WO2019003987A1 - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
WO2019003987A1
WO2019003987A1 PCT/JP2018/023157 JP2018023157W WO2019003987A1 WO 2019003987 A1 WO2019003987 A1 WO 2019003987A1 JP 2018023157 W JP2018023157 W JP 2018023157W WO 2019003987 A1 WO2019003987 A1 WO 2019003987A1
Authority
WO
WIPO (PCT)
Prior art keywords
air conditioner
air
passage
intake
filter
Prior art date
Application number
PCT/JP2018/023157
Other languages
French (fr)
Japanese (ja)
Inventor
末松 伸康
貴幸 石川
松井 賢司
Original Assignee
カルソニックカンセイ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by カルソニックカンセイ株式会社 filed Critical カルソニックカンセイ株式会社
Priority to CN201880033326.0A priority Critical patent/CN110650857B/en
Publication of WO2019003987A1 publication Critical patent/WO2019003987A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/24Devices purely for ventilating or where the heating or cooling is irrelevant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H3/00Other air-treating devices
    • B60H3/06Filtering

Definitions

  • the present invention relates to an air conditioner.
  • JP 2008-302790 A discloses an air conditioner provided with a dust sensor for detecting dust such as pollen and exhaust gas.
  • a dust sensor used for such an apparatus there is one that drives a fan provided inside, takes in air from the air inlet into the dust sensor, and discharges it from the air outlet to the outside.
  • the dust sensor detects the dust when the air taken in from the air intake passes through the sensor unit, thereby obtaining the dust concentration.
  • An object of the present invention is to provide an air conditioner capable of accurately detecting dust.
  • the air conditioning system includes an outside air inlet for introducing air from the outside of the vehicle, an inside air inlet for introducing air from the vehicle interior, and an intake for opening and closing the outside air inlet and the inside air inlet.
  • a door an inflow passage provided downstream of the intake door and into which air introduced from the outside air introduction port and the inside air introduction port flows, and a particle concentration detector for detecting the concentration of particles in the inflow passage;
  • the particulate matter concentration detector has an intake passage for sucking air into the particulate matter concentration detector, and an exhaust passage for discharging the air out of the particulate matter concentration detector.
  • the intake passage and the exhaust passage are: Open to the inflow channel.
  • the intake flow path and the exhaust flow path of the particulate matter concentration detector are opened to the inflow path, and therefore, even if the pressure in the inflow path changes, between the intake flow path and the exhaust flow path The differential pressure does not change. Therefore, dust can be detected accurately by the particulate matter concentration detector.
  • FIG. 1 is a schematic configuration view showing an air conditioner according to an embodiment of the present invention.
  • FIG. 2 is an enlarged view of the main part according to the embodiment of the present invention.
  • FIG. 3 is a cross-sectional view taken along line III-III of FIG.
  • FIG. 4 is a cross-sectional view taken along line IV-IV of FIG. 1 in a modification.
  • FIG. 5 is a cross-sectional view corresponding to FIG. 3 in a modification.
  • FIG. 1 is a view showing a schematic configuration of an air conditioner 100 mounted on a vehicle 1 according to the present embodiment.
  • the air conditioner 100 includes a housing 10 (case) in which a flow passage 29 is formed, and a blower 17 (blower fan) accommodated in the housing 10.
  • the blower 17 is driven by the motor 20 and sends air into the interior of the vehicle 1 through the inside of the housing 10.
  • the air flow rate of the air blower 17 (discharged air flow rate per unit time) is switched in multiple stages by the control unit 5 (controller).
  • the outside air introduction port 11 is a flow path for introducing air from the outside of the vehicle 1 as indicated by an arrow A1.
  • the inside air introduction port 12 is a flow path for introducing air from the room 2 as indicated by an arrow A2.
  • the inside air introduction port 12 is formed so that the flow path length is shorter and the flow path resistance is smaller than the outside air introduction port 11.
  • An intake door 13 is provided at the junction of the outside air introduction port 11 and the inside air introduction port 12 for opening and closing these.
  • the intake door 13 can change its angle (opening degree) by the control unit 5.
  • the intake door 13 is switched between the outside air introduction position and the inside air introduction position shown in FIG. 1, and adjusts the mixing ratio of inside air and outside air according to the angle.
  • the intake door 13 swings about the swing shaft 13a.
  • the swinging shaft 13 a extends on a plane substantially orthogonal to the rotation center axis O with respect to the rotation center axis O of the blower 17.
  • the inflow passage 14 is provided with a particulate concentration sensor 6 (dust concentration sensor) as a particulate concentration detector and a filter 16 (electrostatic filter).
  • a particulate concentration sensor 6 dust concentration sensor
  • a filter 16 electrostatic filter
  • the particulate matter concentration sensor 6 includes an intake passage 61 for taking in air flowing through the inflow passage 14 into the particulate matter concentration sensor 6 and an exhaust passage 62 for discharging the air out of the particulate matter concentration sensor 6. And a sensor unit 63 provided in the main body to detect passing particles.
  • the particulate matter concentration sensor 6 drives a built-in fan (not shown) to suck air flowing through the inflow passage 14 and detect the concentration of the particulates in the air.
  • the detection signal of the particulate matter concentration sensor 6 is sent to the control unit 5.
  • the filter 16 is provided on the upstream side of the blower 17 in the inflow passage 14 and removes foreign matter of air sucked into the blower 17 from the inflow passage 14.
  • the filter 16 is placed on a pair of rails (not shown) formed in the housing 10 and is removably accommodated in the housing 10.
  • the filter 16 can be attached and detached through the outlet 10 a formed in the housing 10.
  • the takeout port 10 a is closed by a lid member 40 attached to the housing 10.
  • an outlet channel 15, a defrost outlet 25, a vent outlet 26, and a foot outlet 27 are provided downstream of the blower 17 in the channel 29 in the housing 10. Air is blown toward the window 3 of the room 2 from the defrost outlet 25. Air is blown out from the vent outlet 26 toward a seat (not shown) in the room 2. Air is blown out from the foot outlet 27 toward the floor (not shown) of the room 2.
  • an evaporator 18 heat exchanger for air cooling
  • a heater core 19 heat exchanger for air heating
  • an air mix door 21 is provided in the outflow flow path 15.
  • the air discharged from the blower 17 as indicated by an arrow A 4 passes through the evaporator 18 and then is temperature-controlled through the heater core 19 via the air mix door 21.
  • the air mix door 21 has its angle (opening degree) changed by the control unit 5 to adjust the air flow rate passing through the heater core 19.
  • Doors 22 to 24 are provided at the defrost outlet 25, the vent outlet 26, and the foot outlet 27, respectively.
  • the control unit 5 By changing the angles (openings) of the doors 22 to 24 by the control unit 5, the distribution of the flow rate of the air blown into the room 2 is changed.
  • the intake door 13, the air mix door 21 and the doors 22 to 24 constitute a flow path switching mechanism 30 for switching the flow path 29 (path) through which the air flows.
  • the flow path resistance given to the air flow increases or decreases.
  • the flow path resistance is smaller in the inside air circulation state in which the inside air introduction port 12 opens than in the outside air introduction state in which the outside air introduction port 11 opens.
  • the flow path resistance is the most in the internal air circulation state in which the air in the room 2 circulates through the inside air introduction port 12, the inflow path 14, the outflow path 15, and the defrost outlet 25 as shown by arrows A2 to A6. It becomes smaller.
  • the control unit 5 includes a CPU that controls the operation of each unit, a ROM that stores a map of a control program and the like, and a RAM that temporarily stores detection signals of the particle concentration sensor 6 and various information.
  • the control unit 5 displays the concentration of the particles detected by the particle concentration sensor 6 on a display device (not shown) provided in the room.
  • the control unit 5 controls the motor 20 (the amount of air blown by the blower 17), various doors (intake door 13, air mix door 21, and door 22) based on detection signals from the particle concentration sensor 6 and a temperature sensor (not shown). Control the operation of (24).
  • the lid member 40 is attached at a position facing the side surface of the filter 16 so as to close the outlet 10 a.
  • the lid member 40 penetrates the main body 41 and a main body 41 covering the outlet 10 a of the housing 10, a pair of holding parts 42 and 43 formed on both ends of the main body 41, and intake of the particulate matter concentration sensor 6.
  • the first through hole 44 communicating with the flow path 61
  • the second through hole 45 penetrating the main body 41 and communicating with the exhaust flow path 62 of the particulate matter concentration sensor 6, and projecting in the direction from the main body 41 toward the filter 16
  • the rib 46 is formed as described above, and the partition wall 47 provided over the holding portion 42 and the holding portion 43.
  • the main body portion 41 is formed in a flat plate shape.
  • the particle concentration sensor 6 is attached to the outer surface of the main body 41.
  • the filter 16 When the lid member 40 is attached to the housing 10, the filter 16 is fitted between the pair of holding portions 42 and 43. Thereby, the movement of the filter 16 in the direction of the rocking axis 13a is restricted.
  • the rib 46 is formed to abut the filter 16 when the lid member 40 is attached to the housing 10. Thereby, the movement of the filter 16 in the mounting and demounting direction is restricted.
  • the rib 46 has a function of securing a space (gap G) between the side surface of the filter 16 and the main body 41 of the lid member 40. By securing the gap G, the first through hole 44 and the second through hole 45 can be covered by the side surface of the filter 16, and the flow of air to the particulate matter concentration sensor 6 can be prevented from being impeded.
  • the first through hole 44 is formed on the upstream side of the second through hole 45. Furthermore, the first through holes 44 and the second through holes 45 are formed so as to sandwich the rib 46.
  • the intake flow passage 61 and the exhaust flow passage 62 pass through the first through holes 44 and the second through holes 45 formed in the lid member 40 so as to sandwich the rib 46 to the inflow passage 14 (the gap G). Open.
  • the air discharged from the exhaust flow passage 62 is again taken in from the intake flow passage 61 by opening the intake flow passage 61 and the exhaust flow passage 62 into the inflow flow passage 14 (the gap G) so as to sandwich the rib 46. Can be prevented. Thereby, the measurement accuracy of the particulate matter concentration sensor 6 can be enhanced.
  • the partition wall portion 47 is provided to connect the holding portion 42 and the holding portion 43, and abuts on the downstream surface (the lower surface in FIG. 2) of the filter 16. As described above, a gap G is present between the main body 41 and the filter 16. The air flowing into the gap G tends to flow downstream of the filter 16 through the gap G (without passing through the filter 16). However, in the present embodiment, since the partition wall portion 47 is provided, the air flowing into the gap G flows from the side surface of the filter 16 to the downstream side through the inside of the filter 16. Thus, foreign matter of air passing through the gap G can also be removed, so foreign matter of air sucked into the blower 17 can be reliably removed. If the gap G is small or air can flow without passing through the filter 16, the partition 47 may not be provided.
  • the intake door 13 releases the outside air introduction port 11, and when the blower 17 is driven in a state where the inside air introduction port 12 is closed, the particulate matter concentration sensor 6
  • the control unit 5 switches to the inside air circulation mode in which the intake door 13 closes the outside air inlet 11 and releases the inside air inlet 12.
  • the particle concentration detected by the particle concentration sensor 6 may be simply displayed on a display device (not shown) provided in the room.
  • the passenger confirms the concentration of particulates displayed on the display device, and operates, for example, a switch (not shown) inside to switch to the inside air circulation mode.
  • the intake flow passage 61 and the exhaust flow passage 62 of the particulate matter concentration sensor 6 open to the inflow passage 14. Thereby, for example, even if the air blower 17 operates and the pressure in the inflow passage 14 decreases, the differential pressure between the intake passage 61 and the exhaust passage 62 does not change. Can detect particulates (dust). That is, the measurement accuracy of the particulate matter concentration sensor 6 can be enhanced.
  • the particulate matter concentration sensor 6 detects the particulate matter concentration in the inflow passage. As a result, compared with the case where the particulate concentration sensor 6 is provided in each of the outside air inlet 11 and the inside air inlet 12, the number of the particulate concentration sensors 6 can be reduced. Therefore, the cost can be reduced.
  • the intake flow passage 61 and the exhaust flow passage 62 are opened to the inflow passage 14 through the lid member 40.
  • the space (gap G) between the lid member 40 (housing 10) and the side surface of the filter 16 the change in wind speed and pressure is small. Therefore, the pressure in the intake flow passage 61 and the exhaust flow passage 62 is stabilized by opening the intake flow passage 61 and the exhaust flow passage 62 in the space (the gap G). Dust) can be detected, and the measurement accuracy of the particulate matter concentration sensor 6 can be enhanced.
  • the particulate matter concentration sensor 6 is attached to the lid member 40. Since the lid member 40 can be removed from the housing 10, maintenance can be performed with the particulate matter concentration sensor 6 removed from the housing 10. Therefore, the maintainability of the particulate matter concentration sensor 6 is improved.
  • the pair of holding portions 42 and 43 and the rib 46 provided on the lid member 40 restrict the movement of the filter 16. This can prevent the filter 16 from moving carelessly.
  • the configuration in which the holding portion 42, the holding portion 43, and the rib 46 are provided has been described as an example. However, if the holding portion 42, the holding portion 43, and the rib 46 are unnecessary, they need not necessarily be provided.
  • the particulate matter concentration sensor 6 is attached to the lid member 40, and the intake passage 61 and the exhaust passage 62 of the particulate matter concentration sensor 6 are communicated with the first through holes 44 and the second through holes 45 of the lid member 40.
  • the intake passage 61 and the exhaust passage 62 may be configured to communicate with the first through hole 44 and the second through hole 45 through a tube, a pipe or the like.
  • the particulate matter concentration sensor 6 can also be attached to a place other than the lid member 40 and the housing 10.
  • the intake flow passage 61 and the exhaust flow passage 62 of the particulate matter concentration sensor 6 are opened in the side surface portion 10 b of the housing 10.
  • the housing 10 has a side surface portion 10 b formed in parallel with the swing direction of the intake door 13 (in the direction orthogonal to the swing axis 13 a).
  • the side surface portion 10 b is provided with a support portion 10 c which rotatably supports the swinging shaft 13 a of the intake door 13.
  • the particulate matter concentration sensor 6 When the air conditioner 100 is operating in the intake mode in which the intake door 13 closes the outside air inlet 11 and the inside air inlet 12 and the inflow passage 14 communicate with each other, the particulate matter concentration sensor 6 is attached to the lid member 40 When attached, the particulate matter concentration sensor 6 is positioned on the flow line of the air from the inside air introduction port 12 and thus is susceptible to pressure fluctuations and wind speed fluctuations. Therefore, as in the present modification, the particulate matter concentration sensor 6 is attached to the side surface portion 10b, and the intake flow passage 61 and the exhaust flow passage 62 are opened in the side surface portion 10b. Can be difficult to receive, and the particle concentration can be detected accurately.
  • the particle concentration sensor 6 is attached to the lid member 40, and the intake flow passage 61 and the exhaust flow passage 62 are opened in the side surface portion 10b through a tube or pipe. It may be configured to In this case, it is possible to reduce the influence of pressure fluctuation and wind speed fluctuation while improving the maintainability.
  • FIG. 5 is a cross-sectional view corresponding to FIG. 3 in this modification.
  • the lid member 40 has a bulging portion 48 that bulges outward, and the intake passage 61 and the exhaust passage 62 are configured to open in the space S in the bulging portion 48. Be done.
  • the space S in the bulging portion 48 is formed to communicate with the inflow passage 14 (upstream side of the filter 16).
  • the intake flow path 61 and the exhaust flow path 62 can be provided by providing the bulging portion 48 (space S) as in this modification. Can be prevented, and the flow of air to the particulate matter concentration sensor 6 can be secured. Thereby, the particulates (dust) can be accurately detected by the particulates concentration sensor 6, and the measurement accuracy of the particulates concentration sensor 6 can be enhanced.
  • a rib 10 d is provided between the intake passage 61 and the exhaust passage 62.
  • the particle concentration sensor 6 is provided in the space of the bulging portion 48, but the particle concentration sensor 6 is attached to the outer surface of the bulging portion 48 or another member, and the bulging portion 48 is
  • the intake flow passage 61 and the exhaust flow passage 62 may be opened in the space in the bulging portion 48 through a penetrating through hole, a tube or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

An air conditioner (100) comprises: an outside air introduction port (11) for introducing air from the outside of a vehicle (1); an inside air introduction port (12) for introducing air from a cabin of the vehicle (1); an intake door (13) that opens and closes the outside air introduction port (11) and the inside air introduction port (12); an inflow passage (14) which is provided downstream of the intake door (13) and into which the air introduced from the outside air introduction port (11) and the inside air introduction port (12) flows; and a particulate concentration sensor (6) for detecting the concentration of particulates in the inflow passage (14). The particulate concentration sensor (6) has an intake flow passage (61) for drawing air into the particulate concentration sensor (6), and a discharge flow passage (62) for discharging air to the outside of the particulate concentration sensor (6). The intake flow passage (61) and the discharge flow passage (62) are open to the inflow passage (14).

Description

空調装置Air conditioner
 本発明は、空調装置に関する。 The present invention relates to an air conditioner.
 JP2008-302790Aには、花粉や排気などのダストを検出するためのダストセンサを備えた空調装置が開示されている。 JP 2008-302790 A discloses an air conditioner provided with a dust sensor for detecting dust such as pollen and exhaust gas.
 このような装置に用いられるダストセンサとしては、内部に設けられたファンを駆動し、空気を吸気口からダストセンサ内に取り入れた後、排気口から外部へ排出するものがある。このダストセンサは、吸気口から取り入れられた空気がセンサ部を通過するときにダストを検出することでダストの濃度を求めている。 As a dust sensor used for such an apparatus, there is one that drives a fan provided inside, takes in air from the air inlet into the dust sensor, and discharges it from the air outlet to the outside. The dust sensor detects the dust when the air taken in from the air intake passes through the sensor unit, thereby obtaining the dust concentration.
 JP2008-302790Aに記載の空調装置では、例えば、ブロワが駆動すると外気導入口内の風速が速くなり、圧力が低下する。これにより、ダストセンサの吸気口側と排気口側との差圧が変化するので、センサ部を通過する空気量が変化し、ダストの濃度を正確に検出できなくなってしまうおそれがあった。 In the air conditioner described in JP2008-302790A, for example, when the blower is driven, the wind speed in the outside air inlet increases and the pressure decreases. As a result, the differential pressure between the inlet side and the outlet side of the dust sensor changes, so the amount of air passing through the sensor unit changes, which may make it impossible to accurately detect the dust concentration.
 本発明は、ダストを正確に検出できる空調装置を提供することを目的とする。 An object of the present invention is to provide an air conditioner capable of accurately detecting dust.
 本発明のある態様によれば、空調装置は、車両の外部から空気を導入する外気導入口と、車両の室内から空気を導入する内気導入口と、外気導入口及び内気導入口を開閉するインテークドアと、インテークドアの下流に設けられ外気導入口及び内気導入口から導入された空気が流入する流入流路と、流入流路中の微粒子の濃度を検出する微粒子濃度検出器と、を備え、微粒子濃度検出器は、微粒子濃度検出器内に空気を吸入する吸気流路と、微粒子濃度検出器外に空気を排出する排気流路と、を有し、吸気流路と排気流路とは、流入流路に開口する。 According to an aspect of the present invention, the air conditioning system includes an outside air inlet for introducing air from the outside of the vehicle, an inside air inlet for introducing air from the vehicle interior, and an intake for opening and closing the outside air inlet and the inside air inlet. A door, an inflow passage provided downstream of the intake door and into which air introduced from the outside air introduction port and the inside air introduction port flows, and a particle concentration detector for detecting the concentration of particles in the inflow passage; The particulate matter concentration detector has an intake passage for sucking air into the particulate matter concentration detector, and an exhaust passage for discharging the air out of the particulate matter concentration detector. The intake passage and the exhaust passage are: Open to the inflow channel.
 上記態様によれば、微粒子濃度検出器の吸気流路と排気流路は、流入流路に開口するので、流入流路内の圧力が変化しても、吸気流路と排気流路との間の差圧は変化しない。したがって、微粒子濃度検出器によって正確にダストを検出できる。 According to the above aspect, the intake flow path and the exhaust flow path of the particulate matter concentration detector are opened to the inflow path, and therefore, even if the pressure in the inflow path changes, between the intake flow path and the exhaust flow path The differential pressure does not change. Therefore, dust can be detected accurately by the particulate matter concentration detector.
図1は、本発明の実施形態に係る空調装置を示す概略構成図である。FIG. 1 is a schematic configuration view showing an air conditioner according to an embodiment of the present invention. 図2は、本発明の実施形態に係る主要部の拡大図である。FIG. 2 is an enlarged view of the main part according to the embodiment of the present invention. 図3は、図2のIII-III線における断面図である。FIG. 3 is a cross-sectional view taken along line III-III of FIG. 図4は、変形例における図1のIV-IV線での断面図である。FIG. 4 is a cross-sectional view taken along line IV-IV of FIG. 1 in a modification. 図5は、変形例における図3に対応する断面図である。FIG. 5 is a cross-sectional view corresponding to FIG. 3 in a modification.
 以下、添付図面を参照しながら本発明の実施形態について説明する。 Hereinafter, embodiments of the present invention will be described with reference to the attached drawings.
 図1は、本実施形態に係る車両1に搭載される空調装置100の概略構成を示す図である。 FIG. 1 is a view showing a schematic configuration of an air conditioner 100 mounted on a vehicle 1 according to the present embodiment.
 図1に示すように、空調装置100は、内部に流路29が形成される筐体10(ケース)と、筐体10に収容される送風機17(ブロワファン)と、を備える。送風機17は、電動機20によって駆動され、筐体10の内部を通じて車両1の室内に空気を送る。送風機17の送風量(単位時間あたりの吐出空気流量)は、制御部5(コントローラ)によって多段階に切り換えられる。 As shown in FIG. 1, the air conditioner 100 includes a housing 10 (case) in which a flow passage 29 is formed, and a blower 17 (blower fan) accommodated in the housing 10. The blower 17 is driven by the motor 20 and sends air into the interior of the vehicle 1 through the inside of the housing 10. The air flow rate of the air blower 17 (discharged air flow rate per unit time) is switched in multiple stages by the control unit 5 (controller).
 筐体10内の送風路において送風機17より上流側には、外気導入口11、内気導入口12、及び流入流路14が設けられる。外気導入口11は、車両1の外部から空気を矢印A1で示すように導入する流路である。内気導入口12は、室内2から空気を矢印A2で示すように導入する流路である。内気導入口12は、外気導入口11に比べて、流路長が短く、かつ流路抵抗が小さくなるように形成される。 An outdoor air inlet 11, an internal air inlet 12, and an inflow channel 14 are provided upstream of the blower 17 in the air passage in the housing 10. The outside air introduction port 11 is a flow path for introducing air from the outside of the vehicle 1 as indicated by an arrow A1. The inside air introduction port 12 is a flow path for introducing air from the room 2 as indicated by an arrow A2. The inside air introduction port 12 is formed so that the flow path length is shorter and the flow path resistance is smaller than the outside air introduction port 11.
 外気導入口11と内気導入口12との合流部には、これらを開閉するインテークドア13が設けられる。インテークドア13は、制御部5によってその角度(開度)を変えられる。インテークドア13は、外気導入位置と、図1に示す内気導入位置との間で切り換えられ、その角度に応じて、内気、外気の混合率を調整する。インテークドア13は、揺動軸13aを中心に揺動する。揺動軸13aは、送風機17の回転中心軸Oに対して回転中心軸Oに略直交する面上に延びる。 An intake door 13 is provided at the junction of the outside air introduction port 11 and the inside air introduction port 12 for opening and closing these. The intake door 13 can change its angle (opening degree) by the control unit 5. The intake door 13 is switched between the outside air introduction position and the inside air introduction position shown in FIG. 1, and adjusts the mixing ratio of inside air and outside air according to the angle. The intake door 13 swings about the swing shaft 13a. The swinging shaft 13 a extends on a plane substantially orthogonal to the rotation center axis O with respect to the rotation center axis O of the blower 17.
 図1及び図2に示すように、流入流路14には、微粒子濃度検出器としての微粒子濃度センサ6(塵埃濃度センサ)及びフィルタ16(静電フィルタ)が設けられる。 As shown in FIGS. 1 and 2, the inflow passage 14 is provided with a particulate concentration sensor 6 (dust concentration sensor) as a particulate concentration detector and a filter 16 (electrostatic filter).
 図2に示すように、微粒子濃度センサ6は、微粒子濃度センサ6内に流入流路14を流れる空気を吸入する吸気流路61と、微粒子濃度センサ6外に空気を排出する排気流路62と、本体内に設けられ通過する微粒子を検出するセンサ部63と、を有する。微粒子濃度センサ6は、内蔵された図示しないファンを駆動して、流入流路14を流れる空気を吸入し、この空気中の微粒子の濃度を検出する。微粒子濃度センサ6の検出信号は、制御部5に送られる。 As shown in FIG. 2, the particulate matter concentration sensor 6 includes an intake passage 61 for taking in air flowing through the inflow passage 14 into the particulate matter concentration sensor 6 and an exhaust passage 62 for discharging the air out of the particulate matter concentration sensor 6. And a sensor unit 63 provided in the main body to detect passing particles. The particulate matter concentration sensor 6 drives a built-in fan (not shown) to suck air flowing through the inflow passage 14 and detect the concentration of the particulates in the air. The detection signal of the particulate matter concentration sensor 6 is sent to the control unit 5.
 フィルタ16は、流入流路14における送風機17の上流に設けられ、流入流路14から送風機17に吸い込まれる空気の異物を除去する。フィルタ16は、筐体10内に形成された一対のレール(図示せず)の上に載置され、着脱自在に筐体10内に収容される。フィルタ16は、筐体10に形成された取り出し口10aを通じて着脱することができる。取り出し口10aは、筐体10に取り付けられた蓋部材40によって閉塞される。 The filter 16 is provided on the upstream side of the blower 17 in the inflow passage 14 and removes foreign matter of air sucked into the blower 17 from the inflow passage 14. The filter 16 is placed on a pair of rails (not shown) formed in the housing 10 and is removably accommodated in the housing 10. The filter 16 can be attached and detached through the outlet 10 a formed in the housing 10. The takeout port 10 a is closed by a lid member 40 attached to the housing 10.
 図1に示すように、筐体10内の流路29における送風機17より下流側には、流出流路15、デフロスト吹き出し口25、ベント吹き出し口26、及びフット吹き出し口27が設けられる。デフロスト吹き出し口25からは、空気が室内2の窓3に向けて吹き出される。ベント吹き出し口26からは、空気が室内2の座席(図示省略)に向けて吹き出される。フット吹き出し口27からは、空気が室内2の床(図示省略)に向けて吹き出される。 As shown in FIG. 1, an outlet channel 15, a defrost outlet 25, a vent outlet 26, and a foot outlet 27 are provided downstream of the blower 17 in the channel 29 in the housing 10. Air is blown toward the window 3 of the room 2 from the defrost outlet 25. Air is blown out from the vent outlet 26 toward a seat (not shown) in the room 2. Air is blown out from the foot outlet 27 toward the floor (not shown) of the room 2.
 流出流路15には、エバポレータ18(空気冷却用の熱交換器)、ヒーターコア19(空気加熱用の熱交換器)及びエアミックスドア21が設けられる。送風機17から矢印A4で示すように吐出される空気は、エバポレータ18を通過した後、エアミックスドア21を介してヒーターコア19を通って温度調整される。 In the outflow flow path 15, an evaporator 18 (heat exchanger for air cooling), a heater core 19 (heat exchanger for air heating), and an air mix door 21 are provided. The air discharged from the blower 17 as indicated by an arrow A 4 passes through the evaporator 18 and then is temperature-controlled through the heater core 19 via the air mix door 21.
 エアミックスドア21は、制御部5によってその角度(開度)を変えられ、ヒーターコア19を通過する空気流量を調整する。 The air mix door 21 has its angle (opening degree) changed by the control unit 5 to adjust the air flow rate passing through the heater core 19.
 デフロスト吹き出し口25、ベント吹き出し口26及びフット吹き出し口27には、それぞれドア22~24が設けられる。制御部5によってドア22~24の角度(開度)が変えられることで、室内2に吹き出される空気流量の分布が変えられる。 Doors 22 to 24 are provided at the defrost outlet 25, the vent outlet 26, and the foot outlet 27, respectively. By changing the angles (openings) of the doors 22 to 24 by the control unit 5, the distribution of the flow rate of the air blown into the room 2 is changed.
 インテークドア13、エアミックスドア21及びドア22~24は、空気が流れる流路29(経路)を切り換える流路切換機構30を構成する。空調装置100では、流路切換機構30の作動によって流路の長さや曲率、あるいはヒーターコア19を通過する流量が変化すると、空気流に与える流路抵抗が増減する。なお、流路抵抗は、外気導入口11が開通する外気導入状態よりも、内気導入口12が開通する内気循環状態の方が小さくなる。流路抵抗は、室内2の空気が、矢印A2~A6で示すように、内気導入口12、流入流路14、流出流路15、及びデフロスト吹き出し口25を通って循環する内気循環状態で最も小さくなる。 The intake door 13, the air mix door 21 and the doors 22 to 24 constitute a flow path switching mechanism 30 for switching the flow path 29 (path) through which the air flows. In the air conditioner 100, when the length and curvature of the flow path or the flow rate passing through the heater core 19 changes due to the operation of the flow path switching mechanism 30, the flow path resistance given to the air flow increases or decreases. The flow path resistance is smaller in the inside air circulation state in which the inside air introduction port 12 opens than in the outside air introduction state in which the outside air introduction port 11 opens. The flow path resistance is the most in the internal air circulation state in which the air in the room 2 circulates through the inside air introduction port 12, the inflow path 14, the outflow path 15, and the defrost outlet 25 as shown by arrows A2 to A6. It becomes smaller.
 制御部5は、各部の動作を制御するCPUと、制御プログラムなどのマップが記憶されたROMと、微粒子濃度センサ6等の検出信号及び各種の情報を一時的に記憶するRAMと、を備える。 The control unit 5 includes a CPU that controls the operation of each unit, a ROM that stores a map of a control program and the like, and a RAM that temporarily stores detection signals of the particle concentration sensor 6 and various information.
 制御部5は、微粒子濃度センサ6によって検出された微粒子の濃度を室内に設けられた表示装置(図示せず)に表示する。また、制御部5は、微粒子濃度センサ6や図示しない温度センサなどの検出信号に基づいて、電動機20(送風機17の送風量)や、各種ドア(インテークドア13、エアミックスドア21、及びドア22~24)の動作を制御する。 The control unit 5 displays the concentration of the particles detected by the particle concentration sensor 6 on a display device (not shown) provided in the room. In addition, the control unit 5 controls the motor 20 (the amount of air blown by the blower 17), various doors (intake door 13, air mix door 21, and door 22) based on detection signals from the particle concentration sensor 6 and a temperature sensor (not shown). Control the operation of (24).
 次に、蓋部材40について説明する。 Next, the lid member 40 will be described.
 図2及び図3に示すように、蓋部材40は、フィルタ16の側面と対向する位置に、取り出し口10aを閉塞するようにして取り付けられる。 As shown in FIGS. 2 and 3, the lid member 40 is attached at a position facing the side surface of the filter 16 so as to close the outlet 10 a.
 蓋部材40は、筐体10の取り出し口10aを覆う本体部41と、本体部41の両端部に形成される一対の保持部42,43と、本体部41を貫通し微粒子濃度センサ6の吸気流路61に連通する第1貫通孔44と、本体部41を貫通し微粒子濃度センサ6の排気流路62に連通する第2貫通孔45と、本体部41からフィルタ16に向かう方向に突出するように形成されたリブ46と、保持部42と保持部43とに渡って設けられる隔壁部47と、を備える。 The lid member 40 penetrates the main body 41 and a main body 41 covering the outlet 10 a of the housing 10, a pair of holding parts 42 and 43 formed on both ends of the main body 41, and intake of the particulate matter concentration sensor 6. The first through hole 44 communicating with the flow path 61, the second through hole 45 penetrating the main body 41 and communicating with the exhaust flow path 62 of the particulate matter concentration sensor 6, and projecting in the direction from the main body 41 toward the filter 16 The rib 46 is formed as described above, and the partition wall 47 provided over the holding portion 42 and the holding portion 43.
 本体部41は、平板状に形成される。本体部41の外側面には、微粒子濃度センサ6が取り付けられる。 The main body portion 41 is formed in a flat plate shape. The particle concentration sensor 6 is attached to the outer surface of the main body 41.
 蓋部材40が筐体10に取り付けられたときに、一対の保持部42,43の間にはフィルタ16が嵌まり込む。これにより、フィルタ16の揺動軸13a方向の移動が規制される。 When the lid member 40 is attached to the housing 10, the filter 16 is fitted between the pair of holding portions 42 and 43. Thereby, the movement of the filter 16 in the direction of the rocking axis 13a is restricted.
 リブ46は、蓋部材40を筐体10に取り付けられたときに、フィルタ16に当接するように形成される。これにより、フィルタ16の着脱方向への移動が規制される。リブ46は、フィルタ16の側面と蓋部材40の本体部41との間に空間(隙間G)を確保する機能を有する。隙間Gを確保することにより、第1貫通孔44と第2貫通孔45がフィルタ16の側面によって覆われ、微粒子濃度センサ6への空気の流通が阻害されることを防止できる。 The rib 46 is formed to abut the filter 16 when the lid member 40 is attached to the housing 10. Thereby, the movement of the filter 16 in the mounting and demounting direction is restricted. The rib 46 has a function of securing a space (gap G) between the side surface of the filter 16 and the main body 41 of the lid member 40. By securing the gap G, the first through hole 44 and the second through hole 45 can be covered by the side surface of the filter 16, and the flow of air to the particulate matter concentration sensor 6 can be prevented from being impeded.
 第1貫通孔44は、第2貫通孔45より上流側に形成される。さらに、第1貫通孔44と第2貫通孔45は、リブ46を挟むようにして形成される。これにより、吸気流路61と排気流路62とは、蓋部材40に形成された第1貫通孔44及び第2貫通孔45を通り、リブ46を挟むようにして流入流路14(隙間G)に開口する。このように吸気流路61及び排気流路62がリブ46を挟むようにして流入流路14(隙間G)に開口することにより、排気流路62から排出された空気が、吸気流路61から再び吸入されることを防止できる。これにより、微粒子濃度センサ6の測定精度を高めることができる。 The first through hole 44 is formed on the upstream side of the second through hole 45. Furthermore, the first through holes 44 and the second through holes 45 are formed so as to sandwich the rib 46. Thus, the intake flow passage 61 and the exhaust flow passage 62 pass through the first through holes 44 and the second through holes 45 formed in the lid member 40 so as to sandwich the rib 46 to the inflow passage 14 (the gap G). Open. Thus, the air discharged from the exhaust flow passage 62 is again taken in from the intake flow passage 61 by opening the intake flow passage 61 and the exhaust flow passage 62 into the inflow flow passage 14 (the gap G) so as to sandwich the rib 46. Can be prevented. Thereby, the measurement accuracy of the particulate matter concentration sensor 6 can be enhanced.
 隔壁部47は、保持部42と保持部43とを接続するように設けられ、フィルタ16の下流側の面(図2における下面)に当接する。上述のように、本体部41とフィルタ16との間には隙間Gが存在する。隙間Gに流入した空気は、隙間Gを通って(フィルタ16を通らずに)フィルタ16の下流側に流れようとする。しかしながら、本実施形態では、隔壁部47が設けられているので、隙間Gに流入した空気は、フィルタ16の側面からフィルタ16の内部を通って下流側に流れる。これにより、隙間Gを通過する空気の異物も除去することができるので、送風機17に吸い込まれる空気の異物を確実に除去できる。なお、隙間Gが小さい、あるいは、フィルタ16を通らずに空気が流れることが許容できるのであれば、隔壁部47を設けなくてもよい。 The partition wall portion 47 is provided to connect the holding portion 42 and the holding portion 43, and abuts on the downstream surface (the lower surface in FIG. 2) of the filter 16. As described above, a gap G is present between the main body 41 and the filter 16. The air flowing into the gap G tends to flow downstream of the filter 16 through the gap G (without passing through the filter 16). However, in the present embodiment, since the partition wall portion 47 is provided, the air flowing into the gap G flows from the side surface of the filter 16 to the downstream side through the inside of the filter 16. Thus, foreign matter of air passing through the gap G can also be removed, so foreign matter of air sucked into the blower 17 can be reliably removed. If the gap G is small or air can flow without passing through the filter 16, the partition 47 may not be provided.
 空調装置100では、インテークドア13が、外気導入口11を解放し、内気導入口12を閉鎖している状態で送風機17が駆動しているときに、微粒子濃度センサ6によって所定値以上の微粒子の濃度が検出されると、制御部5は、インテークドア13が外気導入口11を閉鎖し、内気導入口12を解放する内気循環モードに切り換える。なお、このような制御ではなく、例えば、単に、微粒子濃度センサ6によって検出された微粒子濃度を室内に設けられた表示装置(図示せず)に表示するようにしてもよい。この場合には、搭乗者が表示装置に表示された微粒子濃度を確認し、例えば、内部の図示しないスイッチを操作して、内気循環モードに切り換える。 In the air conditioner 100, the intake door 13 releases the outside air introduction port 11, and when the blower 17 is driven in a state where the inside air introduction port 12 is closed, the particulate matter concentration sensor 6 When the concentration is detected, the control unit 5 switches to the inside air circulation mode in which the intake door 13 closes the outside air inlet 11 and releases the inside air inlet 12. Instead of such control, for example, the particle concentration detected by the particle concentration sensor 6 may be simply displayed on a display device (not shown) provided in the room. In this case, the passenger confirms the concentration of particulates displayed on the display device, and operates, for example, a switch (not shown) inside to switch to the inside air circulation mode.
 以上のように構成された空調装置100によれば、以下の効果を奏する。 According to the air conditioner 100 configured as described above, the following effects can be obtained.
 空調装置100では、微粒子濃度センサ6の吸気流路61と排気流路62とは、流入流路14に開口する。これにより、例えば、送風機17が作動して流入流路14内の圧力が低下しても、吸気流路61と排気流路62との間の差圧は変化しないので、微粒子濃度センサ6によって正確に微粒子(ダスト)を検出できる。つまり、微粒子濃度センサ6の測定精度を高めることができる。 In the air conditioner 100, the intake flow passage 61 and the exhaust flow passage 62 of the particulate matter concentration sensor 6 open to the inflow passage 14. Thereby, for example, even if the air blower 17 operates and the pressure in the inflow passage 14 decreases, the differential pressure between the intake passage 61 and the exhaust passage 62 does not change. Can detect particulates (dust). That is, the measurement accuracy of the particulate matter concentration sensor 6 can be enhanced.
 また、空調装置100では、微粒子濃度センサ6が流入流路14内の微粒子濃度を検出する。これにより、外気導入口11及び内気導入口12のそれぞれに微粒子濃度センサ6を設けた場合に比べて、微粒子濃度センサ6の設置数を少なくできる。したがって、コストを削減できる。 Further, in the air conditioner 100, the particulate matter concentration sensor 6 detects the particulate matter concentration in the inflow passage. As a result, compared with the case where the particulate concentration sensor 6 is provided in each of the outside air inlet 11 and the inside air inlet 12, the number of the particulate concentration sensors 6 can be reduced. Therefore, the cost can be reduced.
 さらに、空調装置100では、吸気流路61と排気流路62とは、蓋部材40を通って流入流路14に開口する。蓋部材40(筐体10)とフィルタ16の側面との間の空間(隙間G)は、風速や圧力の変化が小さい。このため、吸気流路61と排気流路62を空間(隙間G)に開口させることにより、吸気流路61と排気流路62の圧力が安定するので、微粒子濃度センサ6によってより正確に微粒子(ダスト)を検出でき、微粒子濃度センサ6の測定精度を高めることができる。 Furthermore, in the air conditioner 100, the intake flow passage 61 and the exhaust flow passage 62 are opened to the inflow passage 14 through the lid member 40. In the space (gap G) between the lid member 40 (housing 10) and the side surface of the filter 16, the change in wind speed and pressure is small. Therefore, the pressure in the intake flow passage 61 and the exhaust flow passage 62 is stabilized by opening the intake flow passage 61 and the exhaust flow passage 62 in the space (the gap G). Dust) can be detected, and the measurement accuracy of the particulate matter concentration sensor 6 can be enhanced.
 また、上記実施形態では、微粒子濃度センサ6は、蓋部材40に取り付けられる。蓋部材40は筐体10から取り外すことができるので、微粒子濃度センサ6を筐体10から取り外した状態でメンテナンスできる。したがって、微粒子濃度センサ6のメンテナンス性が向上する。 Further, in the above embodiment, the particulate matter concentration sensor 6 is attached to the lid member 40. Since the lid member 40 can be removed from the housing 10, maintenance can be performed with the particulate matter concentration sensor 6 removed from the housing 10. Therefore, the maintainability of the particulate matter concentration sensor 6 is improved.
 上記実施形態では、蓋部材40に設けられた一対の保持部42,43とリブ46がフィルタ16の移動を規制する。これにより、フィルタ16が不用意に移動することを防止できる。 In the above embodiment, the pair of holding portions 42 and 43 and the rib 46 provided on the lid member 40 restrict the movement of the filter 16. This can prevent the filter 16 from moving carelessly.
 なお、上記実施形態では、保持部42、保持部43、リブ46を設けた構成を例に説明したが、保持部42、保持部43、リブ46が不要であれば、必ずしも設ける必要はない。 In the above embodiment, the configuration in which the holding portion 42, the holding portion 43, and the rib 46 are provided has been described as an example. However, if the holding portion 42, the holding portion 43, and the rib 46 are unnecessary, they need not necessarily be provided.
 上記実施形態では、微粒子濃度センサ6を蓋部材40に取り付けて、微粒子濃度センサ6の吸気流路61及び排気流路62を蓋部材40の第1貫通孔44と第2貫通孔45と連通させているが、これに代えて、吸気流路61及び排気流路62をチューブやパイプなどを通じて第1貫通孔44と第2貫通孔45と連通させるように構成してもよい。この場合には、微粒子濃度センサ6を蓋部材40や筐体10以外の場所にも取り付けることができる。 In the above embodiment, the particulate matter concentration sensor 6 is attached to the lid member 40, and the intake passage 61 and the exhaust passage 62 of the particulate matter concentration sensor 6 are communicated with the first through holes 44 and the second through holes 45 of the lid member 40. However, instead of this, the intake passage 61 and the exhaust passage 62 may be configured to communicate with the first through hole 44 and the second through hole 45 through a tube, a pipe or the like. In this case, the particulate matter concentration sensor 6 can also be attached to a place other than the lid member 40 and the housing 10.
 次に、本実施形態の変形例について、図4を参照しながら説明する。 Next, a modification of the present embodiment will be described with reference to FIG.
 本変形例では、微粒子濃度センサ6の吸気流路61及び排気流路62は、筐体10の側面部10bに開口する。具体的に説明すると、筐体10は、インテークドア13の揺動方向と平行に(揺動軸13aと直交する方向に)形成された側面部10bを有する。側面部10bには、インテークドア13の揺動軸13aを回動可能に支持する支持部10cが設けられる。 In the present modification, the intake flow passage 61 and the exhaust flow passage 62 of the particulate matter concentration sensor 6 are opened in the side surface portion 10 b of the housing 10. Specifically, the housing 10 has a side surface portion 10 b formed in parallel with the swing direction of the intake door 13 (in the direction orthogonal to the swing axis 13 a). The side surface portion 10 b is provided with a support portion 10 c which rotatably supports the swinging shaft 13 a of the intake door 13.
 インテークドア13が外気導入口11を閉鎖し、内気導入口12と流入流路14とが連通するインテークモードで、空調装置100が作動している場合には、微粒子濃度センサ6を蓋部材40に取り付けると、微粒子濃度センサ6が内気導入口12からの空気の流線上に位置するため圧力変動や風速変動の影響を受けやすくなる。そこで、本変形例のように、微粒子濃度センサ6を側面部10bに取り付け、吸気流路61及び排気流路62が側面部10bに開口するように構成することで、圧力変動や風速変動の影響を受けにくくなり、微粒子濃度を精度よく検出できる。 When the air conditioner 100 is operating in the intake mode in which the intake door 13 closes the outside air inlet 11 and the inside air inlet 12 and the inflow passage 14 communicate with each other, the particulate matter concentration sensor 6 is attached to the lid member 40 When attached, the particulate matter concentration sensor 6 is positioned on the flow line of the air from the inside air introduction port 12 and thus is susceptible to pressure fluctuations and wind speed fluctuations. Therefore, as in the present modification, the particulate matter concentration sensor 6 is attached to the side surface portion 10b, and the intake flow passage 61 and the exhaust flow passage 62 are opened in the side surface portion 10b. Can be difficult to receive, and the particle concentration can be detected accurately.
 なお、微粒子濃度センサ6を側面部10bに取り付ける構成に代えて、例えば、微粒子濃度センサ6を蓋部材40に取り付け、吸気流路61及び排気流路62がチューブやパイプなどを通じて側面部10bに開口するように構成してもよい。この場合、メンテナンス性を向上しつつ、圧力変動や風速変動の影響を受けにくくできる。 Note that, instead of attaching the particle concentration sensor 6 to the side surface portion 10b, for example, the particle concentration sensor 6 is attached to the lid member 40, and the intake flow passage 61 and the exhaust flow passage 62 are opened in the side surface portion 10b through a tube or pipe. It may be configured to In this case, it is possible to reduce the influence of pressure fluctuation and wind speed fluctuation while improving the maintainability.
 次に、別の変形例について、図5を参照しながら説明する。 Next, another modified example will be described with reference to FIG.
 図5は、この変形例における図3に対応する断面図である。図5に示す変形例では、蓋部材40は外方へ膨出する膨出部48を有し、吸気流路61と排気流路62が膨出部48内の空間Sに開口するように構成される。膨出部48内の空間Sは、流入流路14(フィルタ16の上流側)に連通するように形成される。 FIG. 5 is a cross-sectional view corresponding to FIG. 3 in this modification. In the modification shown in FIG. 5, the lid member 40 has a bulging portion 48 that bulges outward, and the intake passage 61 and the exhaust passage 62 are configured to open in the space S in the bulging portion 48. Be done. The space S in the bulging portion 48 is formed to communicate with the inflow passage 14 (upstream side of the filter 16).
 蓋部材40とフィルタ16の側面との間に十分な隙間Gが確保できない場合に、本変形例のように膨出部48(空間S)を設けることによって、吸気流路61と排気流路62が閉塞されることを防止し、微粒子濃度センサ6への空気の流通を確保できる。これにより、微粒子濃度センサ6によって正確に微粒子(ダスト)を検出でき、微粒子濃度センサ6の測定精度を高めることができる。 When a sufficient gap G can not be secured between the lid member 40 and the side surface of the filter 16, the intake flow path 61 and the exhaust flow path 62 can be provided by providing the bulging portion 48 (space S) as in this modification. Can be prevented, and the flow of air to the particulate matter concentration sensor 6 can be secured. Thereby, the particulates (dust) can be accurately detected by the particulates concentration sensor 6, and the measurement accuracy of the particulates concentration sensor 6 can be enhanced.
 なお、この変形例においても、吸気流路61と排気流路62との間にリブ10dが設けられている。 Also in this modification, a rib 10 d is provided between the intake passage 61 and the exhaust passage 62.
 図5に示す変形例では、微粒子濃度センサ6を膨出部48の空間内に設けているが、微粒子濃度センサ6を膨出部48の外面、あるいは他の部材に取り付け、膨出部48を貫通する貫通孔やチューブ等を介して、膨出部48内の空間に吸気流路61と排気流路62を開口するようにしてもよい。 In the modification shown in FIG. 5, the particle concentration sensor 6 is provided in the space of the bulging portion 48, but the particle concentration sensor 6 is attached to the outer surface of the bulging portion 48 or another member, and the bulging portion 48 is The intake flow passage 61 and the exhaust flow passage 62 may be opened in the space in the bulging portion 48 through a penetrating through hole, a tube or the like.
 以上、本発明の実施形態について説明したが、上記実施形態は本発明の適用例の一部を示したに過ぎず、本発明の技術的範囲を上記実施形態の具体的構成に限定する趣旨ではない。 As mentioned above, although the embodiment of the present invention was described, the above-mentioned embodiment showed only a part of application example of the present invention, and in the meaning of limiting the technical scope of the present invention to the concrete composition of the above-mentioned embodiment. Absent.
 本願は、2017年6月30日に日本国特許庁に出願された特願2017-129444号に基づく優先権を主張し、この出願の全ての内容は参照により本明細書に組み込まれる。 The present application claims priority based on Japanese Patent Application No. 2017-129444 filed on Jun. 30, 2017, and the entire contents of this application are incorporated herein by reference.

Claims (9)

  1.  空調装置であって、
     車両の外部から空気を導入する外気導入口と、
     前記車両の室内から空気を導入する内気導入口と、
     前記外気導入口及び前記内気導入口を開閉するインテークドアと、
     前記インテークドアの下流に設けられ前記外気導入口及び前記内気導入口から導入された空気が流入する流入流路と、
     前記流入流路中の微粒子の濃度を検出する微粒子濃度検出器と、を備え、
     前記微粒子濃度検出器は、
     前記微粒子濃度検出器内に空気を吸入する吸気流路と、
     前記微粒子濃度検出器外に空気を排出する排気流路と、を有し、
     前記吸気流路と前記排気流路とは、前記流入流路に開口する、
    空調装置。
    An air conditioner,
    An outside air inlet for introducing air from the outside of the vehicle,
    A fresh air inlet for introducing air from the interior of the vehicle;
    An intake door for opening and closing the outside air inlet and the inside air inlet;
    An inflow passage provided downstream of the intake door and into which the air introduced from the outside air inlet and the inside air inlet flows;
    A particle concentration detector for detecting the concentration of particles in the inflow channel;
    The particle concentration detector is
    An intake flow passage for drawing air into the particulate matter concentration detector;
    And an exhaust flow path for discharging air to the outside of the particulate matter concentration detector,
    The intake passage and the exhaust passage open to the inflow passage,
    Air conditioner.
  2.  請求項1に記載の空調装置であって、
     前記流入流路に設けられたフィルタと、
     前記フィルタを収容する筐体と、をさらに備え、
     前記吸気流路と前記排気流路とは、前記フィルタの側面と前記筐体との間の隙間に開口する、
    空調装置。
    An air conditioner according to claim 1, wherein
    A filter provided in the inflow channel;
    And a case for housing the filter.
    The intake passage and the exhaust passage open in a gap between a side surface of the filter and the housing.
    Air conditioner.
  3.  請求項2に記載の空調装置であって、
     前記筐体に形成され前記フィルタを着脱するための取り出し口と、
     前記取り出し口を閉塞する蓋部材と、をさらに備え、
     前記吸気流路と前記排気流路とは、前記蓋部材を通って前記隙間に開口する、
    空調装置。
    An air conditioner according to claim 2, wherein
    An outlet formed in the housing for attaching and detaching the filter;
    And a lid member closing the outlet.
    The intake passage and the exhaust passage are opened in the gap through the lid member.
    Air conditioner.
  4.  請求項3に記載の空調装置であって、
     前記微粒子濃度検出器は、前記蓋部材に取り付けられる、
    空調装置。
    An air conditioner according to claim 3, wherein
    The particulate matter concentration detector is attached to the lid member,
    Air conditioner.
  5.  請求項3または4に記載の空調装置であって、
     前記蓋部材は、前記フィルタに向かう方向に突出するリブを備え、
     前記吸気流路と前記排気流路は、前記リブを挟んで前記隙間に開口する、
    空調装置。
    The air conditioner according to claim 3 or 4, wherein
    The lid member includes a rib projecting in a direction toward the filter,
    The intake passage and the exhaust passage open in the gap with the rib interposed therebetween.
    Air conditioner.
  6.  請求項3から5のいずれか1つに記載の空調装置であって、
     前記蓋部材は、前記フィルタに向かう方向に突出するリブを備え、
     前記リブは、前記フィルタと当接し前記フィルタの移動を規制する、
    空調装置。
    The air conditioner according to any one of claims 3 to 5, wherein
    The lid member includes a rib projecting in a direction toward the filter,
    The rib abuts on the filter and regulates movement of the filter.
    Air conditioner.
  7.  請求項3に記載の空調装置であって、
     前記蓋部材は、外方へ膨出する膨出部を備え、
     前記吸気流路と前記排気流路とは、前記膨出部内の空間に開口する、
    空調装置。
    An air conditioner according to claim 3, wherein
    The lid member includes a bulging portion that bulges outward.
    The intake passage and the exhaust passage open into a space in the bulging portion,
    Air conditioner.
  8.  請求項2に記載の空調装置であって、
     前記筐体は、前記インテークドアの揺動軸を回動可能に支持する支持部が設けられる側面部を有し、
     前記吸気流路と前記排気流路は、前記支持部が設けられる前記側面部に開口する、
    空調装置。
    An air conditioner according to claim 2, wherein
    The housing has a side surface portion provided with a support portion for rotatably supporting a swing shaft of the intake door,
    The intake flow passage and the exhaust flow passage open in the side surface portion provided with the support portion,
    Air conditioner.
  9.  請求項8に記載の空調装置であって、
     前記微粒子濃度検出器は、前記側面部に取り付けられる、
    空調装置。
    An air conditioner according to claim 8, wherein
    The particulate matter concentration detector is attached to the side face portion,
    Air conditioner.
PCT/JP2018/023157 2017-06-30 2018-06-18 Air conditioner WO2019003987A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201880033326.0A CN110650857B (en) 2017-06-30 2018-06-18 Air conditioner

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017129444A JP6920901B2 (en) 2017-06-30 2017-06-30 Air conditioner
JP2017-129444 2017-06-30

Publications (1)

Publication Number Publication Date
WO2019003987A1 true WO2019003987A1 (en) 2019-01-03

Family

ID=64741551

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/023157 WO2019003987A1 (en) 2017-06-30 2018-06-18 Air conditioner

Country Status (3)

Country Link
JP (1) JP6920901B2 (en)
CN (1) CN110650857B (en)
WO (1) WO2019003987A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022080522A (en) * 2020-11-18 2022-05-30 ナブテスコ株式会社 Air compression device and air absorption device
JP2023122176A (en) 2022-02-22 2023-09-01 株式会社ヴァレオジャパン Air conditioner for vehicle

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11321289A (en) * 1998-05-08 1999-11-24 Zexel:Kk Air conditioning system for motor vehicle
US6206775B1 (en) * 1998-11-18 2001-03-27 Valeo Climatisation Motor vehicle heating and/or air conditioning device comprising a pollution sensor
JP2007001571A (en) * 2005-06-22 2007-01-11 Valeo Systemes Thermiques Apparatus and method for monitoring and controlling air pollution in cabin
US20100144261A1 (en) * 2007-04-18 2010-06-10 Robert Bosch Gmbh Device for controlling the ventilation apparatus for a motor vehicle interior
JP2012187969A (en) * 2011-03-09 2012-10-04 Denso Corp Air conditioning apparatus
US20160052363A1 (en) * 2013-07-19 2016-02-25 Bayerische Motoren Werke Aktiengesellschaft Method for Controlling a Ventilation/Air-Conditioning System of a Vehicle, and Vehicle Having Such a Ventilation/Air-Conditioning System
JP2017100556A (en) * 2015-12-01 2017-06-08 豊田合成株式会社 Air quality evaluation device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN205800735U (en) * 2016-06-27 2016-12-14 佛山市天地行科技有限公司 Vehicle-mounted air purification device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11321289A (en) * 1998-05-08 1999-11-24 Zexel:Kk Air conditioning system for motor vehicle
US6206775B1 (en) * 1998-11-18 2001-03-27 Valeo Climatisation Motor vehicle heating and/or air conditioning device comprising a pollution sensor
JP2007001571A (en) * 2005-06-22 2007-01-11 Valeo Systemes Thermiques Apparatus and method for monitoring and controlling air pollution in cabin
US20100144261A1 (en) * 2007-04-18 2010-06-10 Robert Bosch Gmbh Device for controlling the ventilation apparatus for a motor vehicle interior
JP2012187969A (en) * 2011-03-09 2012-10-04 Denso Corp Air conditioning apparatus
US20160052363A1 (en) * 2013-07-19 2016-02-25 Bayerische Motoren Werke Aktiengesellschaft Method for Controlling a Ventilation/Air-Conditioning System of a Vehicle, and Vehicle Having Such a Ventilation/Air-Conditioning System
JP2017100556A (en) * 2015-12-01 2017-06-08 豊田合成株式会社 Air quality evaluation device

Also Published As

Publication number Publication date
CN110650857B (en) 2022-09-16
JP6920901B2 (en) 2021-08-18
JP2019010996A (en) 2019-01-24
CN110650857A (en) 2020-01-03

Similar Documents

Publication Publication Date Title
JP4675229B2 (en) Air conditioning system for vehicles
WO2019003987A1 (en) Air conditioner
CN113498386B (en) Particle concentration detection device
CN107839441B (en) Air circulator
JP3505911B2 (en) Vehicle air conditioner
JP2001150920A (en) Air conditioner for vehicle
CN107618338B (en) Air circulator
CN113242807B (en) Air conditioner for vehicle
JP6791049B2 (en) Vehicle air conditioner
JPH11321289A (en) Air conditioning system for motor vehicle
KR101566321B1 (en) Air conditioner for vehicles
JP3447721B2 (en) Vehicle air conditioner
JP4655256B2 (en) Intake box for vehicle air conditioner
JP7262252B2 (en) air conditioning unit for vehicle
KR100376009B1 (en) Air conditioning system of vehicle
WO2022176727A1 (en) Vehicular air conditioning device
JP5724893B2 (en) Air conditioner for vehicles
JP2023122176A (en) Air conditioner for vehicle
JPS6223810A (en) Air-conditioning device
JP3991688B2 (en) Air conditioner for vehicles
KR20110086258A (en) Air conditioning system for automotive vehicles
KR20100134435A (en) Air conditioner for vehicles
JPH0732864A (en) Air conditioner for bus vehicle
JP2008100569A (en) Air conditioner for vehicle
JP2010111170A (en) Vehicular air conditioner

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18824789

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18824789

Country of ref document: EP

Kind code of ref document: A1