WO2019000286A1 - 脉搏波传导速度pwv的测量系统 - Google Patents

脉搏波传导速度pwv的测量系统 Download PDF

Info

Publication number
WO2019000286A1
WO2019000286A1 PCT/CN2017/090628 CN2017090628W WO2019000286A1 WO 2019000286 A1 WO2019000286 A1 WO 2019000286A1 CN 2017090628 W CN2017090628 W CN 2017090628W WO 2019000286 A1 WO2019000286 A1 WO 2019000286A1
Authority
WO
WIPO (PCT)
Prior art keywords
patch
pulse wave
signal
measurement
artery
Prior art date
Application number
PCT/CN2017/090628
Other languages
English (en)
French (fr)
Inventor
刘振哲
朱宇东
Original Assignee
悦享趋势科技(北京)有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 悦享趋势科技(北京)有限责任公司 filed Critical 悦享趋势科技(北京)有限责任公司
Priority to PCT/CN2017/090628 priority Critical patent/WO2019000286A1/zh
Publication of WO2019000286A1 publication Critical patent/WO2019000286A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/0205Simultaneously evaluating both cardiovascular conditions and different types of body conditions, e.g. heart and respiratory condition

Definitions

  • the present invention relates to the field of medical device measurement technology, and in particular to a measurement system for pulse wave velocity PWV.
  • the common medical grade pulse wave velocity measurement equipment on the market is mainly pressure pulse wave.
  • the commonly used index parameters are the pulse wave velocity baPWV and the neck pulse wave velocity cfPWV.
  • the above-mentioned equipment is bulky and expensive, and requires strict and complicated operation steps, and during the measurement process, pressure is applied to the object to be measured, thereby causing adverse reactions such as emotional stress and discomfort to the object to be tested, thereby affecting detection accuracy and use experience. . If the person to be tested is an elderly person or an osteoporosis patient, and even if there is a wound in the body to be tested, the above-mentioned pressure pulse wave device is not applicable.
  • the embodiment of the invention provides a measurement system for pulse wave velocity PWV, which solves at least the technical problems of potential detection accuracy error, poor experience and poor applicability due to the measurement mode of the device itself in the prior art.
  • a measurement system for a pulse wave velocity PWV comprising: at least one pulse wave patch; wherein the pulse wave patch is pasted at a corresponding position of a superficial artery of the target object, according to The skin surface of the target object vibrates to collect a pulse wave signal of the superficial artery of the target object, and uploads a pulse wave signal; and a movement control device for controlling at least one pulse wave patch; wherein the mobile control device is wireless or wired, A control command is sent to the pulse wave patch, and the pulse wave signal uploaded by the pulse wave patch is received, and the pulse wave signal is processed to obtain a pulse wave conduction velocity, and the corresponding measurement result is displayed.
  • the pulse wave patch comprises: a vibration detector, which is attached to the skin surface of the superficial artery above the superficial artery for obtaining a pulse wave signal at a corresponding position by collecting vibration of the skin surface at the superficial artery of the target object; a data transceiver, configured to receive a control command sent by the mobile control device by using a wireless or wired manner, and upload a pulse wave signal of the pulse patch to the mobile control device; wherein the control command includes: clock synchronization, initial measurement finger The measuring instruction is terminated or terminated; the adhesive layer is used for fixing the patch on the skin surface of the target object; wherein the adhesive layer comprises: a biocompatible double-sided adhesive structure.
  • the pulse wave patch further includes: a synchronization controller connected to the data transceiver, configured to control clock synchronization between the pulse wave patch and the motion control device, so that the plurality of pulse wave patch data The acquired clock is synchronized.
  • a synchronization controller connected to the data transceiver, configured to control clock synchronization between the pulse wave patch and the motion control device, so that the plurality of pulse wave patch data The acquired clock is synchronized.
  • the mobile control terminal comprises: a transceiver interface, a control module, a data processing module, and a display module, wherein the transceiver interface is configured to establish a connection with the pulse wave patch through a wireless or wired manner; the control module is connected to the transceiver interface The method is configured to send a control command by using a transceiver interface through a wireless or wired manner, and receive a pulse wave signal uploaded by the pulse wave patch; wherein the control instruction includes: a clock synchronization, a start measurement instruction, or a termination measurement instruction; and a data processing module And connected to the control module, configured to acquire a time difference and a distance difference between the pulse wave transmitted from the heart to the patch according to the pulse wave signal according to the pulse wave signal, calculate according to the time difference and the distance difference, and obtain a pulse wave conduction speed; the display module And connected to the data processing module for displaying the measurement results corresponding to the pulse wave conduction velocity and the pulse wave conduction velocity.
  • the measuring system further comprises: an external measuring device connected to the pulse wave patch and the mobile control device, for obtaining a pulse wave velocity measurement result;
  • the external measuring device comprises: an ECG device, a bioimpedance ICG device, and a light One or a combination of at least two of a volumetric PPG device, and a pressure pulse wave.
  • a measurement system for pulse wave velocity PWV comprising: at least one main pulse wave patch, integrating a motion control system into a pulse wave patch to become a main pulse a wave patch, wherein the main pulse wave patch is configured to acquire a pulse wave signal, and control at least one from the pulse wave patch, receive measurement data of the pulse wave patch, process the measurement data, and display the measurement result; at least one from The pulse wave patch is used to collect the pulse wave signal at the pasting position and is controlled by the main pulse wave patch to upload the measurement data to the main pulse wave patch.
  • a measurement system for a pulse wave velocity PWV including: a first patch, a second patch, a third patch, a fourth patch, and a mobile control terminal,
  • the first patch is used for collecting the left upper arm radial artery signal;
  • the second patch is used for collecting the right upper arm radial artery signal;
  • the third patch is for collecting the left ankle artery signal;
  • the fourth patch is for Collecting a right ankle artery signal;
  • a mobile control terminal for controlling the first patch, the second patch, the third patch, and the fourth patch, wherein the control command sent by the mobile control terminal includes sending a start measurement instruction, a clock Synchronizing the instruction or terminating the measurement instruction, and receiving the measurement data uploaded by the first patch, the second patch, the third patch, and the fourth patch, performing algorithm processing on the measurement data, and displaying corresponding measurement results;
  • the left upper arm radial artery signal and the left ankle artery signal collected by the first patch and the third patch calculate the left
  • a measurement system for a pulse wave velocity PWV including: a first patch, a second patch, a third patch, a fourth patch, and a mobile control terminal,
  • the first patch is used for collecting the left carotid artery signal;
  • the second patch is used for collecting the right carotid artery signal;
  • the third patch is for collecting the left femoral artery signal;
  • the fourth patch is for collecting the right a femoral artery signal;
  • a mobile control terminal configured to control the first patch, the second patch, the third patch, and the fourth patch, wherein the control command sent by the mobile control terminal includes sending a start measurement instruction and a clock synchronization instruction Or terminating the measurement instruction, and receiving the measurement data uploaded by the first patch, the second patch, the third patch, and the fourth patch, performing algorithm processing on the measurement data, and displaying corresponding measurement results; wherein, according to the first The left carotid artery signal and the left femoral artery signal collected from
  • a measurement system for a pulse wave velocity PWV comprising: a patch set and a mobile control terminal, wherein the number of patches in the tile set a positive integer greater than or equal to 2, wherein the patches in the patch set are respectively attached to the superficial artery position of the target position to be tested; the mobile control terminal is configured to control the patch in the patch set to the patch.
  • the patch in the set sends a start measurement instruction, a clock synchronization instruction or a termination measurement instruction, and receives the measurement data uploaded by the patch in the patch set, and performs algorithm processing on the measurement data to obtain pulse wave conduction in the target position interval to be tested. Speed and display the corresponding measurement results.
  • At least one pulse wave patch is disposed; wherein the pulse wave patch is pasted at a corresponding position of the superficial artery of the target object, and the pulse wave of the superficial artery of the target object is collected according to the skin surface vibration of the target object.
  • the mobile control device is configured to control at least one pulse wave patch; wherein the mobile control device sends a control command to the pulse wave patch through a wireless or wired manner, and receives the pulse wave patch upload
  • the pulse wave signal processes the pulse wave signal to obtain the pulse wave conduction velocity, and displays the corresponding measurement result, so that the measurement data of the target object is obtained by the patch sensor, and the corresponding measurement result is obtained by the mobile control device, thereby
  • the technical effect of improving the measurement accuracy is realized, and the technical problems of potential detection accuracy error, poor experience, and poor applicability due to the measurement method of the device itself are solved in the prior art.
  • FIG. 1 is a schematic structural view of a measurement system of a pulse wave velocity PWV according to an embodiment of the present invention
  • FIG. 2 is a pulse wave patch of a measurement system for pulse wave velocity PWV according to an embodiment of the present invention Schematic;
  • FIG. 3 is a schematic structural view of another pulse wave patch in a measurement system of pulse wave velocity PWV according to an embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of a mobile control terminal in a measurement system of pulse wave velocity PWV according to an embodiment of the present invention
  • FIG. 5 is a schematic structural diagram of a measurement system of a pulse wave velocity PWV according to a third embodiment of the present invention.
  • Fig. 6 is a view showing the configuration of a measuring system of pulse wave velocity PWV according to a fourth embodiment of the present invention.
  • FIG. 1 is a schematic structural diagram of a measurement system of a pulse wave velocity PWV according to an embodiment of the present invention, as shown in FIG.
  • the measurement system of the wave conduction velocity PWV includes:
  • At least one pulse wave patch 12 wherein the pulse wave patch is attached to the corresponding position of the superficial artery of the target object, and the pulse wave signal of the superficial artery of the target object is collected according to the skin surface vibration of the target object, and the pulse wave signal is uploaded.
  • the beat wave signal processes the pulse wave signal to obtain the pulse wave conduction velocity and displays the corresponding measurement result.
  • the measurement system of the pulse wave velocity PWV provided by the present application can be applied to the measurement of the superficial artery of the human body, and is used to obtain the measurement result of the pulse wave velocity and the pulse wave velocity PWV.
  • the superficial artery of the human body includes, but is not limited to, a carotid artery, a subclavian artery, a radial artery, a radial artery, a femoral artery, a radial artery, etc.
  • the pulse wave transmission speed is provided by the measurement system of the pulse wave velocity PWV provided by the present application.
  • Data support is provided to enable diagnosis of heart and brain diseases for medical diagnosis.
  • the target object is a human body
  • the PWV of the human body is measured as an example.
  • the measurement system of the pulse wave velocity PWV provided by the present application is used to measure the pulse wave signal of the superficial artery of the human body.
  • At least one pulse wave patch is disposed; wherein the pulse wave patch is pasted at a corresponding position of the superficial artery of the target object, and the pulse wave of the superficial artery of the target object is collected according to the skin surface vibration of the target object.
  • the mobile control device is configured to control at least one pulse wave patch; wherein the mobile control device sends a control command to the pulse wave patch through a wireless or wired manner, and receives the pulse wave patch upload
  • the pulse wave signal processes the pulse wave signal to obtain the pulse wave conduction velocity, and displays the corresponding measurement result, so that the measurement data of the target object is obtained by the patch sensor, and the corresponding measurement result is obtained by the mobile control device, thereby
  • the technical effect of improving the measurement accuracy is realized, and the technical problems of potential detection accuracy error, poor experience, and poor applicability due to the measurement method of the device itself are solved in the prior art.
  • the pulse wave patch comprises: a vibration detector, which is attached to the skin surface of the superficial artery above the superficial artery for obtaining a pulse wave signal at a corresponding position by collecting vibration of the skin surface at the superficial artery of the target object; a data transceiver, configured to receive a control command sent by the mobile control device by using a wireless or wired manner, and upload a pulse wave signal of the pulse patch to the mobile control device; wherein the control command includes: a clock synchronization, a start measurement instruction, or Terminating the measurement instruction; an adhesive layer for fixing the patch on the skin surface of the target object; wherein the adhesive layer comprises: a biocompatible double-sided adhesive structure.
  • the pulse wave patch further includes: a synchronization controller connected to the data transceiver, configured to control clock synchronization between the pulse wave patch and the motion control device, so that the plurality of pulse wave patch data The acquired clock is synchronized.
  • a synchronization controller connected to the data transceiver, configured to control clock synchronization between the pulse wave patch and the motion control device, so that the plurality of pulse wave patch data The acquired clock is synchronized.
  • FIG. 2 is a schematic structural diagram of a pulse wave patch in a measurement system of pulse wave velocity PWV according to an embodiment of the present invention, as shown in FIG.
  • the structure of the wave patch comprises: a vibration detector, a synchronization controller, a data transceiver and an adhesive layer, wherein the adhesive layer is located under the structure of the pulse wave patch for contacting the skin of the human body, and the pulse wave patch is applied Fixed on the surface of the human skin, wherein the vibration detector is attached to the adhesive layer for acquiring the vibration signal of the skin above the human artery, and the synchronization controller and the data transceiver are located above the vibration detector structure for wired or wireless The method transmits the pulse wave signal to the mobile control device.
  • FIG. 3 is a schematic structural view of another pulse wave patch in a measurement system of pulse wave velocity PWV according to an embodiment of the present invention, a profile of a pulse wave patch, a vibration detector, a synchronization controller, and a data transceiver. As shown in Figure 3.
  • the wired method in the present application may be connected to the mobile control device through a data line through an external interface of the pulse wave patch; and wirelessly connected to the mobile control device via a wireless signal such as Bluetooth, infrared or wifi.
  • the mobile control terminal 14 includes: a transceiver interface, a control module, a data processing module, and a display module, wherein the transceiver interface is configured to establish a connection with the pulse wave patch through a wireless or wired manner; the control module, and the transceiver interface The connection is configured to send a control command by using a transceiver interface through a wireless or wired manner, and receive a pulse wave signal uploaded by the pulse wave patch; wherein the control instruction includes: a clock synchronization, a start measurement instruction, or a termination measurement instruction; and data processing
  • the module is connected to the control module, and is configured to acquire a time difference and a distance difference between the pulse wave transmitted from the heart to the patch according to the pulse wave signal according to the pulse wave signal, and calculate the pulse wave conduction speed according to the time difference and the distance difference;
  • the module is connected to the data processing module and is configured to display a measurement result corresponding to the pulse wave velocity and the pulse wave velocity.
  • FIG. 4 is a schematic structural diagram of a mobile control terminal in a measurement system of a pulse wave velocity PWV according to an embodiment of the present invention.
  • the transceiver interface of the mobile control terminal 14 is connected to the control module, so that The pulse wave patch is controlled, and the pulse wave signal uploaded by the pulse wave patch is processed through the connection of the data processing module and the control module, and the measurement result is displayed through a display module connected to the data processing module.
  • the mobile control terminal 14 provided herein may include: a separate measurement device, or integrated into, for example, a smart phone, a smart watch, a pad, a notebook computer, a PC, and a smart wearable device (eg, Google glasses, VR device, or AR device). Intelligent Terminal.
  • the mobile control terminal 14 provided by the present application is described by taking a smart phone as an example. The above example of the present application is only limited to the measurement system for implementing the pulse wave velocity PWV provided by the present application, and is not limited thereto.
  • the measuring system further comprises: an external measuring device connected to the pulse wave patch and the mobile control device, for obtaining a pulse wave velocity measurement result;
  • the external measuring device comprises: an ECG device, a bioimpedance ICG device, and a light One or a combination of at least two of a volumetric PPG device, and a pressure pulse wave.
  • a measurement system for pulse wave velocity PWV comprising: at least one main pulse wave patch, integrating a motion control system into a pulse wave patch to become a main pulse The beat wave patch, wherein the main pulse wave patch is configured to collect the pulse wave signal, and control at least one from the pulse wave patch, receive the measurement data of the pulse wave patch, process the measurement data, and display the measurement result; at least one From the pulse wave patch, it is used to collect the pulse wave signal at the pasting position, and is controlled by the main pulse wave patch to upload the measurement data to the main pulse wave patch.
  • the function of the motion control device is integrated on at least one main pulse wave patch, and the main pulse wave patch controls at least one pulse wave patch.
  • the main pulse wave patch transmits a control signal to at least one of the pulse wave patches to establish a connection with at least one pulse wave patch, thereby controlling at least one detection from the pulse wave patch, terminating detection, and
  • the synchronous acquisition between the pulse wave patches is performed on the main pulse wave patch by performing data processing on the measurement data uploaded from the pulse wave patch, and displaying the measurement result on the main pulse wave patch.
  • the integration degree of the pulse wave patch is increased, the external mobile control device is omitted, the connection between the device and the device is simpler, and the detection efficiency is improved.
  • a measurement system for a pulse wave velocity PWV including: a first patch, a second patch, a third patch, a fourth patch, and a mobile control terminal,
  • the first patch is used for collecting the left upper arm radial artery signal;
  • the second patch is used for collecting the right upper arm radial artery signal;
  • the third patch is for collecting the left ankle artery signal;
  • the fourth patch is for Collecting a right ankle artery signal;
  • a mobile control terminal for controlling the first patch, the second patch, the third patch, and the fourth patch, wherein the control command sent by the mobile control terminal includes sending a start measurement instruction, a clock Synchronizing the instruction or terminating the measurement instruction, and receiving the measurement data uploaded by the first patch, the second patch, the third patch, and the fourth patch, performing algorithm processing on the measurement data, and displaying corresponding measurement results;
  • the left upper arm radial artery signal and the left ankle artery signal collected by the first patch and the third patch calculate the left
  • FIG. 5 is a schematic structural diagram of a measurement system of pulse wave velocity PWV according to Embodiment 3 of the present invention, as shown in FIG. 5, in FIG. 5, through the left upper arm radial artery, the right upper arm radial artery, and the left ankle.
  • the pulse wave signal is collected at the position of the artery and the right ankle artery, and the measurement data is collected through the four patches of the above four positions, and the first patch, the second patch, the third patch, and the third method are obtained by Bluetooth.
  • the four patches ie, the four positions 1, 2, 3, and 4 posted by the human body shown in FIG. 5) are connected to the mobile control terminal (ie, the smartphone in FIG. 5), and 1, 2, 3,
  • the measurement data of the pulse wave at the 4 position is uploaded to the mobile control terminal, and the left ⁇ pulse wave velocity baPWV and the right ⁇ pulse wave velocity baPWV are calculated by the mobile control terminal.
  • a measurement system for a pulse wave velocity PWV including: a first patch, a second patch, a third patch, a fourth patch, and a mobile control terminal,
  • the first patch is used for collecting the left carotid artery signal;
  • the second patch is used for collecting the right carotid artery signal;
  • the third patch is for collecting the left femoral artery signal;
  • the fourth patch is for collecting the right a femoral artery signal;
  • a mobile control terminal configured to control the first patch, the second patch, the third patch, and the fourth patch, wherein the control command sent by the mobile control terminal includes sending a start measurement instruction and a clock synchronization instruction Or terminating the measurement instruction, and receiving the measurement data uploaded by the first patch, the second patch, the third patch, and the fourth patch, performing algorithm processing on the measurement data, and displaying corresponding measurement results; wherein, according to the first The left carotid artery signal and the left femoral artery signal collected from
  • FIG. 6 is a schematic structural diagram of a measurement system of a pulse wave velocity PWV according to Embodiment 4 of the present invention.
  • the first patch is different from the measurement mode in the third embodiment.
  • the positions of the second patch, the third patch, and the fourth patch are respectively located in the left carotid artery (i.e., position 1 in Fig. 6), the right carotid artery (i.e., position 2 in Fig. 6), and left in Fig. 6.
  • the femoral artery (i.e., position 3 in Fig. 6) and the right femoral artery (i.e., position 4 in Fig. 6), and the left cervical frond wave velocity cfPWV corresponding to positions 1 and 3 are obtained by the mobile control terminal; , 2, 4 position corresponding to the right neck femoral pulse wave velocity cfPWV.
  • a measurement system for a pulse wave velocity PWV comprising: a patch set and a mobile control terminal, wherein the number of patches in the tile set a positive integer greater than or equal to 2, wherein the patches in the patch set are respectively attached to the superficial artery position of the target position to be tested; the mobile control terminal is configured to control the patch in the patch set to the patch.
  • the patch in the set sends a start measurement instruction, a clock synchronization instruction or a termination measurement instruction, and receives the measurement data uploaded by the patch in the patch set, and performs algorithm processing on the measurement data to obtain pulse wave conduction in the target position interval to be tested. Speed and display the corresponding measurement results.
  • the disclosed technical contents may be implemented in other manners.
  • the device embodiments described above are merely illustrative, such as the division of the units, It can be divided into one logical function, and the actual implementation can have another division manner. For example, multiple units or components can be combined or integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, unit or module, and may be electrical or otherwise.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as a standalone product, may be stored in a computer readable storage medium.
  • the technical solution of the present invention which is essential or contributes to the prior art, or all or part of the technical solution, may be embodied in the form of a software product stored in a storage medium.
  • a number of instructions are included to cause a computer device (which may be a personal computer, server or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a U disk, a Read-Only Memory (ROM), a Random Access Memory (RAM), a removable hard disk, a magnetic disk, or an optical disk, and the like. .

Abstract

一种脉搏波传导速度PWV的测量系统,包括至少一个脉搏波贴片(12)以及移动控制装置(14)。脉搏波贴片(12)粘贴于目标对象的浅表动脉对应位置处,依据目标对象的皮肤表面振动采集目标对象的浅表动脉的脉搏波信号,并上传脉搏波信号。移动控制装置(14)用于控制至少一个脉搏波贴片(12)。移动控制装置(14)通过无线或有线的方式向脉搏波贴片(12)发送控制指令,并接收脉搏波贴片(12)上传的脉搏波信号,对脉搏波信号进行处理,得到脉搏波传导速度,并显示对应的测量结果。该测量系统解决了现有技术中设备本身的测量方式带来的潜在检测精度误差、体验差、适用性差的技术问题。

Description

脉搏波传导速度PWV的测量系统 技术领域
本发明涉及医疗设备测量技术领域,具体而言,涉及一种脉搏波传导速度PWV的测量系统。
背景技术
当前,市面上常见的医疗级脉搏波传导速度测量设备以压力脉搏波为主,常用的指标参数为肱踝脉搏波传导速度baPWV和颈股脉搏波传导速度cfPWV。上述设备体积庞大、价格昂贵,需要严格复杂的操作步骤,且测量过程中,需要对待测对象施加压力,进而给待测对象带来情绪紧张、感觉不适等不良反应,从而影响检测精度和使用体验。如果待测者为老年人或者骨质疏松症患者,甚至身体待测部位有伤口,上述压力脉搏波设备均不适用。
针对上述现有技术中由于设备本身的测量方式带来的潜在检测精度误差、体验差、适用性差的问题,目前尚未提出有效的解决方案。
发明内容
本发明实施例提供了一种脉搏波传导速度PWV的测量系统,以至少解决现有技术中由于设备本身的测量方式带来的潜在检测精度误差、体验差、适用性差的技术问题。
根据本发明实施例的一个方面,提供了一种脉搏波传导速度PWV的测量系统,包括:至少一个脉搏波贴片;其中,脉搏波贴片粘贴于目标对象的浅表动脉对应位置处,依据目标对象的皮肤表面振动采集目标对象的浅表动脉的脉搏波信号,并上传脉搏波信号;移动控制装置,用于控制至少一个脉搏波贴片;其中,移动控制装置通过无线或有线的方式,向脉搏波贴片发送控制指令,并接收脉搏波贴片上传的脉搏波信号,对脉搏波信号进行处理,得到脉搏波传导速度,并显示对应的测量结果。
可选的,脉搏波贴片包括:振动探测器,与浅表动脉上方的体表皮肤贴合,用于通过采集目标对象的浅表动脉处皮肤表面振动,获得对应位置处的脉搏波信号;数据收发器,用于通过无线或有线的方式,接收移动控制装置发送的控制指令,并向移动控制装置上传脉搏贴片的脉搏波信号;其中,控制指令包括:时钟同步、起始测量指 令或终止测量指令;粘贴层,用于在目标对象的皮肤表面固定贴片;其中,粘贴层包括:具有生物相容性的双面胶结构。
进一步地,可选的,脉搏波贴片还包括:同步控制器,与数据收发器连接,用于控制脉搏波贴片与移动控制装置之间的时钟同步,以使得多个脉搏波贴片数据采集的时钟同步。
可选的,移动控制终端包括:收发接口、控制模块、数据处理模块和显示模块,其中,收发接口,用于通过无线或有线的方式与脉搏波贴片建立连接;控制模块,与收发接口连接,用于通过收发接口通过无线或有线的方式,发送控制指令,并接收脉搏波贴片上传的脉搏波信号;其中,控制指令包括:时钟同步、起始测量指令或终止测量指令;数据处理模块,与控制模块连接,用于通过脉搏波信号,依据脉搏波信号获取脉搏波从心脏传输到贴片之间的时间差和距离差,依据时间差和距离差进行计算,得到脉搏波传导速度;显示模块,与数据处理模块连接,用于显示脉搏波传导速度以及脉搏波传导速度对应的测量结果。
可选的,测量系统还包括:与脉搏波贴片和移动控制装置连接的外接测量设备,用于得到脉搏波传导速度测量结果;外接测量设备包括:心电ECG设备、生物阻抗ICG设备、光容积PPG设备,以及压力脉搏波中的一种或至少两种组合。
根据本发明实施例的另一方面,还提供了一种脉搏波传导速度PWV的测量系统,包括:至少一个主脉搏波贴片,将移动控制系统集成到一个脉搏波贴片中,成为主脉搏波贴片,其中,主脉搏波贴片,用于采集脉搏波信号,并控制至少一个从脉搏波贴片,通过接收脉搏波贴片的测量数据,处理测量数据并显示测量结果;至少一个从脉搏波贴片,用于采集粘贴位置处的脉搏波信号,并受主脉搏波贴片控制,将测量数据上传到主脉搏波贴片。
根据本发明实施例的又一方面,还提供了一种脉搏波传导速度PWV的测量系统,包括:第一贴片、第二贴片、第三贴片、第四贴片和移动控制终端,其中,第一贴片,用于采集左上臂肱动脉信号;第二贴片,用于采集右上臂肱动脉信号;第三贴片,用于采集左脚踝动脉信号;第四贴片,用于采集右脚踝动脉信号;移动控制终端,用于控制第一贴片、第二贴片、第三贴片和第四贴片,其中,移动控制终端发送的控制指令包括发送起始测量指令、时钟同步指令或终止测量指令,并接收第一贴片、第二贴片、第三贴片和第四贴片上传的测量数据,对测量数据进行算法处理,并显示对应的测量结果;其中,依据第一贴片和第三贴片采集到的左上臂肱动脉信号和左脚踝动脉信号,计算左侧肱踝脉搏波传导速度baPWV;依据第二贴片和第四贴片采集到的右上臂肱动脉信号和右脚脚踝动脉信号,计算右侧肱踝脉搏波传导速度baPWV。
根据本发明实施例的再一方面,还提供了一种脉搏波传导速度PWV的测量系统,包括:第一贴片、第二贴片、第三贴片、第四贴片和移动控制终端,其中,第一贴片,用于采集左颈动脉信号;第二贴片,用于采集右颈动脉信号;第三贴片,用于采集左股动脉信号;第四贴片,用于采集右股动脉信号;移动控制终端,用于控制第一贴片、第二贴片、第三贴片和第四贴片,其中,移动控制终端发送的控制指令包括发送起始测量指令、时钟同步指令或终止测量指令,并接收第一贴片、第二贴片、第三贴片和第四贴片上传的测量数据,对测量数据进行算法处理,并显示相应的测量结果;其中,依据第一贴片和第三贴片采集到的左颈动脉信号和左股动脉信号,计算左侧颈股脉搏波传导速度cfPWV;依据第二贴片和第四贴片采集到的右颈动脉信号和右股动脉信号,计算右侧颈股脉搏波传导速度cfPWV。
根据本发明另一实施例的一方面,还提供了一种脉搏波传导速度PWV的测量系统,其特征在于,包括:贴片集合和移动控制终端,其中,贴片集合中的贴片个数为大于等于2的正整数,其中,贴片集合中的贴片,分别贴到待测目标位置的浅表动脉位置处;移动控制终端,用于控制贴片集合中的贴片,向贴片集合中的贴片发送起始测量指令、时钟同步指令或终止测量指令,并接收贴片集合中的贴片上传的测量数据,对测量数据进行算法处理,获得待测目标位置区间的脉搏波传导速度,并显示相应的测量结果。
在本发明实施例中,通过至少一个脉搏波贴片;其中,脉搏波贴片粘贴于目标对象的浅表动脉对应位置处,依据目标对象的皮肤表面振动采集目标对象的浅表动脉的脉搏波信号,并上传脉搏波信号;移动控制装置,用于控制至少一个脉搏波贴片;其中,移动控制装置通过无线或有线的方式,向脉搏波贴片发送控制指令,并接收脉搏波贴片上传的脉搏波信号,对脉搏波信号进行处理,得到脉搏波传导速度,并显示对应的测量结果,达到了以贴片传感器获取目标对象的测量数据,通过移动控制装置得到对应测量结果的目的,从而实现了提升测量精度的技术效果,进而解决了现有技术中由于设备本身的测量方式带来的潜在检测精度误差、体验差、适用性差的技术问题。
附图说明
此处所说明的附图用来提供对本发明的进一步理解,构成本申请的一部分,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1是根据本发明实施例的脉搏波传导速度PWV的测量系统的结构示意图;
图2是根据本发明实施例的脉搏波传导速度PWV的测量系统中一种脉搏波贴片的 结构示意图;
图3是根据本发明实施例的脉搏波传导速度PWV的测量系统中另一种脉搏波贴片的结构示意图;
图4是根据本发明实施例的脉搏波传导速度PWV的测量系统中一种移动控制终端的结构示意图;
图5是根据本发明实施例三的脉搏波传导速度PWV的测量系统的结构示意图;
图6是根据本发明实施例四的脉搏波传导速度PWV的测量系统的结构示意图。
具体实施方式
为了使本技术领域的人员更好地理解本发明方案,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分的实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本发明保护的范围。
需要说明的是,本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本发明的实施例能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
实施例一
根据本发明实施例,提供了一种脉搏波传导速度PWV的测量系统实施例,图1是根据本发明实施例的脉搏波传导速度PWV的测量系统的结构示意图,如图1所示,该脉搏波传导速度PWV的测量系统包括:
至少一个脉搏波贴片12;其中,脉搏波贴片粘贴于目标对象的浅表动脉对应位置处,依据目标对象的皮肤表面振动采集目标对象的浅表动脉的脉搏波信号,并上传脉搏波信号;移动控制装置14,用于控制至少一个脉搏波贴片12;其中,移动控制装置14通过无线或有线的方式,向脉搏波贴片发送控制指令,并接收脉搏波贴片上传的脉 搏波信号,对脉搏波信号进行处理,得到脉搏波传导速度,并显示对应的测量结果。
具体的,本申请提供的脉搏波传导速度PWV的测量系统可以适用于对人体浅表动脉测量,用来获取脉搏波传导速度和对应该脉搏波传导速度PWV的测量结果。其中,人体浅表动脉包括但不限于:颈动脉、锁骨下动脉、肱动脉、桡动脉、股动脉、踝动脉等,通过对本申请提供的脉搏波传导速度PWV的测量系统提供脉搏波传到速度以使得达到对医疗诊断提供心脑疾病的诊断的数据支持。在本申请实施例中目标对象为人体,以测量人体的PWV为例进行说明,其中,本申请提供的脉搏波传导速度PWV的测量系统用于测量人体的浅表动脉的脉搏波信号。
在本发明实施例中,通过至少一个脉搏波贴片;其中,脉搏波贴片粘贴于目标对象的浅表动脉对应位置处,依据目标对象的皮肤表面振动采集目标对象的浅表动脉的脉搏波信号,并上传脉搏波信号;移动控制装置,用于控制至少一个脉搏波贴片;其中,移动控制装置通过无线或有线的方式,向脉搏波贴片发送控制指令,并接收脉搏波贴片上传的脉搏波信号,对脉搏波信号进行处理,得到脉搏波传导速度,并显示对应的测量结果,达到了以贴片传感器获取目标对象的测量数据,通过移动控制装置得到对应测量结果的目的,从而实现了提升测量精度的技术效果,进而解决了现有技术中由于设备本身的测量方式带来的潜在检测精度误差、体验差、适用性差的技术问题。
可选的,脉搏波贴片包括:振动探测器,与浅表动脉上方的体表皮肤贴合,用于通过采集目标对象的浅表动脉处皮肤表面振动,获得对应位置处的脉搏波信号;数据收发器,用于通过无线或有线的方式,接收移动控制装置发送的控制指令,并向移动控制装置上传脉搏贴片的脉搏波信号;其中,控制指令包括:时钟同步、起始测量指令或终止测量指令;粘贴层,用于在目标对象的皮肤表面固定贴片;其中,粘贴层包括:具有生物相容性的双面胶结构。
进一步地,可选的,脉搏波贴片还包括:同步控制器,与数据收发器连接,用于控制脉搏波贴片与移动控制装置之间的时钟同步,以使得多个脉搏波贴片数据采集的时钟同步。
具体的,脉搏波贴片的结构见图2,图2是根据本发明实施例的脉搏波传导速度PWV的测量系统中一种脉搏波贴片的结构示意图,如图2所示,每个脉搏波贴片的结构组成包括:振动探测器、同步控制器、数据收发器和粘贴层,其中,粘贴层位于脉搏波贴片的结构的下层,用于与人体的皮肤接触,将脉搏波贴片固定于人体皮肤表面,其中,振动探测器贴合于粘贴层上,用于获取人体动脉上方皮肤的振动信号,同步控制器和数据收发器位于振动探测器结构上方,用于以有线或无线的方式将脉搏波信号发送至移动控制装置。
图3是根据本发明实施例的脉搏波传导速度PWV的测量系统中另一种脉搏波贴片的结构示意图,脉搏波贴片的粘贴层、振动探测器、同步控制器和数据收发器的外形如图3所示。
其中,本申请中有线的方式可以为通过脉搏波贴片的外接接口,通过数据线与移动控制装置连接;无线方式,可以通过蓝牙、红外或wifi等无线信号与移动控制装置连接。
需要说明的是本申请上述无线和有线的方式仅以上述为例进行说明,以实现本申请提供的脉搏波传导速度PWV的测量系统为准,具体不做限定。
可选的,移动控制终端14包括:收发接口、控制模块、数据处理模块和显示模块,其中,收发接口,用于通过无线或有线的方式与脉搏波贴片建立连接;控制模块,与收发接口连接,用于通过收发接口通过无线或有线的方式,发送控制指令,并接收脉搏波贴片上传的脉搏波信号;其中,控制指令包括:时钟同步、起始测量指令或终止测量指令;数据处理模块,与控制模块连接,用于通过脉搏波信号,依据脉搏波信号获取脉搏波从心脏传输到贴片之间的时间差和距离差,依据时间差和距离差进行计算,得到脉搏波传导速度;显示模块,与数据处理模块连接,用于显示脉搏波传导速度以及脉搏波传导速度对应的测量结果。
具体的,图4是根据本发明实施例的脉搏波传导速度PWV的测量系统中一种移动控制终端的结构示意图,如图4所示,移动控制终端14的收发接口与控制模块连接,以使得控制脉搏波贴片,通过数据处理模块与控制模块的连接,对脉搏波贴片上传的脉搏波信号进行处理,并通过与数据处理模块连接的显示模块,显示测量结果。
这里本申请提供的移动控制终端14可以包括:单独的测量设备,或者集成到例如智能手机、智能手表、Pad、笔记本电脑、PC和智能穿戴设备(如,谷歌眼镜,VR设备或AR设备)等智能终端。本申请提供的移动控制终端14以智能手机为例进行说明,本申请上述示例仅以实现本申请提供的脉搏波传导速度PWV的测量系统为准,具体不做限定。
可选的,测量系统还包括:与脉搏波贴片和移动控制装置连接的外接测量设备,用于得到脉搏波传导速度测量结果;外接测量设备包括:心电ECG设备、生物阻抗ICG设备、光容积PPG设备,以及压力脉搏波中的一种或至少两种组合。
实施例二
根据本发明实施例的另一方面,还提供了一种脉搏波传导速度PWV的测量系统,包括:至少一个主脉搏波贴片,将移动控制系统集成到一个脉搏波贴片中,成为主脉 搏波贴片,其中,主脉搏波贴片,用于采集脉搏波信号,并控制至少一个从脉搏波贴片,通过接收脉搏波贴片的测量数据,处理测量数据并显示测量结果;至少一个从脉搏波贴片,用于采集粘贴位置处的脉搏波信号,并受主脉搏波贴片控制,将测量数据上传到主脉搏波贴片。
具体的,在本申请实施例中提供的脉搏波传导速度PWV的测量系统中在至少一个主脉搏波贴片上集成了移动控制装置的功能,主脉搏波贴片控制至少一个从脉搏波贴片,主脉搏波贴片通过向至少一个从脉搏波贴片发送控制信号,以使得与至少一个从脉搏波贴片建立连接,进而控制至少一个从脉搏波贴片起始检测、终止检测,以及从脉搏波贴片之间的同步采集,在主脉搏波贴片上通过对从脉搏波贴片上传的测量数据进行数据处理,在主脉搏波贴片上显示测量结果。区别于实施例一本申请提供的脉搏波传导速度PWV的测量系统中脉搏波贴片的集成度增加,省去了外接的移动控制装置,在设备与设备连接上更简单,检测效率提升。
实施例三
根据本发明实施例的又一方面,还提供了一种脉搏波传导速度PWV的测量系统,包括:第一贴片、第二贴片、第三贴片、第四贴片和移动控制终端,其中,第一贴片,用于采集左上臂肱动脉信号;第二贴片,用于采集右上臂肱动脉信号;第三贴片,用于采集左脚踝动脉信号;第四贴片,用于采集右脚踝动脉信号;移动控制终端,用于控制第一贴片、第二贴片、第三贴片和第四贴片,其中,移动控制终端发送的控制指令包括发送起始测量指令、时钟同步指令或终止测量指令,并接收第一贴片、第二贴片、第三贴片和第四贴片上传的测量数据,对测量数据进行算法处理,并显示对应的测量结果;其中,依据第一贴片和第三贴片采集到的左上臂肱动脉信号和左脚踝动脉信号,计算左侧肱踝脉搏波传导速度baPWV;依据第二贴片和第四贴片采集到的右上臂肱动脉信号和右脚脚踝动脉信号,计算右侧肱踝脉搏波传导速度baPWV。
具体的,图5是根据本发明实施例三的脉搏波传导速度PWV的测量系统的结构示意图,如图5所示,图5中,通过对人体左上臂肱动脉、右上臂肱动脉、左脚踝动脉和右脚踝动脉位置处进行脉搏波信号采集,通过上述四个位置的四个贴片采集得到测量数据,并通过蓝牙的方式将第一贴片、第二贴片、第三贴片、第四贴片(即,图5所示的人体所贴的1、2、3、4四个位置)与移动控制终端(即,图5中的智能手机)连接,并将1、2、3、4位置处的脉搏波的测量数据上传至移动控制终端,由移动控制终端计算左侧肱踝脉搏波传导速度baPWV,以及右侧肱踝脉搏波传导速度baPWV。
实施例四
根据本发明实施例的再一方面,还提供了一种脉搏波传导速度PWV的测量系统,包括:第一贴片、第二贴片、第三贴片、第四贴片和移动控制终端,其中,第一贴片,用于采集左颈动脉信号;第二贴片,用于采集右颈动脉信号;第三贴片,用于采集左股动脉信号;第四贴片,用于采集右股动脉信号;移动控制终端,用于控制第一贴片、第二贴片、第三贴片和第四贴片,其中,移动控制终端发送的控制指令包括发送起始测量指令、时钟同步指令或终止测量指令,并接收第一贴片、第二贴片、第三贴片和第四贴片上传的测量数据,对测量数据进行算法处理,并显示相应的测量结果;其中,依据第一贴片和第三贴片采集到的左颈动脉信号和左股动脉信号,计算左侧颈股脉搏波传导速度cfPWV;依据第二贴片和第四贴片采集到的右颈动脉信号和右股动脉信号,计算右侧颈股脉搏波传导速度cfPWV。
具体的,图6是根据本发明实施例四的脉搏波传导速度PWV的测量系统的结构示意图,如图6所示,区别于实施例三中的测量方式,在本申请中第一贴片、第二贴片、第三贴片、第四贴片的位置分别位于图6中左颈动脉(即,图6中的位置1)、右颈动脉(即,图6中的位置2)、左股动脉(即,图6中的位置3)和右股动脉(即,图6中的位置4),并通过移动控制终端得到1、3位置对应的左侧颈股脉搏波传导速度cfPWV;以及,2、4位置对应的右侧颈股脉搏波传导速度cfPWV。
实施例五
根据本发明另一实施例的一方面,还提供了一种脉搏波传导速度PWV的测量系统,其特征在于,包括:贴片集合和移动控制终端,其中,贴片集合中的贴片个数为大于等于2的正整数,其中,贴片集合中的贴片,分别贴到待测目标位置的浅表动脉位置处;移动控制终端,用于控制贴片集合中的贴片,向贴片集合中的贴片发送起始测量指令、时钟同步指令或终止测量指令,并接收贴片集合中的贴片上传的测量数据,对测量数据进行算法处理,获得待测目标位置区间的脉搏波传导速度,并显示相应的测量结果。
上述本发明实施例序号仅仅为了描述,不代表实施例的优劣。
在本发明的上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。
在本申请所提供的几个实施例中,应该理解到,所揭露的技术内容,可通过其它的方式实现。其中,以上所描述的装置实施例仅仅是示意性的,例如所述单元的划分, 可以为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,单元或模块的间接耦合或通信连接,可以是电性或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可为个人计算机、服务器或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、移动硬盘、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (9)

  1. 一种脉搏波传导速度PWV的测量系统,其特征在于,包括:
    至少一个脉搏波贴片;其中,脉搏波贴片粘贴于目标对象的浅表动脉对应位置处,依据所述目标对象的皮肤表面振动采集所述目标对象的浅表动脉的脉搏波信号,并上传所述脉搏波信号;
    移动控制装置,用于控制所述至少一个脉搏波贴片;其中,所述移动控制装置通过无线或有线的方式,向所述脉搏波贴片发送控制指令,并接收所述脉搏波贴片上传的所述脉搏波信号,对所述脉搏波信号进行处理,得到脉搏波传导速度,并显示对应的测量结果。
  2. 根据权利要求1所述的测量系统,其特征在于,所述脉搏波贴片包括:
    振动探测器,与所述浅表动脉上方的体表皮肤贴合,用于通过采集所述目标对象的浅表动脉处皮肤表面振动,获得对应位置处的脉搏波信号;
    数据收发器,用于通过无线或有线的方式,接收所述移动控制装置发送的所述控制指令,并向所述移动控制装置上传所述脉搏贴片的所述脉搏波信号;其中,所述控制指令包括:时钟同步、起始测量指令或终止测量指令;
    粘贴层,用于在所述目标对象的皮肤表面固定所述贴片;其中,所述粘贴层包括:具有生物相容性的双面胶结构。
  3. 根据权利要求2所述的测量系统,其特征在于,所述脉搏波贴片还包括:
    同步控制器,与所述数据收发器连接,用于控制所述脉搏波贴片与所述移动控制装置之间的时钟同步,以使得多个脉搏波贴片数据采集的时钟同步。
  4. 根据权利要求1所述的测量系统,其特征在于,所述移动控制终端包括:收发接口、控制模块、数据处理模块和显示模块,其中,
    所述收发接口,用于通过无线或有线的方式与所述脉搏波贴片建立连接;
    所述控制模块,与所述收发接口连接,用于通过所述收发接口通过无线或有线的方式,发送控制指令,并接收所述脉搏波贴片上传的所述脉搏波信号;其中,所述控制指令包括:时钟同步、起始测量指令或终止测量指令;
    所述数据处理模块,与所述控制模块连接,用于通过所述脉搏波信号,依据所述脉搏波信号获取脉搏波从心脏传输到所述贴片之间的时间差和距离差,依据 所述时间差和所述距离差进行计算,得到所述脉搏波传导速度;
    所述显示模块,与所述数据处理模块连接,用于显示所述脉搏波传导速度以及所述脉搏波传导速度对应的测量结果。
  5. 根据权利要求1所述的测量系统,其特征在于,所述测量系统还包括:
    与所述脉搏波贴片和所述移动控制装置连接的外接测量设备,用于得到脉搏波传导速度测量结果;所述外接测量设备包括:心电ECG设备、生物阻抗ICG设备、光容积PPG设备,以及压力脉搏波中的一种或至少两种组合。
  6. 一种脉搏波传导速度PWV的测量系统,其特征在于,包括:
    至少一个主脉搏波贴片,将移动控制系统集成到一个脉搏波贴片中,成为主脉搏波贴片,其中,主脉搏波贴片,用于采集脉搏波信号,并控制至少一个从脉搏波贴片,通过接收脉搏波贴片的测量数据,处理所述测量数据并显示测量结果;
    至少一个从脉搏波贴片,用于采集粘贴位置处的脉搏波信号,并受所述主脉搏波贴片控制,将测量数据上传到所述主脉搏波贴片。
  7. 一种脉搏波传导速度PWV的测量系统,其特征在于,包括:第一贴片、第二贴片、第三贴片、第四贴片和移动控制终端,其中,
    所述第一贴片,用于采集左上臂肱动脉信号;
    所述第二贴片,用于采集右上臂肱动脉信号;
    所述第三贴片,用于采集左脚踝动脉信号;
    所述第四贴片,用于采集右脚踝动脉信号;
    所述移动控制终端,用于控制所述第一贴片、所述第二贴片、所述第三贴片和所述第四贴片,其中,所述移动控制终端发送的控制指令包括发送起始测量指令、时钟同步指令或终止测量指令,并接收所述第一贴片、所述第二贴片、所述第三贴片和所述第四贴片上传的测量数据,对所述测量数据进行算法处理,并显示对应的测量结果;
    其中,依据所述第一贴片和所述第三贴片采集到的所述左上臂肱动脉信号和所述左脚踝动脉信号,计算左侧肱踝脉搏波传导速度baPWV;依据所述第二贴片和所述第四贴片采集到的所述右上臂肱动脉信号和所述右脚脚踝动脉信号,计算右侧肱踝脉搏波传导速度baPWV。
  8. 一种脉搏波传导速度PWV的测量系统,其特征在于,包括:第一贴片、第二贴片、第三贴片、第四贴片和移动控制终端,其中,
    所述第一贴片,用于采集左颈动脉信号;
    所述第二贴片,用于采集右颈动脉信号;
    所述第三贴片,用于采集左股动脉信号;
    所述第四贴片,用于采集右股动脉信号;
    所述移动控制终端,用于控制所述第一贴片、所述第二贴片、所述第三贴片和所述第四贴片,其中,所述移动控制终端发送的控制指令包括发送起始测量指令、时钟同步指令或终止测量指令,并接收所述第一贴片、所述第二贴片、所述第三贴片和所述第四贴片上传的测量数据,对所述测量数据进行算法处理,并显示相应的测量结果;
    其中,依据所述第一贴片和所述第三贴片采集到的所述左颈动脉信号和所述左股动脉信号,计算左侧颈股脉搏波传导速度cfPWV;依据所述第二贴片和所述第四贴片采集到的所述右颈动脉信号和所述右股动脉信号,计算右侧颈股脉搏波传导速度cfPWV。
  9. 一种脉搏波传导速度PWV的测量系统,其特征在于,包括:贴片集合和移动控制终端,其中,所述贴片集合中的贴片个数为大于等于2的正整数,其中,
    所述贴片集合中的贴片,分别贴到待测目标位置的浅表动脉位置处;
    所述移动控制终端,用于控制所述贴片集合中的贴片,向所述贴片集合中的贴片发送起始测量指令、时钟同步指令或终止测量指令,并接收所述贴片集合中的贴片上传的测量数据,对所述测量数据进行算法处理,获得所述待测目标位置区间的脉搏波传导速度,并显示相应的测量结果。
PCT/CN2017/090628 2017-06-28 2017-06-28 脉搏波传导速度pwv的测量系统 WO2019000286A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/090628 WO2019000286A1 (zh) 2017-06-28 2017-06-28 脉搏波传导速度pwv的测量系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/090628 WO2019000286A1 (zh) 2017-06-28 2017-06-28 脉搏波传导速度pwv的测量系统

Publications (1)

Publication Number Publication Date
WO2019000286A1 true WO2019000286A1 (zh) 2019-01-03

Family

ID=64740228

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/090628 WO2019000286A1 (zh) 2017-06-28 2017-06-28 脉搏波传导速度pwv的测量系统

Country Status (1)

Country Link
WO (1) WO2019000286A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022033554A1 (zh) * 2020-08-13 2022-02-17 华为技术有限公司 脉搏波测量装置及其脉搏波测量方法、系统和介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007023426A2 (en) * 2005-08-26 2007-03-01 Koninklijke Philips Electronics N.V. Measurement of pulse wave velocity
CN104799839A (zh) * 2015-05-14 2015-07-29 京东方科技集团股份有限公司 血液参数监测装置
CN104873186A (zh) * 2015-04-17 2015-09-02 中国科学院苏州生物医学工程技术研究所 一种可穿戴的动脉检测装置及其数据处理方法
CN104958064A (zh) * 2015-07-15 2015-10-07 四川宇峰科技发展有限公司 一种可穿戴式动脉硬化检测仪及脉搏波传导速度检测方法
CN105592786A (zh) * 2013-08-08 2016-05-18 R·S·盖思特 无线妊娠监测

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007023426A2 (en) * 2005-08-26 2007-03-01 Koninklijke Philips Electronics N.V. Measurement of pulse wave velocity
CN105592786A (zh) * 2013-08-08 2016-05-18 R·S·盖思特 无线妊娠监测
CN104873186A (zh) * 2015-04-17 2015-09-02 中国科学院苏州生物医学工程技术研究所 一种可穿戴的动脉检测装置及其数据处理方法
CN104799839A (zh) * 2015-05-14 2015-07-29 京东方科技集团股份有限公司 血液参数监测装置
CN104958064A (zh) * 2015-07-15 2015-10-07 四川宇峰科技发展有限公司 一种可穿戴式动脉硬化检测仪及脉搏波传导速度检测方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022033554A1 (zh) * 2020-08-13 2022-02-17 华为技术有限公司 脉搏波测量装置及其脉搏波测量方法、系统和介质
CN114073496A (zh) * 2020-08-13 2022-02-22 华为终端有限公司 脉搏波测量装置及其脉搏波测量方法、系统和介质

Similar Documents

Publication Publication Date Title
Holz et al. Glabella: Continuously sensing blood pressure behavior using an unobtrusive wearable device
CN107592669B (zh) 无线网络内的时钟同步
EP3684245B1 (en) Determining an orientation of a wearable device
CN110251105B (zh) 一种无创血压测量方法、装置、设备及系统
JP7391054B2 (ja) オンボディセンサシステムおよび方法
TWI653032B (zh) 心電監測裝置及其血壓監測系統
CN107427236A (zh) 用于心血管监测的心血管传感器同步
TW201422204A (zh) 使用位於耳朵之感測器獲取生理學量測
CN107920761A (zh) 用于监测对象的脉搏相关的信息的设备和系统
JP6692420B2 (ja) 血圧測定のための補助デバイス及び血圧測定装置
CN112754445A (zh) 一种生理参数监测的系统和方法
US20210000419A1 (en) Bio-signal measurement means and bio-signal monitoring system
WO2016187835A1 (zh) 连续血压测量方法、装置和设备
CN106343986B (zh) 一种基于摄像头的动态血压非接触监测装置
US20210244296A1 (en) System and method for blood pressure measurement, computer program product using the method, and computer-readable recording medium thereof
CN106419879B (zh) 基于桡动脉生物传感器技术的血压动态监测系统及方法
WO2019000286A1 (zh) 脉搏波传导速度pwv的测量系统
WO2019202319A1 (en) Method and apparatus for estimating blood pressure
JPWO2020092786A5 (zh)
US11375908B2 (en) Blood pressure detection signal sampling and compensation method and apparatus, and blood pressure signal collection system
TW201634004A (zh) 穿戴式複合血管流速偵測器
WO2018002995A1 (ja) 生体リズムの検出装置、検出方法、及び、検出プログラム
Mohamed et al. The use of photoplethysmography for assessing hypertension
US20240138778A1 (en) Method for synchronising accelerometer-based metrics using cardiac activity in wrist worn wearables
Jonnada Cuff-less blood pressure measurement using a smart phone

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17916303

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17916303

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 02.04.2020)

122 Ep: pct application non-entry in european phase

Ref document number: 17916303

Country of ref document: EP

Kind code of ref document: A1