WO2018236064A1 - Multilayer polymer solid electrolyte and all-solid-state battery comprising same - Google Patents

Multilayer polymer solid electrolyte and all-solid-state battery comprising same Download PDF

Info

Publication number
WO2018236064A1
WO2018236064A1 PCT/KR2018/006146 KR2018006146W WO2018236064A1 WO 2018236064 A1 WO2018236064 A1 WO 2018236064A1 KR 2018006146 W KR2018006146 W KR 2018006146W WO 2018236064 A1 WO2018236064 A1 WO 2018236064A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymer electrolyte
electrolyte layer
polymer
solid
lithium
Prior art date
Application number
PCT/KR2018/006146
Other languages
French (fr)
Korean (ko)
Inventor
김대일
채종현
이연주
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020180059591A external-priority patent/KR102093970B1/en
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to PL18811698T priority Critical patent/PL3457486T3/en
Priority to EP18811698.2A priority patent/EP3457486B1/en
Priority to US16/305,163 priority patent/US10903520B2/en
Priority to CN202310374695.9A priority patent/CN116315072A/en
Priority to JP2018563098A priority patent/JP6872096B2/en
Priority to CN201880003128.XA priority patent/CN109565078A/en
Publication of WO2018236064A1 publication Critical patent/WO2018236064A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a multi-layered polymer solid electrolyte and a pre-solid battery including the same.
  • Lithium secondary batteries have been mainly applied to small-sized applications such as mobile devices and notebook computers. Recently, however, their research directions have been expanded to middle and large-sized fields. They are mainly used in energy storage systems (ESS) vehicle, and the like.
  • ESS energy storage systems
  • the polymer electrolyte is oxidized at the surface of the anode in the high voltage region or reduced / decomposed at the surface of the cathode in the low voltage region, and the interface resistance between the electrode and the electrolyte increases due to the adhesive force member only with the single polymer electrolyte do.
  • the polymer electrolyte containing succinonitrile has a high ionic conductivity of 10 -4 S / cm or higher at room temperature and operates stably at the anode at a high voltage range of 4 V or more, but the stability at the cathode at the low voltage region is weak Which is difficult to apply to Li metal and graphite cathodes, and is limited to LTO (Lithium Titanate) cathodes with operating voltages of about 1.5V.
  • LTO Lithium Titanate
  • the polymer electrolyte based on PEO Polyethylene Oxide
  • LCO Lithium Cobalt Oxide
  • LNMO LiNI 0. 5 Mn 1. 5 O 4
  • the positive electrode material can be a cathode material is used, such as the positive electrode and Li metal and graphite at the high voltage areas that may be used in low-voltage region in the It is required to develop a polymer solid electrolyte having a multi-layer structure capable of stably operating at the same time on the cathode.
  • Patent Document 1 Japanese Laid-Open Patent Application No. 2014-523068 (2014.09.08), "New Polymer Electrolyte and Lithium Secondary Battery Containing It”
  • Patent Document 2 Korean Unexamined Patent Publication No. 2003-0005254 (2003.01.17), " Multilayered Polymer Electrolyte and Lithium Secondary Battery Including the Same "
  • Non-Patent Document 1 Weidong Zhou, Shaofei Wang, Yutao Li, Sen Xin, Arumugam Manthiram, and John B. Goodenough, Plating a Dendrite-Free Lithium Anode with a Polymer / Ceramic / Polymer Sandwich Electrolyte. J. Am. Chem . Soc . 2016, 138, 9385-9388
  • Non-Patent Document 2 Pierre-Jean Alarco, Yaser Abu-Lebdeh, Ali Abouimrane and Michel Armand: The plastic-crystalline phase of succinonitrile as a universal matrix for solid-state ionic conductors , Nat. Mater . 2004, 4, 476-481.
  • the present applicant has conducted various studies in order to realize a battery which operates at the same time and stably at the anode in the high voltage range and the cathode in the low voltage range and has developed a multi-layered structure with different composition of each layer As a result of applying the solid electrolyte to the whole solid battery, the result of stable operation at the anode in the high voltage region and the cathode in the low voltage region was confirmed and the present invention was completed.
  • An object of the present invention is to provide a multi-layered polymer electrolyte for an all solid-state battery comprising a first polymer electrolyte layer and a second polymer electrolyte layer.
  • Another object of the present invention is to provide a pre-solid battery including the multi-layered polymer electrolyte.
  • the present invention provides a lithium ion secondary battery comprising a first polymer electrolyte layer comprising an aliphatic dinitrile compound represented by the following general formula (1), a lithium salt and a lithium ion conductive polymer, an ionic liquid, a lithium salt and a lithium ion conductive polymer And a second polymer electrolyte layer including the second polymer electrolyte layer.
  • a first polymer electrolyte layer comprising an aliphatic dinitrile compound represented by the following general formula (1), a lithium salt and a lithium ion conductive polymer, an ionic liquid, a lithium salt and a lithium ion conductive polymer
  • a second polymer electrolyte layer including the second polymer electrolyte layer.
  • n 1 to 6
  • the first polymer electrolyte layer may include 20 to 50 parts by weight of an aliphatic dinitrile compound and 30 to 40 parts by weight of a lithium salt based on 100 parts by weight of the lithium ion conductive polymer.
  • the second polymer electrolyte layer includes 20 to 50 parts by weight of an ionic liquid and 30 to 40 parts by weight of a lithium salt based on 100 parts by weight of the lithium ion conductive polymer.
  • the present invention also provides a pre-solid battery comprising the multi-layered polymer electrolyte.
  • the polymer electrolyte of the present invention When the polymer electrolyte of the present invention is applied to all solid-state cells, there is no electrolyte decomposition at the anode in the high-voltage region appearing in the liquid electrolyte, so that the polymer electrolyte can be applied to a high-
  • the present invention can be applied to a cathode in a low voltage region of 1.5 V or less without side reactions and surface reactions, and can simultaneously operate stably on both an anode in a high voltage region and a cathode in a low voltage region.
  • Such a pre-solid battery is suitably applicable in a battery field of an electric vehicle in which a high capacity, high output battery is used.
  • FIG. 1 is a cross-sectional view of a pre-solid battery including a multi-layered polymer electrolyte.
  • FIG. 2 is a cross-sectional view of a pre-solid battery.
  • FIG. 3 is a photograph showing the first polymer electrolyte and the second polymer electrolyte.
  • 5 is a graph showing the voltage stability of the first polymer electrolyte layer.
  • FIG. 6 is a graph showing the voltage stability of the second polymer electrolyte layer.
  • the present invention provides a lithium secondary battery comprising: a first polymer electrolyte layer comprising an aliphatic dinitrile compound represented by the following formula (1), a lithium salt, and a lithium ion conductive polymer; And a second polymer electrolyte layer including an ionic liquid, a lithium salt, and a lithium ion conductive polymer.
  • the present invention also provides a multi-layered polymer electrolyte for an all solid-state battery.
  • n 1 to 6
  • the polymer electrolyte of the present invention has a multilayer structure, and the polymer electrolyte contacting the anode in the entire solid electrolyte cell exhibits stable performance without being decomposed in a high voltage region like a liquid electrolyte, and the polymer electrolyte contacting the cathode undergoes reduction and decomposition in a low- Polymer electrolyte and an all solid battery including the polymer electrolyte.
  • FIG. 1 is a cross-sectional view of a multi-layered polymer electrolyte for a solid battery.
  • all solid state batteries 100 and 200 have a structure in which anodes 110 and 210, cathodes 170 and 250, and a polymer electrolyte layer 130 and 150 are interposed therebetween.
  • the polymer electrolyte layer has a multi-layer structure and is composed of the first polymer electrolyte layer 130 and the second polymer electrolyte layer 150 from the side in contact with the anodes 110 and 210.
  • the entire solid state batteries 100 and 200 according to the present invention realize a multi-layered electrolyte using a polymer electrolyte.
  • a battery which stably operates both in a high voltage region and in a low voltage region.
  • Conventional polymer electrolytes were fabricated as a single polymer electrolyte membrane and acted as an electrolyte and a separator.
  • As a polymer electrolyte there was a difficulty in realizing a battery that operates stably at the anode of the high voltage region and the cathode of the low voltage region at the same time.
  • the interface resistance between the electrode and the electrolyte was increased due to the absence of the adhesive force by the single polymer electrolyte alone.
  • this problem is solved by implementing a multi-layered polymer electrolyte.
  • a multi-layered electrolyte composed of polymer and ceramic is close to 0 V on the cathode side and high voltage on the anode side .
  • Such a multi-layered solid electrolyte is mostly composed of a combination of a polymer and a ceramic.
  • a whole electrolyte is composed of a polymer, and two solid polymers or two or more polymer electrolytes are combined according to their use and characteristics to realize an all solid battery.
  • the present invention relates to a polymer solid electrolyte exhibiting stable performance characteristics without decomposition in a high voltage region such as a liquid electrolyte such as a liquid electrolyte and exhibiting voltage stability in which a reduction and decomposition does not occur in a low voltage region close to 0 V at the cathode, And the like.
  • the polymer electrolyte of the present invention has a multilayer structure, and has an advantage that the operating voltage in each layer can be controlled by varying the composition of each layer.
  • the first polymer electrolyte layer 130 of the present invention includes an aliphatic dinitrile compound represented by the following formula (1), a lithium salt, and a lithium ion conductive polymer.
  • n 1 to 6
  • the ionic conductivity of the polymer electrolyte at room temperature is 10 -4 S / cm
  • the electrolyte is not oxidized at the surface of the electrode in the anode at a high voltage region of 4 V or more as compared with the liquid electrolyte, so that it is possible to exhibit stable performance and effects as compared with the case where the aliphatic dinitrile compound is not contained.
  • the aromatic nitrile and the fluorinated aromatic nitrile compound among the compounds containing a cyano functional group are not preferable because they easily decompose electrochemically in the entire solid-state cell to interfere with the migration of Li ions to deteriorate the performance of the battery.
  • the first polymer electrolyte layer 130 is prepared by selecting 20 to 50 parts by weight of the aliphatic dinitrile compound per 100 parts by weight of the lithium ion conductive polymer. If the amount of the aliphatic dinitrile compound is less than 20 parts by weight, the effect of the aliphatic dinitrile compound is insignificant. Therefore, the ionic conductivity is appropriately controlled within the above range. When the aliphatic dinitrile compound is used in an amount of 35 to 45 parts by weight, oxidation stability and ionic conductivity at the high-voltage anode can be remarkably increased.
  • the first polymer electrolyte layer may have an ionic conductivity of 5 x 10 -5 S / cm to 5 x 10 -4 S / cm.
  • Examples of the lithium ion conductive polymer in the first polymer electrolyte layer 130 include polyethylene glycol diacrylate (PEGDA), trimethylolpropaneethoxylate triacrylate (ETPTA), polyacrylonitrile (PAN), polypropylene oxide PPO), polypropylene carbonate (PPC), polyvinyl alcohol (PVA), polymethyl methacrylate (PMMA), polyvinyl chloride (PVC), polyvinylidene fluoride (PVDF) (PA), polyethylene (PE), polyethylene glycol (PEG) and polystyrene (PS), or a combination thereof, preferably an acrylate-based polymer, more preferably , Trimethylolpropaneethoxylate triacrylate (ETPTA) can be used.
  • PEGDA polyethylene glycol diacrylate
  • ETPTA trimethylolpropaneethoxylate triacrylate
  • PAN polyacrylonitrile
  • PPO polypropylene oxide
  • PPC polypropylene carbonate
  • the lithium salt commonly applied to the first polymer electrolyte layer 130 and the second polymer electrolyte layer 150 according to the present invention is dissociated into lithium ions to form the first polymer electrolyte layer 130 and the second polymer electrolyte layer 150 ) To move freely.
  • lithium battery can be used both one, preferably LiCl, LiBr, LiI, LiClO 4, LiBF 4, LiB 10 Cl 10, LiPF 6, LiCF 3 SO 3, LiCF 3 CO 2, LiAsF 6, LiSbF 6, LiAlCl 4, CH 3 SO 3 Li, CF 3 SO 3 Li, LiSCN, LiC (CF 3 SO 2) 3, ( CF 3 SO 2 ) 2 NLi, (CF 3 SO 2 ) 2 NLi, (FSO 2 ) 2 NLi, chloroborane lithium, lithium lower aliphatic carboxylate, lithium 4-phenylborate, , And more preferably LiTFSI (lithium bis (trifluoromethanesulfonyl) imide) represented by (CF 3 SO 2 ) 2 NLi.
  • LiTFSI lithium bis (trifluoromethanesulfonyl) imide
  • the lithium salt is selected for 100 parts by weight of the lithium ion conductive polymer.
  • the second polymer electrolyte layer 150 includes an ionic liquid, a lithium salt, and a lithium ion conductive polymer.
  • the ionic liquid is ionic salts or molten salts which are composed of cations and anions.
  • Ionic compounds such as salt, which are composed of cationic and nonmetal anions, are generally referred to as ionic liquids, which dissolve at a high temperature of 800 ° C or higher, and exist as liquids at a temperature of 100 ° C or lower.
  • ionic liquids which dissolve at a high temperature of 800 ° C or higher, and exist as liquids at a temperature of 100 ° C or lower.
  • RTIL room temperature ionic liquid
  • Ionic liquids are nonvolatile, non-toxic, non-flammable, and have excellent thermal stability and ionic conductivity compared to conventional liquid electrolytes.
  • the polarity is high, it dissolves inorganic and organometallic compounds well and has a unique characteristic of being present as a liquid in a wide temperature range. Therefore, it has the merit of obtaining various characteristics by changing the structure of cations and anions constituting the ionic liquid And is applied to a wide range of chemical fields such as catalyst, separation, and electrochemical.
  • the multi-layered polymer electrolyte for an all solid-state battery according to an embodiment of the present invention contains such an ionic liquid, the stability of the battery in the negative electrode in the low-voltage region is greatly improved. Further, since the ionic liquid has excellent thermal stability and excellent ionic conductivity, when the ionic liquid is added to the polymer electrolyte, the thermal stability can be improved without decreasing the ionic conductivity. Since the ionic liquid has high polarity and dissolves inorganic and organic metal compounds well and exists as a liquid even in a wide temperature range, it can be added to the composition for forming a polymer electrolyte through simple mixing and heating.
  • the ionic liquid according to the present invention may include a cation and an anion.
  • the cation of the ionic liquid is preferably a cation of a heterocyclic compound, and the hetero atom of the heterocyclic compound is N, O, S, ≪ / RTI > and combinations thereof.
  • Examples of the cation of such a heterocyclic compound include pyridinium, pyridazinium, pyrimidinium, pyrazinium, pyrazolium, thiazolium, oxazolium ( oxazolium, triazolium, pyrrolidinium, piperidinium, imidazolium, and combinations thereof may be preferably used as the cation of the compound selected from the group consisting of oxazolium, triazolium, pyrrolidinium, piperidinium, imidazolium and combinations thereof.
  • the ionic liquid according to the present invention may be formed of a combination of a cation and an anion, and examples of the anion of the ionic liquid include bis (perfluoroethylsulfonyl) imide, bis (trifluoromethylsulfonyl) imide , Bis (fluorosulfonyl) imide, tris (trifluoromethylsulfonylmethide), trifluoromethanesulfonimide, trifluoromethylsulfonimide, trifluoromethylsulfonate, tris (pentafluoro (Trifluoromethylsulfonyl) imide, tetrafluoroborate, hexafluorophosphate, and combinations thereof may be preferably used as the anion of the compound selected from the group consisting of bis (trifluoromethyl) trifluoroacetate, bis (trifluoromethylsulfonyl) imide, tetrafluoroborate,
  • the second polymer electrolyte layer 150 may be manufactured by selecting the range of 20 to 50 parts by weight of the ionic liquid relative to 100 parts by weight of the lithium ion conductive polymer. When the content of the ionic liquid is less than 20 parts by weight, the effect of improving the swelling and the ion conductivity is not exhibited. When the ionic liquid is more than 50 parts by weight, the breakdown of the negative electrode and the decrease of the ionic conductivity occur. When the ionic liquid is used in an amount of 35 to 45 parts by weight, the reduction, decomposition stability and ionic conductivity of the electrolyte can be remarkably increased in the negative electrode in the low voltage region.
  • the second polymer electrolyte layer may have an ionic conductivity of 1 x 10 -6 S / cm to 1 x 10 -4 S / cm.
  • the lithium ion conductive polymer of the second polymer electrolyte layer 150 may be the same as or different from that of the first polymer electrolyte layer 130, and preferably the same one is used in view of process convenience.
  • the lithium salt commonly applied to the first polymer electrolyte layer 130 and the second polymer electrolyte layer 150 according to the present invention is dissociated into lithium ions to form the first polymer electrolyte layer 130 and the second polymer electrolyte layer 150 ) To move freely.
  • a basic lithium battery can be operated as a supply source of lithium ions.
  • the lithium salt can be any LiCl, LiBr, LiI, LiClO 4 , LiBF 4 , LiB 10 Cl 10, LiPF 6, LiCF 3 SO 3, LiCF 3 CO 2, LiAsF 6, LiSbF 6, LiAlCl 4, CH 3 SO 3 Li, CF 3 SO 3 Li, LiSCN, LiC (CF 3 SO 2) 3, (CF 3 SO 2 ) 2 NLi, (CF 3 SO 2 ) 2 NLi, (FSO 2 ) 2 NLi, chloroborane lithium, lithium lower aliphatic carboxylate, lithium 4-phenylborate, And more preferably LiTFSI (lithium bis (trifluoromethanesulfonyl) imide) represented by (CF 3 SO 2 ) 2 NLi.
  • LiTFSI lithium bis (trifluoromethanesulfonyl) imide
  • the lithium salt is selected for 100 parts by weight of the lithium ion conductive polymer.
  • At least one of the first polymer electrolyte layer 130 and the second polymer electrolyte layer 150 according to the present invention may include an additive conventionally used in the polymer solid electrolyte field.
  • the additive may be at least one selected from the group consisting of an inorganic filler, an organic filler, and a polymer filler, and may preferably be an inorganic filler.
  • an inorganic filler it is intended to prevent electrical short-circuiting due to impact and pressing in and out of the battery in the electrolyte, and to form an aggregate with the lithium ion conductive polymer to improve heat shrinkage characteristics at high temperature.
  • the inorganic filler used herein does not cause any chemical change.
  • the material of the inorganic filler is not particularly limited, and the material of the inorganic filler is TiO 2 , BaTiO 3 , Li 2 O, LiF, LiOH, Li 3 N, BaO, Na 2 O, MgO , Li 2 CO 3 , LiAlO 2 , SiO 2 , Al 2 O 3 , PTFE, and mixtures thereof.
  • the content of the inorganic filler is preferably 5 wt% to 10 wt% in each of the first polymer electrolyte layer 130 and the second polymer electrolyte layer 150.
  • the particle size of the inorganic filler is preferably 0.01 to 0.8 mu m in size.
  • a filler having porosity is preferable in order to improve the ease of movement of lithium ions in the electrolyte layer so as to sufficiently secure a path through which ions are transferred.
  • the thickness of the first polymer electrolyte layer 130 and the second polymer electrolyte layer 150 described above needs to be limited in consideration of the function of the electrolyte.
  • the thickness of the final polymer electrolyte layer 190 including the first polymer electrolyte layer 130 and the second polymer electrolyte layer 150 may be 50 ⁇ to 250 ⁇ . If the thickness is more than 250 ⁇ , the resistance in the electrolyte layer may increase and the advantage of the discharge capacity may be lost. If the thickness is less than 50 ⁇ , the limitation of the mechanical property of the electrolyte may be a problem.
  • each polymer electrolyte layer may be varied according to a desired voltage range
  • the thickness of the first polymer electrolyte layer 130 may be 25 to 225 ⁇ m
  • the thickness of the first polymer electrolyte layer 130 and the second polymer electrolyte layer 150 may be 1: 9 to 9: 1. Since the present invention is a multilayer structure electrolyte for an all solid-state battery which exhibits a stable performance in a cathode of a high voltage region of 4.0V or higher and an anode of a low voltage region of 1.5V or lower including an aliphatic dinitrile compound, The thickness of the electrolyte layer 130 and the thickness of the second polymer electrolyte layer 150 can be different from each other.
  • the polymer electrolyte containing an aliphatic dinitrile compound has a high ionic conductivity at room temperature of 10 -4 S / cm or higher and stably operates at a high voltage anode of 4 V or more, but has a disadvantage of low voltage stability, (LTO) cathode, which is difficult to apply and has a high operating voltage of 1.5V.
  • LTO low voltage stability
  • polyethylene oxide (PEO) -based polymer electrolytes can operate on lithium and graphite cathodes with good low-voltage stability, but on the contrary, they are difficult to apply to high-voltage cathodes of 4V or higher because of their low voltage stability. Therefore, the electrolyte of the multi - layer structure can be applied stably despite the voltage difference between the anode and the cathode.
  • the multi-layered polymer electrolyte according to the present invention can be produced by any method capable of forming a multi-layered film.
  • a first coating solution for a first polymer electrolyte layer 130 including an aliphatic dinitrile compound satisfying Formula 1, a lithium salt, and a lithium ion conductive polymer is prepared.
  • the solvent may be acetonitrile, propioniacryl, methoxypropionitrile or glutaronitrile, and acetonitrile may be preferably used. It is also possible to exclude the solvent when the viscosity is secured and the lithium salt can dissociate without a solvent.
  • the viscosity of the coating liquid at 25 ° C is 100 cp or less, which may vary depending on the coating apparatus, coating method and the like. Also, the thickness of the coating to be finally coated can be adjusted by adjusting the concentration of the coating liquid, the number of coatings, and the like.
  • the mixing of the first coating liquid is not particularly limited in the present invention, and a known mixing method can be used.
  • various methods such as gravure coating, die coating, multi-die coating, dip coating and comma coating or a combination thereof can be used, A dip coating or a gravure coating is used to obtain a uniform coating surface.
  • the first coating liquid is coated on a substrate and dried to produce a coated film.
  • the substrate is not particularly limited and can be used.
  • the substrate may be a transparent inorganic substrate such as quartz or glass, or a transparent inorganic substrate such as polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polycarbonate (PC), polystyrene (PS), polypropylene A transparent plastic selected from the group consisting of polyethersulfone (PI), polyethylene sulfonate (PES), polyoxymethylene (POM), polyetheretherketone (PEEK), polyethersulfone (PES) and polyetherimide A substrate can be used.
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • PC polycarbonate
  • PS polystyrene
  • PI polyethersulfone
  • PES polyethylene sulfonate
  • POM polyoxymethylene
  • PEEK polyetheretherketone
  • PES polyethersulfone
  • polyetherimide A substrate can be used.
  • the first coating liquid is coated on the substrate, dried at room temperature for 24 hours, and dried at 40 DEG C under vacuum to prepare a film.
  • the drying process is a process for removing the solvent and moisture in the coating liquid to dry the coating liquid coated on the substrate, and may be varied depending on the solvent used.
  • Examples of the drying method include a drying method by hot air, hot air, low-humidity air, vacuum drying, and irradiation with (circle) infrared rays or electron beams.
  • the drying time is not particularly limited, but is usually in the range of 30 seconds to 24 hours.
  • the drying step may further include a cooling step of slow cooling to room temperature.
  • a film when a solvent is not contained, a film can be produced using ultraviolet rays in the form of a photo-curing reaction.
  • a photoinitiator can be used. Any compound capable of forming a radical by light such as ultraviolet rays can be used without limitation of its constitution.
  • the photopolymerization initiator include 2-hydroxy-2-methyl-1-phenylpropan-1-one (HMPP), benzoin ether, dialkyl acetophenone, At least one member selected from the group consisting of hydroxyl alkylketone, phenyl glyoxylate, benzyl dimethyl ketal, acyl phosphine and alpha-aminoketone, Can be used.
  • HMPP 2-hydroxy-2-methyl-1-phenylpropan-1-one
  • benzoin ether dialkyl acetophenone
  • acylphosphine a commonly used lucirin TPO, i.e., 2,4,6-trimethyl-benzoyl-trimethyl phosphine oxide can be used , Preferably 2-hydroxy-2-methyl-1-phenyl-propan-1-one (HMPP).
  • HMPP 2-hydroxy-2-methyl-1-phenyl-propan-1-one
  • a second coating liquid for the second polymer electrolyte layer is prepared by using an ionic liquid, a lithium salt, and a lithium ion conductive polymer and using acetonitrile as a solvent.
  • the Teflon film is coated with the second coating liquid, dried at room temperature for 24 hours, and dried at 40 DEG C under vacuum to prepare a film.
  • first polymer electrolyte layer 130 and the second polymer electrolyte layer 150 are joined together to produce the polymer electrolyte 190 of the present invention.
  • the first polymer electrolyte layer 130 and the second polymer electrolyte layer 150 are brought into close contact with each other by a lamination method and integrated by a roll lamination pressing process.
  • the pressing may be performed by cold-pressing or hot-pressing.
  • the above-mentioned refrigeration pressure has a process advantage in that no special heat treatment is required.
  • the pressing may be that of Korean Patent Laid-Open Publication No. 10-2016-0013631 due to thermal pressure, which can affect the ion conductivity and the improvement of the contact area between particles ( J. Am. Ceram . Soc . 94 [6] 1779-1783 (2011)), it is possible to manufacture a multi-layered electrolyte having improved performance in terms of rate capability.
  • the pressing may be performed at a pressure of 50 to 1000 MPa. If it is less than 50 MPa, a problem may arise that a multi-layer structure can not be formed between the first polymer electrolyte layer 130 and the second polymer electrolyte layer 150, and thus the range is limited to the above range.
  • the entire solid-state batteries 100 and 200 according to the present invention define the structure of the solid electrolyte, and the other elements constituting the solid electrolytes are the anode 110 and anode 210 and the cathode 170 and 250, And the following description will be given.
  • the cathodes 170 and 250 of the all solid state batteries 100 and 200 use lithium metal singly or the anode active material laminated on the anode current collector.
  • the negative electrode active material may be selected from the group consisting of lithium metal, lithium alloy, lithium metal composite oxide, lithium-containing titanium composite oxide (LTO), and combinations thereof.
  • the lithium alloy may be an alloy of lithium and at least one metal selected from Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Ba, Ra, Al and Sn.
  • the lithium metal composite oxide is any one of metal (Me) oxides (MeO x ) selected from the group consisting of lithium and Si, Sn, Zn, Mg, Cd, Ce, Ni and Fe. For example, LixFe 2 O 3 0 ⁇ x? 1) or LixWO 2 (0 ⁇ x? 1).
  • the negative electrode active material is SnxMe 1 - x Me 'y O z (Me: Mn, Fe, Pb, Ge; Me': Al, B, P, Si, of the periodic table Group 1, Group 2, Group 3 element, Halogen; 0 ⁇ x? 1; 1? Y? 3; 1? Z? 8); SnO, SnO 2, PbO, PbO 2, Pb 2 O 3, Pb 3 O 4, Sb 2 O 3, Sb 2 O 4, Sb 2 O 5, GeO, GeO2 2, Bi 2 O 3, Bi 2 O 4 , and Bi 2 O 5 and the like, and carbonaceous anode active materials such as crystalline carbon, amorphous carbon or carbon composite may be used alone or in combination of two or more.
  • the anode current collector is not particularly limited as long as it has electrical conductivity without causing any chemical change in the pre-solid state batteries 100 and 200, and examples thereof include copper, stainless steel, aluminum, nickel, titanium, The surface of the stainless steel may be surface treated with carbon, nickel, titanium, silver or the like, or an aluminum-cadmium alloy may be used.
  • the negative electrode current collector may be formed in various forms such as a film, a sheet, a foil, a net, a porous body, a foam, and a nonwoven fabric having fine irregularities on its surface, as in the case of the positive electrode collector.
  • the anode of the pre-solid battery according to the present invention is not particularly limited, and may be a material used in a known all-solid-state cell.
  • the positive electrode current collector is not particularly limited as long as it has high conductivity without causing a chemical change in the battery.
  • carbon, nickel , Titanium, silver, or the like may be used.
  • the positive electrode active material may vary according to the application of the lithium secondary battery, LiNi 0 .8- x Co 0.2 AlxO 2, LiCo x Mn y O 2, LiNi x Co y O 2, LiNi x Mn y O 2, LiNi x Co y Lithium transition metal oxides such as Mn z O 2 , LiCoO 2 , LiNiO 2 , LiMnO 2 , LiFePO 4 , LiCoPO 4 , LiMnPO 4 and Li 4 Ti 5 O 12 ; Cu 2 Mo 6 S 8 , chalcogenides such as FeS, CoS and MiS, oxides, sulfides or halides of scandium, ruthenium, titanium, vanadium, molybdenum, chromium, manganese, iron, cobalt, nickel, And more specifically TiS 2 , ZrS 2 , RuO 2 , Co 3 O 4 , Mo 6 S 8 , V 2 O 5, and the like can be used,
  • the shape of the cathode active material is not particularly limited and may be a particle shape, for example, a spherical shape, an elliptical shape, a rectangular parallelepiped shape, or the like.
  • the average particle diameter of the cathode active material may be within the range of 1 to 50 ⁇ ⁇ , but is not limited thereto.
  • the average particle diameter of the cathode active material can be obtained, for example, by measuring the particle size of the active material observed by a scanning electron microscope and calculating the average value thereof.
  • the binder contained in the positive electrode is not particularly limited, and a fluorine-containing binder such as polyvinylidene fluoride (PVDF) and polytetrafluoroethylene (PTFE) may be used.
  • PVDF polyvinylidene fluoride
  • PTFE polytetrafluoroethylene
  • the content of the binder is not particularly limited as long as it can fix the cathode active material, and may be in the range of 0 to 10 wt% with respect to the whole anode.
  • the anode may further include a conductive material.
  • the conductive material is not particularly limited as long as it can improve the conductivity of the anode, and examples thereof include nickel powder, cobalt oxide, titanium oxide, and carbon.
  • the carbon include any one selected from the group consisting of Ketjen black, acetylene black, furnace black, graphite, carbon fiber and fullerene, or at least one of them.
  • the content of the conductive material may be selected in consideration of the conditions of other batteries such as the kind of the conductive material, and may be, for example, in the range of 1 to 10 wt%
  • the production of all the solid batteries having the above-mentioned constitution is not particularly limited in the present invention, and can be produced by a known method.
  • a solid electrolyte is disposed between an anode and a cathode, and the cell is assembled by compression molding. And the first polymer electrolyte layer of the polymer electrolyte is disposed in contact with the anode.
  • the assembled cell is installed in the casing and then sealed by heat compression or the like.
  • Laminate packs made of aluminum, stainless steel or the like, and cylindrical or square metal containers are very suitable for the exterior material.
  • the mixed solution was cast on a transparent polyethylene terephthalate (PET) film as a substrate, and irradiated with ultraviolet light having a wavelength of 254 to 365 nm for 90 seconds to produce a first polymer electrolyte layer film.
  • the thickness of the first polymer electrolyte layer film was adjusted to 95 ⁇ .
  • LiTFSI LiTFSI
  • PEO polyethylene oxide
  • PPC polypropylene carbonate
  • [FSI] 1-ethyl-3-methylimidazolium bis (fluorosulfonyl) imide
  • the mixed solution was cast on the Teflon film, dried at room temperature for 24 hours, and further dried at 40 ⁇ under vacuum to prepare a second polymer electrolyte layer film.
  • the thickness of the second polymer electrolyte layer film was adjusted to 94 ⁇ .
  • the prepared first polymer electrolyte layer film and the second polymer electrolyte layer film were roll laminated to form a polymer solid electrolyte layer film, and the film thickness was adjusted to 189 ⁇ .
  • the ionic conductivity and voltage stability of one polymer solid electrolyte were measured.
  • Example 1 was repeated except that the thickness of the first polymer electrolyte layer was adjusted to 67 ⁇ and the thickness of the second polymer electrolyte layer to 65 ⁇ to set the thickness of the polymer solid electrolyte to 132 ⁇ .
  • the mixed solution was cast on a transparent polyethylene terephthalate (PET) film as a substrate, and irradiated with ultraviolet light having a wavelength of 254 to 365 nm for 90 seconds to produce a first polymer electrolyte layer film.
  • the thickness of the first polymer electrolyte layer film was adjusted to 182 ⁇ .
  • the ionic conductivity and voltage stability of the fabricated polymer solid electrolyte were measured.
  • LiTFSI LiTFSI
  • PEO Polyethylene Oxide
  • PPC Polypropylene Carbonate
  • EMIM [FSI] ionic liquid
  • 10 ml of acetonitrile was added thereto, followed by stirring for 24 hours.
  • the mixed solution was cast on the Teflon film, dried at room temperature for 24 hours, and further dried at 40 ° C under vacuum to prepare a film.
  • the film thickness was adjusted to 195 ⁇ m.
  • the ionic conductivity and voltage stability of the fabricated polymer solid electrolyte were measured.
  • the ionic conductivity of the polymer solid electrolyte prepared in Examples 1 to 2 and Comparative Examples 1 and 2 was determined by using the following Equation 1 after measuring the impedance thereof.
  • a film sample of the polymer solid electrolyte having a certain width and thickness was prepared for measurement.
  • An SUS substrate having excellent electron conductivity was brought into contact with an ion blocking electrode on both sides of a plate-shaped sample, and an AC voltage was applied through the electrodes on both sides of the sample.
  • the amplitude was set in the range of 1.0 MHz to 0.1 Hz under the applied conditions, and the impedance was measured using BioLogic VMP3.
  • the resistance of the bulk electrolyte was obtained from the intersection point (R b ) where the semicircle or straight line of the measured impedance trajectory meets the real axis and the ionic conductivity of the polymer solid electrolyte membrane was calculated from the sample width and thickness.
  • the multilayer polyelectrolyte film of Example 1 exhibited ion conductivity of 2.14 ⁇ 0.97 ⁇ 10 -4 S / cm.
  • the multilayer polyelectrolyte film of Example 2 exhibited an ion conductivity of 2.13 ⁇ 0.97 ⁇ 10 -4 S / cm.
  • the first polymer electrolyte film of Comparative Example 1 showed an average ionic conductivity of 1.77 + - 0.26 x 10 -4 S / cm.
  • the second polymer electrolyte film of Comparative Example 2 had an average ionic conductivity of 4.01 ⁇ 0.95 ⁇ 10 -6 S / cm.
  • the multi-layer solid polymer electrolyte of the example according to the present invention had an excellent average ion conductivity as compared with the electrolyte of the comparative example.
  • Voltage stability of the polymer solid electrolytes prepared in Examples 1 to 2 and Comparative Examples 1 and 2 was evaluated by using a linear sweep voltammetry (LSV), and BioLogic VMP3 was used.
  • LSV linear sweep voltammetry
  • a coin cell was fabricated by contacting a lithium metal electrode on one side of the polymer electrolyte and a SUS substrate on the other side of the polymer electrolyte of Examples and Comparative Examples. The scanning speed was 10 mV / s, and the measurement was performed in the range of -1 V to 6 V.
  • the polymer electrolyte membrane prepared in the form of a multilayer of two films showed stable characteristics at a voltage of 0.5 V to 5 V.
  • the electrolyte layer of Comparative Example 1 is stable at 5 V or more, but is unstable at a low voltage region of 1.5 V or less.
  • FIG. 6 in the case of Comparative Example 2, it was stable in a low voltage region of 1.5 V or less, but was unstable at 3.8 V or more.
  • the multi-layered polymer electrolyte according to the present invention can be stably used in an anode in a high voltage region and a cathode in a low voltage region, and the whole solid battery including the same can be applied as a high capacity, high output battery in various technical fields.

Abstract

The present invention relates to a multilayer polymer electrolyte and an all-solid-state battery comprising the same. When the multilayer polymer solid electrolyte comprising a first polymer electrolyte layer and a second polymer electrolyte layer, of the present invention, is used, stable use thereof in a high-voltage cathode and a low-voltage anode is possible, and an all-solid-state battery comprising the same can be applied to the field of batteries for electric vehicles in which a high-capacity and a high-output battery is used.

Description

다층 구조 고분자 고체 전해질 및 이를 포함하는 전고체 전지Multi-layered polymer solid electrolyte and all solid-state cell including the same
본 출원은 2017년 06월 20일자 한국 특허 출원 제10-2017-0077792호 및 2018년 05월 25일자 한국 특허 출원 제10-2018-0059591호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함한다.This application claims the benefit of priority based on Korean Patent Application No. 10-2017-0077792, filed on June 20, 2017, and Korean Patent Application No. 10-2018-0059591, dated May 25, 2018, All of which are incorporated herein by reference.
본 발명은 다층 구조 고분자 고체 전해질 및 이를 포함하는 전고체 전지에 관한 것이다.The present invention relates to a multi-layered polymer solid electrolyte and a pre-solid battery including the same.
리튬 이차전지는 주로 모바일기기나 노트북 컴퓨터 등의 소형 분야에 적용되어 왔지만, 최근에는 그 연구방향이 중대형 분야로 확장되고 있으며, 주로 에너지 저장 장치(ESS, energy storage system)나 전기 자동차 (EV, Electric vehicle) 등과 관련하여 고출력이 요구되는 분야에 널리 사용되고 있다.Lithium secondary batteries have been mainly applied to small-sized applications such as mobile devices and notebook computers. Recently, however, their research directions have been expanded to middle and large-sized fields. They are mainly used in energy storage systems (ESS) vehicle, and the like.
이러한 중대형 리튬 이차전지의 경우, 소형과는 달리 작동환경(예를 들어, 온도, 충격)이 가혹할 뿐만 아니라, 더욱 많은 전지를 사용하여야 하기 때문에, 우수한 성능이나 적절한 가격과 함께 안전성이 확보될 필요가 있다. In the case of such a large-sized lithium secondary battery, unlike a small-sized battery, operating environment (for example, temperature, shock) is not only severe but also requires more batteries. Therefore, have.
현재 상용화된 대부분의 리튬 이차전지는 리튬염(Lithium salt)을 유기용매(flammable organic solvent)에 녹인 유기 액체 전해질을 이용하고 있기 때문에, 누액을 비롯하여, 발화 및 폭발에 대한 잠재적인 위험성을 안고 있다. 실제로도 이를 적용한 제품의 폭발 사고가 지속적으로 보고되고 있기에, 이러한 문제점을 해소하는 것이 시급한 상황이다.Most commercialized lithium secondary batteries use an organic liquid electrolyte in which a lithium salt is dissolved in a flammable organic solvent, which poses a potential risk of leakage, explosion, and ignition. In fact, since the explosion of products using this product is constantly reported, it is urgent to overcome these problems.
만약, 안전장치로 이를 해소하고자 한다면, 안전장치가 차지하는 상당한 무게에 의해 에너지 밀도가 손실될 우려가 있고, 기본적으로 유기 액체 전해질을 사용함에 따라 안전성 문제를 극복하는 데 한계가 있을 수 밖에 없다.If it is to be solved by a safety device, there is a risk that the energy density is lost due to a considerable weight of the safety device, and basically, there is a limit to overcome the safety problem by using the organic liquid electrolyte.
따라서, 액체 전해액 대신에, 고체 전해질을 사용하는 전(全)고체형 전지의 개발이 진행되고 있다. 전고체 전지는, 가연성의 유기 용매를 포함하지 않기 때문에, 안전장치를 간략화할 수 있는 이점이 있어, 제조 비용이나 생산성이 우수한 전지라고 인식되고 있다. 또한, 양극(정극)층 및 음극(부극)층을 포함하는 한 쌍의 전극층과, 이들 전극층 사이에 놓이는 고체 전해질층을 포함하는 접합 구조를 직렬로 적층하는 것이 용이하기 때문에, 안정되면서 고용량이고, 또한 고출력의 전지를 제조할 수 있는 기술로서 기대되고 있다.Therefore, the development of all solid-state cells using solid electrolytes instead of liquid electrolytes has been underway. Since all solid batteries do not contain a flammable organic solvent, they are advantageous in that a safety device can be simplified, and thus it is recognized that the battery is excellent in manufacturing cost and productivity. Further, since it is easy to laminate in series a junction structure including a pair of electrode layers including a positive electrode (positive electrode) layer and a negative electrode (negative electrode) layer and a solid electrolyte layer interposed between these electrode layers, And is expected to be a technology capable of manufacturing a high-output battery.
기존 고체 전해질은 하나의 고체 고분자 전해질 필름으로 제작되어 전해질 및 분리막 역할을 하며, Li metal 음극이 사용되는 리튬 메탈 전지 혹은 흑연 음극이 사용되는 리튬 이온전지에 적용/평가되어 왔다. 하지만, 하나의 고분자 전해질로서 고전압 영역에서의 양극 및 저전압 영역에서의 음극에 동시에 안정하게 작동하는 전지를 구현하는데 어려움이 있다. 일 예로, 고분자 전해질이 고전압 영역에서의 양극 표면에서 산화되거나 저전압 영역에서의 음극 표면에서 환원/분해되는 문제점이 발생하고, 단일 고분자 전해질만으로는 접착력 부재로 인하여 전극/전해질 간 계면 저항 증가 문제가 발생하기도 한다.Conventional solid electrolytes have been applied / evaluated to lithium metal batteries using lithium metal cathodes or lithium ion batteries using graphite cathodes because they are made of one solid polymer electrolyte film and serve as electrolytes and separation membranes. However, as a polymer electrolyte, it is difficult to realize a battery that operates stably simultaneously on the anode in the high voltage region and on the cathode in the low voltage region. For example, there is a problem that the polymer electrolyte is oxidized at the surface of the anode in the high voltage region or reduced / decomposed at the surface of the cathode in the low voltage region, and the interface resistance between the electrode and the electrolyte increases due to the adhesive force member only with the single polymer electrolyte do.
숙시노니트릴(Succinonitrile)을 함유한 고분자 전해질의 경우, 상온 이온 전도도가 10-4S/cm이상으로 높고, 4V 이상의 고전압 영역에서의 양극에서도 안정적으로 작동하지만 저전압 영역에서의 음극에서의 안정성은 취약하다는 단점이 있어서 Li metal 및 흑연 음극에는 적용이 어렵고, 작동 전압이 1.5V 정도인 LTO(Lithium Titanate) 음극에만 제한적으로 사용할 수 있다. 한편, PEO(Polyethylene Oxide) 기반의 고분자 전해질은 저전압 영역에서의 안정성은 양호하여 리튬 음극 및 흑연 음극에서 작동 가능하지만, 반대로 고전압 영역에서의 안정성이 취약하여 4V 이상의 고전압 양극에는 적용하기 어렵다.The polymer electrolyte containing succinonitrile has a high ionic conductivity of 10 -4 S / cm or higher at room temperature and operates stably at the anode at a high voltage range of 4 V or more, but the stability at the cathode at the low voltage region is weak Which is difficult to apply to Li metal and graphite cathodes, and is limited to LTO (Lithium Titanate) cathodes with operating voltages of about 1.5V. On the other hand, the polymer electrolyte based on PEO (Polyethylene Oxide) is stable in the low voltage range and can operate on the lithium negative electrode and the graphite negative electrode. On the other hand, it is difficult to apply it to the high voltage positive electrode of 4V or more.
이러한 종래 기술의 여러 문제점을 해결하기 위해, 무기 고체 전해질과 고분자 전해질을 다층 형태로 제작하는 방법이 제안되었지만, 고전압 영역에서의 양극과 저전압 영역에서의 음극에 모두 안정한 고분자 고체 전해질의 다층 구조에 대한 연구는 이루어지지 않았다. In order to solve various problems of the prior art, a method of manufacturing an inorganic solid electrolyte and a polymer electrolyte in a multi-layer form has been proposed. However, a multi-layer structure of a polymer solid electrolyte stable in both an anode in a high voltage region and a cathode in a low- Research has not been done.
따라서, LCO(Lithium Cobalt Oxide), LNMO(LiNI0 . 5Mn1 . 5O4) 등의 양극재가 사용될 수 있는 고전압 영역에서의 양극과 Li metal 및 흑연 등의 음극재가 사용될 수 있는 저전압 영역에서의 음극에서 동시에 안정적으로 작동 가능한 다층 구조의 고분자 고체 전해질의 개발이 요구되고 있다.Therefore, LCO (Lithium Cobalt Oxide), LNMO (LiNI 0. 5 Mn 1. 5 O 4) , such as the positive electrode material can be a cathode material is used, such as the positive electrode and Li metal and graphite at the high voltage areas that may be used in low-voltage region in the It is required to develop a polymer solid electrolyte having a multi-layer structure capable of stably operating at the same time on the cathode.
[선행기술문헌][Prior Art Literature]
[특허문헌][Patent Literature]
(특허문헌 1) 일본 공개특허 제2014-523068호(2014.09.08), "신규 폴리머 전해질 및 그것을 포함한 리튬 이차전지" (Patent Document 1) Japanese Laid-Open Patent Application No. 2014-523068 (2014.09.08), "New Polymer Electrolyte and Lithium Secondary Battery Containing It"
(특허문헌 2) 대한민국 공개특허 제2003-0005254호(2003.01.17), "다층 구조의 고분자 전해질 및 이를 포함하는 리튬이차전지" (Patent Document 2) Korean Unexamined Patent Publication No. 2003-0005254 (2003.01.17), " Multilayered Polymer Electrolyte and Lithium Secondary Battery Including the Same "
[비특허문헌] [Non-Patent Document]
(비특허문헌 1) Weidong Zhou, Shaofei Wang, Yutao Li, Sen Xin, Arumugam Manthiram, and John B. Goodenough, Plating a Dendrite-Free Lithium Anode with a Polymer/Ceramic/Polymer Sandwich Electrolyte. J. Am. Chem . Soc. 2016, 138, 9385-9388(Non-Patent Document 1) Weidong Zhou, Shaofei Wang, Yutao Li, Sen Xin, Arumugam Manthiram, and John B. Goodenough, Plating a Dendrite-Free Lithium Anode with a Polymer / Ceramic / Polymer Sandwich Electrolyte. J. Am. Chem . Soc . 2016, 138, 9385-9388
(비특허문헌 2) Pierre-Jean Alarco, Yaser Abu-Lebdeh, Ali Abouimrane and Michel Armand: The plastic-crystalline phase of succinonitrile as a universal matrix for solid-state ionic conductors, Nat. Mater. 2004, 4, 476-481.(Non-Patent Document 2) Pierre-Jean Alarco, Yaser Abu-Lebdeh, Ali Abouimrane and Michel Armand: The plastic-crystalline phase of succinonitrile as a universal matrix for solid-state ionic conductors , Nat. Mater . 2004, 4, 476-481.
본 출원인은 고전압 영역에서의 양극 및 저전압 영역에서의 음극에서 동시에 안정적으로 작동하는 전지를 구현하고자 다각도로 연구를 진행하였고, 넓은 범위의 작동 전압에서 작동이 가능하도록 각 층의 조성을 달리하는 다층 구조의 고체 전해질을 전고체 전지에 적용한 결과 고전압 영역에서의 양극과 저전압 영역에서의 음극에서 안정적으로 작동하는 결과를 확인하여 본 발명을 완성하였다. The present applicant has conducted various studies in order to realize a battery which operates at the same time and stably at the anode in the high voltage range and the cathode in the low voltage range and has developed a multi-layered structure with different composition of each layer As a result of applying the solid electrolyte to the whole solid battery, the result of stable operation at the anode in the high voltage region and the cathode in the low voltage region was confirmed and the present invention was completed.
본 발명의 목적은 제1 고분자 전해질층 및 제2 고분자 전해질층을 포함하는 전고체 전지용 다층 구조 고분자 전해질을 제공하는데 있다.An object of the present invention is to provide a multi-layered polymer electrolyte for an all solid-state battery comprising a first polymer electrolyte layer and a second polymer electrolyte layer.
본 발명의 다른 목적은 상기 다층 구조 고분자 전해질이 포함된 전고체 전지를 제공하는데 있다.Another object of the present invention is to provide a pre-solid battery including the multi-layered polymer electrolyte.
상기의 목적을 달성하기 위해, 본 발명은 하기 화학식 1로 표시되는 지방족 디니트릴 화합물, 리튬염 및 리튬 이온 전도성 고분자를 포함하는 제1 고분자 전해질층과 이온성 액체, 리튬염 및 리튬 이온 전도성 고분자를 포함하는 제2 고분자 전해질층을 포함하는 전고체 전지용 다층 구조 고분자 전해질을 제공한다.In order to accomplish the above object, the present invention provides a lithium ion secondary battery comprising a first polymer electrolyte layer comprising an aliphatic dinitrile compound represented by the following general formula (1), a lithium salt and a lithium ion conductive polymer, an ionic liquid, a lithium salt and a lithium ion conductive polymer And a second polymer electrolyte layer including the second polymer electrolyte layer.
[화학식 1][Chemical Formula 1]
N≡C-R-C≡NN≡C-R-C≡N
(여기서, R은 (CH2)n이고 n=1 내지 6의 정수임)(Wherein, R is (CH 2) n is an integer of n = 1 to 6)
이때, 상기 제1 고분자 전해질층은 리튬 이온전도성 고분자 100 중량부에 대해 지방족 디니트릴 화합물 20 내지 50 중량부와 리튬염 30 내지 40 중량부를 포함한다.The first polymer electrolyte layer may include 20 to 50 parts by weight of an aliphatic dinitrile compound and 30 to 40 parts by weight of a lithium salt based on 100 parts by weight of the lithium ion conductive polymer.
또한, 상기 제2고분자 전해질층은 리튬 이온전도성 고분자 100 중량부에 대해 이온성 액체 20 내지 50 중량부와 리튬염 30 내지 40 중량부를 포함한다.The second polymer electrolyte layer includes 20 to 50 parts by weight of an ionic liquid and 30 to 40 parts by weight of a lithium salt based on 100 parts by weight of the lithium ion conductive polymer.
또한, 본 발명은 상기 다층 구조 고분자 전해질을 포함하는 전고체 전지를 제공한다.The present invention also provides a pre-solid battery comprising the multi-layered polymer electrolyte.
본 발명의 다층구조의 고분자 전해질을 전고체 전지에 적용하면, 액체 전해질에서 나타나는 고전압 영역에서의 양극에서 전해질 분해현상이 없어 4.0V 이상의 고전압대 양극에 적용할 수 있다. 또한 1.5V 이하의 저전압 영역에서의 음극에서 부반응 및 표면반응 없이 적용 가능하여, 고전압 영역에서의 양극과 저전압 영역에서의 음극에 동시에 안정적으로 작동 가능한 효과를 나타낼 수 있다.When the polymer electrolyte of the present invention is applied to all solid-state cells, there is no electrolyte decomposition at the anode in the high-voltage region appearing in the liquid electrolyte, so that the polymer electrolyte can be applied to a high- In addition, the present invention can be applied to a cathode in a low voltage region of 1.5 V or less without side reactions and surface reactions, and can simultaneously operate stably on both an anode in a high voltage region and a cathode in a low voltage region.
이러한 전고체 전지는 고용량, 고출력의 전지가 사용되는 전기 자동차의 배터리 분야 등에서 바람직하게 적용 가능하다.Such a pre-solid battery is suitably applicable in a battery field of an electric vehicle in which a high capacity, high output battery is used.
도 1은 다층 구조 고분자 전해질을 포함한 전고체 전지의 단면도이다.1 is a cross-sectional view of a pre-solid battery including a multi-layered polymer electrolyte.
도 2는 전고체 전지의 단면도이다.2 is a cross-sectional view of a pre-solid battery.
도 3은 제1 고분자 전해질 및 제2 고분자 전해질을 나타내는 사진이다.3 is a photograph showing the first polymer electrolyte and the second polymer electrolyte.
도 4는 다층 구조 고분자 전해질의 전압 안정성 나타내는 그래프이다.4 is a graph showing the voltage stability of the multi-layered polymer electrolyte.
도 5는 제1 고분자 전해질 층의 전압 안정성 나타내는 그래프이다.5 is a graph showing the voltage stability of the first polymer electrolyte layer.
도 6은 제2 고분자 전해질 층의 전압 안정성 나타내는 그래프이다.6 is a graph showing the voltage stability of the second polymer electrolyte layer.
본 발명은 하기 화학식 1로 표시되는 지방족 디니트릴 화합물, 리튬염 및 리튬 이온전도성 고분자를 포함하는 제1 고분자 전해질층; 및 이온성 액체, 리튬염 및 리튬 이온전도성 고분자를 포함하는 제2 고분자 전해질층;을 포함하는 전고체 전지용 다층 구조 고분자 전해질을 제공한다.The present invention provides a lithium secondary battery comprising: a first polymer electrolyte layer comprising an aliphatic dinitrile compound represented by the following formula (1), a lithium salt, and a lithium ion conductive polymer; And a second polymer electrolyte layer including an ionic liquid, a lithium salt, and a lithium ion conductive polymer. The present invention also provides a multi-layered polymer electrolyte for an all solid-state battery.
[화학식 1][Chemical Formula 1]
N≡C-R-C≡NN≡C-R-C≡N
(여기서, R은 (CH2)n이고 n=1 내지 6의 정수임)(Wherein, R is (CH 2) n is an integer of n = 1 to 6)
또한 본 발명의 다층 구조로 이루어져 전고체 전지에서 양극과 맞닿는 상기 고분자 전해질이 액체 전해질처럼 고전압 영역에서 분해되지 않고 안정적인 성능을 보이며, 음극과 맞닿는 고분자 전해질이 0V에 가까운 저전압 영역에서 환원 및 분해가 일어나지 않는 특성을 향상시킬 수 있는 고분자 전해질 및 이를 포함하는 전고체 전지를 제시한다. 이하 도면을 참조하여 상세히 설명한다.In addition, the polymer electrolyte of the present invention has a multilayer structure, and the polymer electrolyte contacting the anode in the entire solid electrolyte cell exhibits stable performance without being decomposed in a high voltage region like a liquid electrolyte, and the polymer electrolyte contacting the cathode undergoes reduction and decomposition in a low- Polymer electrolyte and an all solid battery including the polymer electrolyte. Hereinafter, the present invention will be described in detail with reference to the drawings.
다층 구조의 고분자 전해질Multilayered polymer electrolyte
도 1은 고체 전지용 다층 구조 고분자 전해질의 단면도이다.1 is a cross-sectional view of a multi-layered polymer electrolyte for a solid battery.
도 1을 참조하면, 전고체 전지(100, 200)는 양극(110, 210), 음극(170, 250) 및 이들 사이에 고분자 전해질층(130, 150)이 개재된 구조를 갖는다. 이때 상기 고분자 전해질층은 다층 구조를 가지며, 양극(110, 210)에서 접하는 측에서부터 제1 고분자 전해질층(130) 및 제2 고분자 전해질층(150)으로 구성된다.1, all solid state batteries 100 and 200 have a structure in which anodes 110 and 210, cathodes 170 and 250, and a polymer electrolyte layer 130 and 150 are interposed therebetween. The polymer electrolyte layer has a multi-layer structure and is composed of the first polymer electrolyte layer 130 and the second polymer electrolyte layer 150 from the side in contact with the anodes 110 and 210.
본 발명의 전고체 전지(100, 200)는 고분자 전해질을 이용한 다층 구조의 전해질을 구현함으로써, 종래 하나의 고분자 전해질로 이루어진 전지에 비해 고전압 영역의 양극 및 저전압 영역의 음극에서 모두 안정적으로 작동하는 전지를 구현한다. 기존의 고분자 전해질은 하나의 고분자 전해질 필름으로 제작되어 전해질 및 분리막 역할을 하였는데, 하나의 고분자 전해질로서 고전압 영역의 양극 및 저전압 영역의 음극에서 동시에 안정하게 작동하는 전지를 구현하는데 어려움이 있었다. 또한 단일 고분자 전해질만으로는 접착력의 부재로 인해 전극과 전해질간의 계면 저항 증가문제가 발생하였다. 그러나 도 1과 같이 고분자 전해질을 다층으로 구현함에 따라 이러한 문제를 해소하였다.The entire solid state batteries 100 and 200 according to the present invention realize a multi-layered electrolyte using a polymer electrolyte. As a result, compared with a battery made of a conventional polymer electrolyte, a battery which stably operates both in a high voltage region and in a low voltage region. . Conventional polymer electrolytes were fabricated as a single polymer electrolyte membrane and acted as an electrolyte and a separator. As a polymer electrolyte, there was a difficulty in realizing a battery that operates stably at the anode of the high voltage region and the cathode of the low voltage region at the same time. In addition, the interface resistance between the electrode and the electrolyte was increased due to the absence of the adhesive force by the single polymer electrolyte alone. However, as shown in FIG. 1, this problem is solved by implementing a multi-layered polymer electrolyte.
선행 발명 (J. Am. Chem . Soc. 2016, 138, 9385-9388.)에 따르면, 고분자 및 ceramic으로 구성된 다층 구조의 전해질 내에서의 전압 프로파일은 음극 쪽에서 0V에 가까우며, 양극 쪽에서 높은 전압을 나타낸다. 이러한 다층 구조의 고체 전해질은 고분자와 세라믹의 조합으로 구성된 경우가 대부분이다. 하지만 전체 전해질이 고분자로 구성되며 두 고분자 혹은 두 개 이상의 고분자 전해질을 용도와 특성에 맞추어 조합하여 전고체 전지를 구현한 예는 없었다.According to the prior art ( J. Am. Chem . Soc . 2016, 138, 9385-9388), the voltage profile in a multi-layered electrolyte composed of polymer and ceramic is close to 0 V on the cathode side and high voltage on the anode side . Such a multi-layered solid electrolyte is mostly composed of a combination of a polymer and a ceramic. However, there is no example in which a whole electrolyte is composed of a polymer, and two solid polymers or two or more polymer electrolytes are combined according to their use and characteristics to realize an all solid battery.
본 발명은 양극과 맞닿는 고분자 전해질이 액체 전해질처럼 고전압 영역에서 분해되지 않고 안정적인 성능 특성을 보이며, 음극에서는 0V와 가까운 저전압 영역에서 환원 및 분해가 일어나지 않는 전압 안정성을 나타내는 다층 구조의 고분자 고체 전해질 및 이를 포함한 전고체 전지를 제안한다. 특히, 본 발명의 고분자 전해질은 다층 구조를 갖되, 각 층의 조성을 달리하여 각 층에서의 작동 전압을 조절할 수 있는 이점이 있다. The present invention relates to a polymer solid electrolyte exhibiting stable performance characteristics without decomposition in a high voltage region such as a liquid electrolyte such as a liquid electrolyte and exhibiting voltage stability in which a reduction and decomposition does not occur in a low voltage region close to 0 V at the cathode, And the like. In particular, the polymer electrolyte of the present invention has a multilayer structure, and has an advantage that the operating voltage in each layer can be controlled by varying the composition of each layer.
제1 고분자 First polymer 전해질층Electrolyte layer
본 발명의 제1 고분자 전해질층(130)은 하기 화학식 1로 표시되는 지방족 디니트릴 화합물, 리튬염, 리튬 이온전도성 고분자를 포함한다.The first polymer electrolyte layer 130 of the present invention includes an aliphatic dinitrile compound represented by the following formula (1), a lithium salt, and a lithium ion conductive polymer.
[화학식 1][Chemical Formula 1]
N≡C-R-C≡NN≡C-R-C≡N
(여기서, R은 (CH2)n이고 n=1 내지 6의 정수임)(Wherein, R is (CH 2) n is an integer of n = 1 to 6)
지방족 디니트릴 화합물을 함유할 경우 고분자 전해질의 상온에서의 이온 전도도가 10-4 S/cm 이상으로 높고, 액체 전해질에 비해 4V 이상의 고전압 영역의 양극에서 전극 표면에서 전해질이 산화되지 않으므로, 지방족 디니트릴 화합물이 함유되지 않은 경우에 비해 안정적인 성능 및 효과를 발현시킬 수 있다.When an aliphatic dinitrile compound is contained, the ionic conductivity of the polymer electrolyte at room temperature is 10 -4 S / cm And the electrolyte is not oxidized at the surface of the electrode in the anode at a high voltage region of 4 V or more as compared with the liquid electrolyte, so that it is possible to exhibit stable performance and effects as compared with the case where the aliphatic dinitrile compound is not contained.
지방족 디니트릴 화합물 중 사슬(chain) 길이가 긴 것은 전고체 전지의 성능 및 안전성에 큰 영향이 없거나 오히려 전지성능에 악영향을 유발하기 때문에 숙시노니트릴을 포함하여 지방족 하이드로 카본의 갯수가 1에서 6 사이인 것(N≡C-R-C≡N, n=1 내지 6)이 바람직하며, 이중에서 카본의 갯수가 작은 니트릴을 선택하는 것이 더 바람직하며, 그 중 숙시노니트릴이 가장 바람직하다. 한편, 시아노 작용기를 포함하는 화합물 중 방향족 니트릴 및 플루오르화 방향족 니트릴 화합물은 전고체 전지 내부에서 전기화학적으로 쉽게 분해되어 Li 이온의 이동을 방해하여 전지의 성능을 저하시키므로 바람직하지 않다.Since the chain length of the aliphatic dinitrile compound does not greatly affect the performance and safety of the whole solid battery or rather adversely affects the performance of the cell, the number of aliphatic hydrocarbons including succinonitrile is 1 to 6 (N≡CRC≡N, n = 1 to 6), and it is more preferable to select a nitrile having a small number of carbon atoms, among which succinonitrile is most preferable. On the other hand, the aromatic nitrile and the fluorinated aromatic nitrile compound among the compounds containing a cyano functional group are not preferable because they easily decompose electrochemically in the entire solid-state cell to interfere with the migration of Li ions to deteriorate the performance of the battery.
제1 고분자 전해질층(130)에서 리튬 이온 전도성 고분자 100 중량부에 대해 지방족 디니트릴 화합물 20 내지 50 중량부 범위 내에서 선택하여 제조한다. 만일 50 중량부를 초과하는 경우 이온전도도가 감소되는 문제가 있고, 20 중량부 미만일 경우에는 지방족 디니트릴 화합물에 의한 효과가 미미하므로 상기 범위 내에서 적절히 조절한다. 바람직하게는 지방족 디니트릴 화합물을 35 내지 45 중량부로 하면 고전압 양극에서의 산화 안정성과 이온전도도를 현저히 높일 수 있다.The first polymer electrolyte layer 130 is prepared by selecting 20 to 50 parts by weight of the aliphatic dinitrile compound per 100 parts by weight of the lithium ion conductive polymer. If the amount of the aliphatic dinitrile compound is less than 20 parts by weight, the effect of the aliphatic dinitrile compound is insignificant. Therefore, the ionic conductivity is appropriately controlled within the above range. When the aliphatic dinitrile compound is used in an amount of 35 to 45 parts by weight, oxidation stability and ionic conductivity at the high-voltage anode can be remarkably increased.
이에 제1고분자 전해질층은 이온 전도도가 5 x 10-5 S/cm 내지 5 x 10-4 S/cm 일 수 있다.The first polymer electrolyte layer may have an ionic conductivity of 5 x 10 -5 S / cm to 5 x 10 -4 S / cm.
제1 고분자 전해질층(130)의 리튬 이온 전도성 고분자로는 폴리에틸렌글리콜디아크릴레이트(PEGDA), 트리메틸올프로판에톡실레이트트리아크릴레이트(ETPTA), 폴리아크릴로나이트릴(PAN), 폴리프로필렌옥사이드(PPO), 폴리프로필렌카보네이트(PPC), 폴리비닐알코올(PVA), 폴리메틸메타크릴레이트(PMMA), 폴리비닐클로라이드(PVC), 폴리비닐리덴플루오라이드(PVDF), 폴리에스테르(PE), 폴리아마이드(PA), 폴리에틸렌(PE), 폴리에틸렌글리콜(PEG) 및 폴리스타이렌(PS)으로 이루어진 군에서 선택된 1종 또는 이들의 조합으로부터 선택될 수 있으며, 바람직하게는 아크릴레이트계 고분자를 사용할 수 있으며, 더욱 바람직하게는 트리메틸올프로판에톡실레이트트리아크릴레이트(ETPTA)를 사용할 수 있다.Examples of the lithium ion conductive polymer in the first polymer electrolyte layer 130 include polyethylene glycol diacrylate (PEGDA), trimethylolpropaneethoxylate triacrylate (ETPTA), polyacrylonitrile (PAN), polypropylene oxide PPO), polypropylene carbonate (PPC), polyvinyl alcohol (PVA), polymethyl methacrylate (PMMA), polyvinyl chloride (PVC), polyvinylidene fluoride (PVDF) (PA), polyethylene (PE), polyethylene glycol (PEG) and polystyrene (PS), or a combination thereof, preferably an acrylate-based polymer, more preferably , Trimethylolpropaneethoxylate triacrylate (ETPTA) can be used.
본 발명에 따른 제1 고분자 전해질층(130) 및 제2 고분자 전해질층(150)에 공통적으로 적용되는 리튬염은 리튬 이온으로 해리되어 제1 고분자 전해질층(130) 및 제2 고분자 전해질층(150) 내부에 침투하여 자유롭게 이동할 수 있다. 이때 리튬 이온의 공급원으로서 기본적인 리튬 전지의 작동을 가능하게 하며, 이러한 리튬염으로는 리튬 전지에서 통상적으로 사용되는 것이라면 모두 사용 가능하나, 바람직하게는 LiCl, LiBr, LiI, LiClO4, LiBF4, LiB10Cl10, LiPF6, LiCF3SO3, LiCF3CO2, LiAsF6, LiSbF6, LiAlCl4, CH3SO3Li, CF3SO3Li, LiSCN, LiC(CF3SO2)3, (CF3SO2)2NLi, (CF3SO2)2NLi, (FSO2)2NLi, 클로로 보란 리튬, 저급 지방족 카르본산 리튬, 4-페닐 붕산 리튬, 이미드 및 이들의 조합으로부터 선택된 1종을 포함할 수 있고, 보다 바람직하게는 (CF3SO2)2NLi 로 표시되는 LiTFSI(Lithium bis(trifluoromethanesulfonyl)imide)를 사용할 수 있다.The lithium salt commonly applied to the first polymer electrolyte layer 130 and the second polymer electrolyte layer 150 according to the present invention is dissociated into lithium ions to form the first polymer electrolyte layer 130 and the second polymer electrolyte layer 150 ) To move freely. At this time, as a source of lithium ions and enables the basic operation of a lithium battery, so long as it is generally used in such lithium salts include a lithium battery can be used both one, preferably LiCl, LiBr, LiI, LiClO 4, LiBF 4, LiB 10 Cl 10, LiPF 6, LiCF 3 SO 3, LiCF 3 CO 2, LiAsF 6, LiSbF 6, LiAlCl 4, CH 3 SO 3 Li, CF 3 SO 3 Li, LiSCN, LiC (CF 3 SO 2) 3, ( CF 3 SO 2 ) 2 NLi, (CF 3 SO 2 ) 2 NLi, (FSO 2 ) 2 NLi, chloroborane lithium, lithium lower aliphatic carboxylate, lithium 4-phenylborate, , And more preferably LiTFSI (lithium bis (trifluoromethanesulfonyl) imide) represented by (CF 3 SO 2 ) 2 NLi.
제1 고분자 전해질층(130)에서 리튬 이온 전도성 고분자 100 중량부에 대해 리튬염 30 내지 40 중량부 범위 내에서 선택하여 제조한다.In the first polymer electrolyte layer 130, 30 to 40 parts by weight of the lithium salt is selected for 100 parts by weight of the lithium ion conductive polymer.
제2 고분자 The second polymer 전해질층Electrolyte layer
제2 고분자 전해질층(150)은 이온성 액체(Ionic Liquid), 리튬염, 리튬이온 전도성 고분자를 포함한다.The second polymer electrolyte layer 150 includes an ionic liquid, a lithium salt, and a lithium ion conductive polymer.
상기 이온성 액체는 양이온과 음이온으로 이루어져 있는 이온성 염(ionic salts 또는 molten salts)이다. 소금과 같이 양이온과 비금속 음이온으로 이루어진 이온성 화합물은 통상 800℃ 이상의 고온에서 녹는 것과 달리, 100℃ 이하의 온도에서 액체로 존재하는 이온성 염을 이온성 액체라고 한다. 특히, 상온에서 액체로 존재하는 이온성 액체를 상온 이온성 액체(room temperature ionic liquid, RTIL)라고 한다. The ionic liquid is ionic salts or molten salts which are composed of cations and anions. Ionic compounds such as salt, which are composed of cationic and nonmetal anions, are generally referred to as ionic liquids, which dissolve at a high temperature of 800 ° C or higher, and exist as liquids at a temperature of 100 ° C or lower. Particularly, an ionic liquid present as a liquid at room temperature is referred to as a room temperature ionic liquid (RTIL).
이온성 액체는 일반적인 액체 전해질에 비해 비휘발성, 무독성, 비가연성이며 우수한 열적 안정성, 이온 전도도를 지니고 있다. 또한, 극성이 커서 무기 및 유기 금속 화합물을 잘 용해시키고 넓은 온도 범위에서 액체로 존재하는 독특한 특성을 가지므로, 이온성 액체를 구성하는 양이온과 음이온의 구조를 변화시켜 다양한 특성을 얻을 수 있는 장점을 활용하여 촉매, 분리, 전기화학 등 광범위한 화학분야에 응용되고 있다.Ionic liquids are nonvolatile, non-toxic, non-flammable, and have excellent thermal stability and ionic conductivity compared to conventional liquid electrolytes. In addition, since the polarity is high, it dissolves inorganic and organometallic compounds well and has a unique characteristic of being present as a liquid in a wide temperature range. Therefore, it has the merit of obtaining various characteristics by changing the structure of cations and anions constituting the ionic liquid And is applied to a wide range of chemical fields such as catalyst, separation, and electrochemical.
본 발명의 일 실시예에 따른 전고체 전지용 다층 구조 고분자 전해질은 이러한 이온성 액체를 함유하기 때문에, 저전압 영역에서의 음극에서 전지의 안정성이 크게 향상된다. 또한, 이온성 액체는 우수한 열적 안정성과 우수한 이온 전도도를 갖기 때문에, 이온성 액체를 고분자 전해질에 첨가하는 경우, 이온 전도도의 감소없이 열적 안정성을 향상시킬 수 있다. 이온성 액체는 극성이 커서 무기 및 유기 금속 화합물을 잘 용해시키고 넓은 온도 범위에서도 액체로 존재하기 때문에, 간단한 혼합과 가열을 통하여 고분자 전해질 형성용 조성물에 첨가가 가능하다.Since the multi-layered polymer electrolyte for an all solid-state battery according to an embodiment of the present invention contains such an ionic liquid, the stability of the battery in the negative electrode in the low-voltage region is greatly improved. Further, since the ionic liquid has excellent thermal stability and excellent ionic conductivity, when the ionic liquid is added to the polymer electrolyte, the thermal stability can be improved without decreasing the ionic conductivity. Since the ionic liquid has high polarity and dissolves inorganic and organic metal compounds well and exists as a liquid even in a wide temperature range, it can be added to the composition for forming a polymer electrolyte through simple mixing and heating.
본 발명에 따른 이온성 액체는 양이온과 음이온을 포함할 수 있으며, 상기 이온성 액체의 양이온으로는 헤테로 고리 화합물의 양이온이 바람직하며, 헤테로 고리 화합물의 헤테로 원자는 N, O, S, 및 이들의 조합으로 이루어진 군에서 선택될 수 있다. 이러한 헤테로 고리 화합물의 양이온으로는 피리디늄(pyridinium), 피리다지늄(pyridazinium), 피리미디늄(pyrimidinium), 피라지늄(pyrazinium), 피라졸륨(pyrazolium), 티아졸륨(thiazolium), 옥사졸륨(oxazolium), 트리아졸륨(triazolium), 피롤리디늄(pyrrolidinium), 피페리디늄(piperidinium), 이미다졸륨(imidazolium) 및 이들의 조합으로 이루어진 군에서 선택되는 화합물의 양이온을 바람직하게 사용할 수 있다.The ionic liquid according to the present invention may include a cation and an anion. The cation of the ionic liquid is preferably a cation of a heterocyclic compound, and the hetero atom of the heterocyclic compound is N, O, S, ≪ / RTI > and combinations thereof. Examples of the cation of such a heterocyclic compound include pyridinium, pyridazinium, pyrimidinium, pyrazinium, pyrazolium, thiazolium, oxazolium ( oxazolium, triazolium, pyrrolidinium, piperidinium, imidazolium, and combinations thereof may be preferably used as the cation of the compound selected from the group consisting of oxazolium, triazolium, pyrrolidinium, piperidinium, imidazolium and combinations thereof.
본 발명에 따른 이온성 액체는 양이온과 음이온 간의 조합으로 형성될 수 있으며, 상기 이온성 액체의 음이온으로는 비스(퍼플루오로에틸설포닐)이미드, 비스(트리플루오로메틸설포닐)이미드, 비스(플루오로설포닐)이미드, 트리스(트리플루오로메틸설포닐메타이드), 트리플루오로메탄설폰이미드, 트리플루오로메틸설폰이미드, 트리플루오로메틸설포네이트, 트리스(펜타플루오로에틸)트리플루오로 포스페이트, 비스(트리플루오로메틸설포닐)이미드, 테트라플루오로보레이트, 헥사플루오로포스페이트 및 이들의 조합으로 이루어진 군에서 선택되는 화합물의 음이온을 바람직하게 사용할 수 있다. The ionic liquid according to the present invention may be formed of a combination of a cation and an anion, and examples of the anion of the ionic liquid include bis (perfluoroethylsulfonyl) imide, bis (trifluoromethylsulfonyl) imide , Bis (fluorosulfonyl) imide, tris (trifluoromethylsulfonylmethide), trifluoromethanesulfonimide, trifluoromethylsulfonimide, trifluoromethylsulfonate, tris (pentafluoro (Trifluoromethylsulfonyl) imide, tetrafluoroborate, hexafluorophosphate, and combinations thereof may be preferably used as the anion of the compound selected from the group consisting of bis (trifluoromethyl) trifluoroacetate, bis (trifluoromethylsulfonyl) imide, tetrafluoroborate, hexafluorophosphate and combinations thereof.
제2 고분자 전해질층(150)에서 리튬 이온전도성 고분자 100 중량부에 대해 이온성액체 20 내지 50 중량부 범위 내에서 선택하여 제조할 수 있다. 상기 이온성 액체의 함량이 20 중량부 미만인 경우에는 스웰링 개선, 이온 전도도 향상의 효과가 나타나지 않으며, 이온성 액체가 50 중량부를 초과하는 경우에는 음극의 파괴와 이온 전도도의 감소 현상이 발생한다. 바람직하게는 이온성 액체을 35 내지 45 중량부로 하면 저전압 영역의 음극에서 전해질의 환원, 분해 안정성과 이온전도도를 현저히 높일 수 있다.The second polymer electrolyte layer 150 may be manufactured by selecting the range of 20 to 50 parts by weight of the ionic liquid relative to 100 parts by weight of the lithium ion conductive polymer. When the content of the ionic liquid is less than 20 parts by weight, the effect of improving the swelling and the ion conductivity is not exhibited. When the ionic liquid is more than 50 parts by weight, the breakdown of the negative electrode and the decrease of the ionic conductivity occur. When the ionic liquid is used in an amount of 35 to 45 parts by weight, the reduction, decomposition stability and ionic conductivity of the electrolyte can be remarkably increased in the negative electrode in the low voltage region.
이에 제2고분자 전해질층은 이온 전도도가 1 x 10-6 S/cm 내지 1 x 10-4 S/cm 일 수 있다.The second polymer electrolyte layer may have an ionic conductivity of 1 x 10 -6 S / cm to 1 x 10 -4 S / cm.
제2 고분자 전해질층(150)의 리튬 이온전도성 고분자는 제1 고분자 전해질층(130)의 그것과 동일하거나 다른 재질의 것을 사용할 수 있으며, 바람직하게는 공정상의 편의성 등을 고려할 때 동일한 것을 사용한다. The lithium ion conductive polymer of the second polymer electrolyte layer 150 may be the same as or different from that of the first polymer electrolyte layer 130, and preferably the same one is used in view of process convenience.
본 발명에 따른 제1 고분자 전해질층(130) 및 제2 고분자 전해질층(150)에 공통적으로 적용되는 리튬염은 리튬 이온으로 해리되어 제1 고분자 전해질층(130) 및 제2 고분자 전해질층(150) 내부에 침투하여 자유롭게 이동할 수 있다. 이때 리튬 이온의 공급원으로서 기본적인 리튬 전지의 작동을 가능하게 하며, 이러한 리튬염으로는 리튬 전지에서 통상적으로 사용되는 것이라면 모두 다 사용 가능하나, 바람직하게는 LiCl, LiBr, LiI, LiClO4, LiBF4, LiB10Cl10, LiPF6, LiCF3SO3, LiCF3CO2, LiAsF6, LiSbF6, LiAlCl4, CH3SO3Li, CF3SO3Li, LiSCN, LiC(CF3SO2)3, (CF3SO2)2NLi, (CF3SO2)2NLi, (FSO2)2NLi, 클로로 보란 리튬, 저급 지방족 카르본산 리튬, 4-페닐 붕산 리튬, 이미드 및 이들의 조합으로부터 선택된 1종을 포함할 수 있고, 보다 바람직하게는 (CF3SO2)2NLi 로 표시되는 LiTFSI(Lithium bis(trifluoromethanesulfonyl)imide)를 사용할 수 있다.The lithium salt commonly applied to the first polymer electrolyte layer 130 and the second polymer electrolyte layer 150 according to the present invention is dissociated into lithium ions to form the first polymer electrolyte layer 130 and the second polymer electrolyte layer 150 ) To move freely. In this case, a basic lithium battery can be operated as a supply source of lithium ions. The lithium salt can be any LiCl, LiBr, LiI, LiClO 4 , LiBF 4 , LiB 10 Cl 10, LiPF 6, LiCF 3 SO 3, LiCF 3 CO 2, LiAsF 6, LiSbF 6, LiAlCl 4, CH 3 SO 3 Li, CF 3 SO 3 Li, LiSCN, LiC (CF 3 SO 2) 3, (CF 3 SO 2 ) 2 NLi, (CF 3 SO 2 ) 2 NLi, (FSO 2 ) 2 NLi, chloroborane lithium, lithium lower aliphatic carboxylate, lithium 4-phenylborate, And more preferably LiTFSI (lithium bis (trifluoromethanesulfonyl) imide) represented by (CF 3 SO 2 ) 2 NLi.
제2 고분자 전해질층(150)에서 리튬 이온전도성 고분자 100 중량부에 대해 리튬염 30 내지 40 중량부 범위 내에서 선택하여 제조한다.In the second polymer electrolyte layer 150, 30 to 40 parts by weight of the lithium salt is selected for 100 parts by weight of the lithium ion conductive polymer.
본 발명에 따른 제1 고분자 전해질층(130) 및 제2 고분자 전해질층(150) 중 적어도 어느 하나는 고분자 고체 전해질 분야에서 통상적으로 사용하는 첨가제를 포함할 수 있다. 일례로, 상기 첨가제는 무기 충진제, 유기 충진제 및 고분자 충진제로 이루어진 군에서 선택된 1종 이상일 수 있고 바람직하게는 무기 충진제일 수 있다.At least one of the first polymer electrolyte layer 130 and the second polymer electrolyte layer 150 according to the present invention may include an additive conventionally used in the polymer solid electrolyte field. For example, the additive may be at least one selected from the group consisting of an inorganic filler, an organic filler, and a polymer filler, and may preferably be an inorganic filler.
무기 충진제의 경우 전해질 내에서 전지 내/외부의 충격 및 눌림에 의한 전기적 단락을 방지하고, 상기 리튬 이온 전도성 고분자들과 집합체를 형성하여 고온에서 열수축 특성을 개선하기 위한 것이다. 이때 사용되는 무기 충진제는 화학적 변화를 유발하지 않는 기능을 하며, 그 소재가 특별히 제한되는 것은 아니고, TiO2, BaTiO3, Li2O, LiF, LiOH, Li3N, BaO, Na2O, MgO, Li2CO3, LiAlO2, SiO2, Al2O3, PTFE 및 이들의 혼합물로 이루어진 군에서 선택된 적어도 1종 이상이 사용될 수 있다.In the case of an inorganic filler, it is intended to prevent electrical short-circuiting due to impact and pressing in and out of the battery in the electrolyte, and to form an aggregate with the lithium ion conductive polymer to improve heat shrinkage characteristics at high temperature. The inorganic filler used herein does not cause any chemical change. The material of the inorganic filler is not particularly limited, and the material of the inorganic filler is TiO 2 , BaTiO 3 , Li 2 O, LiF, LiOH, Li 3 N, BaO, Na 2 O, MgO , Li 2 CO 3 , LiAlO 2 , SiO 2 , Al 2 O 3 , PTFE, and mixtures thereof.
무기 충진제의 함량은 제1 고분자 전해질층(130) 및 제2 고분자 전해질층(150)에서 각각 5중량% 내지 10중량%인 것이 바람직하다. 무기 충진제의 입자의 크기는 0.01㎛ ~ 0.8㎛ 크기의 입자가 바람직하다. 상기 무기 충진제의 경우 이온이 전달되는 경로를 충분히 확보할 수 있도록, 전해질 층에서 리튬이온의 이동 용이성을 좋게 하기 위해 다공성을 가지는 충진제가 바람직하다. The content of the inorganic filler is preferably 5 wt% to 10 wt% in each of the first polymer electrolyte layer 130 and the second polymer electrolyte layer 150. The particle size of the inorganic filler is preferably 0.01 to 0.8 mu m in size. In the case of the above-mentioned inorganic filler, a filler having porosity is preferable in order to improve the ease of movement of lithium ions in the electrolyte layer so as to sufficiently secure a path through which ions are transferred.
고분자 Polymer 전해질층의Of the electrolyte layer 두께 thickness
전술한 바의 제1 고분자 전해질층(130) 및 제2 고분자 전해질층(150)은 전해질로서의 기능을 고려하여 그 두께에 대한 한정이 필요하다.The thickness of the first polymer electrolyte layer 130 and the second polymer electrolyte layer 150 described above needs to be limited in consideration of the function of the electrolyte.
제1 고분자 전해질층(130) 및 제2 고분자 전해질층(150)을 포함하는 최종 고분자 전해질층(190)의 두께는 50㎛ 내지 250㎛일 수 있다. 상기 250㎛를 초과하는 경우 전해질층 내의 저항이 증가하여 방전용량의 장점을 잃을 수 있고, 상기 50㎛ 미만인 경우에는 전해질의 기계적 물성 지지 역할 한계의 문제가 발생할 수 있다. 이때 원하는 전압의 범위에 따라 각 고분자 전해질 층의 두께를 달리할 수 있고, 제1 고분자 전해질층(130)의 두께는 25㎛ 내지 225㎛일 수 있으며, 제2 고분자 전해질층(150)의 두께는 25㎛ 내지 225㎛일 수 있다.The thickness of the final polymer electrolyte layer 190 including the first polymer electrolyte layer 130 and the second polymer electrolyte layer 150 may be 50 탆 to 250 탆. If the thickness is more than 250 탆, the resistance in the electrolyte layer may increase and the advantage of the discharge capacity may be lost. If the thickness is less than 50 탆, the limitation of the mechanical property of the electrolyte may be a problem. In this case, the thickness of each polymer electrolyte layer may be varied according to a desired voltage range, the thickness of the first polymer electrolyte layer 130 may be 25 to 225 μm, and the thickness of the second polymer electrolyte layer 150 may be Lt; / RTI > to < RTI ID =
상기 제1 고분자 전해질층(130) 및 제2 고분자 전해질층(150)은 그 두께비가 1:9 내지 9:1 일 수 있다. 본 발명은 지방족 디니트릴 화합물을 포함하는 4.0V 이상의 고전압 영역대의 양극과 1.5V 이하의 저전압 영역대의 음극에서 안정적으로 성능을 나타내는 전고체 전지용 다층 구조 전해질이기 때문에, 원하는 전압의 범위에 따라 제1 고분자 전해질층(130)과 제2 고분자 전해질층(150)의 두께를 달리하여 적용할 수 있는 장점이 있다.The thickness of the first polymer electrolyte layer 130 and the second polymer electrolyte layer 150 may be 1: 9 to 9: 1. Since the present invention is a multilayer structure electrolyte for an all solid-state battery which exhibits a stable performance in a cathode of a high voltage region of 4.0V or higher and an anode of a low voltage region of 1.5V or lower including an aliphatic dinitrile compound, The thickness of the electrolyte layer 130 and the thickness of the second polymer electrolyte layer 150 can be different from each other.
지방족 디니트릴 화합물을 함유한 고분자 전해질의 경우, 상온 이온전도도가 10-4 S/cm 이상으로 높고, 4V 이상의 고전압 양극에서도 안정적으로 작동하지만 저 전압 안정성은 취약하다는 단점이 있어서, Li metal 및 흑연 음극에는 적용이 어렵고 작동 전압이 1.5V 대로 높은 리튬 타이타네이트 (LTO) 음극에만 제한적으로 사용할 수 있다. 한편, 폴리에틸렌옥사이드(PEO) 기반의 고분자 전해질은 저전압 안정성은 양호하여 리튬 음극 및 흑연 음극에서 작동 가능하지만, 반대로 고전압 안정성이 취약하여 4V 이상의 고전압 양극에는 적용하기 어렵다. 따라서 다층구조의 전해질의 경우 양극과 음극에서의 전압 차이에도 불구하고 안정적으로 적용 가능한 특징을 보인다.The polymer electrolyte containing an aliphatic dinitrile compound has a high ionic conductivity at room temperature of 10 -4 S / cm or higher and stably operates at a high voltage anode of 4 V or more, but has a disadvantage of low voltage stability, (LTO) cathode, which is difficult to apply and has a high operating voltage of 1.5V. On the other hand, polyethylene oxide (PEO) -based polymer electrolytes can operate on lithium and graphite cathodes with good low-voltage stability, but on the contrary, they are difficult to apply to high-voltage cathodes of 4V or higher because of their low voltage stability. Therefore, the electrolyte of the multi - layer structure can be applied stably despite the voltage difference between the anode and the cathode.
다층 구조의 고분자 전해질 제조방법Method for manufacturing polymer electrolyte of multi-layer structure
본 발명에 따른 다층 구조의 고분자 전해질의 제조는 다층 구조의 필름을 형성할 수 있는 방법이면 그 어떤 방법이라도 가능하다. The multi-layered polymer electrolyte according to the present invention can be produced by any method capable of forming a multi-layered film.
먼저, 상기 화학식 1을 만족하는 지방족 디니트릴 화합물, 리튬염 및 리튬 이온전도성 고분자를 포함하는 제1 고분자 전해질층(130)을 위한 제1 코팅액을 제조한다. 이때 용매는 아세토나이트릴, 프로피오나이크릴, 메톡시프로피오나이트릴 또는 글루타로나이트릴 등이 사용될 수 있고, 바람직하게는 아세토나이트릴이 사용될 수 있다. 또한, 점도가 확보되고 리튬염이 용매가 없이 해리가 가능하면 용매를 배제하는 것도 가능하다.First, a first coating solution for a first polymer electrolyte layer 130 including an aliphatic dinitrile compound satisfying Formula 1, a lithium salt, and a lithium ion conductive polymer is prepared. The solvent may be acetonitrile, propioniacryl, methoxypropionitrile or glutaronitrile, and acetonitrile may be preferably used. It is also possible to exclude the solvent when the viscosity is secured and the lithium salt can dissociate without a solvent.
코팅액의 점도는 25℃에서 점도가 100 cp 이하이며, 이는 코팅 장치, 코팅 방법 등에 따라 달라질 수 있다. 또한 코팅액의 농도, 또는 코팅 횟수 등을 조절하여 최종적으로 코팅되는 코팅 두께를 조절할 수 있다.The viscosity of the coating liquid at 25 ° C is 100 cp or less, which may vary depending on the coating apparatus, coating method and the like. Also, the thickness of the coating to be finally coated can be adjusted by adjusting the concentration of the coating liquid, the number of coatings, and the like.
제1 코팅액의 혼합은 본 발명에서 특별히 한정하지 않으며, 공지의 혼합 방법을 사용할 수 있다. 예를 들면, 그라비아(gravure) 코팅, 다이(die) 코팅, 멀티 다이(multi-die) 코팅, 딥(dip) 코팅 및 콤마(comma) 코팅 또는 이들의 혼합 방식 등 다양하게 이용될 수 있으며, 바람직하게는 균일한 코팅면을 얻기 위하여 딥 코팅 또는 그라비아 코팅을 이용한다.The mixing of the first coating liquid is not particularly limited in the present invention, and a known mixing method can be used. For example, various methods such as gravure coating, die coating, multi-die coating, dip coating and comma coating or a combination thereof can be used, A dip coating or a gravure coating is used to obtain a uniform coating surface.
다음으로, 상기 제1 코팅액을 기판에 코팅 후 건조하여 도막을 제조한다.Next, the first coating liquid is coated on a substrate and dried to produce a coated film.
상기 기판은 특별히 한정되지 않고 사용할 수 있다. 예를 들어, 상기 기판은 석영 또는 유리와 같은 투명 무기 기판이거나, 폴리에틸렌테레프탈레이트(PET), 폴리에틸렌나프탈레이트(PEN), 폴리카보네이트(PC), 폴리스티렌(PS), 폴리프로필렌(PP), 폴리이미드(PI), 폴리에틸렌설포네이트(PES), 폴리옥시메틸렌(POM), 폴리에테르에테르케톤(PEEK), 폴리에테르설폰(PES) 및 폴리에테르이미드(PEI)로 이루어진 군에서 선택되는 1종의 투명 플라스틱 기판을 사용할 수 있다.The substrate is not particularly limited and can be used. For example, the substrate may be a transparent inorganic substrate such as quartz or glass, or a transparent inorganic substrate such as polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polycarbonate (PC), polystyrene (PS), polypropylene A transparent plastic selected from the group consisting of polyethersulfone (PI), polyethylene sulfonate (PES), polyoxymethylene (POM), polyetheretherketone (PEEK), polyethersulfone (PES) and polyetherimide A substrate can be used.
상기 기판에 제1 코팅액을 코팅한 후, 상온에서 24시간 건조 후, 40℃ 진공에서 건조하여 필름을 제작한다. The first coating liquid is coated on the substrate, dried at room temperature for 24 hours, and dried at 40 DEG C under vacuum to prepare a film.
건조 공정은, 상기 기판에 코팅된 코팅액을 건조하기 위하여 코팅액 내의 용매 및 수분을 제거하는 과정으로, 사용하는 용매에 따라 달라질 수 있다. 건조 방법으로는, 예를 들어 온풍, 열풍, 저습풍에 의한 건조, 진공 건조, (원)적외선이나 전자선 등의 조사에 의한 건조법을 들 수 있다. 건조 시간에 대해서는 특별히 한정되지 않지만, 통상적으로 30초 내지 24시간의 범위에서 행해진다. 상기 건조 공정 이후에는, 실온까지 서냉(Slow cooling)하는 냉각 과정을 더 포함할 수 있다.The drying process is a process for removing the solvent and moisture in the coating liquid to dry the coating liquid coated on the substrate, and may be varied depending on the solvent used. Examples of the drying method include a drying method by hot air, hot air, low-humidity air, vacuum drying, and irradiation with (circle) infrared rays or electron beams. The drying time is not particularly limited, but is usually in the range of 30 seconds to 24 hours. The drying step may further include a cooling step of slow cooling to room temperature.
또한, 용매를 포함하지 않는 경우 광경화 반응 형태로 자외선을 이용하여 필름을 제작할 수 있다.In addition, when a solvent is not contained, a film can be produced using ultraviolet rays in the form of a photo-curing reaction.
광경화 반응에서는 광개시제를 사용할 수 있는데, 자외선과 같은 광에 의해 라디칼을 형성할 수 있는 화합물이면 그 구성의 한정이 없이 사용될 수 있다. 상기 광중합 개시제로는 예를 들어, 2-하이드록시-2-메틸-1-페닐프로판-1-온(HMPP), 벤조인 에테르(benzoin ether), 디알킬아세토페논(dialkyl acetophenone), 하이드록실 알킬케톤(hydroxyl alkylketone), 페닐글리옥실레이트(phenyl glyoxylate), 벤질디메틸케탈(Benzyl Dimethyl Ketal), 아실포스핀(acyl phosphine) 및 알파-아미노케톤(α-aminoketone)으로 이루어진 군에서 선택되는 하나 이상을 사용할 수 있다. 한편, 아실포스핀의 구체예로, 상용하는 lucirin TPO, 즉, 2,4,6-트리메틸-벤조일-트리메틸 포스핀 옥사이드 (2,4,6-trimethyl-benzoyl-trimethyl phosphine oxide)를 사용할 수 있고, 바람직하게는 2-하이드록시2-메틸-1-페닐-프로판-1-온 (HMPP)를 사용할 수 있다.In the photo-curing reaction, a photoinitiator can be used. Any compound capable of forming a radical by light such as ultraviolet rays can be used without limitation of its constitution. Examples of the photopolymerization initiator include 2-hydroxy-2-methyl-1-phenylpropan-1-one (HMPP), benzoin ether, dialkyl acetophenone, At least one member selected from the group consisting of hydroxyl alkylketone, phenyl glyoxylate, benzyl dimethyl ketal, acyl phosphine and alpha-aminoketone, Can be used. On the other hand, as a specific example of the acylphosphine, a commonly used lucirin TPO, i.e., 2,4,6-trimethyl-benzoyl-trimethyl phosphine oxide can be used , Preferably 2-hydroxy-2-methyl-1-phenyl-propan-1-one (HMPP).
다음으로, 이온성 액체, 리튬염 및 리튬 이온전도성 고분자를 포함하고 용매로서 아세토나이트릴을 사용하여 제2 고분자 전해질층을 위한 제2 코팅액을 제조한다. 테프론 필름에 제2 코팅액을 코팅한 후, 상온에서 24시간 건조 후 40℃ 진공에서 건조하여 필름을 제작한다.Next, a second coating liquid for the second polymer electrolyte layer is prepared by using an ionic liquid, a lithium salt, and a lithium ion conductive polymer and using acetonitrile as a solvent. The Teflon film is coated with the second coating liquid, dried at room temperature for 24 hours, and dried at 40 DEG C under vacuum to prepare a film.
다음으로, 상기 제1 고분자 전해질층(130)과 제2 고분자 전해질층(150)을 합지하여 본 발명의 고분자 전해질(190)을 제조한다. 합지방법으로 제1 고분자 전해질층(130)과 제2 고분자 전해질층(150)을 밀착시켜 롤라미네이션 압착공정으로 일체화시킨다. Next, the first polymer electrolyte layer 130 and the second polymer electrolyte layer 150 are joined together to produce the polymer electrolyte 190 of the present invention. The first polymer electrolyte layer 130 and the second polymer electrolyte layer 150 are brought into close contact with each other by a lamination method and integrated by a roll lamination pressing process.
상기 압착은 냉압(cold-press) 또는 열압(hot-press)에 의해 수행되는 것일 수 있다. 특히, 상기의 냉압은 특별한 열처리가 요구되지 않는다는 점에서, 공정상의 장점이 있다. 구체적으로, 상기 압착은 열압에 의한 대한민국 공개특허 제10-2016-0013631호의 것일 수 있는데, 이는 이온 전도도와 입자 간 접촉면적의 향상에 영향을 미칠 수 있는 것이므로(J. Am. Ceram . Soc. 94 [6] 1779-1783 (2011) 참조), 방전 용량(rate capability)의 측면에서 성능이 향상된 다층구조 전해질을 제조할 수 있다.The pressing may be performed by cold-pressing or hot-pressing. In particular, the above-mentioned refrigeration pressure has a process advantage in that no special heat treatment is required. Specifically, the pressing may be that of Korean Patent Laid-Open Publication No. 10-2016-0013631 due to thermal pressure, which can affect the ion conductivity and the improvement of the contact area between particles ( J. Am. Ceram . Soc . 94 [6] 1779-1783 (2011)), it is possible to manufacture a multi-layered electrolyte having improved performance in terms of rate capability.
또한, 상기 압착은 50 내지 1000 MPa의 압력으로 수행되는 것일 수 있다. 상기 50 MPa 미만인 경우에는 제1 고분자 전해질층(130)과 제2 고분자 전해질층(150)간의 다층 구조의 형성이 이뤄질 수 없는 문제가 발생할 수 있어, 상기 범위로 한정한다.Further, the pressing may be performed at a pressure of 50 to 1000 MPa. If it is less than 50 MPa, a problem may arise that a multi-layer structure can not be formed between the first polymer electrolyte layer 130 and the second polymer electrolyte layer 150, and thus the range is limited to the above range.
전고체All solids 전지 battery
본 발명에서 제시하는 전고체 전지(100, 200)는 상기 제시한 바와 같이 고체 전해질의 구성을 한정하고, 이를 구성하는 다른 요소, 즉 양극(110, 210) 및 음극(170, 250)은 본 발명에 특별히 한정하지 않으며 하기 설명을 따른다.As described above, the entire solid- state batteries 100 and 200 according to the present invention define the structure of the solid electrolyte, and the other elements constituting the solid electrolytes are the anode 110 and anode 210 and the cathode 170 and 250, And the following description will be given.
전고체 전지(100, 200)의 음극(170, 250)은 리튬 금속을 단독으로 사용하거나 음극 집전체 상에 음극 활물질이 적층된 것을 사용한다.The cathodes 170 and 250 of the all solid state batteries 100 and 200 use lithium metal singly or the anode active material laminated on the anode current collector.
이때 음극 활물질은 리튬 금속, 리튬 합금, 리튬 금속 복합 산화물, 리튬 함유 티타늄 복합 산화물(LTO) 및 이들의 조합으로 이루어진 군에서 선택된 1종이 가능하다. 이때 리튬 합금은 리튬과 Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Ba, Ra, Al 및 Sn으로부터 선택되는 적어도 하나의 금속으로 이루어진 합금을 사용할 수 있다. 또한, 리튬 금속 복합 산화물은 리튬과 Si, Sn, Zn, Mg, Cd, Ce, Ni 및 Fe로 이루어진 군으로부터 선택된 어느 하나의 금속(Me) 산화물(MeOx)이고, 일례로 LixFe2O3(0<x≤1) 또는 LixWO2(0<x≤1)일 수 있다.At this time, the negative electrode active material may be selected from the group consisting of lithium metal, lithium alloy, lithium metal composite oxide, lithium-containing titanium composite oxide (LTO), and combinations thereof. The lithium alloy may be an alloy of lithium and at least one metal selected from Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Ba, Ra, Al and Sn. The lithium metal composite oxide is any one of metal (Me) oxides (MeO x ) selected from the group consisting of lithium and Si, Sn, Zn, Mg, Cd, Ce, Ni and Fe. For example, LixFe 2 O 3 0 < x? 1) or LixWO 2 (0 < x? 1).
여기에 더하여, 음극 활물질은 SnxMe1 - xMe'yOz (Me: Mn, Fe, Pb, Ge; Me': Al, B, P, Si, 주기율표의 1족, 2족, 3족 원소, 할로겐; 0<x≤1; 1≤y≤3; 1≤z≤8) 등의 금속 복합 산화물; SnO, SnO2, PbO, PbO2, Pb2O3, Pb3O4, Sb2O3, Sb2O4, Sb2O5, GeO, GeO22, Bi2O3, Bi2O4 및 Bi2O5 등의 산화물 등을 사용할 수 있고, 결정질 탄소, 비정질 탄소 또는 탄소 복합체와 같은 탄소계 음극 활물질이 단독으로 또는 2종 이상이 혼용되어 사용될 수 있다.In addition to this, the negative electrode active material is SnxMe 1 - x Me 'y O z (Me: Mn, Fe, Pb, Ge; Me': Al, B, P, Si, of the periodic table Group 1, Group 2, Group 3 element, Halogen; 0 <x? 1; 1? Y? 3; 1? Z? 8); SnO, SnO 2, PbO, PbO 2, Pb 2 O 3, Pb 3 O 4, Sb 2 O 3, Sb 2 O 4, Sb 2 O 5, GeO, GeO2 2, Bi 2 O 3, Bi 2 O 4 , and Bi 2 O 5 and the like, and carbonaceous anode active materials such as crystalline carbon, amorphous carbon or carbon composite may be used alone or in combination of two or more.
또한, 음극 집전체는 전고체 전지(100, 200)에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되지 않으며, 예를 들면 구리, 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 구리나 스테인리스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면 처리한 것, 알루미늄-카드뮴 합금 등이 사용될 수 있다. 또한, 상기 음극 집전체는 양극 집전체와 마찬가지로, 표면에 미세한 요철이 형성된 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태가 사용될 수 있다.The anode current collector is not particularly limited as long as it has electrical conductivity without causing any chemical change in the pre-solid state batteries 100 and 200, and examples thereof include copper, stainless steel, aluminum, nickel, titanium, The surface of the stainless steel may be surface treated with carbon, nickel, titanium, silver or the like, or an aluminum-cadmium alloy may be used. The negative electrode current collector may be formed in various forms such as a film, a sheet, a foil, a net, a porous body, a foam, and a nonwoven fabric having fine irregularities on its surface, as in the case of the positive electrode collector.
본 발명에 따른 전고체 전지의 양극은 특별히 한정하지 않으며, 공지의 전고체 전지에 사용되는 재질일 수 있다.The anode of the pre-solid battery according to the present invention is not particularly limited, and may be a material used in a known all-solid-state cell.
전극이 양극일 경우 양극 집전체이고, 음극일 경우에는 음극 집전체이다.A positive electrode current collector when the electrode is a positive electrode, and a negative electrode current collector when the electrode is a negative electrode.
양극 집전체는 당해 전지에 화학적 변화를 유발하지 않으면서 높은 도전성을 가지는 것이라면 특별히 제한되지 않으며, 예를 들면 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 또는 알루미늄이나 스테인리스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면 처리한 것 등이 사용될 수 있다. The positive electrode current collector is not particularly limited as long as it has high conductivity without causing a chemical change in the battery. For example, carbon, nickel , Titanium, silver, or the like may be used.
양극 활물질은 리튬 이차전지의 용도에 따라 달라질 수 있으며, LiNi0 .8- xCo 0.2AlxO2, LiCoxMnyO2, LiNixCoyO2, LiNixMnyO2, LiNixCoyMnzO2, LiCoO2, LiNiO2, LiMnO2, LiFePO4, LiCoPO4, LiMnPO4 및 Li4Ti5O12 등의 리튬 전이금속 산화물; Cu2Mo6S8, FeS, CoS 및 MiS 등의 칼코겐화물, 스칸듐, 루테늄, 티타늄, 바나듐, 몰리브덴, 크롬, 망간, 철, 코발트, 니켈, 구리, 아연 등의 산화물, 황화물 또는 할로겐화물이 사용될 수 있으며, 보다 구체적으로는, TiS2, ZrS2, RuO2, Co3O4, Mo6S8, V2O5 등이 사용될 수 있으나, 이에 한정되는 것은 아니다.The positive electrode active material may vary according to the application of the lithium secondary battery, LiNi 0 .8- x Co 0.2 AlxO 2, LiCo x Mn y O 2, LiNi x Co y O 2, LiNi x Mn y O 2, LiNi x Co y Lithium transition metal oxides such as Mn z O 2 , LiCoO 2 , LiNiO 2 , LiMnO 2 , LiFePO 4 , LiCoPO 4 , LiMnPO 4 and Li 4 Ti 5 O 12 ; Cu 2 Mo 6 S 8 , chalcogenides such as FeS, CoS and MiS, oxides, sulfides or halides of scandium, ruthenium, titanium, vanadium, molybdenum, chromium, manganese, iron, cobalt, nickel, And more specifically TiS 2 , ZrS 2 , RuO 2 , Co 3 O 4 , Mo 6 S 8 , V 2 O 5, and the like can be used, but the present invention is not limited thereto.
양극 활물질의 형상은 특별히 한정되지 않으며, 입자형, 예컨대 구형, 타원형, 직육면체형 등일 수 있다. 양극 활물질의 평균 입경은 1 내지 50 ㎛ 범위 내일 수 있으나, 이에만 한정되는 것은 아니다. 양극 활물질의 평균 입경은 예를 들어 주사형 전자현미경에 의하여 관찰되는 활물질의 입경을 측정하고, 이의 평균값을 계산함으로써 얻을 수 있다.The shape of the cathode active material is not particularly limited and may be a particle shape, for example, a spherical shape, an elliptical shape, a rectangular parallelepiped shape, or the like. The average particle diameter of the cathode active material may be within the range of 1 to 50 占 퐉, but is not limited thereto. The average particle diameter of the cathode active material can be obtained, for example, by measuring the particle size of the active material observed by a scanning electron microscope and calculating the average value thereof.
양극에 포함되는 바인더는 특별히 한정되지 않으며, 폴리비닐리덴 플루오라이드(PVDF) 및 폴리테트라플루오로 에틸렌(PTFE) 등의 불소 함유 바인더가 사용될 수 있다.The binder contained in the positive electrode is not particularly limited, and a fluorine-containing binder such as polyvinylidene fluoride (PVDF) and polytetrafluoroethylene (PTFE) may be used.
바인더의 함량은 양극 활물질을 고정할 수 있는 정도면 특별히 한정되지 않으며, 양극 전체에 대하여 0 내지 10 중량% 범위 내일 수 있다.The content of the binder is not particularly limited as long as it can fix the cathode active material, and may be in the range of 0 to 10 wt% with respect to the whole anode.
양극에는 추가로 도전재가 포함될 수 있다. 도전재는 양극의 도전성을 향상시킬 수 있으면 특별히 한정되지 않고, 니켈 분말, 산화 코발트, 산화 티탄, 카본 등을 예시할 수 있다. 카본으로는, 케첸 블랙, 아세틸렌 블랙, 퍼니스 블랙, 흑연, 탄소 섬유 및 플러렌으로 이루어진 군으로부터 선택된 어느 하나 또는 이들 중 1종 이상을 들 수 있다.The anode may further include a conductive material. The conductive material is not particularly limited as long as it can improve the conductivity of the anode, and examples thereof include nickel powder, cobalt oxide, titanium oxide, and carbon. Examples of the carbon include any one selected from the group consisting of Ketjen black, acetylene black, furnace black, graphite, carbon fiber and fullerene, or at least one of them.
이때 도전재의 함량은 도전재의 종류 등 기타 전지의 조건을 고려하여 선택될 수 있으며, 예컨대 양극 전체에 대하여 1 내지 10 중량% 범위 내일 수 있다At this time, the content of the conductive material may be selected in consideration of the conditions of other batteries such as the kind of the conductive material, and may be, for example, in the range of 1 to 10 wt%
전술한 바의 구성을 갖는 전고체 전지의 제조는 본 발명에서 특별히 한정하지 않으며, 공지의 방법을 통해 제조가 가능하다.  The production of all the solid batteries having the above-mentioned constitution is not particularly limited in the present invention, and can be produced by a known method.
일례로, 양극 및 음극 사이에 고체 전해질을 배치시킨 후 이를 압축 성형하여 셀을 조립한다. 또한 고분자 전해질의 제1고분자 전해질층이 양극과 접하도록 배치되도록 하여 제조할 수 있다.For example, a solid electrolyte is disposed between an anode and a cathode, and the cell is assembled by compression molding. And the first polymer electrolyte layer of the polymer electrolyte is disposed in contact with the anode.
상기 조립된 셀은 외장재 내에 설치한 후 가열 압축 등에 의해 봉지한다. 외장재로는 알루미늄, 스테인레스 등의 라미네이트 팩, 원통형이나 각형의 금속제 용기가 매우 적합하다.The assembled cell is installed in the casing and then sealed by heat compression or the like. Laminate packs made of aluminum, stainless steel or the like, and cylindrical or square metal containers are very suitable for the exterior material.
이하에서는 본 발명의 바람직한 실시예 및 첨부하는 도면을 참조하여 본 발명을 상세히 설명한다. 하지만, 본 발명은 하기 실시예에 의해 한정되는 것은 아니며, 본 발명의 기술 사상 범위 내에서 여러 가지 변형 또는 수정할 수 있음은 이 분야의 통상의 기술을 가진 자에게는 명백한 것이다.DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described in detail with reference to preferred embodiments and accompanying drawings. However, it should be understood that the present invention is not limited by the following examples, and that various modifications and changes may be made without departing from the scope of the present invention.
<실시예 1>&Lt; Example 1 >
제 1 고분자 전해질층의 제조를 위해 지방족 디니트릴 화합물로 숙시노니트릴과 LiTFSI를 8:13 질량비로 넣고 60℃에서 3시간 동안 가열하여 혼합하였다. 이후, 리튬 이온전도성 고분자로 ETPTA(Trimethylolpropane ethoxylate triacrylate)와 광개시제로 HMPP(2-hydroxy-2-methyl-1-phenylpropan-1-one)를 각각 21.5wt%, 0.5wt%를 추가로 첨가 후 혼합 용액을 제조하였다.For the preparation of the first polymer electrolyte layer, succinonitrile and LiTFSI were added as an aliphatic dinitrile compound at a mass ratio of 8:13, and the mixture was heated and mixed at 60 ° C for 3 hours. Then, 21.5 wt% and 0.5 wt% of 2-hydroxy-2-methyl-1-phenylpropan-1-one were added as a lithium ion conductive polymer and trimethylolpropane ethoxylate triacrylate (HTPP) .
상기 혼합 용액을 기판인 투명 폴리에틸렌테레프탈레이트(PET) 필름에 캐스팅 후 254~365nm 파장의 UV를 90초간 조사하여 제 1 고분자 전해질층 필름을 제작하였다. 제 1 고분자 전해질층 필름의 두께는 95㎛로 조절하였다.The mixed solution was cast on a transparent polyethylene terephthalate (PET) film as a substrate, and irradiated with ultraviolet light having a wavelength of 254 to 365 nm for 90 seconds to produce a first polymer electrolyte layer film. The thickness of the first polymer electrolyte layer film was adjusted to 95 탆.
제 2 고분자 전해질층의 제조를 위해 PEO(Polyethylene Oxide)와 PPC(Polypropylene Carbonate)를 각각 8:2질량비로 섞은 고분자 혼합물에 32.4wt%의 LiTFSI를 리튬염으로 섞은 후, 이온성 액체로 [EMIM][FSI] (1-Ethyl-3-methylimidazolium bis(fluorosulfonyl)imide)를 22.5wt%를 추가로 섞고 아세토나이트릴 10ml를 넣어 24시간 동안 교반하였다. To prepare the second polymer electrolyte layer, 32.4 wt% LiTFSI was mixed with a lithium salt in a polymer mixture of polyethylene oxide (PEO) and polypropylene carbonate (PPC) in an 8: 2 mass ratio, 22.5 wt% of [FSI] (1-ethyl-3-methylimidazolium bis (fluorosulfonyl) imide) was further added, and 10 ml of acetonitrile was added thereto and stirred for 24 hours.
테프론 필름에 혼합 용액을 캐스팅하여 상온에서 24시간 건조 후, 40℃ 진공에서 추가 건조하여 제 2 고분자 전해질층 필름을 제작하였다. 제 2 고분자 전해질층 필름의 두께는 94㎛로 조절하였다.The mixed solution was cast on the Teflon film, dried at room temperature for 24 hours, and further dried at 40 캜 under vacuum to prepare a second polymer electrolyte layer film. The thickness of the second polymer electrolyte layer film was adjusted to 94 탆.
제작된 제 1 고분자 전해질층 필름과 제 2 고분자 전해질층 필름을 롤라미네이션(roll lamination)하여 하나의 고분자 고체 전해질층 필름으로 하고, 그 필름 두께는 189㎛로 조절하였다. 제작된 하나의 고분자 고체 전해질의 이온전도도 및 전압 안정성을 측정하였다. The prepared first polymer electrolyte layer film and the second polymer electrolyte layer film were roll laminated to form a polymer solid electrolyte layer film, and the film thickness was adjusted to 189 탆. The ionic conductivity and voltage stability of one polymer solid electrolyte were measured.
<실시예 2>&Lt; Example 2 >
제 1 고분자 전해질층의 두께를 67㎛, 제 2 고분자 전해질층의 두께를 65㎛로 조절하여, 고분자 고체 전해질의 두께를 132㎛로 한 것을 제외하고는 실시예 1과 동일하게 실시하였다.Example 1 was repeated except that the thickness of the first polymer electrolyte layer was adjusted to 67 탆 and the thickness of the second polymer electrolyte layer to 65 탆 to set the thickness of the polymer solid electrolyte to 132 탆.
<비교예 1> &Lt; Comparative Example 1 &
숙시노니트릴과 LiTFSI를 8:13 질량비로 넣고 60℃에서 3시간 동안 가열하여 혼합하였다. 이 후, 리튬 이온전도성 고분자로 ETPTA(Trimethylolpropane ethoxylate triacrylate)와 광개시제로 HMPP(2-hydroxy-2-methyl-1-phenylpropan-1-one)를 각각 21.5wt%, 0.5wt%를 추가로 첨가 후 혼합 용액을 제조하였다.Succinonitrile and LiTFSI were mixed at 8: 13 mass ratio and heated at 60 占 폚 for 3 hours to be mixed. Then, 21.5 wt% and 0.5 wt% of 2-hydroxy-2-methyl-1-phenylpropan-1-one were added as a lithium ion conductive polymer and trimethylolpropane ethoxylate triacrylate (HTPP) Solution.
상기 혼합 용액을 기판인 투명 폴리에틸렌테레프탈레이트(PET) 필름에 캐스팅 후 254~365nm 파장의 UV를 90초간 조사하여 제 1 고분자 전해질층 필름을 제작하였다. 제 1 고분자 전해질층 필름의 두께는 182㎛로 조절하였다. 제작된 고분자 고체 전해질의 이온전도도 및 전압 안정성을 측정하였다. The mixed solution was cast on a transparent polyethylene terephthalate (PET) film as a substrate, and irradiated with ultraviolet light having a wavelength of 254 to 365 nm for 90 seconds to produce a first polymer electrolyte layer film. The thickness of the first polymer electrolyte layer film was adjusted to 182 탆. The ionic conductivity and voltage stability of the fabricated polymer solid electrolyte were measured.
<비교예 2> &Lt; Comparative Example 2 &
PEO(Polyethylene Oxide)와 PPC(Polypropylene Carbonate)를 각각 8:2질량비로 섞은 고분자 혼합물에 32.4wt%의 LiTFSI를 리튬염으로 섞은 후, [EMIM][FSI] 이온성 액체를 22.5wt%를 추가로 섞고 아세토나이트릴 10ml를 넣어 24시간 동안 교반하였다. 테프론 필름에 혼합 용액을 캐스팅하여 상온에서 24시간 건조 후, 40℃ 진공에서 추가 건조하여 필름을 제작하였고, 필름 두께는 195㎛로 조절하였다. 제작된 고분자 고체 전해질의 이온전도도 및 전압 안정성을 측정하였다.32.4 wt% of LiTFSI was mixed with a lithium salt in a polymer mixture of PEO (Polyethylene Oxide) and PPC (Polypropylene Carbonate) in an 8: 2 mass ratio, and then 22.5 wt% of [EMIM] [FSI] ionic liquid was added And 10 ml of acetonitrile was added thereto, followed by stirring for 24 hours. The mixed solution was cast on the Teflon film, dried at room temperature for 24 hours, and further dried at 40 ° C under vacuum to prepare a film. The film thickness was adjusted to 195 μm. The ionic conductivity and voltage stability of the fabricated polymer solid electrolyte were measured.
<이온전도도 측정>&Lt; Measurement of ion conductivity &
상기 실시예 1 내지 2 및 비교예 1 내지 2에서 제조된 고분자 고체 전해질의 이온전도도는 그 임피던스를 측정한 뒤 하기 수학식 1을 이용하여 구하였다. The ionic conductivity of the polymer solid electrolyte prepared in Examples 1 to 2 and Comparative Examples 1 and 2 was determined by using the following Equation 1 after measuring the impedance thereof.
측정을 위해 일정한 넓이와 두께를 가지는 상기 고분자 고체 전해질의 필름 샘플을 준비하였다. 판상의 샘플 양면에 이온 차단 전극 (ion blocking electrode)으로 전자 전도성이 우수한 서스(SUS) 기판을 접촉시킨 후 샘플 양면의 전극을 통하여 교류전압을 인가하였다. 이때, 인가되는 조건으로 측정 주파수 1.0 MHz~0.1 Hz의 진폭 범위로 설정하고 BioLogic社 VMP3를 이용하여 임피던스를 측정하였다. 측정된 임피던스 궤적의 반원이나 직선이 실수축과 만나는 교점 (Rb) 로부터 벌크 전해질의 저항을 구하고 샘플의 넓이와 두께로부터 고분자 고체 전해질막의 이온 전도도를 계산하였다.A film sample of the polymer solid electrolyte having a certain width and thickness was prepared for measurement. An SUS substrate having excellent electron conductivity was brought into contact with an ion blocking electrode on both sides of a plate-shaped sample, and an AC voltage was applied through the electrodes on both sides of the sample. At this time, the amplitude was set in the range of 1.0 MHz to 0.1 Hz under the applied conditions, and the impedance was measured using BioLogic VMP3. The resistance of the bulk electrolyte was obtained from the intersection point (R b ) where the semicircle or straight line of the measured impedance trajectory meets the real axis and the ionic conductivity of the polymer solid electrolyte membrane was calculated from the sample width and thickness.
[수학식 1] [Equation 1]
Figure PCTKR2018006146-appb-I000001
Figure PCTKR2018006146-appb-I000001
σ: 이온전도도σ: ion conductivity
Rb: 임피던스 궤적이 실수축과의 교점R b : Impedance trajectory intersects the real axis
A: 샘플의 넓이A: Width of sample
t: 샘플의 두께t: thickness of the sample
실시예 1의 다층 고분자 전해질 필름은 2.14±0.97 x 10-4 S/cm의 이온 전도도를 보였다.The multilayer polyelectrolyte film of Example 1 exhibited ion conductivity of 2.14 ± 0.97 × 10 -4 S / cm.
실시예 2의 다층 고분자 전해질 필름은 2.13±0.97 x 10-4 S/cm의 이온 전도도를 보였다.The multilayer polyelectrolyte film of Example 2 exhibited an ion conductivity of 2.13 ± 0.97 × 10 -4 S / cm.
비교예 1의 제1 고분자 전해질 필름은 1.77±0.26 x 10-4 S/cm 평균 이온 전도도를 보였다.The first polymer electrolyte film of Comparative Example 1 showed an average ionic conductivity of 1.77 + - 0.26 x 10 -4 S / cm.
비교예 2의 제2 고분자 전해질 필름은 4.01±0.95 x 10-6 S/cm 평균 이온 전도도를 보였다.The second polymer electrolyte film of Comparative Example 2 had an average ionic conductivity of 4.01 ± 0.95 × 10 -6 S / cm.
상기 이온전도도 측정 결과, 본 발명에 따른 실시예의 다층 고체 고분자 전해질이 비교예의 전해질에 비해 우수한 평균 이온전도도를 보임을 확인하였다.As a result of the measurement of the ionic conductivity, it was confirmed that the multi-layer solid polymer electrolyte of the example according to the present invention had an excellent average ion conductivity as compared with the electrolyte of the comparative example.
<전압안정성 측정><Measurement of voltage stability>
선형 주사 전압 전류법(LSV, Linear sweep voltammetry)을 이용하여 상기 실시예 1 내지 2 및 비교예 1 내지 2에서 제조된 고분자 고체 전해질의 전압안정성을 평가하였으며, BioLogic社 VMP3를 이용하였다. 상기 실시예와 비교예의 고분자 전해질의 한 면은 리튬 메탈 전극을 접촉시키고 다른 한면은 SUS 기판을 접촉시켜 코인셀 제작하였고, 주사 속도는 10mV/s로 하여 -1V ~ 6V의 범위에서 측정하였다.Voltage stability of the polymer solid electrolytes prepared in Examples 1 to 2 and Comparative Examples 1 and 2 was evaluated by using a linear sweep voltammetry (LSV), and BioLogic VMP3 was used. A coin cell was fabricated by contacting a lithium metal electrode on one side of the polymer electrolyte and a SUS substrate on the other side of the polymer electrolyte of Examples and Comparative Examples. The scanning speed was 10 mV / s, and the measurement was performed in the range of -1 V to 6 V.
도 4에서 도시된 바와 같이 두 필름을 다층형태로 제작한 고분자 전해질 필름은 0.5V~ 5V에서 전압에서 안정한 특성을 보였다. 반면 도 5에서 나타난 바와 같이 비교예 1의 전해질 층은 5V 이상에서는 안정하나 1.5V 이하의 저전압 영역에서는 불안정한 모습을 보였다. 또한 도 6에서 나타난 바와 같이 비교예 2의 경우는 1.5V 이하의 저 전압 영역에서는 안정하나 3.8V 이상에서 불안정한 모습을 보였다.As shown in FIG. 4, the polymer electrolyte membrane prepared in the form of a multilayer of two films showed stable characteristics at a voltage of 0.5 V to 5 V. On the other hand, as shown in FIG. 5, the electrolyte layer of Comparative Example 1 is stable at 5 V or more, but is unstable at a low voltage region of 1.5 V or less. Also, as shown in FIG. 6, in the case of Comparative Example 2, it was stable in a low voltage region of 1.5 V or less, but was unstable at 3.8 V or more.
[부호의 설명][Description of Symbols]
100, 200: 전고체 전지 110, 210: 양극100, 200: entire solid battery 110, 210: anode
190, 230: 고체 전해질 170, 250: 음극190, 230: solid electrolyte 170, 250: negative electrode
130: 제1 고분자 전해질층 130: first polymer electrolyte layer
150: 제2 고분자 전해질층150: second polymer electrolyte layer
본 발명에 따른 다층 구조의 고분자 전해질은 고전압 영역에서의 양극과 저전압 영역에서의 음극에서 안정적으로 사용 가능하고, 그것이 포함된 전고체 전지는 다양한 기술분야에서 고용량, 고출력 전지로서 응용 가능하다.The multi-layered polymer electrolyte according to the present invention can be stably used in an anode in a high voltage region and a cathode in a low voltage region, and the whole solid battery including the same can be applied as a high capacity, high output battery in various technical fields.

Claims (16)

  1. 하기 화학식 1로 표시되는 지방족 디니트릴 화합물, 리튬염 및 리튬 이온 전도성 고분자를 포함하는 제1 고분자 전해질층; 및A first polymer electrolyte layer comprising an aliphatic dinitrile compound represented by Formula 1, a lithium salt, and a lithium ion conductive polymer; And
    이온성 액체, 리튬염 및 리튬 이온 전도성 고분자를 포함하는 제2 고분자 전해질층;A second polymer electrolyte layer comprising an ionic liquid, a lithium salt, and a lithium ion conductive polymer;
    을 포함하는 전고체 전지용 다층 구조 고분자 전해질.A polymer electrolyte for a solid polymer electrolyte membrane.
    [화학식 1][Chemical Formula 1]
    N≡C-R-C≡NN≡C-R-C≡N
    (여기서, R은 (CH2)n이고 n=1 내지 6의 정수임)(Wherein, R is (CH 2) n is an integer of n = 1 to 6)
  2. 제1항에 있어서,The method according to claim 1,
    상기 지방족 디니트릴 화합물은 숙시노니트릴인 것을 특징으로 하는 전고체 전지용 다층 구조 고분자 전해질.Wherein the aliphatic dinitrile compound is succinonitrile. &Lt; RTI ID = 0.0 &gt; 11. &lt; / RTI &gt;
  3. 제1항에 있어서,The method according to claim 1,
    상기 이온성 액체는 양이온과 음이온을 포함하며,Wherein the ionic liquid comprises a cation and an anion,
    상기 양이온은 헤테로 고리 화합물의 양이온인 것을 특징으로 하는 전고체 전지용 다층 구조 고분자 전해질.Wherein the cation is a cation of a heterocyclic compound.
  4. 제3항에 있어서,The method of claim 3,
    상기 헤테로 고리 화합물의 양이온은 피리디늄(pyridinium), 피리다지늄(pyridazinium), 피리미디늄(pyrimidinium), 피라지늄(pyrazinium), 피라졸륨(pyrazolium), 티아졸륨(thiazolium), 옥사졸륨(oxazolium), 트리아졸륨(triazolium), 피롤리디늄(pyrrolidinium), 피페리디늄(piperidinium), 이미다졸륨(imidazolium) 및 이들의 조합으로 이루어진 군에서 선택되는 화합물의 양이온인 것인 전고체 전지용 다층 구조 고분자 전해질.The cation of the heterocyclic compound may be at least one selected from the group consisting of pyridinium, pyridazinium, pyrimidinium, pyrazinium, pyrazolium, thiazolium, oxazolium, ), Triazolium, pyrrolidinium, piperidinium, imidazolium, and combinations thereof. The multi-layered structural polymer for all-solid-state cells Electrolyte.
  5. 제3항에 있어서,The method of claim 3,
    상기 이온성 액체는 양이온과 음이온을 포함하며,Wherein the ionic liquid comprises a cation and an anion,
    상기 음이온은 비스(퍼플루오로에틸설포닐)이미드, 비스(트리플루오로메틸설포닐)이미드, 비스(플루오로설포닐)이미드, 트리스(트리플루오로메틸설포닐메타이드), 트리플루오로메탄설폰이미드, 트리플루오로메틸설폰이미드, 트리플루오로메틸설포네이트, 트리스(펜타플루오로에틸)트리플루오로 포스페이트, 비스(트리플루오로메틸설포닐)이미드, 테트라플루오로보레이트, 헥사플루오로포스페이트 및 이들의 조합으로 이루어진 군에서 선택되는 화합물의 음이온인 것인 전고체 전지용 다층 구조 고분자 전해질.The anion may be selected from the group consisting of bis (perfluoroethylsulfonyl) imide, bis (trifluoromethylsulfonyl) imide, bis (fluorosulfonyl) imide, tris (trifluoromethylsulfonylmethide) Fluoromethanesulfonimide, trifluoromethylsulfonimide, trifluoromethylsulfonate, tris (pentafluoroethyl) trifluorophosphate, bis (trifluoromethylsulfonyl) imide, tetrafluoroborate , Hexafluorophosphate, and combinations thereof. &Lt; RTI ID = 0.0 &gt; 11. &lt; / RTI &gt;
  6. 제1항에 있어서,The method according to claim 1,
    상기 제1고분자 전해질층은 리튬 이온 전도성 고분자 100 중량부에 대해 지방족 디니트릴 화합물 20 내지 50 중량부와 리튬염 30 내지 40 중량부를 포함하는 전고체 전지용 다층 구조 고분자 전해질.Wherein the first polymer electrolyte layer comprises 20 to 50 parts by weight of an aliphatic dinitrile compound and 30 to 40 parts by weight of a lithium salt based on 100 parts by weight of the lithium ion conductive polymer.
  7. 제1항에 있어서,The method according to claim 1,
    상기 제2고분자 전해질층은 리튬 이온 전도성 고분자 100 중량부에 대해 이온성 액체 20 내지 50 중량부와 리튬염 30 내지 40 중량부를 포함하는 전고체 전지용 다층 구조 고분자 전해질.Wherein the second polymer electrolyte layer comprises 20 to 50 parts by weight of an ionic liquid and 30 to 40 parts by weight of a lithium salt per 100 parts by weight of the lithium ion conductive polymer.
  8. 제1항에 있어서,The method according to claim 1,
    상기 리튬염은 LiCl, LiBr, LiI, LiClO4, LiBF4, LiB10Cl10, LiPF6, LiCF3SO3, LiCF3CO2, LiAsF6, LiSbF6, LiAlCl4, CH3SO3Li, CF3SO3Li, LiSCN, LiC(CF3SO2)3, (CF3SO2)2NLi, (FSO2)2NLi, 클로로 보란 리튬, 저급 지방족 카르본산 리튬, 4-페닐 리튬 보레이트 및 리튬 이미드로 이루어진 군에서 선택된 1종 이상인 전고체 전지용 다층 구조 고분자 전해질.The lithium salt is LiCl, LiBr, LiI, LiClO 4 , LiBF 4, LiB 10 Cl 10, LiPF 6, LiCF 3 SO 3, LiCF 3 CO 2, LiAsF 6, LiSbF 6, LiAlCl 4, CH 3 SO 3 Li, CF 3 SO 3 Li, LiSCN, LiC (CF 3 SO 2 ) 3 , (CF 3 SO 2 ) 2 NLi, (FSO 2 ) 2 NLi, chloroborane lithium, lower aliphatic carboxylate lithium, Layered polymer electrolyte for all-solid-state cells.
  9. 제1항에 있어서,The method according to claim 1,
    상기 리튬 이온 전도성 고분자는 폴리에틸렌글리콜디아크릴레이트, 트리메틸올프로판에톡실레이트트리아크릴레이트, 폴리프로필렌옥사이드, 폴리프로필렌카보네이트, 폴리아크릴로니트릴, 폴리비닐알코올, 폴리메틸메타크릴레이트, 폴리비닐클로라이드, 폴리비닐리덴플루오라이드, 폴리에스테르, 폴리아마이드, 폴리에틸렌, 폴리스타이렌, 및 폴리에틸렌글리콜로 이루어진 군에서 선택된 1종 이상인 전고체 전지용 다층 구조 고분자 전해질.The lithium ion conductive polymer may be at least one selected from the group consisting of polyethylene glycol diacrylate, trimethylolpropaneethoxylate triacrylate, polypropylene oxide, polypropylene carbonate, polyacrylonitrile, polyvinyl alcohol, polymethyl methacrylate, polyvinyl chloride, poly Wherein at least one polymer selected from the group consisting of vinylidene fluoride, polyester, polyamide, polyethylene, polystyrene, and polyethylene glycol is used.
  10. 제1항에 있어서,The method according to claim 1,
    상기 제1고분자 전해질층은 이온 전도도가 5 x 10-5 내지 5 x 10-4 S/cm 이고, 상기 제2고분자 전해질층은 이온 전도도가 1 x 10-6 내지 1 x 10-4 S/cm 인 전고체 전지용 다층 구조 고분자 전해질.Wherein the first polymer electrolyte layer has an ionic conductivity of 5 x 10 -5 to 5 x 10 -4 S / cm, and the second polymer electrolyte layer has an ionic conductivity of 1 x 10 -6 to 1 x 10 -4 S / cm A multi - layered polymer electrolyte for a solid electrolyte cell.
  11. 제1항에 있어서,The method according to claim 1,
    상기 제1고분자 전해질층 및 제2고분자 전해질층은 각각 두께가 25㎛ 내지 225㎛인 전고체 전지용 다층 구조 고분자 전해질.Wherein the first polymer electrolyte layer and the second polymer electrolyte layer each have a thickness of 25 mu m to 225 mu m.
  12. 제1항에 있어서,The method according to claim 1,
    상기 제1고분자 전해질층 및 제2고분자 전해질층은 1:9 내지 9:1의 두께비를 갖는 전고체 전지용 다층 구조 고분자 전해질.Wherein the first polymer electrolyte layer and the second polymer electrolyte layer have a thickness ratio of 1: 9 to 9: 1.
  13. 제1항에 있어서,The method according to claim 1,
    상기 다층 고분자 전해질은 두께가 50㎛ 내지 250㎛ 인 전고체 전지용 다층 구조 고분자 전해질.Wherein the multi-layered polymer electrolyte has a thickness of 50 to 250 占 퐉.
  14. 제1항에 있어서,The method according to claim 1,
    상기 제1고분자 전해질층 및 제2고분자 전해질층 중 적어도 하나는 무기 충진제, 유기 충진제 및 고분자 충진제로 이루어진 군에서 선택된 1종 이상을 더 포함하는 전고체 전지용 다층 구조 고분자 전해질.Wherein at least one of the first polymer electrolyte layer and the second polymer electrolyte layer further comprises at least one selected from the group consisting of an inorganic filler, an organic filler, and a polymer filler.
  15. 양극, 음극 및 이들 사이에 개재되는 고분자 전해질을 포함하는 전고체 전지에 있어서,In an all solid-state battery comprising a positive electrode, a negative electrode and a polymer electrolyte interposed therebetween,
    상기 고분자 전해질은 제1항 내지 제14항 중 어느 한 항의 고분자 전해질인 전고체 전지.Wherein the polymer electrolyte is the polymer electrolyte according to any one of claims 1 to 14.
  16. 제15항에 있어서,16. The method of claim 15,
    상기 전고체 전지는 상기 고분자 전해질의 제1고분자 전해질층이 양극과 접하도록 배치되는 전고체 전지.Wherein the pre-solid battery is disposed such that the first polymer electrolyte layer of the polymer electrolyte is in contact with the anode.
PCT/KR2018/006146 2017-06-20 2018-05-30 Multilayer polymer solid electrolyte and all-solid-state battery comprising same WO2018236064A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
PL18811698T PL3457486T3 (en) 2017-06-20 2018-05-30 Multilayer polymer solid electrolyte and all-solid-state battery comprising same
EP18811698.2A EP3457486B1 (en) 2017-06-20 2018-05-30 Multilayer polymer solid electrolyte and all-solid-state battery comprising same
US16/305,163 US10903520B2 (en) 2017-06-20 2018-05-30 Multi-layer structure polymer solid electrolylte and all solid-state battery comprising the same
CN202310374695.9A CN116315072A (en) 2017-06-20 2018-05-30 Polymer electrolyte having multi-layered structure and all-solid-state battery comprising the same
JP2018563098A JP6872096B2 (en) 2017-06-20 2018-05-30 Multi-layer structure polymer solid electrolyte and all-solid-state battery containing it
CN201880003128.XA CN109565078A (en) 2017-06-20 2018-05-30 The copolymer solid electrolyte of multilayered structure and all-solid-state battery comprising it

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2017-0077792 2017-06-20
KR20170077792 2017-06-20
KR10-2018-0059591 2018-05-25
KR1020180059591A KR102093970B1 (en) 2017-06-20 2018-05-25 Multi-layer typed-polymer solid electrolyte and all solid battery comprising the same

Publications (1)

Publication Number Publication Date
WO2018236064A1 true WO2018236064A1 (en) 2018-12-27

Family

ID=64737258

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/006146 WO2018236064A1 (en) 2017-06-20 2018-05-30 Multilayer polymer solid electrolyte and all-solid-state battery comprising same

Country Status (1)

Country Link
WO (1) WO2018236064A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110729513A (en) * 2019-10-23 2020-01-24 苏州清陶新能源科技有限公司 Composite solid electrolyte, preparation method thereof and all-solid-state lithium ion battery comprising composite solid electrolyte
CN111224152A (en) * 2020-01-15 2020-06-02 中山大学 Method for batch preparation of all-solid-state polymer electrolyte membrane by using double-roller plasticator
CN114024025A (en) * 2021-10-29 2022-02-08 华中科技大学 Copolymerization solid electrolyte, preparation method thereof and solid polymer lithium battery
CN114335711A (en) * 2021-12-29 2022-04-12 中南大学 Preparation method and application of PVDF-HFP-PEO double-layer solid polymer electrolyte doped with MOF in situ

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030005254A (en) 2002-09-30 2003-01-17 한국과학기술연구원 A multi-layered polymer electrolyte and lithium secondary battery comprising the same
JP2008507087A (en) * 2004-07-14 2008-03-06 アーケマ・インコーポレイテッド Multi-layer polymer electrolyte membrane
KR20140089899A (en) * 2013-01-08 2014-07-16 전남대학교산학협력단 Polymer electrolyte composite membrane having excellent thermal-stability and interfacial-stability, and energy storage system comprising the same
JP2014523068A (en) 2011-06-30 2014-09-08 エルジー ケム. エルティーディ. Novel polymer electrolyte and lithium secondary battery containing the same
US20140255772A1 (en) * 2011-10-20 2014-09-11 The University Of Akron Stretchable, solvent free, completely amorphous solid electrolyte films
CN104681865A (en) * 2015-01-23 2015-06-03 清华大学深圳研究生院 All-solid state polymer electrolyte and application of electrolyte in battery
KR20160013631A (en) 2014-07-28 2016-02-05 울산과학기술원 산학협력단 Solid electrolytes for all solid state rechargeable lithium battery, methods for manufacturing the same, and all solid state rechargeable lithium battery including the same
KR20170077792A (en) 2015-12-28 2017-07-06 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
KR20180059591A (en) 2016-11-25 2018-06-05 현대자동차주식회사 Method and system for controlling motors

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030005254A (en) 2002-09-30 2003-01-17 한국과학기술연구원 A multi-layered polymer electrolyte and lithium secondary battery comprising the same
JP2008507087A (en) * 2004-07-14 2008-03-06 アーケマ・インコーポレイテッド Multi-layer polymer electrolyte membrane
JP2014523068A (en) 2011-06-30 2014-09-08 エルジー ケム. エルティーディ. Novel polymer electrolyte and lithium secondary battery containing the same
US20140255772A1 (en) * 2011-10-20 2014-09-11 The University Of Akron Stretchable, solvent free, completely amorphous solid electrolyte films
KR20140089899A (en) * 2013-01-08 2014-07-16 전남대학교산학협력단 Polymer electrolyte composite membrane having excellent thermal-stability and interfacial-stability, and energy storage system comprising the same
KR20160013631A (en) 2014-07-28 2016-02-05 울산과학기술원 산학협력단 Solid electrolytes for all solid state rechargeable lithium battery, methods for manufacturing the same, and all solid state rechargeable lithium battery including the same
CN104681865A (en) * 2015-01-23 2015-06-03 清华大学深圳研究生院 All-solid state polymer electrolyte and application of electrolyte in battery
KR20170077792A (en) 2015-12-28 2017-07-06 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
KR20180059591A (en) 2016-11-25 2018-06-05 현대자동차주식회사 Method and system for controlling motors

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
HU , PU ET AL.: "Progress in Nitrile-based Polymer Electrolytes for High Performance Lithium Batteries", JOURNAL OF MATERIALS CHEMISTRY A, vol. 4, no. 26, 2016, pages 10070 - 10083, XP055562530 *
J. AM. CERAM SOC., vol. 94, no. 6, 2011, pages 1779 - 1783
J. AM. CHEM. SOC., vol. 138, 2016, pages 9385 - 9388
PIERRE-JEAN ALARCO; YASER ABU-LEBDEH; ALI ABOUIMRANE; MICHEL ARMAND: "The plastic-crystalline phase of succinonitrile as a universal matrix for solid-state ionic conductors", NAT. MATER., vol. 4, 2004, pages 476 - 481, XP003005968, DOI: doi:10.1038/nmat1158
See also references of EP3457486A4 *
WEIDONG ZHOU; SHAOFEI WANG; YUTAO LI; SEN XIN; ARUMUGAM MANTHIRAM; JOHN B.: "Goodenough, Plating a Dendrite-Free Lithium Anode with a Polymer/Ceramic/Polymer Sandwich Electrolyte", J. AM. CHEM. SOC., vol. 138, 2016, pages 9385 - 9388, XP055530290, DOI: doi:10.1021/jacs.6b05341

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110729513A (en) * 2019-10-23 2020-01-24 苏州清陶新能源科技有限公司 Composite solid electrolyte, preparation method thereof and all-solid-state lithium ion battery comprising composite solid electrolyte
CN111224152A (en) * 2020-01-15 2020-06-02 中山大学 Method for batch preparation of all-solid-state polymer electrolyte membrane by using double-roller plasticator
CN111224152B (en) * 2020-01-15 2022-09-02 中山大学 Method for batch preparation of all-solid-state polymer electrolyte membranes by using double-roller plasticator
CN114024025A (en) * 2021-10-29 2022-02-08 华中科技大学 Copolymerization solid electrolyte, preparation method thereof and solid polymer lithium battery
CN114335711A (en) * 2021-12-29 2022-04-12 中南大学 Preparation method and application of PVDF-HFP-PEO double-layer solid polymer electrolyte doped with MOF in situ
CN114335711B (en) * 2021-12-29 2024-02-02 中南大学 Preparation method and application of PVDF-HFP-PEO double-layer solid polymer electrolyte with MOF doped in situ

Similar Documents

Publication Publication Date Title
KR102093970B1 (en) Multi-layer typed-polymer solid electrolyte and all solid battery comprising the same
WO2018034526A1 (en) Anode comprising multiple protective layers, and lithium secondary battery comprising same
WO2019103463A1 (en) Cathode material for lithium secondary battery, and cathode and lithium secondary battery which comprise same
WO2016032240A1 (en) Negative electrode active material having double coating layers, method for preparing same, and lithium secondary battery comprising same
WO2018236064A1 (en) Multilayer polymer solid electrolyte and all-solid-state battery comprising same
WO2018093032A1 (en) Lithium-sulfur battery
WO2021201399A1 (en) Negative electrode for secondary battery, and secondary battery including same
WO2019013449A1 (en) Anode comprising electrode protective layer and lithium secondary battery employing same
WO2018236168A1 (en) Lithium secondary battery
WO2018056615A1 (en) Negative electrode comprising multiple protection layers and lithium secondary battery comprising same
WO2021040388A1 (en) Non-aqueous electrolytic solution, and lithium secondary battery comprising same
WO2022055258A1 (en) Non-aqueous electrolyte for lithium secondary battery and lithium secondary battery comprising same
WO2016052881A1 (en) Lithium secondary battery manufacturing method
WO2015064987A1 (en) Lithium secondary battery
WO2018190665A1 (en) Polymer solid electrolyte and lithium secondary battery comprising same
WO2021251663A1 (en) Anode and secondary battery comprising same
WO2017074116A1 (en) Polymer electrolyte having multi-layer structure, and all-solid battery comprising same
WO2019245284A1 (en) Cathode active material for lithium secondary battery and lithium secondary battery
WO2017057968A1 (en) Non-aqueous electrolyte and lithium secondary battery comprising same
WO2018062934A1 (en) Anode having double-protection layer formed thereon for lithium secondary battery, and lithium secondary battery comprising same
WO2017179917A1 (en) Sodium-based electrode active material and secondary battery comprising same
WO2022092688A1 (en) Non-aqueous electrolyte for lithium secondary battery, and lithium secondary battery comprising same
WO2020263023A1 (en) Electrode for lithium secondary battery having specific composition conditions and lithium secondary battery comprising same
WO2020091448A1 (en) Lithium secondary battery
WO2020197278A1 (en) Lithium secondary battery

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018563098

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018811698

Country of ref document: EP

Effective date: 20181213

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18811698

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE