WO2019001538A1 - 采样组件、样本分析仪及采样方法 - Google Patents

采样组件、样本分析仪及采样方法 Download PDF

Info

Publication number
WO2019001538A1
WO2019001538A1 PCT/CN2018/093453 CN2018093453W WO2019001538A1 WO 2019001538 A1 WO2019001538 A1 WO 2019001538A1 CN 2018093453 W CN2018093453 W CN 2018093453W WO 2019001538 A1 WO2019001538 A1 WO 2019001538A1
Authority
WO
WIPO (PCT)
Prior art keywords
sampling
switching member
needle
pipeline
interface
Prior art date
Application number
PCT/CN2018/093453
Other languages
English (en)
French (fr)
Inventor
冯祥
滕锦
谢子贤
Original Assignee
深圳迈瑞生物医疗电子股份有限公司
深圳迈瑞科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳迈瑞生物医疗电子股份有限公司, 深圳迈瑞科技有限公司 filed Critical 深圳迈瑞生物医疗电子股份有限公司
Priority to CN201880038783.9A priority Critical patent/CN110730911B/zh
Priority to CN202311509731.4A priority patent/CN117761336A/zh
Publication of WO2019001538A1 publication Critical patent/WO2019001538A1/zh
Priority to US16/729,449 priority patent/US11614382B2/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/10Devices for withdrawing samples in the liquid or fluent state
    • G01N1/14Suction devices, e.g. pumps; Ejector devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
    • G01N35/1079Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices with means for piercing stoppers or septums
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L5/00Gas handling apparatus
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
    • G01N35/1009Characterised by arrangements for controlling the aspiration or dispense of liquids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/06Auxiliary integrated devices, integrated components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0832Geometry, shape and general structure cylindrical, tube shaped
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0475Moving fluids with specific forces or mechanical means specific mechanical means and fluid pressure
    • B01L2400/0487Moving fluids with specific forces or mechanical means specific mechanical means and fluid pressure fluid pressure, pneumatics

Definitions

  • the present invention relates to the field of medical device technology, and in particular, to a sampling component, a sample analyzer, and a sampling method.
  • the blood cell analyzer needs to extract biological samples from the closed test tube for analysis. Due to the prevailing pressure in the closed test tube, the pressure will adversely affect the sampling accuracy. Therefore, how to solve the accurate sampling from the closed test tube is a common problem in the industry.
  • the puncture is usually performed twice, and the first puncture of the sampling needle is puncture pretreatment, which is used to release the pressure in the test tube, and then the sampling needle is cleaned, and then the second puncture is performed to take the biological sample. Since the sampling needle needs to be puncture twice and the cleaning needs to be performed between the two punctures, the sampling speed of the blood cell analyzer is directly limited, resulting in a slow measurement by the blood cell analyzer.
  • the technical problem to be solved by the present invention is to provide a sampling component, a sample analyzer and a sampling method with a short sampling time.
  • a sampling assembly including a sampling needle, a first conduit, a second conduit, a driving member, a first switching member, and a second switching member, wherein the first conduit is connected to the sampling needle and the Between the first switching members, the second pipeline is connected between the first switching member and the driving member, and the first switching member is configured to communicate or cut the first pipeline and the a second conduit, the second conduit being connectable to the source of negative pressure by the second switching member.
  • the second pipeline is further connectable to the atmosphere through the second switching member.
  • the second conduit can communicate to the source of negative pressure and the atmosphere through the second switching member.
  • the second switching component includes a first interface and a second interface, the first interface is connected to the second pipeline, the second interface is connected to the negative pressure source, and the second switching component is capable of communicating.
  • the first interface and the second interface are connected to the first interface and the second interface.
  • the second switching component includes a first interface, a second interface, and a third interface, the first interface is connected to the second pipeline, the second interface is connected to the negative pressure source, and the third The interface is connected to the atmosphere, and the second switching component can communicate with the first interface and the second interface or communicate with the first interface and the third interface.
  • the second switching component includes:
  • first sub-switching member configured to connect or cut the second pipeline and the negative pressure source
  • the second sub-switching member communicates with the second conduit and the atmosphere at two ends, and the second sub-switching member is used for connecting or cutting the second conduit to the atmosphere.
  • the negative pressure source comprises a gas storage tank, a negative pressure is formed in the gas storage tank, and the gas storage tank communicates with the second pipeline to make the second pipeline in a negative pressure state.
  • the pressure value of the negative pressure in the gas storage tank is less than or equal to -30 kPa.
  • the sampling needle comprises a needle body and a needle disposed along a direction of a length axis, wherein the needle body and the needle body are provided with a fluid passage communicating with each other, the fluid passage extending in a direction of the length axis, and An end opening is disposed on the needle;
  • the needle body has a closed outer surface;
  • the needle includes a tip end portion, the tip end portion includes a first end, a second end, and at the first end and the second end A smooth side surface extending therebetween, the first end of the tip end portion being disposed on a side away from the needle body, the second end being disposed on a side close to the needle body, and the tip end portion being a blunt end.
  • first end of the tip end portion and the side surface are connected by a first transitional arc surface, and the radius of the first transitional arc surface is less than or equal to 0.1 mm.
  • the extending direction of the side surface of the tip end portion forms a first angle with respect to the length axis, and the first angle is greater than or equal to 20 degrees and less than or equal to 40 degrees.
  • the second end of the tip portion has a radial dimension greater than or equal to one-half of the radial dimension of the needle body.
  • the needle further includes a first transition portion between the needle body and the tip end portion, and connecting the needle body and the tip end portion; the first transition portion and One end of the tip portion connection has a first radial dimension, and one end of the first transition portion connected to the needle body has a second radial dimension, the first radial dimension being smaller than the second radial dimension.
  • first transition portion includes an outer surface extending between the two ends thereof, the extending direction of the outer surface forming a second angle with respect to the length axis, and the second angle is less than or equal to 10°.
  • the first transition portion is a truncated cone structure
  • the truncated cone structure has a smooth outer surface
  • the first radial dimension is smaller than a radial dimension of the needle body
  • the second radial dimension is equal to the The radial dimension of the needle body.
  • the needle further includes a second transition portion between the first transition portion and the tip end portion, and connecting the first transition portion and the tip portion;
  • the second transition portion is connected to the second end of the tip end portion by a second transitional arc surface having a radius of 0.1 mm to 1 mm.
  • one end opening of the fluid passage is disposed on the second transition portion, and an angle of more than 0° and less than or equal to 90° is formed between a direction of the opening and a direction of the length axis.
  • the second transition portion is a cylindrical structure having a constant radial dimension, the cylindrical structure having a radial dimension smaller than a radial dimension of the needle body and equal to a radial dimension of the second end of the tip end portion .
  • one end of the fluid passage is open at a side surface of the tip end portion.
  • the outer contour of the cross section of the needle body in a direction perpendicular to the longitudinal axis is circular or elliptical, and the tip end portion is a conical structure which becomes smaller from the second end thereof toward the first end. Or a truncated cone structure.
  • the driving member comprises a syringe.
  • a sample analyzer including the sampling assembly described above.
  • a sampling method performs sampling by using a sampling component
  • the sampling component includes a sampling needle, a first pipeline, a second pipeline, a driving component, a first switching component, and a second switching
  • the first pipe is connected between the sampling needle and the first switching member
  • the second pipe is connected between the first switching member and the driving member
  • the first The switching member is configured to communicate or cut off the first pipeline and the second pipeline
  • the second pipeline is connected to the negative pressure source through the second switching member
  • the sampling method includes:
  • the sampling needle pierces the test tube cap and extends into the test tube;
  • the second switching member communicates with the second pipeline and the negative pressure source
  • the first switching member communicates with the first pipeline and the second pipeline;
  • the drive member draws the in-vitro biological sample into the sampling needle
  • the sampling needle leaves the test tube.
  • the second switching component includes a first interface and a second interface, the first interface is connected to the second pipeline, the second interface is connected to the negative pressure source, and the second switching component is capable of communicating.
  • the sampling method further includes:
  • the second switching member again communicates with the second conduit and the negative pressure source
  • the first switching member communicates with the first conduit and the second conduit again.
  • the sampling needle is separated from one end of the first pipeline to form a front air column
  • the sampling method further includes:
  • the drive member pushes the front end air column out of the sampling needle.
  • the second pipeline is further connectable to the atmosphere through the second switching member
  • the sampling method further includes:
  • the second switching member communicates the second conduit to the atmosphere
  • the first switching member communicates with the first conduit and the second conduit again.
  • step “the sampling needle leaves the test tube” and the step “the second switching member communicates with the second pipeline to the atmosphere” are simultaneously performed.
  • the second switching component includes a first interface, a second interface, and a third interface, the first interface is connected to the second pipeline, the second interface is connected to the negative pressure source, and the third The interface is connected to the atmosphere, and the second switching component can communicate with the first interface and the second interface or communicate with the first interface and the third interface.
  • the second switching component includes:
  • first sub-switching member configured to connect or cut the second pipeline and the negative pressure source
  • the second sub-switching member communicates with the second pipeline and the atmosphere at two ends, and the second sub-switching member is configured to communicate or cut off the second pipeline and the atmosphere.
  • the step “the sampling needle pierces the test tube cap and extends into the test tube” and the step “the second switching member communicates with the second pipeline and the negative pressure source” are simultaneously performed.
  • the step "the sampling needle pierces the test tube cap and extends into the test tube” includes:
  • the sampling needle pierces the test tube cap and extends into the test tube, and stays for a predetermined time after entering;
  • the sampling needle continues to extend into the tube to immerse the needle of the sampling needle into the biological sample.
  • the present invention has the following beneficial effects:
  • the sampling assembly can control the pressure environment of the first pipeline by the action of the first switching member and the second switching member to eliminate the adverse effect of the pressure in the closed test tube on the sampling accuracy. Therefore, when the sampling component is used for sampling, the sampling needle only needs to perform one puncture to complete the sampling, and the process of cleaning the sampling needle after the puncture pretreatment and the puncture pretreatment is no longer needed, thereby shortening the sampling time and improving the sampling time. Sampling speed. Since the sampling process is a critical path measured by the sample analyzer, sampling with the sampling component shortens the measurement time of the sample analyzer and improves the measurement speed of the sample analyzer. At the same time, the sampling by the sampling component only needs to perform one puncture, and the wear of the sampling needle can be reduced, and the service life of the sampling needle is prolonged.
  • FIG. 1 is a schematic diagram of an embodiment of a sampling component according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram of another embodiment of a sampling component according to an embodiment of the present invention.
  • FIG. 3 is a schematic structural view of an embodiment of a sampling needle of the sampling assembly shown in FIG. 1.
  • Figure 4 is an enlarged view of the structure at A in Figure 3.
  • FIG. 5 is a schematic structural view of another embodiment of a sampling needle of the sampling assembly shown in FIG. 1.
  • FIG. 5 is a schematic structural view of another embodiment of a sampling needle of the sampling assembly shown in FIG. 1.
  • FIG. 6 is a flowchart of a sampling method according to an embodiment of the present invention.
  • FIG. 7 is a schematic diagram of still another embodiment of a sampling component according to an embodiment of the present invention.
  • FIG. 8 is a flowchart of another sampling method according to an embodiment of the present invention.
  • Embodiments of the present invention provide a sample analyzer.
  • the sample analyzer can be used to perform biological sample analysis, and the biological sample can be blood, urine, or the like.
  • the sample analyzer includes a sampling component for acquiring and distributing biological samples.
  • the sample analyzer further includes a drive assembly, a reaction assembly, a detection assembly, a waste treatment assembly, and a controller.
  • the drive assembly is used to drive various flow paths (including gas and liquid paths) in the sample analyzer.
  • the reaction assembly is for processing the biological sample to form a test solution.
  • the detecting component is configured to detect the liquid to be tested to form detection information.
  • the waste liquid processing assembly is for collecting and discharging waste liquid in the sample analyzer.
  • the controller is configured to control a workflow of the sample analyzer and process the detection information to form an analysis result.
  • the sampling assembly 100 in this embodiment includes a sampling needle 1, a first pipeline 2, a second pipeline 3, a driving member 4, a first switching member 5, and a second switching member 6. .
  • the first line 2 is connected between the sampling needle 1 and the first switching member 5.
  • the second line 3 is connected between the first switching member 5 and the driving member 4.
  • the first switching member 5 is configured to communicate or cut off the first conduit 2 and the second conduit 3.
  • the second line 3 can be connected to the negative pressure source 7 and the atmosphere through the second switching member 6.
  • the sampling assembly 100 can control the pressure environment of the first conduit 2 through the actions of the first switching member 5 and the second switching member 6 to eliminate the closed test tube.
  • the pressure has an adverse effect on the sampling accuracy. Therefore, when the sampling component 100 is used for sampling, the sampling needle 1 only needs to perform one puncture to complete the sampling, and the puncture pretreatment is no longer needed (the puncture pretreatment takes time). The process of cleaning the sampling needle 1 after a few seconds or more and the puncture pretreatment shortens the sampling time and increases the sampling speed. Since the sampling process is a critical path measured by the sample analyzer, sampling with the sampling component 100 shortens the measurement time of the sample analyzer and increases the measurement speed of the sample analyzer. At the same time, the sampling by the sampling component 100 requires only one puncture, and the wear of the sampling needle 1 can be reduced, and the service life of the sampling needle 1 is prolonged.
  • the second switching member 6 includes a first interface 61 , a second interface 62 , and a third interface 63 .
  • the first interface 61 communicates with the second conduit 3
  • the second interface 62 communicates with the negative pressure source 7
  • the third interface 63 communicates with the atmosphere
  • the second switching member 6 can communicate with the first An interface 61 and the second interface 62 are connected to the first interface 61 and the third interface 63.
  • the second switching member 6 may be a valve, such as a two-position three-way solenoid valve or the like.
  • the second switching member 6 includes a first sub-switching member 64 and a second sub-switching member 65. Two ends of the first sub-switching member 64 respectively communicate with the second pipeline 3 and the negative pressure source 7, and the first sub-switching member 64 is configured to communicate or cut off the second pipeline 3 and the The negative pressure source 7 is described.
  • the first sub-switching member 64 can be a valve, such as a shut-off valve or the like.
  • Two ends of the second sub-switching member 65 respectively communicate with the second conduit 3 and the atmosphere, and the second sub-switching member 65 is used to connect or cut the second conduit 3 to the atmosphere.
  • the second sub-switching member 65 may be a valve such as a shut-off valve or the like.
  • the negative pressure source 7 includes a gas storage tank 71, a negative pressure is formed in the gas storage tank 71, and the gas storage tank 71 communicates with the second pipeline 3 to make the second pipeline 3 negative. Pressure state.
  • the negative pressure source 7 may further include an air pump 72 for communicating the gas storage tank 71 to establish the negative pressure within the gas storage tank 71.
  • the pressure value of the negative pressure in the gas storage tank 71 is -30 kPa or less.
  • the pressure of the second pipeline 3 is the same as that of the gas storage tank 71, so that the pressure of the second pipeline 3 is lower than the test tube Negative pressure inside.
  • the driving member 4 includes a syringe for the sampling needle 1 to draw a quantitative biological sample.
  • the drive member 4 may also include a metering pump, or other device capable of drawing a metered amount of liquid.
  • the sampling needle 1 includes a needle body 12 and a needle 13 disposed in a direction along a length axis 11.
  • a fluid passage 14 communicating with the needle body 12 and the needle 13 is provided.
  • the fluid passageway 14 extends in the direction of the length axis 11 and has an open end 141 disposed on the needle 13.
  • the opening 141 is used to draw and discharge biological samples.
  • the needle body 12 has a closed outer surface.
  • the needle 13 includes a tip end portion 131 that includes a first end 1311, a second end 1312, and a smooth side surface 1313 extending between the first end 1311 and the second end 1312.
  • the first end 1311 of the tip end portion 131 is disposed on a side away from the needle body 12, and the second end 1312 is disposed on a side close to the needle body 12 and is a blunt end.
  • the second end 1312 is located between the first end 1311 and the needle body 12.
  • the blunt end includes, but is not limited to, a flat end or a curved end.
  • the sampling needle 1 can avoid cutting the test tube cap due to the needle 13 being too sharp, so that the sampling needle 1 has less debris when punctured.
  • the needle body 12 has a closed outer surface, the venting groove is not formed on the needle body 12, which simplifies the processing process of the sampling needle 1, and thus can also avoid the occurrence of cutting the test tube cap by the venting groove. Debris.
  • the fluid passageway 14 extends from the needle 13 toward the needle body 12 in the direction of the longitudinal axis 11.
  • the fluid passage 14 extends through the needle body 12.
  • the fluid passage 14 draws and discharges a biological sample through the opening 141 provided in the needle 13.
  • an end opening 141 of the fluid passage 14 is provided at the side surface 1313 of the tip end portion 131.
  • the shape of any cross section of the needle body 12 in a direction perpendicular to the longitudinal axis 11 is circular or elliptical.
  • the needle body 12 is substantially a hollow cylinder or an elliptical cylinder.
  • the tip end portion 131 is a conical or truncated cone structure that becomes smaller from the second end 1312 thereof toward the first end 1311.
  • the cross-sectional shape of the side surface 1313 perpendicular to the length axis 11 is a circle, and the side surface 1313 is a rounded surface, which can avoid cutting the test tube cap.
  • the first end 1311 of the tip end portion 131 and the side surface 1313 are connected by a first transition curved surface 132, and the radius of the first transition curved surface 132 is less than or equal to 0.1 mm.
  • the first transitional cam surface 132 makes the outer surface 1331 of the tip end portion 131 smoother, which further reduces the risk of cutting the test tube cap.
  • the extending direction of the side surface 1313 of the tip end portion 131 forms a first angle A with respect to the length axis 11 , and the first angle A is greater than or equal to 20° and less than or equal to 40°.
  • the first angle A may be 30°.
  • the cross-sectional area of the tip end portion 131 perpendicular to the length axis 11 gradually increases from the first end 1311 to the second end 1312, so that the tip end portion 131 can smoothly pass through the test tube.
  • the cap reduces the difficulty of puncture of the sampling needle 1.
  • the second end 1312 of the tip end portion 131 has a radial dimension greater than or equal to one-half of the radial dimension of the needle body 12.
  • the tip end portion 131 passes through a large through hole on the test tube cap, and the through hole has a radial dimension greater than or equal to one-half of the radial dimension of the needle body 12, so that the The needle body 12 can smoothly pass through the through hole under a small force, which reduces the puncture difficulty of the sampling needle 1.
  • the needle 13 further includes a first transition portion 133, and the first transition portion 133 is located at the needle body 12 and the tip end portion 131. And connecting the needle body 12 and the tip end portion 131.
  • One end of the first transition portion 133 connected to the tip end portion 131 has a first radial dimension
  • one end of the first transition portion 133 connected to the needle body 12 has a second radial dimension, a first radial direction
  • the size is smaller than the second radial dimension.
  • the first transition portion 133 includes an outer surface 1331 extending between the two ends thereof, the extending direction of the outer surface 1331 forming a second angle B with respect to the length axis 11, the second The angle B is less than or equal to 10°.
  • the second angle B may be 5°.
  • the area of the cross section perpendicular to the longitudinal axis 11 of the first transition portion 133 gradually increases from one end connecting the tip end portion 131 to one end connecting the needle body 12 to reduce the sampling. Puncture difficulty of needle 1.
  • the first transition portion 133 is a truncated cone structure having a smooth outer surface 1331, the first radial dimension being smaller than a radial dimension of the needle body 12, the second diameter The dimension is equal to the radial dimension of the needle body 12.
  • the needle 13 passes through the tip end portion 131 and the first transition portion 133 such that the through hole of the test tube cap through which the sampling needle 1 passes has a radial dimension equal to the radial dimension of the needle body 12, thereby The puncture difficulty of the sampling needle 1 is further reduced.
  • the size of the tip end portion 131 is smaller than the size of the first transition portion 133, so that the sampling needle 1 can quickly puncture the through hole on the test tube cap, and then slowly The through hole is enlarged.
  • the needle 13 further includes a second transition portion 134, the second transition portion 134 being located at the first transition portion 133 and the tip portion Between 131, and connecting the first transition portion 133 and the tip end portion 131.
  • the second transition portion 134 is coupled to the second end 1312 of the tip end portion 131 by a second transition cam surface 135.
  • the radius of the second transitional arc surface 135 is 0.1 mm to 1 mm, for example, 0.5 mm.
  • the second transitional cam surface 135 makes the outer surface 1331 of the needle 13 smoother, further reducing the risk of cutting the test tube cap.
  • an end opening 141 of the fluid passage 14 is disposed on the second transition portion 134, and a direction of the opening 141 and a direction of the length axis 11 form greater than 0°.
  • the direction of the opening 141 is substantially perpendicular to the direction of the length axis 11.
  • the second transition portion 134 is a cylindrical structure having a constant radial dimension, and the radial dimension of the cylindrical structure is smaller than a radial dimension of the needle body 12, equal to the number of the tip end portion 131 The radial dimension of the two ends 1312.
  • the second transition portion 134 since the second transition portion 134 has a cylindrical structure, the second transition portion 134 is hardly subjected to the puncture resistance during the puncture of the sampling needle 1 and is disposed on the second transition portion 134.
  • the opening 141 does not cut the test tube cap, i.e. the sampling needle 1 does not generate debris and the debris does not enter the fluid passage in the sampling needle 1.
  • the outer wall of the sampling needle 1 has a surface roughness of 0.1 ⁇ m to 3.2 ⁇ m, for example, 0.2 ⁇ m.
  • the sampling needle 1 has a smooth outer wall, which can reduce the puncture resistance.
  • the surface roughness of the outer wall can be achieved by an electroplating process.
  • the sampling component 100 in this embodiment differs from the sampling component 100 in the first embodiment in that:
  • the second switching member 6 includes a first interface 61 and a second interface 62.
  • the first interface 61 communicates with the second conduit 3.
  • the second interface 62 communicates with the negative pressure source 7.
  • the second switching member 6 can communicate with the first interface 61 and the second interface 62. In other words, the second line 3 can be connected to the source of negative pressure 7 via the second switching member 6.
  • the sampling assembly 100 can control the pressure environment of the first conduit 2 through the actions of the first switching member 5 and the second switching member 6 to eliminate the closed test tube.
  • the pressure has an adverse effect on the sampling accuracy. Therefore, when the sampling component 100 is used for sampling, the sampling needle 1 only needs to perform one puncture to complete the sampling, and the puncture pretreatment is no longer needed (the puncture pretreatment takes time). The process of cleaning the sampling needle 1 after a few seconds or more and the puncture pretreatment shortens the sampling time and increases the sampling speed. Since the sampling process is a critical path measured by the sample analyzer, sampling with the sampling component 100 shortens the measurement time of the sample analyzer and increases the measurement speed of the sample analyzer. At the same time, the sampling by the sampling component 100 requires only one puncture, and the wear of the sampling needle 1 can be reduced, and the service life of the sampling needle 1 is prolonged.
  • the second switching member 6 can be a valve, such as a shut-off valve or the like.
  • the embodiment of the invention further provides a sampling method, which is applied to the sample analyzer described above.
  • the sampling method can be sampled using the sampling component 100 described in the above embodiments.
  • the sampling method may be sampled using the sampling assembly 100 (see FIGS. 1 through 5) described in the foregoing first embodiment.
  • the sampling assembly 100 includes a sampling needle 1, a first conduit 2, a second conduit 3, a driving member 4, a first switching member 5, and a second switching member 6.
  • the first line 2 is connected between the sampling needle 1 and the first switching member 5.
  • the second line 3 is connected between the first switching member 5 and the driving member 4.
  • the first switching member 5 is configured to communicate or cut off the first conduit 2 and the second conduit 3.
  • the second line 3 can be connected to the negative pressure source 7 and the atmosphere through the second switching member 6.
  • the sampling method includes:
  • the sampling needle 1 pierces the test tube cap and extends into the test tube.
  • the second switching member 6 communicates with the second pipeline 3 and the negative pressure source 7.
  • the driving member 4 draws the in-vitro biological sample into the sampling needle 1.
  • the second switching member 6 communicates with the second conduit 3 to the atmosphere.
  • the first switching member 5 communicates with the first conduit 2 and the second conduit 3 again.
  • step 001 an end of the sampling needle 1 remote from the second conduit 3 is formed with an isolation gas column capable of isolating the liquid in the first conduit 2 from the subsequently taken biological sample. Preventing the sample analyzer from being inaccurate due to contamination of the biological sample by the liquid in the first conduit 2.
  • the sampling needle 1 is inserted into the test tube to shield the second pipe 3. The effect of the deformation on the isolated gas column in the first conduit 2.
  • the sampling needle 1 protrudes into the test tube when the first line 2 communicates with the second line 3, it is easy to be due to the pressure in the test tube and the second line 3 Forming a pressure difference between the pressures causes the second conduit 3 to deform, thereby causing the isolation gas column to be significantly shortened or disappeared, such that the liquid in the first conduit 2 contaminates the subsequently aspirated biological sample, the sample
  • the analytical results of the analyzer are not accurate.
  • step 002 the negative pressure source 7 causes the second conduit 3 to be in a negative pressure state, so that the influence of the negative pressure in the test tube on the isolated gas column can be offset.
  • step 003 after the first line 2 communicates with the second line 3, the pressure in the first line 2 is the same as the pressure in the second line 3, the first tube
  • the pressure of the road 2 is slightly less than or equal to the pressure in the test tube.
  • a small amount of biological sample (the first stage sample) in the test tube enters the sampling needle 1 under the pressure difference, and the isolated gas column is separated. The biological sample is opened with the liquid in the first line 2.
  • step 004 a larger amount of biological sample (the latter sample) in the test tube is driven into the sampling needle 1 by the suction of the driving member 4.
  • step 005 after the first pipe 2 and the second pipe 3 are cut off by the first switching member 5, the sampling needle 1 is removed from the test tube, and the second can be shielded.
  • the end of the sampling needle 1 remote from the second conduit 3 forms a short gas column.
  • the isolated gas column, the front segment sample, the rear segment sample, and the gas column are sequentially arranged.
  • the biological sample can be accurately collected into the sampling needle 1 through steps 001 to 005.
  • the sampling method eliminates the adverse effect of the pressure in the closed test tube on the sampling accuracy by controlling the pressure environment of the first line 2, and the sampling method only needs to make the sampling needle 1 perform one puncture.
  • the sampling method no longer needs to perform the puncture pretreatment (the puncture pretreatment usually takes more than a few seconds) and the process of cleaning the sampling needle 1 after the puncture pretreatment, shortening the sampling time and increasing the sampling speed. Since the sampling process is a critical path measured by the sample analyzer, the sampling method shortens the measurement time of the sample analyzer and increases the measurement speed of the sample analyzer. At the same time, the sampling method only needs to perform one puncture, and can reduce the wear of the sampling needle 1 and prolong the service life of the sampling needle 1.
  • the present invention controls the pressure environment in the first pipeline 2 and the second pipeline 3 through the first switching member 5 and the second switching member 6, the first switching member 5 and the switching action of the second switching member 6 is simple and efficient, which is advantageous for accurate and efficient implementation of the sampling method.
  • the biological sample offset in the sampling needle 1 can be controlled to be less than ⁇ 0.3 ul.
  • the portion of the posterior segment is used as a blood sample for measurement, and an isolated blood segment (for example, the front segment sample) is reserved before and after the measurement of the blood segment, thereby eliminating the influence of the biological sample offset, so
  • the sampling method has high sampling accuracy, and the sampling method is beneficial to ensure the detection accuracy of the sample analyzer.
  • the sampling method can be applied to a low-cost puncture needle sampling and blood separation platform using an impedance technique.
  • step 0061 the second line 3 communicates with the atmosphere to release the pressure, and the pressure environment of the second line 3 coincides with the pressure environment of the sampling needle 1 away from the end of the second line 3.
  • step 0071 since the pressure environment of the second conduit 3 is consistent with the pressure environment of the sampling needle 1 away from the end of the second conduit 3, the biological sample in the sampling needle 1 is hardly The occurrence of an offset or fluctuation facilitates the accuracy of the subsequent biological sample dispensing action of the sample analyzer and improves the analytical accuracy of the sample analyzer.
  • the driving member 4 can push the biological sample in the sampling needle 1 to perform biological sample distribution.
  • step 0061 and step 0071 the biological sample in the sampling needle 1 can be prevented from falling off the sampling needle 1 and almost no offset or fluctuation occurs in the sampling needle 1, thereby improving the sample.
  • the accuracy of the subsequent biological sample allocation actions of the analyzer is not limited to:
  • the step “the sampling needle 1 pierces the test tube cap and extends into the test tube” and the step “the second switching member 6 communicates with the second conduit 3 and the negative pressure source 7” are simultaneously performed. Since the first switching member 5 blocks the first conduit 2 and the second conduit 3, the two do not interact with each other, so the step “the sampling needle 1 pierces the test tube cap and extends into the tube The "in-tube” and the step “the second switching member 6 communicates with the second conduit 3 and the negative pressure source 7" can be performed simultaneously, thereby further shortening the sampling time of the sampling method. Of course, the step “the second switching member 6 communicates with the second conduit 3 and the negative pressure source 7" may also be performed after the step "the sampling needle 1 pierces the test tube cap and extends into the test tube” .
  • the step “the sampling needle 1 leaves the test tube” and the step “the second switching member 6 communicates with the second conduit 3 to the atmosphere” are simultaneously performed. Since the first switching member 5 blocks the first conduit 2 and the second conduit 3, the two do not interact with each other, so the step “the sampling needle 1 leaves the test tube” and the steps The “the second switching member 6 communicates with the second conduit 3 to the atmosphere” can be performed simultaneously, thereby further shortening the sampling time of the sampling method. Of course, the step “the second switching member 6 communicates with the second conduit 3 to the atmosphere” may also be performed after the step "the sampling needle 1 leaves the test tube" is completed.
  • the step “the sampling needle 1 pierces the test tube cap and extends into the test tube” includes:
  • the sampling needle 1 pierces the test tube cap and extends into the test tube, and stays for a predetermined time after entering.
  • sampling needle 1 continues to extend into the test tube to immerse the needle 13 of the sampling needle 1 in the biological sample.
  • the predetermined time can be used to balance the pressure within the first line 2 with the pressure within the tube.
  • the sampling needle 1 can pierce the test tube cap at a constant rate and immerse the needle 13 of the sampling needle 1 into the biological sample.
  • the sampling method can be sampled using the components (see FIG. 7) described in the second embodiment described above.
  • the sampling assembly 100 includes a sampling needle 1, a first conduit 2, a second conduit 3, a driving member 4, a first switching member 5, and a second switching member 6.
  • the first line 2 is connected between the sampling needle 1 and the first switching member 5.
  • the second line 3 is connected between the first switching member 5 and the driving member 4.
  • the first switching member 5 is configured to communicate or cut off the first conduit 2 and the second conduit 3.
  • the second conduit 3 can be connected to the source of negative pressure 7 via the second switching member 6.
  • the sampling method includes:
  • the sampling needle 1 pierces the test tube cap and extends into the test tube.
  • the second switching member 6 communicates with the second pipeline 3 and the negative pressure source 7.
  • the driving member 4 draws the in-vitro biological sample into the sampling needle 1.
  • the second switching member 6 again communicates with the second conduit 3 and the negative pressure source 7.
  • the first switching member 5 communicates with the first conduit 2 and the second tube again. Road 3.
  • step 001 an end of the sampling needle 1 remote from the second conduit 3 is formed with an isolation gas column capable of isolating the liquid in the first conduit 2 from the subsequently taken biological sample. Preventing the sample analyzer from being inaccurate due to contamination of the biological sample by the liquid in the first conduit 2.
  • the sampling needle 1 is inserted into the test tube to shield the second pipe 3. The effect of the deformation on the isolated gas column in the first conduit 2.
  • the sampling needle 1 protrudes into the test tube when the first line 2 communicates with the second line 3, it is easy to be due to the pressure in the test tube and the second line 3 Forming a pressure difference between the pressures causes the second conduit 3 to deform, thereby causing the isolation gas column to be significantly shortened or disappeared, such that the liquid in the first conduit 2 contaminates the subsequently aspirated biological sample, the sample
  • the analytical results of the analyzer are not accurate.
  • step 002 the negative pressure source 7 causes the second conduit 3 to be in a negative pressure state, so that the influence of the negative pressure in the test tube on the isolated gas column can be offset.
  • step 003 after the first line 2 communicates with the second line 3, the pressure in the first line 2 is the same as the pressure in the second line 3, the first tube
  • the pressure of the road 2 is slightly less than or equal to the pressure in the test tube.
  • a small amount of biological sample (the first stage sample) in the test tube enters the sampling needle 1 under the pressure difference, and the isolated gas column is separated. The biological sample is opened with the liquid in the first line 2.
  • step 004 a larger amount of biological sample (the latter sample) in the test tube is driven into the sampling needle 1 by the suction of the driving member 4.
  • step 005 after the first pipe 2 and the second pipe 3 are cut off by the first switching member 5, the sampling needle 1 is removed from the test tube, and the second can be shielded.
  • the end of the sampling needle 1 remote from the first line 2 forms a short front end gas column.
  • the isolated gas column, the front stage sample, the rear stage sample, and the front end gas column are sequentially arranged.
  • the biological sample can be accurately collected into the sampling needle 1 through steps 001 to 005.
  • the sampling method eliminates the adverse effect of the pressure in the closed test tube on the sampling accuracy by controlling the pressure environment of the first line 2, and the sampling method only needs to make the sampling needle 1 perform one puncture.
  • the sampling method no longer needs to perform the puncture pretreatment (the puncture pretreatment usually takes more than a few seconds) and the process of cleaning the sampling needle 1 after the puncture pretreatment, shortening the sampling time and increasing the sampling speed. Since the sampling process is a critical path measured by the sample analyzer, the sampling method shortens the measurement time of the sample analyzer and increases the measurement speed of the sample analyzer. At the same time, the sampling method only needs to perform one puncture, and can reduce the wear of the sampling needle 1 and prolong the service life of the sampling needle 1.
  • the present invention controls the pressure environment in the first pipeline 2 and the second pipeline 3 through the first switching member 5 and the second switching member 6, the first switching member 5 and the switching action of the second switching member 6 is simple and efficient, which is advantageous for accurate and efficient implementation of the sampling method.
  • the experiment proves that the sampling method has high sampling accuracy, and the sampling method is beneficial to ensure the detection accuracy of the sample analyzer.
  • the sampling method can be applied to a low-cost puncture needle sampling and blood separation platform using an impedance technique.
  • step 0006 the second line 3 is again communicated to the negative pressure source 7 such that the second line 3 is in a negative pressure state.
  • step 0072 since the second conduit 3 is in a negative pressure state, the biological sample in the sampling needle 1 is moved to a fixed displacement toward the inside of the sampling needle 1. Since the negative pressure state in the third pipeline 3 is determined and controllable, the value of the fixed displacement generated by the biological sample can be calculated according to the negative pressure state, and the subsequent sample allocation action is set according to the value, thereby It is beneficial to improve the accuracy of the biological sample distribution action of the sample analyzer and improve the analysis accuracy of the sample analyzer.
  • the driving member 4 can push the biological sample in the sampling needle 1 to perform biological sample distribution.
  • step 0062 and step 0072 the biological sample in the sampling needle 1 can be moved away from the sampling needle 1 and moved within a fixed displacement in the sampling needle 1, thereby improving the subsequent sample analyzer.
  • the accuracy of the biological sample allocation action is improved.
  • the sampling needle 1 is away from an end of the first conduit 2 to form a front air column.
  • the sampling method further includes:
  • the driving member 4 pushes the front end air column out of the sampling needle 1.
  • the driving member 4 pushes out the front end air column by pushing the biological sample in the sampling needle 1. Since in step 0072, the front end of the sampling needle 1 (that is, the end away from the first line 2) forms the front end gas column due to the negative pressure state in the second line 3, it can be in the biological sample. The front end gas column is pushed out of the sampling needle 1 prior to dispensing to balance the displacement of the biological sample in step 0072, thereby improving the accuracy of the biological sample dispensing action of the sample analyzer.
  • the distance that the driving component 4 pushes the biological sample in the sampling needle 1 in step 0082 is set according to the fixed displacement of the biological sample generated in step 0072.
  • the driving member 4 may push out all of the front air columns, or only a part of the front air columns may be pushed out according to requirements.
  • the step “the sampling needle 1 pierces the test tube cap and extends into the test tube” and the step “the second switching member 6 communicates with the second conduit 3 and the negative pressure source 7” are simultaneously performed. Since the first switching member 5 blocks the first conduit 2 and the second conduit 3, the two do not interact with each other, so the step “the sampling needle 1 pierces the test tube cap and extends into the tube The "in-tube” and the step “the second switching member 6 communicates with the second conduit 3 and the negative pressure source 7" can be performed simultaneously, thereby further shortening the sampling time of the sampling method. Of course, the step “the second switching member 6 communicates with the second conduit 3 and the negative pressure source 7" may also be performed after the step "the sampling needle 1 pierces the test tube cap and extends into the test tube” .
  • the step “the sampling needle 1 leaves the test tube” and the step “the second switching member 6 communicates with the second conduit 3 and the negative pressure source 7" simultaneously. Since the first switching member 5 blocks the first conduit 2 and the second conduit 3, the two do not interact with each other, so the step “the sampling needle 1 leaves the test tube” and the steps “The second switching member 6 again communicates with the second conduit 3 and the negative pressure source 7" can be performed simultaneously, thereby further shortening the sampling time of the sampling method. Of course, the step “the second switching member 6 is again connected to the second conduit 3 and the negative pressure source 7" may also be performed after the step "the sampling needle 1 leaves the test tube" is completed.
  • the step “the sampling needle 1 pierces the test tube cap and extends into the test tube” includes:
  • the sampling needle 1 pierces the test tube cap and extends into the test tube, and stays for a predetermined time after entering.
  • sampling needle 1 continues to extend into the test tube to immerse the needle 13 of the sampling needle 1 in the biological sample.
  • the predetermined time can be used to balance the pressure within the first line 2 with the pressure within the tube.
  • the sampling needle 1 can pierce the test tube cap at a constant rate and immerse the needle 13 of the sampling needle 1 into the biological sample.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Clinical Laboratory Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Hematology (AREA)
  • Hydrology & Water Resources (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

一种采样组件,包括采样针(1)、第一管路(2)、第二管路(3)、驱动件(4)、第一切换件(5)以及第二切换件(6),第一管路(2)连接在采样针(1)与第一切换件(5)之间,第二管路(3)连接在第一切换件(5)与驱动件(4)之间,第一切换件(5)用于连通或切断第一管路(2)与第二管路(3),第二管路(3)能够通过第二切换件(6)连通至负压源(7)。本发明的采样组件的采样时间较短。本发明还公开了一种样本分析仪和一种采样方法。

Description

采样组件、样本分析仪及采样方法 技术领域
本发明涉及医疗器械技术领域,尤其涉及一种采样组件、一种样本分析仪以及一种采样方法。
背景技术
血细胞分析仪需要从封闭试管内抽取生物样本进行分析,由于封闭试管内普遍存在压力,压力会对采样准确性产生不利影响,因此,如何解决从封闭试管内准确取样是行业内普遍面临的问题。
目前方案通常采用两次穿刺,采样针第一次穿刺为穿刺预处理,用以将试管内压力释放出来,然后清洗采样针,接着采样针进行第二次穿刺以吸取生物样本。由于采样针需要进行两次穿刺,且两次穿刺中间还需要进行清洗,因此直接限制了血细胞分析仪的采样速度,导致血细胞分析仪测量速度较慢。
发明内容
本发明所要解决的技术问题在于提供一种采样时间较短的采样组件、样本分析仪以及采样方法。
为了实现上述目的,本发明实施方式采用如下技术方案:
一方面,提供一种采样组件,包括采样针、第一管路、第二管路、驱动件、第一切换件以及第二切换件,所述第一管路连接在所述采样针与所述第一切换件之间,所述第二管路连接在所述第一切换件与所述驱动件之间,所述第一切换件用于连通或切断所述第一管路与所述第二管路,所述第二管路能够通过所述第二切换件连通至负压源。
其中,所述第二管路还能够通过所述第二切换件连通至大气。换言之,所述第二管路能够通过所述第二切换件连通至负压源和大气。
其中,所述第二切换件包括第一接口和第二接口,所述第一接口连通所述第二管路,所述第二接口连通所述负压源,所述第二切换件能够连通所述第一接口与所述第二接口。
其中,所述第二切换件包括第一接口、第二接口以及第三接口,所述第一接口连通所述第二管路,所述第二接口连通所述负压源,所述第三接口连通大气,所述第二切换件能够连通所述第一接口与所述第二接口或者连通所述第一接口与所述第三接口。
其中,所述第二切换件包括:
第一子切换件,两端分别连通所述第二管路和所述负压源,所述第一子切换件用于连通或切断所述第二管路与所述负压源;和
第二子切换件,两端分别连通所述第二管路和大气,所述第二子切换件用 于连通或切断所述第二管路与大气。
其中,所述负压源包括储气罐,所述储气罐内形成负压,所述储气罐连通所述第二管路以使第二管路处于负压状态。
其中,所述储气罐内负压的压力值小于等于-30kPa。
其中,所述采样针包括沿一长度轴线的方向设置的针体和针头,所述针体和针头内设有相连通的流体通路,所述流体通路沿所述长度轴线的方向延伸,且其一端开口设置在所述针头上;所述针体具有封闭的外表面;所述针头包括一尖端部,所述尖端部包括第一端、第二端、及在第一端和第二端之间延伸的平滑侧表面,所述尖端部的第一端设置在远离针体的一侧,所述第二端设置在靠近针体的一侧,且所述尖端部为钝形端。
其中,所述尖端部的第一端与侧表面通过第一过渡弧面连接,所述第一过渡弧面的半径小于等于0.1mm。
其中,所述尖端部的侧表面的延伸方向相对于所述长度轴线形成第一夹角,所述第一夹角大于等于20°且小于等于40°。
其中,所述尖端部的第二端的径向尺寸大于等于二分之一的所述针体的径向尺寸。
其中,所述针头还包括第一过渡部,所述第一过渡部位于所述针体和所述尖端部之间,且连接所述针体和所述尖端部;所述第一过渡部与所述尖端部连接的一端具有第一径向尺寸,所述第一过渡部与所述针体连接的一端具有第二径向尺寸,第一径向尺寸小于第二径向尺寸。
其中,所述第一过渡部包括在其两端之间延伸的外表面,所述外表面的延伸方向相对于所述长度轴线形成第二夹角,所述第二夹角小于等于10°。
其中,所述第一过渡部为截锥结构,所述截锥结构具有光滑外表面,所述第一径向尺寸小于所述针体的径向尺寸,所述第二径向尺寸等于所述针体的径向尺寸。
其中,所述针头还包括第二过渡部,所述第二过渡部位于所述第一过渡部和所述尖端部之间,且连接所述第一过渡部和所述尖端部;所述第二过渡部通过第二过渡弧面与所述尖端部的第二端连接,所述第二过渡弧面的半径为0.1mm~1mm。
其中,所述流体通路的一端开口设置在所述第二过渡部上,且开口的方向与所述长度轴线的方向之间形成大于0°且小于等于90°的夹角。
其中,所述第二过渡部为具有恒定径向尺寸的圆柱体结构,所述圆柱体结构的径向尺寸小于所述针体的径向尺寸、等于所述尖端部的第二端的径向尺寸。
其中,所述流体通路一端开口设置在所述尖端部的侧表面。
其中,所述针体在垂直于所述长度轴线的方向上的任一横截面的外轮廓为圆形或椭圆形,所述尖端部为从其第二端向第一端变小的圆锥结构或截锥结构。
其中,所述驱动件包括注射器。
另一方面,还提供一种样本分析仪,包括上述采样组件。
再一方面,还提供一种采样方法,所述采样方法采用采样组件进行采样,所述采样组件包括采样针、第一管路、第二管路、驱动件、第一切换件以及第二切换件,所述第一管路连接在所述采样针与所述第一切换件之间,所述第二管路连接在所述第一切换件与所述驱动件之间,所述第一切换件用于连通或切断所述第一管路与所述第二管路,所述第二管路通过所述第二切换件连通至负压源;
所述采样方法包括:
所述第一切换件切断所述第一管路与所述第二管路后,所述采样针刺穿试管帽并伸入试管内;
所述第二切换件连通所述第二管路与所述负压源;
所述第二切换件断开所述第二管路与所述负压源后,所述第一切换件连通所述第一管路与所述第二管路;
所述驱动件将所述试管内生物样本抽取至所述采样针内;以及
所述第一切换件再次切断所述第一管路与所述第二管路后,所述采样针离开所述试管。
其中,所述第二切换件包括第一接口和第二接口,所述第一接口连通所述第二管路,所述第二接口连通所述负压源,所述第二切换件能够连通所述第一接口与所述第二接口;
在步骤“所述第一切换件再次切断所述第一管路与所述第二管路”之后,所述采样方法还包括:
所述第二切换件再次连通所述第二管路与所述负压源;以及
所述第二切换件再次断开所述第二管路与所述负压源后,所述第一切换件再次连通所述第一管路与所述第二管路。
其中,所述第一切换件再次连通所述第一管路与所述第二管路时,所述采样针远离所述第一管路的一端形成前端气柱;
在步骤“所述第一切换件再次连通所述第一管路与所述第二管路”之后,所述采样方法还包括:
所述驱动件将所述前端气柱推出所述采样针。
其中,步骤“所述采样针离开所述试管”和步骤“所述第二切换件再次连通所述第二管路与所述负压源”同时进行。
其中,所述第二管路还能够通过所述第二切换件连通至大气;
在步骤“所述第一切换件再次切断所述第一管路与所述第二管路”之后,所述采样方法还包括:
所述第二切换件连通所述第二管路至大气;以及
所述第二切换件断开所述第二管路与大气后,所述第一切换件再次连通所述第一管路与所述第二管路。
其中,步骤“所述采样针离开所述试管”和步骤“所述第二切换件连通所述第二管路至大气”同时进行。
其中,所述第二切换件包括第一接口、第二接口以及第三接口,所述第一接口连通所述第二管路,所述第二接口连通所述负压源,所述第三接口连通大气,所述第二切换件能够连通所述第一接口与所述第二接口或者连通所述第一接口与所述第三接口。
其中,所述第二切换件包括:
第一子切换件,两端分别连通所述第二管路和所述负压源,所述第一子切换件用于连通或切断所述第二管路与所述负压源;和
第二子切换件,两端分别连通所述第二管路和大气,所述第二子切换件用于连通或切断所述第二管路与大气。
其中,步骤“所述采样针刺穿试管帽并伸入试管内”和步骤“所述第二切换件连通所述第二管路与所述负压源”同时进行。
其中,步骤“所述采样针刺穿试管帽并伸入试管内”包括:
所述采样针刺穿试管帽并伸入试管内,进入后停留预定时间;和
所述采样针继续伸入所述试管以使采样针的针头浸入生物样本。
相较于现有技术,本发明具有以下有益效果:
所述采样组件可通过所述第一切换件和所述第二切换件的动作来控制所述第一管路的压力环境,以消除了封闭试管内的压力对采样准确性所产生不利影响,因此利用所述采样组件进行采样时,只需要令所述采样针进行一次穿刺即可完成采样,不再需要进行穿刺预处理和穿刺预处理后清洗采样针的工序,缩短了采样时间,提高了采样速度。由于采样流程为所述样本分析仪测量的关键路径,因此利用所述采样组件进行采样缩短了所述样本分析仪的测量时间,提高了所述样本分析仪的测量速度。同时,利用所述采样组件进行采样仅需进行一次穿刺也能够降低对所述采样针的磨损,延长了所述采样针的使用寿命。
附图说明
为了更清楚地说明本发明的技术方案,下面将对实施方式中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以如这些附图获得其他的附图。
图1是本发明实施例提供的采样组件的一种实施方式的示意图。
图2是本发明实施例提供的采样组件的另一种实施方式的示意图。
图3是图1所示采样组件的采样针的一种实施方式的结构示意图。
图4是图3中A处结构的放大图。
图5是图1所示采样组件的采样针的另一种实施方式的结构示意图。
图6是本发明实施例提供的一种采样方法的流程图;
图7是本发明实施例提供的采样组件的再一种实施方式的示意图;
图8是本发明实施例提供的另一种采样方法的流程图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明实施例提供一种样本分析仪。所述样本分析仪可用于进行生物样本分析,所述生物样本可以为血液、尿液等。所述样本分析仪包括采样组件,所述采样组件用于采集和分配生物样本。所述样本分析仪还包括驱动组件、反应组件、检测组件、废液处理组件以及控制器。所述驱动组件用于驱动所述样本分析仪中的各种流路(包括气路和液路)。所述反应组件用于对所述生物样本进行处理以形成待测液。所述检测组件用于检测所述待测液以形成检测信息。所述废液处理组件用于收集和排放所述样本分析仪中的废液。所述控制器用于控制所述样本分析仪的工作流程并处理所述检测信息以形成分析结果。
在第一实施例中:
请一并参阅图1和图2,本实施例中的采样组件100包括采样针1、第一管路2、第二管路3、驱动件4、第一切换件5以及第二切换件6。所述第一管路2连接在所述采样针1与所述第一切换件5之间。所述第二管路3连接在所述第一切换件5与所述驱动件4之间。所述第一切换件5用于连通或切断所述第一管路2与所述第二管路3。所述第二管路3能够通过所述第二切换件6连通至负压源7和大气。
在本实施例中,所述采样组件100可通过所述第一切换件5和所述第二切换件6的动作来控制所述第一管路2的压力环境,以消除了封闭试管内的压力对采样准确性所产生不利影响,因此利用所述采样组件100进行采样时,只需要令所述采样针1进行一次穿刺即可完成采样,不再需要进行穿刺预处理(穿刺预处理耗时通常在数秒以上)和穿刺预处理后清洗采样针1的工序,缩短了采样时间,提高了采样速度。由于采样流程为所述样本分析仪测量的关键路径,因此利用所述采样组件100进行采样缩短了所述样本分析仪的测量时间,提高了所述样本分析仪的测量速度。同时,利用所述采样组件100进行采样仅需进行一次穿刺也能够降低对所述采样针1的磨损,延长了所述采样针1的使用寿命。
在一种实施方式中,如图1所示,所述第二切换件6包括第一接口61、第二接口62以及第三接口63。所述第一接口61连通所述第二管路3,所述第二接口62连通所述负压源7,所述第三接口63连通大气,所述第二切换件6能够连通所述第一接口61与所述第二接口62或者连通所述第一接口61与所述第三接口63。所述第二切换件6可为阀,例如二位三通电磁阀等。
在另一种实施方式中,如图2所示,所述第二切换件6包括第一子切换件64和第二子切换件65。所述第一子切换件64的两端分别连通所述第二管路3和所述负压源7,所述第一子切换件64用于连通或切断所述第二管路3与所述负压源7。所述第一子切换件64可为阀,例如截止阀等。所述第二子切换件65的两端分别连通所述第二管路3和大气,所述第二子切换件65用于连通或切断所述第二管路3与大气。所述第二子切换件65可为阀,例如截止阀等。
可选的,所述负压源7包括储气罐71,所述储气罐71内形成负压,所述储气罐71连通所述第二管路3以使第二管路3处于负压状态。所述负压源7还可包括气泵72,所述气泵72用于连通所述储气罐71,以在所述储气罐71内建立所述负压。
所述储气罐71内负压的压力值小于等于-30kPa。所述第二管路3连通所述储气罐71时,所述第二管路3的压力与所述储气罐71相同,从而使得所述第二管路3的压力低于所述试管内的负压。
可选的,所述驱动件4包括注射器,用以使所述采样针1吸取定量的生物样本。在其他实施方式中,所述驱动件4也可以包括定量泵,或者其他能够吸取定量液体的装置。
请一并参阅图1至图5,作为一种可选实施例,所述采样针1包括沿一长度轴线11的方向设置的针体12和针头13。所述针体12和针头13内设有相连通的流体通路14。所述流体通路14沿所述长度轴线11的方向延伸,且其一端开口141设置在所述针头13上。所述开口141用于吸取和排放生物样本。所述针体12具有封闭的外表面。所述针头13包括一尖端部131,所述尖端部131包括第一端1311、第二端1312、及在第一端1311和第二端1312之间延伸的平滑侧表面1313。所述尖端部131的第一端1311设置在远离针体12的一侧,所述第二端1312设置在靠近针体12的一侧,且为钝形端。所述第二端1312位于所述第一端1311与所述针体12之间。所述钝形端包括但不限于平面端或弧面端。
在本申请中,由于所述针头13的所述尖端部131的所述第一端1311设置为钝形端,且连接在所述第一端1311与所述第二端1312之间的侧表面1313为平滑面,因此所述采样针1可避免因针头13太锋利而导致切削试管帽,使得所述采样针1在穿刺时碎屑较少。由于所述针体12具有封闭的外表面,所述针体12上没有开设放气槽,即简化了所述采样针1的加工工艺,因此同时也能够避免因放气槽切削试管帽而产生碎屑。
可选的,所述流体通路14沿所述长度轴线11的方向自所述针头13向所述针体12延伸。所述流体通路14贯穿所述针体12。所述流体通路14通过设于所述针头13的所述开口141吸取和排放生物样本。
可选的,如图5所示,所述流体通路14的一端开口141设置在所述尖端 部131的侧表面1313。
可选的,所述针体12在垂直于所述长度轴线11的方向上的任一横截面的形状为圆形或椭圆形。所述针体12大致呈中空的圆柱体或椭圆柱体。
可选的,所述尖端部131为从其第二端1312向第一端1311变小的圆锥结构或截锥结构。此时,所述侧表面1313的垂直于所述长度轴线11的横截面形状为圆形,所述侧表面1313为圆滑的表面,能够避免切削试管帽。
可选的,所述尖端部131的第一端1311与侧表面1313通过第一过渡弧面132连接,所述第一过渡弧面132的半径小于等于0.1mm。所述第一过渡弧面132使得所述尖端部131的外表面1331更为平滑,能够进一步降低切削试管帽的风险。
可选的,所述尖端部131的侧表面1313的延伸方向相对于所述长度轴线11形成第一夹角A,所述第一夹角A大于等于20°且小于等于40°。所述第一夹角A可为30°。此时,所述尖端部131的垂直于所述长度轴线11的横截面积自所述第一端1311向所述第二端1312逐渐增大,从而使得所述尖端部131能够顺利穿过试管帽,降低所述采样针1的穿刺难度。
可选的,所述尖端部131的第二端1312的径向尺寸大于等于二分之一的所述针体12的径向尺寸。此时,所述尖端部131在所述试管帽上穿出一较大的通孔,该通孔的径向尺寸大于等于二分之一的所述针体12的径向尺寸,使得所述针体12能够在较小作用力下顺利穿过所述通孔,降低了所述采样针1的穿刺难度。
请一并参阅图3和图4,作为一种可选实施例,所述针头13还包括第一过渡部133,所述第一过渡部133位于所述针体12和所述尖端部131之间,且连接所述针体12和所述尖端部131。所述第一过渡部133与所述尖端部131连接的一端具有第一径向尺寸,所述第一过渡部133与所述针体12连接的一端具有第二径向尺寸,第一径向尺寸小于第二径向尺寸。所述采样针1进行穿刺时,所述第一过渡部133能够进一步扩大试管帽上被所述采样针1穿出的通孔的径向尺寸,从而进一步降低所述采样针1的穿刺难度。
可选的,所述第一过渡部133包括在其两端之间延伸的外表面1331,所述外表面1331的延伸方向相对于所述长度轴线11形成第二夹角B,所述第二夹角B小于等于10°。所述第二夹角B可为5°。此时,所述第一过渡部133的垂直于所述长度轴线11的横截面的面积自连接所述尖端部131的一端向连接所述针体12的一端逐渐增大,以降低所述采样针1的穿刺难度。
可选的,所述第一过渡部133为截锥结构,所述截锥结构具有光滑外表面1331,所述第一径向尺寸小于所述针体12的径向尺寸,所述第二径向尺寸等于所述针体12的径向尺寸。此时,所述针头13通过所述尖端部131及所述第一过渡部133使得试管帽上被所述采样针1穿出的通孔的径向尺寸等于针体 12的径向尺寸,从而进一步降低所述采样针1的穿刺难度。
在所述长度轴线11方向上,所述尖端部131的尺寸小于所述第一过渡部133的尺寸,以使所述采样针1可快速地在所述试管帽上穿刺出通孔,而后缓慢扩大所述通孔。
请一并参阅图3和图4,作为一种可选实施例,所述针头13还包括第二过渡部134,所述第二过渡部134位于所述第一过渡部133和所述尖端部131之间,且连接所述第一过渡部133和所述尖端部131。所述第二过渡部134通过第二过渡弧面135与所述尖端部131的第二端1312连接。所述第二过渡弧面135的半径为0.1mm~1mm,例如0.5mm。所述第二过渡弧面135使得所述针头13的外表面1331更为平滑,能够进一步降低切削试管帽的风险。
可选的,如图4所示,所述流体通路14的一端开口141设置在所述第二过渡部134上,且开口141的方向与所述长度轴线11的方向之间形成大于0°且小于等于90°的夹角。例如,所述开口141的方向与所述长度轴线11的方向之间大致垂直。
可选的,所述第二过渡部134为具有恒定径向尺寸的圆柱体结构,所述圆柱体结构的径向尺寸小于所述针体12的径向尺寸、等于所述尖端部131的第二端1312的径向尺寸。此时,由于第二过渡部134为呈圆柱体结构,因此在所述采样针1的穿刺过程中,所述第二过渡部134几乎不承受穿刺阻力,设于所述第二过渡部134上的所述开口141不会切削试管帽,也即所述采样针1不会产生碎屑且所述碎屑不会进入所述采样针1内的所述流体通道。
可选的,所述采样针1的外壁的表面粗糙度为0.1μm~3.2μm,例如0.2μm。此时,所述采样针1具有光滑的外壁,能够降低穿刺阻力。所述外壁的表面粗糙度可通过电镀工艺实现。
在第二实施例中:
请参阅图7,本实施例中的采样组件100与第一实施例中的采样组件100的区别在于:
所述第二切换件6包括第一接口61和第二接口62。所述第一接口61连通所述第二管路3。所述第二接口62连通所述负压源7。所述第二切换件6能够连通所述第一接口61与所述第二接口62。换言之,所述第二管路3能够通过所述第二切换件6连通至负压源7。
在本实施例中,所述采样组件100可通过所述第一切换件5和所述第二切换件6的动作来控制所述第一管路2的压力环境,以消除了封闭试管内的压力对采样准确性所产生不利影响,因此利用所述采样组件100进行采样时,只需要令所述采样针1进行一次穿刺即可完成采样,不再需要进行穿刺预处理(穿刺预处理耗时通常在数秒以上)和穿刺预处理后清洗采样针1的工序,缩短了采样时间,提高了采样速度。由于采样流程为所述样本分析仪测量的关键路径, 因此利用所述采样组件100进行采样缩短了所述样本分析仪的测量时间,提高了所述样本分析仪的测量速度。同时,利用所述采样组件100进行采样仅需进行一次穿刺也能够降低对所述采样针1的磨损,延长了所述采样针1的使用寿命。
其中,所述第二切换件6可为阀,例如截止阀等。
本发明实施例还提供一种采样方法,所述采样方法应用于上述样本分析仪。所述采样方法可采用上述实施例中所描述的采样组件100进行采样。
一种实施例中:
所述采样方法可采用前述第一实施例所描述的采样组件100(请参阅图1至图5)进行采样。所述采样组件100包括采样针1、第一管路2、第二管路3、驱动件4、第一切换件5以及第二切换件6。所述第一管路2连接在所述采样针1与所述第一切换件5之间。所述第二管路3连接在所述第一切换件5与所述驱动件4之间。所述第一切换件5用于连通或切断所述第一管路2与所述第二管路3。所述第二管路3能够通过所述第二切换件6连通至负压源7和大气。
请参阅图6,所述采样方法包括:
001:所述第一切换件5切断所述第一管路2与所述第二管路3后,所述采样针1刺穿试管帽并伸入试管内。
002:所述第二切换件6连通所述第二管路3与所述负压源7。
003:所述第二切换件6断开所述第二管路3与所述负压源7后,所述第一切换件5连通所述第一管路2与所述第二管路3。
004:所述驱动件4将所述试管内生物样本抽取至所述采样针1内。
005:所述第一切换件5再次切断所述第一管路2与所述第二管路3后,所述采样针1离开所述试管。
0061:所述第二切换件6连通所述第二管路3至大气。
0071:所述第二切换件6断开所述第二管路3与大气后,所述第一切换件5再次连通所述第一管路2与所述第二管路3。
在步骤001中,所述采样针1的远离所述第二管路3的末端形成有隔离气柱,所述隔离气柱能够隔离所述第一管路2内的液体与后续吸取的生物样本,防止因所述第一管路2内的液体对所述生物样本造成污染而导致所述样本分析仪检测结果不准确。先通过所述第一切换件5切断所述第一管路2与所述第二管路3后,再令所述采样针1伸入所述试管内,能够屏蔽所述第二管路3的变形对所述第一管路2内的隔离气柱的影响。如果所述采样针1在所述第一管路2连通所述第二管路3的情况下伸入所述试管内,则容易因所述试管内的压力与所述第二管路3的压力之间形成压差而导致所述第二管路3变形,进而导致隔离气柱明显缩短或消失,使得所述第一管路2内的液体对后续吸取的生 物样本造成污染,所述样本分析仪的分析结果不准确。
在步骤002中,所述负压源7使得所述第二管路3内处于负压状态,从而可以抵消试管内存在负压对所述隔离气柱的影响。
在步骤003中,所述第一管路2连通所述第二管路3后,所述第一管路2内的压力与所述第二管路3内的压力相同,所述第一管路2的压力略小于或等于所述试管内的压力。所述第一管路2内的压力略小于所述试管内的压力时,所述试管内的少量生物样本(前段样本)在压差作用下进入所述采样针1,所述隔离气柱隔开生物样本与所述第一管路2内的液体。
在步骤004中,所述试管内的较大量的生物样本(后段样本)在所述驱动件4的抽力驱动下进入所述采样针1。
在步骤005中,先通过所述第一切换件5切断所述第一管路2与所述第二管路3后,再令所述采样针1离开所述试管,能够屏蔽所述第二管路3的变形对所述隔离气柱、所述前段样本及所述后段样本的影响。此时,所述采样针1的远离所述第二管路3的一端形成很短的气柱。在所述采样针1内,所述隔离气柱、所述前段样本、所述后段样本以及所述气柱依次排列。
在本实施例中,通过步骤001至步骤005即可将生物样本准确地采集至所述采样针1中。所述采样方法通过控制所述第一管路2的压力环境,消除了封闭试管内的压力对采样准确性所产生不利影响,所述采样方法只需要令所述采样针1进行一次穿刺即可完成采样,所述采样方法不再需要进行穿刺预处理(穿刺预处理耗时通常在数秒以上)和穿刺预处理后清洗采样针1的工序,缩短了采样时间,提高了采样速度。由于采样流程为所述样本分析仪测量的关键路径,因此所述采样方法缩短了所述样本分析仪的测量时间,提高了所述样本分析仪的测量速度。同时,所述采样方法仅需进行一次穿刺也能够降低对所述采样针1的磨损,延长了所述采样针1的使用寿命。
可以理解的,本发明通过所述第一切换件5和所述第二切换件6来控制所述第一管路2与所述第二管路3内的压力环境,所述第一切换件5和所述第二切换件6的切换动作简单高效,有利于所述采样方法的准确、高效实施。
实验证明,通过所述采样方法进行采样后,所述采样针1内的生物样本偏移可控制在±0.3ul以下。所述后段样本内的部分作为测量血段,所述测量血段的前后均预留有隔离血段(例如所述前段样本),从而消除了生物样本偏移所产生的影响,因此所述采样方法采样准确度高,所述采样方法有利于保证所述样本分析仪的检测准确性。所述采样方法可应用于低成本的采用阻抗技术法的穿刺针采样分血平台。
在步骤0061中,所述第二管路3连通大气从而释放压力,所述第二管路3的压力环境与所述采样针1的远离所述第二管路3的一端的压力环境一致。
在步骤0071中,由于所述第二管路3的压力环境与所述采样针1的远离 所述第二管路3的一端的压力环境一致,因此所述采样针1内的生物样本几乎不发生偏移或波动,有利于所述样本分析仪后续的生物样本分配动作的准确性,提高了所述样本分析仪的分析准确性。在步骤0071之后,所述驱动件4可将所述采样针1内的生物样本往外推,以进行生物样本分配。
在本实施例中,通过步骤0061和步骤0071,可以使所述采样针1内的生物样本不脱离采样针1且在所述采样针1内几乎不发生偏移或波动,从而提高所述样本分析仪后续的生物样本分配动作的准确性。
可选的,步骤“所述采样针1刺穿试管帽并伸入试管内”和步骤“所述第二切换件6连通所述第二管路3与所述负压源7”同时进行。由于所述第一切换件5隔断了所述第一管路2与所述第二管路3,两者之间不再相互影响,因此步骤“所述采样针1刺穿试管帽并伸入试管内”和步骤“所述第二切换件6连通所述第二管路3与所述负压源7”可同时进行,从而进一步缩短所述采样方法的采样时间。当然,步骤“所述第二切换件6连通所述第二管路3与所述负压源7”也可以在步骤“所述采样针1刺穿试管帽并伸入试管内”完成之后进行。
可选的,步骤“所述采样针1离开所述试管”和步骤“所述第二切换件6连通所述第二管路3至大气”同时进行。由于所述第一切换件5隔断了所述第一管路2与所述第二管路3,两者之间不再相互影响,因此步骤“所述采样针1离开所述试管”和步骤“所述第二切换件6连通所述第二管路3至大气”可同时进行,从而进一步缩短所述采样方法的采样时间。当然,步骤“所述第二切换件6连通所述第二管路3至大气”也可以在步骤“所述采样针1离开所述试管”完成之后进行。
可选的,步骤“所述采样针1刺穿试管帽并伸入试管内”包括:
0011:所述采样针1刺穿试管帽并伸入试管内,进入后停留预定时间。
0012:所述采样针1继续伸入所述试管以使采样针1的针头13浸入生物样本。
所述预定时间可用于所述第一管路2内的压力与所述试管内的压力实现平衡。
当然,在其他实施方式中,所述采样针1可匀速刺穿试管帽并使采样针1的针头13浸入生物样本。
另一种实施例中:
所述采样方法可采用前述第二实施例所描述的采用组件(参阅图7)进行采样。采样组件100包括采样针1、第一管路2、第二管路3、驱动件4、第一切换件5以及第二切换件6。所述第一管路2连接在所述采样针1与所述第一切换件5之间。所述第二管路3连接在所述第一切换件5与所述驱动件4之间。所述第一切换件5用于连通或切断所述第一管路2与所述第二管路3。所述第 二管路3能够通过所述第二切换件6连通至负压源7。
所述采样方法包括:
001:所述第一切换件5切断所述第一管路2与所述第二管路3后,所述采样针1刺穿试管帽并伸入试管内。
002:所述第二切换件6连通所述第二管路3与所述负压源7。
003:所述第二切换件6断开所述第二管路3与所述负压源7后,所述第一切换件5连通所述第一管路2与所述第二管路3。
004:所述驱动件4将所述试管内生物样本抽取至所述采样针1内。
005:所述第一切换件5再次切断所述第一管路2与所述第二管路3后,所述采样针1离开所述试管。
0062:所述第二切换件6再次连通所述第二管路3与所述负压源7。
0072:所述第二切换件6再次断开所述第二管路3与所述负压源7后,所述第一切换件5再次连通所述第一管路2与所述第二管路3。
在步骤001中,所述采样针1的远离所述第二管路3的末端形成有隔离气柱,所述隔离气柱能够隔离所述第一管路2内的液体与后续吸取的生物样本,防止因所述第一管路2内的液体对所述生物样本造成污染而导致所述样本分析仪检测结果不准确。先通过所述第一切换件5切断所述第一管路2与所述第二管路3后,再令所述采样针1伸入所述试管内,能够屏蔽所述第二管路3的变形对所述第一管路2内的隔离气柱的影响。如果所述采样针1在所述第一管路2连通所述第二管路3的情况下伸入所述试管内,则容易因所述试管内的压力与所述第二管路3的压力之间形成压差而导致所述第二管路3变形,进而导致隔离气柱明显缩短或消失,使得所述第一管路2内的液体对后续吸取的生物样本造成污染,所述样本分析仪的分析结果不准确。
在步骤002中,所述负压源7使得所述第二管路3内处于负压状态,从而可以抵消试管内存在负压对所述隔离气柱的影响。
在步骤003中,所述第一管路2连通所述第二管路3后,所述第一管路2内的压力与所述第二管路3内的压力相同,所述第一管路2的压力略小于或等于所述试管内的压力。所述第一管路2内的压力略小于所述试管内的压力时,所述试管内的少量生物样本(前段样本)在压差作用下进入所述采样针1,所述隔离气柱隔开生物样本与所述第一管路2内的液体。
在步骤004中,所述试管内的较大量的生物样本(后段样本)在所述驱动件4的抽力驱动下进入所述采样针1。
在步骤005中,先通过所述第一切换件5切断所述第一管路2与所述第二管路3后,再令所述采样针1离开所述试管,能够屏蔽所述第二管路3的变形对所述隔离气柱、所述前段样本及所述后段样本的影响。此时,所述采样针1的远离所述第一管路2的一端形成很短的前端气柱。在所述采样针1内,所述 隔离气柱、所述前段样本、所述后段样本以及所述前端气柱依次排列。
在本实施例中,通过步骤001至步骤005即可将生物样本准确地采集至所述采样针1中。所述采样方法通过控制所述第一管路2的压力环境,消除了封闭试管内的压力对采样准确性所产生不利影响,所述采样方法只需要令所述采样针1进行一次穿刺即可完成采样,所述采样方法不再需要进行穿刺预处理(穿刺预处理耗时通常在数秒以上)和穿刺预处理后清洗采样针1的工序,缩短了采样时间,提高了采样速度。由于采样流程为所述样本分析仪测量的关键路径,因此所述采样方法缩短了所述样本分析仪的测量时间,提高了所述样本分析仪的测量速度。同时,所述采样方法仅需进行一次穿刺也能够降低对所述采样针1的磨损,延长了所述采样针1的使用寿命。
可以理解的,本发明通过所述第一切换件5和所述第二切换件6来控制所述第一管路2与所述第二管路3内的压力环境,所述第一切换件5和所述第二切换件6的切换动作简单高效,有利于所述采样方法的准确、高效实施。
实验证明,所述采样方法采样准确度高,所述采样方法有利于保证所述样本分析仪的检测准确性。所述采样方法可应用于低成本的采用阻抗技术法的穿刺针采样分血平台。
在步骤0062中,所述第二管路3再次连通至所述负压源7,使得所述第二管路3内处于负压状态。
在步骤0072中,由于所述第二管路3内处于负压状态,因此所述采样针1内的生物样本会朝向所述采样针1内部移动固定位移。由于第三管路3内的负压状态是确定且可控的,因此可以依据该负压状态计算出生物样本所发生的固定位移的数值,并依据该数值设置后续的样本分配动作,从而有利于提高所述样本分析仪后续的生物样本分配动作的准确性,提高了所述样本分析仪的分析准确性。在步骤0072之后,所述驱动件4可将所述采样针1内的生物样本往外推,以进行生物样本分配。
在本实施例中,通过步骤0062和步骤0072,可以使所述采样针1内的生物样本不脱离采样针1且在所述采样针1内移动固定位移,从而提高所述样本分析仪后续的生物样本分配动作的准确性。
可选的,所述第一切换件5再次连通所述第一管路2与所述第二管路3时,所述采样针1远离所述第一管路2的一端形成前端气柱。
在步骤“所述第一切换件5再次连通所述第一管路2与所述第二管路3”之后,所述采样方法还包括:
0082:所述驱动件4将所述前端气柱推出所述采样针1。
在本实施例中,所述驱动件4通过推动所述采样针1内的生物样本,以推出所述前端气柱。由于在步骤0072中,所述采样针1的前端(也即远离第一管路2的一端)会因为第二管路3中的负压状态而形成所述前端气柱,因此可 以在生物样本分配之前将所述前端气柱推出所述采样针1,以平衡生物样本在步骤0072中发生的位移,从而提高所述样本分析仪的生物样本分配动作的准确性。
其中,步骤0082中所述驱动件4推动所述采样针1内的生物样本移动的距离依据生物样本在步骤0072中发生的固定位移进行设置。步骤0082中,所述驱动件4可以将所有的所述前端气柱推出,也可以依据需求仅推出部分所述前端气柱。
可选的,步骤“所述采样针1刺穿试管帽并伸入试管内”和步骤“所述第二切换件6连通所述第二管路3与所述负压源7”同时进行。由于所述第一切换件5隔断了所述第一管路2与所述第二管路3,两者之间不再相互影响,因此步骤“所述采样针1刺穿试管帽并伸入试管内”和步骤“所述第二切换件6连通所述第二管路3与所述负压源7”可同时进行,从而进一步缩短所述采样方法的采样时间。当然,步骤“所述第二切换件6连通所述第二管路3与所述负压源7”也可以在步骤“所述采样针1刺穿试管帽并伸入试管内”完成之后进行。
可选的,步骤“所述采样针1离开所述试管”和步骤“所述第二切换件6再次连通所述第二管路3与所述负压源7”同时进行。由于所述第一切换件5隔断了所述第一管路2与所述第二管路3,两者之间不再相互影响,因此步骤“所述采样针1离开所述试管”和步骤“所述第二切换件6再次连通所述第二管路3与所述负压源7”可同时进行,从而进一步缩短所述采样方法的采样时间。当然,步骤“所述第二切换件6再次连通所述第二管路3与所述负压源7”也可以在步骤“所述采样针1离开所述试管”完成之后进行。
可选的,步骤“所述采样针1刺穿试管帽并伸入试管内”包括:
0011:所述采样针1刺穿试管帽并伸入试管内,进入后停留预定时间。
0012:所述采样针1继续伸入所述试管以使采样针1的针头13浸入生物样本。
所述预定时间可用于所述第一管路2内的压力与所述试管内的压力实现平衡。
当然,在其他实施方式中,所述采样针1可匀速刺穿试管帽并使采样针1的针头13浸入生物样本。
以上对本发明实施例进行了详细介绍,本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本发明的限制。

Claims (31)

  1. 一种采样组件,其特征在于:包括采样针、第一管路、第二管路、驱动件、第一切换件以及第二切换件,所述第一管路连接在所述采样针与所述第一切换件之间,所述第二管路连接在所述第一切换件与所述驱动件之间,所述第一切换件用于连通或切断所述第一管路与所述第二管路,所述第二管路能够通过所述第二切换件连通至负压源。
  2. 如权利要求1所述的采样组件,其特征在于,所述第二管路还能够通过所述第二切换件连通至大气。
  3. 如权利要求1所述的采样组件,其特征在于,所述第二切换件包括第一接口和第二接口,所述第一接口连通所述第二管路,所述第二接口连通所述负压源,所述第二切换件能够连通所述第一接口与所述第二接口。
  4. 如权利要求1所述的采样组件,其特征在于,所述第二切换件包括第一接口、第二接口以及第三接口,所述第一接口连通所述第二管路,所述第二接口连通所述负压源,所述第三接口连通大气,所述第二切换件能够连通所述第一接口与所述第二接口或者连通所述第一接口与所述第三接口。
  5. 如权利要求1所述的采样组件,其特征在于,所述第二切换件包括:
    第一子切换件,两端分别连通所述第二管路和所述负压源,所述第一子切换件用于连通或切断所述第二管路与所述负压源;和
    第二子切换件,两端分别连通所述第二管路和大气,所述第二子切换件用于连通或切断所述第二管路与大气。
  6. 如权利要求1~5任一项所述的采样组件,其特征在于,所述负压源包括储气罐,所述储气罐内形成负压,所述储气罐连通所述第二管路以使第二管路处于负压状态。
  7. 如权利要求6所述的采样组件,其特征在于,所述储气罐内负压的压力值小于等于-30kPa。
  8. 如权利要求1所述的采样组件,其特征在于,所述采样针包括沿一长度轴线的方向设置的针体和针头,所述针体和针头内设有相连通的流体通路,所述流体通路沿所述长度轴线的方向延伸,且其一端开口设置在所述针头上;所述针体具有封闭的外表面;所述针头包括一尖端部,所述尖端部包括第一端、第二端、及在第一端和第二端之间延伸的平滑侧表面,所述尖端部的第一端设置在远离针体的一侧,所述第二端设置在靠近针体的一侧,且所述尖端部为钝形端。
  9. 如权利要求8所述的采样组件,其特征在于,所述尖端部的第一端与侧表面通过第一过渡弧面连接,所述第一过渡弧面的半径小于等于0.1mm。
  10. 如权利要求8所述的采样组件,其特征在于,所述尖端部的侧表面的 延伸方向相对于所述长度轴线形成第一夹角,所述第一夹角大于等于20°且小于等于40°。
  11. 如权利要求8所述的采样组件,其特征在于,所述尖端部的第二端的径向尺寸大于等于二分之一的所述针体的径向尺寸。
  12. 如权利要求8所述的采样组件,其特征在于,所述针头还包括第一过渡部,所述第一过渡部位于所述针体和所述尖端部之间,且连接所述针体和所述尖端部;所述第一过渡部与所述尖端部连接的一端具有第一径向尺寸,所述第一过渡部与所述针体连接的一端具有第二径向尺寸,第一径向尺寸小于第二径向尺寸。
  13. 如权利要求12所述的采样组件,其特征在于,所述第一过渡部包括在其两端之间延伸的外表面,所述外表面的延伸方向相对于所述长度轴线形成第二夹角,所述第二夹角小于等于10°。
  14. 如权利要求12所述的采样组件,其特征在于,所述第一过渡部为截锥结构,所述截锥结构具有光滑外表面,所述第一径向尺寸小于所述针体的径向尺寸,所述第二径向尺寸等于所述针体的径向尺寸。
  15. 如权利要求12所述的采样组件,其特征在于,所述针头还包括第二过渡部,所述第二过渡部位于所述第一过渡部和所述尖端部之间,且连接所述第一过渡部和所述尖端部;所述第二过渡部通过第二过渡弧面与所述尖端部的第二端连接,所述第二过渡弧面的半径为0.1mm~1mm。
  16. 如权利要求15所述的采样组件,其特征在于,所述流体通路的一端开口设置在所述第二过渡部上,且开口的方向与所述长度轴线的方向之间形成大于0°且小于等于90°的夹角。
  17. 如权利要求15所述的采样组件,其特征在于,所述第二过渡部为具有恒定径向尺寸的圆柱体结构,所述圆柱体结构的径向尺寸小于所述针体的径向尺寸、等于所述尖端部的第二端的径向尺寸。
  18. 如权利要求8所述的采样组件,其特征在于,所述流体通路一端开口设置在所述尖端部的侧表面。
  19. 如权利要求8~18任一项所述的采样组件,其特征在于,所述针体在垂直于所述长度轴线的方向上的任一横截面的外轮廓为圆形或椭圆形,所述尖端部为从其第二端向第一端变小的圆锥结构或截锥结构。
  20. 如权利要求1所述的采样组件,其特征在于,所述驱动件包括注射器。
  21. 一种样本分析仪,其特征在于,包括如权利要求1~20任一项所述的采样组件。
  22. 一种采样方法,其特征在于,所述采样方法采用采样组件进行采样,所述采样组件包括采样针、第一管路、第二管路、驱动件、第一切换件以及第二切换件,所述第一管路连接在所述采样针与所述第一切换件之间,所述第二 管路连接在所述第一切换件与所述驱动件之间,所述第一切换件用于连通或切断所述第一管路与所述第二管路,所述第二管路能够通过所述第二切换件连通至负压源;
    所述采样方法包括:
    所述第一切换件切断所述第一管路与所述第二管路后,所述采样针刺穿试管帽并伸入试管内;
    所述第二切换件连通所述第二管路与所述负压源;
    所述第二切换件断开所述第二管路与所述负压源后,所述第一切换件连通所述第一管路与所述第二管路;
    所述驱动件将所述试管内生物样本抽取至所述采样针内;以及
    所述第一切换件再次切断所述第一管路与所述第二管路后,所述采样针离开所述试管。
  23. 如权利要求22所述的采样方法,其特征在于,所述第二切换件包括第一接口和第二接口,所述第一接口连通所述第二管路,所述第二接口连通所述负压源,所述第二切换件能够连通所述第一接口与所述第二接口;
    在步骤“所述第一切换件再次切断所述第一管路与所述第二管路”之后,所述采样方法还包括:
    所述第二切换件再次连通所述第二管路与所述负压源;以及
    所述第二切换件再次断开所述第二管路与所述负压源后,所述第一切换件再次连通所述第一管路与所述第二管路。
  24. 如权利要求23所述的采样方法,其特征在于,所述第一切换件再次连通所述第一管路与所述第二管路时,所述采样针远离所述第一管路的一端形成前端气柱;
    在步骤“所述第一切换件再次连通所述第一管路与所述第二管路”之后,所述采样方法还包括:
    所述驱动件将所述前端气柱推出所述采样针。
  25. 如权利要求23所述的采样方法,其特征在于,步骤“所述采样针离开所述试管”和步骤“所述第二切换件再次连通所述第二管路与所述负压源”同时进行。
  26. 如权利要求22所述的采样方法,其特征在于,所述第二管路还能够通过所述第二切换件连通至大气;
    在步骤“所述第一切换件再次切断所述第一管路与所述第二管路”之后,所述采样方法还包括:
    所述第二切换件连通所述第二管路至大气;以及
    所述第二切换件断开所述第二管路与大气后,所述第一切换件再次连通所述第一管路与所述第二管路。
  27. 如权利要求26所述的采样方法,其特征在于,步骤“所述采样针离开所述试管”和步骤“所述第二切换件连通所述第二管路至大气”同时进行。
  28. 如权利要求26所述的采样方法,其特征在于,所述第二切换件包括第一接口、第二接口以及第三接口,所述第一接口连通所述第二管路,所述第二接口连通所述负压源,所述第三接口连通大气,所述第二切换件能够连通所述第一接口与所述第二接口或者连通所述第一接口与所述第三接口。
  29. 如权利要求26所述的采样方法,其特征在于,所述第二切换件包括:
    第一子切换件,两端分别连通所述第二管路和所述负压源,所述第一子切换件用于连通或切断所述第二管路与所述负压源;和
    第二子切换件,两端分别连通所述第二管路和大气,所述第二子切换件用于连通或切断所述第二管路与大气。
  30. 如权利要求22~29任一项所述的采样方法,其特征在于,步骤“所述采样针刺穿试管帽并伸入试管内”和步骤“所述第二切换件连通所述第二管路与所述负压源”同时进行。
  31. 如权利要求22~29任一项所述的采样方法,其特征在于,步骤“所述采样针刺穿试管帽并伸入试管内”包括:
    所述采样针刺穿试管帽并伸入试管内,进入后停留预定时间;和
    所述采样针继续伸入所述试管以使采样针的针头浸入生物样本。
PCT/CN2018/093453 2017-06-30 2018-06-28 采样组件、样本分析仪及采样方法 WO2019001538A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201880038783.9A CN110730911B (zh) 2017-06-30 2018-06-28 采样组件、样本分析仪及采样方法
CN202311509731.4A CN117761336A (zh) 2017-06-30 2018-06-28 采样组件、样本分析仪及采样方法
US16/729,449 US11614382B2 (en) 2017-06-30 2019-12-29 Sampling assembly, sample analyzer and sampling method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CNPCT/CN2017/091344 2017-06-30
PCT/CN2017/091344 WO2019000458A1 (zh) 2017-06-30 2017-06-30 采样组件、样本分析仪及采样方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/729,449 Continuation US11614382B2 (en) 2017-06-30 2019-12-29 Sampling assembly, sample analyzer and sampling method

Publications (1)

Publication Number Publication Date
WO2019001538A1 true WO2019001538A1 (zh) 2019-01-03

Family

ID=64740924

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2017/091344 WO2019000458A1 (zh) 2017-06-30 2017-06-30 采样组件、样本分析仪及采样方法
PCT/CN2018/093453 WO2019001538A1 (zh) 2017-06-30 2018-06-28 采样组件、样本分析仪及采样方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/091344 WO2019000458A1 (zh) 2017-06-30 2017-06-30 采样组件、样本分析仪及采样方法

Country Status (3)

Country Link
US (1) US11614382B2 (zh)
CN (2) CN110730911B (zh)
WO (2) WO2019000458A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2801353C1 (ru) * 2022-05-12 2023-08-07 Общество с ограниченной ответственностью "СИНТЕЗ-РЕСУРС" Устройство забора, дозирования и разведения биологической жидкости методом переключения дозирующих магистралей без применения подвижных элементов

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110702465A (zh) * 2019-11-14 2020-01-17 湖南爱威医疗科技有限公司 一种样本吸样点样装置
CN112881393B (zh) * 2021-01-22 2022-08-05 四川沃文特生物技术有限公司 样本检测过程中的吸液方法
CN117969193A (zh) * 2024-04-02 2024-05-03 北京博赛德科技有限公司 夹套针式对流置换正压采样装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0651255A1 (de) * 1993-10-28 1995-05-03 F. Hoffmann-La Roche Ag Automatische Pipettiervorrichtung mit Reinigungseinrichtung
CN101495872A (zh) * 2006-07-26 2009-07-29 C2诊断公司 能够在分析自动化设备中使用的取样设备和方法
CN202179724U (zh) * 2011-07-22 2012-04-04 李卉 穿刺引流装置
CN202305273U (zh) * 2011-10-18 2012-07-04 深圳市蓝韵实业有限公司 带放气槽的采样吸取器
CN104406822A (zh) * 2014-12-08 2015-03-11 重庆南方数控设备有限责任公司 一种血流变检测穿刺取样装置
CN204269420U (zh) * 2014-10-24 2015-04-15 深圳市希莱恒医用电子有限公司 一种吸样液路系统

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5558838A (en) * 1993-09-29 1996-09-24 Becton Dickinson And Company Sample preparation apparatus
US5916524A (en) * 1997-07-23 1999-06-29 Bio-Dot, Inc. Dispensing apparatus having improved dynamic range
US5853665A (en) * 1997-09-16 1998-12-29 Coulter International Corp. Apparatus and method for monitoring vent line vacuum
FR2919729B1 (fr) * 2007-08-03 2012-03-02 Horiba Abx Sas Dispositif de preparation et de distribution fractionnee d'echantillons d'un fluide, systeme de distribution comportant un tel dispositif et procede associe
WO2011085285A1 (en) * 2010-01-11 2011-07-14 Waters Technologies Corporation Injection port needle support and washing
WO2012031222A1 (en) * 2010-09-02 2012-03-08 Siemens Healthcare Diagnostics Inc. Pressure monitoring of whole blood aspirations to determine completeness of whole blood mixing
CN102213607B (zh) * 2011-04-12 2013-07-10 深圳市蓝韵实业有限公司 一种液体体积计量装置
CN102393471B (zh) * 2011-08-16 2013-04-17 杨晓勇 一种移液装置装吸样头、液面接触及吸样检测系统以及使用该系统进行检测的方法
CN103575633B (zh) * 2012-08-10 2017-11-17 深圳迈瑞生物医疗电子股份有限公司 一种流式仪器及其液路系统
EP2711080B1 (de) * 2012-09-24 2019-04-10 Siemens Healthcare Diagnostics Products GmbH Hohlnadel für einen probenpipettor
CN105699299B (zh) * 2016-01-28 2018-02-27 陈晓乾 一种红细胞含量和血色素含量测定方法和测定装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0651255A1 (de) * 1993-10-28 1995-05-03 F. Hoffmann-La Roche Ag Automatische Pipettiervorrichtung mit Reinigungseinrichtung
CN101495872A (zh) * 2006-07-26 2009-07-29 C2诊断公司 能够在分析自动化设备中使用的取样设备和方法
CN202179724U (zh) * 2011-07-22 2012-04-04 李卉 穿刺引流装置
CN202305273U (zh) * 2011-10-18 2012-07-04 深圳市蓝韵实业有限公司 带放气槽的采样吸取器
CN204269420U (zh) * 2014-10-24 2015-04-15 深圳市希莱恒医用电子有限公司 一种吸样液路系统
CN104406822A (zh) * 2014-12-08 2015-03-11 重庆南方数控设备有限责任公司 一种血流变检测穿刺取样装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2801353C1 (ru) * 2022-05-12 2023-08-07 Общество с ограниченной ответственностью "СИНТЕЗ-РЕСУРС" Устройство забора, дозирования и разведения биологической жидкости методом переключения дозирующих магистралей без применения подвижных элементов

Also Published As

Publication number Publication date
CN110730911A (zh) 2020-01-24
US11614382B2 (en) 2023-03-28
US20200132571A1 (en) 2020-04-30
CN117761336A (zh) 2024-03-26
CN110730911B (zh) 2023-12-01
WO2019000458A1 (zh) 2019-01-03

Similar Documents

Publication Publication Date Title
WO2019001538A1 (zh) 采样组件、样本分析仪及采样方法
US7939031B2 (en) Automated pipette machine
JP4570120B2 (ja) 液体を吸引及び分配するための改良された方法及び装置
US6755802B2 (en) Whole blood sampling device
JPH07506668A (ja) 貫通サンプリング・プローブ
CN109959549A (zh) 样本检测方法及样本分析仪
US6284548B1 (en) Blood testing method and apparatus
WO2019014942A1 (zh) 样本分析仪及采样监控方法
CN213398557U (zh) 一种检测装置、血液分析仪
WO2014005463A1 (zh) 一种采样针的自动清洗装置及其方法
CN102735829A (zh) 一种血气分析仪及其使用方法
CN109085019B (zh) 一种样本处理装置及方法
CN202974750U (zh) 一种分离富集系统
KR101487538B1 (ko) 검체 자동 분주장치
CN207408157U (zh) 一种微量液体采样器
CN105547763A (zh) 双单向阀取样针及其取样方法
CN114643241B (zh) 一种供液系统和供液方法
CN112881393B (zh) 样本检测过程中的吸液方法
EP1549421B1 (de) Vorrichtung und verfahren zur entnahme von flüssigen proben
CN108542436B (zh) 一种定量抽吸液体的抽吸注射器及其控制方法
CN114739739A (zh) 用于真空采血管的采血装置、样本分析仪以及采血方法
CN114739738A (zh) 采样装置及采样方法
CN110779766B (zh) 一种体液管道取样方法
CN113759141A (zh) 样本分析仪及其采样方法
CN113759140A (zh) 样本分析仪及其采样方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18824496

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205N DATED 13/07/2020)

122 Ep: pct application non-entry in european phase

Ref document number: 18824496

Country of ref document: EP

Kind code of ref document: A1