WO2019003335A1 - Scroll compressor and refrigeration cycle device - Google Patents

Scroll compressor and refrigeration cycle device Download PDF

Info

Publication number
WO2019003335A1
WO2019003335A1 PCT/JP2017/023717 JP2017023717W WO2019003335A1 WO 2019003335 A1 WO2019003335 A1 WO 2019003335A1 JP 2017023717 W JP2017023717 W JP 2017023717W WO 2019003335 A1 WO2019003335 A1 WO 2019003335A1
Authority
WO
WIPO (PCT)
Prior art keywords
scroll
shell
main shell
fixed scroll
base plate
Prior art date
Application number
PCT/JP2017/023717
Other languages
French (fr)
Japanese (ja)
Inventor
哲英 横山
岩崎 俊明
哲仁 ▲高▼井
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2019526456A priority Critical patent/JP6745994B2/en
Priority to PCT/JP2017/023717 priority patent/WO2019003335A1/en
Publication of WO2019003335A1 publication Critical patent/WO2019003335A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00

Definitions

  • the present invention relates to a scroll compressor and a refrigeration cycle apparatus in which a fixed scroll is fixed to a shell separately from a frame.
  • the scroll compressor for example, those disclosed in Patent Documents 1 and 2 are known.
  • the oscillating scroll is supported by a frame fixed to the shell.
  • a fixed scroll is provided opposite to the oscillating scroll.
  • a drive shaft having a rotating shaft and a driving shaft is attached to the oscillating scroll.
  • the oscillating scroll revolves with respect to the fixed scroll. Due to this revolution, the refrigerant is compressed in the compression chamber formed by the swing scroll and the fixed scroll.
  • a compression chamber for compressing the refrigerant is formed between the fixed scroll and the oscillating scroll. Therefore, the positional accuracy of the fixed scroll with respect to the oscillating scroll is important.
  • the outer peripheral wall portion of the frame extends in the direction of the fixed scroll, and the fixed scroll is fixed by a bolt or the like at the tip of the outer peripheral wall portion. In this manner, by fixing the fixed scroll to the frame, positional accuracy is secured.
  • the present invention is intended to solve the above problems, and the fixed scroll can be disposed within the shell with high positional accuracy, and the tips of the scroll of the fixed scroll and the scroll of the oscillating scroll have an appropriate positional relationship. It is an object of the present invention to provide a scroll compressor and a refrigeration cycle apparatus configured to be.
  • a scroll compressor comprises a frame slidably holding an oscillating scroll, a fixed scroll forming a compression chamber together with the oscillating scroll, and a shell fixing the fixed scroll separately from the frame.
  • the shell includes a cylindrical main shell including a thick portion and a thin portion formed to be thinner than the thick portion
  • the fixed scroll includes the thick portion and the thick portion.
  • a refrigeration cycle apparatus includes the above-described scroll compressor.
  • the fixed scroll has a mounting end portion mounted at the boundary between the thick portion and the thin portion, and a larger diameter than the mounting end portion. And a small diameter end which is smaller in diameter than the annular projection on the opposite side of the placement end from the annular projection.
  • the inner diameter of the end of the thin portion of the main shell shrinks by about 1% to 2%.
  • the fixed scroll in the fixed scroll fixed to the inner wall of the main shell by shrink fitting or the like, a surface pressure distribution that increases from the mounting end toward the small diameter end does not occur on the outer peripheral surface. There is no bending moment that causes the center to be depressed downward. Therefore, the fixed scroll can be disposed within the shell with high positional accuracy, and the tips of the scroll of the fixed scroll and the scroll of the oscillating scroll have an appropriate positional relationship.
  • the circumference of the upper shell in a comparative example is an explanatory view showing the measurement range about the shape change of the main shell after welding, and the circular base plate of a fixed scroll. It is a figure which shows the variation
  • the circumference of the upper shell in a comparative example is a figure showing the surface pressure of a circular base plate peripheral face regarding the shape change of the main shell after welding, and the circular base plate of a fixed scroll.
  • FIG. 1 The figure which shows the state after shrinkage-fitting of a fixed scroll in the dashed-dotted line area
  • FIG. 1 The figure which shows the state after shrinkage-fitting of a fixed scroll in the dashed-dotted line area
  • FIG. It is an enlarged view which shows the dashed-dotted line area
  • FIG. 1 is an explanatory view showing a longitudinal cross section of a scroll compressor 100 according to a first embodiment of the present invention.
  • FIG. 2 is an exploded perspective view showing the peripheral structure of the main frame 2 of the scroll compressor 100 according to Embodiment 1 of the present invention.
  • the scroll compressor 100 shown in FIG. 1 is a so-called vertical scroll compressor in which a central axis of a drive shaft 6 having a rotation shaft and a driving shaft is substantially perpendicular to the ground.
  • the scroll compressor 100 includes a shell 1, a main frame 2, a compression mechanism portion 3, a drive mechanism portion 4, a sub frame 5, a drive shaft 6, a bush 7, and a power feeding portion 8.
  • the upper side where the compression mechanism portion 3 is provided is directed to the one end side U, and the lower side where the drive mechanism portion 4 is provided as the other end side L.
  • the shell 1 is a sealed container which is a cylindrical casing made of a conductive member such as metal and closed at both ends.
  • the shell includes a main shell 11, an upper shell 12 as an end shell, and a lower shell 13.
  • the main shell 11 has a cylindrical shape extending in the axial direction.
  • the suction pipe 14 is connected to the main shell 11 by welding.
  • the suction pipe 14 is a pipe for introducing the refrigerant into the shell 1 and communicates with the inside of the main shell 11.
  • Upper shell 12 is a substantially hemispherical end shell. A part of the side wall portion of the upper shell 12 is joined to the end of the one end side U of the main shell 11 by welding the circumference. Thereby, one end side U of the main shell 11 is fixed to the upper shell 12. The upper shell 12 closes the opening at one end side U of the main shell 11.
  • the discharge pipe 15 is connected to the upper portion of the upper shell 12 by welding.
  • the discharge pipe 15 is a pipe that discharges the refrigerant to the outside of the shell 1.
  • the discharge pipe 15 communicates with the discharge space 91 in the main shell 11.
  • the lower shell 13 is a substantially hemispherical end shell.
  • the lower shell 13 is joined to the main shell 11 in the same manner as the upper shell 12.
  • the shell 1 is supported by a fixed base 17 provided with a plurality of bolt holes.
  • the fixing base 17 is formed with a plurality of bolt holes. By inserting bolts into these bolt holes, the scroll compressor 100 is fixed to another member such as the casing of the outdoor unit of the air conditioner.
  • Main frame 2 is accommodated in shell 1.
  • the main frame 2 is a hollow metal frame in which a cavity is formed in the center.
  • the main frame 2 includes a main body portion 21, a main bearing portion 22, and an oil return pipe 23.
  • the main body portion 21 is fixed to the first projecting portion 112 on the one end side U of the main shell 11.
  • An accommodation space 211 is formed at the center of the main body 21 along the longitudinal direction of the shell 1 which is the same as the extension direction of the central axis of the drive shaft 6.
  • One end side U of the accommodation space 211 is open.
  • the accommodation space 211 is formed in a step-like shape in which the internal space narrows from one end U to the other end L.
  • An annular flat surface 212 surrounding the housing space 211 is formed on one end side U of the main body 21.
  • a ring-shaped thrust plate 24 made of a steel plate material such as valve steel is disposed on the flat surface 212.
  • the thrust plate 24 functions as a thrust bearing.
  • a suction port 213 is formed at a position not overlapping the thrust plate 24 on the outer end side of the flat surface 212.
  • the suction port 213 is a space which penetrates the main body 21 in the vertical direction, that is, the main body 21 between the one end U and the other end L.
  • the number of suction ports 213 is not limited to one, and a plurality of suction ports may be formed.
  • An oldham housing portion 214 is formed on the step portion on the other end L side of the flat surface 212 of the main frame 2.
  • a pair of first oldham grooves 215 is formed in the oldham housing portion 214.
  • the first Oldham groove 215 is formed such that a part on the outer end side cuts the inner end side of the flat surface 212. Therefore, when the main frame 2 is viewed from one end side U, a part of the first Oldham groove 215 overlaps the thrust plate 24.
  • the pair of first Oldham grooves 215 are formed to face each other.
  • the main bearing portion 22 is continuously formed on the other end side L of the main body portion 21.
  • an axial hole 221 is formed in the inside of the main bearing portion 22.
  • the axial hole 221 penetrates in the vertical direction of the main bearing portion 22 and communicates with the accommodation space 211 at one end side U.
  • the oil return pipe 23 is a pipe that returns the lubricating oil accumulated in the housing space 211 to an oil sump inside the lower shell 13.
  • the oil return pipe 23 is inserted and fixed in an oil drain hole formed to penetrate the inside and the outside of the main frame 2.
  • the lubricating oil is, for example, a refrigerator oil containing an ester synthetic oil.
  • the lubricating oil is stored in the lower part of the shell 1, that is, in the lower shell 13.
  • the lubricating oil to be stored is sucked up by the oil pump 52 described later, passes through the oil passage 63 in the drive shaft 6, and reduces the wear of the mechanically contacting parts such as the compression mechanism 3 and the like. Adjust the temperature and improve the sealability.
  • As the lubricating oil it is preferable to use an oil having an appropriate viscosity, as well as excellent lubricating properties, electrical insulation, stability, refrigerant solubility, low temperature fluidity, and the like.
  • the compression mechanism unit 3 is a compression mechanism that compresses a refrigerant.
  • the compression mechanism unit 3 is a scroll compression mechanism provided with a fixed scroll 31 and an oscillating scroll 32.
  • the fixed scroll 31 is made of metal such as cast iron.
  • the fixed scroll 31 includes a first circular base plate 311 and a first spiral body 312.
  • the first circular base plate 311 is configured in a disk shape. At the center of the first circular base plate 311, a discharge port 311a penetrating in the vertical direction is formed.
  • the first spiral body 312 protrudes from the other end side L surface of the first circular base plate 311 to form a spiral wall.
  • the oscillating scroll 32 is made of metal such as aluminum.
  • the rocking scroll 32 includes a second circular base plate 321, a second spiral body 322, a cylindrical portion 323, and a pair of second Oldham grooves 324.
  • the second circular base plate 321 is formed in a disk shape.
  • the second circular base plate 321 connects the surface of the one end side U, the surface of the other end side L in front and back relation to the surface of the one end side U, the surface of the one end side U and the surface of the other end side L And an outer peripheral surface.
  • the second spiral body 322 is formed on the surface of the one end side U.
  • a sliding surface is formed on at least a part of the outer region on the surface of the other end L. The sliding surface is supported or supported on the main frame 2 so as to be slidable on the thrust plate 24.
  • the second spiral body 322 protrudes from the surface of the one end side U of the second circular base plate 321 to form a spiral wall.
  • a seal member for suppressing the leakage of the refrigerant is provided at the leading end of the first scroll 312 of the fixed scroll 31 and the second scroll 322 of the oscillating scroll 32.
  • the cylindrical portion 323 is a cylindrical boss that protrudes from substantially the center of the surface on the other end L of the second circular base plate 321 to the other end L.
  • a central axis of a so-called journal bearing which supports a slider 71 described later rotatably, is provided parallel to the central axis of the drive shaft 6.
  • the second Oldham groove 324 is an elongated round groove formed on the surface of the other end L of the second circular base plate 321.
  • the pair of second Oldham grooves 324 are provided to face each other.
  • the line connecting the pair of second Oldham grooves 324 is orthogonal to the line connecting the pair of first Oldham grooves 215.
  • An Oldham ring 33 is provided in the Oldham accommodation portion 214 of the main frame 2.
  • the Oldham ring 33 includes a ring portion 331, a pair of first key portions 332, and a pair of second key portions 333.
  • the ring portion 331 is annularly configured.
  • the pair of first key portions 332 is formed to face the surface on the other end L of the ring portion 331. Each of the pair of first key portions is accommodated in each of the pair of first oldham grooves 215 of the main frame 2.
  • the pair of second key portions 333 is formed to face the surface on one end side U of the ring portion 331. Each of the pair of second key portions is accommodated in each of the pair of second Oldham grooves 324 of the oscillating scroll 32.
  • a compression chamber 34 is formed by the first scroll 312 of the fixed scroll 31 and the second scroll 322 of the oscillating scroll 32 being engaged with each other.
  • the volume of the compression chamber 34 decreases in the radial direction from the outside to the inside. Therefore, the refrigerant is gradually compressed when taken in from the outer end side of the first spiral and the second spiral 322 and moving to the center side.
  • the compression chamber 34 communicates with the discharge port 311 a at the central portion of the fixed scroll 31.
  • a muffler 35 having a discharge hole 351 is provided on the surface of one end side U of the fixed scroll 31.
  • a discharge valve 36 is provided which opens and closes the discharge hole 351 in a predetermined manner to prevent the backflow of the refrigerant. Therefore, the refrigerant compressed in the compression chamber 34 is discharged to the discharge space 91 in the upper shell 12 from the discharge hole 351 by opening the discharge valve 36 by the pressure via the discharge port 311 a. Thereafter, the discharged refrigerant flows out of the discharge pipe 15.
  • the refrigerant is made of, for example, a halogenated hydrocarbon having a carbon double bond, a halogenated hydrocarbon having no carbon double bond, a hydrocarbon, or a mixture containing them in the composition.
  • the refrigerant composed of a halogenated hydrocarbon having a carbon double bond is an HFC refrigerant or a fluorocarbon-based low GWP refrigerant having an ozone layer destruction coefficient of zero.
  • these refrigerants include tetrafluoropropenes such as HFO 1234yf, HFO 1234ze, HFO 1243zf, and the like, represented by the chemical formula C 3 H 2 F 4 .
  • the refrigerant which consists of a halogenated hydrocarbon which does not have a double bond of carbon is exemplified by a refrigerant in which R32 (difluoromethane) represented by CH 2 F 2 , R 41 and the like are mixed.
  • Examples of the refrigerant composed of hydrocarbons include propane and propylene which are natural refrigerants.
  • refrigerant composed of a mixture examples include mixed refrigerants in which R32, R41 and the like are mixed with HFO1234yf, HFO1234ze, HFO1243zf and the like.
  • the potential low GWP refrigerants such as propane or propylene, which are components such as HFO 1234yf, HFO 1234ze, HFO 1243zf, operate at relatively low pressure and low density. For this reason, the displacement volume of the compressor required to obtain the equivalent capacity is about two to three times as large as that of the current refrigerant such as R410A.
  • the drive mechanism 4 is provided on the other end L of the main frame 2 in the shell 1.
  • the drive mechanism unit 4 includes a stator 41 and a rotor 42.
  • the stator 41 is an annular stator.
  • the stator 41 is formed by arranging a plurality of teeth, in which a winding is wound around an iron core in which a plurality of electromagnetic steel sheets and the like are laminated, with an insulating layer interposed therebetween.
  • the stator 41 is fixedly supported in the main shell 11 by shrink fitting.
  • the rotor 42 is disposed in the internal space of the stator 41. That is, the rotor 42 is a cylindrical rotor disposed in a central hole formed inside the stator 41 which is an annular stator.
  • the rotor 42 incorporates a permanent magnet in an iron core on which a plurality of electromagnetic steel sheets and the like are stacked. At the center of the rotor 42, a through hole penetrating in the vertical direction is formed.
  • the sub frame 5 is a metal frame.
  • the sub frame 5 is provided on the other end side L of the drive mechanism 4 in the shell 1.
  • the sub-frame 5 is fixedly supported on the inner peripheral surface portion of the other end side L of the main shell 11 by shrink fitting, welding or the like.
  • the sub frame 5 includes a sub bearing 51 and an oil pump 52.
  • the sub bearing portion 51 is a ball bearing provided on the central portion upper side of the sub frame 5. At the center of the sub bearing portion 51, a hole penetrating in the vertical direction is formed.
  • the oil pump 52 is provided below the central portion of the sub frame 5.
  • the oil pump 52 is disposed by immersing at least a part of the lubricating oil stored in the oil reservoir in the lower shell 13.
  • the drive shaft 6 is a long metal rod member.
  • the drive shaft 6 is provided in the shell 1.
  • the drive shaft 6 includes a main shaft portion 61, an eccentric shaft portion 62, and an oil passage 63.
  • the main spindle 61 is an axis that constitutes a main part of the drive shaft 6.
  • the central axis of the main shaft portion 61 is arranged to coincide with the central axis of the main shell 11.
  • the rotor 42 is contact-fixed to the outer surface of the main shaft portion 61.
  • the eccentric shaft 62 is provided on one end side U of the main shaft 61.
  • the central axis of the eccentric shaft portion is eccentric to the central axis of the main shaft portion 61.
  • the oil passage 63 is vertically penetrated in the main shaft portion 61 and the eccentric shaft portion 62.
  • One end side U of the main shaft portion 61 in the drive shaft 6 is inserted into the main bearing portion 22 of the main frame 2. Further, the other end side L of the main shaft portion 61 in the drive shaft 6 is inserted into and fixed to the sub bearing portion 51 of the sub frame 5. Thus, the eccentric shaft portion 62 is disposed in the cylinder of the cylindrical portion 323. Further, the outer circumferential surface of the rotor 42 fixed in contact with the main shaft portion 61 and the inner circumferential surface of the stator 41 maintain a predetermined gap.
  • a first balancer 64 is provided in the middle of one end side U of the main shaft portion 61.
  • a second balancer 65 is provided midway on the other end side L of the main shaft portion 61. The first and second balancers 64 and 65 cancel out the unbalanced state due to the rocking motion of the rocking scroll 32.
  • the bush 7 is a connection member that connects the swing scroll 32 and the drive shaft 6.
  • the bush 7 is made of metal such as iron.
  • the bush 7 is composed of two parts.
  • the bush 7 includes a slider 71 and a balance weight 72.
  • the slider 71 is a cylindrical member having a weir extending outward.
  • the slider 71 is fitted into each of the eccentric shaft portion 62 and the cylindrical portion 323.
  • the balance weight 72 is a doughnut-shaped member provided with a weight portion 721.
  • the shape viewed from one end side U of the weight portion 721 is a substantially C shape.
  • the balance weight 72 is provided eccentrically with respect to the rotation center in order to offset the centrifugal force of the oscillating scroll 32.
  • the balance weight 72 is fitted to the wedge of the slider 71 by a method such as shrink fitting.
  • the power supply unit 8 is a power supply member that supplies power to the scroll compressor 100.
  • the feeding portion 8 is formed on the outer peripheral surface of the main shell 11.
  • the feeding unit 8 includes a cover 81, a feeding terminal 82, and a wire 83.
  • the cover 81 is a cylindrical member that has a cylindrical shape that attaches the bottom to the outer wall surface portion of the main shell 11 and is formed with an opening facing the bottom at a part away from the main shell 11.
  • the feed terminal 82 is made of a metal member. One of the feed terminals 82 is provided in the cover 81. In addition, the other of the feed terminals 82 is provided in the shell 1. That is, the feed terminal 82 is provided to penetrate the shell 1 by connecting one to the other.
  • One end of the wiring 83 is connected to the feed terminal 82.
  • the other of the wires 83 is connected to the stator 41. That is, the wiring connects one side to the other side to supply power to the stator 41 from the power supply terminal 82.
  • FIG. 3 is a dashed-dotted line in FIG. 1 in which the circumference of the upper shell 12 according to the first embodiment of the present invention quantifies the shape change of the main shell 11 and the first circular base plate 311 of the fixed scroll 31 after welding. It is an enlarged view showing field A.
  • the main shell 11 has a first inner wall surface portion 111 which is a thin wall portion, a first projecting portion 112 which is a thick wall portion, and a first positioning surface 113.
  • the first inner wall surface portion 111 is formed to be thin-walled by widening the inner diameter by the length as it is from the first protrusion 112.
  • the first inner wall surface portion 111 is continuously formed on one end side U of the first projecting portion 112.
  • the first protrusion 112 projects from the first inner wall surface portion 111 to the inner diameter side with the outer diameter as it is.
  • the first projecting portion 112 is continuously formed on the other end side L of the first inner wall surface portion 111.
  • the first positioning surface 113 is a surface facing the one end side U of the first projecting portion 112 at the boundary between the first projecting portion 112 and the first inner wall surface portion 111.
  • the first positioning surface 113 positions the fixed scroll 31.
  • the main shell 11 is provided with a step-like portion whose inner diameter increases toward the other end side L.
  • the fixed scroll 31 is fixed to the first inner wall surface portion 111 by shrink fitting in a state where the fixed scroll 31 is positioned by the first positioning surface 113.
  • the fixed scroll 31 has a mounting end 313, an annular protrusion 314, and a small diameter end 315.
  • the placement end 313 is placed on the first positioning surface 113 which is a boundary between the first protrusion 112 and the first inner wall surface 111.
  • the placement end portion 313 is a corner portion on the other end side L of the outer peripheral portion of the fixed scroll 31.
  • the annular protrusion 314 has a diameter larger than the placement end 313 and contacts the inner wall portion of the first inner wall surface portion 111.
  • the annular protrusion 314 is the outermost diameter portion of the outer peripheral portion of the fixed scroll 31.
  • the annular protrusion 314 is formed separately from the mounting end 313.
  • the annular protrusion 314 is formed in a curved shape between one end U and the other end L in the axial direction of the main shell 11. That is, the annular protrusion 314 has an arc shape.
  • the annular protrusion 314 has an apex 314 A at which the outer radius of the outer circumferential surface of the first circular base plate 311 is maximized.
  • the apex 314A of the annular protrusion 314 is designed to coincide with the height position of 1/2 of the circular base plate thickness t.
  • the annular protrusion 314 is formed in a circular arc shape that is line-symmetrical to one end U and the other end L with reference to the vertex 314A.
  • the small diameter end 315 is smaller in diameter than the annular projection 314 at the opposite side of the placement end 313 via the annular projection 314.
  • the small diameter end portion 315 is a corner portion on one end side U of the outer peripheral portion of the fixed scroll 31.
  • the mounting end 313, the annular protrusion 314 and the small diameter end 315 are provided on the mounting protrusion 316.
  • the mounting protrusion 316 protrudes radially outward from the base of the first circular base plate 311 of the fixed scroll 31.
  • the placement protrusion 316 can also be said to be part of the first circular base plate 311.
  • the structure in which the fixed scroll 31 is fixed alone to the main shell 11 eliminates the need for a wall for bolting the main frame and the fixed scroll as in the prior art. That is, the wall portion of the main frame 2 is not interposed between the outer peripheral surface of the second circular base plate 321 of the oscillating scroll 32 and the inner wall surface of the main shell 11. As a result, the outer circumferential surface of the second circular base plate 321 and the inner wall surface of the main shell 11 are arranged to face each other. Therefore, the suction space 92, which is a refrigerant intake space provided in the main shell 11 between the first circular base plate 311 of the fixed scroll 31 and the thrust bearing of the main frame 2, and in which the oscillating scroll 32 is disposed is It is spread more than. Further, since the structure of the main frame 2 is simplified, the processability is improved and the weight can be reduced.
  • the expansion of the suction space 92 provides various advantages. For example, in a so-called low pressure shell structure in which the pressure in the space inside main shell 11 in which drive mechanism 4 is disposed and suction space 92 is lower than the pressure in suction space 92, rocking scroll 32 is generated by the pressure of the compressed refrigerant.
  • the second circular base plate 321 is pressed against the thrust plate 24. Therefore, a thrust load is generated at the sliding portion. Therefore, the diameters of the second circular base plate 321 and the thrust plate 24 of the rocking scroll 32 can be increased while the first and second spiral bodies and the like are designed as in the conventional design, and the sliding area is increased. Contact pressure can be reduced. Therefore, in the scroll compressor 100, the load on the thrust bearing is reduced, and the reliability is enhanced.
  • the upper shell 12 before the circumference is welded presses the fixed scroll 31 against the first positioning surface 113, so that the fixed scroll 31 can be accurately positioned. Thereafter, once the upper shell is removed, the fixed scroll shrink fit is performed.
  • the main frame 2 is positioned by the second positioning surface 115 facing the one end side U of the second projecting portion 114 which protrudes from the first projecting portion 112 of the main shell 11 to the inner diameter side without changing the outer diameter. Then, the main frame 2 is fixed to the first protrusion 112 by shrink fitting or the like in a state of being positioned by the second positioning surface 115.
  • an annular protruding wall portion 216 protruding to one end side U is formed.
  • the thrust plate 24 is disposed on the inner flat surface 212 of the projecting wall portion 216 so as to cover a portion of the first Oldham groove 215.
  • the height from the flat surface 212 of the projecting wall portion 216 is set smaller than the thickness of the thrust plate 24. For this reason, the oscillating scroll 32 slides on the thrust plate 24.
  • the spiral tip clearance which is the distance between the surface of the first and second circular base plates 311 and 321 having the spiral body and the tip of the other spiral body.
  • the spiral tip clearance can be reduced, and the refrigerant can be prevented from leaking to the adjacent compression space through the clearance between the spiral tip and the circular base plate.
  • a convex portion or a concave portion is formed on the thrust plate 24 and the projecting wall portion 216, and the convex portion and the concave portion are engaged so that the rotation of the thrust plate 24 can be suppressed.
  • the flat surface 212 of the main frame 2 and the thrust plate 24 are both ring-shaped, so the thrust plate 24 may rotate relative to the flat surface 212 as the swing scroll 32 swings. It is. The rotation of the projection is suppressed by locking the projection to the recess.
  • the projections are a pair of projections 217 formed to project from the projecting wall portion 216 in the direction of the thrust plate 24.
  • the recess is a notch 241 formed in the outer peripheral edge portion of the thrust plate 24.
  • the pair of protrusions 217 is locked to each of both side edges of the notch 241.
  • a suction port 213 is disposed in a portion located between the pair of protrusions 217 of the main frame 2. That is, since the suction port 213 is disposed at the notch 241, the refrigerant can be taken into the suction space 92 without being blocked by the thrust plate 24.
  • the refrigerant drawn into the shell 1 from the suction pipe 14 along with the rocking motion of the rocking scroll 32 reaches the suction space 92 through the suction port 213 of the main frame 2, and the fixed scroll 31 and the rocking scroll And 32 into the compression chamber 34. Then, the refrigerant is reduced in volume and compressed in the compression chamber 34 moving from the outer peripheral portion toward the center along with the eccentric revolution movement of the oscillating scroll 32.
  • the rocking scroll 32 moves radially outward with the bush 7 by its own centrifugal force, and the wall surfaces of the second spiral body 322 and the first spiral body 312 are in close contact with each other.
  • the compressed refrigerant travels from the discharge port 311 a of the fixed scroll 31 to the discharge hole 351 of the fixed scroll 31, opens the discharge valve 36 against the biasing force of the discharge valve 36, and flows out of the shell 1.
  • FIG. 4 is an explanatory view showing the wall surface portion of the main shell 11 according to Embodiment 1 of the present invention in a longitudinal cross section.
  • FIG. 4 shows the size, thickness, and the like of the main shell 11 before the fixed scroll 31, the main frame 2, the stator 41, etc. are shrink fitted.
  • the thickness of the main shell 11 is, for example, 4 to 6 mm.
  • the height of the second protrusion 114 that is, the cutting depth by cutting is, for example, about 0.3 mm.
  • the wall surface portion is cut by a predetermined depth in the thickness direction with a cutting brush or the like at the first protrusion 112 separated by a predetermined distance from the second protrusion 114 toward the one end U.
  • the first inner wall surface portion 111 is formed, and a step is formed at the boundary between the first inner wall surface portion 111 and the first projecting portion 112. Therefore, the inner diameter R1o of the first inner wall surface portion 111 is larger than the inner radius R20 of the first projecting portion 112.
  • the second protrusion 114 may be formed after the first protrusion 112 is formed.
  • An outer diameter process is performed on the connection portion of the first protrusion 112 with the first inner wall surface portion 111, that is, the portion on the first inner wall surface portion 111 side of the first positioning surface 113 by a rhombic insert or the like.
  • a recess 1131 is formed.
  • the connecting portion of the second protrusion 114 with the first protrusion 112, that is, the portion of the second positioning surface 115 on the side of the first protrusion 112 is subjected to an outer diameter process with a rhombic insert or the like, A recess 1151 recessed in L is formed.
  • the depressions 1131 and 1151 are so-called nasumi that prevent deformation of the main shell 11 that is likely to occur in the connection portion due to cutting. That is, as a result of cutting, the connection between the first inner wall surface portion 111 and the first positioning surface 113 may not be finely cut at a right angle, and a convex portion may be formed at a corner. If a convex portion is formed in the portion, even if the fixed scroll 31 is disposed on the first projecting portion 112, the fixed scroll 31 floats without contacting the first positioning surface 113, and the positioning accuracy is lowered. . On the other hand, since the fixed scroll 31 reliably contacts the first positioning surface 113 by forming the recess 1131, the positioning accuracy is enhanced. The same applies to the recess 1151 and the positioning accuracy of the main frame 2 is enhanced.
  • the recesses 1131 and 1151 have a shape which is recessed on the other end side L, reduction in thickness of the main shell 11 can be suppressed as compared with the case where the recesses 1131 and 1151 are formed in the thickness direction of the main shell 11, A reduction in strength of the main shell 11 can be suppressed.
  • the main frame 2 is inserted from one end side U of the main shell 11 formed as described above.
  • the main frame 2 is in surface contact with the second positioning surface 115, and the height direction is positioned.
  • the main frame 2 is fixed to the first protrusion 112 by shrink fitting or arc spot welding.
  • the drive shaft 6 is inserted into the shaft hole 221 of the main frame 2. Thereafter, the bush 7 is attached to the eccentric shaft 62. Furthermore, the Oldham ring 33, the oscillating scroll 32, etc. are arranged.
  • the fixed scroll 31 is inserted from one end side U of the main shell 11.
  • the fixed scroll 31 is in surface contact with the first positioning surface 113, and the height direction is positioned.
  • the fixed scroll 31 can rotate with respect to the oscillating scroll 32 until the fixed scroll 31 is fixed.
  • the positional relationship between the first spiral body 312 and the second spiral body 322 is shifted, and there is a possibility that compression variation or compression failure may occur in each of the scroll compressors 100. Therefore, the fixed scroll 31 is rotated so that the positional relationship of the first scroll 312 with respect to the second scroll 322 of the oscillating scroll 32 becomes a predetermined relationship, and the phase of the fixed scroll is adjusted. Thereafter, the fixed scroll 31 is fixed to the first inner wall surface portion 111 by shrink fitting.
  • the fixed scroll 31 is inserted so as to press the first positioning surface 113 by the upper shell 12. Then, the upper shell 12 is once removed. Then, the fixed scroll 31 is maintained in a state of being pressed against the first positioning surface 113, and the fixed scroll 31 is shrink-fitted and fixed to the main shell 11. Thereby, the variation in the height of the suction space 92 for each scroll compressor 100 is suppressed, and the positional accuracy is enhanced. Further, the displacement of the fixed scroll 31 in the vertical direction when the scroll compressor 100 is driven is suppressed.
  • the first positioning surface 113 can only position the fixed scroll 31 during manufacture, the fixed scroll 31 contacts the first positioning surface 113 after the fixed scroll 31 is fixed to the first inner wall surface portion 111. It is not necessary to The same applies to the relationship between the main frame 2 and the second positioning surface 115.
  • the upper shell 12 is inserted from one end side U of the main shell 11. Thereafter, the circumference of the upper shell 12 is fixed to the main shell 11 by welding.
  • FIG. 5 is an explanatory view showing a measurement range regarding the shape change of the main shell 11 after welding and the first circular base plate 311 of the fixed scroll 31 in the comparative example.
  • FIG. 6 is a diagram showing the amount of change in shell shape with respect to the shape change of the main shell 11 after welding and the first circular base plate 311 of the fixed scroll 31 in the comparative example.
  • FIG. 7 is a view showing the surface pressure of the outer peripheral surface of the circular base plate in relation to the shape change of the main shell 11 after welding and the first circular base plate 311 of the fixed scroll 31 in the comparative example. .
  • the outer radius of the main shell 11 was substantially uniform regardless of the height direction in the original state of (1). If the circumference of the upper shell is welded without a circular base plate as in (2) from the state of (1), the measurement point that is the upper end of the one end side U of the main shell 11 near the weld position 121 of the circumference On a height 0 basis, the outer radius shrinks about 0.1% as shown by the shrinkage amount dR. As a result, the outer radius of the first inner wall surface portion 111 increases in proportion to the height, and the area of the first protrusion 112 returns to the original uniform state.
  • the outer peripheral surface of the main frame 2 is shrink-fit to the first projecting portion and the outer peripheral surface of the first circular base plate 311 of the fixed scroll 31 is shrink-fitted to the first inner wall surface portion 111
  • the outer radius expands and expands in the outer peripheral surface height range of the circular base plate as in (3).
  • the height of the main shell 11 is measured at the height of 0 measurement point which is the upper end of the one end side U of the main shell 11
  • the outer radius shrinks by about 0.1%.
  • the main shell 11 is deformed so as to expand under the influence of the outer peripheral surface of the first circular base plate 311 of the fixed scroll 31, and then inclined so as to contract the one end side U as a whole.
  • the other end side L from the center is deformed so as to be the apex 314A which is the outermost diameter. Therefore, a substantially trapezoidal surface pressure load distribution as shown in FIG. 57 acts on the outer peripheral surface of the first circular base plate 311.
  • the outer radius of the main shell 11 shrinks in proportion to the height direction as shown in (2) of FIG. 6 when there is no first circular base plate 311, the outer radius of the outer peripheral surface of the first circular base plate 311
  • the surface pressure load also changes substantially proportionally in the height direction.
  • the position of the center of gravity of the surface pressure distribution load is in the range of 1/3 to 1/2 of the thickness t from the corner portion 311X on one end side U of the outer peripheral surface of the first circular base plate 311 to the other end side L. It is a height position.
  • the first circular base plate 311 of the fixed scroll 31 has a bending moment acting around the neutral surface of the thickness t cross section, and is deformed axially symmetrically so that the center is bent concavely toward the other end side L.
  • M D (1 + ⁇ ) / ⁇ It is.
  • the neutral surface coincides with the center of gravity of the circular base plate, and substantially coincides with the height position of 1/2 of the circular base plate thickness t.
  • the deflection amount of the first circular base plate 311 can be obtained by the equation (5.21) of P226 of the reference document 1.
  • the gravity center position 311G of the first circular base plate 311 is a height position of 1/2 of the circular base plate thickness t.
  • the center of gravity position 311 G of the first circular base plate 311 in the axial direction of the main shell 11 is within the range of the annular protrusion 314.
  • the deviation between the gravity center position 311G of the first circular base plate 311 and the gravity center position of the surface pressure load acts on the outer peripheral surface of the first circular base plate 311 as a bending moment around the gravity center. That is, the load in the hatched portion shown in FIG. 7 acts on the t / 6 shift from the gravity center position 311G of the first circular base plate 311 to deform the first circular base plate 311 in a concave shape toward the other end L Creates a bending moment.
  • FIG. 8 is an explanatory view showing a measurement range regarding the shape change of the main shell 11 after welding and the first circular base plate 311 of the fixed scroll 31 according to the first embodiment of the present invention is there.
  • FIG. 9 shows the amount of change in shell shape with respect to the shape change of the main shell 11 and the first circular base plate 311 of the fixed scroll 31 after welding, according to the first embodiment of the present invention.
  • the shape change of (1) to (4) in the height direction of the outer radius of the main shell 11 shown in FIG. 9 is substantially the same change as in FIG. 6 of the comparative example, and the detailed description is omitted. That is, as in the comparative example, when the circumference of the upper shell 12 of (4) is welded, the main shell 11 has the outer radius at the measurement point height 0 reference 110 which is the upper end of the one end side U Shrinks by about 0.1% to 0.2% indicated by the shrinkage amount dR. Then, in the outer peripheral surface height range of the circular base plate on the other end side L in the main shell 11, it is deformed so as to bulge outward.
  • a chevron arc shape is formed on the outer peripheral surface of the first circular base plate 311, with the point where the outer radius is maximum as the vertex 314A, and the first one is near the vertex which is the position from the one end side U to the axis height position Z1A.
  • the contraction amount dR is about 0.1% of R10.
  • the amount of contraction at position Z1A is about 20% to 50% of R10.
  • the outer peripheral surface of the first circular base plate 311 is designed to be designed at the barycentric position 311G of the first circular base plate 311 where the apex 314A position of the chevron arc coincides with the height position of 1/2 of the circular base plate thickness t. There is no large bending moment around the center of gravity. Thereby, the deformation of the first circular base plate 311 and the deformation of the first spiral body 312 formed on the other end side L of the first circular base plate 311 are suppressed.
  • a discharge space 91 for guiding the high pressure refrigerant of the discharge pressure Pd compressed by the compression chamber 34 to the discharge pipe 15 is formed on one end side U of the fixed scroll 31 from the first circular base plate 311. It is done. Near the center of the discharge space 91, a muffler 35 and a discharge valve 36 are attached.
  • the first circular base plate 311 of the fixed scroll 31 is pressed from the one end side U to the other end side L by the pressure difference between the two spaces which are the discharge space and the refrigerant intake space. Therefore, the other end side L of the outer peripheral surface of the first circular base plate 311 is pressed against the first positioning surface 113, and an annular seal surface 317O is formed.
  • a vertex 314A which is an outermost diameter portion in a mountain arc region ta ranging from the end 314X on one end U to the end 314Y on the other end L. .
  • the vicinity of the apex 314A is pressed against the first inner wall surface portion 111 in the other end L direction by the above-described differential pressure, and a sealing surface 317A is formed annularly.
  • the discharge space 91 at one end side U of the seal surface 317A which is a contact point contacting the first inner wall surface portion 111 of the annular protrusion 314, is in a high pressure state of the discharge pressure Pd.
  • the other end L from the sealing surface 317O is in a low pressure state of the suction pressure Ps.
  • a gap between the seal surface 317A and the other end L of the seal surface 317A and the one end U of the seal surface 317O is an intermediate pressure state between the low pressure state and the high pressure state. More specifically, this gap is close to a high pressure state because the seal area of the seal surface 317O is dominant.
  • the fixed scroll 31 has the first scroll 312 and the muffler 35 on the center side, so the rigidity of the inner region is higher than the rigidity of the outer region than the first scroll 312. Further, the inner region of the first circular base plate 311 of the fixed scroll 31 is a compression chamber 34 in which the refrigerant is boosted from the suction pressure Ps to the discharge pressure Pd. In the compression chamber 34, the differential pressure with the discharge pressure Pd of the discharge space 91 at the one end side U is small.
  • the inner radius of the region inward of the first scroll body 312 from the central axis of the scroll compressor 100 is taken as Rb.
  • the inner radius up to the first protrusion 112 of the main shell 11 be Ra.
  • ⁇ Maximum load pressure condition> As a calculation model similar to the pressure load conditions described above, reference document 2 (Japanese Society of Mechanical Engineers, "Mechanical Engineering Handbook A4 Material Mechanical Fundamentals", pp. 57-58 (issued 9th edition of 2001 New Edition, Maruzen)) is used. The amount of deformation of the first circular base plate 311 is predicted using a calculation model in which a pressure distribution acts on a circular ring plate having an inner peripheral movable piece from Reference Document 2.
  • the range from the outermost diameter R1 to Rb of the first circular base plate 311 A load of differential pressure ⁇ P works in the lower side of the axial center of the drive shaft 6 in the outer peripheral area of the drive shaft 6.
  • the material of the first circular base plate 311 is cast iron, it has a Young's modulus of 100 GPa and a Poisson's ratio of 0.3.
  • a fixed holding force Ff acts on the outer peripheral surface of the first circular base plate 311 by shrink fitting to the first inner wall surface portion 111 of the main shell 11.
  • the fixed holding force Ff is the rotational direction gas torque Ft1 at the time of compression operation, the thrust reaction force Ft2 received from the compression chamber 34 at the time of activation, and pressure applied to the suction space 92 with the discharge space 91 evacuated in unsteady state. Overcoming the thrust reaction force Ft3, the fixed scroll 31 is fixedly held.
  • the tightening force Fin is 40 kN or more, and the shrink fitting margin is 0.1 mm or more, that is, 0.13% or more of the inner diameter Ra.
  • the main shell 11 is deformed to about 0.1 mm which is a contraction amount dR of the main shell 11 and about 1/500 to 1/200 which is an inclination angle ⁇ 1. .
  • the inclination angle is 3 / 10,000.
  • the deflection angle is zero.
  • the bending moment Mr1 due to the upper and lower differential pressure load and the height position of the center of the outer peripheral surface load due to contraction after welding at the center of gravity position 311G The bending moment Mr2 works by shifting a predetermined distance from. That is, on the outer peripheral surface of the first circular base plate 311, a bending moment which causes the other end L to be concavely deformed usually acts. The direction in which the other end L is recessed is +. If the bending moment Mr2 is about the bending moment Mr1 due to the upper and lower differential pressure load, the influence on the maximum deflection w_max is similarly 1 to 2 ⁇ m level, so it may be ignored small enough.
  • the maximum deflection w_max at the position of the inner diameter Ra is 1 to 2 ⁇ m at the same level as the influence by the upper and lower differential pressure It is.
  • the bending moment Mr2 is considered to be negligible because it is sufficiently small.
  • the thickness of the main part of the first circular base plate 311 is t.
  • the width of the side wall near the outer periphery is the thickness of the mounting protrusion 316, and the thickness is smaller than t at t1.
  • the one end side U of the first inner wall surface portion 111 may contact at the small diameter end portion 315 in the vicinity of the apex 314A in order to contract.
  • the outer radius of the small diameter end portion 315 is R2
  • the difference in height position from the apex 314A is x1A
  • e2 is designed to be larger than about 0.1 mm which is the deformation of the end 110 of the one end side U of the main shell 11 after welding of the circumference, the relationship of ⁇ 2> ⁇ 1 is maintained, and the small diameter end It is possible to prevent the contact between the first and second inner wall portions 111 and 315.
  • the outer radius is R1o
  • eo is designed to be larger than about 0.1 mm which is the deformation of the end 110 of the one end side U of the main shell 11 after welding of the circumference, the relationship of ⁇ o> ⁇ 1L is maintained, and the mounting end In the portion 313, the contact with the first inner wall surface portion 111 of the main shell 11 can be prevented.
  • the first inner wall surface portion 111 of the main shell 11 shown in FIG. 3 is deformed so that the outer diameter is maximized at the apex 314A, and the inclination angle ⁇ 1L of the other end L is the end of the one end U of the main shell 11
  • the amount of contraction of the portion 110 is increased. Therefore, the inclination angle ⁇ 1 of the one end side U becomes large.
  • the first protrusion 112 is restrained by the main frame 2 and hardly deformed, the inclination angle ⁇ 1L of the other end L is small. As a result, normally, the relationship of ⁇ 1L ⁇ 1 is established.
  • the placement end portion 313 can prevent contact with the first inner wall surface portion 111 of the main shell 11.
  • the relationship of ⁇ o ⁇ ⁇ 1L can be maintained, even if they are in contact with each other, they can be ignored because the tightening force is small. This will be described separately in Embodiment 3.
  • the diameters of the second circular base plate 321 and the thrust plate 24 of the orbiting scroll 32 can be increased, the sliding area is increased, and the surface pressure due to the thrust load can be reduced. Further, since a wall for fixing the fixed scroll 31 to the main frame 2 is not necessary, the processing time of the main frame 2 can be shortened and the weight can be reduced.
  • the main shell 11 has a first protrusion 112 and a second protrusion 114 that protrudes from the first protrusion 112 and forms a second positioning surface 115 on which the main frame 2 is positioned.
  • the main frame 2 is fixed to the second positioning surface 115 alone. Therefore, the fixed scroll 31 and the main frame 2 can be fixed to the shell 1 in the same manufacturing process, and the manufacturing can be facilitated.
  • the first spiral body 312 formed on the first circular base plate 311 of the fixed scroll 31 and the other end L of the first circular base plate 311 is deformed It is possible to suppress a decrease in compressor efficiency without enlarging the tip end leakage gap between the first and second spiral bodies 312 and 322 without increasing the size.
  • the tip-to-tip leakage gap between the first and second spirals 312 and 322 is not narrowed, and the tip is not in contact with the wall surface, so that the reduction in durability can be suppressed. Therefore, the displacement volume of the compression chamber 34 can be expanded with the shell diameter equivalent to that of the conventional scroll compressor.
  • the refrigeration cycle apparatus may further include a scroll compressor 100, a condenser, an expansion valve, and an evaporator, and may be a high-pressure refrigerant including, for example, R32 as the refrigerant.
  • a high pressure refrigerant including R32 or the like is used, the load on the thrust bearing is increased.
  • the diameters of the second circular base plate 321 and the thrust plate 24 of the oscillating scroll 32 can be increased, and the sliding area can be increased. Therefore, the load on the thrust bearing can be reduced, and the reliability can be improved.
  • scroll compressor 100 includes main frame 2 slidably holding oscillating scroll 32.
  • the scroll compressor 100 includes a fixed scroll 31 that forms a compression chamber 34 with the oscillating scroll 32.
  • the scroll compressor 100 includes a shell 1 that fixes the fixed scroll 31 separately from the main frame 2.
  • the shell 1 has a cylindrical main shell 11 including a first projecting portion 112 which is a thick portion and a first inner wall surface portion 111 which is a thin portion which is formed to be thinner than the first projecting portion 112.
  • the fixed scroll 31 has a placement end 313 placed at the boundary between the first protrusion 112 and the first inner wall surface 111.
  • the fixed scroll 31 has an annular protrusion 314 which is larger in diameter than the mounting end portion 313 and which contacts the first inner wall surface portion 111.
  • the fixed scroll 31 has a small diameter end 315 smaller in diameter than the annular projection 314 on the opposite side to the mounting end 313 via the annular projection 314.
  • the inner diameter of the end 110 of the first inner wall surface portion 111 of the main shell 11 is 1% It shrinks about 2% from.
  • the fixed scroll 31 has the small diameter end 315, the bending moment received from the end 110 of the first inner wall surface portion 111 where the small diameter end 315 contracts can be reduced.
  • the small diameter end portion 315 does not contact the contracted first inner wall surface portion 111. Therefore, this bending moment disappears.
  • the fixed scroll 31 in the fixed scroll 31 fixed to the main shell 11 by shrink fitting or the like, a surface pressure distribution that increases from the mounting end portion 313 side to the small diameter end portion 315 side does not occur on the outer peripheral surface. A moment does not act to bend the center of the base plate 311 downward. Therefore, the fixed scroll 31 can be disposed in the shell 1 with high positional accuracy, and the tips of the first scroll 312 of the fixed scroll 31 and the second scroll 322 of the oscillating scroll 32 have an appropriate positional relationship. Configured
  • the fixed scroll 31 has a high positional accuracy within the shell 1, and the shrink fit and the circumference minimize deformation after welding. Can be placed on And the fall of the endurance of the scroll compressor 100 and reliability can be controlled. Further, the leakage loss of the scroll compressor 100 does not increase, and a reduction in the compressor efficiency can be suppressed.
  • the mounting end 313 and the annular protrusion 314 are formed separately.
  • the outer diameter of the mounting end portion 313 can be smaller than the outer diameter of the annular protrusion 314, and the mounting end portion 313 can prevent contact with the first inner wall surface portion 111 of the main shell 11. As a result, excessive deformation of the main shell 11 can be suppressed.
  • the annular protrusion 314 is formed in a curved shape in the axial direction of the main shell 11.
  • the annular protrusion 314 widens the range of contact with the first inner wall surface portion 111 of the main shell 11. Therefore, stress concentration in the contact range can be avoided, and the durability of the first inner wall surface portion 111 of the main shell 11 can be improved.
  • the center of gravity position 311G of the first circular base plate 311 of the fixed scroll 31 in the axial direction of the main shell 11 is within the range of the annular protrusion 314.
  • the deviation between the gravity center position 311G of the first circular base plate 311 and the gravity center position of the surface pressure load acts on the outer peripheral surface of the first circular base plate 311 as a bending moment around the gravity center.
  • the mounting end portion 313, the annular protrusion 314 and the small diameter end portion 315 are provided on the mounting projection portion 316 which protrudes outward in the radial direction from the first circular base plate 311 of the fixed scroll 31. .
  • the contact with the main shell 11 is limited to the mounting protrusion 316 of the fixed scroll 31, and is separated from the first circular base plate 311 of the fixed scroll 31. As a result, excessive deformation of the main shell 11 can be suppressed.
  • the shell 1 has the upper shell 12 to which the first inner wall surface portion 111 of the main shell 11 is fixed and which closes the opening on the first inner wall surface portion 111 side of the main shell 11.
  • the first inner wall surface portion 111 of the main shell 11 and the upper shell 12 are joined, and the small diameter end portion 315 of the fixed scroll 31 and the first inner wall surface portion 111 are separated.
  • the small diameter end portion 315 of the fixed scroll 31 does not contact the first inner wall surface portion 111 even after the circumference of the upper shell 12 is welded. Therefore, the bending moment which the small diameter end portion 315 receives from the first inner wall surface portion 111 where the circumference of the upper shell 12 is contracted after welding is eliminated.
  • the parts having the same configuration as the scroll compressor 100 of FIGS. 1 to 6 according to the first embodiment are assigned the same reference numerals and descriptions thereof will be omitted.
  • the effect of enlarging the displacement volume of the compression chamber 34 is achieved while ensuring the improvement of the efficiency and the reliability of the scroll compressor 100. A detailed description of such similar effects is omitted.
  • FIG. 10 is an alternate long and short dash line in FIG. 1 where the circumference of the upper shell 12 according to the second embodiment of the present invention quantifies the shape change of the main shell 11 after welding and the first circular base plate 311 of the fixed scroll 31. It is an enlarged view showing field A.
  • the mounting end 313, the annular protrusion 314 and the small diameter end 315 are provided on the mounting protrusion 316.
  • the mounting end 313 and the small diameter end 315 are formed to have substantially the same outer diameter.
  • the annular projection 314 protrudes from the outer circumferential surface between the mounting end 313 and the small diameter end 315 of the mounting projection 316.
  • the mounting end 313 and the annular protrusion 314 are separately provided separately.
  • the amount of contraction and deformation of the end portion 110 of the one end side U of the main shell 11 after welding is approximately equal to 0.1 to 0.2 mm.
  • the inclination angle ⁇ 2 is designed to be about ⁇ 1, even if the small diameter end portion 315 contacts, the following relationship is established. That is, the clamping force generated at the small diameter end 315 is sufficiently smaller than the clamping force generated at the apex 314 A of the annular protrusion 314.
  • the position of the apex 314 A of the annular protrusion 314 is substantially equal at the axial height position of the center of gravity position 311 G of the fixed scroll 31 and the drive shaft 6. Therefore, the bending moment around the center of gravity of the first circular base plate 311 is minute. As a result, the influence of the deformation of the first circular base plate 311 and the first spiral body 312 can be ignored small enough.
  • the small diameter end portion 315 can be in contact with the first inner wall surface portion 111 to form the sealing surface 317B. Thereby, the seal area is increased, and the leakage of the refrigerant between the discharge space 91 and the suction space 92 can be prevented.
  • the bending moment generated due to the pressure distribution of the discharge pressure Pd occurring on the outer peripheral surface of the first circular base plate 311 of the fixed scroll 31 can be eliminated. Normally, the pressure distribution on the outer peripheral surface of the first circular base plate 311 is not a problem. However, it is advantageous when the plate thickness of the first circular base plate 311 is relatively thick, that is, t / R1 is large.
  • the circumference is more susceptible to the variation of the amount of contraction deformation of the main shell 11 after welding than the first embodiment, it is advantageous depending on the shape of the first circular base plate 311. There is also a good side. And the effect according to Embodiment 1 is acquired.
  • ⁇ Modification 1 of Embodiment 2> 11 quantifies the shape change of the main shell 11 and the first circular base plate 311 of the fixed scroll 31 according to the first modification of the second embodiment of the present invention. It is a figure which shows the state after shrink-fitting.
  • FIG. 12 is an alternate long and short dash line area A of FIG. 1 for quantifying the shape change of the main shell 11 and the first circular base plate 311 of the fixed scroll 31 according to the first modification of the second embodiment of the present invention.
  • the circumference of the figure shows the state after welding.
  • the mounting end 313, the annular protrusion 314 and the small diameter end 315 are provided on the mounting protrusion 316.
  • the small diameter end 315 is smaller in diameter than the mounting end 313.
  • the annular protrusion 314 is integrally provided with the mounting end 313.
  • a chevron arc region ta having a vertex 314A is formed on the outer peripheral surface of the mounting protrusion 316.
  • the chevron arc region ta is provided integrally with the mounting end 313 and the annular projection 314.
  • the apex 314 A of the chevron arc region ta is located approximately at the center between the root of the other end side L than the small diameter end 315 and the mounting end 313. That is, the chevron arc region ta is formed in line symmetry at the vertex 314A.
  • the other end L from the apex 314 A has an outer diameter dimension as the mounting protrusion 316 from the middle part to the end face of the other end L placed on the first positioning surface 113 The diameter is reduced.
  • the end face on the other end L of the placement protrusion 316 is a part of the annular protrusion 314 and the placement end 313, and is supported by the first positioning surface 113.
  • the load 319B as the tightening force generated at the small diameter end 315 is the tightening force generated at the apex 314A. It is sufficiently smaller than the main load 319A.
  • the axial height position of the vertex 314A at the drive shaft 6 is substantially equal to the position of the center of gravity position 311G of the fixed scroll 31. Therefore, the bending moment around the center of gravity of the first circular base plate 311 is sufficiently small. As a result, the influence of the deformation of the first circular base plate 311 and the first spiral body 312 can be ignored small enough. Therefore, the effects according to the first embodiment can be obtained.
  • FIG. 13 is a fixed scroll 31 in a dashed dotted line area A in FIG. 1 for quantifying the shape change of the main shell 11 and the first circular base plate 311 of the fixed scroll 31 according to the second modification of the second embodiment of the present invention. It is a figure which shows the state after shrink-fitting.
  • FIG. 14 illustrates the shape change of the main shell 11 and the first circular base plate 311 of the fixed scroll 31 according to the second modification of the second embodiment of the present invention. The circumference of the figure shows the state after welding.
  • the mounting end 313, the annular protrusion 314 and the small diameter end 315 are provided on the mounting protrusion 316.
  • the small diameter end 315 is smaller in diameter than the mounting end 313.
  • the annular projection 314 is integrally provided with the mounting end 313 and the small diameter end 315.
  • a chevron arc region ta having an apex 314A is formed on the outer peripheral surface of the annular protrusion 314.
  • the apex 314A of the chevron arc region ta is located on the other end L between the small diameter end 315 and the placement end 313 rather than the center. That is, the chevron arc region ta is formed in a non-linear symmetric shape at the vertex 314A.
  • One end side U of the chevron arc region ta forms a gentle slope from the vertex 314 A to the small diameter end 315.
  • the point that the inclination angle ⁇ 2 is designed to be ⁇ 2 ⁇ ⁇ 1 is the same as that of the first modification of the second embodiment.
  • the second embodiment differs from the first modification of the second embodiment in that one end side U of the chevron arc region ta is formed in a gentle slope so as to contact the first inner wall surface portion 111 of the main shell 11.
  • the main load 319A as the clamping force of the apex 314A is the load 319C as the clamping force at the contact portion.
  • a maximum load distribution occurs.
  • the axial height position of the vertex 314A at the drive shaft 6 is substantially equal to the position of the gravity center position 311G of the fixed scroll 31. If the inclination angle ⁇ 2 can be designed so as to satisfy ⁇ 2 ⁇ ⁇ 1, the effect according to the first embodiment can be obtained.
  • the center of gravity position 311G of the fixed scroll 31 is in the range S of the inclined surface of the one end side U of the angular arc region ta by the way that the inclined surface of the one end side U of the angular arc region ta contacting the first inner wall surface portion 111 contacts.
  • the center of gravity position 311G of the fixed scroll 31 is in the range S of the inclined surface of the one end side U of the angular arc region ta by the way that the inclined surface of the one end side U of the angular arc region ta contacting the first inner wall surface portion 111 contacts.
  • the mounting end 313 and the annular protrusion 314 are integrally formed.
  • the annular protrusion 314 can be formed large integrally with the mounting end portion 313, and the strength of the annular protrusion 314 can be improved. As a result, the durability of the annular protrusion 314 can be improved.
  • the shell 1 has the upper shell 12 to which the first inner wall surface portion 111 of the main shell 11 is fixed and which closes the opening on the first inner wall surface portion 111 side of the main shell 11.
  • a load 319C as a tightening force which is a bending moment received by the small diameter end 315 of the fixed scroll 31 from the first inner wall surface 111 is fixed scroll.
  • the primary load 319A as a clamping force, which is a bending moment received by the annular projection 314 of 31 in contact with the first inner wall surface portion 111, is smaller.
  • the small diameter end portion 315 of the fixed scroll 31 contacts the first inner wall surface portion 111 after the circumference of the upper shell 12 is welded.
  • the bending moment which the small diameter end portion 315 receives from the first inner wall surface portion 111 is smaller.
  • the influence of the deformation of the first circular base plate 311 and the first spiral body 312 can be ignored small enough.
  • the small diameter end portion 315 contacts the first inner wall surface portion 111 to form the sealing surface 317B.
  • the seal area is increased, and the leakage of the refrigerant between the discharge space 91 and the suction space 92 can be prevented.
  • the bending moment generated due to the pressure distribution of the discharge pressure Pd occurring on the outer peripheral surface of the first circular base plate 311 of the fixed scroll 31 can be eliminated.
  • FIG. 15 is a dashed-dotted line in FIG. 1 where the circumference of the upper shell 12 according to the third embodiment of the present invention quantifies the shape change of the main shell 11 after welding and the first circular base plate 311 of the fixed scroll 31. It is an enlarged view showing field A.
  • the inclination angle is ⁇ 2> ⁇ 1 and ⁇ o> ⁇ 1L. Further, the placement end 313 and the small diameter end 315 do not contact the first inner wall surface 111 of the main shell 11. Then, only the annular protrusion 314 contacts the first inner wall surface portion 111 of the main shell 11.
  • the inclination angle is ⁇ 2 ⁇ ⁇ 1. Further, the mounting end 313 and the small diameter end 315 contact the first inner wall surface 111 of the main shell 11 together with the annular projection 314.
  • the placement end 313 of the placement protrusion 316 of the first circular base plate 311 contacts the first positioning surface 113 to form an annular seal surface 317O.
  • the mounting end 313 does not come in contact with the first inner wall surface 111. For this reason, the size of the seal width c1 is restricted.
  • the small diameter end portion 315 contacts the first inner wall surface portion 111. For this reason, there is a drawback that the circumference is easily influenced by the variation in the amount of shrinkage deformation of the main shell 11 after welding.
  • the first inner wall is also provided at mounting end 313 on the other end L than apex 314A.
  • the relationship of ⁇ o ⁇ ⁇ 1L is maintained so as to gently contact the surface portion 111. That is, the mounting end 313 and the annular projection 314 have the same outer diameter.
  • the annular projection 314 is provided by tapering the outer diameter of the mounting projection 316 from the small diameter end portion 315 in the middle.
  • the annular protrusion 314 is slightly reduced in diameter toward the other end L.
  • the mounting end portion 313 is gradually expanded to the same outer diameter as the annular protrusion 314 from the slightly diameter-reduced root on the other end L of the annular protrusion 314.
  • the amount of contraction and deformation of the main shell 11 after welding is smaller than that of the small diameter end 315, so that the influence of variations becomes difficult.
  • the annular protrusion 314 has an arc shape formed in a curved shape in the axial direction of the main shell 11, and contacts the first inner wall surface portion 111 near the apex 314A.
  • the annular protrusion 314 has a rectangular shape in cross section formed integrally with the placement protrusion 313 on the placement protrusion 316.
  • the placement end 313 is a corner on the other end L of the placement protrusion 316.
  • the rectangular section of the annular protrusion 314 reaching the placement end 313 is chamfered at the corner between the one end U and the other end L.
  • the mounting end portion 313 is chamfered at the corner portion and does not contact the first inner wall surface portion 111 of the main shell 11.
  • the annular protrusion 314 has a length ta between one end U and the other end L.
  • the outer peripheral portion of the annular protrusion 314 is formed in a circumferential surface having a uniform outer diameter in the contact range S. That is, the annular protrusion 314 is linearly formed between the one end U and the other end L in the axial direction of the main shell 11.
  • the contraction of the main shell 11 causes the first inner wall surface portion 111 to be inclined and deformed.
  • a vertex 314Ax which is a first contact point corresponding to a corner of the one end side U of the contact range S in the first inner wall surface portion 111, is also inclined and deformed.
  • a load distribution like the trapezoidal distribution shown in FIG. 7 occurs.
  • the main load acts in the range from the midpoint position (S / 2) of the contact range S to the one-end side U to S / 6.
  • the center-of-gravity position 311G of the first circular base plate 311 in the axial direction of the main shell 11 is within the range of the annular projection 314 and is closer to the one end U than the center of the annular projection 314 in the axial direction of the main shell 11. It is the small diameter end 317 side. As a result, the deformation of the fixed scroll 31 can be kept small.
  • the contact range S is sufficiently small, the bending moment acting on the outer peripheral surface of the mounting projection 316 of the fixed scroll 31 can be ignored. If the contact range S is 6% or less of the outermost diameter R1 of the fixed scroll 31, the bending moment becomes a load deflection level at the maximum load operation and can be sufficiently ignored.
  • the influence of variations in the amount of contraction and deformation of the main shell 11 after welding remains unchanged, the influence of the bending moment can be sufficiently reduced compared to the first embodiment, and according to the first embodiment. An effect is obtained.
  • FIG. 17 is an enlarged view showing a first circular base plate 311 of the fixed scroll 31 according to the first modification of the fourth embodiment of the present invention.
  • the first circular base plate 311 does not have the placement protrusion 316.
  • the fixed scroll 31 is formed with a mounting end 313, an annular protrusion 314 and a small diameter end 315.
  • the mounting end 313 and the annular protrusion 314 are integrally formed.
  • the annular protrusion 314 has the same shape as that of the mounting protrusion 316 of the fourth embodiment.
  • the small diameter end 315 is formed separately from the mounting end 313 and the annular protrusion 314.
  • FIG. 18 is an enlarged view showing a first circular base plate 311 of the fixed scroll 31 according to the second modification of the fourth embodiment of the present invention.
  • the annular protrusion 314 has a rectangular shape in cross section formed integrally with the placement protrusion 313 on the placement protrusion 316.
  • the rectangular section of the annular protrusion 314 is not chamfered at the corner between the one end U and the other end L.
  • the outer peripheral portion of the annular protrusion 314 is formed in a circumferential surface having a uniform outer diameter in a contact range S equal to the thickness.
  • FIG. 19 is an enlarged view showing a first circular base plate 311 of the fixed scroll 31 according to the third modification of the fourth embodiment of the present invention.
  • the annular protrusion 314 has a rectangular shape in cross section formed integrally with the placement protrusion 313 on the placement protrusion 316.
  • the rectangular section of the annular protrusion 314 is not chamfered at the corner between the one end U and the other end L.
  • the outer peripheral portion of the annular protrusion 314 is reduced in diameter toward the mounting end portion 313.
  • the mounting end 313 is smaller in diameter than the annular protrusion 314. For this reason, the placement end 313 does not contact the first inner wall surface portion 111 of the main shell 11.
  • the position at which the main load 319A works moves to the one end side U as the taper angle for reducing the diameter of the mounting end portion 313 increases.
  • the main load 319A can be considered to work at the annular projection 314. Therefore, if the position of the gravity center position 311G of the first circular base plate 311 matches the position of the annular projection 314, a large bending moment that bends the first circular base plate 311 and the first spiral body 312 does not work. As a result, a small deformation state of the fixed scroll 31 can be maintained.
  • the influence of the variation in the amount of contraction and deformation of the main shell 11 after welding remains, the influence of the bending moment is more sufficient than the first embodiment. It can be made smaller. Therefore, the effects according to the first embodiment can be obtained.
  • the annular protrusion 314 is formed linearly in the axial direction of the main shell 11.
  • the annular protrusion 314 widens the range in contact with the first inner wall surface portion 111 of the main shell 11 over the entire linear region. Therefore, stress concentration in the contact range can be avoided, and the durability of the first inner wall surface portion 111 of the main shell 11 can be improved.
  • the gravity center position 311G of the first circular base plate 311 of the fixed scroll 31 in the axial direction of the main shell 11 is within the range of the annular protrusion 314 and the axis of the main shell 11 of the annular protrusion 314 It is the small diameter end 317 side which is one end side U than the middle in the direction.
  • the deviation between the gravity center position 311G of the first circular base plate 311 and the gravity center position of the surface pressure load acts more on the outer peripheral surface of the first circular base plate 311 as a bending moment around the gravity center.
  • FIG. 20 is an enlarged view showing a first circular base plate 311 of the fixed scroll 31 according to Embodiment 5 of the present invention.
  • FIG. 21 is a dashed-dotted line in FIG. 1 where the circumference of the upper shell 12 according to the fifth embodiment of the present invention quantifies the shape change of the main shell 11 after welding and the first circular base plate 311 of the fixed scroll 31. It is an enlarged view showing field A.
  • the placement end 313, the annular protrusion 314, and the small diameter end 315 are provided on the placement protrusion 316.
  • the small diameter end portion 315 is formed to have the small diameter projection 315A on the mounting projection 316.
  • the small diameter projection 315A annularly protrudes from the small diameter end 315 radially outward.
  • the small diameter end portion 315 is formed larger in diameter than the mounting end portion 313.
  • the annular protrusion 314 annularly protrudes radially outward from the mounting protrusion 316.
  • the annular projection 314 is formed larger in diameter than the small diameter projection 315A of the small diameter end portion 315.
  • the annular projection 314 is provided separately from the mounting end 313.
  • the mounting end 313 is formed at the corner of the mounting protrusion 316 itself.
  • the mounting end 313 has a smaller diameter than the small diameter end 315 having the small diameter projection 315A. For this reason, the placement end 313 does not contact the first inner wall surface portion 111 of the main shell 11.
  • the outer peripheral portion of the annular protrusion 314 is formed in the shape of a circumferential surface having a uniform outer diameter. Moreover, the outer peripheral part of the small diameter end part 315 is formed in the circumferential surface form with uniform outer diameter. Between the outer peripheral portion of the annular protrusion 314 and the outer peripheral portion of the small diameter end portion 315, a recessed portion 318 having a step is formed. The axial height position of the annular protrusion 314 on the drive shaft 6 is substantially the same as the gravity center position 311 G of the fixed scroll 31.
  • the annular protrusion 314 contacts the first inner wall surface portion 111 of the main shell 11. For this reason, the amount of deformation of the first inner wall surface portion 111 of the main shell 11 is in a small state. Furthermore, when the circumference of the upper shell 12 is welded, the small diameter end portion 315 also contacts the first inner wall surface portion 111 of the main shell 11 together with the annular projection 314.
  • a main load 319A caused by the contraction of the main shell 11 acts on the annular protrusion 314.
  • the load 319 B acts on the small diameter end 315.
  • the load 319B is a smaller load than the main load 319A.
  • the first inner wall surface portion 111 is inclined and deformed.
  • the annular protrusion 314 is deformed in an inclined manner.
  • the main load 319A acts on the contact range s of the annular protrusion 314 within the axial range on the drive shaft 6 from the middle point (s / 2) position of the annular protrusion 314 to one end side U to s / 6. Therefore, if the position of the gravity center position 311G of the first circular base plate 311 is within this range, a large bending moment does not act on the first circular base plate 311 and the first spiral body 312. As a result, the deformation of the fixed scroll 31 is small.
  • the contact range s is sufficiently small, the bending moment can be ignored. If the contact range s is 6% or less of the outermost diameter R1 of the annular projection 314, the bending moment becomes the load deflection level at the maximum load operation and can be sufficiently ignored.
  • the influence of the bending moment can be sufficiently reduced, although the influence of the variation of the amount of contraction and deformation of the main shell 11 after welding remains, as compared with the first embodiment. Thereby, the effect according to the first embodiment can be obtained.
  • the small diameter end 315 has a small diameter projection 315A that protrudes radially outward.
  • the bending moment received by the small diameter end 315 having the small diameter projection 315A from the first inner wall surface portion 111 is smaller than the bending moment received by the annular projection 314 in contact with the first inner wall surface portion 111 or zero. is there.
  • the influence of the deformation of the first circular base plate 311 and the first spiral body 312 can be ignored small enough.
  • the small diameter protrusion 315A is in contact with the first inner wall surface portion 111 of the main shell 11. Therefore, the small diameter protrusion 315A receives a bending moment smaller than the bending moment received by the annular protrusion 314 of the fixed scroll 31 in contact with the first inner wall surface portion 111.
  • the small diameter projection 315A may not be in contact with the first inner wall surface portion 111 of the main shell 11.
  • the vertical scroll compressor has been described.
  • the present invention can also be applied to a horizontal scroll compressor in which the drive shaft extends in the horizontal direction.
  • the side on which the compression mechanism portion is provided can be defined as one end side and the side on which the drive mechanism portion is provided can be defined as the other end side with reference to the main frame.
  • the present invention can also be applied to a high pressure shell type scroll compressor in which the pressure of the space in the main shell in which the drive mechanism is disposed is higher than the pressure of the refrigerant intake space.
  • the main shell is not limited to a cylindrical shape.
  • the main shell may be, for example, a polygonal cylinder such as a hexagonal cylinder and a pentagonal cylinder.
  • the scroll body and the like can be designed as conventionally by the effect that the refrigerant intake space between the circular base plate of the fixed scroll in the main shell and the thrust bearing of the main frame can be expanded more than before.
  • the diameters of the circular base plate and thrust plate of the oscillating scroll can be increased.
  • the sliding area between the circular base plate of the oscillating scroll and the thrust plate is increased, and the thrust load can be reduced.
  • it is not limited to this.
  • the weight is increased and the centrifugal force by the rocking motion of the rocking scroll is increased. Therefore, it is necessary to increase the volume and weight of the weight portion of the balance weight to offset the centrifugal force.
  • the present invention there is no wall for bolting in the main frame, and the design freedom of the main frame is enhanced. For this reason, the accommodation space of the main-body part of a mainframe can be ensured large. As the accommodation space is increased, a balance weight having a large volume weight portion can be used. Therefore, the centrifugal force of the oscillating scroll is offset, and the radial load acting on the second scroll of the oscillating scroll can be reduced. Therefore, the reliability of the rocking scroll can be improved, and the sliding loss between the second scroll of the rocking scroll and the first scroll of the fixed scroll can be reduced.
  • the size of the oscillating scroll may be used as it is, and the shell, that is, the main shell or the upper shell may have an inner diameter smaller than that of the conventional one.
  • the shell that is, the main shell or the upper shell may have an inner diameter smaller than that of the conventional one.
  • the first protrusion and the first positioning surface may adopt various shapes or manufacturing methods as long as they can position the fixed scroll with high accuracy.
  • the first protrusion only needs to be able to position the fixed scroll.
  • the first protrusion may be configured by at least two or more protrusions formed on the inner wall surface of the main shell.
  • the first protrusion may form the first protrusion by tapping from the outside of the main shell.
  • a convex portion may be formed on the first positioning surface, a fixed scroll concave portion may be formed, and rotation of the fixed scroll with respect to the main shell may be suppressed by fitting the convex portion and the concave portion.
  • the convex portion or concave portion formed on the thrust plate and the projecting wall portion protrudes in the direction of the projecting wall portion on the thrust plate to form a pair of projecting portions, and also forms a notch on the projecting wall. And a pair of projection may be arranged at a notch.
  • the thrust plate is not essential.
  • the flat surface of the main frame may be configured to slide with the oscillating scroll.
  • a second convex portion or first concave portion engaged with the first convex portion or the first concave portion in the direction along the central axis of the drive shaft, and the first convex portion or the first concave portion in the main frame and fixed scroll in the inner wall surface of the main shell You may form 2 convex parts. Thereby, the phases of the first scroll of the fixed scroll and the second scroll of the oscillating scroll are matched. Therefore, the process of adjusting the phase by rotating the fixed scroll with respect to the oscillating scroll can be omitted.
  • FIG. 22 is a refrigerant circuit diagram showing a refrigeration cycle apparatus 200 to which the scroll compressor 100 according to Embodiment 6 of the present invention is applied.
  • the refrigeration cycle apparatus 200 includes a scroll compressor 100, a condenser 201, an expansion valve 202 and an evaporator 203.
  • the scroll compressor 100, the condenser 201, the expansion valve 202, and the evaporator 203 are connected by refrigerant pipes to form a refrigeration cycle circuit. Then, the refrigerant flowing out of the evaporator 203 is drawn into the scroll compressor 100 and becomes high temperature and high pressure. The high temperature and pressure refrigerant is condensed in the condenser 201 to become a liquid.
  • the refrigerant that has become a liquid is decompressed and expanded by the expansion valve 202 and becomes a low-temperature low-pressure gas-liquid two phase, and the gas-liquid two-phase refrigerant is heat-exchanged in the evaporator 203.
  • the scroll compressor 100 according to the first to fifth embodiments can be applied to such a refrigeration cycle apparatus 200.
  • refrigeration cycle apparatus 200 an air conditioning apparatus, a freezing apparatus, a water heater, etc. are mentioned, for example.
  • the refrigeration cycle apparatus 200 includes the scroll compressor 100 described in the above first to fifth embodiments.
  • the fixed scroll 31 in the refrigeration cycle apparatus 200 including the scroll compressor 100, the fixed scroll 31 can be disposed with high position accuracy in the shell 1, and the first spiral body 312 of the fixed scroll 31 and the second spiral of the oscillating scroll 32
  • the tooth tips of the body 322 are configured to be in an appropriate positional relationship.
  • Reference Signs List 1 shell, 2 main frame, 3 compression mechanism portion, 4 drive mechanism portion, 5 sub frame, 6 drive shaft, 7 bush, 8 power feed portion, 11 main shell, 12 upper shell, 13 lower shell, 14 suction pipe, 15 discharge pipe , 17 fixed base, 21 main body part, 22 main bearing part, 23 oil return pipe, 24 thrust plate, 31 fixed scroll, 32 rocking scroll, 33 oldham ring, 34 compression chamber, 35 muffler, 36 discharge valve, 41 stator, 42 Rotor 51 sub bearing portion 52 oil pump 61 main shaft portion 62 eccentric shaft portion 63 oil passage 64 first balancer 65 second balancer 71 slider 72 balance weight 81 cover 82 feeding terminal 83 Wiring, 91 discharge space, 92 suction space, 00 scroll compressor, 110 end portion, 111 first inner wall surface portion, 112 first projecting portion, 113 first positioning surface, 114 second projecting portion, 115 second positioning surface, 121 welding portion, 200 refrigeration cycle device, 201 condensation , 202 expansion valve, 203 evaporator, 211 accommodation space, 212 flat

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Rotary Pumps (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

This scroll compressor is provided with: a frame which slidably retains an orbiting scroll; a fixed scroll which together with the orbiting scroll forms a compression chamber; and a shell which fixes the fixed scroll separately from the frame; wherein the shell includes a cylindrical main shell containing a thick-walled portion and a thin-walled portion formed with a thin wall and having an inner diameter greater than that of the thick-walled portion, and the fixed scroll includes a placement end portion which is placed on a boundary part of the thick-walled portion and the thin-walled portion, an annular protrusion which has a large diameter at least equal to that of the placement end portion and is in contact with an inner wall portion of the thin-walled portion, and a small-diameter end portion which is on the opposite side to the placement end portion, across the annular protrusion, and has a smaller diameter than the annular protrusion.

Description

スクロール圧縮機および冷凍サイクル装置Scroll compressor and refrigeration cycle apparatus
 本発明は、シェルに固定スクロールをフレームとは別々に固定するスクロール圧縮機および冷凍サイクル装置に関する。 The present invention relates to a scroll compressor and a refrigeration cycle apparatus in which a fixed scroll is fixed to a shell separately from a frame.
 スクロール圧縮機は、たとえば、特許文献1、2に開示されたものが知られている。特許文献1、2のスクロール圧縮機では、シェルに固定されるフレームに揺動スクロールが支持される。そして、固定スクロールが揺動スクロールに対向して設けられる。揺動スクロールには、回転軸とドライビングシャフトとを有する駆動軸が取り付けられる。駆動軸が回転することにより、揺動スクロールが固定スクロールに対して公転旋回する。この公転旋回により、揺動スクロールと固定スクロールとで形成される圧縮室で冷媒が圧縮される。 As the scroll compressor, for example, those disclosed in Patent Documents 1 and 2 are known. In the scroll compressors of Patent Documents 1 and 2, the oscillating scroll is supported by a frame fixed to the shell. A fixed scroll is provided opposite to the oscillating scroll. A drive shaft having a rotating shaft and a driving shaft is attached to the oscillating scroll. As the drive shaft rotates, the oscillating scroll revolves with respect to the fixed scroll. Due to this revolution, the refrigerant is compressed in the compression chamber formed by the swing scroll and the fixed scroll.
特開平2-5779号公報Japanese Patent Application Laid-Open No. 2-5779 特開2009-243363号公報JP, 2009-243363, A
 スクロール圧縮機では、固定スクロールと揺動スクロールとの間に、冷媒を圧縮する圧縮室が形成される。そのため、揺動スクロールに対する固定スクロールの位置精度が重要である。 In the scroll compressor, a compression chamber for compressing the refrigerant is formed between the fixed scroll and the oscillating scroll. Therefore, the positional accuracy of the fixed scroll with respect to the oscillating scroll is important.
 特許文献1のスクロール圧縮機では、フレームの外周壁部が固定スクロールの方向に延出され、外周壁部の先端にて固定スクロールがボルトなどにより固定される。このように、固定スクロールがフレームに固定されることにより、位置精度が確保される。 In the scroll compressor of Patent Document 1, the outer peripheral wall portion of the frame extends in the direction of the fixed scroll, and the fixed scroll is fixed by a bolt or the like at the tip of the outer peripheral wall portion. In this manner, by fixing the fixed scroll to the frame, positional accuracy is secured.
 しかしながら、近年、地球温暖化対策として、低密度で動作する低GWP冷媒などの導入が検討されている。このような冷媒で従来のHFC冷媒と同等の能力を確保するために、シェルを同一サイズのままで、圧縮室の排除容積を拡大することが課題となっている。 However, in recent years, the introduction of a low GWP refrigerant or the like operating at low density has been considered as a measure against global warming. In order to secure the same capacity as conventional HFC refrigerants with such refrigerants, it is an issue to expand the displacement volume of the compression chamber while keeping the shell the same size.
 ここで、特許文献1のスクロール圧縮機では、メインシェルの上端部がアッパーシェルに円周が溶接されると、メインシェルの上端部の内径が1%から2%程度収縮する。そして、焼嵌めなどによりメインシェルの内壁部に固定された固定スクロールの円形台板の外周面部に、下端部から上端部に向かって大きくなる面圧分布が生じ、円形台板の中心部を下方に凹ませるように曲げるモーメントが働く。その結果、円形台板およびこの下側に形成される渦巻体が変形する。それにより、固定スクロールの渦巻体と揺動スクロールの渦巻体との歯先同士が接触してしまう。そして、スクロール圧縮機の耐久性および信頼性が低下する問題が生じる。 Here, in the scroll compressor of Patent Document 1, when the upper end portion of the main shell is welded to the upper shell, the inner diameter of the upper end portion of the main shell shrinks by about 1% to 2%. Then, on the outer peripheral surface of the circular base plate of the fixed scroll fixed to the inner wall of the main shell by shrink fitting or the like, a surface pressure distribution that increases from the lower end to the upper end occurs. Bending moment works to make it dent. As a result, the circular base plate and the scroll formed on the lower side are deformed. As a result, the tips of the scroll of the fixed scroll and the scroll of the oscillating scroll contact with each other. And the problem that durability and reliability of a scroll compressor fall will arise.
 また、特許文献2のスクロール圧縮機では、メインシェルの上端部がアッパーシェルに円周が溶接されると、メインシェルの上端部の内径が1%から2%程度収縮する。そして、焼嵌めなどによりアッパーシェルの内壁部に固定される固定スクロールの円形台板の外周面部に、上端部から下端部に向かって大きくなる面圧分布が生じ、円形台板の中心部を上方に凸型にするように曲げるモーメントが働く。その結果、円形台板およびこの下側に形成される渦巻体が変形する。固定スクロールの渦巻体と揺動スクロールの渦巻体との歯先同士の隙間が大きくなってしまう。そして、スクロール圧縮機の漏れ損失が増加し、圧縮機効率が低下する問題が生じる。 In the scroll compressor of Patent Document 2, when the upper end of the main shell is welded to the upper shell, the inner diameter of the upper end of the main shell shrinks by about 1% to 2%. Then, a surface pressure distribution that increases from the upper end to the lower end is generated on the outer peripheral surface of the circular base plate of the fixed scroll fixed to the inner wall of the upper shell by shrink fitting or the like. Bending moment works to make it convex. As a result, the circular base plate and the scroll formed on the lower side are deformed. The clearance between the tips of the fixed scroll scroll and the scroll scroll scroll increases. Then, the leakage loss of the scroll compressor increases, which causes a problem of a reduction in the compressor efficiency.
 本発明は、上記課題を解決するためのものであり、固定スクロールがシェル内に位置精度良く配置でき、固定スクロールの渦巻体と揺動スクロールの渦巻体との歯先同士が適切な位置関係になるように構成されるスクロール圧縮機および冷凍サイクル装置を提供することを目的とする。 The present invention is intended to solve the above problems, and the fixed scroll can be disposed within the shell with high positional accuracy, and the tips of the scroll of the fixed scroll and the scroll of the oscillating scroll have an appropriate positional relationship. It is an object of the present invention to provide a scroll compressor and a refrigeration cycle apparatus configured to be.
 本発明に係るスクロール圧縮機は、揺動スクロールを摺動自在に保持するフレームと、前記揺動スクロールとともに圧縮室を形成する固定スクロールと、前記固定スクロールを前記フレームとは別々に固定するシェルと、を備え、前記シェルは、厚肉部と前記厚肉部より内径が大きい薄肉に形成される薄肉部とを含んだ筒状のメインシェルを有し、前記固定スクロールは、前記厚肉部と前記薄肉部との境界部分に載置される載置端部と、前記載置端部以上に大径であって前記薄肉部に接触する環状突起と、前記載置端部とは前記環状突起を介する反対側にて前記環状突起よりも小径である小径端部と、を有するものである。 A scroll compressor according to the present invention comprises a frame slidably holding an oscillating scroll, a fixed scroll forming a compression chamber together with the oscillating scroll, and a shell fixing the fixed scroll separately from the frame. And the shell includes a cylindrical main shell including a thick portion and a thin portion formed to be thinner than the thick portion, and the fixed scroll includes the thick portion and the thick portion. The mounting end placed at the boundary with the thin portion, the annular protrusion larger in diameter than the mounting end and contacting the thin portion, and the mounting end being the annular protrusion And a small diameter end smaller in diameter than the annular projection on the opposite side of
 本発明に係る冷凍サイクル装置は、上記のスクロール圧縮機を備えるものである。 A refrigeration cycle apparatus according to the present invention includes the above-described scroll compressor.
 本発明に係るスクロール圧縮機および冷凍サイクル装置によれば、固定スクロールは、厚肉部と薄肉部との境界部分に載置される載置端部と、載置端部以上に大径であって薄肉部に接触する環状突起と、載置端部とは環状突起を介した反対側にて環状突起よりも小径である小径端部と、を有する。ここで、メインシェルの薄肉部の端部が端部シェルに円周が溶接されると、メインシェルの薄肉部の端部の内径が1%から2%程度収縮する。そのとき、固定スクロールが小径端部を有するので、小径端部が収縮した薄肉部の端部から受ける曲げモーメントが小さくできる。その結果、焼嵌めなどによりメインシェルの内壁部に固定された固定スクロールでは、外周面に、載置端部側から小径端部側に向かって大きくなる面圧分布が生じず、円形台板の中心を下方に凹ませるように曲げるモーメントが働かない。したがって、固定スクロールがシェル内に位置精度良く配置でき、固定スクロールの渦巻体と揺動スクロールの渦巻体との歯先同士が適切な位置関係になるように構成される。 According to the scroll compressor and the refrigeration cycle device according to the present invention, the fixed scroll has a mounting end portion mounted at the boundary between the thick portion and the thin portion, and a larger diameter than the mounting end portion. And a small diameter end which is smaller in diameter than the annular projection on the opposite side of the placement end from the annular projection. Here, when the end of the thin portion of the main shell is welded to the end shell, the inner diameter of the end of the thin portion of the main shell shrinks by about 1% to 2%. At that time, since the fixed scroll has the small diameter end, the bending moment received from the end of the thin portion where the small diameter end is contracted can be reduced. As a result, in the fixed scroll fixed to the inner wall of the main shell by shrink fitting or the like, a surface pressure distribution that increases from the mounting end toward the small diameter end does not occur on the outer peripheral surface. There is no bending moment that causes the center to be depressed downward. Therefore, the fixed scroll can be disposed within the shell with high positional accuracy, and the tips of the scroll of the fixed scroll and the scroll of the oscillating scroll have an appropriate positional relationship.
本発明の実施の形態1に係るスクロール圧縮機の縦断面を示す説明図である。It is explanatory drawing which shows the longitudinal cross-section of the scroll compressor which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係るスクロール圧縮機のメインフレームの周辺構造を示す分解斜視図である。It is a disassembled perspective view which shows the periphery structure of the main frame of the scroll compressor which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係るアッパーシェルの円周が溶接後のメインシェルと固定スクロールの円形台板との形状変化を定量化する図1の一点鎖線領域Aを示す拡大図である。It is an enlarged view which shows the dashed-dotted line area | region A of FIG. 1 whose circumference of the upper shell which concerns on Embodiment 1 of this invention quantifys the shape change of the main shell after welding, and the circular base plate of a fixed scroll. 本発明の実施の形態1に係るメインシェルの壁面部を縦断面で示す説明図である。It is explanatory drawing which shows the wall surface part of the main shell which concerns on Embodiment 1 of this invention by a longitudinal cross-section. 比較例でのアッパーシェルの円周が溶接後のメインシェルと固定スクロールの円形台板との形状変化に関して測定範囲を示す説明図である。The circumference of the upper shell in a comparative example is an explanatory view showing the measurement range about the shape change of the main shell after welding, and the circular base plate of a fixed scroll. 比較例でのアッパーシェルの円周が溶接後のメインシェルと固定スクロールの円形台板との形状変化に関してシェル形状の変化量を示す図である。It is a figure which shows the variation | change_quantity of a shell shape regarding the circumference of the upper shell in a comparative example regarding the shape change of the main shell after welding, and the circular base plate of a fixed scroll. 比較例でのアッパーシェルの円周が溶接後のメインシェルと固定スクロールの円形台板との形状変化に関して円形台板外周面の面圧を示す図である。The circumference of the upper shell in a comparative example is a figure showing the surface pressure of a circular base plate peripheral face regarding the shape change of the main shell after welding, and the circular base plate of a fixed scroll. 本発明の実施の形態1に係るおけるアッパーシェルの円周が溶接後のメインシェルと固定スクロールの円形台板との形状変化に関して測定範囲を示す説明図である。It is explanatory drawing which shows the measurement range regarding the circumference of the upper shell in Embodiment 1 of this invention regarding the shape change of the main shell after welding, and the circular base plate of a fixed scroll. 本発明の実施の形態1に係るおけるアッパーシェルの円周が溶接後のメインシェルと固定スクロールの円形台板との形状変化に関してシェル形状の変化量を示す図である。It is a figure which shows the variation | change_quantity of a shell shape regarding the circumference of the upper shell which concerns on Embodiment 1 of this invention regarding the shape change of the main shell after welding and the circular base plate of a fixed scroll. 本発明の実施の形態2に係るアッパーシェルの円周が溶接後のメインシェルと固定スクロールの円形台板との形状変化を定量化する図1の一点鎖線領域Aを示す拡大図である。It is an enlarged view which shows the dashed-dotted line area | region A of FIG. 1 with which the circumference of the upper shell which concerns on Embodiment 2 of this invention quantifys the shape change of the main shell after welding, and the circular base plate of a fixed scroll. 本発明の実施の形態2の変形例1に係るメインシェルと固定スクロールの円形台板との形状変化を定量化する図1の一点鎖線領域Aで固定スクロールの焼嵌め後の状態を示す図である。The figure which shows the state after shrinkage-fitting of a fixed scroll in the dashed-dotted line area | region A of FIG. 1 which quantifies the shape change of the main shell concerning the modification 1 of Embodiment 2 of this invention, and the circular base plate of a fixed scroll. is there. 本発明の実施の形態2の変形例1に係るメインシェルと固定スクロールの円形台板との形状変化を定量化する図1の一点鎖線領域Aでアッパーシェルの円周が溶接後の状態を示す図である。Quantifying the shape change of the main shell and the circular base plate of the fixed scroll according to the first modification of the second embodiment of the present invention FIG. 本発明の実施の形態2の変形例2に係るメインシェルと固定スクロールの円形台板との形状変化を定量化する図1の一点鎖線領域Aで固定スクロールの焼嵌め後の状態を示す図である。The figure which shows the state after shrinkage-fitting of a fixed scroll in the dashed-dotted line area | region A of FIG. 1 which quantifies the shape change of the main shell which concerns on the modification 2 of Embodiment 2 of this invention, and the circular base plate of a fixed scroll is there. 本発明の実施の形態2の変形例2に係るメインシェルと固定スクロールの円形台板との形状変化を定量化する図1の一点鎖線領域Aでアッパーシェルの円周が溶接後の状態を示す図である。Quantifying the shape change of the main shell and the circular base plate of the fixed scroll according to the modification 2 of the embodiment 2 of the present invention FIG. 本発明の実施の形態3に係るアッパーシェルの円周が溶接後のメインシェルと固定スクロールの円形台板との形状変化を定量化する図1の一点鎖線領域Aを示す拡大図である。It is an enlarged view which shows the dashed-dotted line area | region A of FIG. 1 with which the circumference of the upper shell which concerns on Embodiment 3 of this invention quantifys the shape change of the main shell after welding, and the circular base plate of a fixed scroll. 本発明の実施の形態4に係るアッパーシェルの円周が溶接後のメインシェルと固定スクロールの円形台板との形状変化を定量化する図1の一点鎖線領域Aを示す拡大図である。It is an enlarged view which shows the dashed-dotted line area | region A of FIG. 1 with which the circumference of the upper shell which concerns on Embodiment 4 of this invention quantifies the shape change of the main shell after welding, and the circular base plate of a fixed scroll. 本発明の実施の形態4の変形例1に係る固定スクロールの円形台板を示す拡大図である。It is an enlarged view which shows the circular base plate of the fixed scroll which concerns on the modification 1 of Embodiment 4 of this invention. 本発明の実施の形態4の変形例2に係る固定スクロールの円形台板を示す拡大図である。It is an enlarged view which shows the circular base plate of the fixed scroll which concerns on the modification 2 of Embodiment 4 of this invention. 本発明の実施の形態4の変形例3に係る固定スクロールの円形台板を示す拡大図である。It is an enlarged view which shows the circular base plate of the fixed scroll which concerns on the modification 3 of Embodiment 4 of this invention. 本発明の実施の形態5に係る固定スクロールの円形台板を示す拡大図である。It is an enlarged view which shows the circular-shaped board of the fixed scroll which concerns on Embodiment 5 of this invention. 本発明の実施の形態5に係るアッパーシェルの円周が溶接後のメインシェルと固定スクロールの円形台板との形状変化を定量化する図1の一点鎖線領域Aを示す拡大図である。It is an enlarged view which shows the dashed-dotted line area | region A of FIG. 1 with which the circumference of the upper shell which concerns on Embodiment 5 of this invention quantifys the shape change of the main shell after welding, and the circular base plate of a fixed scroll. 本発明の実施の形態6に係るスクロール圧縮機を適用した冷凍サイクル装置を示す冷媒回路図である。It is a refrigerant circuit figure showing the frozen cycle device to which the scroll compressor concerning Embodiment 6 of the present invention is applied.
 以下、図面に基づいて本発明の実施の形態について説明する。なお、各図において、同一の符号を付したものは、同一のまたはこれに相当するものであり、これは明細書の全文において共通している。さらに、明細書全文に示す構成要素の形態は、あくまで例示であってこれらの記載に限定されるものではない。 Hereinafter, embodiments of the present invention will be described based on the drawings. In the drawings, the same reference numerals denote the same or corresponding parts, which are common to the whole text of the specification. Furthermore, the form of the component shown in the specification full text is an illustration to the last, and is not limited to these descriptions.
実施の形態1.
<スクロール圧縮機の全体構成>
 図1は、本発明の実施の形態1に係るスクロール圧縮機100の縦断面を示す説明図である。図2は、本発明の実施の形態1に係るスクロール圧縮機100のメインフレーム2の周辺構造を示す分解斜視図である。
Embodiment 1
<Overall Configuration of Scroll Compressor>
FIG. 1 is an explanatory view showing a longitudinal cross section of a scroll compressor 100 according to a first embodiment of the present invention. FIG. 2 is an exploded perspective view showing the peripheral structure of the main frame 2 of the scroll compressor 100 according to Embodiment 1 of the present invention.
 図1に示すスクロール圧縮機100は、回転軸およびドライビングシャフトを有する駆動軸6の中心軸が地面に対して概略垂直の状態で使用される、いわゆる縦型のスクロール圧縮機である。 The scroll compressor 100 shown in FIG. 1 is a so-called vertical scroll compressor in which a central axis of a drive shaft 6 having a rotation shaft and a driving shaft is substantially perpendicular to the ground.
 スクロール圧縮機100は、シェル1と、メインフレーム2と、圧縮機構部3と、駆動機構部4と、サブフレーム5と、駆動軸6と、ブッシュ7と、給電部8と、を備える。以下では、メインフレーム2を基準として、圧縮機構部3が設けられている上側を一端側U、駆動機構部4が設けられている下側を他端側Lと方向付けて説明する。 The scroll compressor 100 includes a shell 1, a main frame 2, a compression mechanism portion 3, a drive mechanism portion 4, a sub frame 5, a drive shaft 6, a bush 7, and a power feeding portion 8. In the following, with reference to the main frame 2, the upper side where the compression mechanism portion 3 is provided is directed to the one end side U, and the lower side where the drive mechanism portion 4 is provided as the other end side L.
 シェル1は、金属などの導電性部材からなる両端が閉塞された筒状の筐体となる密閉容器である。シェルは、メインシェル11と、端部シェルとしてのアッパーシェル12と、ロアシェル13と、を備える。 The shell 1 is a sealed container which is a cylindrical casing made of a conductive member such as metal and closed at both ends. The shell includes a main shell 11, an upper shell 12 as an end shell, and a lower shell 13.
 メインシェル11は、軸方向に延びる円筒状である。メインシェル11には、吸入管14が溶接により接続される。吸入管14は、冷媒をシェル1内に導入する管であり、メインシェル11内と連通する。 The main shell 11 has a cylindrical shape extending in the axial direction. The suction pipe 14 is connected to the main shell 11 by welding. The suction pipe 14 is a pipe for introducing the refrigerant into the shell 1 and communicates with the inside of the main shell 11.
 アッパーシェル12は、略半球状の端部シェルである。アッパーシェル12の側壁部の一部は、メインシェル11の一端側Uの端部に円周が溶接されることにより接合される。これにより、メインシェル11の一端側Uは、アッパーシェル12に固定される。そして、アッパーシェル12は、メインシェル11の一端側Uの開口を塞ぐ。 Upper shell 12 is a substantially hemispherical end shell. A part of the side wall portion of the upper shell 12 is joined to the end of the one end side U of the main shell 11 by welding the circumference. Thereby, one end side U of the main shell 11 is fixed to the upper shell 12. The upper shell 12 closes the opening at one end side U of the main shell 11.
 アッパーシェル12の上部には、吐出管15が溶接により接続される。吐出管15は、冷媒をシェル1外に吐出する管である。吐出管15は、メインシェル11内の吐出空間91と連通する。 The discharge pipe 15 is connected to the upper portion of the upper shell 12 by welding. The discharge pipe 15 is a pipe that discharges the refrigerant to the outside of the shell 1. The discharge pipe 15 communicates with the discharge space 91 in the main shell 11.
 ロアシェル13は、略半球状の端部シェルである。ロアシェル13は、アッパーシェル12と同様にメインシェル11に接合される。 The lower shell 13 is a substantially hemispherical end shell. The lower shell 13 is joined to the main shell 11 in the same manner as the upper shell 12.
 シェル1は、複数のボルト穴を備える固定台17によって支持される。固定台17には、複数のボルト穴が形成される。それらのボルト穴には、ボルトが差し込まれることにより、スクロール圧縮機100が空気調和装置の室外機の筐体といった他の部材に固定される。 The shell 1 is supported by a fixed base 17 provided with a plurality of bolt holes. The fixing base 17 is formed with a plurality of bolt holes. By inserting bolts into these bolt holes, the scroll compressor 100 is fixed to another member such as the casing of the outdoor unit of the air conditioner.
 メインフレーム2は、シェル1内に収容される。メインフレーム2は、中央に空洞の形成される中空な金属製のフレームである。メインフレーム2は、本体部21と、主軸受部22と、返油管23と、を備える。 Main frame 2 is accommodated in shell 1. The main frame 2 is a hollow metal frame in which a cavity is formed in the center. The main frame 2 includes a main body portion 21, a main bearing portion 22, and an oil return pipe 23.
 本体部21は、メインシェル11の一端側Uの第1突出部112に固定される。本体部21の中央には、駆動軸6の中心軸の延長方向と同一なシェル1の長手方向に沿って収容空間211が形成される。収容空間211の一端側Uは、開口する。収容空間211は、一端側Uから他端側Lに向かって内部空間が狭くなる段差状に形成される。 The main body portion 21 is fixed to the first projecting portion 112 on the one end side U of the main shell 11. An accommodation space 211 is formed at the center of the main body 21 along the longitudinal direction of the shell 1 which is the same as the extension direction of the central axis of the drive shaft 6. One end side U of the accommodation space 211 is open. The accommodation space 211 is formed in a step-like shape in which the internal space narrows from one end U to the other end L.
 本体部21の一端側Uには、収容空間211を囲む環状の平坦面212が形成される。平坦面212には、バルブ鋼などの鋼板系材料からなるリング状のスラストプレート24が配置される。スラストプレート24は、スラスト軸受として機能する。 An annular flat surface 212 surrounding the housing space 211 is formed on one end side U of the main body 21. On the flat surface 212, a ring-shaped thrust plate 24 made of a steel plate material such as valve steel is disposed. The thrust plate 24 functions as a thrust bearing.
 平坦面212の外端側のスラストプレート24と重ならない位置には、吸入ポート213が形成される。吸入ポート213は、本体部21の上下方向、すなわち本体部21を一端側Uと他端側Lとに貫通する空間である。なお、吸入ポート213は、一つに限らず、複数形成されても良い。 A suction port 213 is formed at a position not overlapping the thrust plate 24 on the outer end side of the flat surface 212. The suction port 213 is a space which penetrates the main body 21 in the vertical direction, that is, the main body 21 between the one end U and the other end L. The number of suction ports 213 is not limited to one, and a plurality of suction ports may be formed.
 メインフレーム2の平坦面212よりも他端側Lの段差部分には、オルダム収容部214が形成される。オルダム収容部214には、一対の第1オルダム溝215が形成される。第1オルダム溝215は、外端側の一部が平坦面212の内端側を削るように形成される。そのため、メインフレーム2を一端側Uから見たときに、第1オルダム溝215の一部は、スラストプレート24と重なる。一対の第1オルダム溝215は、対向して形成される。 An oldham housing portion 214 is formed on the step portion on the other end L side of the flat surface 212 of the main frame 2. A pair of first oldham grooves 215 is formed in the oldham housing portion 214. The first Oldham groove 215 is formed such that a part on the outer end side cuts the inner end side of the flat surface 212. Therefore, when the main frame 2 is viewed from one end side U, a part of the first Oldham groove 215 overlaps the thrust plate 24. The pair of first Oldham grooves 215 are formed to face each other.
 主軸受部22は、本体部21の他端側Lに連続して形成される。主軸受部22の内部には、軸孔221が形成される。軸孔221は、主軸受部22の上下方向に貫通し、一端側Uで収容空間211と連通する。 The main bearing portion 22 is continuously formed on the other end side L of the main body portion 21. In the inside of the main bearing portion 22, an axial hole 221 is formed. The axial hole 221 penetrates in the vertical direction of the main bearing portion 22 and communicates with the accommodation space 211 at one end side U.
 返油管23は、収容空間211に溜まる潤滑油をロアシェル13の内側の油溜めに戻す管である。返油管23は、メインフレーム2の内外に貫通して形成される排油孔に挿入固定される。 The oil return pipe 23 is a pipe that returns the lubricating oil accumulated in the housing space 211 to an oil sump inside the lower shell 13. The oil return pipe 23 is inserted and fixed in an oil drain hole formed to penetrate the inside and the outside of the main frame 2.
 潤滑油は、たとえば、エステル系合成油を含む冷凍機油である。潤滑油は、シェル1の下部、すなわちロアシェル13内に貯留される。貯留される潤滑油は、後述するオイルポンプ52によって吸い上げられ、駆動軸6内の通油路63を通り、圧縮機構部3などの機械的に接触する部品同士の摩耗を低減し、摺動部の温度を調節し、シール性を改善する。潤滑油としては、潤滑特性、電気絶縁性、安定性、冷媒溶解性、低温流動性などに優れるとともに、適度な粘度を有する油を用いることが好適である。 The lubricating oil is, for example, a refrigerator oil containing an ester synthetic oil. The lubricating oil is stored in the lower part of the shell 1, that is, in the lower shell 13. The lubricating oil to be stored is sucked up by the oil pump 52 described later, passes through the oil passage 63 in the drive shaft 6, and reduces the wear of the mechanically contacting parts such as the compression mechanism 3 and the like. Adjust the temperature and improve the sealability. As the lubricating oil, it is preferable to use an oil having an appropriate viscosity, as well as excellent lubricating properties, electrical insulation, stability, refrigerant solubility, low temperature fluidity, and the like.
 圧縮機構部3は、冷媒を圧縮する圧縮機構である。圧縮機構部3は、固定スクロール31と、揺動スクロール32と、を備えるスクロール圧縮機構である。 The compression mechanism unit 3 is a compression mechanism that compresses a refrigerant. The compression mechanism unit 3 is a scroll compression mechanism provided with a fixed scroll 31 and an oscillating scroll 32.
 固定スクロール31は、鋳鉄などの金属で構成される。固定スクロール31は、第1円形台板311と、第1渦巻体312と、を備える。 The fixed scroll 31 is made of metal such as cast iron. The fixed scroll 31 includes a first circular base plate 311 and a first spiral body 312.
 第1円形台板311は、円盤状に構成される。第1円形台板311の中央には、上下方向に貫通した吐出ポート311aが形成される。 The first circular base plate 311 is configured in a disk shape. At the center of the first circular base plate 311, a discharge port 311a penetrating in the vertical direction is formed.
 第1渦巻体312は、第1円形台板311の他端側L面から突出して渦巻状の壁部を形成する。 The first spiral body 312 protrudes from the other end side L surface of the first circular base plate 311 to form a spiral wall.
 揺動スクロール32は、アルミニウムなどの金属から構成される。揺動スクロール32は、第2円形台板321と、第2渦巻体322と、筒状部323と、一対の第2オルダム溝324と、を備える。 The oscillating scroll 32 is made of metal such as aluminum. The rocking scroll 32 includes a second circular base plate 321, a second spiral body 322, a cylindrical portion 323, and a pair of second Oldham grooves 324.
 第2円形台板321は、円盤状に形成される。第2円形台板321は、一端側Uの面と、一端側Uの面に対して表裏関係にある他端側Lの面と、一端側Uの面および他端側Lの面を接続する外周面と、を備える。 The second circular base plate 321 is formed in a disk shape. The second circular base plate 321 connects the surface of the one end side U, the surface of the other end side L in front and back relation to the surface of the one end side U, the surface of the one end side U and the surface of the other end side L And an outer peripheral surface.
 一端側Uの面には、第2渦巻体322が形成される。他端側Lの面には、外側領域の少なくとも一部に摺動面が形成される。摺動面は、スラストプレート24に摺動可能に、メインフレーム2に支持あるいは支承される。 The second spiral body 322 is formed on the surface of the one end side U. A sliding surface is formed on at least a part of the outer region on the surface of the other end L. The sliding surface is supported or supported on the main frame 2 so as to be slidable on the thrust plate 24.
 第2渦巻体322は、第2円形台板321の一端側Uの面から突出して渦巻状の壁部を形成する。なお、固定スクロール31の第1渦巻体312と、揺動スクロール32の第2渦巻体322の先端部には、冷媒の漏れを抑制するためのシール部材が設けられる。 The second spiral body 322 protrudes from the surface of the one end side U of the second circular base plate 321 to form a spiral wall. A seal member for suppressing the leakage of the refrigerant is provided at the leading end of the first scroll 312 of the fixed scroll 31 and the second scroll 322 of the oscillating scroll 32.
 筒状部323は、第2円形台板321の他端側Lの面の略中央から他端側Lに突出する円筒状のボスである。筒状部323の内周面には、後述するスライダ71を回転自在に支持する揺動軸受、いわゆるジャーナル軸受の中心軸が、駆動軸6の中心軸と平行になるように設けられる。 The cylindrical portion 323 is a cylindrical boss that protrudes from substantially the center of the surface on the other end L of the second circular base plate 321 to the other end L. On the inner peripheral surface of the cylindrical portion 323, a central axis of a so-called journal bearing, which supports a slider 71 described later rotatably, is provided parallel to the central axis of the drive shaft 6.
 第2オルダム溝324は、第2円形台板321の他端側Lの面に形成される長丸形状の溝である。一対の第2オルダム溝324は、対向して設けられる。一対の第2オルダム溝324を結ぶ線は、一対の第1オルダム溝215を結ぶ線に対して、直交する。 The second Oldham groove 324 is an elongated round groove formed on the surface of the other end L of the second circular base plate 321. The pair of second Oldham grooves 324 are provided to face each other. The line connecting the pair of second Oldham grooves 324 is orthogonal to the line connecting the pair of first Oldham grooves 215.
 メインフレーム2のオルダム収容部214には、オルダムリング33が設けられる。オルダムリング33は、リング部331と、一対の第1キー部332と、一対の第2キー部333と、を備える。 An Oldham ring 33 is provided in the Oldham accommodation portion 214 of the main frame 2. The Oldham ring 33 includes a ring portion 331, a pair of first key portions 332, and a pair of second key portions 333.
 リング部331は、環状に構成される。一対の第1キー部332は、リング部331の他端側Lの面に対向して形成される。一対の第1キー部のそれぞれは、メインフレーム2の一対の第1オルダム溝215のそれぞれに収容される。一対の第2キー部333は、リング部331の一端側Uの面に対向して形成される。一対の第2キー部のそれぞれは、揺動スクロール32の一対の第2オルダム溝324のそれぞれに収容される。 The ring portion 331 is annularly configured. The pair of first key portions 332 is formed to face the surface on the other end L of the ring portion 331. Each of the pair of first key portions is accommodated in each of the pair of first oldham grooves 215 of the main frame 2. The pair of second key portions 333 is formed to face the surface on one end side U of the ring portion 331. Each of the pair of second key portions is accommodated in each of the pair of second Oldham grooves 324 of the oscillating scroll 32.
 駆動軸6の回転によって揺動スクロール32が公転旋回する際に、第1キー部332が第1オルダム溝215内でスライドし、かつ、第2キー部333が第2オルダム溝324内でスライドする。これにより、オルダムリング33は、揺動スクロール32の自転を防止する。 When the swing scroll 32 revolves due to the rotation of the drive shaft 6, the first key portion 332 slides in the first oldham groove 215, and the second key portion 333 slides in the second oldham groove 324. . Thereby, the Oldham ring 33 prevents rotation of the rocking scroll 32.
 固定スクロール31の第1渦巻体312と、揺動スクロール32の第2渦巻体322と、が互いに噛み合わさることにより、圧縮室34が形成される。圧縮室34は、半径方向において、外側から内側へ向かうに従って容積が縮小する。そのため、冷媒は、第1渦巻体と第2渦巻体322との外端部側から取り入れられて中央側に移動する際に、徐々に圧縮される。 A compression chamber 34 is formed by the first scroll 312 of the fixed scroll 31 and the second scroll 322 of the oscillating scroll 32 being engaged with each other. The volume of the compression chamber 34 decreases in the radial direction from the outside to the inside. Therefore, the refrigerant is gradually compressed when taken in from the outer end side of the first spiral and the second spiral 322 and moving to the center side.
 圧縮室34は、固定スクロール31の中央部にて、吐出ポート311aと連通する。固定スクロール31の一端側Uの面には、吐出孔351を有したマフラー35が設けられる。マフラー35の一端側Uの表面には、吐出孔351を所定に開閉し、冷媒の逆流を防止する吐出弁36が設けられる。そのため、圧縮室34で圧縮された冷媒は、吐出ポート311aを経て、その圧力で吐出弁36を開弁させて吐出孔351からアッパーシェル12内の吐出空間91に吐出される。その後、吐出された冷媒は、吐出管15から流出する。 The compression chamber 34 communicates with the discharge port 311 a at the central portion of the fixed scroll 31. A muffler 35 having a discharge hole 351 is provided on the surface of one end side U of the fixed scroll 31. On the surface of one end side U of the muffler 35, a discharge valve 36 is provided which opens and closes the discharge hole 351 in a predetermined manner to prevent the backflow of the refrigerant. Therefore, the refrigerant compressed in the compression chamber 34 is discharged to the discharge space 91 in the upper shell 12 from the discharge hole 351 by opening the discharge valve 36 by the pressure via the discharge port 311 a. Thereafter, the discharged refrigerant flows out of the discharge pipe 15.
 冷媒は、たとえば、組成中に、炭素の二重結合を有するハロゲン化炭化水素、炭素の二重結合を有しないハロゲン化炭化水素、炭化水素、または、それらを含む混合物からなる。 The refrigerant is made of, for example, a halogenated hydrocarbon having a carbon double bond, a halogenated hydrocarbon having no carbon double bond, a hydrocarbon, or a mixture containing them in the composition.
 炭素の二重結合を有するハロゲン化炭化水素からなる冷媒は、オゾン層破壊係数がゼロであるHFC冷媒、フロン系低GWP冷媒である。これらの冷媒としては、化学式がCで表されるHFO1234yf、HFO1234ze、HFO1243zfなどのテトラフルオロプロペンが例示される。 The refrigerant composed of a halogenated hydrocarbon having a carbon double bond is an HFC refrigerant or a fluorocarbon-based low GWP refrigerant having an ozone layer destruction coefficient of zero. Examples of these refrigerants include tetrafluoropropenes such as HFO 1234yf, HFO 1234ze, HFO 1243zf, and the like, represented by the chemical formula C 3 H 2 F 4 .
 炭素の二重結合を有しないハロゲン化炭化水素からなる冷媒は、CHで表されるR32(ジフルオロメタン)、R41などが混合された冷媒が例示される。 The refrigerant which consists of a halogenated hydrocarbon which does not have a double bond of carbon is exemplified by a refrigerant in which R32 (difluoromethane) represented by CH 2 F 2 , R 41 and the like are mixed.
 炭化水素からなる冷媒は、自然冷媒であるプロパンやプロピレンなどが例示される。 Examples of the refrigerant composed of hydrocarbons include propane and propylene which are natural refrigerants.
 混合物からなる冷媒は、HFO1234yf、HFO1234ze、HFO1243zfなどに、R32、R41などを混合した混合冷媒が例示される。 Examples of the refrigerant composed of a mixture include mixed refrigerants in which R32, R41 and the like are mixed with HFO1234yf, HFO1234ze, HFO1243zf and the like.
 有力な低GWP冷媒のうちの、HFO1234yf、HFO1234ze、HFO1243zfなどの成分であるプロパンあるいはプロピレンなどは、比較的低圧低密度で動作する。このため、同等能力を得るのに必要な圧縮機の排除容積は、現行冷媒であるR410Aなどと比較して2倍から3倍程度の大きさである。 Among the potential low GWP refrigerants, such as propane or propylene, which are components such as HFO 1234yf, HFO 1234ze, HFO 1243zf, operate at relatively low pressure and low density. For this reason, the displacement volume of the compressor required to obtain the equivalent capacity is about two to three times as large as that of the current refrigerant such as R410A.
 駆動機構部4は、シェル1内のメインフレーム2の他端側Lに設けられている。駆動機構部4は、ステータ41と、ロータ42と、を備える。 The drive mechanism 4 is provided on the other end L of the main frame 2 in the shell 1. The drive mechanism unit 4 includes a stator 41 and a rotor 42.
 ステータ41は、円環状の固定子である。ステータ41は、電磁鋼板などを複数積層した鉄心に絶縁層を介して巻線を巻回したティースを環状に複数並べて形成される。ステータ41は、焼き嵌めによりメインシェル11内に固着支持される。 The stator 41 is an annular stator. The stator 41 is formed by arranging a plurality of teeth, in which a winding is wound around an iron core in which a plurality of electromagnetic steel sheets and the like are laminated, with an insulating layer interposed therebetween. The stator 41 is fixedly supported in the main shell 11 by shrink fitting.
 ロータ42は、ステータ41の内部空間に配置される。つまり、ロータ42は、円環状の固定子であるステータ41の内側に形成される中央孔に配置される円筒状の回転子である。ロータ42は、電磁鋼板などを複数積層される鉄心内に永久磁石を内蔵する。ロータ42の中央には、上下方向に貫通する貫通穴が形成される。 The rotor 42 is disposed in the internal space of the stator 41. That is, the rotor 42 is a cylindrical rotor disposed in a central hole formed inside the stator 41 which is an annular stator. The rotor 42 incorporates a permanent magnet in an iron core on which a plurality of electromagnetic steel sheets and the like are stacked. At the center of the rotor 42, a through hole penetrating in the vertical direction is formed.
 サブフレーム5は、金属製のフレームである。サブフレーム5は、シェル1内にて駆動機構部4の他端側Lに設けられる。サブフレーム5は、焼き嵌めまたは溶接などによりメインシェル11の他端側Lの内周面部に固着支持される。サブフレーム5は、副軸受部51と、オイルポンプ52と、を備える。 The sub frame 5 is a metal frame. The sub frame 5 is provided on the other end side L of the drive mechanism 4 in the shell 1. The sub-frame 5 is fixedly supported on the inner peripheral surface portion of the other end side L of the main shell 11 by shrink fitting, welding or the like. The sub frame 5 includes a sub bearing 51 and an oil pump 52.
 副軸受部51は、サブフレーム5の中央部上側に設けられるボールベアリングである。副軸受部51の中央には、上下方向に貫通する孔が形成される。 The sub bearing portion 51 is a ball bearing provided on the central portion upper side of the sub frame 5. At the center of the sub bearing portion 51, a hole penetrating in the vertical direction is formed.
 オイルポンプ52は、サブフレーム5の中央部下側に設けられる。オイルポンプ52は、ロアシェル13内の油溜めに貯留される潤滑油に少なくとも一部を浸漬させて配置される。 The oil pump 52 is provided below the central portion of the sub frame 5. The oil pump 52 is disposed by immersing at least a part of the lubricating oil stored in the oil reservoir in the lower shell 13.
 駆動軸6は、長尺な金属製の棒状部材である。駆動軸6は、シェル1内に設けられる。駆動軸6は、主軸部61と、偏心軸部62と、通油路63と、を備える。 The drive shaft 6 is a long metal rod member. The drive shaft 6 is provided in the shell 1. The drive shaft 6 includes a main shaft portion 61, an eccentric shaft portion 62, and an oil passage 63.
 主軸部61は、駆動軸6の主要部を構成する軸である。主軸部61の中心軸は、メインシェル11の中心軸と一致して配置される。主軸部61の外表面には、ロータ42が接触固定される。 The main spindle 61 is an axis that constitutes a main part of the drive shaft 6. The central axis of the main shaft portion 61 is arranged to coincide with the central axis of the main shell 11. The rotor 42 is contact-fixed to the outer surface of the main shaft portion 61.
 偏心軸部62は、主軸部61の一端側Uに設けられる。偏心軸部の中心軸は、主軸部61の中心軸に対して偏心する。 The eccentric shaft 62 is provided on one end side U of the main shaft 61. The central axis of the eccentric shaft portion is eccentric to the central axis of the main shaft portion 61.
 通油路63は、主軸部61および偏心軸部62内にて上下に貫通して設けられる。 The oil passage 63 is vertically penetrated in the main shaft portion 61 and the eccentric shaft portion 62.
 駆動軸6における主軸部61の一端側Uは、メインフレーム2の主軸受部22内に挿入される。また、駆動軸6における主軸部61の他端側Lは、サブフレーム5の副軸受部51に挿入固定される。これにより、偏心軸部62は、筒状部323の筒内に配置される。また、主軸部61に接触固定されるロータ42の外周面とステータ41の内周面とは、所定の隙間を保持する。 One end side U of the main shaft portion 61 in the drive shaft 6 is inserted into the main bearing portion 22 of the main frame 2. Further, the other end side L of the main shaft portion 61 in the drive shaft 6 is inserted into and fixed to the sub bearing portion 51 of the sub frame 5. Thus, the eccentric shaft portion 62 is disposed in the cylinder of the cylindrical portion 323. Further, the outer circumferential surface of the rotor 42 fixed in contact with the main shaft portion 61 and the inner circumferential surface of the stator 41 maintain a predetermined gap.
 主軸部61の一端側Uの途中には、第1バランサ64が設けられる。主軸部61の他端側Lの途中には、第2バランサ65が設けられる。第1、第2バランサ64、65は、揺動スクロール32の揺動運動によるアンバランス状態を相殺する。 A first balancer 64 is provided in the middle of one end side U of the main shaft portion 61. A second balancer 65 is provided midway on the other end side L of the main shaft portion 61. The first and second balancers 64 and 65 cancel out the unbalanced state due to the rocking motion of the rocking scroll 32.
 ブッシュ7は、揺動スクロール32と駆動軸6とを接続する接続部材である。ブッシュ7は、鉄などの金属からなる。ブッシュ7は、2部品で構成される。ブッシュ7は、スライダ71と、バランスウエイト72と、を備える。 The bush 7 is a connection member that connects the swing scroll 32 and the drive shaft 6. The bush 7 is made of metal such as iron. The bush 7 is composed of two parts. The bush 7 includes a slider 71 and a balance weight 72.
 スライダ71は、外周側に広がる鍔を有した筒状の部材である。スライダ71は、偏心軸部62および筒状部323のそれぞれに嵌入される。 The slider 71 is a cylindrical member having a weir extending outward. The slider 71 is fitted into each of the eccentric shaft portion 62 and the cylindrical portion 323.
 図2に示すように、バランスウエイト72は、ウエイト部721を備えたドーナツ状の部材である。ウエイト部721の一端側Uから見た形状は、略C字形状である。バランスウエイト72は、揺動スクロール32の遠心力を相殺するために、回転中心に対して偏芯して設けられる。バランスウエイト72は、スライダ71の鍔に焼嵌めなどの方法により嵌合される。 As shown in FIG. 2, the balance weight 72 is a doughnut-shaped member provided with a weight portion 721. The shape viewed from one end side U of the weight portion 721 is a substantially C shape. The balance weight 72 is provided eccentrically with respect to the rotation center in order to offset the centrifugal force of the oscillating scroll 32. The balance weight 72 is fitted to the wedge of the slider 71 by a method such as shrink fitting.
 給電部8は、スクロール圧縮機100に給電する給電部材である。給電部8は、メインシェル11の外周面に形成される。給電部8は、カバー81と、給電端子82と、配線83と、を備える。 The power supply unit 8 is a power supply member that supplies power to the scroll compressor 100. The feeding portion 8 is formed on the outer peripheral surface of the main shell 11. The feeding unit 8 includes a cover 81, a feeding terminal 82, and a wire 83.
 カバー81は、メインシェル11の外壁面部に底を取り付ける円筒形状であって、メインシェル11から離れた部分に底と対向する開口の形成されるカバー部材である。 The cover 81 is a cylindrical member that has a cylindrical shape that attaches the bottom to the outer wall surface portion of the main shell 11 and is formed with an opening facing the bottom at a part away from the main shell 11.
 給電端子82は、金属部材からなる。給電端子82の一方は、カバー81内に設けられる。また、給電端子82の他方は、シェル1内に設けられる。つまり、給電端子82は、一方と他方とを繋げてシェル1を貫通して設けられる。 The feed terminal 82 is made of a metal member. One of the feed terminals 82 is provided in the cover 81. In addition, the other of the feed terminals 82 is provided in the shell 1. That is, the feed terminal 82 is provided to penetrate the shell 1 by connecting one to the other.
 配線83の一方は、給電端子82と接続される。また、配線83の他方は、ステータ41と接続される。つまり、配線は、一方と他方とを繋げて給電端子82からステータ41に給電する。 One end of the wiring 83 is connected to the feed terminal 82. In addition, the other of the wires 83 is connected to the stator 41. That is, the wiring connects one side to the other side to supply power to the stator 41 from the power supply terminal 82.
<シェル1と圧縮機構部3の関係>
 図3は、本発明の実施の形態1に係るアッパーシェル12の円周が溶接後のメインシェル11と固定スクロール31の第1円形台板311との形状変化を定量化する図1の一点鎖線領域Aを示す拡大図である。
<Relationship between Shell 1 and Compression Mechanism 3>
FIG. 3 is a dashed-dotted line in FIG. 1 in which the circumference of the upper shell 12 according to the first embodiment of the present invention quantifies the shape change of the main shell 11 and the first circular base plate 311 of the fixed scroll 31 after welding. It is an enlarged view showing field A.
 図3に示すように、メインシェル11は、薄肉部である第1内壁面部111と、厚肉部である第1突出部112と、第1位置決め面113と、を有する。 As shown in FIG. 3, the main shell 11 has a first inner wall surface portion 111 which is a thin wall portion, a first projecting portion 112 which is a thick wall portion, and a first positioning surface 113.
 第1内壁面部111は、第1突出部112から外径をそのままの長さで内径を大きく広げて薄肉に形成される。第1内壁面部111は、第1突出部112の一端側Uに連続して形成される。 The first inner wall surface portion 111 is formed to be thin-walled by widening the inner diameter by the length as it is from the first protrusion 112. The first inner wall surface portion 111 is continuously formed on one end side U of the first projecting portion 112.
 第1突出部112は、第1内壁面部111から外径をそのままの長さで内径側に突出する。第1突出部112は、第1内壁面部111の他端側Lに連続して形成される。 The first protrusion 112 projects from the first inner wall surface portion 111 to the inner diameter side with the outer diameter as it is. The first projecting portion 112 is continuously formed on the other end side L of the first inner wall surface portion 111.
 第1位置決め面113は、第1突出部112と第1内壁面部111との境界部分にて、第1突出部112の一端側Uに向いた面である。第1位置決め面113は、固定スクロール31を位置決めする。 The first positioning surface 113 is a surface facing the one end side U of the first projecting portion 112 at the boundary between the first projecting portion 112 and the first inner wall surface portion 111. The first positioning surface 113 positions the fixed scroll 31.
 つまり、メインシェル11は、他端側Lに向かって内径が大きくなる段状の部分を備える。そして、固定スクロール31は、第1位置決め面113で位置決めされる状態で、第1内壁面部111に焼嵌めにより固定される。 That is, the main shell 11 is provided with a step-like portion whose inner diameter increases toward the other end side L. The fixed scroll 31 is fixed to the first inner wall surface portion 111 by shrink fitting in a state where the fixed scroll 31 is positioned by the first positioning surface 113.
 一方、図3に示すように、固定スクロール31は、載置端部313と、環状突起314と、小径端部315と、を有する。 On the other hand, as shown in FIG. 3, the fixed scroll 31 has a mounting end 313, an annular protrusion 314, and a small diameter end 315.
 載置端部313は、第1突出部112と第1内壁面部111との境界部分である第1位置決め面113に載置される。載置端部313は、固定スクロール31の外周部の他端側Lの角部である。 The placement end 313 is placed on the first positioning surface 113 which is a boundary between the first protrusion 112 and the first inner wall surface 111. The placement end portion 313 is a corner portion on the other end side L of the outer peripheral portion of the fixed scroll 31.
 環状突起314は、載置端部313よりも大径であって第1内壁面部111の内壁部に接触する。環状突起314は、固定スクロール31の外周部の最外径部分である。環状突起314は、載置端部313と分離して別体に形成される。環状突起314は、メインシェル11の軸方向の一端側Uと他端側Lとの間で曲線状に形成される。つまり、環状突起314は、円弧状である。環状突起314は、第1円形台板311の外周面での外半径が最大となる頂点314Aを有する。環状突起314の頂点314Aは、円形台板厚みtの1/2の高さ位置に一致するように設計される。環状突起314は、頂点314Aを基準に一端側Uと他端側Lとに線対称な円弧形状に形成される。 The annular protrusion 314 has a diameter larger than the placement end 313 and contacts the inner wall portion of the first inner wall surface portion 111. The annular protrusion 314 is the outermost diameter portion of the outer peripheral portion of the fixed scroll 31. The annular protrusion 314 is formed separately from the mounting end 313. The annular protrusion 314 is formed in a curved shape between one end U and the other end L in the axial direction of the main shell 11. That is, the annular protrusion 314 has an arc shape. The annular protrusion 314 has an apex 314 A at which the outer radius of the outer circumferential surface of the first circular base plate 311 is maximized. The apex 314A of the annular protrusion 314 is designed to coincide with the height position of 1/2 of the circular base plate thickness t. The annular protrusion 314 is formed in a circular arc shape that is line-symmetrical to one end U and the other end L with reference to the vertex 314A.
 小径端部315は、載置端部313とは環状突起314を介する反対側にて環状突起314よりも小径である。小径端部315は、固定スクロール31の外周部の一端側Uの角部である。 The small diameter end 315 is smaller in diameter than the annular projection 314 at the opposite side of the placement end 313 via the annular projection 314. The small diameter end portion 315 is a corner portion on one end side U of the outer peripheral portion of the fixed scroll 31.
 載置端部313と環状突起314と小径端部315とは、載置突起部316に設けられる。載置突起部316は、固定スクロール31の第1円形台板311の基部から半径方向外側に突出する。なお、載置突起部316は、第1円形台板311の一部ともいえる。 The mounting end 313, the annular protrusion 314 and the small diameter end 315 are provided on the mounting protrusion 316. The mounting protrusion 316 protrudes radially outward from the base of the first circular base plate 311 of the fixed scroll 31. The placement protrusion 316 can also be said to be part of the first circular base plate 311.
 このように、固定スクロール31が単体でメインシェル11に固定される構造により、従来のようにメインフレームと固定スクロールとをボルト固定するための壁が不要になる。すなわち、揺動スクロール32の第2円形台板321の外周面とメインシェル11の内壁面との間にメインフレーム2の壁部が介在しない。これにより、第2円形台板321の外周面とメインシェル11の内壁面とが対向して配置される構造となる。そのため、メインシェル11内における固定スクロール31の第1円形台板311とメインフレーム2のスラスト軸受との間に設けられ、揺動スクロール32が配置される冷媒取込空間である吸入空間92が従来よりも広げられる。また、メインフレーム2の構造が簡素化されるため、加工性が良くなるとともに、軽量化が図れる。 Thus, the structure in which the fixed scroll 31 is fixed alone to the main shell 11 eliminates the need for a wall for bolting the main frame and the fixed scroll as in the prior art. That is, the wall portion of the main frame 2 is not interposed between the outer peripheral surface of the second circular base plate 321 of the oscillating scroll 32 and the inner wall surface of the main shell 11. As a result, the outer circumferential surface of the second circular base plate 321 and the inner wall surface of the main shell 11 are arranged to face each other. Therefore, the suction space 92, which is a refrigerant intake space provided in the main shell 11 between the first circular base plate 311 of the fixed scroll 31 and the thrust bearing of the main frame 2, and in which the oscillating scroll 32 is disposed is It is spread more than. Further, since the structure of the main frame 2 is simplified, the processability is improved and the weight can be reduced.
 吸入空間92が広がることにより、種々のメリットが得られる。たとえば、駆動機構部4が配置されるメインシェル11内の空間および吸入空間92の圧力が吸入空間92の圧力よりも低くなる、いわゆる低圧シェル構造では、圧縮される冷媒の圧力により揺動スクロール32の第2円形台板321がスラストプレート24に押し付けられる。このため、摺動箇所でのスラスト荷重が発生する。そこで、第1、第2渦巻体などは従来設計のままで、揺動スクロール32の第2円形台板321およびスラストプレート24の直径が大きくでき、摺動面積が大きくなることにより、スラスト荷重による面圧が低減できる。そのため、スクロール圧縮機100では、スラスト軸受にかかる負担が低減し、信頼性が高まる。 The expansion of the suction space 92 provides various advantages. For example, in a so-called low pressure shell structure in which the pressure in the space inside main shell 11 in which drive mechanism 4 is disposed and suction space 92 is lower than the pressure in suction space 92, rocking scroll 32 is generated by the pressure of the compressed refrigerant. The second circular base plate 321 is pressed against the thrust plate 24. Therefore, a thrust load is generated at the sliding portion. Therefore, the diameters of the second circular base plate 321 and the thrust plate 24 of the rocking scroll 32 can be increased while the first and second spiral bodies and the like are designed as in the conventional design, and the sliding area is increased. Contact pressure can be reduced. Therefore, in the scroll compressor 100, the load on the thrust bearing is reduced, and the reliability is enhanced.
 また、製造組立時には、円周が溶接される前のアッパーシェル12が固定スクロール31を第1位置決め面113に押し付けられ、固定スクロール31の位置決めが精度良く行える。その後、一度アッパーシェルは、一旦取り外され、固定スクロールの焼嵌めが行われる。 Further, at the time of manufacturing and assembly, the upper shell 12 before the circumference is welded presses the fixed scroll 31 against the first positioning surface 113, so that the fixed scroll 31 can be accurately positioned. Thereafter, once the upper shell is removed, the fixed scroll shrink fit is performed.
 なお、メインフレーム2は、メインシェル11の第1突出部112から外径をそのままに内径側に突出する第2突出部114の一端側Uを向いた第2位置決め面115で位置決めされる。そして、メインフレーム2は、第2位置決め面115にて位置決めされる状態で、第1突出部112に焼嵌めなどにより固定される。 The main frame 2 is positioned by the second positioning surface 115 facing the one end side U of the second projecting portion 114 which protrudes from the first projecting portion 112 of the main shell 11 to the inner diameter side without changing the outer diameter. Then, the main frame 2 is fixed to the first protrusion 112 by shrink fitting or the like in a state of being positioned by the second positioning surface 115.
 メインフレーム2の平坦面212の外周端部には、一端側Uに突出する環状の突壁部216が形成されている。スラストプレート24は、突壁部216の内側の平坦面212に、第1オルダム溝215の一部を覆って配置される。突壁部216の平坦面212からの高さは、スラストプレート24の厚みより小さく設定される。このため、揺動スクロール32は、スラストプレート24と摺動させられる。 At an outer peripheral end of the flat surface 212 of the main frame 2, an annular protruding wall portion 216 protruding to one end side U is formed. The thrust plate 24 is disposed on the inner flat surface 212 of the projecting wall portion 216 so as to cover a portion of the first Oldham groove 215. The height from the flat surface 212 of the projecting wall portion 216 is set smaller than the thickness of the thrust plate 24. For this reason, the oscillating scroll 32 slides on the thrust plate 24.
 なお、スラストプレート24の厚みが調整されると、第1、第2円形台板311、321のどちらか一方の渦巻体を有する面と他方の渦巻体の先端部との間隔である渦巻先端隙間が好適な範囲に設定できる。渦巻先端隙間が小さくでき、冷媒が渦巻先端と円形台板との隙間を通って、隣の圧縮空間への漏れが抑制できる。 In addition, if the thickness of the thrust plate 24 is adjusted, the spiral tip clearance which is the distance between the surface of the first and second circular base plates 311 and 321 having the spiral body and the tip of the other spiral body. Can be set in a preferred range. The spiral tip clearance can be reduced, and the refrigerant can be prevented from leaking to the adjacent compression space through the clearance between the spiral tip and the circular base plate.
 ここで、スラストプレート24および突壁部216には、凸部または凹部が形成され、スラストプレート24の回転が抑止できるように凸部と凹部とが係合する。これは、メインフレーム2の平坦面212およびスラストプレート24は、ともにリング状であることにより、揺動スクロール32の揺動に伴ってスラストプレート24が平坦面212に対して回転する場合があるためである。凹部に凸部が係止されることにより、その回転が抑制される。 Here, a convex portion or a concave portion is formed on the thrust plate 24 and the projecting wall portion 216, and the convex portion and the concave portion are engaged so that the rotation of the thrust plate 24 can be suppressed. This is because the flat surface 212 of the main frame 2 and the thrust plate 24 are both ring-shaped, so the thrust plate 24 may rotate relative to the flat surface 212 as the swing scroll 32 swings. It is. The rotation of the projection is suppressed by locking the projection to the recess.
 ここでは、凸部は、突壁部216からスラストプレート24の方向に突出して形成される一対の突部217である。凹部は、スラストプレート24の外周縁部分に形成される切欠き241である。一対の突部217は、切欠き241の両側縁のそれぞれに係止される。 Here, the projections are a pair of projections 217 formed to project from the projecting wall portion 216 in the direction of the thrust plate 24. The recess is a notch 241 formed in the outer peripheral edge portion of the thrust plate 24. The pair of protrusions 217 is locked to each of both side edges of the notch 241.
 なお、メインフレーム2の一対の突部217の間に位置する部分には、吸入ポート213が配置される。すなわち、切欠き241部分に吸入ポート213が配置されるため、冷媒がスラストプレート24により遮られることなく、吸入空間92に取り込める。 A suction port 213 is disposed in a portion located between the pair of protrusions 217 of the main frame 2. That is, since the suction port 213 is disposed at the notch 241, the refrigerant can be taken into the suction space 92 without being blocked by the thrust plate 24.
<スクロール圧縮機100の動作>
 給電部8の給電端子82に通電すると、ステータ41とロータ42とにトルクが発生し、これに伴って駆動軸6が回転する。駆動軸6の回転は、偏心軸部62およびブッシュ7を介して揺動スクロール32に伝えられる。回転駆動力が伝達される揺動スクロール32は、オルダムリング33により自転を規制され、固定スクロール31に対して偏心公転運動する。その際、揺動スクロール32の他方の面は、スラストプレート24と摺動する。
<Operation of Scroll Compressor 100>
When the feed terminal 82 of the feed unit 8 is energized, torque is generated in the stator 41 and the rotor 42, and the drive shaft 6 rotates accordingly. The rotation of the drive shaft 6 is transmitted to the oscillating scroll 32 via the eccentric shaft portion 62 and the bush 7. The swing scroll 32 to which the rotational drive force is transmitted is restricted in rotation by the Oldham ring 33, and eccentrically revolves with respect to the fixed scroll 31. At that time, the other surface of the oscillating scroll 32 slides on the thrust plate 24.
 揺動スクロール32の揺動運動に伴い、吸入管14からシェル1の内部に吸入される冷媒は、メインフレーム2の吸入ポート213を通って吸入空間92に到達し、固定スクロール31と揺動スクロール32とで形成される圧縮室34に取り込まれる。そして、冷媒は、揺動スクロール32の偏心公転運動に伴い、外周部から中心方向に移動する圧縮室34で体積を減じられて圧縮される。揺動スクロール32の偏心公転運転時には、揺動スクロール32が自身の遠心力により、ブッシュ7とともに半径方向外側に移動し、第2渦巻体322と第1渦巻体312の壁面部同士が密接する。圧縮された冷媒は、固定スクロール31の吐出ポート311aから固定スクロール31の吐出孔351に至り、吐出弁36の付勢力に逆らって吐出弁36を開弁してシェル1の外部に流出される。 The refrigerant drawn into the shell 1 from the suction pipe 14 along with the rocking motion of the rocking scroll 32 reaches the suction space 92 through the suction port 213 of the main frame 2, and the fixed scroll 31 and the rocking scroll And 32 into the compression chamber 34. Then, the refrigerant is reduced in volume and compressed in the compression chamber 34 moving from the outer peripheral portion toward the center along with the eccentric revolution movement of the oscillating scroll 32. At the time of eccentric revolution operation of the rocking scroll 32, the rocking scroll 32 moves radially outward with the bush 7 by its own centrifugal force, and the wall surfaces of the second spiral body 322 and the first spiral body 312 are in close contact with each other. The compressed refrigerant travels from the discharge port 311 a of the fixed scroll 31 to the discharge hole 351 of the fixed scroll 31, opens the discharge valve 36 against the biasing force of the discharge valve 36, and flows out of the shell 1.
<メインシェル11への圧縮機構部3の収納方法>
 図4は、本発明の実施の形態1に係るメインシェル11の壁面部を縦断面で示す説明図である。図4には、メインシェル11の固定スクロール31、メインフレーム2、ステータ41などを焼嵌め挿入する前の寸法あるいは厚みなどの形状が示される。
<Method of Storing Compression Mechanism 3 in Main Shell 11>
FIG. 4 is an explanatory view showing the wall surface portion of the main shell 11 according to Embodiment 1 of the present invention in a longitudinal cross section. FIG. 4 shows the size, thickness, and the like of the main shell 11 before the fixed scroll 31, the main frame 2, the stator 41, etc. are shrink fitted.
 メインシェル11の厚みは、たとえば4~6mmである。第2突出部114の高さ、すなわち切削加工による削り深さは、たとえば0.3mm前後である。次に、第2突出部114から一端側Uに所定距離離れる第1突出部112にて、切削用のブラシなどで壁面部を厚み方向に所定の深さだけ切削加工する。これにより、第1内壁面部111が形成され、第1内壁面部111と第1突出部112との境界部分に段差が形成される。このため、第1内壁面部111の内径R1oは、第1突出部112の内半径R20よりも大きくなる。なお、第1突出部112が形成された後に、第2突出部114が形成されても良い。 The thickness of the main shell 11 is, for example, 4 to 6 mm. The height of the second protrusion 114, that is, the cutting depth by cutting is, for example, about 0.3 mm. Next, the wall surface portion is cut by a predetermined depth in the thickness direction with a cutting brush or the like at the first protrusion 112 separated by a predetermined distance from the second protrusion 114 toward the one end U. Thus, the first inner wall surface portion 111 is formed, and a step is formed at the boundary between the first inner wall surface portion 111 and the first projecting portion 112. Therefore, the inner diameter R1o of the first inner wall surface portion 111 is larger than the inner radius R20 of the first projecting portion 112. The second protrusion 114 may be formed after the first protrusion 112 is formed.
 第1突出部112における第1内壁面部111との接続部分、すなわち第1位置決め面113の第1内壁面部111側の部分には、菱形インサートなどにより外径加工が施され、他端側Lに凹み1131が形成される。また、第2突出部114における第1突出部112との接続部分、すなわち第2位置決め面115の第1突出部112側の部分には、菱形インサートなどにより外径加工が施され、他端側Lに凹んだ凹み1151が形成される。 An outer diameter process is performed on the connection portion of the first protrusion 112 with the first inner wall surface portion 111, that is, the portion on the first inner wall surface portion 111 side of the first positioning surface 113 by a rhombic insert or the like. A recess 1131 is formed. Further, the connecting portion of the second protrusion 114 with the first protrusion 112, that is, the portion of the second positioning surface 115 on the side of the first protrusion 112 is subjected to an outer diameter process with a rhombic insert or the like, A recess 1151 recessed in L is formed.
 凹み1131、1151は、切削加工によって上記接続部分に生じやすいメインシェル11の変形を防止する、いわゆるヌスミである。すなわち、切削加工の結果、第1内壁面部111と第1位置決め面113との接続部分が綺麗に直角に削れず、隅部に凸部が形成されることがある。当該部分に凸部が形成されると、固定スクロール31が第1突出部112に配置されても、固定スクロール31が第1位置決め面113に接触せずに浮いてしまい、位置決めの精度が低くなる。これに対して、凹み1131が形成されることにより、固定スクロール31が第1位置決め面113に確実に接触するため、位置決め精度が高められる。凹み1151についても同様であり、メインフレーム2の位置決め精度が高められる。 The depressions 1131 and 1151 are so-called nasumi that prevent deformation of the main shell 11 that is likely to occur in the connection portion due to cutting. That is, as a result of cutting, the connection between the first inner wall surface portion 111 and the first positioning surface 113 may not be finely cut at a right angle, and a convex portion may be formed at a corner. If a convex portion is formed in the portion, even if the fixed scroll 31 is disposed on the first projecting portion 112, the fixed scroll 31 floats without contacting the first positioning surface 113, and the positioning accuracy is lowered. . On the other hand, since the fixed scroll 31 reliably contacts the first positioning surface 113 by forming the recess 1131, the positioning accuracy is enhanced. The same applies to the recess 1151 and the positioning accuracy of the main frame 2 is enhanced.
 なお、凹み1131、1151が他端側Lに凹む形状であるので、凹み1131、1151がメインシェル11の厚み方向に形成される場合と比較して、メインシェル11の肉厚減少が抑制でき、メインシェル11の強度の低下が抑制できる。 In addition, since the recesses 1131 and 1151 have a shape which is recessed on the other end side L, reduction in thickness of the main shell 11 can be suppressed as compared with the case where the recesses 1131 and 1151 are formed in the thickness direction of the main shell 11, A reduction in strength of the main shell 11 can be suppressed.
 次に、上記のように形成されるメインシェル11の一端側Uから、メインフレーム2が挿入される。メインフレーム2は、第2位置決め面115に面接触し、高さ方向が位置決めされる。その状態で、メインフレーム2が第1突出部112に焼嵌めあるいはアークスポット溶接により固定される。 Next, the main frame 2 is inserted from one end side U of the main shell 11 formed as described above. The main frame 2 is in surface contact with the second positioning surface 115, and the height direction is positioned. In that state, the main frame 2 is fixed to the first protrusion 112 by shrink fitting or arc spot welding.
 そして、メインフレーム2の軸孔221に駆動軸6が挿入される。その後、偏心軸部62にブッシュ7が取り付けられる。さらに、オルダムリング33および揺動スクロール32などが配置される。 Then, the drive shaft 6 is inserted into the shaft hole 221 of the main frame 2. Thereafter, the bush 7 is attached to the eccentric shaft 62. Furthermore, the Oldham ring 33, the oscillating scroll 32, etc. are arranged.
 次に、メインシェル11の一端側Uから、固定スクロール31が挿入される。固定スクロール31は、第1位置決め面113に面接触し、高さ方向が位置決めされる。 Next, the fixed scroll 31 is inserted from one end side U of the main shell 11. The fixed scroll 31 is in surface contact with the first positioning surface 113, and the height direction is positioned.
 なお、固定スクロール31の周方向の位置決めをする従来のボルトのような部材が無い。このため、固定スクロール31が固定されるまでは、揺動スクロール32に対して固定スクロール31が回転可能である。これにより、第1渦巻体312と第2渦巻体322との位置関係がずれ、スクロール圧縮機100の個体ごとにおいて圧縮ばらつきや圧縮不良が発生するおそれがある。そこで、揺動スクロール32の第2渦巻体322に対する第1渦巻体312の位置関係が所定関係となるように、固定スクロール31が回転され、固定スクロールの位相が調整される。その後、固定スクロール31が第1内壁面部111に焼嵌めにより固定される。 There is no member like the conventional bolt for positioning the fixed scroll 31 in the circumferential direction. Therefore, the fixed scroll 31 can rotate with respect to the oscillating scroll 32 until the fixed scroll 31 is fixed. As a result, the positional relationship between the first spiral body 312 and the second spiral body 322 is shifted, and there is a possibility that compression variation or compression failure may occur in each of the scroll compressors 100. Therefore, the fixed scroll 31 is rotated so that the positional relationship of the first scroll 312 with respect to the second scroll 322 of the oscillating scroll 32 becomes a predetermined relationship, and the phase of the fixed scroll is adjusted. Thereafter, the fixed scroll 31 is fixed to the first inner wall surface portion 111 by shrink fitting.
 この工程では、アッパーシェル12により固定スクロール31を第1位置決め面113に押付けるように挿入する。そして、一旦アッパーシェル12を取り外す。そして、固定スクロール31が第1位置決め面113に押付けられる状態を維持し、固定スクロール31がメインシェル11に焼嵌め固定される。これにより、スクロール圧縮機100ごとの吸入空間92の高さのばらつきが抑制され、位置精度が高まる。また、スクロール圧縮機100の駆動時における固定スクロール31の上下方向へのずれが抑制される。ただし、第1位置決め面113は、固定スクロール31の製造上の位置決めさえできれば良いので、固定スクロール31が第1内壁面部111に固定された後に、固定スクロール31が第1位置決め面113と接触していることは必ずしも必須ではない。なお、メインフレーム2と第2位置決め面115との関係についても同様である。 In this step, the fixed scroll 31 is inserted so as to press the first positioning surface 113 by the upper shell 12. Then, the upper shell 12 is once removed. Then, the fixed scroll 31 is maintained in a state of being pressed against the first positioning surface 113, and the fixed scroll 31 is shrink-fitted and fixed to the main shell 11. Thereby, the variation in the height of the suction space 92 for each scroll compressor 100 is suppressed, and the positional accuracy is enhanced. Further, the displacement of the fixed scroll 31 in the vertical direction when the scroll compressor 100 is driven is suppressed. However, as long as the first positioning surface 113 can only position the fixed scroll 31 during manufacture, the fixed scroll 31 contacts the first positioning surface 113 after the fixed scroll 31 is fixed to the first inner wall surface portion 111. It is not necessary to The same applies to the relationship between the main frame 2 and the second positioning surface 115.
 最後に、メインシェル11の一端側Uから、アッパーシェル12が挿入される。その後、アッパーシェル12は、メインシェル11に円周が溶接により固定される。 Finally, the upper shell 12 is inserted from one end side U of the main shell 11. Thereafter, the circumference of the upper shell 12 is fixed to the main shell 11 by welding.
<従来の比較例での固定スクロールの外周面での荷重中心>
 ここで、固定スクロール31は、焼嵌めでメインシェル11の第1内壁面部111に固定されると、メインシェル11にアッパーシェル12を円周が溶接した溶接箇所は、冷却後に収縮する。そして、メインシェル11の一端側Uの外周部に収縮させる力が働き、焼嵌めされる固定スクロール31の第1円形台板311が圧縮される。第1円形台板311の外周面には、面圧分布が生じるので、第1円形台板311の外周面に曲げモーメントが働き、第1円形台板311とこれの他端側Lに形成された第1渦巻体312が変形する問題があった。
<Center of Load on Outer Surface of Fixed Scroll in Conventional Comparative Example>
Here, when the fixed scroll 31 is fixed to the first inner wall surface portion 111 of the main shell 11 by shrink fitting, the welded portion where the upper shell 12 is welded to the main shell 11 shrinks after cooling. Then, a force is caused to contract on the outer peripheral portion on the one end side U of the main shell 11, and the first circular base plate 311 of the fixed scroll 31 to be shrink fitted is compressed. Since a surface pressure distribution is generated on the outer peripheral surface of the first circular base plate 311, a bending moment acts on the outer peripheral surface of the first circular base plate 311 and is formed on the first circular base plate 311 and the other end side L thereof. There is a problem that the first spiral body 312 is deformed.
 図5は、比較例でのアッパーシェル12の円周が溶接後のメインシェル11と固定スクロール31の第1円形台板311との形状変化に関して測定範囲を示す説明図である。図6は、比較例でのアッパーシェル12の円周が溶接後のメインシェル11と固定スクロール31の第1円形台板311との形状変化に関してシェル形状の変化量を示す図である。図7は、比較例でのアッパーシェル12の円周が溶接後のメインシェル11と固定スクロール31の第1円形台板311との形状変化に関して円形台板外周面の面圧を示す図である。 FIG. 5 is an explanatory view showing a measurement range regarding the shape change of the main shell 11 after welding and the first circular base plate 311 of the fixed scroll 31 in the comparative example. FIG. 6 is a diagram showing the amount of change in shell shape with respect to the shape change of the main shell 11 after welding and the first circular base plate 311 of the fixed scroll 31 in the comparative example. FIG. 7 is a view showing the surface pressure of the outer peripheral surface of the circular base plate in relation to the shape change of the main shell 11 after welding and the first circular base plate 311 of the fixed scroll 31 in the comparative example. .
 図6に示すように、メインシェル11の外半径は、(1)の元の状態では、高さ方向に関係なくほぼ均一であった。(1)の状態から、(2)のように円形台板なしでアッパーシェルの円周が溶接されると、円周の溶接箇所121に近いメインシェル11の一端側Uの上端である測定点高さ0基準で、外半径は、収縮量dRで示すように約0.1%収縮する。これにより、第1内壁面部111の外半径が高さに比例して増加し、第1突出部112の領域が元の均一な状態に戻る。 As shown in FIG. 6, the outer radius of the main shell 11 was substantially uniform regardless of the height direction in the original state of (1). If the circumference of the upper shell is welded without a circular base plate as in (2) from the state of (1), the measurement point that is the upper end of the one end side U of the main shell 11 near the weld position 121 of the circumference On a height 0 basis, the outer radius shrinks about 0.1% as shown by the shrinkage amount dR. As a result, the outer radius of the first inner wall surface portion 111 increases in proportion to the height, and the area of the first protrusion 112 returns to the original uniform state.
 一方、第1突出部にメインフレーム2の外周面が焼嵌めされるとともに第1内壁面部111に固定スクロール31の第1円形台板311の外周面が焼嵌めされると、一旦、メインシェルの外半径は、(3)のように円形台板の外周面高さ範囲で膨らんで拡大する。次に、(3)の状態から、(4)のようにアッパーシェルの円周が溶接されると、メインシェル11の一端側Uの上端である測定点高さ0基準で、メインシェル11の外半径が約0.1%収縮する。 On the other hand, once the outer peripheral surface of the main frame 2 is shrink-fit to the first projecting portion and the outer peripheral surface of the first circular base plate 311 of the fixed scroll 31 is shrink-fitted to the first inner wall surface portion 111 The outer radius expands and expands in the outer peripheral surface height range of the circular base plate as in (3). Next, when the circumference of the upper shell is welded as in (4) from the state of (3), the height of the main shell 11 is measured at the height of 0 measurement point which is the upper end of the one end side U of the main shell 11 The outer radius shrinks by about 0.1%.
 (4)に示すように、メインシェル11は、固定スクロール31の第1円形台板311の外周面の影響で膨らむように変形した上で、全体として一端側Uを収縮させるように傾斜する。このとき、第1円形台板311の外周面では、中央より他端側Lが最外径である頂点314Aとなるように変形する。そのため、第1円形台板311の外周面には、図57のようなほぼ台形の面圧荷重分布が作用する。 As shown in (4), the main shell 11 is deformed so as to expand under the influence of the outer peripheral surface of the first circular base plate 311 of the fixed scroll 31, and then inclined so as to contract the one end side U as a whole. At this time, on the outer peripheral surface of the first circular base plate 311, the other end side L from the center is deformed so as to be the apex 314A which is the outermost diameter. Therefore, a substantially trapezoidal surface pressure load distribution as shown in FIG. 57 acts on the outer peripheral surface of the first circular base plate 311.
 メインシェル11の外半径は、第1円形台板311がない場合は、図6の(2)のように高さ方向に比例的して収縮するので、第1円形台板311の外周面の面圧荷重も高さ方向にほぼ比例的に変化する。これにより、面圧分布荷重の重心位置は、第1円形台板311の外周面の一端側Uの角部311Xから他端側Lへ厚みtの1/3から1/2の範囲に隔てた高さ位置である。 Since the outer radius of the main shell 11 shrinks in proportion to the height direction as shown in (2) of FIG. 6 when there is no first circular base plate 311, the outer radius of the outer peripheral surface of the first circular base plate 311 The surface pressure load also changes substantially proportionally in the height direction. Thus, the position of the center of gravity of the surface pressure distribution load is in the range of 1/3 to 1/2 of the thickness t from the corner portion 311X on one end side U of the outer peripheral surface of the first circular base plate 311 to the other end side L. It is a height position.
 一方で、固定スクロール31の第1円形台板311は、厚みt断面の中性面周りに曲げモーメントが働き、他端側Lに向かって凹型に中央が撓むように軸対称に変形する。参考文献1より、単位長さあたりの曲げモーメントM、慣性モーメントI(=t3/12)、板の曲げ剛性Dとすると、
M=D(1+ν)/ρ
である。
On the other hand, the first circular base plate 311 of the fixed scroll 31 has a bending moment acting around the neutral surface of the thickness t cross section, and is deformed axially symmetrically so that the center is bent concavely toward the other end side L. Assuming that the bending moment M per unit length, the moment of inertia I (= t3 / 12), and the bending rigidity D of the plate according to the reference document 1,
M = D (1 + ν) / ρ
It is.
 ここで、中性面は円形台板の重心位置に一致し、円形台板厚みtの1/2の高さ位置にほぼ一致する。 Here, the neutral surface coincides with the center of gravity of the circular base plate, and substantially coincides with the height position of 1/2 of the circular base plate thickness t.
 参考文献1(寺沢一雄、松浦義一「材料力学(上巻)」86-89頁、115-117頁、219-224頁(昭和59年7版発行、海文堂))には、細長い短形平板の変形について説明がある。しかし、xyz方向の三次元的な変形も、近似的にはポアソン比νの影響が小さいと仮定すれば、二次元的なzx断面の慣性モーメントIで表記して、z方向の変位を梁の撓みと一致する。 Reference 1 (Kazuo Terasawa, Yoshikazu Matsuura "Mechanics of Materials (Upper Volume)" pp. 86-89, 115-117, 219-224 (issued at 7th edition of 1984, Kaibundo)) Explain about However, assuming that the three-dimensional deformation in the x, y, and z directions is also approximately affected by the Poisson's ratio ν, the displacement in the z direction is expressed as the moment of inertia I of the two-dimensional zx cross section. Match the deflection.
 外周部を固定支持する第1円形台板311の上下面で働く最大曲げ応力σmaxは、
σmax=6M/t2
となり、梁の撓みの最大曲げ応力と一致する。
The maximum bending stress σmax acting on the upper and lower surfaces of the first circular base plate 311 fixedly supporting the outer peripheral portion is
σmax = 6 M / t2
And agree with the maximum bending stress of the deflection of the beam.
 また、第1円形台板311の撓み量は、参考文献1のP226の式(5.21)で求められる。 Further, the deflection amount of the first circular base plate 311 can be obtained by the equation (5.21) of P226 of the reference document 1.
 一方、第1円形台板311の重心位置311Gは、円形台板厚みtの1/2の高さ位置である。そして、第1円形台板311のメインシェル11の軸方向での重心位置311Gは、環状突起314の範囲内である。第1円形台板311の重心位置311Gと面圧荷重の重心位置とのズレ分が、第1円形台板311の外周面に重心まわりに曲げモーメントとして働く。つまり、図7に示す斜線部分の荷重は、第1円形台板311の重心位置311Gからt/6ズレ箇所に働いて、第1円形台板311を他端側Lに向けて凹型に変形させる曲げモーメントを生じる。 On the other hand, the gravity center position 311G of the first circular base plate 311 is a height position of 1/2 of the circular base plate thickness t. The center of gravity position 311 G of the first circular base plate 311 in the axial direction of the main shell 11 is within the range of the annular protrusion 314. The deviation between the gravity center position 311G of the first circular base plate 311 and the gravity center position of the surface pressure load acts on the outer peripheral surface of the first circular base plate 311 as a bending moment around the gravity center. That is, the load in the hatched portion shown in FIG. 7 acts on the t / 6 shift from the gravity center position 311G of the first circular base plate 311 to deform the first circular base plate 311 in a concave shape toward the other end L Creates a bending moment.
<実施の形態1の外周面荷重中心>
 図8は、本発明の実施の形態1に係るおけるアッパーシェル12の円周が溶接後のメインシェル11と固定スクロール31の第1円形台板311との形状変化に関して測定範囲を示す説明図である。図9は、本発明の実施の形態1に係るおけるアッパーシェル12の円周が溶接後のメインシェル11と固定スクロール31の第1円形台板311との形状変化に関してシェル形状の変化量を示す図である。
<Loading Center of Outer Surface in Embodiment 1>
FIG. 8 is an explanatory view showing a measurement range regarding the shape change of the main shell 11 after welding and the first circular base plate 311 of the fixed scroll 31 according to the first embodiment of the present invention is there. FIG. 9 shows the amount of change in shell shape with respect to the shape change of the main shell 11 and the first circular base plate 311 of the fixed scroll 31 after welding, according to the first embodiment of the present invention. FIG.
 図9に示すメインシェル11の外半径の高さ方向の(1)から(4)の形状変化は、比較例の図6とほぼ同様の変化であり、詳細な説明を省略する。つまり、比較例と同様に、(4)のアッパーシェル12の円周が溶接される場合には、メインシェル11は、一端側Uの上端である測定点高さ0基準110にて、外半径が収縮量dRで示す0.1%から0.2%程度収縮する。そして、メインシェル11における他端側Lの円形台板の外周面高さ範囲にて、外側に隆起するように変形する。 The shape change of (1) to (4) in the height direction of the outer radius of the main shell 11 shown in FIG. 9 is substantially the same change as in FIG. 6 of the comparative example, and the detailed description is omitted. That is, as in the comparative example, when the circumference of the upper shell 12 of (4) is welded, the main shell 11 has the outer radius at the measurement point height 0 reference 110 which is the upper end of the one end side U Shrinks by about 0.1% to 0.2% indicated by the shrinkage amount dR. Then, in the outer peripheral surface height range of the circular base plate on the other end side L in the main shell 11, it is deformed so as to bulge outward.
 第1円形台板311の外周面には、外半径が最大となる点を頂点314Aとする山形円弧形状が形成され、一端側Uから軸高さ位置Z1Aの位置である頂点付近にて第1内壁面部111と接触する。収縮量dRは、R10の0.1%程度である。位置Z1Aでの収縮量は、R10の20%から50%程度とする。この場合には、図3に示すメインシェル11の第1内壁面部111の傾斜角θ1は、
傾斜角θ1=dR/Z1A=1/500から1/200程度
となる。
A chevron arc shape is formed on the outer peripheral surface of the first circular base plate 311, with the point where the outer radius is maximum as the vertex 314A, and the first one is near the vertex which is the position from the one end side U to the axis height position Z1A. Contact with the inner wall portion 111. The contraction amount dR is about 0.1% of R10. The amount of contraction at position Z1A is about 20% to 50% of R10. In this case, the inclination angle θ1 of the first inner wall surface portion 111 of the main shell 11 shown in FIG.
The inclination angle θ1 = dR / Z1A = 1/500 to about 1/200.
 メインシェル11が傾斜しても面圧荷重が働く位置は、山形円弧の傾斜角θ1の範囲であり、頂点314A付近から大きく移動しない。そのため、山形円弧の頂点314A位置が円形台板厚みtの1/2の高さ位置に一致する第1円形台板311の重心位置311Gに設計されると、第1円形台板311の外周面には重心まわりに大きな曲げモーメントが発生しない。これにより、第1円形台板311の変形と、第1円形台板311の他端側Lに形成される第1渦巻体312と、の変形が抑えられる。 Even if the main shell 11 inclines, the position where the surface pressure load acts is in the range of the inclination angle θ1 of the chevron, and does not move significantly from the vicinity of the vertex 314A. Therefore, the outer peripheral surface of the first circular base plate 311 is designed to be designed at the barycentric position 311G of the first circular base plate 311 where the apex 314A position of the chevron arc coincides with the height position of 1/2 of the circular base plate thickness t. There is no large bending moment around the center of gravity. Thereby, the deformation of the first circular base plate 311 and the deformation of the first spiral body 312 formed on the other end side L of the first circular base plate 311 are suppressed.
<圧力およびシール状態>
 次に、図3を用い、メインシェル11と第1円形台板311との形状変化について、定量的に検討した結果について説明する。
<Pressure and seal condition>
Next, using FIG. 3, the results of quantitatively examining the shape change of the main shell 11 and the first circular base plate 311 will be described.
 シェル1の内側空間のうちで、固定スクロール31の第1円形台板311より一端側Uには、圧縮室34で圧縮した吐出圧Pdの高圧の冷媒を吐出管15に導く吐出空間91が形成されている。吐出空間91の中央付近には、マフラー35および吐出弁36が取り付けられる。 In the inner space of the shell 1, a discharge space 91 for guiding the high pressure refrigerant of the discharge pressure Pd compressed by the compression chamber 34 to the discharge pipe 15 is formed on one end side U of the fixed scroll 31 from the first circular base plate 311. It is done. Near the center of the discharge space 91, a muffler 35 and a discharge valve 36 are attached.
 一方、固定スクロール31の第1円形台板311より他端側Lには、第1渦巻体312と第2渦巻体322とで囲まれた圧縮室34と、吸入管14につながる吸入圧Psの低圧の冷媒取込空間である吸入空間92と、が形成される。 On the other hand, on the other end side L from the first circular base plate 311 of the fixed scroll 31, the compression chamber 34 surrounded by the first spiral body 312 and the second spiral body 322 and the suction pressure Ps connected to the suction pipe 14 A suction space 92, which is a low pressure refrigerant intake space, is formed.
 吐出空間と冷媒取込み空間とである2つの空間の差圧により、固定スクロール31の第1円形台板311は、一端側Uから他端側Lに押し付けられる。このため、第1円形台板311の外周面の他端側Lは、第1位置決め面113に押圧され、環状のシール面317Oが形成される。 The first circular base plate 311 of the fixed scroll 31 is pressed from the one end side U to the other end side L by the pressure difference between the two spaces which are the discharge space and the refrigerant intake space. Therefore, the other end side L of the outer peripheral surface of the first circular base plate 311 is pressed against the first positioning surface 113, and an annular seal surface 317O is formed.
 さらに、第1円形台板311の外周面には、一端側Uの端部314Xから他端側Lの端部314Yの範囲となる山形円弧領域taに、最外径部となる頂点314Aがある。この頂点314A近傍は、上記の差圧により、第1内壁面部111に対して他端側L方向に押圧され、環状にシール面317Aが形成される。 Furthermore, on the outer peripheral surface of the first circular base plate 311, there is a vertex 314A which is an outermost diameter portion in a mountain arc region ta ranging from the end 314X on one end U to the end 314Y on the other end L. . The vicinity of the apex 314A is pressed against the first inner wall surface portion 111 in the other end L direction by the above-described differential pressure, and a sealing surface 317A is formed annularly.
 第1円形台板311の外周面では、環状突起314の第1内壁面部111に接触した接触点であるシール面317Aより一端側Uの吐出空間91は、吐出圧Pdの高圧状態である。一方、シール面317Oより他端側Lは、吸入圧Psの低圧状態である。シール面317Aより他端側Lであり、かつ、シール面317Oより一端側Uである隙間では、低圧状態と高圧状態との中間の圧力状態となる。より詳しくは、この隙間は、シール面317Oのシール面積が支配的であるので、高圧状態に近い状態である。 On the outer peripheral surface of the first circular base plate 311, the discharge space 91 at one end side U of the seal surface 317A, which is a contact point contacting the first inner wall surface portion 111 of the annular protrusion 314, is in a high pressure state of the discharge pressure Pd. On the other hand, the other end L from the sealing surface 317O is in a low pressure state of the suction pressure Ps. A gap between the seal surface 317A and the other end L of the seal surface 317A and the one end U of the seal surface 317O is an intermediate pressure state between the low pressure state and the high pressure state. More specifically, this gap is close to a high pressure state because the seal area of the seal surface 317O is dominant.
 固定スクロール31は、中心側にて、第1渦巻体312と、マフラー35と、を有するため、第1渦巻体312より内側領域の剛性が外側領域の剛性より高い。また、固定スクロール31の第1円形台板311の内側領域は、冷媒が吸入圧Psから吐出圧Pdまで昇圧される圧縮室34である。圧縮室34では、一端側Uの吐出空間91の吐出圧Pdとの差圧が小さい。 The fixed scroll 31 has the first scroll 312 and the muffler 35 on the center side, so the rigidity of the inner region is higher than the rigidity of the outer region than the first scroll 312. Further, the inner region of the first circular base plate 311 of the fixed scroll 31 is a compression chamber 34 in which the refrigerant is boosted from the suction pressure Ps to the discharge pressure Pd. In the compression chamber 34, the differential pressure with the discharge pressure Pd of the discharge space 91 at the one end side U is small.
 ここで、スクロール圧縮機100の中心軸から第1渦巻体312より内側領域の内半径をRbとする。同じくメインシェル11の第1突出部112までの内半径をRaとする。 Here, the inner radius of the region inward of the first scroll body 312 from the central axis of the scroll compressor 100 is taken as Rb. Similarly, let the inner radius up to the first protrusion 112 of the main shell 11 be Ra.
<最大負荷圧力条件>
 以上の圧力荷重条件に類似した計算モデルとして、参考文献2(日本機械学会「機械工学便覧A4材料 力学基礎編」57-58頁(2001年新版9刷発行、丸善))を用いる。参考文献2から内周可動片を有する円輪板に圧力分布が作用する計算モデルを用いて、第1円形台板311の変形量を予測する。
<Maximum load pressure condition>
As a calculation model similar to the pressure load conditions described above, reference document 2 (Japanese Society of Mechanical Engineers, "Mechanical Engineering Handbook A4 Material Mechanical Fundamentals", pp. 57-58 (issued 9th edition of 2001 New Edition, Maruzen)) is used. The amount of deformation of the first circular base plate 311 is predicted using a calculation model in which a pressure distribution acts on a circular ring plate having an inner peripheral movable piece from Reference Document 2.
 蒸気圧縮式冷凍サイクルにおいて、代表的な設計運転条件として、R410A冷媒を用いた最大負荷圧力条件(Pd=3.8MPa、Ps=1MPa)を想定し、差圧△PはPd-Ps=2.8MPaが一端側Uから他端側Lに作用すると仮定して、差圧(Pd-Ps)荷重による第1円形台板311の撓み量を求める。 In the vapor compression refrigeration cycle, assuming a maximum load pressure condition (Pd = 3.8 MPa, Ps = 1 MPa) using R410A refrigerant as a typical design operation condition, the differential pressure ΔP is Pd−Ps = 2. Assuming that 8 MPa acts from one end U to the other end L, the amount of deflection of the first circular base plate 311 due to the differential pressure (Pd−Ps) load is determined.
 第1円形台板311の寸法を、厚みt=20mm、Ra=80mm、Rb=48mm(Rb/Ra=0.6)と仮定し、第1円形台板311の最外径R1からRbの範囲の外周側領域には、駆動軸6の軸中心下側方向へ差圧△Pの荷重が働く。第1円形台板311の材料を鋳鉄としてヤング率100GPa、ポアソン比0.3と仮定する。 Assuming that the dimensions of the first circular base plate 311 are thickness t = 20 mm, Ra = 80 mm, Rb = 48 mm (Rb / Ra = 0.6), the range from the outermost diameter R1 to Rb of the first circular base plate 311 A load of differential pressure ΔP works in the lower side of the axial center of the drive shaft 6 in the outer peripheral area of the drive shaft 6. Assuming that the material of the first circular base plate 311 is cast iron, it has a Young's modulus of 100 GPa and a Poisson's ratio of 0.3.
<必要な焼嵌め代>
 第1円形台板311の外周面には、メインシェル11の第1内壁面部111への焼嵌め固定により固定保持力Ffが働く。
<Necessary shrink fit>
A fixed holding force Ff acts on the outer peripheral surface of the first circular base plate 311 by shrink fitting to the first inner wall surface portion 111 of the main shell 11.
 固定保持力Ffは、圧縮運転時の回転方向ガストルクFt1、起動時に圧縮室34から受けるスラスト反力Ft2、さらに、非定常時に吐出空間91に真空引きした状態で吸入空間92に圧力がかかるときのスラスト反力Ft3に打ち勝って、固定スクロール31を固定保持する。 The fixed holding force Ff is the rotational direction gas torque Ft1 at the time of compression operation, the thrust reaction force Ft2 received from the compression chamber 34 at the time of activation, and pressure applied to the suction space 92 with the discharge space 91 evacuated in unsteady state. Overcoming the thrust reaction force Ft3, the fixed scroll 31 is fixedly held.
 このうち、最も大きいのは、非定常時のスラスト反力Ft3である。吸入空間92にかかる逆圧をPs(=1MPa)と仮定すると、
スラスト反力Ft3=π(Ra)×Ps=20kN
である。
Among them, the largest one is the thrust reaction force Ft3 in the unsteady state. Assuming that the reverse pressure applied to the suction space 92 is Ps (= 1 MPa),
Thrust reaction force Ft3 = π (Ra) 2 × Ps = 20 kN
It is.
 そして、
固定保持力Ff=静止摩擦係数μ×締付け力Fin>Ft3
である。
And
Fixed holding force Ff = static friction coefficient μ × clamping force Fin> Ft3
It is.
 μ=0.5として、スラスト反力Ftより大きな固定保持力Ffを得るには、
締付け力Fin>Ft3/静止摩擦係数μ
である。
To obtain a fixed holding force Ff larger than the thrust reaction force Ft, with μ = 0.5,
Tightening force Fin> Ft 3 / static friction coefficient μ
It is.
 この結果、締付け力Finは40kN以上となり、焼嵌め代は0.1mm以上、つまり内径Raの0.13%以上必要である。 As a result, the tightening force Fin is 40 kN or more, and the shrink fitting margin is 0.1 mm or more, that is, 0.13% or more of the inner diameter Ra.
 さらに、メインシェル11にアッパーシェル12の円周が溶接されると、メインシェル11の収縮量dRである0.1mm程度、かつ、傾斜角θ1である1/500から1/200程度に変形する。 Furthermore, when the circumference of the upper shell 12 is welded to the main shell 11, the main shell 11 is deformed to about 0.1 mm which is a contraction amount dR of the main shell 11 and about 1/500 to 1/200 which is an inclination angle θ1. .
<単純支持円板円形台板の上下差圧による撓み量>
 これに対して、圧縮運転時に最大負荷運転条件で、差圧△P(=2.8MPa)が作用した場合、No.15(円輪板、外周単純支持、内周可動片に固定、等分布荷重)の計算モデルを適用すると、内周可動片の半径Rbの位置で、
最大撓みw_max=α×△P×(Ra)/t3=7μm
となる。
<The amount of deflection due to the differential pressure of the simple support disc circular base plate>
On the other hand, when the differential pressure ΔP (= 2.8 MPa) acts under the maximum load operating condition at the time of compression operation, No. 1 Applying the calculation model of 15 (ring plate, outer circumferential simple support, fixed to inner circumferential movable piece, equal distribution load), at the position of radius Rb of the inner circumferential movable piece,
Maximum deflection w_max = α × ΔP × (Ra) 4 / t3 = 7 μm
It becomes.
 外周単純支持の円形台板の外周面は拘束されない、すなわち曲げモーメントMr=0であるので、撓んで傾く。その傾斜角は、3/10000である。このときの第1円形台板311の外周面外径変化量(=厚みt×傾斜角)は、6μmである。よって、焼嵌め代と円周が溶接されることによるメインシェルの外周面の傾斜角θ1である1/500から1/200程度に比べると無視できる傾きである。 Since the outer peripheral surface of the circular base plate of the outer peripheral simple support is not restrained, that is, the bending moment Mr = 0, it bends and tilts. The inclination angle is 3 / 10,000. The amount of change in outer peripheral surface outer diameter (= thickness t × inclination angle) of the first circular base plate 311 at this time is 6 μm. Therefore, the inclination is negligible compared to about 1/500 to 1/200 which is the inclination angle θ1 of the outer peripheral surface of the main shell due to welding of the shrinkage fit and the circumference.
 以下、第1円形台板311は、焼嵌め代と円周の溶接とによって変形したメインシェル11の第1内壁面部111に固定支持された状態で、外周面に曲げモーメントMrが働いていると考えて、変形量を予測する。 Hereinafter, when the first circular base plate 311 is fixedly supported on the first inner wall surface portion 111 of the main shell 11 deformed by the shrinkage fit and welding of the circumference, a bending moment Mr is acting on the outer peripheral surface Think and predict the amount of deformation.
<固定支持円形台板の上下差圧による撓み量>
 次に、No.16(円輪板、外周固定支持、内周可動片に固定、等分布荷重)の計算モデルから、上下差圧荷重による曲げモーメントMr1を計算すると、内周可動片の半径Rbの位置で、
最大撓みw_max=α×△P×(Ra)/t3=1.4μm
である。
<The amount of deflection due to the differential pressure of the fixed support circular base plate>
Next, No. When the bending moment Mr1 due to the upper and lower differential pressure load is calculated from the calculation model of 16 (ring plate, outer peripheral fixed support, fixed to inner peripheral movable piece, equal distribution load), at the position of radius Rb of the inner peripheral movable piece,
Maximum deflection w_max = α × ΔP × (Ra) 4 / t 3 = 1.4 μm
It is.
撓み角は、0である。 The deflection angle is zero.
 最大応力は、
最大応力|σ_max|=β×△P×(Ra)/t2
である。
The maximum stress is
Maximum stress | σ_max | = β × ΔP × (Ra) 2 / t 2
It is.
 曲げモーメントは、
曲げモーメントMr1=|σ_max|/断面係数Z
=β×π×△P×(Ra)/3、(ここで、Rb/Rb=0.6のとき、β=0.25である。)
=375Nm
となる。
The bending moment is
Bending moment Mr1 = | σ_max | / section coefficient Z
= Β × π × △ P × (Ra) 3/3, ( wherein, when Rb / Rb = 0.6, a beta = 0.25.)
= 375 Nm
It becomes.
 メインシェル11に固定された第1円形台板311の外周面には、上下差圧荷重による曲げモーメントMr1と、円周が溶接後の収縮による外周面荷重の中心が重心位置311Gの高さ位置から所定距離ずれることで曲げモーメントMr2と、が働く。つまり、第1円形台板311の外周面には、通常、他端側Lに凹型変形させる曲げモーメントが働く。この他端側Lに凹む向きを+とする。曲げモーメントMr2が、上下差圧荷重による曲げモーメントMr1程度であれば、同様に最大撓みw_maxへの影響は、1~2μmレベルであるので、十分小さく無視して良い。 On the outer peripheral surface of the first circular base plate 311 fixed to the main shell 11, the bending moment Mr1 due to the upper and lower differential pressure load and the height position of the center of the outer peripheral surface load due to contraction after welding at the center of gravity position 311G The bending moment Mr2 works by shifting a predetermined distance from. That is, on the outer peripheral surface of the first circular base plate 311, a bending moment which causes the other end L to be concavely deformed usually acts. The direction in which the other end L is recessed is +. If the bending moment Mr2 is about the bending moment Mr1 due to the upper and lower differential pressure load, the influence on the maximum deflection w_max is similarly 1 to 2 μm level, so it may be ignored small enough.
 次に、締付け力Finを、(π(Ra)×Ps)/μと仮定すると、曲げモーメントMr2は、
Mr2=dH1×Fin=dH1×(π(Ra)×Ps)/μ
となる。
Next, assuming that the clamping force Fin is (π (Ra) 2 × Ps) / μ, the bending moment Mr2 is
Mr2 = dH1 × Fin = dH1 × (π (Ra) 2 × Ps) / μ
It becomes.
 ここで、Mr2=Mr1とおくと、
dH1=μ×Mr1/Ft3
=(μ×β×π×△P×(Ra)/3)/(π(Ra)×Pm)
=Ra×(μ×β/3)×(△P/Ps)
=Ra×γ
となる。
Here, assuming that Mr2 = Mr1,
dH1 = μ × Mr1 / Ft3
= (Μ × β × π × △ P × (Ra) 3/3) / (π (Ra) 2 × Pm)
= Ra x (μ x β / 3) x (ΔP / Ps)
= Ra x γ
It becomes.
 Rb/Raは通常0.6程度である。このとき、β=0.25、γ=6.6%である。さらに、Rb/Raは大きくとも0.8程度である。Rb/Ra=0.8のとき、β=0.067、γ=1.1%となる。 Rb / Ra is usually about 0.6. At this time, β = 0.25 and γ = 6.6%. Furthermore, Rb / Ra is at most about 0.8. When Rb / Ra = 0.8, β = 0.067 and γ = 1.1%.
 すなわち、面圧中心が重心高さからのずれ距離dH1が、Raの1%程度であれば、上下差圧による影響と同様レベルで、内径Raの位置での最大撓みw_maxは、1~2μmレベルである。この結果、曲げモーメントMr2は、十分小さいので、無視して良いと考えられる。 That is, if the displacement distance dH1 from the center of gravity to the center of gravity is about 1% of Ra, the maximum deflection w_max at the position of the inner diameter Ra is 1 to 2 μm at the same level as the influence by the upper and lower differential pressure It is. As a result, the bending moment Mr2 is considered to be negligible because it is sufficiently small.
 また、実施の形態1では、図3に示す第1円形台板311の外周面では、最外径となる頂点314Aの付近である最外径R1でのみ、第1内壁面部111と接触する。第1円形台板311の主要部の肉厚はtである。一方、外周付近側壁の幅は、載置突起部316の肉厚であり、その肉厚はt1でtより小さい。第1内壁面部111の一端側Uは、収縮するため、頂点314A付近の小径端部315で接触する可能性がある。しかし、小径端部315の外半径をR2とし、頂点314Aとの外径差をe2=R1-R2とし、頂点314Aとの高さ位置の差をx1Aとすると、頂点314Aから外周面上端角で接触する傾斜角θ2は、
θ2≒tan(θ2)=e2/x1A
となる。
Further, in the first embodiment, on the outer peripheral surface of the first circular base plate 311 shown in FIG. 3, only the outermost diameter R1 in the vicinity of the apex 314A which is the outermost diameter contacts the first inner wall surface portion 111. The thickness of the main part of the first circular base plate 311 is t. On the other hand, the width of the side wall near the outer periphery is the thickness of the mounting protrusion 316, and the thickness is smaller than t at t1. The one end side U of the first inner wall surface portion 111 may contact at the small diameter end portion 315 in the vicinity of the apex 314A in order to contract. However, assuming that the outer radius of the small diameter end portion 315 is R2, the outer diameter difference from the apex 314A is e2 = R1-R2, and the difference in height position from the apex 314A is x1A, The contact angle θ2 is
θ22tan (θ2) = e2 / x1A
It becomes.
 e2が円周の溶接後におけるメインシェル11の一端側Uの端部110の変形量である0.1mm程度より大きくなるように設計されれば、θ2>θ1の関係が保て、小径端部315と第1内壁面部111との接触が防げる。 If e2 is designed to be larger than about 0.1 mm which is the deformation of the end 110 of the one end side U of the main shell 11 after welding of the circumference, the relationship of θ2> θ1 is maintained, and the small diameter end It is possible to prevent the contact between the first and second inner wall portions 111 and 315.
 ただし、θ1≒θ2の関係が保てる場合には、仮に接触しても小径端部315で働く締め付け力が小さいので無視できる。詳細については、別途実施の形態2で説明する。 However, if the relationship of θ1θθ2 can be maintained, even if they are in contact with each other, the tightening force acting at the small diameter end portion 315 is small and can be ignored. Details will be described in Embodiment 2 separately.
 一方、第1円形台板311の外周部の他端側Lの角部である載置端部313で、外半径をR1oとし、頂点314Aとの外径差をeo=R1-R1oとし、頂点314Aとの高さ位置の差をy1Aとすると、頂点314Aから載置端部313での接触傾斜角θoは、
θo≒tan(θo)=eo/y1A
となる。
On the other hand, at the mounting end 313 which is the corner on the other end L of the outer periphery of the first circular base plate 311, the outer radius is R1o, and the outer diameter difference from the apex 314A is eo = R1-R1o, the apex Assuming that the difference in height position from 314A is y1A, the contact inclination angle θo from the apex 314A to the mounting end 313 is
θo ≒ tan (θo) = eo / y1A
It becomes.
 eoが円周の溶接後におけるメインシェル11の一端側Uの端部110の変形量である0.1mm程度より大きくなるように設計されれば、θo>θ1Lの関係が保て、載置端部313にてメインシェル11の第1内壁面部111との接触が防げる。 If eo is designed to be larger than about 0.1 mm which is the deformation of the end 110 of the one end side U of the main shell 11 after welding of the circumference, the relationship of θo> θ1L is maintained, and the mounting end In the portion 313, the contact with the first inner wall surface portion 111 of the main shell 11 can be prevented.
 図3に示すメインシェル11の第1内壁面部111は、頂点314Aにて外径が最大となるように変形し、他端側Lの傾斜角θ1Lとすると、メインシェル11の一端側Uの端部110の収縮量が大きくなる。そのため、一端側Uの傾斜角θ1は、大きくなる。一方、第1突出部112は、メインフレーム2に拘束されて変形し難いので、他端側Lの傾斜角θ1Lは、小さい。この結果、通常θ1L<θ1の関係が成り立つ。 The first inner wall surface portion 111 of the main shell 11 shown in FIG. 3 is deformed so that the outer diameter is maximized at the apex 314A, and the inclination angle θ1L of the other end L is the end of the one end U of the main shell 11 The amount of contraction of the portion 110 is increased. Therefore, the inclination angle θ1 of the one end side U becomes large. On the other hand, since the first protrusion 112 is restrained by the main frame 2 and hardly deformed, the inclination angle θ1L of the other end L is small. As a result, normally, the relationship of θ1L <θ1 is established.
 さらに、実施の形態1では、θ1L<θoの関係が保てるように設計すれば、載置端部313にてメインシェル11の第1内壁面部111との接触が防げる。また、θo≒θ1Lの関係が保てる場合には、仮に接触しても、締め付け力が小さいので無視できる。これについては、別途実施の形態3で説明する。 Furthermore, in the first embodiment, if the relationship of θ1L <θo can be maintained, the placement end portion 313 can prevent contact with the first inner wall surface portion 111 of the main shell 11. In addition, if the relationship of θo ≒ θ1L can be maintained, even if they are in contact with each other, they can be ignored because the tightening force is small. This will be described separately in Embodiment 3.
<作用および効果>
 以上のような製造方法により、従来のようにメインフレーム2と固定スクロール31とをボルトなどで接続する方法と同等に、メインフレーム2と、固定スクロール31と、揺動スクロール32と、の位置精度を実現しつつ、吸入空間92が拡大できる。また、固定スクロール31の固定にボルトなどが使われないため、製造が容易化できる。
<Action and effect>
Similar to the conventional method of connecting the main frame 2 and the fixed scroll 31 with bolts or the like by the above manufacturing method, the positional accuracy of the main frame 2, the fixed scroll 31, and the oscillating scroll 32 is equivalent to While the suction space 92 can be expanded. Moreover, since a bolt etc. are not used for fixation of fixed scroll 31, manufacture can be simplified.
 これにより、たとえば、揺動スクロール32の第2円形台板321およびスラストプレート24の直径が大きくでき、摺動面積が大きくなり、スラスト荷重による面圧が低減できる。また、メインフレーム2に固定スクロール31を固定するための壁が必要なくなるため、メインフレーム2の加工時間が短縮化できるとともに、軽量化が図られる。 Thus, for example, the diameters of the second circular base plate 321 and the thrust plate 24 of the orbiting scroll 32 can be increased, the sliding area is increased, and the surface pressure due to the thrust load can be reduced. Further, since a wall for fixing the fixed scroll 31 to the main frame 2 is not necessary, the processing time of the main frame 2 can be shortened and the weight can be reduced.
 メインシェル11は、第1突出部112と、第1突出部112から突出してメインフレーム2が位置決めされる第2位置決め面115を形成する第2突出部114と、を有している。そして、メインフレーム2は、第2位置決め面115に単体で固定されている。したがって、固定スクロール31もメインフレーム2も同様の製造工程にてシェル1に固定でき、製造が容易化できる。 The main shell 11 has a first protrusion 112 and a second protrusion 114 that protrudes from the first protrusion 112 and forms a second positioning surface 115 on which the main frame 2 is positioned. The main frame 2 is fixed to the second positioning surface 115 alone. Therefore, the fixed scroll 31 and the main frame 2 can be fixed to the shell 1 in the same manufacturing process, and the manufacturing can be facilitated.
 このように、固定スクロール31がメインシェル11に固定されたときに、固定スクロール31の第1円形台板311と第1円形台板311の他端側Lに形成した第1渦巻体312が変形せず、第1、第2渦巻体312、322同士の歯先漏れ隙間が拡大せず、圧縮機効率の低下が抑制できる。あるいは、第1、第2渦巻体312、322同士の歯先漏れ隙間が狭まらず、歯先が壁面と接触せず、耐久性の低下が抑制できる。したがって、従来のスクロール圧縮機と同等シェル径のまま、圧縮室34の排除容積が拡大できる。 Thus, when the fixed scroll 31 is fixed to the main shell 11, the first spiral body 312 formed on the first circular base plate 311 of the fixed scroll 31 and the other end L of the first circular base plate 311 is deformed It is possible to suppress a decrease in compressor efficiency without enlarging the tip end leakage gap between the first and second spiral bodies 312 and 322 without increasing the size. Alternatively, the tip-to-tip leakage gap between the first and second spirals 312 and 322 is not narrowed, and the tip is not in contact with the wall surface, so that the reduction in durability can be suppressed. Therefore, the displacement volume of the compression chamber 34 can be expanded with the shell diameter equivalent to that of the conventional scroll compressor.
 また、スクロール圧縮機100、凝縮器、膨張弁、および蒸発器を備え、冷媒を循環させる冷凍サイクル装置であって、冷媒にたとえばR32などを含む高圧冷媒を使用しても良い。R32などを含む高圧冷媒を使用した場合には、スラスト軸受にかかる負担が大きくなる。しかし、実施の形態1では、揺動スクロール32の第2円形台板321およびスラストプレート24の直径が大きくでき、摺動面積が大きくできる。このため、スラスト軸受にかかる負担が軽減でき、信頼性が高められる。 The refrigeration cycle apparatus may further include a scroll compressor 100, a condenser, an expansion valve, and an evaporator, and may be a high-pressure refrigerant including, for example, R32 as the refrigerant. When a high pressure refrigerant including R32 or the like is used, the load on the thrust bearing is increased. However, in the first embodiment, the diameters of the second circular base plate 321 and the thrust plate 24 of the oscillating scroll 32 can be increased, and the sliding area can be increased. Therefore, the load on the thrust bearing can be reduced, and the reliability can be improved.
<実施の形態1の効果>
 実施の形態1によれば、スクロール圧縮機100は、揺動スクロール32を摺動自在に保持するメインフレーム2を備える。スクロール圧縮機100は、揺動スクロール32とともに圧縮室34を形成する固定スクロール31を備える。スクロール圧縮機100は、固定スクロール31をメインフレーム2とは別々に固定するシェル1を備える。シェル1は、厚肉部である第1突出部112と第1突出部112より内径が大きい薄肉に形成される薄肉部である第1内壁面部111とを含んだ筒状のメインシェル11を有する。固定スクロール31は、第1突出部112と第1内壁面部111との境界部分に載置された載置端部313を有する。固定スクロール31は、載置端部313より大径であって第1内壁面部111に接触する環状突起314を有する。固定スクロール31は、載置端部313とは環状突起314を介した反対側にて環状突起314よりも小径である小径端部315を有する。
<Effect of Embodiment 1>
According to the first embodiment, scroll compressor 100 includes main frame 2 slidably holding oscillating scroll 32. The scroll compressor 100 includes a fixed scroll 31 that forms a compression chamber 34 with the oscillating scroll 32. The scroll compressor 100 includes a shell 1 that fixes the fixed scroll 31 separately from the main frame 2. The shell 1 has a cylindrical main shell 11 including a first projecting portion 112 which is a thick portion and a first inner wall surface portion 111 which is a thin portion which is formed to be thinner than the first projecting portion 112. . The fixed scroll 31 has a placement end 313 placed at the boundary between the first protrusion 112 and the first inner wall surface 111. The fixed scroll 31 has an annular protrusion 314 which is larger in diameter than the mounting end portion 313 and which contacts the first inner wall surface portion 111. The fixed scroll 31 has a small diameter end 315 smaller in diameter than the annular projection 314 on the opposite side to the mounting end 313 via the annular projection 314.
 この構成によれば、メインシェル11の第1内壁面部111の端部110がアッパーシェル12に円周が溶接されると、メインシェル11の第1内壁面部111の端部110の内径が1%から2%程度収縮する。そのとき、固定スクロール31が小径端部315を有するので、小径端部315が収縮する第1内壁面部111の端部110から受ける曲げモーメントが小さくできる。特に、実施の形態1では、小径端部315が収縮する第1内壁面部111に接触しない。よって、この曲げモーメントは、なくなる。その結果、焼嵌めなどによりメインシェル11に固定される固定スクロール31では、外周面に、載置端部313側から小径端部315側に向かって大きくなる面圧分布が生じず、第1円形台板311の中心部を下方に凹ませるように曲げるモーメントが働かない。したがって、固定スクロール31がシェル1内に位置精度良く配置でき、固定スクロール31の第1渦巻体312と揺動スクロール32の第2渦巻体322との歯先同士が適切な位置関係になるように構成される。 According to this configuration, when the end 110 of the first inner wall surface portion 111 of the main shell 11 is welded to the upper shell 12, the inner diameter of the end 110 of the first inner wall surface portion 111 of the main shell 11 is 1% It shrinks about 2% from. At that time, since the fixed scroll 31 has the small diameter end 315, the bending moment received from the end 110 of the first inner wall surface portion 111 where the small diameter end 315 contracts can be reduced. In the first embodiment, in particular, the small diameter end portion 315 does not contact the contracted first inner wall surface portion 111. Therefore, this bending moment disappears. As a result, in the fixed scroll 31 fixed to the main shell 11 by shrink fitting or the like, a surface pressure distribution that increases from the mounting end portion 313 side to the small diameter end portion 315 side does not occur on the outer peripheral surface. A moment does not act to bend the center of the base plate 311 downward. Therefore, the fixed scroll 31 can be disposed in the shell 1 with high positional accuracy, and the tips of the first scroll 312 of the fixed scroll 31 and the second scroll 322 of the oscillating scroll 32 have an appropriate positional relationship. Configured
 その結果、メインフレーム2に固定スクロール31を固定するための周壁を形成することなく、固定スクロール31がシェル1内に位置精度良く、焼嵌めおよび円周が溶接後の変形を最小限にするように配置できる。そして、スクロール圧縮機100の耐久性および信頼性の低下が抑制できる。また、スクロール圧縮機100の漏れ損失が増加せず、圧縮機効率の低下が抑制できる。 As a result, without forming a peripheral wall for fixing the fixed scroll 31 to the main frame 2, the fixed scroll 31 has a high positional accuracy within the shell 1, and the shrink fit and the circumference minimize deformation after welding. Can be placed on And the fall of the endurance of the scroll compressor 100 and reliability can be controlled. Further, the leakage loss of the scroll compressor 100 does not increase, and a reduction in the compressor efficiency can be suppressed.
 実施の形態1によれば、載置端部313と環状突起314とは、分離して形成される。 According to the first embodiment, the mounting end 313 and the annular protrusion 314 are formed separately.
 この構成によれば、載置端部313の外径が環状突起314の外径よりも小さくでき、載置端部313にてメインシェル11の第1内壁面部111との接触が防げる。この結果、メインシェル11の過度の変形が抑制できる。 According to this configuration, the outer diameter of the mounting end portion 313 can be smaller than the outer diameter of the annular protrusion 314, and the mounting end portion 313 can prevent contact with the first inner wall surface portion 111 of the main shell 11. As a result, excessive deformation of the main shell 11 can be suppressed.
 実施の形態1によれば、環状突起314は、メインシェル11の軸方向で曲線状に形成される。 According to the first embodiment, the annular protrusion 314 is formed in a curved shape in the axial direction of the main shell 11.
 この構成によれば、環状突起314は、メインシェル11の第1内壁面部111に接触する範囲を広げる。このため、接触範囲の応力集中が回避でき、メインシェル11の第1内壁面部111の耐久性が向上できる。 According to this configuration, the annular protrusion 314 widens the range of contact with the first inner wall surface portion 111 of the main shell 11. Therefore, stress concentration in the contact range can be avoided, and the durability of the first inner wall surface portion 111 of the main shell 11 can be improved.
 実施の形態1によれば、固定スクロール31の第1円形台板311のメインシェル11の軸方向での重心位置311Gは、環状突起314の範囲内である。 According to the first embodiment, the center of gravity position 311G of the first circular base plate 311 of the fixed scroll 31 in the axial direction of the main shell 11 is within the range of the annular protrusion 314.
 この構成によれば、第1円形台板311の重心位置311Gと面圧荷重の重心位置とのズレ分が、第1円形台板311の外周面に重心まわりに曲げモーメントとして働く。 According to this configuration, the deviation between the gravity center position 311G of the first circular base plate 311 and the gravity center position of the surface pressure load acts on the outer peripheral surface of the first circular base plate 311 as a bending moment around the gravity center.
 実施の形態1によれば、載置端部313と環状突起314と小径端部315とは、固定スクロール31の第1円形台板311から半径方向外側に突出した載置突起部316に設けられる。 According to the first embodiment, the mounting end portion 313, the annular protrusion 314 and the small diameter end portion 315 are provided on the mounting projection portion 316 which protrudes outward in the radial direction from the first circular base plate 311 of the fixed scroll 31. .
 この構成によれば、メインシェル11との接触が固定スクロール31の載置突起部316に限られ、固定スクロール31の第1円形台板311とは離間する。この結果、メインシェル11の過度の変形が抑制できる。 According to this configuration, the contact with the main shell 11 is limited to the mounting protrusion 316 of the fixed scroll 31, and is separated from the first circular base plate 311 of the fixed scroll 31. As a result, excessive deformation of the main shell 11 can be suppressed.
 実施の形態1によれば、シェル1は、メインシェル11の第1内壁面部111が固定されてメインシェル11の第1内壁面部111側の開口を塞ぐアッパーシェル12を有する。メインシェル11の第1内壁面部111とアッパーシェル12とが接合され、固定スクロール31の小径端部315と第1内壁面部111とが離間する。 According to the first embodiment, the shell 1 has the upper shell 12 to which the first inner wall surface portion 111 of the main shell 11 is fixed and which closes the opening on the first inner wall surface portion 111 side of the main shell 11. The first inner wall surface portion 111 of the main shell 11 and the upper shell 12 are joined, and the small diameter end portion 315 of the fixed scroll 31 and the first inner wall surface portion 111 are separated.
 この構成によれば、アッパーシェル12の円周が溶接後も固定スクロール31の小径端部315が第1内壁面部111に接触しない。そのため、小径端部315がアッパーシェル12の円周が溶接後に収縮した第1内壁面部111から受ける曲げモーメントがなくせる。 According to this configuration, the small diameter end portion 315 of the fixed scroll 31 does not contact the first inner wall surface portion 111 even after the circumference of the upper shell 12 is welded. Therefore, the bending moment which the small diameter end portion 315 receives from the first inner wall surface portion 111 where the circumference of the upper shell 12 is contracted after welding is eliminated.
 以下、実施の形態2~5では、実施の形態1に係る図1~図6のスクロール圧縮機100と同一の構成を有する部位については同一の符号を付してその説明を省略する。また、実施の形態1と同様に、スクロール圧縮機100の効率の向上および信頼性を確保しつつ、圧縮室34の排除容積を拡大する効果が奏されるものである。このような同様な効果については詳細説明を省略する。 Hereinafter, in the second to fifth embodiments, the parts having the same configuration as the scroll compressor 100 of FIGS. 1 to 6 according to the first embodiment are assigned the same reference numerals and descriptions thereof will be omitted. Further, as in the first embodiment, the effect of enlarging the displacement volume of the compression chamber 34 is achieved while ensuring the improvement of the efficiency and the reliability of the scroll compressor 100. A detailed description of such similar effects is omitted.
実施の形態2.
<小径端部315で接触および傾斜角がθ2≒θ1の場合>
 図10は、本発明の実施の形態2に係るアッパーシェル12の円周が溶接後のメインシェル11と固定スクロール31の第1円形台板311との形状変化を定量化する図1の一点鎖線領域Aを示す拡大図である。
Second Embodiment
<When the contact and inclination angle at the small diameter end 315 is θ2θθ1>
FIG. 10 is an alternate long and short dash line in FIG. 1 where the circumference of the upper shell 12 according to the second embodiment of the present invention quantifies the shape change of the main shell 11 after welding and the first circular base plate 311 of the fixed scroll 31. It is an enlarged view showing field A.
 載置端部313と環状突起314と小径端部315とは、載置突起部316に設けられる。載置端部313と小径端部315とは、ほぼ同じ外径に形成される。環状突起314は、載置突起部316における載置端部313と小径端部315との間で外周面から突出する。載置端部313と環状突起314とは、分離して別体に設けられる。 The mounting end 313, the annular protrusion 314 and the small diameter end 315 are provided on the mounting protrusion 316. The mounting end 313 and the small diameter end 315 are formed to have substantially the same outer diameter. The annular projection 314 protrudes from the outer circumferential surface between the mounting end 313 and the small diameter end 315 of the mounting projection 316. The mounting end 313 and the annular protrusion 314 are separately provided separately.
 円周が溶接後のメインシェル11の一端側Uの端部110の収縮変形量が0.1~0.2mm程度と同等程度である。このように、傾斜角θ2がθ1程度に設計されれば、仮に小径端部315で接触しても、以下の関係が成立する。つまり、小径端部315で発生する締め付け力は、環状突起314の頂点314Aで発生する締め付け力に比べて十分小さい。 The amount of contraction and deformation of the end portion 110 of the one end side U of the main shell 11 after welding is approximately equal to 0.1 to 0.2 mm. As described above, if the inclination angle θ2 is designed to be about θ1, even if the small diameter end portion 315 contacts, the following relationship is established. That is, the clamping force generated at the small diameter end 315 is sufficiently smaller than the clamping force generated at the apex 314 A of the annular protrusion 314.
 環状突起314の頂点314Aの位置は、固定スクロール31の重心位置311Gと駆動軸6での軸方向高さ位置でほぼ等しい。このため、第1円形台板311の重心まわりの曲げモーメントは、微小である。その結果、第1円形台板311と第1渦巻体312を変形させる影響は、十分小さく無視できる。 The position of the apex 314 A of the annular protrusion 314 is substantially equal at the axial height position of the center of gravity position 311 G of the fixed scroll 31 and the drive shaft 6. Therefore, the bending moment around the center of gravity of the first circular base plate 311 is minute. As a result, the influence of the deformation of the first circular base plate 311 and the first spiral body 312 can be ignored small enough.
 ただし、実施の形態2では、実施の形態1よりも円周が溶接後のメインシェル11の収縮変形量のばらつき影響を受け易くなる欠点がある。一方で、利点として、小径端部315が第1内壁面部111と接触してシール面317Bが形成できる。これにより、シール面積を増やし、吐出空間91と吸入空間92との間で冷媒の漏れが防げる。また、固定スクロール31の第1円形台板311の外周面に吐出圧Pdの圧力分布が発生することにより生じる曲げモーメントがなくせる。通常では、第1円形台板311の外周面の圧力分布は、問題とならない程度である。しかし、第1円形台板311の板厚が相対的に厚い、すなわちt/R1が大きいときに有利になる。 However, in the second embodiment, there is a defect that the circumference is more easily affected by the variation in the amount of contraction and deformation of the main shell 11 after welding than in the first embodiment. On the other hand, as an advantage, the small diameter end portion 315 can be in contact with the first inner wall surface portion 111 to form the sealing surface 317B. Thereby, the seal area is increased, and the leakage of the refrigerant between the discharge space 91 and the suction space 92 can be prevented. In addition, the bending moment generated due to the pressure distribution of the discharge pressure Pd occurring on the outer peripheral surface of the first circular base plate 311 of the fixed scroll 31 can be eliminated. Normally, the pressure distribution on the outer peripheral surface of the first circular base plate 311 is not a problem. However, it is advantageous when the plate thickness of the first circular base plate 311 is relatively thick, that is, t / R1 is large.
 実施の形態2によれば、実施の形態1よりも、円周が溶接後のメインシェル11の収縮変形量のばらつき影響を受け易い点があるものの、第1円形台板311の形状によっては有利な面もある。そして、実施の形態1に準ずる効果が得られる。 According to the second embodiment, although there is a point that the circumference is more susceptible to the variation of the amount of contraction deformation of the main shell 11 after welding than the first embodiment, it is advantageous depending on the shape of the first circular base plate 311. There is also a good side. And the effect according to Embodiment 1 is acquired.
<実施の形態2の変形例1>
 図11は、本発明の実施の形態2の変形例1に係るメインシェル11と固定スクロール31の第1円形台板311との形状変化を定量化する図1の一点鎖線領域Aで固定スクロール31の焼嵌め後の状態を示す図である。図12は、本発明の実施の形態2の変形例1に係るメインシェル11と固定スクロール31の第1円形台板311との形状変化を定量化する図1の一点鎖線領域Aでアッパーシェル12の円周が溶接後の状態を示す図である。
<Modification 1 of Embodiment 2>
11 quantifies the shape change of the main shell 11 and the first circular base plate 311 of the fixed scroll 31 according to the first modification of the second embodiment of the present invention. It is a figure which shows the state after shrink-fitting. FIG. 12 is an alternate long and short dash line area A of FIG. 1 for quantifying the shape change of the main shell 11 and the first circular base plate 311 of the fixed scroll 31 according to the first modification of the second embodiment of the present invention. The circumference of the figure shows the state after welding.
 載置端部313と環状突起314と小径端部315とは、載置突起部316に設けられる。小径端部315は、載置端部313より小径に形成される。環状突起314は、載置端部313と一体に設けられる。 The mounting end 313, the annular protrusion 314 and the small diameter end 315 are provided on the mounting protrusion 316. The small diameter end 315 is smaller in diameter than the mounting end 313. The annular protrusion 314 is integrally provided with the mounting end 313.
 載置突起部316の外周面には、頂点314Aを有する山形円弧領域taが形成される。山形円弧領域taは、載置端部313と環状突起314とを一体に設けたものである。山形円弧領域taのうち頂点314Aは、小径端部315よりも他端側Lの根元と載置端部313とのほぼ中央に位置する。つまり、山形円弧領域taは、頂点314Aで線対称な形状に形成される。 A chevron arc region ta having a vertex 314A is formed on the outer peripheral surface of the mounting protrusion 316. The chevron arc region ta is provided integrally with the mounting end 313 and the annular projection 314. The apex 314 A of the chevron arc region ta is located approximately at the center between the root of the other end side L than the small diameter end 315 and the mounting end 313. That is, the chevron arc region ta is formed in line symmetry at the vertex 314A.
 山形円弧領域taの頂点314A付近は、メインシェル11の第1内壁面部111に接触する。山形円弧領域taのうち頂点314Aより他端側Lは、中腹部から第1位置決め面113に載置される他端側Lの端面までを載置突起部316としての外径寸法を有して縮径される。載置突起部316の他端側Lの端面は、環状突起314および載置端部313の一部であり、第1位置決め面113に支持される。 The vicinity of the apex 314 A of the chevron arc region ta contacts the first inner wall surface portion 111 of the main shell 11. In the chevron arc region ta, the other end L from the apex 314 A has an outer diameter dimension as the mounting protrusion 316 from the middle part to the end face of the other end L placed on the first positioning surface 113 The diameter is reduced. The end face on the other end L of the placement protrusion 316 is a part of the annular protrusion 314 and the placement end 313, and is supported by the first positioning surface 113.
 傾斜角θ2をθ1程度に設計すれば、仮に小径端部315が第1内壁面部111に接触しても、小径端部315で発生する締め付け力としての荷重319Bは、頂点314Aで発生する締め付け力としての主荷重319Aに比べて十分小さい。頂点314Aの駆動軸6での軸方向高さ位置は、固定スクロール31の重心位置311Gの位置とほぼ等しい。このため、第1円形台板311の重心まわりの曲げモーメントは、十分小さい。その結果、第1円形台板311と第1渦巻体312とを変形させる影響は、十分小さく無視できる。したがって、実施の形態1に準じる効果が得られる。 If the inclination angle θ2 is designed to be about θ1, even if the small diameter end 315 contacts the first inner wall surface portion 111, the load 319B as the tightening force generated at the small diameter end 315 is the tightening force generated at the apex 314A. It is sufficiently smaller than the main load 319A. The axial height position of the vertex 314A at the drive shaft 6 is substantially equal to the position of the center of gravity position 311G of the fixed scroll 31. Therefore, the bending moment around the center of gravity of the first circular base plate 311 is sufficiently small. As a result, the influence of the deformation of the first circular base plate 311 and the first spiral body 312 can be ignored small enough. Therefore, the effects according to the first embodiment can be obtained.
<実施の形態2の変形例2>
 図13は、本発明の実施の形態2の変形例2に係るメインシェル11と固定スクロール31の第1円形台板311との形状変化を定量化する図1の一点鎖線領域Aで固定スクロール31の焼嵌め後の状態を示す図である。図14は、本発明の実施の形態2の変形例2に係るメインシェル11と固定スクロール31の第1円形台板311との形状変化を定量化する図1の一点鎖線領域Aでアッパーシェル12の円周が溶接後の状態を示す図である。
<Modification 2 of Embodiment 2>
FIG. 13 is a fixed scroll 31 in a dashed dotted line area A in FIG. 1 for quantifying the shape change of the main shell 11 and the first circular base plate 311 of the fixed scroll 31 according to the second modification of the second embodiment of the present invention. It is a figure which shows the state after shrink-fitting. FIG. 14 illustrates the shape change of the main shell 11 and the first circular base plate 311 of the fixed scroll 31 according to the second modification of the second embodiment of the present invention. The circumference of the figure shows the state after welding.
 載置端部313と環状突起314と小径端部315とは、載置突起部316に設けられる。小径端部315は、載置端部313より小径に形成される。環状突起314は、載置端部313と小径端部315と一体に設けられる。 The mounting end 313, the annular protrusion 314 and the small diameter end 315 are provided on the mounting protrusion 316. The small diameter end 315 is smaller in diameter than the mounting end 313. The annular projection 314 is integrally provided with the mounting end 313 and the small diameter end 315.
 環状突起314の外周面には、頂点314Aを有する山形円弧領域taが形成される。山形円弧領域taのうち頂点314Aは、小径端部315と載置端部313との間で中央よりも他端側Lに位置する。つまり、山形円弧領域taは、頂点314Aで非線対称な形状に形成される。 A chevron arc region ta having an apex 314A is formed on the outer peripheral surface of the annular protrusion 314. The apex 314A of the chevron arc region ta is located on the other end L between the small diameter end 315 and the placement end 313 rather than the center. That is, the chevron arc region ta is formed in a non-linear symmetric shape at the vertex 314A.
 山形円弧領域taの一端側Uは、頂点314Aから小径端部315まで緩やかな傾斜面を形成する。ここで、傾斜角θ2をθ2≒θ1となるように設計した点は、実施の形態2の変形例1と同様である。しかしながら、山形円弧領域taの一端側Uがメインシェル11の第1内壁面部111と接触するように緩やかな傾斜面に形成される点が実施の形態2の変形例1と異なる。このように、山形円弧領域taの一端側Uがメインシェル11の第1内壁面部111と接触すると、接触部分での締め付け力としての荷重319Cにおいては、頂点314Aの締め付け力としての主荷重319Aが最大となる荷重分布が生じる。ここで、頂点314Aの駆動軸6での軸方向高さ位置は、固定スクロール31の重心位置311Gの位置とほぼ等しい。そして、傾斜角θ2がθ2≒θ1となるように設計できれば、実施の形態1に準じる効果が得られる。 One end side U of the chevron arc region ta forms a gentle slope from the vertex 314 A to the small diameter end 315. Here, the point that the inclination angle θ2 is designed to be θ2 ≒ θ1 is the same as that of the first modification of the second embodiment. However, the second embodiment differs from the first modification of the second embodiment in that one end side U of the chevron arc region ta is formed in a gentle slope so as to contact the first inner wall surface portion 111 of the main shell 11. Thus, when the one end side U of the chevron arc region ta contacts the first inner wall surface portion 111 of the main shell 11, the main load 319A as the clamping force of the apex 314A is the load 319C as the clamping force at the contact portion. A maximum load distribution occurs. Here, the axial height position of the vertex 314A at the drive shaft 6 is substantially equal to the position of the gravity center position 311G of the fixed scroll 31. If the inclination angle θ2 can be designed so as to satisfy θ2 ≒ θ1, the effect according to the first embodiment can be obtained.
 ただし、第1内壁面部111と接触する山形円弧領域taの一端側Uの傾斜面が接触する仕方により、固定スクロール31の重心位置311Gが山形円弧領域taの一端側Uの傾斜面の範囲Sで変化し得てしまう難点がある。 However, the center of gravity position 311G of the fixed scroll 31 is in the range S of the inclined surface of the one end side U of the angular arc region ta by the way that the inclined surface of the one end side U of the angular arc region ta contacting the first inner wall surface portion 111 contacts. There is a drawback that it can change.
<実施の形態2の効果>
 実施の形態2によれば、載置端部313と環状突起314とは、一体に形成される。
<Effect of Second Embodiment>
According to the second embodiment, the mounting end 313 and the annular protrusion 314 are integrally formed.
 この構成によれば、環状突起314が載置端部313と一体となって大きく形成でき、環状突起314の強度が向上できる。この結果、環状突起314の耐久性が向上できる。 According to this configuration, the annular protrusion 314 can be formed large integrally with the mounting end portion 313, and the strength of the annular protrusion 314 can be improved. As a result, the durability of the annular protrusion 314 can be improved.
 実施の形態2によれば、シェル1は、メインシェル11の第1内壁面部111が固定されてメインシェル11の第1内壁面部111側の開口を塞ぐアッパーシェル12を有する。メインシェル11の第1内壁面部111がアッパーシェル12に固定されるときに、固定スクロール31の小径端部315が第1内壁面部111から受ける曲げモーメントである締め付け力としての荷重319Cは、固定スクロール31の環状突起314が第1内壁面部111に接触して受ける曲げモーメントである締め付け力としての主荷重319Aより小さい。 According to the second embodiment, the shell 1 has the upper shell 12 to which the first inner wall surface portion 111 of the main shell 11 is fixed and which closes the opening on the first inner wall surface portion 111 side of the main shell 11. When the first inner wall surface portion 111 of the main shell 11 is fixed to the upper shell 12, a load 319C as a tightening force which is a bending moment received by the small diameter end 315 of the fixed scroll 31 from the first inner wall surface 111 is fixed scroll. The primary load 319A as a clamping force, which is a bending moment received by the annular projection 314 of 31 in contact with the first inner wall surface portion 111, is smaller.
 この構成によれば、アッパーシェル12の円周が溶接後に固定スクロール31の小径端部315が第1内壁面部111に接触する。しかし、小径端部315がアッパーシェル12の円周が溶接後に収縮した第1内壁面部111から受ける曲げモーメントのうち、小径端部315が第1内壁面部111から受ける曲げモーメントは、環状突起314が第1内壁面部111に接触して受ける曲げモーメントより小さい。その結果、第1円形台板311と第1渦巻体312とを変形させる影響は、十分小さく無視できる。加えて、小径端部315が第1内壁面部111と接触してシール面317Bが形成できる。これにより、シール面積が増え、吐出空間91と吸入空間92との間で冷媒の漏れが防げる。また、固定スクロール31の第1円形台板311の外周面に吐出圧Pdの圧力分布が発生することにより生じる曲げモーメントがなくせる。 According to this configuration, the small diameter end portion 315 of the fixed scroll 31 contacts the first inner wall surface portion 111 after the circumference of the upper shell 12 is welded. However, among the bending moments which the small diameter end portion 315 receives from the first inner wall surface portion 111 where the circumference of the upper shell 12 is contracted after welding, the bending moment which the small diameter end portion 315 receives from the first inner wall surface portion 111 The bending moment received in contact with the first inner wall surface portion 111 is smaller. As a result, the influence of the deformation of the first circular base plate 311 and the first spiral body 312 can be ignored small enough. In addition, the small diameter end portion 315 contacts the first inner wall surface portion 111 to form the sealing surface 317B. Thereby, the seal area is increased, and the leakage of the refrigerant between the discharge space 91 and the suction space 92 can be prevented. In addition, the bending moment generated due to the pressure distribution of the discharge pressure Pd occurring on the outer peripheral surface of the first circular base plate 311 of the fixed scroll 31 can be eliminated.
実施の形態3.
<載置端部313で接触および傾斜角がθo≒θ1Lの場合>
 図15は、本発明の実施の形態3に係るアッパーシェル12の円周が溶接後のメインシェル11と固定スクロール31の第1円形台板311との形状変化を定量化する図1の一点鎖線領域Aを示す拡大図である。
Third Embodiment
<When the contact and inclination angle at the mounting end 313 is θo ≒ θ1L>
FIG. 15 is a dashed-dotted line in FIG. 1 where the circumference of the upper shell 12 according to the third embodiment of the present invention quantifies the shape change of the main shell 11 after welding and the first circular base plate 311 of the fixed scroll 31. It is an enlarged view showing field A.
 実施の形態1では、傾斜角がθ2>θ1、かつ、θo>θ1Lである。また、載置端部313と小径端部315とは、メインシェル11の第1内壁面部111に接触しない。そして、環状突起314だけは、メインシェル11の第1内壁面部111に接触する。 In the first embodiment, the inclination angle is θ2> θ1 and θo> θ1L. Further, the placement end 313 and the small diameter end 315 do not contact the first inner wall surface 111 of the main shell 11. Then, only the annular protrusion 314 contacts the first inner wall surface portion 111 of the main shell 11.
 実施の形態2では、傾斜角がθ2≒θ1である。また、載置端部313と小径端部315とは、環状突起314とともにメインシェル11の第1内壁面部111に接触する。 In the second embodiment, the inclination angle is θ2 ≒ θ1. Further, the mounting end 313 and the small diameter end 315 contact the first inner wall surface 111 of the main shell 11 together with the annular projection 314.
 ここで、第1円形台板311の載置突起部316の載置端部313は、第1位置決め面113に接触して環状のシール面317Oを形成する。このシール面317Oのシール幅c1として、第1内壁面部111の内径R1oから第1突出部112の内径Raを引いたc1=R1o-Raの値を十分大きく確保する必要がある。しかし、上記の実施の形態1では、載置端部313が第1内壁面部111に接触しない寸法である。このため、シール幅c1の大きさに制約がある。また、上記の実施の形態2では、小径端部315が第1内壁面部111に接触する。このため、円周が溶接後のメインシェル11の収縮変形量のばらつき影響を受け易い難点がある。 Here, the placement end 313 of the placement protrusion 316 of the first circular base plate 311 contacts the first positioning surface 113 to form an annular seal surface 317O. As the seal width c1 of the seal surface 317O, it is necessary to secure a sufficiently large value of c1 = R1o−Ra obtained by subtracting the inner diameter Ra of the first projecting portion 112 from the inner diameter R1o of the first inner wall surface portion 111. However, in the first embodiment described above, the mounting end 313 does not come in contact with the first inner wall surface 111. For this reason, the size of the seal width c1 is restricted. Further, in the above-described second embodiment, the small diameter end portion 315 contacts the first inner wall surface portion 111. For this reason, there is a drawback that the circumference is easily influenced by the variation in the amount of shrinkage deformation of the main shell 11 after welding.
 そこで、実施の形態3では、シール面317Oで十分なシール面積を確保するため、頂点314A付近のシール面317Aに加えて、頂点314Aよりも他端側Lの載置端部313でも第1内壁面部111に緩やかに接触するように、θo≒θ1Lの関係が保たれる。つまり、載置端部313と環状突起314とは、外径が同じ寸法である。環状突起314は、小径端部315から載置突起部316の外径を途中からテーパ状に拡径させて設けられる。環状突起314は、他端側Lに向けて少し縮径される。載置端部313は、環状突起314の他端側Lの少し縮径される根元から緩やかに環状突起314と同じ外径に拡径される。 Therefore, in the third embodiment, in order to secure a sufficient seal area in seal surface 317O, in addition to seal surface 317A in the vicinity of apex 314A, the first inner wall is also provided at mounting end 313 on the other end L than apex 314A. The relationship of θo ≒ θ1L is maintained so as to gently contact the surface portion 111. That is, the mounting end 313 and the annular projection 314 have the same outer diameter. The annular projection 314 is provided by tapering the outer diameter of the mounting projection 316 from the small diameter end portion 315 in the middle. The annular protrusion 314 is slightly reduced in diameter toward the other end L. The mounting end portion 313 is gradually expanded to the same outer diameter as the annular protrusion 314 from the slightly diameter-reduced root on the other end L of the annular protrusion 314.
 実施の形態3によれば、シール面317Oのシール幅c1として、第1内壁面部111の内径R1oから第1突出部112の内径Raを引いたc1=R1o-Raの値が十分大きく確保できる。また、載置端部313では、小径端部315より円周が溶接後のメインシェル11の収縮変形量が小さく、ばらつき影響が受け難くなる。 According to the third embodiment, a value of c1 = R1o−Ra obtained by subtracting the inner diameter Ra of the first projecting portion 112 from the inner diameter R1o of the first inner wall surface portion 111 can be secured sufficiently large as the seal width c1 of the sealing surface 317O. In addition, at the mounting end 313, the amount of contraction and deformation of the main shell 11 after welding is smaller than that of the small diameter end 315, so that the influence of variations becomes difficult.
実施の形態4.
<角部が面取りされる頂点を含む断面四角形状の環状突起で接触および傾斜角がθo=θ1Lの場合>
 図16は、本発明の実施の形態4に係るアッパーシェル12の円周が溶接後のメインシェル11と固定スクロール31の第1円形台板311との形状変化を定量化する図1の一点鎖線領域Aを示す拡大図である。
Fourth Embodiment
<A case where the contact and the inclination angle are θo=θ1L with an annular protrusion having a rectangular cross section including the apex of which the corner is chamfered>
16 is a dashed-dotted line in FIG. 1 where the circumference of the upper shell 12 according to Embodiment 4 of the present invention quantifies the shape change of the main shell 11 after welding and the first circular base plate 311 of the fixed scroll 31. It is an enlarged view showing field A.
 ところで、実施の形態1では、環状突起314は、メインシェル11の軸方向で曲線状に形成される円弧形状であり、頂点314A付近で第1内壁面部111に接触する。 In the first embodiment, the annular protrusion 314 has an arc shape formed in a curved shape in the axial direction of the main shell 11, and contacts the first inner wall surface portion 111 near the apex 314A.
 実施の形態4では、環状突起314は、載置突起部316に載置端部313と一体に形成される断面四角形状である。載置端部313は、載置突起部316の他端側Lの角部である。載置端部313に至る環状突起314の断面四角形状は、一端側Uと他端側Lとの角部を面取りされる。載置端部313は、角部を面取りされ、メインシェル11の第1内壁面部111には接触しない。環状突起314は、一端側Uと他端側Lとの長さがtaである。環状突起314の外周部は、接触範囲Sで外径が均一の円周面状に形成される。つまり、環状突起314は、メインシェル11の軸方向の一端側Uと他端側Lとの間で直線状に形成される。 In the fourth embodiment, the annular protrusion 314 has a rectangular shape in cross section formed integrally with the placement protrusion 313 on the placement protrusion 316. The placement end 313 is a corner on the other end L of the placement protrusion 316. The rectangular section of the annular protrusion 314 reaching the placement end 313 is chamfered at the corner between the one end U and the other end L. The mounting end portion 313 is chamfered at the corner portion and does not contact the first inner wall surface portion 111 of the main shell 11. The annular protrusion 314 has a length ta between one end U and the other end L. The outer peripheral portion of the annular protrusion 314 is formed in a circumferential surface having a uniform outer diameter in the contact range S. That is, the annular protrusion 314 is linearly formed between the one end U and the other end L in the axial direction of the main shell 11.
 ここで、アッパーシェル12がメインシェル11に円周が溶接されると、メインシェル11の収縮により第1内壁面部111が傾斜変形する。次に、第1内壁面部111のうち接触範囲Sの一端側Uの角部に対応する第1接触箇所である頂点314Axも傾斜変形する。このとき、図7の台形分布のような荷重分布が発生する。分布する荷重のうち主荷重は、接触範囲Sの中点位置(S/2)から、一端側UへS/6までの範囲内に働く。このため、固定スクロールにおける第1円形台板311の重心位置311Gの位置がこの範囲内に合えば、第1円形台板311に大きな曲げモーメントが働かない。すなわち、第1円形台板311のメインシェル11の軸方向での重心位置311Gは、環状突起314の範囲内であって環状突起314のメインシェル11の軸方向での真ん中よりも一端側Uである小径端部317側である。その結果、固定スクロール31の変形は、小さな状態に保持できる。 Here, when the circumference of the upper shell 12 is welded to the main shell 11, the contraction of the main shell 11 causes the first inner wall surface portion 111 to be inclined and deformed. Next, a vertex 314Ax, which is a first contact point corresponding to a corner of the one end side U of the contact range S in the first inner wall surface portion 111, is also inclined and deformed. At this time, a load distribution like the trapezoidal distribution shown in FIG. 7 occurs. Among the distributed loads, the main load acts in the range from the midpoint position (S / 2) of the contact range S to the one-end side U to S / 6. Therefore, if the position of the gravity center position 311G of the first circular base plate 311 in the fixed scroll is within this range, a large bending moment does not act on the first circular base plate 311. That is, the center-of-gravity position 311G of the first circular base plate 311 in the axial direction of the main shell 11 is within the range of the annular projection 314 and is closer to the one end U than the center of the annular projection 314 in the axial direction of the main shell 11. It is the small diameter end 317 side. As a result, the deformation of the fixed scroll 31 can be kept small.
 さらに、接触範囲Sが十分小さければ、固定スクロール31の載置突起部316の外周面に働く曲げモーメントが無視できる。接触範囲Sが固定スクロール31の最外径R1のうち6%以下であれば、曲げモーメントが最大負荷運転時の荷重撓みレベルとなって十分無視できる。 Furthermore, if the contact range S is sufficiently small, the bending moment acting on the outer peripheral surface of the mounting projection 316 of the fixed scroll 31 can be ignored. If the contact range S is 6% or less of the outermost diameter R1 of the fixed scroll 31, the bending moment becomes a load deflection level at the maximum load operation and can be sufficiently ignored.
 実施の形態4によれば、実施の形態1よりも円周が溶接後のメインシェル11の収縮変形量のばらつきによる影響が残るものの、曲げモーメントの影響が十分小さくでき、実施の形態1に準ずる効果が得られる。 According to the fourth embodiment, although the influence of variations in the amount of contraction and deformation of the main shell 11 after welding remains unchanged, the influence of the bending moment can be sufficiently reduced compared to the first embodiment, and according to the first embodiment. An effect is obtained.
<実施の形態4の変形例1>
 図17は、本発明の実施の形態4の変形例1に係る固定スクロール31の第1円形台板311を示す拡大図である。
<Modification 1 of Embodiment 4>
FIG. 17 is an enlarged view showing a first circular base plate 311 of the fixed scroll 31 according to the first modification of the fourth embodiment of the present invention.
 図17に示すように、第1円形台板311は、載置突起部316を有さない。固定スクロール31には、載置端部313と環状突起314と小径端部315とが形成される。載置端部313と環状突起314とは、一体に形成される。環状突起314は、実施の形態4の載置突起部316に形成された形状と同形状である。小径端部315は、載置端部313と環状突起314とは別体に形成される。 As shown in FIG. 17, the first circular base plate 311 does not have the placement protrusion 316. The fixed scroll 31 is formed with a mounting end 313, an annular protrusion 314 and a small diameter end 315. The mounting end 313 and the annular protrusion 314 are integrally formed. The annular protrusion 314 has the same shape as that of the mounting protrusion 316 of the fourth embodiment. The small diameter end 315 is formed separately from the mounting end 313 and the annular protrusion 314.
<実施の形態4の変形例2>
 図18は、本発明の実施の形態4の変形例2に係る固定スクロール31の第1円形台板311を示す拡大図である。
<Modification 2 of Embodiment 4>
FIG. 18 is an enlarged view showing a first circular base plate 311 of the fixed scroll 31 according to the second modification of the fourth embodiment of the present invention.
 図18に示すように、環状突起314は、載置突起部316に載置端部313と一体に形成される断面四角形状である。環状突起314の断面四角形状は、一端側Uと他端側Lとの角部を面取りされない。環状突起314の外周部は、肉厚に等しい接触範囲Sで外径が均一の円周面状に形成される。 As shown in FIG. 18, the annular protrusion 314 has a rectangular shape in cross section formed integrally with the placement protrusion 313 on the placement protrusion 316. The rectangular section of the annular protrusion 314 is not chamfered at the corner between the one end U and the other end L. The outer peripheral portion of the annular protrusion 314 is formed in a circumferential surface having a uniform outer diameter in a contact range S equal to the thickness.
<実施の形態4の変形例3>
 図19は、本発明の実施の形態4の変形例3に係る固定スクロール31の第1円形台板311を示す拡大図である。
<Modification 3 of Embodiment 4>
FIG. 19 is an enlarged view showing a first circular base plate 311 of the fixed scroll 31 according to the third modification of the fourth embodiment of the present invention.
 図19に示すように、環状突起314は、載置突起部316に載置端部313と一体に形成される断面四角形状である。環状突起314の断面四角形状は、一端側Uと他端側Lとの角部を面取りされない。環状突起314の外周部は、載置端部313に向かうに従い縮径される。載置端部313は、環状突起314よりも小径である。このため、載置端部313は、メインシェル11の第1内壁面部111には接触しない。 As shown in FIG. 19, the annular protrusion 314 has a rectangular shape in cross section formed integrally with the placement protrusion 313 on the placement protrusion 316. The rectangular section of the annular protrusion 314 is not chamfered at the corner between the one end U and the other end L. The outer peripheral portion of the annular protrusion 314 is reduced in diameter toward the mounting end portion 313. The mounting end 313 is smaller in diameter than the annular protrusion 314. For this reason, the placement end 313 does not contact the first inner wall surface portion 111 of the main shell 11.
 図19に示す変形例3では、載置端部313を縮径するテーパ角度が大きくなる程、主荷重319Aの働く位置が一端側Uに移動する。主荷重319Aの働く位置がある一定以上一端側Uに移動すると、主荷重319Aは、環状突起314で働くとみなせる。そのため、第1円形台板311の重心位置311Gの位置が環状突起314の位置と等しい高さに合えば、第1円形台板311および第1渦巻体312を曲げる大きな曲げモーメントが働かない。その結果、固定スクロール31の変形の小さい状態は、保持できる。 In the third modification shown in FIG. 19, the position at which the main load 319A works moves to the one end side U as the taper angle for reducing the diameter of the mounting end portion 313 increases. When the working position of the main load 319A moves to one end side U beyond a certain level, the main load 319A can be considered to work at the annular projection 314. Therefore, if the position of the gravity center position 311G of the first circular base plate 311 matches the position of the annular projection 314, a large bending moment that bends the first circular base plate 311 and the first spiral body 312 does not work. As a result, a small deformation state of the fixed scroll 31 can be maintained.
 以上、実施の形態4の変形例1~3によれば、実施の形態1よりも、円周が溶接後のメインシェル11の収縮変形量のばらつきによる影響が残るものの、曲げモーメントの影響が十分小さくできる。そのため、実施の形態1に準ずる効果が得られる。 As described above, according to the first to third modifications of the fourth embodiment, although the influence of the variation in the amount of contraction and deformation of the main shell 11 after welding remains, the influence of the bending moment is more sufficient than the first embodiment. It can be made smaller. Therefore, the effects according to the first embodiment can be obtained.
<実施の形態4の効果>
 実施の形態4によれば、環状突起314は、メインシェル11の軸方向で直線状に形成される。
<Effect of Fourth Embodiment>
According to the fourth embodiment, the annular protrusion 314 is formed linearly in the axial direction of the main shell 11.
 この構成によれば、環状突起314は、メインシェル11の第1内壁面部111に接触する範囲を直線状の領域全体に広げる。このため、接触範囲の応力集中が回避でき、メインシェル11の第1内壁面部111の耐久性が向上できる。 According to this configuration, the annular protrusion 314 widens the range in contact with the first inner wall surface portion 111 of the main shell 11 over the entire linear region. Therefore, stress concentration in the contact range can be avoided, and the durability of the first inner wall surface portion 111 of the main shell 11 can be improved.
 実施の形態4によれば、固定スクロール31の第1円形台板311のメインシェル11の軸方向での重心位置311Gは、環状突起314の範囲内であって環状突起314のメインシェル11の軸方向での真ん中よりも一端側Uである小径端部317側である。 According to the fourth embodiment, the gravity center position 311G of the first circular base plate 311 of the fixed scroll 31 in the axial direction of the main shell 11 is within the range of the annular protrusion 314 and the axis of the main shell 11 of the annular protrusion 314 It is the small diameter end 317 side which is one end side U than the middle in the direction.
 この構成によれば、第1円形台板311の重心位置311Gと面圧荷重の重心位置とのズレ分が、第1円形台板311の外周面に重心まわりに曲げモーメントとしてより多く働く。 According to this configuration, the deviation between the gravity center position 311G of the first circular base plate 311 and the gravity center position of the surface pressure load acts more on the outer peripheral surface of the first circular base plate 311 as a bending moment around the gravity center.
実施の形態5.
 図20は、本発明の実施の形態5に係る固定スクロール31の第1円形台板311を示す拡大図である。図21は、本発明の実施の形態5に係るアッパーシェル12の円周が溶接後のメインシェル11と固定スクロール31の第1円形台板311との形状変化を定量化する図1の一点鎖線領域Aを示す拡大図である。
Embodiment 5
FIG. 20 is an enlarged view showing a first circular base plate 311 of the fixed scroll 31 according to Embodiment 5 of the present invention. FIG. 21 is a dashed-dotted line in FIG. 1 where the circumference of the upper shell 12 according to the fifth embodiment of the present invention quantifies the shape change of the main shell 11 after welding and the first circular base plate 311 of the fixed scroll 31. It is an enlarged view showing field A.
 実施の形態4では、載置端部313と環状突起314と小径端部315とは、載置突起部316に設けられる。小径端部315は、載置突起部316に小径突起315Aを有して形成される。小径突起315Aは、小径端部315から半径方向外側に環状に突出する。小径端部315は、載置端部313より大径に形成される。 In the fourth embodiment, the placement end 313, the annular protrusion 314, and the small diameter end 315 are provided on the placement protrusion 316. The small diameter end portion 315 is formed to have the small diameter projection 315A on the mounting projection 316. The small diameter projection 315A annularly protrudes from the small diameter end 315 radially outward. The small diameter end portion 315 is formed larger in diameter than the mounting end portion 313.
 環状突起314は、載置突起部316から半径方向外側に環状に突出する。環状突起314は、小径端部315の小径突起315Aよりも大径に形成される。環状突起314は、載置端部313と別体に設けられる。 The annular protrusion 314 annularly protrudes radially outward from the mounting protrusion 316. The annular projection 314 is formed larger in diameter than the small diameter projection 315A of the small diameter end portion 315. The annular projection 314 is provided separately from the mounting end 313.
 載置端部313は、載置突起部316そのものの角部に形成される。載置端部313は、小径突起315Aを有する小径端部315よりも小径である。このため、載置端部313は、メインシェル11の第1内壁面部111には接触しない。 The mounting end 313 is formed at the corner of the mounting protrusion 316 itself. The mounting end 313 has a smaller diameter than the small diameter end 315 having the small diameter projection 315A. For this reason, the placement end 313 does not contact the first inner wall surface portion 111 of the main shell 11.
 環状突起314の外周部は、外径が均一の円周面状に形成される。また、小径端部315の外周部は、外径が均一の円周面状に形成される。環状突起314の外周部と小径端部315の外周部との間には、段差を有する凹部318が形成される。環状突起314の駆動軸6での軸方向高さ位置は、固定スクロール31の重心位置311Gとほぼ同じである。 The outer peripheral portion of the annular protrusion 314 is formed in the shape of a circumferential surface having a uniform outer diameter. Moreover, the outer peripheral part of the small diameter end part 315 is formed in the circumferential surface form with uniform outer diameter. Between the outer peripheral portion of the annular protrusion 314 and the outer peripheral portion of the small diameter end portion 315, a recessed portion 318 having a step is formed. The axial height position of the annular protrusion 314 on the drive shaft 6 is substantially the same as the gravity center position 311 G of the fixed scroll 31.
 ここで、固定スクロール31がメインシェル11に焼嵌め固定された時点では、環状突起314のみがメインシェル11の第1内壁面部111に接触する。このため、メインシェル11の第1内壁面部111の変形量は、小さい状態である。さらに、アッパーシェル12の円周が溶接されると、小径端部315も環状突起314とともにメインシェル11の第1内壁面部111に接触する。 Here, when the fixed scroll 31 is shrink fit to the main shell 11, only the annular protrusion 314 contacts the first inner wall surface portion 111 of the main shell 11. For this reason, the amount of deformation of the first inner wall surface portion 111 of the main shell 11 is in a small state. Furthermore, when the circumference of the upper shell 12 is welded, the small diameter end portion 315 also contacts the first inner wall surface portion 111 of the main shell 11 together with the annular projection 314.
 このとき、メインシェル11が収縮することによる主荷重319Aは、環状突起314に働く。また、荷重319Bは、小径端部315に働く。しかし、荷重319Bは、主荷重319Aよりも微小荷重である。 At this time, a main load 319A caused by the contraction of the main shell 11 acts on the annular protrusion 314. Also, the load 319 B acts on the small diameter end 315. However, the load 319B is a smaller load than the main load 319A.
 ここで、第1内壁面部111は、傾斜して変形する。それにより、環状突起314は、傾斜して変形する。主荷重319Aは、環状突起314の接触範囲sに対し、環状突起314の中点(s/2)位置から一端側Uへs/6までの駆動軸6での軸方向範囲内に働く。そのため、第1円形台板311の重心位置311Gの位置がこの範囲内に合えば、第1円形台板311および第1渦巻体312に大きな曲げモーメントが働かない。その結果、固定スクロール31の変形が小さい。 Here, the first inner wall surface portion 111 is inclined and deformed. Thereby, the annular protrusion 314 is deformed in an inclined manner. The main load 319A acts on the contact range s of the annular protrusion 314 within the axial range on the drive shaft 6 from the middle point (s / 2) position of the annular protrusion 314 to one end side U to s / 6. Therefore, if the position of the gravity center position 311G of the first circular base plate 311 is within this range, a large bending moment does not act on the first circular base plate 311 and the first spiral body 312. As a result, the deformation of the fixed scroll 31 is small.
 なお、接触範囲sが十分小さければ、曲げモーメントが無視できる。接触範囲sが環状突起314の最外径R1の6%以下であれば、曲げモーメントが最大負荷運転時の荷重撓みレベルとなり、十分無視できる。 If the contact range s is sufficiently small, the bending moment can be ignored. If the contact range s is 6% or less of the outermost diameter R1 of the annular projection 314, the bending moment becomes the load deflection level at the maximum load operation and can be sufficiently ignored.
 実施の形態5によれば、実施の形態1よりも、円周が溶接後のメインシェル11の収縮変形量のばらつきによる影響が残るものの、曲げモーメントの影響が十分小さくできる。それにより、実施の形態1に準ずる効果が得られる。 According to the fifth embodiment, the influence of the bending moment can be sufficiently reduced, although the influence of the variation of the amount of contraction and deformation of the main shell 11 after welding remains, as compared with the first embodiment. Thereby, the effect according to the first embodiment can be obtained.
<実施の形態5の効果>
 実施の形態5によれば、小径端部315は、半径方向外側に突出した小径突起315Aを有している。
<Effect of Fifth Embodiment>
According to the fifth embodiment, the small diameter end 315 has a small diameter projection 315A that protrudes radially outward.
 この構成によれば、小径突起315Aを有する小径端部315が第1内壁面部111から受ける曲げモーメントは、環状突起314が第1内壁面部111に接触して受ける曲げモーメントより小さい、または、ゼロである。その結果、第1円形台板311と第1渦巻体312とを変形させる影響は、十分小さく無視できる。 According to this configuration, the bending moment received by the small diameter end 315 having the small diameter projection 315A from the first inner wall surface portion 111 is smaller than the bending moment received by the annular projection 314 in contact with the first inner wall surface portion 111 or zero. is there. As a result, the influence of the deformation of the first circular base plate 311 and the first spiral body 312 can be ignored small enough.
 なお、実施の形態5では、小径突起315Aは、メインシェル11の第1内壁面部111に接触していた。このため、小径突起315Aは、固定スクロール31の環状突起314が第1内壁面部111に接触して受ける曲げモーメントより小さい曲げモーメントを受けていた。しかし、これに限られない。小径突起315Aは、メインシェル11の第1内壁面部111に接触しなくても良い。 In the fifth embodiment, the small diameter protrusion 315A is in contact with the first inner wall surface portion 111 of the main shell 11. Therefore, the small diameter protrusion 315A receives a bending moment smaller than the bending moment received by the annular protrusion 314 of the fixed scroll 31 in contact with the first inner wall surface portion 111. However, it is not limited to this. The small diameter projection 315A may not be in contact with the first inner wall surface portion 111 of the main shell 11.
<その他>
 たとえば、上記実施形態では、縦型スクロール圧縮機について説明した。しかし、駆動軸が水平方向に延出する横型スクロール圧縮機にも適用できる。その際、横型スクロール圧縮機においても、メインフレームを基準として、圧縮機構部が設けられる側を一端側、駆動機構部が設けられる側を他端側と方向付けて定義ができる。また、低圧シェル方式のスクロール圧縮機に限らない。本発明は、駆動機構部が配置されたメインシェル内の空間の圧力が冷媒取込空間の圧力よりも高くなる高圧シェル方式のスクロール圧縮機にも適用できる。
<Others>
For example, in the above embodiment, the vertical scroll compressor has been described. However, the present invention can also be applied to a horizontal scroll compressor in which the drive shaft extends in the horizontal direction. At that time, also in the horizontal scroll compressor, the side on which the compression mechanism portion is provided can be defined as one end side and the side on which the drive mechanism portion is provided can be defined as the other end side with reference to the main frame. Moreover, it is not limited to the low pressure shell type scroll compressor. The present invention can also be applied to a high pressure shell type scroll compressor in which the pressure of the space in the main shell in which the drive mechanism is disposed is higher than the pressure of the refrigerant intake space.
 メインシェルは、円筒状に限らない。メインシェルは、たとえば、六角筒および五角筒といった多角筒などであっても良い。また、上記実施形態では、メインシェル内における固定スクロールの円形台板と、メインフレームのスラスト軸受と、の間の冷媒取込空間が従来よりも広げられる効果により、渦巻体などが従来設計のまま、揺動スクロールの円形台板およびスラストプレートの直径が大きくできる。この結果、揺動スクロールの円形台板とスラストプレートとの摺動面積が大きくなり、スラスト荷重が低減できた。しかし、これに限られない。 The main shell is not limited to a cylindrical shape. The main shell may be, for example, a polygonal cylinder such as a hexagonal cylinder and a pentagonal cylinder. Further, in the above embodiment, the scroll body and the like can be designed as conventionally by the effect that the refrigerant intake space between the circular base plate of the fixed scroll in the main shell and the thrust bearing of the main frame can be expanded more than before. The diameters of the circular base plate and thrust plate of the oscillating scroll can be increased. As a result, the sliding area between the circular base plate of the oscillating scroll and the thrust plate is increased, and the thrust load can be reduced. However, it is not limited to this.
 なお、揺動スクロールの第2渦巻体および第2円形台板が大きい場合には、重さが重くなることなどにより揺動スクロールの揺動運動による遠心力が大きくなる。そのため、バランスウエイトのウエイト部の体積および重量を大きくし、その遠心力を相殺する必要がある。これに対して、本発明では、メインフレームにおいてボルト止めするための壁が無く、メインフレームの設計自由度が高まる。このため、メインフレームの本体部の収容空間が大きく確保できる。収容空間が大きくなることにより、体積の大きなウエイト部を有するバランスウエイトが使用できる。そのため、揺動スクロールの遠心力が相殺され、揺動スクロールの第2渦巻体に作用する径方向の荷重が低減できる。よって、揺動スクロールの信頼性が向上できるとともに、揺動スクロールの第2渦巻体と固定スクロールの第1渦巻体との間の摺動損失が低減できる。 When the second scroll body and the second circular base plate of the rocking scroll are large, the weight is increased and the centrifugal force by the rocking motion of the rocking scroll is increased. Therefore, it is necessary to increase the volume and weight of the weight portion of the balance weight to offset the centrifugal force. On the other hand, in the present invention, there is no wall for bolting in the main frame, and the design freedom of the main frame is enhanced. For this reason, the accommodation space of the main-body part of a mainframe can be ensured large. As the accommodation space is increased, a balance weight having a large volume weight portion can be used. Therefore, the centrifugal force of the oscillating scroll is offset, and the radial load acting on the second scroll of the oscillating scroll can be reduced. Therefore, the reliability of the rocking scroll can be improved, and the sliding loss between the second scroll of the rocking scroll and the first scroll of the fixed scroll can be reduced.
 また、揺動スクロールのサイズはそのまま、シェル、すなわち、メインシェル若しくはアッパーシェルなどは、従来よりも小さい内径のものを使用しても良い。これにより、従来と比較して押しのけ量は同等のまま、小型のスクロール圧縮機が実現できる。 In addition, the size of the oscillating scroll may be used as it is, and the shell, that is, the main shell or the upper shell may have an inner diameter smaller than that of the conventional one. As a result, a compact scroll compressor can be realized while maintaining the same displacement as in the prior art.
 第1突出部および第1位置決め面は、固定スクロールを精度良く位置決めできるものであれば、様々な形状若しくは製法を採用可能である。たとえば、第1突出部は、固定スクロールを位置決めできれば良い。このため、第1突出部は、メインシェルの内壁面に形成された少なくとも2箇所以上の突起で構成されても良い。また、第1突出部は、メインシェルの外側から叩打することにより第1突出部を形成しても良い。また、第1位置決め面に凸部が形成され、固定スクロール凹部が形成され、凸部と凹部とが嵌合することにより、メインシェルに対する固定スクロールの回転が抑制されるようにしても良い。 The first protrusion and the first positioning surface may adopt various shapes or manufacturing methods as long as they can position the fixed scroll with high accuracy. For example, the first protrusion only needs to be able to position the fixed scroll. For this reason, the first protrusion may be configured by at least two or more protrusions formed on the inner wall surface of the main shell. Further, the first protrusion may form the first protrusion by tapping from the outside of the main shell. In addition, a convex portion may be formed on the first positioning surface, a fixed scroll concave portion may be formed, and rotation of the fixed scroll with respect to the main shell may be suppressed by fitting the convex portion and the concave portion.
 また、スラストプレートおよび突壁部に形成される凸部または凹部は、スラストプレートに突壁部の方向に突出して一対の突部を形成するとともに、突壁に切欠きを形成する。そして、切欠きに一対の突部が配置されても良い。これにより、第1の実施の形態と同様に、スラストプレートの回転が抑止できる。 Further, the convex portion or concave portion formed on the thrust plate and the projecting wall portion protrudes in the direction of the projecting wall portion on the thrust plate to form a pair of projecting portions, and also forms a notch on the projecting wall. And a pair of projection may be arranged at a notch. Thus, the rotation of the thrust plate can be suppressed as in the first embodiment.
 なお、スラストプレートは、必須ではない。メインフレームの平坦面は、揺動スクロールと摺動する構成でも良い。 The thrust plate is not essential. The flat surface of the main frame may be configured to slide with the oscillating scroll.
 メインシェルの内壁面に、駆動軸の中心軸に沿う方向に第1凸部または第1凹部と、メインフレームおよび固定スクロールにその第1凸部または第1凹部に係合する第2凹部または第2凸部を形成しても良い。これにより、固定スクロールの第1渦巻体と、揺動スクロールの第2渦巻体と、の位相が合わさる。このため、揺動スクロールに対して固定スクロールを回転させて位相を調整する工程は、省略できる。 A second convex portion or first concave portion engaged with the first convex portion or the first concave portion in the direction along the central axis of the drive shaft, and the first convex portion or the first concave portion in the main frame and fixed scroll in the inner wall surface of the main shell You may form 2 convex parts. Thereby, the phases of the first scroll of the fixed scroll and the second scroll of the oscillating scroll are matched. Therefore, the process of adjusting the phase by rotating the fixed scroll with respect to the oscillating scroll can be omitted.
実施の形態6.
<冷凍サイクル装置200>
 図22は、本発明の実施の形態6に係るスクロール圧縮機100を適用した冷凍サイクル装置200を示す冷媒回路図である。
Sixth Embodiment
<Refrigeration cycle apparatus 200>
FIG. 22 is a refrigerant circuit diagram showing a refrigeration cycle apparatus 200 to which the scroll compressor 100 according to Embodiment 6 of the present invention is applied.
 図22に示すように、冷凍サイクル装置200は、スクロール圧縮機100、凝縮器201、膨張弁202および蒸発器203を備えている。これらスクロール圧縮機100、凝縮器201、膨張弁202および蒸発器203が冷媒配管で接続されて冷凍サイクル回路を形成している。そして、蒸発器203から流出した冷媒は、スクロール圧縮機100に吸入されて高温高圧となる。高温高圧となった冷媒は、凝縮器201において凝縮されて液体になる。液体となった冷媒は、膨張弁202で減圧膨張されて低温低圧の気液二相となり、気液二相の冷媒が蒸発器203において熱交換される。 As shown in FIG. 22, the refrigeration cycle apparatus 200 includes a scroll compressor 100, a condenser 201, an expansion valve 202 and an evaporator 203. The scroll compressor 100, the condenser 201, the expansion valve 202, and the evaporator 203 are connected by refrigerant pipes to form a refrigeration cycle circuit. Then, the refrigerant flowing out of the evaporator 203 is drawn into the scroll compressor 100 and becomes high temperature and high pressure. The high temperature and pressure refrigerant is condensed in the condenser 201 to become a liquid. The refrigerant that has become a liquid is decompressed and expanded by the expansion valve 202 and becomes a low-temperature low-pressure gas-liquid two phase, and the gas-liquid two-phase refrigerant is heat-exchanged in the evaporator 203.
 実施の形態1~5のスクロール圧縮機100は、このような冷凍サイクル装置200に適用できる。なお、冷凍サイクル装置200としては、たとえば空気調和装置、冷凍装置および給湯器などが挙げられる。 The scroll compressor 100 according to the first to fifth embodiments can be applied to such a refrigeration cycle apparatus 200. In addition, as refrigeration cycle apparatus 200, an air conditioning apparatus, a freezing apparatus, a water heater, etc. are mentioned, for example.
<実施の形態6の効果>
 冷凍サイクル装置200は、上記の実施の形態1~5に記載のスクロール圧縮機100を備える。
<Effect of Sixth Embodiment>
The refrigeration cycle apparatus 200 includes the scroll compressor 100 described in the above first to fifth embodiments.
 この構成によれば、スクロール圧縮機100を備える冷凍サイクル装置200は、固定スクロール31がシェル1内に位置精度良く配置でき、固定スクロール31の第1渦巻体312と揺動スクロール32の第2渦巻体322との歯先同士が適切な位置関係になるように構成される。 According to this configuration, in the refrigeration cycle apparatus 200 including the scroll compressor 100, the fixed scroll 31 can be disposed with high position accuracy in the shell 1, and the first spiral body 312 of the fixed scroll 31 and the second spiral of the oscillating scroll 32 The tooth tips of the body 322 are configured to be in an appropriate positional relationship.
 1 シェル、2 メインフレーム、3 圧縮機構部、4 駆動機構部、5 サブフレーム、6 駆動軸、7 ブッシュ、8 給電部、11 メインシェル、12 アッパーシェル、13 ロアシェル、14 吸入管、15 吐出管、17 固定台、21 本体部、22 主軸受部、23 返油管、24 スラストプレート、31 固定スクロール、32 揺動スクロール、33 オルダムリング、34 圧縮室、35 マフラー、36 吐出弁、41 ステータ、42 ロータ、51 副軸受部、52 オイルポンプ、61 主軸部、62 偏心軸部、63 通油路、64 第1バランサ、65 第2バランサ、71 スライダ、72 バランスウエイト、81 カバー、82 給電端子、83 配線、91 吐出空間、92 吸入空間、100 スクロール圧縮機、110 端部、111 第1内壁面部、112 第1突出部、113 第1位置決め面、114 第2突出部、115 第2位置決め面、121 溶接箇所、200 冷凍サイクル装置、201 凝縮器、202 膨張弁、203 蒸発器、211 収容空間、212 平坦面、213 吸入ポート、214 オルダム収容部、215 第1オルダム溝、216 突壁部、217 突部、221 軸孔、241 切欠き、311 第1円形台板、311G 重心位置、311X 角部、311a 吐出ポート、312 第1渦巻体、313 載置端部、314 環状突起、314A 頂点、314X 端部、314Y 端部、315 小径端部、315A 小径突起、316 載置突起部、317A シール面、317B シール面、317O シール面、318 凹部、321 第2円形台板、322 第2渦巻体、323 筒状部、324 第2オルダム溝、331 リング部、332 第1キー部、333 第2キー部、351 吐出孔、721 ウエイト部、1131 凹み、1151 凹み。 Reference Signs List 1 shell, 2 main frame, 3 compression mechanism portion, 4 drive mechanism portion, 5 sub frame, 6 drive shaft, 7 bush, 8 power feed portion, 11 main shell, 12 upper shell, 13 lower shell, 14 suction pipe, 15 discharge pipe , 17 fixed base, 21 main body part, 22 main bearing part, 23 oil return pipe, 24 thrust plate, 31 fixed scroll, 32 rocking scroll, 33 oldham ring, 34 compression chamber, 35 muffler, 36 discharge valve, 41 stator, 42 Rotor 51 sub bearing portion 52 oil pump 61 main shaft portion 62 eccentric shaft portion 63 oil passage 64 first balancer 65 second balancer 71 slider 72 balance weight 81 cover 82 feeding terminal 83 Wiring, 91 discharge space, 92 suction space, 00 scroll compressor, 110 end portion, 111 first inner wall surface portion, 112 first projecting portion, 113 first positioning surface, 114 second projecting portion, 115 second positioning surface, 121 welding portion, 200 refrigeration cycle device, 201 condensation , 202 expansion valve, 203 evaporator, 211 accommodation space, 212 flat surface, 213 suction port, 214 Oldham accommodation portion, 215 first oldham groove, 216 projecting wall portion, 217 projection, 221 axial hole, 241 notch, 311 1st circular base plate, 311G barycentric position, 311X corner, 311a discharge port, 312 1st spiral body, 313 mounting end, 314 annular projection, 314A apex, 314X end, 314Y end, 315 small diameter end , 315A small diameter projection, 316 mounting projection, 317A sealing surface, 17B seal surface, 317 O seal surface, 318 concave portion, 321 second circular base plate, 322 second spiral body, 323 cylindrical portion, 324 second oldham groove, 331 ring portion, 332 first key portion, 333 second key portion , 351 discharge hole, 721 weight portion, 1131 recess, 1151 recess.

Claims (12)

  1.  揺動スクロールを摺動自在に保持するフレームと、
     前記揺動スクロールとともに圧縮室を形成する固定スクロールと、
     前記固定スクロールを前記フレームとは別々に固定するシェルと、
    を備え、
     前記シェルは、厚肉部と前記厚肉部より内径が大きい薄肉に形成される薄肉部とを含んだ筒状のメインシェルを有し、
     前記固定スクロールは、前記厚肉部と前記薄肉部との境界部分に載置される載置端部と、前記載置端部以上に大径であって前記薄肉部に接触する環状突起と、前記載置端部とは前記環状突起を介する反対側にて前記環状突起よりも小径である小径端部と、を有するスクロール圧縮機。
    A frame slidably holding the oscillating scroll;
    A fixed scroll forming a compression chamber with the oscillating scroll;
    A shell for securing the fixed scroll separately from the frame;
    Equipped with
    The shell has a cylindrical main shell including a thick portion and a thin portion formed to be thin with a larger inner diameter than the thick portion.
    The fixed scroll has a mounting end mounted on a boundary between the thick portion and the thin portion, and an annular protrusion having a larger diameter than the mounting end and contacting the thin portion. A scroll compressor having a small diameter end portion smaller in diameter than the annular projection on the opposite side of the placement end portion via the annular projection.
  2.  前記載置端部と前記環状突起とは、分離して形成される請求項1に記載のスクロール圧縮機。 The scroll compressor according to claim 1, wherein the placement end and the annular protrusion are separately formed.
  3.  前記環状突起は、前記メインシェルの軸方向で曲線状に形成される請求項2に記載のスクロール圧縮機。 The scroll compressor according to claim 2, wherein the annular protrusion is formed in a curved shape in an axial direction of the main shell.
  4.  前記載置端部と前記環状突起とは、一体に形成される請求項1に記載のスクロール圧縮機。 The scroll compressor according to claim 1, wherein the placement end and the annular protrusion are integrally formed.
  5.  前記環状突起は、前記メインシェルの軸方向で直線状に形成される請求項4に記載のスクロール圧縮機。 The scroll compressor according to claim 4, wherein the annular protrusion is linearly formed in an axial direction of the main shell.
  6.  前記載置端部と前記環状突起と前記小径端部とは、前記固定スクロールの円形台板から半径方向外側に突出する載置突起部に設けられる請求項1~5のいずれか1項に記載のスクロール圧縮機。 The mounting projection according to any one of claims 1 to 5, wherein the mounting end, the annular projection, and the small diameter end are provided on a mounting projection projecting radially outward from a circular base plate of the fixed scroll. Scroll compressor.
  7.  前記固定スクロールの円形台板の前記メインシェルの軸方向での重心位置は、前記環状突起の範囲内である請求項1~6のいずれか1項に記載のスクロール圧縮機。 The scroll compressor according to any one of claims 1 to 6, wherein a center of gravity of the circular base plate of the fixed scroll in the axial direction of the main shell is within the range of the annular projection.
  8.  前記固定スクロールの円形台板の前記メインシェルの軸方向での重心位置は、前記環状突起の範囲内であって前記環状突起の前記メインシェルの軸方向での真ん中よりも前記小径端部側である請求項7に記載のスクロール圧縮機。 The position of the center of gravity of the circular base plate of the fixed scroll in the axial direction of the main shell is within the range of the annular projection and on the small diameter end side with respect to the middle of the annular projection in the axial direction of the main shell. The scroll compressor according to claim 7.
  9.  前記シェルは、前記メインシェルの前記薄肉部が固定されて前記メインシェルの前記薄肉部側の開口を塞ぐ端部シェルを有し、
     前記メインシェルの前記薄肉部と前記端部シェルとが接合され、前記固定スクロールの前記小径端部と前記薄肉部とが離間する請求項1~8のいずれか1項に記載のスクロール圧縮機。
    The shell has an end shell to which the thin-walled portion of the main shell is fixed to close an opening on the thin-walled side of the main shell.
    The scroll compressor according to any one of claims 1 to 8, wherein the thin portion of the main shell and the end shell are joined, and the small diameter end portion of the fixed scroll and the thin portion are separated.
  10.  前記シェルは、前記メインシェルの前記薄肉部が固定されて前記メインシェルの前記薄肉部側の開口を塞ぐ端部シェルを有し、
     前記メインシェルの前記薄肉部が前記端部シェルに固定されるときに、前記固定スクロールの前記小径端部が前記薄肉部から受ける曲げモーメントは、前記固定スクロールの前記環状突起が前記薄肉部に接触して受ける曲げモーメントより小さい請求項1~8のいずれか1項に記載のスクロール圧縮機。
    The shell has an end shell to which the thin-walled portion of the main shell is fixed to close an opening on the thin-walled side of the main shell.
    The bending moment that the small diameter end of the fixed scroll receives from the thin portion when the thin portion of the main shell is fixed to the end shell is the annular projection of the fixed scroll making contact with the thin portion The scroll compressor according to any one of claims 1 to 8, which is smaller than a bending moment received.
  11.  前記小径端部は、半径方向外側に突出する小径突起を有する請求項1~10のいずれか1項に記載のスクロール圧縮機。 The scroll compressor according to any one of claims 1 to 10, wherein the small diameter end portion has a small diameter projection that protrudes radially outward.
  12.  請求項1~11のいずれか1項に記載のスクロール圧縮機を備える冷凍サイクル装置。 A refrigeration cycle apparatus comprising the scroll compressor according to any one of claims 1 to 11.
PCT/JP2017/023717 2017-06-28 2017-06-28 Scroll compressor and refrigeration cycle device WO2019003335A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019526456A JP6745994B2 (en) 2017-06-28 2017-06-28 Scroll compressor and refrigeration cycle device
PCT/JP2017/023717 WO2019003335A1 (en) 2017-06-28 2017-06-28 Scroll compressor and refrigeration cycle device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/023717 WO2019003335A1 (en) 2017-06-28 2017-06-28 Scroll compressor and refrigeration cycle device

Publications (1)

Publication Number Publication Date
WO2019003335A1 true WO2019003335A1 (en) 2019-01-03

Family

ID=64741249

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/023717 WO2019003335A1 (en) 2017-06-28 2017-06-28 Scroll compressor and refrigeration cycle device

Country Status (2)

Country Link
JP (1) JP6745994B2 (en)
WO (1) WO2019003335A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020125749A (en) * 2019-02-06 2020-08-20 三菱電機株式会社 Scroll compressor and method for assembling scroll compressor
JP2021067185A (en) * 2019-10-18 2021-04-30 三菱電機株式会社 Scroll compressor, cycle device, and method of assembling scroll compressor
WO2023100304A1 (en) * 2021-12-02 2023-06-08 三菱電機株式会社 Scroll compressor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0315686A (en) * 1989-06-13 1991-01-24 Sanyo Electric Co Ltd Scroll compressor
JPH0932771A (en) * 1995-07-25 1997-02-04 Mitsubishi Electric Corp Scroll compressor
JP2001329954A (en) * 2000-05-22 2001-11-30 Mitsubishi Heavy Ind Ltd Fluid compressing machine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0315686A (en) * 1989-06-13 1991-01-24 Sanyo Electric Co Ltd Scroll compressor
JPH0932771A (en) * 1995-07-25 1997-02-04 Mitsubishi Electric Corp Scroll compressor
JP2001329954A (en) * 2000-05-22 2001-11-30 Mitsubishi Heavy Ind Ltd Fluid compressing machine

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020125749A (en) * 2019-02-06 2020-08-20 三菱電機株式会社 Scroll compressor and method for assembling scroll compressor
JP7221069B2 (en) 2019-02-06 2023-02-13 三菱電機株式会社 SCROLL COMPRESSOR AND SCROLL COMPRESSOR ASSEMBLY METHOD
JP2021067185A (en) * 2019-10-18 2021-04-30 三菱電機株式会社 Scroll compressor, cycle device, and method of assembling scroll compressor
JP7378264B2 (en) 2019-10-18 2023-11-13 三菱電機株式会社 Scroll compressor, cycle device, and scroll compressor assembly method
WO2023100304A1 (en) * 2021-12-02 2023-06-08 三菱電機株式会社 Scroll compressor

Also Published As

Publication number Publication date
JPWO2019003335A1 (en) 2019-11-07
JP6745994B2 (en) 2020-08-26

Similar Documents

Publication Publication Date Title
JP6678762B2 (en) Scroll compressor, refrigeration cycle device and shell
WO2019003335A1 (en) Scroll compressor and refrigeration cycle device
WO2019087227A1 (en) Scroll compressor
US11028848B2 (en) Scroll compressor having a fitted bushing and weight arrangement
JP6057535B2 (en) Refrigerant compressor
JP2021076085A (en) Scroll compressor
JP7113091B2 (en) Rotary compressor, method for manufacturing rotary compressor, and refrigeration cycle device
JP7118177B2 (en) scroll compressor
JP7350101B2 (en) scroll compressor
JP7433697B2 (en) Scroll compressor and refrigeration cycle equipment using the scroll compressor
JP6195466B2 (en) Scroll compressor
JP7076537B2 (en) Scroll compressor
WO2023188422A1 (en) Compressor and upper shell
JP7321384B2 (en) scroll compressor
JP2009156098A (en) Compressor
WO2019207785A1 (en) Scroll compressor
WO2023181173A1 (en) Scroll compressor
JP7373939B2 (en) scroll compressor
WO2023063243A1 (en) Scroll compressor and method for manufacturing same
WO2021014641A1 (en) Scroll compressor
JP7055245B2 (en) Scroll compressor and method for manufacturing the scroll compressor
JP6903228B2 (en) Scroll compressor and refrigeration cycle equipment
WO2021009839A1 (en) Scroll compressor
WO2017098567A1 (en) Compressor and refrigeration cycle device
JP2008115695A (en) Fluid machine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17915431

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019526456

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17915431

Country of ref document: EP

Kind code of ref document: A1