する。 That is, in the method of manufacturing an image display device according to the third embodiment, a polymer having a weight average molecular weight of 80,000 or more and reactive dilution is applied to the surface of the first member or the second member having light transmittance. Forming a photocurable resin composition layer containing a monomer and a photopolymerization initiator and having a polymer content of 20 to 90 wt%, and forming a second photocurable resin composition layer on the photocurable resin composition layer It has a pasting process which pastes together a member or a 1st member, and a hardening process which hardens a photocurable resin composition layer and forms a light transmittance hardening resin layer.
 光硬化性樹脂組成物層は、重量平均分子量が80000以上であるポリマーを20~90wt%含むため、適度な粘度を有し、優れた追従性を示す。このため、光硬化させなくても、光硬化性樹脂組成物層上に第2の部材又は第1の部材を貼り合わせることができる。 Since the photocurable resin composition layer contains 20 to 90 wt% of a polymer having a weight average molecular weight of 80,000 or more, it has an appropriate viscosity and exhibits excellent followability. For this reason, even if it does not photocure, a 2nd member or a 1st member can be bonded together on a photocurable resin composition layer.
 以下、本発明の実施例について説明する。本実施例では、ポリマーを含有する光硬化性樹脂組成物を調製し、光硬化性樹脂組成物の硬化物である光透過性硬化樹脂層の表面硬化性を評価した。なお、本発明は、これらの実施例に限定されるものではない。 Hereinafter, examples of the present invention will be described. In this example, a photocurable resin composition containing a polymer was prepared, and the surface curability of the light transmissive cured resin layer which was a cured product of the photocurable resin composition was evaluated. The present invention is not limited to these examples.
 [ポリマーの分子量測定]
 ポリマーの重量平均分子量Mwは、Shodex社製のGPC-101を使用して測定し、標準ポリスチレン分子量換算の値とした。また、カラムはShodex社製のKF-G、KF-806M、KF-806M、KF-803、KF-801、KF-800Dを使用し、測定条件は、溶媒HPLC用テトラヒドロフラン(THF)、流量0.10ml/min、カラム温度40℃とした。また、ポリマーの数平均分子量(Mn)についても同様にして測定し、分散度を算出した。
[Molecular weight measurement of polymer]
The weight average molecular weight Mw of the polymer was measured using GPC-101 manufactured by Shodex Co., Ltd., and used as the value in terms of standard polystyrene molecular weight. The columns used were KF-G, KF-806M, KF-806M, KF-803, KF-801, and KF-800D manufactured by Shodex, and the measurement conditions were: tetrahydrofuran (THF) for solvent HPLC, flow 0. The column temperature was 40 ° C. at 10 ml / min. Further, the number average molecular weight (Mn) of the polymer was measured in the same manner to calculate the degree of dispersion.
 [ポリマー:(メタ)アクリル系重合体A~D、Fの合成]
 攪拌装置、冷却管、及び窒素導入管を備えた反応装置を使用し、反応系内に2-エチルヘキシルアクリレートを45質量部、2-ヒドロキシエチルアクリレートを5質量部、メチルエチルケトンを50質量部、ジメチル2,2’-アゾビス(イソ酪酸メチル)を所定量仕込み、系内に窒素を導入し、系内温度が約70℃となるまで昇温し、8時間温度に保って重合を完結させた。反応終了後に60℃昇温、減圧し、メチルエチルケトンを留去し、(メタ)アクリル系重合体を得た。開始剤であるイソ酪酸メチルの仕込み量を変更し、所定の重量平均分子量Mwを有する(メタ)アクリル系重合体A~D、F(アクリル樹脂)を合成した。また、必要に応じて、イソデシルアクリレート(IDA)で希釈した。
[Polymer: Synthesis of (meth) acrylic polymers A to D, F]
Using a reaction apparatus equipped with a stirrer, a cooling pipe, and a nitrogen introducing pipe, 45 parts by mass of 2-ethylhexyl acrylate, 5 parts by mass of 2-hydroxyethyl acrylate, 50 parts by mass of methyl ethyl ketone, and dimethyl 2 in the reaction system A predetermined amount of 2,2'-azobis (methyl isobutyrate) was charged, nitrogen was introduced into the system, the temperature was raised to about 70 ° C., and the temperature was maintained for 8 hours to complete the polymerization. After completion of the reaction, the temperature was raised at 60 ° C. under reduced pressure, and methyl ethyl ketone was distilled off to obtain a (meth) acrylic polymer. The charge amount of methyl isobutyrate as an initiator was changed to synthesize (meth) acrylic polymers A to D, F (acrylic resin) having a predetermined weight average molecular weight Mw. Moreover, it diluted with the isodecyl acrylate (IDA) as needed.
(メタ)アクリル系重合体A
 重量平均分子量Mw:35.0万、分散度Mw/Mn:8.9
(メタ)アクリル系重合体B
 重量平均分子量Mw:34.8万、分散度Mw/Mn:7.8
(メタ)アクリル系重合体C
 重量平均分子量Mw:18.0万、分散度Mw/Mn:3.8
(メタ)アクリル系重合体D
 重量平均分子量Mw:13.4万、分散度Mw/Mn:4.5
(メタ)アクリル系重合体F
 重量平均分子量Mw:7.4万、分散度Mw/Mn:5.4
(Meth) acrylic polymer A
Weight average molecular weight Mw: 350000, dispersion degree Mw / Mn: 8.9
(Meth) acrylic polymer B
Weight average molecular weight Mw: 348,000, dispersion degree Mw / Mn: 7.8
(Meth) acrylic polymer C
Weight average molecular weight Mw: 180000, dispersion degree Mw / Mn: 3.8
(Meth) acrylic polymer D
Weight average molecular weight Mw: 134,000, degree of dispersion Mw / Mn: 4.5
(Meth) acrylic polymer F
Weight average molecular weight Mw: 74,000, dispersion degree Mw / Mn: 5.4
 [ポリマー:(メタ)アクリル系重合体E、Gの合成]
 攪拌装置、冷却管、及び窒素導入管を備えた反応装置を使用し、反応系内に2-エチルヘキシルアクリレートを45質量部、2-ヒドロキシエチルアクリレートを5質量部、メチルエチルケトンを50質量部、ジメチル2,2’-アゾビス(イソ酪酸メチル)を所定量仕込み、系内に窒素を導入し、系内温度が約70℃となるまで昇温し、8時間温度に保って重合を完結させた。反応終了後℃に60℃昇温、減圧し、メチルエチルケトンを留去し、(メタ)アクリル系重合体を得た。開始剤であるイソ酪酸メチルの仕込み量を変更し、所定の重量平均分子量Mwを有する(メタ)アクリル系重合体E、G(ウレタン変性アクリル樹脂)を合成した。また、必要に応じて、n-オクチルアクリレート(NOA)で希釈した。
[Polymer: Synthesis of (meth) acrylic polymer E, G]
Using a reaction apparatus equipped with a stirrer, a cooling pipe, and a nitrogen introducing pipe, 45 parts by mass of 2-ethylhexyl acrylate, 5 parts by mass of 2-hydroxyethyl acrylate, 50 parts by mass of methyl ethyl ketone, and dimethyl 2 in the reaction system A predetermined amount of 2,2'-azobis (methyl isobutyrate) was charged, nitrogen was introduced into the system, the temperature was raised to about 70 ° C., and the temperature was maintained for 8 hours to complete the polymerization. After completion of the reaction, the temperature was raised to 60 ° C. under reduced pressure and methyl ethyl ketone was distilled off to obtain a (meth) acrylic polymer. The charge amount of methyl isobutyrate which is an initiator was changed, and (meth) acrylic polymers E and G (urethane-modified acrylic resin) having a predetermined weight average molecular weight Mw were synthesized. Moreover, it diluted with n-octyl acrylate (NOA) as needed.
(メタ)アクリル系重合体E
 重量平均分子量Mw:8.1万、分散度Mw/Mn:4.8
(メタ)アクリル系重合体G
 重量平均分子量Mw:6.3万、分散度Mw/Mn:2.8
(Meth) acrylic polymers E
Weight average molecular weight Mw: 810,000, degree of dispersion Mw / Mn: 4.8
(Meth) acrylic polymer G
Weight average molecular weight Mw: 63,000, dispersion degree Mw / Mn: 2.8
 [ポリマー:ウレタン系重合体の合成]
 撹拌機、還流冷却管、窒素導入管、温度計、滴下ロートを備えた4口フラスコに、ポリオール(旭硝子社製、商品名EXENOL230)を100g、IPDI(住化バイエルウレタン社製、商品名デスモジュールI)を7g、酢酸エチルを36g、メチルエチルケトン36g、ウレタン化触媒としてジブチル錫ジラウレートをポリオールとIPDIとの合計量に対して250ppmに相当する量を仕込んだ。ついで、4口フラスコ内を70℃まで徐々に昇温し、IRにてNCOのピークが消失したところで反応を終了して、ウレタンポリマーの溶液を得た。反応終了後℃に60℃昇温、減圧し、酢酸エチルとメチルエチルケトンを留去し、ウレタン系重合体を得た。また、必要に応じて、n-オクチルアクリレート(NOA)で希釈した。
[Polymer: Synthesis of Urethane Polymer]
100 g of a polyol (Asahi Glass Co., Ltd .; trade name: EXENOL 230) in a 4-neck flask equipped with a stirrer, a reflux condenser, a nitrogen introduction pipe, a thermometer, and a dropping funnel; IPDI (a trade name: Desmodur; 7 g of I), 36 g of ethyl acetate, 36 g of methyl ethyl ketone, and dibutyltin dilaurate as a urethanization catalyst were charged in an amount corresponding to 250 ppm based on the total amount of the polyol and IPDI. Next, the temperature in the four-necked flask was gradually raised to 70 ° C., and when the NCO peak disappeared by IR, the reaction was terminated to obtain a solution of a urethane polymer. After completion of the reaction, the temperature was raised to 60 ° C. under reduced pressure, and ethyl acetate and methyl ethyl ketone were distilled off to obtain a urethane polymer. Moreover, it diluted with n-octyl acrylate (NOA) as needed.
 [ポリマー:イソプレン系重合体の合成]
撹拌機、還流冷却管、窒素導入管、温度計、滴下ロートを備えた4口フラスコに、ヘキサンを200g、n-BuLiを6.25g(1.6Mヘキサン溶液)、イソプレンを100g仕込んだ。ついで、70℃で撹拌後、室温に戻した後にメタノール5gを加えて重合を停止させた。ついで、得られたポリイソプレン溶液をメタノール(5000mL)中に滴下することで固形分を析出させた後に、上澄みを除き、70℃昇温、減圧し、ヘキサンとメタノールを留去し、イソプレン系重合体を得た。また、必要に応じて、n-オクチルアクリレート(NOA)で希釈した。
[Polymer: Synthesis of isoprene-based polymer]
In a four-necked flask equipped with a stirrer, a reflux condenser, a nitrogen introduction tube, a thermometer, and a dropping funnel, 200 g of hexane, 6.25 g of n-BuLi (1.6 M solution in hexane) and 100 g of isoprene were charged. Then, after stirring at 70 ° C., the temperature was returned to room temperature, and then 5 g of methanol was added to terminate the polymerization. Next, the resulting polyisoprene solution is dropped into methanol (5000 mL) to precipitate solids, and then the supernatant is removed, and the temperature is raised at 70 ° C. under reduced pressure, hexane and methanol are distilled off, and isoprene-based heavy I got a union. Moreover, it diluted with n-octyl acrylate (NOA) as needed.
 [光硬化性樹脂組成物の調製]
 ポリマーと、反応性希釈モノマーと、光重合開始剤とを含有する光硬化性樹脂組成物を調製した。
反応性希釈モノマー:
 2-ヒドロキシプロピルメタクリレート(HPMA):(株)日本触媒
 ラウリルメタクリレート(ライトエステルL):共栄社化学(株)
 イソボルニルメタクリレート(ライトエステルIB-X):共栄社化学(株)
光重合開始剤:
 1-ヒドロキシシクロへキシルフェニルケトン(イルガキュア184、BASF社製)
 2,4,6-トリメチルベンゾイル-ジフェニル-フォスフィンオキサイド(イルガキュアTPO、BASF社製)
[Preparation of Photocurable Resin Composition]
A photocurable resin composition was prepared containing a polymer, a reactive diluent monomer, and a photoinitiator.
Reactive Diluted Monomer:
2-Hydroxypropyl methacrylate (HPMA): Nippon Catalyst Co., Ltd. Lauryl methacrylate (Light Ester L): Kyoeisha Chemical Co., Ltd.
Isobornyl methacrylate (light ester IB-X): Kyoeisha Chemical Co., Ltd.
Photopolymerization initiator:
1-hydroxycyclohexyl phenyl ketone (IRGACURE 184, manufactured by BASF)
2,4,6-Trimethylbenzoyl-diphenyl-phosphine oxide (IRGACURE TPO, manufactured by BASF)
 [表面硬化性の評価]
 40(W)×70(L)×0.4(t)mmの大きさのガラス板に、光硬化性樹脂組成物を平均150μmの厚みで塗布し、光硬化性樹脂組成物層を形成した。光硬化性樹脂組成物層に対して、紫外線照射装置(LC-8、浜松ホトニクス(株)社製)を用いて、積算光量が2500mJ/cmとなるように、200mW/cm強度の紫外線を照射することにより光硬化性樹脂組成物層を硬化させ、光透過性硬化樹脂層を形成した。次に、70℃に加温された光透過性硬化樹脂層上に偏光板付きガラスの偏光板側を載置し、ガラス板側からゴムローラで30秒間加圧して、ガラス板を貼り付けた。これにより、評価用画像表示装置を作製した。
[Evaluation of surface hardenability]
A photocurable resin composition was applied to a glass plate of 40 (W) × 70 (L) × 0.4 (t) mm in a thickness of 150 μm on average to form a photocurable resin composition layer. . An ultraviolet light of 200 mW / cm 2 intensity is applied to the photocurable resin composition layer using an ultraviolet irradiation device (LC-8, manufactured by Hamamatsu Photonics Co., Ltd.) so that the integrated light quantity is 2500 mJ / cm 2. The light curable resin composition layer was cured by irradiating the light to form a light transmissive cured resin layer. Next, the polarizing plate side of the glass with a polarizing plate was placed on the light transmitting cured resin layer heated to 70 ° C., and pressed from the glass plate side by a rubber roller for 30 seconds to affix the glass plate. Thus, an image display for evaluation was produced.
 評価用画像表示装置を、95℃の環境下で吊り下げて、ガラス板と偏光板付きガラスとのズレを目視で観察し、表面硬化性の評価を下記基準により行った。
 評価AA:吊り下げ後180分以上、ズレ発生なし
 評価A:吊り下げ後120分以上180分未満の間にズレ発生
 評価BB:吊り下げ後60分以上120分未満の間にズレ発生
 評価B:吊り下げ後30分以上60分未満の間にズレ発生
 評価C:吊り下げ後30分未満の間にズレ発生
The image display apparatus for evaluation was suspended in an environment of 95 ° C., and the difference between the glass plate and the glass with a polarizing plate was visually observed, and the surface curability was evaluated according to the following criteria.
Evaluation AA: 180 minutes or more after suspension, no deviation occurred Evaluation A: Deviation occurred between 120 minutes and less than 180 minutes after suspension Evaluation BB: Deviation occurred between 60 minutes and less than 120 minutes after suspension Evaluation B: Deviation occurs between 30 minutes and less than 60 minutes after suspension Evaluation C: Deviation occurs between less than 30 minutes after suspension
 <実施例1>
 表1に示すように、(メタ)アクリル系重合体Aを90.9質量部(重合体含量50質量部)、HPMAを5質量部、ライトエステルLを2.1質量部、Irgacur184を2質量部配合し、光硬化性樹脂組成物を調製した。この光硬化性樹脂組成物を用いて評価用画像表示装置を作製したところ、表面硬化性の評価はAAであった。
Example 1
As shown in Table 1, 90.9 parts by mass (polymer content: 50 parts by mass) of (meth) acrylic polymer A, 5 parts by mass of HPMA, 2.1 parts by mass of light ester L, 2 parts by mass of Irgacur 184 Parts were blended to prepare a photocurable resin composition. When the image display apparatus for evaluation was produced using this photocurable resin composition, evaluation of surface curability was AA.
 <実施例2>
 表1に示すように、(メタ)アクリル系重合体Bを62.5質量部(重合体含量50質量部)、HPMAを5質量部、ライトエステルLを30.5質量部、Irgacur184を2質量部配合し、光硬化性樹脂組成物を調製した。この光硬化性樹脂組成物を用いて評価用画像表示装置を作製したところ、表面硬化性の評価はAAであった。
Example 2
As shown in Table 1, 62.5 parts by mass of (meth) acrylic polymer B (polymer content: 50 parts by mass), 5 parts by mass of HPMA, 30.5 parts by mass of light ester L, and 2 parts by mass of Irgacur 184 Parts were blended to prepare a photocurable resin composition. When the image display apparatus for evaluation was produced using this photocurable resin composition, evaluation of surface curability was AA.
 <実施例3>
 表1に示すように、(メタ)アクリル系重合体Cを50質量部(重合体含量50質量部)、HPMAを5質量部、ライトエステルLを43質量部、Irgacur184を2質量部配合し、光硬化性樹脂組成物を調製した。この光硬化性樹脂組成物を用いて評価用画像表示装置を作製したところ、表面硬化性の評価はAであった。
Example 3
As shown in Table 1, 50 parts by mass of (meth) acrylic polymer C (polymer content: 50 parts by mass), 5 parts by mass of HPMA, 43 parts by mass of light ester L, and 2 parts by mass of Irgacur 184, A photocurable resin composition was prepared. When the image display apparatus for evaluation was produced using this photocurable resin composition, evaluation of surface curability was A.
 <実施例4>
 表1に示すように、(メタ)アクリル系重合体Dを62.5質量部(重合体含量50質量部)、HPMAを5質量部、ライトエステルLを30.5質量部、Irgacur184を2質量部配合し、光硬化性樹脂組成物を調製した。この光硬化性樹脂組成物を用いて評価用画像表示装置を作製したところ、表面硬化性の評価はBBであった。
Example 4
As shown in Table 1, 62.5 parts by mass (polymer content: 50 parts by mass) of (meth) acrylic polymer D, 5 parts by mass of HPMA, 30.5 parts by mass of light ester L, and 2 parts by mass of Irgacur 184 Parts were blended to prepare a photocurable resin composition. When the image display apparatus for evaluation was produced using this photocurable resin composition, evaluation of surface curability was BB.
 <実施例5>
 表1に示すように、(メタ)アクリル系重合体Eを71.4質量部(重合体含量50質量部)、HPMAを5質量部、ライトエステルLを21.6質量部、Irgacur184を2質量部配合し、光硬化性樹脂組成物を調製した。この光硬化性樹脂組成物を用いて評価用画像表示装置を作製したところ、表面硬化性の評価はBであった。
Example 5
As shown in Table 1, 71.4 parts by mass of (meth) acrylic polymer E (polymer content: 50 parts by mass), 5 parts by mass of HPMA, 21.6 parts by mass of light ester L, and 2 parts by mass of Irgacur 184 Parts were blended to prepare a photocurable resin composition. When the image display apparatus for evaluation was produced using this photocurable resin composition, evaluation of surface curability was B.
 <実施例6>
 表1に示すように、ライトエステルLの代わりにライトエステルIB-Xを配合した以外は、実施例4と同様に光硬化性樹脂組成物を調製した。この光硬化性樹脂組成物を用いて評価用画像表示装置を作製したところ、表面硬化性の評価はBBであった。
Example 6
As shown in Table 1, a photocurable resin composition was prepared in the same manner as Example 4, except that light ester IB-X was blended instead of light ester L. When the image display apparatus for evaluation was produced using this photocurable resin composition, evaluation of surface curability was BB.
 <実施例7>
 表1に示すように、Irgacur184の代わりにTPOを配合した以外は、実施例4と同様に光硬化性樹脂組成物を調製した。この光硬化性樹脂組成物を用いて評価用画像表示装置を作製したところ、表面硬化性の評価はBBであった。
Example 7
As shown in Table 1, a photocurable resin composition was prepared in the same manner as in Example 4 except that TPO was blended instead of Irgacur 184. When the image display apparatus for evaluation was produced using this photocurable resin composition, evaluation of surface curability was BB.
 <実施例8>
 表1に示すように、HPMAを配合せず、ライトエステルLを35.5質量部配合した以外は、実施例4と同様に光硬化性樹脂組成物を調製した。この光硬化性樹脂組成物を用いて評価用画像表示装置を作製したところ、表面硬化性の評価はBBであった。
Example 8
As shown in Table 1, a photocurable resin composition was prepared in the same manner as in Example 4 except that HPMA was not blended and 35.5 parts by mass of light ester L was blended. When the image display apparatus for evaluation was produced using this photocurable resin composition, evaluation of surface curability was BB.
 <実施例9>
 表2に示すように、(メタ)アクリル系重合体Cを20質量部、HPMAを7質量部、ライトエステルLを70質量部、Irgacur184を3質量部配合し、光硬化性樹脂組成物を調製した。この光硬化性樹脂組成物を用いて評価用画像表示装置を作製したところ、表面硬化性の評価はBであった。
Example 9
As shown in Table 2, 20 parts by mass of (meth) acrylic polymer C, 7 parts by mass of HPMA, 70 parts by mass of light ester L, and 3 parts by mass of Irgacur 184 were blended to prepare a photocurable resin composition did. When the image display apparatus for evaluation was produced using this photocurable resin composition, evaluation of surface curability was B.
 <実施例10>
 表2に示すように、(メタ)アクリル系重合体Cを40質量部、HPMAを5質量部、ライトエステルLを53質量部、Irgacur184を2質量部配合し、光硬化性樹脂組成物を調製した。この光硬化性樹脂組成物を用いて評価用画像表示装置を作製したところ、表面硬化性の評価はAであった。
Example 10
As shown in Table 2, 40 parts by mass of (meth) acrylic polymer C, 5 parts by mass of HPMA, 53 parts by mass of light ester L, and 2 parts by mass of Irgacur 184 were blended to prepare a photocurable resin composition. did. When the image display apparatus for evaluation was produced using this photocurable resin composition, evaluation of surface curability was A.
 <実施例11>
 表2に示すように、(メタ)アクリル系重合体Cを70質量部、HPMAを3質量部、ライトエステルLを25質量部配合し、光硬化性樹脂組成物を調製した。この光硬化性樹脂組成物を用いて評価用画像表示装置を作製したところ、表面硬化性の評価はAであった。
Example 11
As shown in Table 2, 70 parts by mass of (meth) acrylic polymer C, 3 parts by mass of HPMA, and 25 parts by mass of light ester L were blended to prepare a photocurable resin composition. When the image display apparatus for evaluation was produced using this photocurable resin composition, evaluation of surface curability was A.
 <実施例12>
 表2に示すように、(メタ)アクリル系重合体Cを90質量部、HPMAを1質量部、ライトエステルLを8質量部、Irgacur184を1質量部配合し、光硬化性樹脂組成物を調製した。この光硬化性樹脂組成物を用いて評価用画像表示装置を作製したところ、表面硬化性の評価はBであった。
Example 12
As shown in Table 2, 90 parts by mass of (meth) acrylic polymer C, 1 part by mass of HPMA, 8 parts by mass of light ester L, and 1 part by mass of Irgacur 184 were blended to prepare a photocurable resin composition did. When the image display apparatus for evaluation was produced using this photocurable resin composition, evaluation of surface curability was B.
 <実施例13>
 表2に示すように、ウレタン系重合体を62.5質量部(重合体含量50質量部)、HPMAを5質量部、ライトエステルLを30.5質量部、Irgacur184を2質量部配合し、光硬化性樹脂組成物を調製した。この光硬化性樹脂組成物を用いて評価用画像表示装置を作製したところ、表面硬化性の評価はBであった。
Example 13
As shown in Table 2, 62.5 parts by mass of urethane polymer (50 parts by mass of polymer content), 5 parts by mass of HPMA, 30.5 parts by mass of light ester L, and 2 parts by mass of Irgacur 184, A photocurable resin composition was prepared. When the image display apparatus for evaluation was produced using this photocurable resin composition, evaluation of surface curability was B.
 <実施例14>
 表2に示すように、イソプレン系重合体を62.5質量部(重合体含量50質量部)、HPMAを5質量部、ライトエステルLを30.5質量部、Irgacur184を2質量部配合し、光硬化性樹脂組成物を調製した。この光硬化性樹脂組成物を用いて評価用画像表示装置を作製したところ、表面硬化性の評価はBであった。
Example 14
As shown in Table 2, 62.5 parts by mass of isoprene-based polymer (polymer content: 50 parts by mass), 5 parts by mass of HPMA, 30.5 parts by mass of light ester L, and 2 parts by mass of Irgacur 184, A photocurable resin composition was prepared. When the image display apparatus for evaluation was produced using this photocurable resin composition, evaluation of surface curability was B.
 <比較例1>
 表2に示すように、(メタ)アクリル系重合体Fを62.5質量部(重合体含量50質量部)、HPMAを5質量部、ライトエステルLを30.5質量部、Irgacur184を2質量部配合し、光硬化性樹脂組成物を調製した。この光硬化性樹脂組成物を用いて評価用画像表示装置を作製したところ、表面硬化性の評価はCであった。
Comparative Example 1
As shown in Table 2, 62.5 parts by mass of (meth) acrylic polymer F (polymer content: 50 parts by mass), 5 parts by mass of HPMA, 30.5 parts by mass of light ester L, and 2 parts by mass of Irgacur 184 Parts were blended to prepare a photocurable resin composition. When the image display apparatus for evaluation was produced using this photocurable resin composition, evaluation of surface curability was C.
 <比較例2>
 表2に示すように、(メタ)アクリル系重合体Gを70.4質量部(重合体含量50質量部)、HPMAを5質量部、ライトエステルLを22.6質量部、Irgacur184を2質量部配合し、光硬化性樹脂組成物を調製した。この光硬化性樹脂組成物を用いて評価用画像表示装置を作製したところ、表面硬化性の評価はCであった。
Comparative Example 2
As shown in Table 2, 70.4 parts by mass (polymer content: 50 parts by mass) of (meth) acrylic polymer G, 5 parts by mass of HPMA, 22.6 parts by mass of light ester L, and 2 parts by mass of Irgacur 184 Parts were blended to prepare a photocurable resin composition. When the image display apparatus for evaluation was produced using this photocurable resin composition, evaluation of surface curability was C.
 <比較例3>
 表2に示すように、両末端に水酸基を有する水素化ポリブタジエン(GI-3000、日本曹達(株)、Mn:3000)を50質量部、ライトエステルLを43質量部配合した以外は、実施例3と同様にして光硬化性樹脂組成物を調製した。この光硬化性樹脂組成物を用いて評価用画像表示装置を作製したところ、表面硬化性の評価はCであった。
Comparative Example 3
As shown in Table 2, except that 50 parts by mass of hydrogenated polybutadiene having hydroxyl groups at both ends (GI-3000, Nippon Soda Co., Ltd., Mn: 3000) and 43 parts by mass of light ester L were blended, A photocurable resin composition was prepared in the same manner as in 3. When the image display apparatus for evaluation was produced using this photocurable resin composition, evaluation of surface curability was C.
Figure JPOXMLDOC01-appb-T000001

 
 
Figure JPOXMLDOC01-appb-T000001

 
 
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 比較例1~3のように、重量平均分子量が80000未満のポリマーを含有する場合、良好な表面硬化性が得られなかった。一方、実施例1~14のように、重量平均分子量が80000以上のポリマーを20~90wt%含有する場合、良好な表面硬化性が得られた。また、ポリマーとして、(メタ)アクリル系重合体、ウレタン系重合体、イソプレン系重合体を用いる場合、良好な表面硬化性が得られることが分かった。 As in Comparative Examples 1 to 3, when the polymer having a weight average molecular weight of less than 80,000 was contained, good surface curability was not obtained. On the other hand, when 20 to 90 wt% of a polymer having a weight average molecular weight of 80,000 or more was contained as in Examples 1 to 14, good surface curability was obtained. Moreover, it turned out that favorable surface curability is obtained when using a (meth) acrylic-type polymer, a urethane type polymer, and an isoprene-type polymer as a polymer.
 また、実施例3、9~12より、ポリマーの含有量が40~70wt%である場合、さらに良好な表面硬化性が得られることが分かった。また、実施例1~3のように、重量平均分子量が150000~500000であるポリマーを含有する場合、特に良好な表面硬化性が得られることが分かった。 Further, it was found from Examples 3 and 9 to 12 that when the content of the polymer is 40 to 70% by weight, further favorable surface curability can be obtained. In addition, it was found that particularly good surface curability can be obtained when the polymer having a weight average molecular weight of 150,000 to 500,000 is contained as in Examples 1 to 3.
 1 遮光層、2 光透過性カバー部材、3 光硬化性樹脂組成物層、4 段差、5 光透過性硬化樹脂層、6 画像表示部材
 
1 light-shielding layer, 2 light-transmissive cover member, 3 light-curable resin composition layer, 4 steps, 5 light-transmissive cured resin layer, 6 image display member

Claims (8)

  1.  重量平均分子量が80000以上であるポリマーと、反応性希釈モノマーと、光重合開始剤とを含有し、
     前記ポリマーの含有量が、20~90wt%である光硬化性樹脂組成物。
    And a polymer having a weight average molecular weight of 80,000 or more, a reactive diluent monomer, and a photopolymerization initiator,
    A photocurable resin composition wherein the content of the polymer is 20 to 90 wt%.
  2.  前記ポリマーが、(メタ)アクリル系重合体、ウレタン系重合体、イソプレン系重合体から選ばれる少なくとも1種である請求項1記載の光硬化性樹脂組成物。 The photocurable resin composition according to claim 1, wherein the polymer is at least one selected from a (meth) acrylic polymer, a urethane polymer, and an isoprene polymer.
  3.  前記ポリマーの分散度が、10以下である請求項1又は2記載の光硬化性樹脂組成物。 The photocurable resin composition according to claim 1 or 2, wherein the degree of dispersion of the polymer is 10 or less.
  4.  前記ポリマーの含有量が、40~70wt%である請求項1乃至3のいずれか1項に記載の光硬化性樹脂組成物。 The photocurable resin composition according to any one of claims 1 to 3, wherein the content of the polymer is 40 to 70 wt%.
  5.  前記ポリマーの重量平均分子量が、150000~500000である請求項1乃至4のいずれか1項に記載の光硬化性樹脂組成物。 The photocurable resin composition according to any one of claims 1 to 4, wherein the weight average molecular weight of the polymer is 150,000 to 500,000.
  6.  前記ポリマーが、少なくとも、アルキル基の炭素数が1~18の直鎖又は分岐を有するアルキル(メタ)アクリレートと、水酸基を有する(メタ)アクリレートとを構成単量体単位とする重合体である請求項1乃至5のいずれか1項に記載の光硬化性樹脂組成物。 The polymer is a polymer having, as constituent monomer units, at least a linear or branched alkyl (meth) acrylate having 1 to 18 carbon atoms in the alkyl group and a (meth) acrylate having a hydroxyl group. The photocurable resin composition according to any one of Items 1 to 5.
  7.  光透過性を有する第1の部材又は第2の部材の表面に、重量平均分子量が80000以上であるポリマーと、反応性希釈モノマーと、光重合開始剤とを含有し、前記ポリマーの含有量が、20~90wt%である光硬化性樹脂組成物層を形成する形成工程と、
     前記光硬化性樹脂組成物層を硬化させ、光透過性硬化樹脂層を形成する硬化工程と、
     前記光透過性硬化樹脂層上に第2の部材又は第1の部材を貼り合わせる貼合工程と
     を有する画像表示装置の製造方法。
    The surface of the first member or the second member having light transmittance contains a polymer having a weight average molecular weight of 80000 or more, a reactive dilution monomer, and a photopolymerization initiator, and the content of the polymer is Forming a photocurable resin composition layer of 20 to 90 wt%,
    A curing step of curing the photocurable resin composition layer to form a light transmissive cured resin layer;
    And a bonding step of bonding a second member or a first member on the light transmissive cured resin layer.
  8.  光透過性を有する第1の部材又は第2の部材の表面に、重量平均分子量が80000以上であるポリマーと、反応性希釈モノマーと、光重合開始剤とを含有し、前記ポリマーの含有量が、20~90wt%である光硬化性樹脂組成物層を形成する形成工程と、
     前記光硬化性樹脂組成物層上に第2の部材又は第1の部材を貼り合わせる貼合工程と、
     前記光硬化性樹脂組成物層を硬化させ、光透過性硬化樹脂層を形成する硬化工程と
     を有する画像表示装置の製造方法。
     
    The surface of the first member or the second member having light transmittance contains a polymer having a weight average molecular weight of 80000 or more, a reactive dilution monomer, and a photopolymerization initiator, and the content of the polymer is Forming a photocurable resin composition layer of 20 to 90 wt%,
    A bonding step of bonding a second member or a first member onto the photocurable resin composition layer;
    A curing step of curing the photocurable resin composition layer to form a light transmitting cured resin layer.
PCT/JP2018/023439 2017-06-28 2018-06-20 Photocurable resin composition and production method for image display device WO2019004019A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017125890 2017-06-28
JP2017-125890 2017-06-28

Publications (1)

Publication Number Publication Date
WO2019004019A1 true WO2019004019A1 (en) 2019-01-03

Family

ID=64741493

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/023439 WO2019004019A1 (en) 2017-06-28 2018-06-20 Photocurable resin composition and production method for image display device

Country Status (2)

Country Link
TW (1) TW201906971A (en)
WO (1) WO2019004019A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020141606A1 (en) * 2019-01-02 2020-07-09 デクセリアルズ株式会社 Photocurable resin composition and method for manufacturing image display device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013227399A (en) * 2012-04-25 2013-11-07 Nippon Synthetic Chem Ind Co Ltd:The Acrylic resin composition, acrylic adhesive, adhesive sheet, double-sided adhesive sheet, adhesive for transparent electrode, touch panel and image display device, and manufacturing method of laminate containing adhesive layer
WO2014092186A1 (en) * 2012-12-13 2014-06-19 東亞合成株式会社 Active energy ray-curable adhesive composition
WO2014148148A1 (en) * 2013-03-22 2014-09-25 綜研化学株式会社 Photo-curable composition and molded article
JP2017101127A (en) * 2015-11-30 2017-06-08 日立化成株式会社 Photocurable resin composition, image display device prepared therewith, and method for producing image display device therewith

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013227399A (en) * 2012-04-25 2013-11-07 Nippon Synthetic Chem Ind Co Ltd:The Acrylic resin composition, acrylic adhesive, adhesive sheet, double-sided adhesive sheet, adhesive for transparent electrode, touch panel and image display device, and manufacturing method of laminate containing adhesive layer
WO2014092186A1 (en) * 2012-12-13 2014-06-19 東亞合成株式会社 Active energy ray-curable adhesive composition
WO2014148148A1 (en) * 2013-03-22 2014-09-25 綜研化学株式会社 Photo-curable composition and molded article
JP2017101127A (en) * 2015-11-30 2017-06-08 日立化成株式会社 Photocurable resin composition, image display device prepared therewith, and method for producing image display device therewith

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020141606A1 (en) * 2019-01-02 2020-07-09 デクセリアルズ株式会社 Photocurable resin composition and method for manufacturing image display device
JP2020109138A (en) * 2019-01-02 2020-07-16 デクセリアルズ株式会社 Photocurable resin composition and method for manufacturing image display device
JP7244278B2 (en) 2019-01-02 2023-03-22 デクセリアルズ株式会社 PHOTOCURABLE RESIN COMPOSITION AND METHOD FOR MANUFACTURING IMAGE DISPLAY DEVICE

Also Published As

Publication number Publication date
TW201906971A (en) 2019-02-16

Similar Documents

Publication Publication Date Title
JP6632653B2 (en) Optically transparent adhesive with microstructure
JP5764040B2 (en) Optical UV-curable resin composition, cured product, and display device
JP5642028B2 (en) Optical UV-curable resin composition, cured product, and display device
JP5738641B2 (en) Optical UV-curable resin composition, cured product, and display device
KR101619683B1 (en) Production method for transparent double-sided adhesive sheet, and transparent double-sided adhesive sheet
JP2012145751A (en) Ultraviolet curable resin composition for optical use, hardened material, and display device
KR102031528B1 (en) Photocurable resin composition and method for manufacturing image display device
CN107722916B (en) UV-curable resin composition
TW201420718A (en) Photocuring adhesive agent composition, cured object, adhesive sheet and display panel and producing method thereof
KR20160016820A (en) Photocurable resin composition and image display device production method
JP2014009314A (en) Photopolymerizable curable adhesive composition
JP2012126839A (en) Ultraviolet curing resin composition for optics, cured material, and display device
JP2014189758A (en) Energy ray-curable resin composition using unsaturated carbonyl-modified conjugated diene-based polymer
TW201323555A (en) Photocurable adhesive composition, optical adhesive film including the same, display device including the same, and method for assembling module using the same
CN113088238A (en) Preparation method of high-peel-force fast-packaging OCA adhesive for low-surface-energy interface lamination
CN105378020A (en) Ultraviolet curable adhesive composition, adhesive and adhesive film
WO2019004019A1 (en) Photocurable resin composition and production method for image display device
JP6602933B2 (en) Photocurable resin composition and method for manufacturing image display device
JP7244278B2 (en) PHOTOCURABLE RESIN COMPOSITION AND METHOD FOR MANUFACTURING IMAGE DISPLAY DEVICE
JP2019210480A (en) Photocurable resin composition and method for manufacturing image display device
JP2014152324A (en) Energy ray-curable resin composition and method for forming dam using the same
CN112752817A (en) Adhesive composition for surface protection sheet and surface protection sheet
JP2014052538A (en) Photosetting resin composition for liquid crystal panel, method for curing the composition, and cured product
WO2018038222A1 (en) Curable resin composition, image display device and manufacturing method of image display device
CN117222720A (en) Adhesive composition and protective sheet

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18823037

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18823037

Country of ref document: EP

Kind code of ref document: A1