WO2018236493A1 - Battery management system - Google Patents

Battery management system Download PDF

Info

Publication number
WO2018236493A1
WO2018236493A1 PCT/US2018/032718 US2018032718W WO2018236493A1 WO 2018236493 A1 WO2018236493 A1 WO 2018236493A1 US 2018032718 W US2018032718 W US 2018032718W WO 2018236493 A1 WO2018236493 A1 WO 2018236493A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
transistor
output terminal
management system
resistor
Prior art date
Application number
PCT/US2018/032718
Other languages
French (fr)
Inventor
Saijun Mao
Yi Liao
Stewart Blake Brazil
Yuzheng CHEN
Xinhong HAN
Original Assignee
General Electric Company
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric Company filed Critical General Electric Company
Publication of WO2018236493A1 publication Critical patent/WO2018236493A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H02J7/0026
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4207Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/574Devices or arrangements for the interruption of current
    • H01M50/581Devices or arrangements for the interruption of current in response to temperature
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0014Circuits for equalisation of charge between batteries
    • H02J7/0016Circuits for equalisation of charge between batteries using shunting, discharge or bypass circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00306Overdischarge protection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2200/00Safety devices for primary or secondary batteries
    • H01M2200/10Temperature sensitive devices
    • H01M2200/103Fuse
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • This disclosure relates generally to the field of battery management, and more particularly to battery management systems.
  • Batteries are used in many applications to provide energy to loads.
  • a typical conventional battery usually consists of multiple cells connected in series to form a battery module. Cells are used cumulatively in the battery to provide a desired output voltage. Depending upon the power requirements and available internal spaces of the loads, multiple batteries are sometimes used.
  • a battery management system comprises a battery module having a positive output terminal and a negative output terminal.
  • the battery module comprises at least two branch circuits which are connected in parallel between the positive output terminal and the negative output terminal.
  • Each of the at least two branch circuits comprises at least two battery cells which are connected in series between the positive output terminal and the negative output terminal.
  • Each battery cell comprises a battery, a current limitingdevice for preventing the battery from over-discharging, and a bypass device for bypassing the battery when a fault occurs in the battery.
  • a battery management system is provided.
  • the battery management system comprises a plurality of battery cells.
  • Each of the plurality of battery cells comprises a battery, a current limiting device for preventing the battery from over-discharging, and a bypass device for bypassing the battery when a fault occurs in the battery.
  • FIG. 1 is a schematic diagram of a battery management system in accordance with an embodiment of the present disclosure.
  • FIG. 2 is a schematic diagram of a battery management system in accordance with another embodiment of the present disclosure.
  • connection and “coupled” are not restricted to physical or mechanical connections or couplings, and can include electrical connections or couplings, whether direct or indirect.
  • Terms indicating specific locations such as “top”, “bottom”, “left”, and “right”, are descriptions with reference to specific accompanying drawings. Embodiments disclosed in the present disclosure may be placed in a manner different from that shown in the figures. Therefore, the location terms used herein should not be limited to locations described in specific embodiments.
  • FIG. 1 illustrates a schematic diagram of a battery management system 100 in accordance with an embodiment of the present disclosure.
  • the battery management system 100 in accordance with an embodiment of the present disclosure may include a battery module 1.
  • the battery module 1 has a positive output terminal "+" and a negative output terminal
  • the battery module 1 may include at least two branch circuits 1 1.
  • the at least two branch circuits 11 are connected in parallel between the positive output terminal "+" and the negative output terminal
  • the seven branch circuits 1 1 are shown as an illustrative example in FIG. 1.
  • Each of the at least two branch circuits 1 1 may include at least two battery cells 12.
  • the at least two battery cells 12 are connected in series between the positive output terminal "+" and the negative output terminal
  • the number of the battery cells 12 in each branch circuit 11 are shown to be two in FIG. 1, but the number of the battery cells 12 of the present disclosure should be not limited herein.
  • Each battery cell 12 includes a battery 13, a current limiting device 14 and a bypass device.
  • the current limiting device 14 can prevent the battery 13 from over- discharging.
  • the current limiting device 14 may include a fuse 14 connected in series with the battery 13.
  • the bypass device can bypass the battery 13 when the battery 13 is in a fault condition.
  • the bypass device may for example include a first diode Di.
  • the first diode Di is connected in parallel with the fuse 14 and the battery 13. For example, when one battery 13 gets open-circuit failures, the impedance of open-circuit battery 13 becomes quite large. In this condition, the first diode Di is triggered to bypass the open- circuit battery 13.
  • Each battery cell 12 may further include a first resistor Ri.
  • the first resistor Ri is connected in parallel with the fuse 14 and the battery 13 and is configured for cell voltage balancing.
  • the current limiting device including the fuse 14 and the bypass device including the first diode Di can guarantee the continuity and redundancy of battery operation under different fault conditions of the battery 13.
  • the first resistor Ri can ensure voltage balancing for the battery cells 12 connected in series.
  • each branch circuit 11 may further include a second diode D 2 .
  • the second diode D 2 is connected in series with the at least two battery cells 12. The second diode D 2 can prevent reverse connection of the corresponding branch circuit 11.
  • the battery module 1 of the battery management system 100 may include a plurality of battery cells 12.
  • Each of the plurality of battery cells 12 includes a battery 13, a current limiting device 14 for preventing the battery 13 from over-discharging, and a bypass device for bypassing the battery 13 when a fault occurs in the battery 13.
  • the current limiting device 14 may for example include a fuse 14 connected in series with the battery 13.
  • the bypass device may for example include a first diode Di connected in parallel with the fuse 14 and the battery 13.
  • the plurality of battery cells 12 comprises at least two battery cells 12 which are connected in parallel and at least two battery cells 12 which are connected in series.
  • Each battery cell 12 may further include a first resistor Ri.
  • the first resistor Ri is connected in parallel with the fuse 14 and the battery 13.
  • the first resistor Ri of each battery cells 12 can ensure voltage balancing for the at least two battery cells 12 which are connected in series.
  • the battery management system 100 may further include at least two second diodes D 2 for preventing reverse connection of the at least two battery cells 12 which are connected in parallel.
  • FIG. 2 illustrates a schematic diagram of a battery management system 200 in accordance with another embodiment of the present disclosure.
  • the battery management system 200 in accordance with another embodiment of the present disclosure may include the battery module 1 as shown in FIG.1, and may further include a self-driven matching circuit 2.
  • the battery module 1 is coupled to a discharge circuit 3 via the self-driven matching circuit 2.
  • the discharge circuit 3 is for example a boost converter in this embodiment.
  • the discharge circuit 3 should be not limited to the boost converter, and may also include a buck converter, a buck-boost converter and other converters.
  • the self-driven matching circuit 2 may be used for over-discharging control of the battery module 1.
  • the self-driven matching circuit 2 may include a second resistor R 2 , a third resistor R 3 , a fourth resistor R 4 , a first transistor Qi and a second transistor Q 2 .
  • the second resistor R 2 and the third resistor R 3 are connected in series between the positive output terminal "+" and the negative output terminal
  • the first transistor Qi is a PN type transistor and has a body diode D 3 .
  • the first transistor Qi is a N-channel Metal-Oxide-Semiconductor Field-Effect Transistor (simply called as MOS).
  • a gate electrode g of the first transistor Qi is connected with a connection point of the second resistor R 2 and the third resistor R 3 .
  • a source electrode s of the first transistor Qi is connected to the negative output terminal and the source electrode s of the first transistor Qi is grounded.
  • the fourth resistor R 4 is coupled between the positive output terminal "+" and a drain electrode d of the first transistor Qi.
  • the second transistor Q2 is a P P type transistor and has a body diode D 4 .
  • the second transistor Q2 is a P-channel Metal-Oxide-Semiconductor Field-Effect Transistor (simply called as PMOS).
  • a gate electrode g of the second transistor Q2 is connected with the drain electrode d of the first transistor Qi, a source electrode s of the second transistor Q2 is connected with the positive output terminal "+" and a drain electrode d of the second transistor Q2 is connected to the discharge circuit 3.
  • the types of the first transistor Qi and the second transistor Q2 should be not limited herein.
  • the first transistor Qi and the second transistor Q2 can be both silicon type, gallium nitride or silicon carbide type N-channel Metal-Oxide-Semiconductor Field-Effect Transistor (MOSFET) and P-channel Metal- Oxide- Semi conductor Field-Effect Transistor (MOSFET).
  • the first transistor Qi is MOS and the second transistor Q2 is PMOS, the second resistor R2 and the third resistor R3 make up a voltage divider.
  • a voltage provided by the battery module 1 called as a battery voltage VIN
  • the voltage at point Ai i.e. a gate voltage VGI of the first transistor Qi
  • the gate voltage VGI of the first transistor Qi will drop to be less than a threshold voltage VGS(th)i of the first transistor Qj
  • the first transistor is turned off.
  • the voltage at point A2, i.e. a gate voltage VG2 of the second transistor Q2 will increase step by step through the fourth resistor R 4 .
  • the self-driven matching circuit 2 can prevent the battery 13 from over current discharging or provide under voltage protection. By selecting proper control parameters, the battery 13 can work in a health and durable condition.
  • the current limiting device 14 including the fuse and the self-driven matching circuit 2 of the present disclosure can realize an effective over-discharging protection for the battery module 1.
  • the battery management system 100, 200 can use a robust mechanical package, and such the robust mechanical package design can allow the battery management system 100, 200 to survive in a harsh environment like high temperature, high pressure and high vibration.
  • the battery management system 100, 200 of the present disclosure enables an effective, robust and long lifetime operation of the battery 13, particularly in the harsh environments.
  • the battery management system 100, 200 of the present disclosure can have high efficiency, robust structure, simple circuit, low power consumption, and compact size.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

A battery management system is disclosed, which includes a battery module having a positive output terminal and a negative output terminal. The battery module includes at least two branch circuits which are connected in parallel between the positive output terminal and the negative output terminal. Each of the at least two branch circuits includes at least two battery cells which are connected in series between the positive output terminal and the negative output terminal. Each battery cell includes a battery, a current limiting device for preventing the battery from over-discharging, and a bypass device for bypassing the battery when a fault occurs in the battery.

Description

BATTERY MANAGEMENT SYSTEM
BACKGROUND
[0001] This disclosure relates generally to the field of battery management, and more particularly to battery management systems.
[0002] Batteries are used in many applications to provide energy to loads. A typical conventional battery usually consists of multiple cells connected in series to form a battery module. Cells are used cumulatively in the battery to provide a desired output voltage. Depending upon the power requirements and available internal spaces of the loads, multiple batteries are sometimes used.
[0003] However, conventional battery deployments have some operating disadvantages. For example, the current drawn from the batteries may exceed the battery's designed current limit, and over-discharging of the battery is caused, which would no doubt reduce operation lifetime of the battery.
[0004] Therefore, in the view of the foregoing, it is desirable to provide an improved battery management system to solve at least one of problems above-mentioned.
BRIEF DESCRIPTION
[0005] In one aspect of embodiments of the present disclosure, a battery management system is provided. The battery management system comprises a battery module having a positive output terminal and a negative output terminal. The battery module comprises at least two branch circuits which are connected in parallel between the positive output terminal and the negative output terminal. Each of the at least two branch circuits comprises at least two battery cells which are connected in series between the positive output terminal and the negative output terminal. Each battery cell comprises a battery, a current limitingdevice for preventing the battery from over-discharging, and a bypass device for bypassing the battery when a fault occurs in the battery. [0006] In another aspect of embodiments of the present disclosure, a battery management system is provided. The battery management system comprises a plurality of battery cells. Each of the plurality of battery cells comprises a battery, a current limiting device for preventing the battery from over-discharging, and a bypass device for bypassing the battery when a fault occurs in the battery.
DRAWINGS
[0007] These and other features, aspects, and advantages of the present disclosure will become better understood when the following detailed description is read with reference to the accompanying drawings in which like characters represent like parts throughout the drawings, wherein:
[0008] FIG. 1 is a schematic diagram of a battery management system in accordance with an embodiment of the present disclosure; and
[0009] FIG. 2 is a schematic diagram of a battery management system in accordance with another embodiment of the present disclosure.
DETAILED DESCRIPTION
[0010] Embodiments of the present disclosure will be described hereinbelow with reference to the accompanying drawings. In the following description, well-known functions or constructions are not described in detail to avoid obscuring the disclosure in unnecessary detail.
[0011] Unless defined otherwise, technical and scientific terms used herein have the same meaning as is commonly understood by one of ordinary skill in the art to which this disclosure belongs. The terms "first", "second", and the like, as used herein do not denote any order, quantity, or importance, but rather are used to distinguish one element from another. Also, the terms "a" and "an" do not denote a limitation of quantity, but rather denote the presence of at least one of the referenced items. The term "or" is meant to be inclusive and mean either or all of the listed items. The use of "including," "comprising" or "having" and variations thereof herein are meant to encompass the items listed thereafter and equivalents thereof as well as additional items. The terms "connected" and "coupled" are not restricted to physical or mechanical connections or couplings, and can include electrical connections or couplings, whether direct or indirect. In addition, Terms indicating specific locations, such as "top", "bottom", "left", and "right", are descriptions with reference to specific accompanying drawings. Embodiments disclosed in the present disclosure may be placed in a manner different from that shown in the figures. Therefore, the location terms used herein should not be limited to locations described in specific embodiments.
[0012] FIG. 1 illustrates a schematic diagram of a battery management system 100 in accordance with an embodiment of the present disclosure. As shown in FIG. 1, the battery management system 100 in accordance with an embodiment of the present disclosure may include a battery module 1. The battery module 1 has a positive output terminal "+" and a negative output terminal
[0013] In one implementation, the battery module 1 may include at least two branch circuits 1 1. The at least two branch circuits 11 are connected in parallel between the positive output terminal "+" and the negative output terminal The seven branch circuits 1 1 are shown as an illustrative example in FIG. 1.
[0014] Each of the at least two branch circuits 1 1 may include at least two battery cells 12. The at least two battery cells 12 are connected in series between the positive output terminal "+" and the negative output terminal In this embodiment, the number of the battery cells 12 in each branch circuit 11 are shown to be two in FIG. 1, but the number of the battery cells 12 of the present disclosure should be not limited herein.
[0015] Each battery cell 12 includes a battery 13, a current limiting device 14 and a bypass device. The current limiting device 14 can prevent the battery 13 from over- discharging. For example, the current limiting device 14 may include a fuse 14 connected in series with the battery 13. The bypass device can bypass the battery 13 when the battery 13 is in a fault condition. The bypass device may for example include a first diode Di. The first diode Di is connected in parallel with the fuse 14 and the battery 13. For example, when one battery 13 gets open-circuit failures, the impedance of open-circuit battery 13 becomes quite large. In this condition, the first diode Di is triggered to bypass the open- circuit battery 13. The current will flow through the first diode Di and the open-circuit battery 13 is bypassed. Each battery cell 12 may further include a first resistor Ri. The first resistor Ri is connected in parallel with the fuse 14 and the battery 13 and is configured for cell voltage balancing.
[0016] The current limiting device including the fuse 14 and the bypass device including the first diode Di can guarantee the continuity and redundancy of battery operation under different fault conditions of the battery 13. The first resistor Ri can ensure voltage balancing for the battery cells 12 connected in series.
[0017] In addition, each branch circuit 11 may further include a second diode D2. In each branch circuit 11, the second diode D2 is connected in series with the at least two battery cells 12. The second diode D2 can prevent reverse connection of the corresponding branch circuit 11.
[0018] With continued reference to FIG. 1, in another implementation, the battery module 1 of the battery management system 100 may include a plurality of battery cells 12. Each of the plurality of battery cells 12 includes a battery 13, a current limiting device 14 for preventing the battery 13 from over-discharging, and a bypass device for bypassing the battery 13 when a fault occurs in the battery 13. The current limiting device 14 may for example include a fuse 14 connected in series with the battery 13. The bypass device may for example include a first diode Di connected in parallel with the fuse 14 and the battery 13.
[0019] The plurality of battery cells 12 comprises at least two battery cells 12 which are connected in parallel and at least two battery cells 12 which are connected in series.
[0020] Each battery cell 12 may further include a first resistor Ri. The first resistor Ri is connected in parallel with the fuse 14 and the battery 13. The first resistor Ri of each battery cells 12 can ensure voltage balancing for the at least two battery cells 12 which are connected in series.
[0021] The battery management system 100 may further include at least two second diodes D2 for preventing reverse connection of the at least two battery cells 12 which are connected in parallel.
[0022] FIG. 2 illustrates a schematic diagram of a battery management system 200 in accordance with another embodiment of the present disclosure. As shown in FIG. 2, the battery management system 200 in accordance with another embodiment of the present disclosure may include the battery module 1 as shown in FIG.1, and may further include a self-driven matching circuit 2. The battery module 1 is coupled to a discharge circuit 3 via the self-driven matching circuit 2. The discharge circuit 3 is for example a boost converter in this embodiment. However, the discharge circuit 3 should be not limited to the boost converter, and may also include a buck converter, a buck-boost converter and other converters. The self-driven matching circuit 2 may be used for over-discharging control of the battery module 1. When the battery module 1 is in a normal operation, a discharge current from the battery module 1 flows through the self-driven matching circuit 2 to the discharge circuit 3, and when the battery module 1 is in an over-discharging condition, the self-driven matching circuit 2 is open circuit and no current flows through the self-driven matching circuit 2 from the battery module 1.
[0023] The self-driven matching circuit 2 may include a second resistor R2, a third resistor R3, a fourth resistor R4, a first transistor Qi and a second transistor Q2. The second resistor R2 and the third resistor R3 are connected in series between the positive output terminal "+" and the negative output terminal The first transistor Qi is a PN type transistor and has a body diode D3. For example, the first transistor Qi is a N-channel Metal-Oxide-Semiconductor Field-Effect Transistor (simply called as MOS). A gate electrode g of the first transistor Qi is connected with a connection point of the second resistor R2 and the third resistor R3. A source electrode s of the first transistor Qi is connected to the negative output terminal and the source electrode s of the first transistor Qi is grounded. The fourth resistor R4 is coupled between the positive output terminal "+" and a drain electrode d of the first transistor Qi. The second transistor Q2 is a P P type transistor and has a body diode D4. For example, the second transistor Q2 is a P-channel Metal-Oxide-Semiconductor Field-Effect Transistor (simply called as PMOS). A gate electrode g of the second transistor Q2 is connected with the drain electrode d of the first transistor Qi, a source electrode s of the second transistor Q2 is connected with the positive output terminal "+" and a drain electrode d of the second transistor Q2 is connected to the discharge circuit 3. The types of the first transistor Qi and the second transistor Q2 should be not limited herein. In another embodiment, the first transistor Qi and the second transistor Q2 can be both silicon type, gallium nitride or silicon carbide type N-channel Metal-Oxide-Semiconductor Field-Effect Transistor (MOSFET) and P-channel Metal- Oxide- Semi conductor Field-Effect Transistor (MOSFET).
[0024] Hereinafter, how the self-driven matching circuit 2 of the present disclosure realizes the over-discharging protection for the battery module 1 will be explained in detail in combination with FIG. 2.
[0025] With continued reference to FIG. 2, the first transistor Qi is MOS and the second transistor Q2 is PMOS, the second resistor R2 and the third resistor R3 make up a voltage divider. When a voltage provided by the battery module 1 (called as a battery voltage VIN) drops, the voltage at point Ai, i.e. a gate voltage VGI of the first transistor Qi, will reduce. With further reduction of the battery voltage VIN, when the gate voltage VGI of the first transistor Qi will drop to be less than a threshold voltage VGS(th)i of the first transistor Qj, the first transistor is turned off. The voltage at point A2, i.e. a gate voltage VG2 of the second transistor Q2 will increase step by step through the fourth resistor R4. When a voltage difference between the gate voltage VG2 of the second transistor Q2 and the battery voltage VIN is larger than a threshold voltage VGS(th)2 of the second transistor Q2, that is, (VG2- VIN) > VGS(th)2, the second transistor Q2 is turned off.
[0026] Thus, when the battery voltage VIN is under a protect voltage VUCP of the battery module 1 , both the first transistor Qi and the second transistor Q2 are turned off. The battery module 1 is disconnected from the boost converter 3. The battery module 1 can't output the battery voltage VIN. [0027] Therefore, the self-driven matching circuit 2 can prevent the battery 13 from over current discharging or provide under voltage protection. By selecting proper control parameters, the battery 13 can work in a health and durable condition.
[0028] The current limiting device 14 including the fuse and the self-driven matching circuit 2 of the present disclosure can realize an effective over-discharging protection for the battery module 1.
[0029] The battery management system 100, 200 can use a robust mechanical package, and such the robust mechanical package design can allow the battery management system 100, 200 to survive in a harsh environment like high temperature, high pressure and high vibration.
[0030] The battery management system 100, 200 of the present disclosure enables an effective, robust and long lifetime operation of the battery 13, particularly in the harsh environments. The battery management system 100, 200 of the present disclosure can have high efficiency, robust structure, simple circuit, low power consumption, and compact size.
[0031] While the disclosure has been illustrated and described in typical embodiments, it is not intended to be limited to the details shown, since various modifications and substitutions can be made without departing in any way from the spirit of the present disclosure. As such, further modifications and equivalents of the disclosure herein disclosed may occur to persons skilled in the art using no more than routine experimentation, and all such modifications and equivalents are believed to be within the spirit and scope of the disclosure as defined by the following claims.

Claims

WHAT IS CLAIMED IS:
1. A battery management system, comprising:
a battery module having a positive output terminal and a negative output terminal, and comprising:
at least two branch circuits which are connected in parallel between the positive output terminal and the negative output terminal, wherein each of the at least two branch circuits comprises at least two battery cells which are connected in series between the positive output terminal and the negative output terminal, and each battery cell comprises:
a battery;
a current limiting device for preventing the battery from over-discharging; and a bypass device for bypassing the battery when a fault occurs in the battery .
2. The battery management system of claim 1, wherein the current limiting device comprises a fuse connected in series with the battery, and the bypass device comprises a first diode connected in parallel with the fuse and the battery.
3. The battery management system of claim 2, wherein each battery cell further comprises a first resistor connected in parallel with the fuse and the battery and configured for cell voltage balancing.
4. The battery management system of claim 1, wherein each branch circuit further comprises a second diode connected in series with the at least two battery cells.
5. The battery management system of claim 1, further comprising:
a self-driven matching circuit for over-discharging control of the battery module, wherein the battery module is coupled to a discharge circuit via the self-driven matching circuit, when the battery module is in a normal operation, a discharge current from the battery module flows through the self-driven matching circuit to the discharge circuit, and when the battery module is in an over-discharging condition, the self-driven matching circuit is open circuit and no current flows through the self-driven matching circuit from the battery module.
6. The battery management system of claim 5, wherein the self-driven matching circuit comprises:
a second resistor and a third resistor which are connected in series between the positive output terminal and the negative output terminal;
a first transistor which is a PN type transistor, wherein a gate electrode of the first transistor is connected with a connection point of the second resistor and the third resistor and a source electrode of the first transistor is connected to the negative output terminal; a fourth resistor coupled between the positive output terminal and a drain electrode of the first transistor; and
a second transistor which is a P P type transistor, wherein a gate electrode of the second transistor is connected with the drain electrode of the first transistor, a source electrode of the second transistor is connected with the positive output terminal and a drain electrode of the second transistor is connected to the discharge circuit.
7. The battery management system of claim 6, wherein the source electrode of the first transistor is grounded.
8. A battery management system, comprising:
a plurality of battery cells, each of which comprises:
a battery;
a current limiting device for preventing the battery from over-discharging; and a bypass device for bypassing the battery when a fault occurs in the battery.
9. The battery management system of claim 8, wherein the current limiting device comprises a fuse connected in series with the battery, and the bypass device comprises a first diode connected in parallel with the fuse and the battery.
10. The battery management system of claim 9, wherein each battery cell further comprises a first resistor connected in parallel with the fuse and the battery and configured for cell balancing.
11. The battery management system of claim 8, wherein the plurality of battery cells comprises at least two battery cells which are connected in parallel and at least two battery cells which are connected in series.
12. The battery management system of claim 11, further comprising:
at least two second diodes for preventing reverse connection of the at least two battery cells which are connected in parallel.
13. The battery management system of claim 8, further comprising:
a self-driven matching circuit coupled between the battery module and a discharge circuit, wherein when the battery module is in a normal operation, a discharge current from the battery module flows through the self-driven matching circuit to the discharge circuit, and when the battery module is in an over-discharging condition, the self-driven matching circuit is open circuit and no current flows through the self-driven matching circuit from the battery module.
14. The battery management system of claim 13, wherein the self-driven matching circuit comprises:
a second resistor and a third resistor which are connected in series between the positive output terminal and the negative output terminal;
a first transistor which is a PN type transistor, wherein a gate electrode of the first transistor is connected with a connection point of the second resistor and the third resistor and a source electrode of the first transistor is connected to the negative output terminal; a fourth resistor coupled between the positive output terminal and a drain electrode of the first transistor; and
a second transistor which is a P P type transistor, wherein a gate electrode of the second transistor is connected with the drain electrode of the first transistor, a source electrode of the second transistor is connected with the positive output terminal and a drain electrode of the second transistor is connected to the discharge circuit.
15. The battery management system of claim 14, wherein the source electrode of the first transistor is grounded.
PCT/US2018/032718 2017-06-20 2018-05-15 Battery management system WO2018236493A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710491797.3 2017-06-20
CN201710491797.3A CN109103949A (en) 2017-06-20 2017-06-20 Battery management system

Publications (1)

Publication Number Publication Date
WO2018236493A1 true WO2018236493A1 (en) 2018-12-27

Family

ID=64736073

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2018/032718 WO2018236493A1 (en) 2017-06-20 2018-05-15 Battery management system

Country Status (2)

Country Link
CN (1) CN109103949A (en)
WO (1) WO2018236493A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114336582A (en) * 2021-11-12 2022-04-12 国网浙江省电力有限公司丽水供电公司 Intelligent interconnection device based on super capacitor energy storage

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030030413A1 (en) * 1999-03-18 2003-02-13 Fujitsu Limited Protection method, control circuit, and battery unit
WO2012023707A2 (en) * 2010-08-17 2012-02-23 Jung Eun-Ey Battery pack and a battery-pack active cell balancing method
CN102684165A (en) * 2011-03-07 2012-09-19 比亚迪股份有限公司 Charge and discharge protection circuit for multi-section lithium battery
CN202696124U (en) * 2012-06-26 2013-01-23 天津德克尼斯电子科技有限公司 Protective circuit of battery pack for wireless measurement-while-drilling apparatus
US20130119967A1 (en) * 2011-11-16 2013-05-16 Renesas Electronics Corporation Bandgap reference circuit and power supply circuit

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202550491U (en) * 2012-04-25 2012-11-21 吴雯雯 Battery over-discharge projection circuit
CN104600673A (en) * 2013-10-30 2015-05-06 深圳市海洋王照明工程有限公司 Under-voltage protection circuit and lamp
CN204011543U (en) * 2014-08-01 2014-12-10 杭州创灿科技有限公司 A kind of acoustics locator battery pack
CN204992547U (en) * 2015-09-28 2016-01-20 广州市金恒源电子科技有限公司 Protection circuit of high -temperature battery group
CN106100058A (en) * 2016-07-28 2016-11-09 广州市仟顺电子设备有限公司 A kind of storage battery equalizing circuit and its implementation

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030030413A1 (en) * 1999-03-18 2003-02-13 Fujitsu Limited Protection method, control circuit, and battery unit
WO2012023707A2 (en) * 2010-08-17 2012-02-23 Jung Eun-Ey Battery pack and a battery-pack active cell balancing method
CN102684165A (en) * 2011-03-07 2012-09-19 比亚迪股份有限公司 Charge and discharge protection circuit for multi-section lithium battery
US20130119967A1 (en) * 2011-11-16 2013-05-16 Renesas Electronics Corporation Bandgap reference circuit and power supply circuit
CN202696124U (en) * 2012-06-26 2013-01-23 天津德克尼斯电子科技有限公司 Protective circuit of battery pack for wireless measurement-while-drilling apparatus

Also Published As

Publication number Publication date
CN109103949A (en) 2018-12-28

Similar Documents

Publication Publication Date Title
US10693302B2 (en) DC-DC Conversion for Multi-Cell Batteries
US7463008B2 (en) Power supply apparatus with transistor control for constant current between series-connected battery blocks
JP5086030B2 (en) Overvoltage protection circuit and electronic device using the same
JP7025651B2 (en) Clamp circuit and semiconductor integrated circuit
US20120139479A1 (en) Charge control system of battery pack
US9077189B2 (en) Battery protection circuit module device
US20090309538A1 (en) Energy storage and management circuit
US8436580B2 (en) Battery control circuit
US7763993B2 (en) DC UPS with auto-ranging backup voltage capability
US7139157B2 (en) System and method for protecting a load from a voltage source
US10887117B2 (en) Powered device used for power over ethernet
CN110890749A (en) Power supply reverse connection prevention circuit and power supply circuit
US9219412B2 (en) Buck converter with reverse current protection, and a photovoltaic system
WO2018236493A1 (en) Battery management system
JP5090849B2 (en) Overvoltage protection circuit and electronic device using the same
CN201222649Y (en) Overdischarging protection circuit capable of charging battery
CN114356013B (en) Integrated electronic fuse circuit for preventing reverse current
CN115776103A (en) Low-power-consumption input reverse connection prevention function control circuit
CN209028498U (en) A kind of ESD protective system of low pressure difference linear voltage regulator
TW202119692A (en) A lithium battery protection system
EP3528390B1 (en) Communication system of battery pack and battery pack comprising same
US20130249044A1 (en) Semiconductor device
RU2306652C2 (en) Charging-discharging device
WO2011068499A1 (en) Energy storage and management circuit
CN219145258U (en) Undervoltage detection circuit and switching power supply

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18821583

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18821583

Country of ref document: EP

Kind code of ref document: A1