WO2017179917A1 - Sodium-based electrode active material and secondary battery comprising same - Google Patents

Sodium-based electrode active material and secondary battery comprising same Download PDF

Info

Publication number
WO2017179917A1
WO2017179917A1 PCT/KR2017/003981 KR2017003981W WO2017179917A1 WO 2017179917 A1 WO2017179917 A1 WO 2017179917A1 KR 2017003981 W KR2017003981 W KR 2017003981W WO 2017179917 A1 WO2017179917 A1 WO 2017179917A1
Authority
WO
WIPO (PCT)
Prior art keywords
active material
electrode active
formula
chemical formula
positive electrode
Prior art date
Application number
PCT/KR2017/003981
Other languages
French (fr)
Korean (ko)
Inventor
명승택
최지웅
조창흠
Original Assignee
세종대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 세종대학교산학협력단 filed Critical 세종대학교산학협력단
Priority to US16/093,042 priority Critical patent/US10938029B2/en
Priority claimed from KR1020170047610A external-priority patent/KR101936501B1/en
Publication of WO2017179917A1 publication Critical patent/WO2017179917A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D13/00Compounds of sodium or potassium not provided for elsewhere
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/054Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a secondary battery, and more particularly, to a secondary battery including a sodium-based electrode active material.
  • the secondary battery refers to a battery that can be repeatedly used because it can be charged as well as discharged.
  • the representative lithium secondary battery of the secondary battery is lithium ions contained in the positive electrode active material is transferred to the negative electrode through the electrolyte and then inserted into the layered structure of the negative electrode active material (charging), after which the lithium ion inserted into the layered structure of the negative electrode active material is again It works on the principle of returning to the anode (discharge).
  • Such lithium secondary batteries are currently commercialized and used as small power sources for mobile phones, notebook computers, and the like, and are expected to be used as large power sources for hybrid cars, and the demand is expected to increase.
  • sodium cathode materials developed to date are still not excellent in structural stability, and batteries using the same are known to require improvement in discharge capacity retention rate and stability.
  • an object of the present invention is to provide an active material for a secondary battery having improved discharge capacity maintenance characteristics and stability, and a secondary battery including the same.
  • the electrode active material is represented by the following formula (1), has a tetragonal structure and the space group is a material of Cmcm.
  • x may be 0.5 to 0.8.
  • M 1 and M 2 are independently selected Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Nd, Mo, Tc, Ru, Rh, Pd, Pb, Ag, It may be Cd, Al, Ga, In, Sn, or Bi.
  • y may be 0 to 0.25.
  • z may be 0 to 0.25.
  • A may be N, O, F, or S, and ⁇ may be 0 to 0.1.
  • the active material represented by Chemical Formula 1 may be represented by Chemical Formula 2.
  • x is 0.5 to 0.8
  • M is Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Nd, Mo, Tc, Ru, Rh, Pd, Pb, Ag, Cd, Al, Ga, In, Sn, or Bi
  • y may be 0 to 0.25
  • A is N, O, F, or S
  • may be 0 to 0.1.
  • the active material represented by Chemical Formula 1 may be represented by Chemical Formula 3.
  • the active material represented by Chemical Formula 1 may be represented by Chemical Formula 4.
  • x is 0.5 to 0.8
  • M is Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Nd, Mo, Tc, Ru, Rh, Pd, Pb, Ag, Cd, Al, Ga, In, Sn, or Bi, and y may be 0.02 to 0.25.
  • the active material represented by Chemical Formula 1 may be Na 0.7 MnO 2 .
  • x may be 0.65 to 0.75, and y may be 0.025 to 0.1.
  • M may be Al, Co, Cd, Nd, Rh, Sc, Zn, Fe, or Ni, further M may be Fe or Ni.
  • the intensity of the first peak representing the (002) plane may represent 5 to 8 times the intensity of the second peak representing the (004) plane.
  • the half width of the first peak representing the (002) plane may be 0.2 to 0.3.
  • Another aspect of the present invention to achieve the above object provides a method for producing an electrode active material.
  • a metal salt solution containing sodium salt and manganese salt is prepared.
  • Ultrasonic spray pyrolysis of the metal salt solution yields a solid powder.
  • the solid powder is heat-treated to obtain an electrode active material represented by Chemical Formula 1, having a tetragonal structure and having a space group of Cmcm.
  • the heat treatment may be carried out at 1100 °C to 1300 °C.
  • the heat treatment may be performed in the oxygen and the remaining inert gas atmosphere of 15 vol.% To 100 vol.%.
  • the secondary battery includes a positive electrode including a positive electrode active material represented by Formula 1, a negative electrode containing a negative electrode active material, and an electrolyte disposed between the positive electrode and the negative electrode.
  • the positive electrode may further include a sodium salt.
  • the sodium salt may be NaNO 2 .
  • the NaNO 2 may be contained in 3 to 12 parts by weight based on 100 parts by weight of the positive electrode active material.
  • the positive electrode may further include a conductive material, and the conductive material may be contained in an amount of 2 to 9 parts by weight based on 100 parts by weight of the positive electrode active material.
  • the positive electrode further comprises a binder, the binder may be contained in 2 to 9 parts by weight based on 100 parts by weight of the positive electrode active material.
  • the discharge capacity retention characteristics of a secondary battery containing the cathode active material may be improved.
  • FIG. 1 is a flowchart illustrating a method of manufacturing a cathode active material according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram predicting the crystal structure of Na 0.7 MnO 2 according to the active material Preparation Example 1.
  • Figure 6 is a graph showing the XRD analysis of the solid powders according to the active material Preparation Example 1 and Comparative Example 2.
  • 26A, 26B, 26C, and 26D are graphs illustrating charge and discharge characteristics of half cells according to Battery Preparation Example 1 and Comparative Examples 1 to 3, respectively.
  • 27A and 27B are graphs showing charge and discharge characteristics and discharge capacities according to the number of cycles of a half cell according to Battery Preparation Example 1, respectively.
  • 28 to 46 are graphs showing charge and discharge characteristics of half-cells according to battery preparation examples 2 to 20, respectively.
  • FIG. 47 is a graph showing discharge capacity according to the number of cycles of a half cell according to Battery Preparation Example 1 and a half cell according to Battery Preparation Example 14.
  • FIG. 47 is a graph showing discharge capacity according to the number of cycles of a half cell according to Battery Preparation Example 1 and a half cell according to Battery Preparation Example 14.
  • FIG. 49 illustrates an in-situ high temperature XRD graph of positive electrode active materials when the half cell according to Battery Preparation Example 1 and the half cell according to Battery Preparation Example 14 are in a charged state.
  • FIG. 50A is a graph showing the charge / discharge characteristics of the half cells according to the half cell manufacturing example 25, and FIG. 50B is a graph showing the discharge capacity according to the number of cycles of the half cell according to the half cell manufacturing example 25.
  • FIG. 50A is a graph showing the charge / discharge characteristics of the half cells according to the half cell manufacturing example 25
  • FIG. 50B is a graph showing the discharge capacity according to the number of cycles of the half cell according to the half cell manufacturing example 25.
  • FIG. 51A is a graph showing charge / discharge characteristics of the half cell according to the half cell manufacturing example 26, and FIG. 51B is a graph showing the discharge capacity according to the number of cycles of the half cell according to the half cell manufacturing example 26.
  • FIG. 51B is a graph showing the discharge capacity according to the number of cycles of the half cell according to the half cell manufacturing example 26.
  • FIG. 52A is a graph showing charge and discharge characteristics of a half cell according to a full-cell manufacturing example
  • FIG. 52B is a graph showing discharge capacity according to the number of cycles of a half cell according to a full-cell manufacturing example.
  • a layer “on” another layer means that not only are these layers directly in contact, but also another layer (s) between these layers.
  • Cathode active material according to an embodiment of the present invention is represented by the following formula (1).
  • x may be 0.5 to 0.8.
  • x may be 0.6 to 0.8, specifically 0.65 to 0.75.
  • M 1 and M 2 are independent of each other as transition metal or post-transition metal, for example Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn , Y, Zr, Nd, Mo, Tc, Ru, Rh, Pd, Pb, Ag, Cd, Al, Ga, In, Sn, or Bi.
  • M 1 and M 2 may be the same or different.
  • y may be 0 to 0.25.
  • z may be 0 to 0.25.
  • A may be N, O, F, or S, and ⁇ may be 0 to 0.1.
  • the cathode active material may be represented by the following formula (2).
  • x may be 0.5 to 0.8.
  • x may be 0.6 to 0.8, specifically 0.65 to 0.75.
  • M is Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Nd, Mo, Tc, Ru, Rh, Pd, Pb, Ag, Cd, Al, Ga, In, Sn, or Bi.
  • y may be 0 to 0.25.
  • y may be 0 to 0.2, specifically y may be 0 to 0.1.
  • y may be 0.02 to 0.25, or 0.025 to 0.1.
  • A may be N, O, F, or S, and ⁇ may be 0 to 0.1.
  • the cathode active material represented by Chemical Formula 1 or 2 may have an orthorhombic crystal system. Specifically, it is a layered compound having a tetragonal structure, in which a sodium layer and a transition metal oxide layer are alternately stacked, and a space group is Cmcm. Such an active material may exhibit an intensity of the first peak representing the (002) plane in the XRD graph 5 to 8 times the intensity of the second peak representing the (004) plane.
  • the half width of the first peak showing the (002) plane in the XRD graph of the active material may be about 0.2 to about 0.3, specifically, about 0.21 to about 0.24.
  • cathode active material may be represented by the following Chemical Formula 3 or 4.
  • x may be 0.5 to 0.8.
  • x may be 0.6 to 0.8, specifically 0.65 to 0.75.
  • x may be 0.5 to 0.8.
  • x may be 0.6 to 0.8, specifically 0.65 to 0.75.
  • M is Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Nd, Mo, Tc, Ru, Rh, Pd, Pb, Ag, Cd, Al, Ga, In, Sn, or Bi.
  • y may be 0.02 to 0.25.
  • y may be 0.02 to 0.2, specifically y may be 0.025 to 0.1.
  • FIG. 1 is a flowchart illustrating a method of manufacturing a cathode active material according to an embodiment of the present invention.
  • a metal salt solution containing sodium salt and manganese salt may be prepared (S10).
  • the metal salt solution may further mix metal salt (s) other than sodium salt and manganese salt.
  • Sodium, manganese, and other first metal in the metal salt solution (in the above formula 1, M 1), and other second metal molar ratio of (In Formula 1, M 2) is x: 1-yz: y: z (x, y, and z may be as defined in Formula 1).
  • the metal salt may be a metal carbonate, metal nitrate, or metal oxalate.
  • the sodium salt may be NaNO 3 , Na 2 CO 3 , or NaHCO 3
  • the manganese salt may be Mn (NO 3 ) 2 .
  • These metal salts, specifically, sodium salts, manganese salts, and salts of non-manganese metals may take the form of hydrates.
  • the metal salt solution may contain distilled water as a solvent.
  • a chelating agent may be further added to the metal salt solution.
  • the chelating agent may be selected from the group consisting of tartaric acid, urea, citric acid, formic acid, glycolic acid, polyacrylic acid, adipic acid, and glycine.
  • the chelating agent may be contained in 10wt% to 30wt% relative to the weight of the metal salt.
  • the metal salt solution may further include a crystal growth inhibitor (crystal growth inhibitor).
  • the crystal growth inhibitor may be, for example, glucose, sucrose, or a derivative thereof as a saccharide or a derivative thereof. Such crystal growth inhibitor may be contained in 1wt% to 10wt% relative to the weight of the metal salt.
  • the metal salt solution may be sufficiently mixed by stirring.
  • the metal salt solution may be subjected to ultrasonic spray pyrolysis to obtain a solid powder (S20).
  • the ultrasonic spray pyrolysis is a method of obtaining a metal oxide having a pure composition for a low temperature and a short time compared to a solid phase method.
  • the ultrasonic spray pyrolysis sprays the metal salt solution to make droplets, and then thermally decomposes the droplets. That's how.
  • the metal salt may be converted into a metal oxide.
  • the solid powder may be heat-treated in a dry air atmosphere to obtain a cathode active material (S30).
  • the dry air atmosphere may be a dry atmosphere containing 15 vol.% To 100 vol.% Of a dried oxygen atmosphere, specifically 20 vol.% To 100 vol.% Of oxygen and the rest of the inert gas.
  • the inert gas may be nitrogen.
  • the dry atmosphere may mean an atmosphere that does not contain moisture. Heat treatment in such an atmosphere has the advantage of preventing the volatilization of sodium.
  • the heat treatment may be carried out at 1100 °C to 1300 °C.
  • the cathode active material having a tetragonal structure described in the above formulas and having a space group of Cmcm may improve capacity and lifespan characteristics of the sodium secondary battery.
  • the secondary battery having high capacity may be used as a unit battery of a battery module which is a power source of medium and large devices.
  • the medium-to-large device includes, for example, a power tool that is powered by an electric motor; Electric vehicles (EVs) including hybrid electric vehicles (HEVs) and plug-in hybrid electric vehicles (PHEVs); Electric two-wheeled vehicles including E-bikes and E-scooters; Or an electric golf cart, but is not limited thereto.
  • EVs Electric vehicles
  • HEVs hybrid electric vehicles
  • PHEVs plug-in hybrid electric vehicles
  • Electric two-wheeled vehicles including E-bikes and E-scooters
  • an electric golf cart but is not limited thereto.
  • a sodium secondary battery includes a positive electrode containing the positive electrode active material described above, a negative electrode containing a negative electrode active material into which sodium can be inserted, and an electrolyte positioned therebetween.
  • a cathode material may be obtained by mixing the cathode active material, the conductive material, and the binder described in Chemical Formula 1.
  • the positive electrode active material described in Chemical Formula 1 may have a stable crystal structure, and thus may have a low degree of deterioration due to moisture and a low operating voltage. However, since the molar ratio of sodium to the transition metal (Mn, M 1 , and M 2 in Formula 1) is less than 1, that is, x represents less than 1 in Formula 1, The content of sodium may be lower than that of other positive electrode active materials having x of 1 or more. To compensate for this, sodium salt may be added to the cathode material. Na ions contained in the sodium salt may be reduced during the initial charging of the battery to serve as an additional Na source. In this case, the initial charge capacity of the sodium secondary battery can be improved to improve battery performance.
  • the sodium salt may be NaNO 2 , the addition amount of the sodium salt is 1 to 20 parts by weight, specifically 3 to 20 parts by weight or 3 to 15 parts by weight based on 100 parts by weight of the positive electrode active material As an example, it may be contained in 5 to 7 parts by weight.
  • the conductive material may be a carbon material such as natural graphite, artificial graphite, cokes, carbon black, carbon nanotubes, or graphene.
  • the binder may be a thermoplastic resin such as polyvinylidene fluoride, polytetrafluoroethylene, ethylene tetrafluoride, vinylidene fluoride copolymer, fluorine resin such as hexafluoropropylene, and / or polyolefin resin such as polyethylene or polypropylene. It may include.
  • the conductive material may be contained in 2 to 9 parts by weight, specifically 4 to 7 parts by weight and more specifically 5 to 6 parts by weight, based on 100 parts by weight of the positive electrode active material. 2 to 9 parts by weight, specifically 4 to 7 parts by weight, and more specifically 5 to 6 parts by weight, based on 100 parts by weight of the positive electrode active material.
  • a positive electrode material may be applied onto a positive electrode current collector to form a positive electrode.
  • the positive electrode current collector may be a conductor such as Al, Ni, stainless steel, or the like.
  • the application of the positive electrode material onto the positive electrode current collector may be made by pressure molding or by using an organic solvent or the like to make a paste, and then applying the paste onto the current collector and pressing to fix the paste.
  • the organic solvent is amine type, such as N, N-dimethylaminopropylamine and diethyltriamine; Ethers such as ethylene oxide and tetrahydrofuran; Ketones such as methyl ethyl ketone; Esters such as methyl acetate; Aprotic polar solvents such as dimethylacetamide and N-methyl-2-pyrrolidone.
  • Application of the paste onto the positive electrode current collector can be performed using, for example, a gravure coating method, a slit die coating method, a knife coating method, a spray coating method.
  • Cathode active materials include metals, metal alloys, metal oxides, metal fluorides, metal sulfides, and natural graphite, artificial graphite, coke, carbon black, carbon nanotubes, and graphene that can deintercalate Na ions or cause conversion reactions. It can also form using carbon materials, such as a fin.
  • the negative electrode material can be obtained by mixing the negative electrode active material, the conductive material, and the binder.
  • the conductive material may be a carbon material such as natural graphite, artificial graphite, cokes, carbon black, carbon nanotubes, graphene, or the like.
  • the binder may be a thermoplastic resin such as polyvinylidene fluoride, polytetrafluoroethylene, ethylene tetrafluoride, vinylidene fluoride copolymer, fluorine resin such as hexafluoropropylene, and / or polyolefin resin such as polyethylene or polypropylene. It may include.
  • the negative electrode material may be applied onto the positive electrode current collector to form a positive electrode.
  • the positive electrode current collector may be a conductor such as Al, Ni, stainless steel, or the like.
  • the application of the negative electrode material on the positive electrode current collector may be made by pressure molding or a method of making a paste using an organic solvent or the like, and then applying the paste onto the current collector and pressing to fix the paste.
  • the organic solvent is amine type, such as N, N-dimethylaminopropylamine and diethyltriamine; Ethers such as ethylene oxide and tetrahydrofuran; Ketones such as methyl ethyl ketone; Esters such as methyl acetate; Aprotic polar solvents such as dimethylacetamide and N-methyl-2-pyrrolidone.
  • Application of the paste onto the negative electrode current collector can be performed using, for example, a gravure coating method, a slit die coating method, a knife coating method, a spray coating method.
  • the electrolyte may be NaClO 4 , NaPF 6 , NaAsF 6 , NaSbF 6 , NaBF 4 , NaCF 3 SO 3 , NaN (SO 2 CF 3 ) 2 , lower aliphatic carboxylate, NaAlCl 4 , and the like. Mixtures can also be used. Among these, it is preferable to use an electrolyte containing fluorine.
  • the electrolyte can also be dissolved in an organic solvent and used as a nonaqueous electrolyte.
  • organic solvent for example, propylene carbonate, ethylene carbonate, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, isopropyl methyl carbonate, vinylene carbonate, 4- Carbonates such as trifluoromethyl-1,3-dioxolan-2-one and 1,2-di (methoxycarbonyloxy) ethane; 1,2-dimethoxyethane, 1,3-dimethoxypropane, pentafluoropropylmethylether, 2,2,3,3-tetrafluoropropyldifluoromethylether, tetrahydrofuran, 2-methyltetrahydro Ethers such as furan; Esters such as methyl formate, methyl acetate and ⁇ -butyrolactone; Nitriles such as acetonitrile and butyronitrile; Amides such as N, N-dimethylformamide and N, N-dimethylacetamide; Carbamates such as 3-methyl-2-o
  • a solid electrolyte may be used.
  • the solid electrolyte may be an organic solid electrolyte such as a polymer compound containing at least one of a polyethylene oxide polymer compound, a polyorganosiloxane chain or a polyoxyalkylene chain.
  • a so-called gel type electrolyte in which a nonaqueous electrolyte is supported on a high molecular compound can also be used.
  • the separator may be disposed between the positive electrode and the negative electrode.
  • a separator may be a material having a form such as a porous film made of a material such as polyolefin resin such as polyethylene or polypropylene, a fluorine resin, a nitrogen-containing aromatic polymer, a nonwoven fabric, a woven fabric, or the like.
  • the thickness of the separator is preferably as thin as the mechanical strength is maintained, in that the volume energy density of the battery becomes high and the internal resistance decreases.
  • the thickness of the separator may generally be on the order of 5 to 200 ⁇ m, more specifically 5 to 40 ⁇ m.
  • the electrode group After forming the electrode group by laminating the positive electrode, the separator, and the negative electrode in order, the electrode group can be rolled up and stored in a battery can if necessary, and the sodium secondary battery can be manufactured by impregnating the electrode group with a nonaqueous electrolyte.
  • a sodium secondary battery may be manufactured by stacking a positive electrode, a solid electrolyte, and a negative electrode to form an electrode group, and then rolling the electrode group in a battery can if necessary.
  • Magnetic bars are used to dissolve 0.056 moles of sodium nitrate, 0.08 moles of manganese nitrate tetrahydrate (Manganese (II) nitrate tetrahydrate), citric acid, and sucrose in distilled water and mix well. It stirred for more than 12 hours.
  • the citric acid was used 0.2 times the weight of the nitrates
  • the sucrose was used at a rate of 0.05 times the weight of the nitrates.
  • the stirred solution was sprayed through a nozzle of ultrasonic spray into a quartz tube maintained at 400 ° C. at a constant rate to obtain a solid powder.
  • the solid powder was placed in an alumina crucible and the alumina crucible was fed at a rate of 5 ° C./min in a dry air atmosphere containing 21 vol.% O 2 and 79 vol.% N 2 . After the temperature was raised, the temperature was maintained at 1200 ° C. for 10 hours, and then gradually cooled to 30 ° C. at a rate of 3 ° C./min to Na 0 . 7 MnO 2 was prepared.
  • Na 0.7 MnO 2 was prepared in the same manner as in Preparation Example 1, except that the pelletized solid powder was heat-treated at 1300 ° C. for 10 hours.
  • Na x [Mn 1-y M y ] O 2 was prepared by the same method as in Preparation Example 1 of the active material.
  • Na 0.7 MnO 2 was prepared in the same manner as in Preparation Example 1, except that the pelletized solid powder was heat-treated at 1000 ° C. for 10 hours.
  • 7 MnO 2 is P6 3 / mmc and Cmcm space while showing an XRD peak of the hexagonal P2 structure oriented (hexagonal) with the group, Na in accordance with an active material Preparation Example 1 through 4 the heat treatment at 1100 to 1300 °C 0. It can be seen that 7 MnO 2 represents an XRD peak of a tetragonal structure having a space group of Cmcm.
  • Na 0 and other active material preparation example 1 heat-treated at 1200 °C . 7 MnO 2 is Na 0 . Similar to 7 MnO 2 , it can be seen that the XRD peak of the tetragonal structure having a space group of Cmcm is shown. Specifically, Na 0 having a tetragonal structure having a space group of Cmcm . 7 MnO 2 exhibited a first peak representing the (002) plane at about 15 degrees and a second peak representing the (004) plane at about 32 degrees. However, Na 0 according to the active material preparation example 1 heat-treated at 1200 °C . 7 MnO 2 is Na 0 . It can be seen that the XRD peaks of the tetragonal structure having a space group of Cmcm compared to 7 MnO 2 are somewhat clear.
  • the half width of the first peak representing the (002) plane at about 15 degrees is about 0.2 to about 0.3. , From about 0.21 to about 0.24.
  • the intensity of the first peak was about 5 times to about 8.5 times the intensity of the second peak, specifically, about 5.47 times to about 8.076 times.
  • the intensity of the first peak was about 2 times higher than that of the second peak.
  • the full width at half maximum of the first peak represents the surface being less than 0.3
  • the (002) have a very large intensity of the first peak represents the surface is Na 0.7 MnO 2 is determined in accordance with the preparation Castle It can mean very good.
  • the ratio of the intensity of the first peak representing the (002) plane to the ratio of 5 or more relative to the intensity of the second peak representing the (004) plane may mean that the (002) plane is continuously formed in the layered structure.
  • the active material having a tetragonal structure having a space group of Cmcm according to the present experimental examples showed almost no impurity peaks appearing at about 25 degrees.
  • the intensity of the first peak representing the (002) plane with respect to the intensity of the impurity peak appearing near 25 degrees may be about 100 times or more. This may mean that the active material having a tetragonal structure having a space group of Cmcm according to the present experimental examples has a very excellent crystal structure.
  • 7 MnO 2 is a schematic diagram for predicting the crystal structure, Na 0 .
  • the crystal structure of 7 MnO 2 is predicted and shown.
  • Na 0 according to the active material preparation example 1 . It can be seen that the crystal structure of 7 MnO 2 is a layered compound in which a sodium layer and a manganese oxide layer are alternately stacked.
  • Figure 6 is a graph showing the XRD analysis of the solid powders according to the active material Preparation Example 1 and Comparative Example 2.
  • the first peak representing the (002) plane at about 15 degrees and the second peak representing the (004) plane at about 32 degrees are shown, and as shown in FIG. It can be seen that the characteristic peaks of the tetragonal structure having the appearance of Na x [Mn 1-y M y ] O 2 of the tetragonal structure having a space group of Cmcm.
  • Na x [Mn 1-y M y ] O 2 according to Active Material Preparation Examples 9 to 27 the half width of the first peak representing the (002) plane is about 0.2 to about About 0.3 specifically, about 0.21 to about 0.24.
  • the intensity of the first peak may be about 5 times to about 8.5 times the intensity of the second peak, specifically, about 5.47 times to about 8.076 times.
  • Na x [Mn 1-y M y ] O 2 according to active material preparation examples 9 to 27 also hardly exhibit an impurity peak appearing at about 25 degrees.
  • the intensity of the first peak representing the (002) plane with respect to the intensity of the impurity peak appearing near 25 degrees may be about 100 times or more.
  • NMP N-Methyl-2-Pyrrolidone
  • the tetragonal Na 0 prepared in Preparation Example 1 of the active material 7 Positive electrode using the same method as in Battery Preparation Example 1, except that one of the tetragonal Na x [Mn 1-y M y ] O 2 prepared in Active Materials Preparation Examples 9 to 27 was used instead of the 7 MnO 2 powder. And half cells were prepared.
  • 26A, 26B, 26C, and 26D are graphs illustrating charge and discharge characteristics of half cells according to Battery Preparation Example 1 and Comparative Examples 1 to 3, respectively.
  • the charge was constant current charged at 20 mA / g up to 4.3 V, and the discharge was performed at 1.5 V at the same speed as the above charge rate. Charge and discharge proceeded 2 cycles.
  • Na 0.7 MnO 2 battery comparison example 1, FIG. 26B having a hexagonal crystal structure, Na 0 . 7 (Mn 0.75 Fe 0.25 ) O 2 (Comparative Example 2, FIG. 26C), and Na 0 having a tetragonal crystal structure compared to a half cell prepared using Na 0.7 (Mn 0.5 Fe 0.5 ) O 2 (Comparative Example 3, FIG. 26D) . 7 by using the MnO 2 when manufactured if inverted (cells prepared in Example 1, Fig. 26a) the discharge capacity is 200 mAhg - it can be seen that indicates the capacity of a superior performance such as greater than 1.
  • 27A and 27B are graphs showing charge and discharge characteristics and discharge capacities according to the number of cycles of a half cell according to Battery Preparation Example 1, respectively. At this time, the charge was constant current charged at 20 mA / g up to 4.3 V, and the discharge was performed at 1.5 V at the same speed as the above charge rate. Charge and discharge proceeded for 25 cycles.
  • the operation of the battery is performed when a half cell is manufactured using Na x [Mn 1-y M y ] O 2 having a tetragonal crystal structure.
  • Na x [Mn 1-y M y ] O 2 when M is Al, Co, Cd, Nd, Rh, Sc, Zn, the discharge capacity is 150 mAhg - 1 or more, and M is Fe and Ni. In this case, it can be seen that the discharge capacity is excellent in high capacity, such as more than 200 mAhg -1 .
  • FIG. 47 is a graph showing discharge capacity according to the number of cycles of a half cell according to Battery Preparation Example 1 and a half cell according to Battery Preparation Example 14.
  • the charge was constant current charged at 20 mA / g up to 4.3 V, and the discharge was performed at 1.5 V at the same speed as the above charge rate. Charge and discharge proceeded 50 cycles.
  • a half cell according to Battery Preparation Example 1 that is, Na 0 .
  • the half cell using 7 MnO 2 showed a discharge capacity of 75% of the initial discharge capacity after 50 cycles.
  • the reverse paper according to Battery Preparation Example 14 that is, the Na 0 .
  • the half cell using 7 (Mn 0.95 Ni 0.05 ) O 2 showed a discharge capacity of 92% compared to the initial discharge capacity after 50 cycles.
  • FIG. 48 illustrates an in situ synchrotron XRD graph of positive electrode active materials during an initial cycle of a half cell according to Preparation Example 1 and a half cell according to Preparation Example 14; At this time, charging and discharging were performed in a voltage range of 1.5 to 4.3 V and a constant current of 20 mAh.
  • a half cell according to Battery Preparation Example 1 that is, Na 0 . 7
  • the positive electrode active materials commonly showed a phase change to the OP 4 structure (space group: P-6 m 2) during the charging process. Phase change was shown.
  • Na 0 In the case of 7 (Mn 0.95 Ni 0.05 ) O 2 , a superlattice structure (Superstructure or Superlattice) was observed in the 2 ⁇ region between 15.6 and 16 degrees.
  • FIG. 49 illustrates an in-situ high temperature XRD graph of positive electrode active materials when the half cell according to Battery Preparation Example 1 and the half cell according to Battery Preparation Example 14 are in a charged state.
  • the half cell was charged with a constant current of 20 mAh up to a voltage of 4.3 V (sodium was detached from the positive electrode active material), and the XRD data was obtained while the positive electrode active material was raised from room temperature to 600 ° C and again at room temperature.
  • a half cell according to Battery Preparation Example 1 that is, Na 0 . 7
  • positive electrode active materials showed peaks of OP4 structure and tetragonal structure.
  • the temperature range of 100 to 150 °C all the intensity of the hydrate peak was reduced, which means that the water evaporated to the peak due to water or moisture present in the atmosphere.
  • manganese oxide is observed due to evaporation of sodium and oxygen in the high temperature region.
  • the manganese oxide is mainly located in MnO 2, it can be inferred that the main oxidation number of Mn is tetravalent.
  • Half Battery Manufacturing Example 25 Rhombic System Na 0 . 7 Fabrication of Anode and Half Cell Using (Mn 0.95 Ni 0.05 ) O 2 and Additives>
  • Orthotropic Na 0 prepared in Preparation 21 of the active material . 7 (Mn 0.95 Ni 0.05 ) O 2 Powders, additives NaNO 2 , conductive materials (Super-P, KS-6), and binders (Poly vinylidene fluoride) in an organic solvent (NMP (N-Methyl-2-Pyrrolidone) (NMP) in a weight ratio of 85: 6: 4.5: 4.5 After mixing in), it was coated on an aluminum current collector and then pressed to form a positive electrode.
  • NMP N-Methyl-2-Pyrrolidone
  • metal sodium was used as a cathode
  • a glass filter was used as a separator
  • a nonaqueous solution containing electrolyte NaPF 6 and an organic solvent propylene carbonate (PC, 98 vol.%) And fluoroethylene carbonate (FEC, 2 vol.%) was used.
  • a half cell was prepared using electrolyte solution.
  • a mixture of hard carbon anode material and carbon black as a conductive material and PVdF as a binder in a weight ratio of 70:15:15 is mixed in NMP and the coating is applied to a copper foil used as a current collector. After the drying was completed using the same method as in Preparation Example 25, except that a negative electrode was used to produce an on-cell.
  • FIG. 50A is a graph showing the charge / discharge characteristics of the half cells according to the half cell manufacturing example 25, and FIG. 50B is a graph showing the discharge capacity according to the number of cycles of the half cell according to the half cell manufacturing example 25.
  • FIG. 51A is a graph showing charge / discharge characteristics of the half cell according to the half cell manufacturing example 26, and FIG. 51B is a graph showing the discharge capacity according to the number of cycles of the half cell according to the half cell manufacturing example 26.
  • Table 2 summarizes the initial charge capacity and the initial discharge capacity of the half-cell according to the half-cell manufacturing examples 14, 24, 25, and 26.
  • the initial charging capacity is 0.362 mAh, which is significantly improved compared to a sodium secondary battery using a cathode active material having a general P2 structure.
  • FIG. 52A is a graph showing charge and discharge characteristics of a half cell according to a full-cell manufacturing example
  • FIG. 52B is a graph showing discharge capacity according to the number of cycles of a half cell according to a full-cell manufacturing example.
  • the initial charging capacity is about 0.362 mAh, which is significantly higher than that of a sodium secondary battery using a cathode active material having a general P2 structure. It can be seen that the life characteristics have been improved.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

Provided are a sodium-based electrode active material and a secondary battery comiprising the same. The electrode active material is represented by Formula 1 below, and has an orthorhombic structure with a space group of Cmcm. [Formula 1] Nax[Mn1-y-zM1 yM2 z]O2-αAα, where x is 0.5 to 0.8; M1 and M2 are, independently from each other, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Nd, Mo, Tc, Ru, Rh, Pd, Pb, Ag, Cd, Al, Ga, In, Sn, or Bi; y is 0 to 0.25; z is 0 to 0.25; A is N, O, F, or S; and α is 0 to 0.1.

Description

나트륨계 전극 활물질 및 이를 포함하는 이차전지Sodium-based electrode active material and a secondary battery comprising the same
본 발명은 이차전지에 관한 것으로 구체적으로는 나트륨계 전극 활물질을 포함하는 이차전지에 관한 것이다.The present invention relates to a secondary battery, and more particularly, to a secondary battery including a sodium-based electrode active material.
이차전지는 방전뿐 아니라 충전이 가능하여 반복적으로 사용할 수 있는 전지를 말한다. 이차전지 중 대표적인 리튬 이차전지는 양극활물질에 포함된 리튬이온이 전해질을 거쳐 음극으로 이동한 후 음극활물질의 층상 구조 내로 삽입되며(충전), 이 후 음극활물질의 층상 구조 내로 삽입되었던 리튬 이온이 다시 양극으로 되돌아가는(방전) 원리를 통해 작동한다. 이러한 리튬 이차전지는 현재 상용화되어 휴대전화, 노트북 컴퓨터 등의 소형전원으로 사용되고 있으며, 하이브리드 자동차 등의 대형 전원으로도 사용가능할 것으로 예측되고 있어, 그 수요가 증대될 것으로 예상된다.The secondary battery refers to a battery that can be repeatedly used because it can be charged as well as discharged. The representative lithium secondary battery of the secondary battery is lithium ions contained in the positive electrode active material is transferred to the negative electrode through the electrolyte and then inserted into the layered structure of the negative electrode active material (charging), after which the lithium ion inserted into the layered structure of the negative electrode active material is again It works on the principle of returning to the anode (discharge). Such lithium secondary batteries are currently commercialized and used as small power sources for mobile phones, notebook computers, and the like, and are expected to be used as large power sources for hybrid cars, and the demand is expected to increase.
그러나, 리튬 이차전지에서 양극활물질로 주로 사용되는 복합금속산화물은 리튬 등의 희소금속원소를 포함하고 있어, 수요증대에 부응하지 못할 염려가 있다. 이에 따라, 공급량이 풍부고 값싼 나트륨을 양극활물질로 사용하는 나트륨 이차전지에 대한 연구가 진행되고 있다. 일 예로서, 대한민국 공개특허 제2012-0133300호는 양극활물질로서 AxMnPO4F(A=Li 또는 Na, 0 < x ≤ 2)을 개시하고 있다.However, a composite metal oxide mainly used as a cathode active material in a lithium secondary battery contains rare metal elements such as lithium, and thus may not meet demand growth. Accordingly, research is being conducted on sodium secondary batteries using abundant and cheap sodium as a cathode active material. As an example, Korean Patent Laid-Open Publication No. 2012-0133300 discloses A x MnPO 4 F (A = Li or Na, 0 <x ≦ 2) as a cathode active material.
그러나, 현재까지 개발된 나트륨 양극 재료들은 여전히 구조적 안정성이 우수하지 못하며, 이를 사용한 전지는 방전용량유지율 및 안정성에 대한 개선이 필요한 것으로 알려져 있다.However, sodium cathode materials developed to date are still not excellent in structural stability, and batteries using the same are known to require improvement in discharge capacity retention rate and stability.
따라서, 본 발명이 해결하고자 하는 과제는 방전용량유지특성 및 안정성이 개선된 이차전지용 활물질 및 이를 포함하는 이차전지를 제공함에 있다.Accordingly, an object of the present invention is to provide an active material for a secondary battery having improved discharge capacity maintenance characteristics and stability, and a secondary battery including the same.
상기 과제를 이루기 위하여 본 발명의 일 측면은 전극 활물질을 제공한다. 상기 전극 활물질은 하기 화학식 1로 나타내어지고, 사방정 구조를 가지며 공간군이 Cmcm인 물질이다.One aspect of the present invention to achieve the above object provides an electrode active material. The electrode active material is represented by the following formula (1), has a tetragonal structure and the space group is a material of Cmcm.
[화학식 1][Formula 1]
Nax[Mn1-y-zM1 yM2 z]O2-αAα Na x [Mn 1-yz M 1 y M 2 z ] O 2-α A α
상기 화학식 1에서, x은 0.5 내지 0.8일 수 있다. M1과 M2는 서로에 관계없이 Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Nd, Mo, Tc, Ru, Rh, Pd, Pb, Ag, Cd, Al, Ga, In, Sn, 또는 Bi일 수 있다. y는 0 내지 0.25일 수 있다. z는 0 내지 0.25일 수 있다. A는 N,O,F, 또는 S일 수 있고, α는 0 내지 0.1일 수 있다.In Formula 1, x may be 0.5 to 0.8. M 1 and M 2 are independently selected Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Nd, Mo, Tc, Ru, Rh, Pd, Pb, Ag, It may be Cd, Al, Ga, In, Sn, or Bi. y may be 0 to 0.25. z may be 0 to 0.25. A may be N, O, F, or S, and α may be 0 to 0.1.
상기 화학식 1로 나타내어지는 활물질은 상기 화학식 2로 나타내어질 수 있다.The active material represented by Chemical Formula 1 may be represented by Chemical Formula 2.
[화학식 2][Formula 2]
Nax[Mn1-yMy]O2-αAα Na x [Mn 1-y M y ] O 2-α A α
상기 화학식 2에서, x은 0.5 내지 0.8이고, M은 Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Nd, Mo, Tc, Ru, Rh, Pd, Pb, Ag, Cd, Al, Ga, In, Sn, 또는 Bi이고, y는 0 내지 0.25이고, A는 N,O,F, 또는 S이고, α는 0 내지 0.1일 수 있다.In Formula 2, x is 0.5 to 0.8, M is Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Nd, Mo, Tc, Ru, Rh, Pd, Pb, Ag, Cd, Al, Ga, In, Sn, or Bi, y may be 0 to 0.25, A is N, O, F, or S, and α may be 0 to 0.1.
상기 화학식 1로 나타내어지는 활물질은 상기 화학식 3으로 나타내어질 수 있다.The active material represented by Chemical Formula 1 may be represented by Chemical Formula 3.
[화학식 3][Formula 3]
NaxMnO2(x는 0.5 내지 0.8)Na x MnO 2 (x is 0.5 to 0.8)
상기 화학식 1로 나타내어지는 활물질은 상기 화학식 4로 나타내어질 수 있다.The active material represented by Chemical Formula 1 may be represented by Chemical Formula 4.
[화학식 4][Formula 4]
Nax[Mn1-yMy]O2 Na x [Mn 1-y M y ] O 2
상기 화학식 4에서, x은 0.5 내지 0.8이고, M은 Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Nd, Mo, Tc, Ru, Rh, Pd, Pb, Ag, Cd, Al, Ga, In, Sn, 또는 Bi이고, y는 0.02 내지 0.25일 수 있다.In Formula 4, x is 0.5 to 0.8, M is Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Nd, Mo, Tc, Ru, Rh, Pd, Pb, Ag, Cd, Al, Ga, In, Sn, or Bi, and y may be 0.02 to 0.25.
상기 화학식 1로 나타내어지는 활물질은 Na0.7MnO2일 수 있다.The active material represented by Chemical Formula 1 may be Na 0.7 MnO 2 .
상기 화학식들에서 x는 0.65 내지 0.75일 수 있고, y는 0.025 내지 0.1일 수 있다. 또한, M은 Al, Co, Cd, Nd, Rh, Sc, Zn, Fe, 또는 Ni일 수 있고, 나아가 M은 Fe 또는 Ni일 수 있다.In the above formulas, x may be 0.65 to 0.75, and y may be 0.025 to 0.1. In addition, M may be Al, Co, Cd, Nd, Rh, Sc, Zn, Fe, or Ni, further M may be Fe or Ni.
상기 사방정계 결정구조를 가지며 공간군이 Cmcm인 전극 활물질은 (002)면을 나타내는 제1 피크의 강도는 (004)면을 나타내는 제2 피크의 강도 대비 5 내지 8배를 나타낼 수 있다. 또한, 상기 (002)면을 나타내는 제1 피크의 반치폭은 0.2 내지 0.3일 수 있다.In the electrode active material having the tetragonal crystal structure and the space group is Cmcm, the intensity of the first peak representing the (002) plane may represent 5 to 8 times the intensity of the second peak representing the (004) plane. In addition, the half width of the first peak representing the (002) plane may be 0.2 to 0.3.
상기 과제를 이루기 위하여 본 발명의 다른 일 측면은 전극 활물질 제조방법을 제공한다. 먼저, 나트륨염과 망간염을 함유하는 금속염 용액을 제조한다. 상기 금속염 용액을 초음파 분무 열분해(ultrasonic spray pyrolysis)하여 고체 분말을 얻는다. 상기 고체 분말을 열처리하여 상기 화학식 1로 나타내어지고, 사방정 구조를 가지며 공간군이 Cmcm인 전극 활물질을 얻는다.Another aspect of the present invention to achieve the above object provides a method for producing an electrode active material. First, a metal salt solution containing sodium salt and manganese salt is prepared. Ultrasonic spray pyrolysis of the metal salt solution yields a solid powder. The solid powder is heat-treated to obtain an electrode active material represented by Chemical Formula 1, having a tetragonal structure and having a space group of Cmcm.
상기 열처리는 1100℃ 내지 1300℃에서 수행할 수 있다. 상기 열처리는 상기 열처리는 15 vol.% 내지 100vol.%의 산소와 나머지의 비활성 기체 분위기에서 수행할 수 있다.The heat treatment may be carried out at 1100 ℃ to 1300 ℃. The heat treatment may be performed in the oxygen and the remaining inert gas atmosphere of 15 vol.% To 100 vol.%.
상기 과제를 이루기 위하여 본 발명의 또 다른 일 측면은 이차전지를 제공한다. 상기 이차전지는 상기 화학식 1로 나타내어진 양극활물질을 포함하는 양극, 음극활물질을 함유하는 음극, 및 상기 양극과 상기 음극 사이에 배치된 전해질을 포함한다.Another aspect of the present invention to achieve the above object provides a secondary battery. The secondary battery includes a positive electrode including a positive electrode active material represented by Formula 1, a negative electrode containing a negative electrode active material, and an electrolyte disposed between the positive electrode and the negative electrode.
상기 양극은 나트륨염을 더 포함할 수 있다. 상기 나트륨염은 NaNO2일 수 있다. 상기 NaNO2는 상기 양극활물질 100 중량부에 대해 3 내지 12 중량부로 함유될 수 있다. 상기 양극은 도전재를 더 포함하고, 상기 도전재는 상기 양극활물질 100 중량부에 대해 2 내지 9 중량부로 함유될 수 있다. 또한, 상기 양극은 결합제를 더 포함하고, 상기 결합제는 상기 양극활물질 100 중량부에 대해 2 내지 9 중량부로 함유될 수 있다.The positive electrode may further include a sodium salt. The sodium salt may be NaNO 2 . The NaNO 2 may be contained in 3 to 12 parts by weight based on 100 parts by weight of the positive electrode active material. The positive electrode may further include a conductive material, and the conductive material may be contained in an amount of 2 to 9 parts by weight based on 100 parts by weight of the positive electrode active material. In addition, the positive electrode further comprises a binder, the binder may be contained in 2 to 9 parts by weight based on 100 parts by weight of the positive electrode active material.
본 발명에 따르면, 사방정 구조를 가지고, 공간군이 Cmcm인 화학식 1로 기재된 나트륨계 활물질은 안정적인 결정구조를 가짐에 따라, 이를 양극 활물질로 함유하는 이차 전지의 방전용량 유지특성이 개선될 수 있다.According to the present invention, as the sodium-based active material having a tetragonal structure and having a space group of Cmcm has a stable crystal structure, the discharge capacity retention characteristics of a secondary battery containing the cathode active material may be improved. .
도 1은 본 발명의 일 실시예에 따른 양극 활물질을 제조하는 방법을 나타낸 플로우챠트이다.1 is a flowchart illustrating a method of manufacturing a cathode active material according to an embodiment of the present invention.
도 2는 활물질 제조예들 1 내지 4 및 활물질 비교예 1에 따른 Na0 . 7MnO2들의 XRD 분석결과를 나타낸 그래프이다.2 is Na 0 according to the active material preparation examples 1 to 4 and Comparative Example 1 active material . 7 is a graph showing the XRD analysis of MnO 2 .
도 3은 활물질 제조예 1에 따른 Na0 . 7MnO2의 XRD 분석결과를 확대하여 나타낸 그래프이다.3 is Na 0 according to the active material preparation example 1 . 7 is a graph showing an enlarged XRD analysis of MnO 2 .
도 4는 활물질 제조예들 5 내지 8에 따른 Na0 . 7MnO2들의 XRD 분석결과를 나타낸 그래프이다.4 is Na 0 according to active material preparation examples 5 to 8 . 7 is a graph showing the XRD analysis of MnO 2 .
도 5는 활물질 제조예 1에 따른 Na0.7MnO2의 결정구조를 예측한 모식도이다.5 is a schematic diagram predicting the crystal structure of Na 0.7 MnO 2 according to the active material Preparation Example 1.
도 6은 활물질 제조예 1 및 활물질 비교예 2에 따른 고체 분말들의 XRD 분석결과를 나타낸 그래프이다.Figure 6 is a graph showing the XRD analysis of the solid powders according to the active material Preparation Example 1 and Comparative Example 2.
도 7 내지 도 25는 각각 활물질 제조예들 9 내지 27에 따른 Nax[Mn1-yMy]O2들의 XRD 분석결과를 나타낸 그래프이다.7 to 25 are graphs showing the XRD analysis results of Na x [Mn 1-y M y ] O 2 according to Active Material Preparation Examples 9 to 27, respectively.
도 26a, 도 26b, 도 26c, 및 도 26d는 전지 제조예 1 및 전지 비교예들 1 내지 3에 따른 반전지의 충방전 특성을 각각 나타낸 그래프들이다.26A, 26B, 26C, and 26D are graphs illustrating charge and discharge characteristics of half cells according to Battery Preparation Example 1 and Comparative Examples 1 to 3, respectively.
도 27a 및 도 27b는 전지 제조예 1에 따른 반전지의 사이클 횟수에 따른 충방전 특성 및 방전용량을 각각 나타낸 그래프들이다.27A and 27B are graphs showing charge and discharge characteristics and discharge capacities according to the number of cycles of a half cell according to Battery Preparation Example 1, respectively.
도 28 내지 도 46은 전지 제조예들 2 내지 20에 따른 반전지의 충방전 특성을 각각 나타낸 그래프들이다.28 to 46 are graphs showing charge and discharge characteristics of half-cells according to battery preparation examples 2 to 20, respectively.
도 47은 전지 제조예 1에 따른 반전지와 전지 제조예 14에 따른 반전지의 사이클 횟수에 따른 방전용량을 나타낸 그래프이다.47 is a graph showing discharge capacity according to the number of cycles of a half cell according to Battery Preparation Example 1 and a half cell according to Battery Preparation Example 14. FIG.
도 48은 전지 제조예 1에 따른 반전지와 전지 제조예 14에 따른 반전지의 초기 사이클 과정에서 양극 활물질들의 인시츄 싱크로트론 XRD 그래프를 나타낸다.48 illustrates an in situ synchrotron XRD graph of positive electrode active materials during an initial cycle of a half cell according to Preparation Example 1 and a half cell according to Preparation Example 14;
도 49는 전지 제조예 1에 따른 반전지와 전지 제조예 14에 따른 반전지가 충전 상태일 때, 양극 활물질들의 인시츄 고온 XRD 그래프를 나타낸다.FIG. 49 illustrates an in-situ high temperature XRD graph of positive electrode active materials when the half cell according to Battery Preparation Example 1 and the half cell according to Battery Preparation Example 14 are in a charged state.
도 50a는 반전지 제조예 25에 따른 반전지의 충방전 특성을 각각 나타낸 그래프이고, 도 50b은 반전지 제조예 25에 따른 반전지의 사이클 횟수에 따른 방전용량을 나타낸 그래프이다. 50A is a graph showing the charge / discharge characteristics of the half cells according to the half cell manufacturing example 25, and FIG. 50B is a graph showing the discharge capacity according to the number of cycles of the half cell according to the half cell manufacturing example 25. FIG.
도 51a는 반전지 제조예 26에 따른 반전지의 충방전 특성을 각각 나타낸 그래프이고, 도 51b은 반전지 제조예 26에 따른 반전지의 사이클 횟수에 따른 방전용량을 나타낸 그래프이다.51A is a graph showing charge / discharge characteristics of the half cell according to the half cell manufacturing example 26, and FIG. 51B is a graph showing the discharge capacity according to the number of cycles of the half cell according to the half cell manufacturing example 26. FIG.
도 52a는 온전지(full-cell) 제조예에 따른 반전지의 충방전 특성을 각각 나타낸 그래프이고, 도 52b는 온전지 제조예에 따른 반전지의 사이클 횟수에 따른 방전용량을 나타낸 그래프이다.52A is a graph showing charge and discharge characteristics of a half cell according to a full-cell manufacturing example, and FIG. 52B is a graph showing discharge capacity according to the number of cycles of a half cell according to a full-cell manufacturing example.
이하, 본 발명을 보다 구체적으로 설명하기 위하여 본 발명에 따른 바람직한 실시예를 첨부된 도면을 참조하여 보다 상세하게 설명한다. 그러나, 본 발명은 여기서 설명되어지는 실시예에 한정되지 않고 다른 형태로 구체화될 수도 있다. 명세서 전체에 걸쳐서 동일한 참조번호들은 동일한 구성요소들을 나타낸다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings in order to describe the present invention in more detail. However, the present invention is not limited to the embodiments described herein but may be embodied in other forms. Like numbers refer to like elements throughout.
본 명세서에서, 어떤 층이 다른 층 "상"에 위치한다고 함은 이들 층들이 직접적으로 접해있는 것 뿐 아니라 이들 층들 사이에 또 다른 층(들)이 위치하는 것을 의미한다. In this specification, the presence of a layer “on” another layer means that not only are these layers directly in contact, but also another layer (s) between these layers.
양극 활물질Positive electrode active material
본 발명의 일 실시예에 따른 양극활물질은 하기 화학식 1로 나타내어진다.Cathode active material according to an embodiment of the present invention is represented by the following formula (1).
[화학식 1] [Formula 1]
Nax[Mn1-y-zM1 yM2 z]O2 - αAα Na x [Mn 1-yz M 1 y M 2 z ] O 2 - α A α
상기 화학식 1에서, x은 0.5 내지 0.8일 수 있다. 일 예로서, x는 0.6 내지 0.8, 구체적으로 0.65 내지 0.75일 수 있다. M1과 M2는 서로에 관계없이 전이금속(transition metal) 또는 전이후 금속(post-transition metal)으로서 예를 들어, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Nd, Mo, Tc, Ru, Rh, Pd, Pb, Ag, Cd, Al, Ga, In, Sn, 또는 Bi일 수 있다. M1과 M2는 서로 같거나 다를 수 있다. y는 0 내지 0.25일 수 있다. z는 0 내지 0.25일 수 있다. A는 N,O,F, 또는 S일 수 있고, α는 0 내지 0.1일 수 있다.In Formula 1, x may be 0.5 to 0.8. As an example, x may be 0.6 to 0.8, specifically 0.65 to 0.75. M 1 and M 2 are independent of each other as transition metal or post-transition metal, for example Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn , Y, Zr, Nd, Mo, Tc, Ru, Rh, Pd, Pb, Ag, Cd, Al, Ga, In, Sn, or Bi. M 1 and M 2 may be the same or different. y may be 0 to 0.25. z may be 0 to 0.25. A may be N, O, F, or S, and α may be 0 to 0.1.
일 예에서, 상기 양극활물질은 하기 화학식 2로 나타낼 수 있다.In one example, the cathode active material may be represented by the following formula (2).
[화학식 2][Formula 2]
Nax[Mn1-yMy]O2 - αAα Na x [Mn 1-y M y ] O 2 - α A α
상기 화학식 2에서, x은 0.5 내지 0.8일 수 있다. 일 예로서, x는 0.6 내지 0.8, 구체적으로 0.65 내지 0.75일 수 있다. M은 Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Nd, Mo, Tc, Ru, Rh, Pd, Pb, Ag, Cd, Al, Ga, In, Sn, 또는 Bi일 수 있다. y는 0 내지 0.25일 수 있다. 일 예로서, y는 0 내지 0.2, 구체적으로 y는 0 내지 0.1일 수 있다. 또한, y는 0.02 내지 0.25, 또는 0.025 내지 0.1일 수 있다. A는 N,O,F, 또는 S일 수 있고, α는 0 내지 0.1일 수 있다.In Formula 2, x may be 0.5 to 0.8. As an example, x may be 0.6 to 0.8, specifically 0.65 to 0.75. M is Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Nd, Mo, Tc, Ru, Rh, Pd, Pb, Ag, Cd, Al, Ga, In, Sn, or Bi. y may be 0 to 0.25. As an example, y may be 0 to 0.2, specifically y may be 0 to 0.1. In addition, y may be 0.02 to 0.25, or 0.025 to 0.1. A may be N, O, F, or S, and α may be 0 to 0.1.
상기 화학식 1 또는 2로 나타낸 양극활물질은 사방정계 결정 구조(orthorhombic crystal system)를 가질 수 있다. 구체적으로, 사방정 구조를 가지고, 나트륨층과 전이금속산화물층이 서로 교대로 적층된 층상화합물이며, 공간군(space group)은 Cmcm이다. 이러한 활물질은 XRD 그래프에서 (002)면을 나타내는 제1 피크의 강도는 (004)면을 나타내는 제2 피크의 강도 대비 5 내지 8배를 나타낼 수 있다. 또한, 이러한 활물질은 XRD 그래프에서 (002)면을 나타내는 제1 피크의 반치폭은 약 0.2 내지 약 0.3 구체적으로, 약 0.21 내지 약 0.24일 수 있다.The cathode active material represented by Chemical Formula 1 or 2 may have an orthorhombic crystal system. Specifically, it is a layered compound having a tetragonal structure, in which a sodium layer and a transition metal oxide layer are alternately stacked, and a space group is Cmcm. Such an active material may exhibit an intensity of the first peak representing the (002) plane in the XRD graph 5 to 8 times the intensity of the second peak representing the (004) plane. In addition, the half width of the first peak showing the (002) plane in the XRD graph of the active material may be about 0.2 to about 0.3, specifically, about 0.21 to about 0.24.
나아가, 상기 양극 활물질은 하기 화학식 3 또는 4로 나타내어질 수 있다.Furthermore, the cathode active material may be represented by the following Chemical Formula 3 or 4.
[화학식 3][Formula 3]
NaxMnO2 Na x MnO 2
상기 화학식 3에서, x는 0.5 내지 0.8일 수 있다. 일 예로서, x는 0.6 내지 0.8, 구체적으로 0.65 내지 0.75일 수 있다. In Formula 3, x may be 0.5 to 0.8. As an example, x may be 0.6 to 0.8, specifically 0.65 to 0.75.
[화학식 4][Formula 4]
Nax[Mn1-yMy]O2 Na x [Mn 1-y M y ] O 2
상기 화학식 4에서, x은 0.5 내지 0.8일 수 있다. 일 예로서, x는 0.6 내지 0.8, 구체적으로 0.65 내지 0.75일 수 있다. M은 Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Nd, Mo, Tc, Ru, Rh, Pd, Pb, Ag, Cd, Al, Ga, In, Sn, 또는 Bi일 수 있다. y는 0.02 내지 0.25일 수 있다. 일 예로서, y는 0.02 내지 0.2, 구체적으로 y는 0.025 내지 0.1일 수 있다.In Formula 4, x may be 0.5 to 0.8. As an example, x may be 0.6 to 0.8, specifically 0.65 to 0.75. M is Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Nd, Mo, Tc, Ru, Rh, Pd, Pb, Ag, Cd, Al, Ga, In, Sn, or Bi. y may be 0.02 to 0.25. As an example, y may be 0.02 to 0.2, specifically y may be 0.025 to 0.1.
도 1은 본 발명의 일 실시예에 따른 양극 활물질을 제조하는 방법을 나타낸 플로우챠트이다.1 is a flowchart illustrating a method of manufacturing a cathode active material according to an embodiment of the present invention.
도 1을 참조하면, 나트륨염과 망간염을 함유하는 금속염 용액을 제조할 수 있다(S10). 상기 금속염 용액은 나트륨염과 망간염 외의 금속염(들) 을 더 혼합할 수 있다. 상기 금속염 용액 내의 나트륨, 망간, 그외 제1 금속(상기 화학식 1에서, M1), 그외 제2 금속(상기 화학식 1에서, M2)의 몰비는 x:1-y-z:y:z (x, y, 및 z는 화학식 1에서 정의된 바와 같음)일 수 있다. 상기 금속염은 금속 탄산염, 금속 질산염, 또는 금속 옥살산염일 수 있다. 나트륨염은 NaNO3, Na2CO3, 또는 NaHCO3일 수 있고, 망간염은 Mn(NO3)2일 수 있다. 이러한 금속염들 구체적으로, 나트륨염, 망간염, 및 망간 외 금속의 염은 수화물의 형태를 가질 수 있다. 상기 금속염 용액은 용매로서 증류수를 함유할 수 있다.Referring to FIG. 1, a metal salt solution containing sodium salt and manganese salt may be prepared (S10). The metal salt solution may further mix metal salt (s) other than sodium salt and manganese salt. Sodium, manganese, and other first metal in the metal salt solution (in the above formula 1, M 1), and other second metal molar ratio of (In Formula 1, M 2) is x: 1-yz: y: z (x, y, and z may be as defined in Formula 1). The metal salt may be a metal carbonate, metal nitrate, or metal oxalate. The sodium salt may be NaNO 3 , Na 2 CO 3 , or NaHCO 3 , and the manganese salt may be Mn (NO 3 ) 2 . These metal salts, specifically, sodium salts, manganese salts, and salts of non-manganese metals may take the form of hydrates. The metal salt solution may contain distilled water as a solvent.
상기 금속염 용액 내에 킬레이트제를 더 추가할 수 있다. 상기 킬레이트제는 주석산, 우레아, 구연산, 포름산, 글리콜산, 폴리아크릴산, 아디픽산, 및 글리신으로 이루어진 군에서 선택될 수 있다. 상기 킬레이트제는 상기 금속염의 중량 대비 10wt% 내지 30wt%로 함유될 수 있다. 한편, 상기 금속염 용액 내에 결정 성장 억제제(crystal growth inhibitor)를 더 포함할 수 있다. 상기 결정 성장 억제제는 사카라이드 또는 이의 유도체로서 예를 들어, 글루코오스(glucose), 수크로오스(sucrose), 또는 이의 유도체일 수 있다. 이러한 결정 성장 억제제는 상기 금속염의 중량 대비 1wt% 내지 10wt%로 함유될 수 있다.A chelating agent may be further added to the metal salt solution. The chelating agent may be selected from the group consisting of tartaric acid, urea, citric acid, formic acid, glycolic acid, polyacrylic acid, adipic acid, and glycine. The chelating agent may be contained in 10wt% to 30wt% relative to the weight of the metal salt. On the other hand, the metal salt solution may further include a crystal growth inhibitor (crystal growth inhibitor). The crystal growth inhibitor may be, for example, glucose, sucrose, or a derivative thereof as a saccharide or a derivative thereof. Such crystal growth inhibitor may be contained in 1wt% to 10wt% relative to the weight of the metal salt.
상기 금속염 용액을 교반하여 충분히 혼합할 수 있다.The metal salt solution may be sufficiently mixed by stirring.
이 후, 상기 금속염 용액을 초음파 분무 열분해(ultrasonic spray pyrolysis)하여 고체 분말을 얻을 수 있다(S20). 상기 초음파 분무 열분해는, 고상법에 비해 낮은 온도와 짧은 시간 동안 순수한 조성의 금속 산화물을 얻을 수 있는 장점이 있는 방법으로서, 초음파를 사용하여 상기 금속염 용액을 분무하여 액적을 만든 후, 이 액적을 열분해하는 방법이다. 상기 열분해 과정에서 금속염 등은 금속산화물로 변화될 수 있다.Thereafter, the metal salt solution may be subjected to ultrasonic spray pyrolysis to obtain a solid powder (S20). The ultrasonic spray pyrolysis is a method of obtaining a metal oxide having a pure composition for a low temperature and a short time compared to a solid phase method. The ultrasonic spray pyrolysis sprays the metal salt solution to make droplets, and then thermally decomposes the droplets. That's how. In the pyrolysis process, the metal salt may be converted into a metal oxide.
이 후, 상기 고체 분말을 건조 공기 분위기에서 열처리하여 양극 활물질을 얻을 수 있다(S30). 상기 건조 공기 분위기는 15vol.% 내지 100vol.%의 건조된 산소 분위기, 구체적으로 20vol.% 내지 100vol.%의 산소와 나머지의 비활성 기체를 함유하는 건조 분위기일 수 있다. 이 때, 상기 비활성 기체는 질소일 수 있다. 본 명세서 내에서 건조 분위기란 수분을 포함하지 않은 분위기를 의미할 수 있다. 이러한 분위기에서의 열처리 과정에서는 나트륨의 휘발을 막을 수 있는 장점이 있다. 또한, 열처리는 1100℃ 내지 1300℃에서 수행할 수 있다.Thereafter, the solid powder may be heat-treated in a dry air atmosphere to obtain a cathode active material (S30). The dry air atmosphere may be a dry atmosphere containing 15 vol.% To 100 vol.% Of a dried oxygen atmosphere, specifically 20 vol.% To 100 vol.% Of oxygen and the rest of the inert gas. In this case, the inert gas may be nitrogen. In the present specification, the dry atmosphere may mean an atmosphere that does not contain moisture. Heat treatment in such an atmosphere has the advantage of preventing the volatilization of sodium. In addition, the heat treatment may be carried out at 1100 ℃ to 1300 ℃.
상기 화학식들에 기재된 사방정 구조를 가지고, 공간군이 Cmcm인 양극활물질은 나트륨 이차 전지의 용량 및 수명 특성을 향상시킬 수 있다.The cathode active material having a tetragonal structure described in the above formulas and having a space group of Cmcm may improve capacity and lifespan characteristics of the sodium secondary battery.
또한 고용량 특성을 갖는 이차전지는 중대형 디바이스의 전원인 전지모듈의 단위 전지로 사용될 수 있다. 상기 중대형 디바이스는, 예를 들어, 전기적 모터에 의해 동력을 받아 움직이는 파워 툴(power tool); 하이브리드 전기차(Hybrid Electric Vehicle, HEV) 및 플러그인 하이브리드 전기차(Plug-in Hybrid Electric Vehicle, PHEV)를 포함하는 전기차(Electric Vehicle, EV); E-바이크(E-bike), E-스쿠터(E-scooter)를 포함하는 전기 이륜차; 또는 전기 골프 카트(electric golf cart) 등을 들 수 있으나, 이에 한정되는 것은 아니다.In addition, the secondary battery having high capacity may be used as a unit battery of a battery module which is a power source of medium and large devices. The medium-to-large device includes, for example, a power tool that is powered by an electric motor; Electric vehicles (EVs) including hybrid electric vehicles (HEVs) and plug-in hybrid electric vehicles (PHEVs); Electric two-wheeled vehicles including E-bikes and E-scooters; Or an electric golf cart, but is not limited thereto.
아래에서는 적용가능한 이차전지 중 나트륨 이차전지에 대해 설명한다.Hereinafter, the sodium secondary battery among the applicable secondary batteries will be described.
나트륨 이차전지Sodium secondary battery
본 발명의 일 실시예에 따른 나트륨 이차전지는 위에서 설명한 양극활물질를 함유하는 양극, 나트륨이 탈삽입될 수 있는 음극활물질을 함유하는 음극, 및 이들 사이에 위치하는 전해질을 구비한다.A sodium secondary battery according to an embodiment of the present invention includes a positive electrode containing the positive electrode active material described above, a negative electrode containing a negative electrode active material into which sodium can be inserted, and an electrolyte positioned therebetween.
<양극><Anode>
상기 화학식 1에 기재된 양극활물질, 도전재, 및 결합제를 혼합하여 양극재료를 얻을 수 있다.A cathode material may be obtained by mixing the cathode active material, the conductive material, and the binder described in Chemical Formula 1.
상기 화학식 1에 기재된 양극활물질은 안정적인 결정구조를 가질 수 있어 수분에 의한 열화 정도가 낮고 또한 작동 전압을 낮출 수 있는 장점이 있다. 그러나, 상기 화학식 1에 기재된 양극활물질은 전이금속(화학식 1에서 Mn, M1, 및 M2) 대비 나트륨의 몰비가 1보다 적어, 다시 말해서 상기 화학식 1에서 x가 1보다 작은 값을 나타내므로, x가 1이상인 다른 양극활물질 대비 나트륨의 함량이 적을 수 있다. 이를 보완하기 위해 상기 양극재료 내에 나트륨염을 추가할 수 있다. 상기 나트륨염에 포함된 Na 이온은 전지의 초기 충전과정에서 환원되어 추가적인 Na 공급원 역할을 할 수 있다. 이 경우, 나트륨 이차전지의 초기 충전용량을 향상시켜 전지 성능을 향상시킬 수 있다. 상기 나트륨염은 NaNO2일 수 있고, 상기 나트륨염의 첨가량은 상기 양극활물질 100 중량부에 대해 1 내지 20 중량부, 구체적으로 3 내지 20 중량부 또는 3 내지 15 중량부 더 구체적으로는 3 내지 12 중량부 일 예로서 5 내지 7 중량부로 함유될 수 있다. The positive electrode active material described in Chemical Formula 1 may have a stable crystal structure, and thus may have a low degree of deterioration due to moisture and a low operating voltage. However, since the molar ratio of sodium to the transition metal (Mn, M 1 , and M 2 in Formula 1) is less than 1, that is, x represents less than 1 in Formula 1, The content of sodium may be lower than that of other positive electrode active materials having x of 1 or more. To compensate for this, sodium salt may be added to the cathode material. Na ions contained in the sodium salt may be reduced during the initial charging of the battery to serve as an additional Na source. In this case, the initial charge capacity of the sodium secondary battery can be improved to improve battery performance. The sodium salt may be NaNO 2 , the addition amount of the sodium salt is 1 to 20 parts by weight, specifically 3 to 20 parts by weight or 3 to 15 parts by weight based on 100 parts by weight of the positive electrode active material As an example, it may be contained in 5 to 7 parts by weight.
상기 도전재는 천연 흑연, 인조 흑연, 코크스류, 카본 블랙, 탄소 나노튜브, 그라핀 등의 탄소 재료일 수 있다. 결합제는 열가소성 수지 예를 들어, 폴리불화비닐리덴, 폴리테트라플루오로에틸렌, 사불화에틸렌, 불화비닐리덴계 공중합체, 육불화프로필렌 등의 불소 수지, 및/또는 폴리에틸렌, 폴리프로필렌 등의 폴리올레핀 수지를 포함할 수 있다.The conductive material may be a carbon material such as natural graphite, artificial graphite, cokes, carbon black, carbon nanotubes, or graphene. The binder may be a thermoplastic resin such as polyvinylidene fluoride, polytetrafluoroethylene, ethylene tetrafluoride, vinylidene fluoride copolymer, fluorine resin such as hexafluoropropylene, and / or polyolefin resin such as polyethylene or polypropylene. It may include.
상기 나트륨염이 추가된 경우, 상기 도전재는 상기 양극활물질 100 중량부에 대해 2 내지 9 중량부 구체적으로는 4 내지 7 중량부 더 구체적으로는 5 내지 6 중량부로 함유될 수 있고, 상기 결합제는 상기 양극활물질 100 중량부에 대해 2 내지 9 중량부 구체적으로는 4 내지 7 중량부 더 구체적으로는 5 내지 6 중량부로 함유될 수 있다. When the sodium salt is added, the conductive material may be contained in 2 to 9 parts by weight, specifically 4 to 7 parts by weight and more specifically 5 to 6 parts by weight, based on 100 parts by weight of the positive electrode active material. 2 to 9 parts by weight, specifically 4 to 7 parts by weight, and more specifically 5 to 6 parts by weight, based on 100 parts by weight of the positive electrode active material.
양극재료를 양극 집전체 상에 도포하여 양극을 형성할 수 있다. 양극 집전체는 Al, Ni, 스테인레스 등의 도전체일 수 있다. 양극재료를 양극 집전체 상에 도포하는 것은 가압 성형, 또는 유기 용매등을 사용하여 페이스트를 만든 후 이 페이스트를 집전체 상에 도포하고 프레스하여 고착화하는 방법을 사용할 수 있다. 유기 용매는 N,N-디메틸아미노프로필아민, 디에틸트리아민 등의 아민계; 에틸렌옥시드, 테트라히드로푸란 등의 에테르계; 메틸에틸케톤 등의 케톤계; 아세트산메틸 등의 에스테르계; 디메틸아세트아미드, N-메틸-2-피롤리돈 등의 비양성자성 극성 용매 등일 수 있다. 페이스트를 양극 집전체 상에 도포하는 것은 예를 들면, 그라비아 코팅법, 슬릿다이 코팅법, 나이프 코팅법, 스프레이 코팅법을 사용하여 수행할 수 있다.A positive electrode material may be applied onto a positive electrode current collector to form a positive electrode. The positive electrode current collector may be a conductor such as Al, Ni, stainless steel, or the like. The application of the positive electrode material onto the positive electrode current collector may be made by pressure molding or by using an organic solvent or the like to make a paste, and then applying the paste onto the current collector and pressing to fix the paste. The organic solvent is amine type, such as N, N-dimethylaminopropylamine and diethyltriamine; Ethers such as ethylene oxide and tetrahydrofuran; Ketones such as methyl ethyl ketone; Esters such as methyl acetate; Aprotic polar solvents such as dimethylacetamide and N-methyl-2-pyrrolidone. Application of the paste onto the positive electrode current collector can be performed using, for example, a gravure coating method, a slit die coating method, a knife coating method, a spray coating method.
<음극><Cathode>
음극활물질은 Na 이온을 탈삽입하거나 변환(conversion) 반응을 일으킬 수 있는 금속, 금속합금, 금속산화물, 금속불화물, 금속황화물, 및 천연 흑연, 인조흑연, 코크스류, 카본 블랙, 탄소나노튜브, 그라핀 등의 탄소 재료 등을 사용하여 형성할 수도 있다. Cathode active materials include metals, metal alloys, metal oxides, metal fluorides, metal sulfides, and natural graphite, artificial graphite, coke, carbon black, carbon nanotubes, and graphene that can deintercalate Na ions or cause conversion reactions. It can also form using carbon materials, such as a fin.
음극활물질, 도전재, 및 결합제를 혼합하여 음극재료를 얻을 수 있다. 이 때, 도전재는 천연 흑연, 인조 흑연, 코크스류, 카본 블랙, 탄소 나노튜브, 그라핀 등의 탄소 재료일 수 있다. 결합제는 열가소성 수지 예를 들어, 폴리불화비닐리덴, 폴리테트라플루오로에틸렌, 사불화에틸렌, 불화비닐리덴계 공중합체, 육불화프로필렌 등의 불소 수지, 및/또는 폴리에틸렌, 폴리프로필렌 등의 폴리올레핀 수지를 포함할 수 있다.The negative electrode material can be obtained by mixing the negative electrode active material, the conductive material, and the binder. In this case, the conductive material may be a carbon material such as natural graphite, artificial graphite, cokes, carbon black, carbon nanotubes, graphene, or the like. The binder may be a thermoplastic resin such as polyvinylidene fluoride, polytetrafluoroethylene, ethylene tetrafluoride, vinylidene fluoride copolymer, fluorine resin such as hexafluoropropylene, and / or polyolefin resin such as polyethylene or polypropylene. It may include.
음극재료를 양극 집전체 상에 도포하여 양극을 형성할 수 있다. 양극 집전체는 Al, Ni, 스테인레스 등의 도전체일 수 있다. 음극재료를 양극 집전체 상에 도포하는 것은 가압 성형, 또는 유기 용매등을 사용하여 페이스트를 만든 후 이 페이스트를 집전체 상에 도포하고 프레스하여 고착화하는 방법을 사용할 수 있다. 유기 용매는 N,N-디메틸아미노프로필아민, 디에틸트리아민 등의 아민계; 에틸렌옥시드, 테트라히드로푸란 등의 에테르계; 메틸에틸케톤 등의 케톤계; 아세트산메틸 등의 에스테르계; 디메틸아세트아미드, N-메틸-2-피롤리돈 등의 비양성자성 극성 용매 등일 수 있다. 페이스트를 음극 집전체 상에 도포하는 것은 예를 들면, 그라비아 코팅법, 슬릿다이 코팅법, 나이프 코팅법, 스프레이 코팅법을 사용하여 수행할 수 있다.The negative electrode material may be applied onto the positive electrode current collector to form a positive electrode. The positive electrode current collector may be a conductor such as Al, Ni, stainless steel, or the like. The application of the negative electrode material on the positive electrode current collector may be made by pressure molding or a method of making a paste using an organic solvent or the like, and then applying the paste onto the current collector and pressing to fix the paste. The organic solvent is amine type, such as N, N-dimethylaminopropylamine and diethyltriamine; Ethers such as ethylene oxide and tetrahydrofuran; Ketones such as methyl ethyl ketone; Esters such as methyl acetate; Aprotic polar solvents such as dimethylacetamide and N-methyl-2-pyrrolidone. Application of the paste onto the negative electrode current collector can be performed using, for example, a gravure coating method, a slit die coating method, a knife coating method, a spray coating method.
<전해질><Electrolyte>
전해질은 NaClO4, NaPF6, NaAsF6, NaSbF6, NaBF4, NaCF3SO3, NaN(SO2CF3)2, 저급 지방족 카르복실산나트륨염, NaAlCl4 등일 수 있고, 이들의 2종 이상의 혼합물을 사용할 수도 있다. 이들 중에서도 불소를 포함하는 전해질을 사용하는 것이 바람직하다. 또한, 전해질을 유기 용매에 용해시켜 비수전해액으로서 이용할 수 있다. 유기 용매로는, 예를 들면 프로필렌카르보네이트, 에틸렌카르보네이트, 디메틸카르보네이트, 디에틸카르보네이트, 에틸메틸카르보네이트, 이소프로필메틸카르보네이트, 비닐렌카르보네이트, 4-트리플루오로메틸-1,3-디옥솔란-2-온, 1,2-디(메톡시카르보닐옥시)에탄 등의 카르보네이트류; 1,2-디메톡시에탄, 1,3-디메톡시프로판, 펜타플루오로프로필메틸에테르, 2,2,3,3-테트라플루오로프로필디플루오로메틸에테르, 테트라히드로푸란, 2-메틸테트라히드로푸란 등의 에테르류; 포름산메틸, 아세트산메틸, γ-부티로락톤 등의 에스테르류; 아세토니트릴, 부티로니트릴 등의 니트릴류; N,N-디메틸포름아미드, N,N-디메틸아세트아미드 등의 아미드류; 3-메틸-2-옥사졸리돈 등의 카르바메이트류; 술포란, 디메틸술폭시드, 1,3-프로판술톤 등의 황 함유 화합물; 또는 상기한 유기 용매에 추가로 불소 치환기를 도입한 것을 사용할 수 있다. The electrolyte may be NaClO 4 , NaPF 6 , NaAsF 6 , NaSbF 6 , NaBF 4 , NaCF 3 SO 3 , NaN (SO 2 CF 3 ) 2 , lower aliphatic carboxylate, NaAlCl 4 , and the like. Mixtures can also be used. Among these, it is preferable to use an electrolyte containing fluorine. The electrolyte can also be dissolved in an organic solvent and used as a nonaqueous electrolyte. As an organic solvent, for example, propylene carbonate, ethylene carbonate, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, isopropyl methyl carbonate, vinylene carbonate, 4- Carbonates such as trifluoromethyl-1,3-dioxolan-2-one and 1,2-di (methoxycarbonyloxy) ethane; 1,2-dimethoxyethane, 1,3-dimethoxypropane, pentafluoropropylmethylether, 2,2,3,3-tetrafluoropropyldifluoromethylether, tetrahydrofuran, 2-methyltetrahydro Ethers such as furan; Esters such as methyl formate, methyl acetate and γ-butyrolactone; Nitriles such as acetonitrile and butyronitrile; Amides such as N, N-dimethylformamide and N, N-dimethylacetamide; Carbamates such as 3-methyl-2-oxazolidone; Sulfur-containing compounds such as sulfolane, dimethyl sulfoxide and 1,3-propanesultone; Or what introduce | transduced the fluorine substituent further to the said organic solvent can be used.
이와는 달리, 고체 전해질을 이용할 수도 있다. 고체 전해질로는 폴리에틸렌옥시드계의 고분자 화합물, 폴리오르가노실록산쇄 또는 폴리옥시알킬렌쇄 중 적어도 1종 이상을 포함하는 고분자 화합물 등의 유기계 고체 전해질일 수 있다. 또한, 고분자 화합물에 비수전해액을 담지한, 이른바 겔 타입의 전해질을 이용할 수도 있다. 한편, Na2S-SiS2, Na2S-GeS2, NaTi2(PO4)3, NaFe2(PO4)3, Na2(SO4)3, Fe2(SO4)2(PO4), Fe2(MoO4)3 등의 무기계 고체 전해질을 이용할 수도 있다. 이들 고체 전해질을 이용하여 나트륨 이차 전지의 안전성을 보다 높일 수 있는 경우가 있다. 또한, 고체 전해질이 후술하는 세퍼레이터의 역할을 하는 경우도 있고, 그 경우에는 세퍼레이터를 필요로 하지 않는 경우도 있다.Alternatively, a solid electrolyte may be used. The solid electrolyte may be an organic solid electrolyte such as a polymer compound containing at least one of a polyethylene oxide polymer compound, a polyorganosiloxane chain or a polyoxyalkylene chain. In addition, a so-called gel type electrolyte in which a nonaqueous electrolyte is supported on a high molecular compound can also be used. Meanwhile, Na 2 S-SiS 2 , Na 2 S-GeS 2 , NaTi 2 (PO 4 ) 3 , NaFe 2 (PO 4 ) 3 , Na 2 (SO 4 ) 3 , Fe 2 (SO 4 ) 2 (PO 4 ), Fe 2 (MoO 4 ) 3 Inorganic solid electrolytes, such as these, can also be used. Using these solid electrolytes, the safety of the sodium secondary battery may be further improved. In addition, a solid electrolyte may play the role of the separator mentioned later, and a separator may not be needed in that case.
<세퍼레이터><Separator>
양극과 음극 사이에 세퍼레이터가 배치될 수 있다. 이러한 세퍼레이터는 폴리에틸렌, 폴리프로필렌 등의 폴리올레핀 수지, 불소 수지, 질소 함유 방향족 중합체 등의 재질로 이루어지는 다공질 필름, 부직포, 직포 등의 형태를 가지는 재료일 수 있다. 세퍼레이터의 두께는, 전지의 부피 에너지 밀도가 높아지고, 내부 저항이 작아진다는 점에서, 기계적 강도가 유지되는 한 얇을수록 바람직하다. 세퍼레이터의 두께는, 일반적으로 5 내지 200 ㎛ 정도일 수 있고, 더 구체적으로는 5 내지 40 ㎛일 수 있다.The separator may be disposed between the positive electrode and the negative electrode. Such a separator may be a material having a form such as a porous film made of a material such as polyolefin resin such as polyethylene or polypropylene, a fluorine resin, a nitrogen-containing aromatic polymer, a nonwoven fabric, a woven fabric, or the like. The thickness of the separator is preferably as thin as the mechanical strength is maintained, in that the volume energy density of the battery becomes high and the internal resistance decreases. The thickness of the separator may generally be on the order of 5 to 200 μm, more specifically 5 to 40 μm.
<나트륨 이차 전지의 제조 방법><Method for Manufacturing Sodium Secondary Battery>
양극, 세퍼레이터, 및 음극을 순서대로 적층하여 전극군을 형성한 후 필요하다면 전극군을 말아서 전지캔에 수납하고, 전극군에 비수전해액을 함침시킴으로써 나트륨 이차 전지를 제조할 수 있다. 이와는 달리, 양극, 고체 전해질, 및 음극을 적층하여 전극군을 형성한 후 필요하다면 전극군을 말아서 전지캔에 수납하여 나트륨 이차 전지를 제조할 수 있다.After forming the electrode group by laminating the positive electrode, the separator, and the negative electrode in order, the electrode group can be rolled up and stored in a battery can if necessary, and the sodium secondary battery can be manufactured by impregnating the electrode group with a nonaqueous electrolyte. Alternatively, a sodium secondary battery may be manufactured by stacking a positive electrode, a solid electrolyte, and a negative electrode to form an electrode group, and then rolling the electrode group in a battery can if necessary.
이하, 본 발명의 이해를 돕기 위하여 바람직한 실험예(example)를 제시한다. 다만, 하기의 실험예는 본 발명의 이해를 돕기 위한 것일 뿐, 본 발명이 하기의 실험예에 의해 한정되는 것은 아니다.Hereinafter, preferred examples are provided to aid the understanding of the present invention. However, the following experimental examples are only for helping understanding of the present invention, and the present invention is not limited to the following experimental examples.
[실험예들; Examples][Experimental Examples; Examples]
활물질 제조예들Active material preparation examples
<활물질 제조예 1: Na0 . 7MnO2 제조><Active Material Preparation Example 1: Na 0 . 7 MnO 2 Manufacturing>
0.056몰의 질산나트륨(Sodium nitrate), 0.08몰의 질산망간 4수화물(Manganese(II) nitrate tetrahydrate), 구연산(Citric acid), 및 수크로오스(Sucrose)을 증류수에 용해시키고 충분히 섞일 수 있도록 마그네틱 바를 이용하여 12시간 이상 교반하여 주었다. 상기 구연산은 상기 질산염들 무게 대비 0.2배, 상기 수크로오스는 상기 질산염들 무게 대비 0.05배의 비율로 사용하였다. 교반된 용액을 초음파 스프레이의 노즐을 통해 일정한 속도로 400℃로 유지된 석영 튜브 안으로 분사시켜, 고체 분말을 얻었다. 이 고체 분말을 일정한 압력으로 펠레타이징시킨 후, 알루미나 도가니에 넣고, 21vol.%의 O2와 79vol.%의 N2를 함유한 건조 공기 분위기에서, 상기 알루미나 도가니를 5℃/min의 속도로 승온한 후, 1200℃로 10 시간동안 유지시킨 후, 30℃까지 3℃/min의 속도로 서서히 냉각하여 Na0 . 7MnO2를 제조하였다.Magnetic bars are used to dissolve 0.056 moles of sodium nitrate, 0.08 moles of manganese nitrate tetrahydrate (Manganese (II) nitrate tetrahydrate), citric acid, and sucrose in distilled water and mix well. It stirred for more than 12 hours. The citric acid was used 0.2 times the weight of the nitrates, the sucrose was used at a rate of 0.05 times the weight of the nitrates. The stirred solution was sprayed through a nozzle of ultrasonic spray into a quartz tube maintained at 400 ° C. at a constant rate to obtain a solid powder. After pelletizing the solid powder at a constant pressure, the solid powder was placed in an alumina crucible and the alumina crucible was fed at a rate of 5 ° C./min in a dry air atmosphere containing 21 vol.% O 2 and 79 vol.% N 2 . After the temperature was raised, the temperature was maintained at 1200 ° C. for 10 hours, and then gradually cooled to 30 ° C. at a rate of 3 ° C./min to Na 0 . 7 MnO 2 was prepared.
<활물질 제조예들 2 및 3 : Na0 . 7MnO2 제조><Preparation Examples 2 and 3: Na 0 . 7 MnO 2 Manufacturing>
펠레타이징시킨 고체 분말을 1150℃로 10 시간동안 열처리(활물질 제조예 2)하거나 1100℃로 10 시간동안 열처리한 것(활물질 제조예 3)을 제외하고는 활물질 제조예 1과 동일한 방법을 수행하여 Na0.7MnO2를 제조하였다.Except that the pelletized solid powder was heat treated at 1150 ° C. for 10 hours (active material preparation example 2) or heat treated at 1100 ° C. for 10 hours (active material preparation example 3) Na 0.7 MnO 2 was prepared.
<활물질 제조예 4: Na0 . 7MnO2 제조><Preparation Example 4: Na 0 . 7 MnO 2 Manufacturing>
펠레타이징시킨 고체 분말을 1300℃로 10 시간동안 열처리한 것을 제외하고는 활물질 제조예 1과 동일한 방법을 수행하여 Na0.7MnO2를 제조하였다.Na 0.7 MnO 2 was prepared in the same manner as in Preparation Example 1, except that the pelletized solid powder was heat-treated at 1300 ° C. for 10 hours.
<활물질 제조예 5 내지 8: Na0 . 7MnO2 제조><Active Material Preparation Examples 5 to 8: Na 0 . 7 MnO 2 Manufacturing>
펠레타이징시킨 고체 분말을 하기 표 1에 기재된 건조 분위기에서 열처리한 것을 제외하고는 활물질 제조예 1과 동일한 방법을 수행하여 Na0 . 7MnO2를 제조하였다.Except that the pelletized solid powder was heat-treated in the dry atmosphere shown in Table 1 below, the same method as in Preparation Example 1 was carried out to provide Na 0 . 7 MnO 2 was prepared.
<활물질 제조예 9 내지 27: Nax[Mn1-yMy]O2 제조><Preparation Example 9 to 27: Preparation of Na x [Mn 1-y M y ] O 2 >
질산나트륨(Sodium nitrate), 질산망간 4수화물(Manganese(II) nitrate tetrahydrate), 및 그 외 금속(M)의 염을 하기 표 1에 기재한 당량 만큼 구연산 및 수크로오스와 더불어 증류수에 용해한 것을 제외하고는 활물질 제조예 1과 동일한 방법을 수행하여 Nax[Mn1-yMy]O2를 제조하였다. 상기 금속(M)의 염으로서, 활물질 제조예 9에서는 질산은(Silver nitrate), 활물질 제조예들 10 및 11에서는 질산알루미늄 9수화물(Aluminum nitrate nonahydrate), 활물질 제조예 12에서는 질산비스무스 5수화물(Bismuth(III) nitrate pentahydrate), 활물질 제조예들 13 및 14에서는 질산코발트 6수화물(Cobalt(II) nitrate hexahydrate, 활물질 제조예 15에서는 질산카드뮴 4수화물(Cadmium nitrate tetrahydrate), 활물질 제조예들 16 및 17에서는 질산구리 3수화물(Copper(II) nitrate trihydrate, 활물질 제조예 18에서는 질산철 9수화물(Iron(III) nitrate nonahydrate), 활물질 제조예 19에서는 질산인듐 수화물(Indium(III) nitrate hydrate), 활물질 제조예 20에서는 질산네오디뮴 수화물(Neodymium(III) nitrate hydrate), 활물질 제조예들 21 및 22에서는 질산니켈 6수화물(Nickel(II) nitrate hexahydrate), 활물질 제조예 23에서는 질산납(Lead(iii) nitrate), 활물질 제조예 24에서는 질산로듐수화물(Rhodium(III) nitrate hydrate), 활물질 제조예 25에서는 질산스칸듐 수화물(Scandium(III) nitrate hydrate), 그리고 활물질 제조예들 26 및 27에서는 질산아연 수화물(Zinc nitrate hydrate)을 사용하였다. Except that sodium nitrate, manganese (II) nitrate tetrahydrate, and other salts of metal (M) were dissolved in distilled water together with citric acid and sucrose in the equivalent amounts shown in Table 1 below. Na x [Mn 1-y M y ] O 2 was prepared by the same method as in Preparation Example 1 of the active material. As the salt of the metal (M), silver nitrate in active material preparation 9, aluminum nitrate nonahydrate in active materials preparation 10 and 11, bismuth nitrate pentahydrate in active material preparation 12, and Bismuth ( III) nitrate pentahydrate, active material preparation examples 13 and 14 cobalt (II) nitrate hexahydrate, active material preparation example 15, cadmium nitrate tetrahydrate, active material preparation examples 16 and 17 nitric acid Copper (II) nitrate trihydrate (Iron (III) nitrate nonahydrate) in active material preparation example 18, Indium (III) nitrate hydrate in active material preparation example 19, active material preparation example 20 (Neodymium (III) nitrate hydrate) in, active material preparation examples 21 and 22 nickel nitrate hexahydrate (Nickel (II) nitrate hexahydrate), in the active material preparation example 23 Lead (iii) nitr ate), Rhodium (III) nitrate hydrate in active material preparation examples 24, Scandium (III) nitrate hydrate in active material preparation examples 25, and zinc nitrate hydrate in active material preparation examples 26 and 27 Zinc nitrate hydrate) was used.
<활물질 비교예 1: Na0 . 7MnO2 제조><Active Material Comparative Example 1: Na 0 . 7 MnO 2 Manufacturing>
펠레타이징시킨 고체 분말을 1000℃로 10 시간동안 열처리한 것을 제외하고는 활물질 제조예 1과 동일한 방법을 수행하여 Na0.7MnO2를 제조하였다.Na 0.7 MnO 2 was prepared in the same manner as in Preparation Example 1, except that the pelletized solid powder was heat-treated at 1000 ° C. for 10 hours.
<활물질 비교예 2><Active Material Comparative Example 2>
펠레타이징시킨 고체 분말을 건조 공기가 아닌 일반 대기 분위기에서 열처리한 것을 제외하고는 활물질 제조예 1과 동일한 방법을 수행하여 열처리된 고체 분말을 얻었다.Except that the pelletized solid powder was heat-treated in a general atmospheric atmosphere instead of dry air, the same method as in Preparation Example 1 of Active Material was performed to obtain a heat-treated solid powder.
<활물질 비교예 3 : Na0 . 7(Mn0.75Fe0.25)O2 제조><Active material in Comparative Example 3: Na 0. 7 (Mn 0.75 Fe 0.25 ) O 2 Preparation>
0.056몰의 질산나트륨(Sodium nitrate), 0.06몰의 질산망간 4수화물(Manganese(II) nitrate tetrahydrate), 및 0.02몰의 질산철 9수화물(Iron(III) nitrate nonahydrate), 구연산(Citric acid), 및 수크로오스(Sucrose)를 함유하는 용액을 사용하고, 교반된 용액을 초음파 스프레이의 노즐을 통해 일정한 속도로 600℃로 유지된 석영 튜브 안으로 분사시켜 고체 분말을 얻고, 펠레타이징시킨 고체 분말을 900℃로 10 시간동안 열처리한 것을 제외하고는 활물질 제조예 1과 동일한 방법을 수행하여 Na0.7(Mn0.75Fe0.25)O2를 제조하였다.0.056 moles of sodium nitrate, 0.06 moles of manganese nitrate tetrahydrate, and 0.02 moles of iron nitrate nitrate (Iron (III) nitrate nonahydrate, citric acid, and Using a solution containing sucrose, the stirred solution was sprayed through a nozzle of ultrasonic spray into a quartz tube maintained at 600 ° C. at a constant rate to obtain a solid powder, and the pelletized solid powder to 900 ° C. Na 0.7 (Mn 0.75 Fe 0.25 ) O 2 was prepared by the same method as in Preparation Example 1 except that the heat treatment was performed for 10 hours.
<활물질 비교예 4 : Na0 . 7(Mn0.5Fe0.5)O2 제조><Active material in Comparative Example 4: Na 0. 7 (Mn 0.5 Fe 0.5 ) O 2 Preparation>
0.056몰의 질산나트륨(Sodium nitrate), 0.04몰의 질산망간 4수화물(Manganese(II) nitrate tetrahydrate), 0.04몰의 질산철 9수화물(Iron(III) nitrate nonahydrate), 구연산(Citric acid), 및 수크로오스(Sucrose)를 함유하는 용액을 사용하고, 교반된 용액을 초음파 스프레이의 노즐을 통해 일정한 속도로 600℃로 유지된 석영 튜브 안으로 분사시켜 고체 분말을 얻고, 펠레타이징시킨 고체 분말을 1000℃로 10 시간동안 열처리한 것을 제외하고는 활물질 제조예 1과 동일한 방법을 수행하여 Na0 . 7(Mn0.5Fe0.5)O2를 제조하였다.0.056 moles of sodium nitrate, 0.04 moles of manganese (II) nitrate tetrahydrate, 0.04 moles of iron nitrate nitrate (Iron (III) nitrate nonahydrate), citric acid, and sucrose Using a solution containing (Sucrose) and spraying the stirred solution through a nozzle of ultrasonic spray into a quartz tube maintained at 600 ° C. at a constant rate to obtain a solid powder, and pelletized solid powder to 1000 ° C. except that the heat treatment for a time and performs the same way as active material Preparation example 1 Na 0. 7 (Mn 0.5 Fe 0.5 ) O 2 was prepared.
조성Furtherance 열처리 분위기Heat treatment atmosphere 열처리 온도 [℃]Heat treatment temperature [℃]
O2 [vol.%]O 2 [vol.%] N2 [vol.%]N 2 [vol.%]
활물질 제조예 1Active Material Preparation Example 1 Na0 . 7MnO2 Na 0 . 7 MnO 2 2121 7979 12001200
활물질 제조예 2Active Material Preparation Example 2 11501150
활물질 제조예 3Active Material Preparation Example 3 11001100
활물질 제조예 4Active Material Preparation Example 4 13001300
활물질 제조예 5Active Material Preparation Example 5 100100 -- 12001200
활물질 제조예 6Active Material Preparation Example 6 3030 7070
활물질 제조예 7Active Material Preparation Example 7 5050 5050
활물질 제조예 8Active Material Preparation Example 8 7070 3030
활물질 제조예 9Active Material Preparation Example 9 Na0.7(Mn0.975Ag0.025)O2 Na 0.7 (Mn 0.975 Ag 0.025 ) O 2 2121 7979 12001200
활물질 제조예 10Active Material Preparation Example 10 Na0.7(Mn0.95Al0.05)O2 Na 0.7 (Mn 0.95 Al 0.05 ) O 2
활물질 제조예 11Active Material Preparation Example 11 Na0 . 7(Mn0.9Al0.1)O2 Na 0 . 7 (Mn 0.9 Al 0.1) O 2
활물질 제조예 12Active Material Preparation Example 12 Na0.7(Mn0.975Bi0.025)O2 Na 0.7 (Mn 0.975 Bi 0.025 ) O 2
활물질 제조예 13Active Material Preparation Example 13 Na0.7(Mn0.95Co0.05)O2 Na 0.7 (Mn 0.95 Co 0.05 ) O 2
활물질 제조예 14Active Material Preparation Example 14 Na0 . 7(Mn0.9Co0.1)O2 Na 0 . 7 (Mn 0.9 Co 0.1 ) O 2
활물질 제조예 15Active Material Preparation Example 15 Na0.7(Mn0.975Cd0.025)O2 Na 0.7 (Mn 0.975 Cd 0.025 ) O 2
활물질 제조예 16Active Material Preparation Example 16 Na0.7(Mn0.95Cu0.05)O2 Na 0.7 (Mn 0.95 Cu 0.05 ) O 2
활물질 제조예 17Active Material Preparation Example 17 Na0 . 7(Mn0.9Cu0.1)O2 Na 0 . 7 (Mn 0.9 Cu 0.1 ) O 2
활물질 제조예 18Active Material Preparation Example 18 Na0.7(Mn0.95Fe0.05)O2 Na 0.7 (Mn 0.95 Fe 0.05 ) O 2
활물질 제조예 19Active Material Preparation Example 19 Na0.7(Mn0.975In0.025)O2 Na 0.7 (Mn 0.975 In 0.025 ) O 2
활물질 제조예 20Active Material Preparation Example 20 Na0.7(Mn0.975Nd0.025)O2 Na 0.7 (Mn 0.975 Nd 0.025 ) O 2
활물질 제조예 21Active Material Preparation Example 21 Na0.7(Mn0.95Ni0.05)O2 Na 0.7 (Mn 0.95 Ni 0.05 ) O 2
활물질 제조예 22Active Material Preparation Example 22 Na0 . 7(Mn0.9Ni0.1)O2 Na 0 . 7 (Mn 0.9 Ni 0.1 ) O 2
활물질 제조예 23Active Material Preparation Example 23 Na0.7(Mn0.95Pb0.05)O2 Na 0.7 (Mn 0.95 Pb 0.05 ) O 2
활물질 제조예 24Active Material Preparation Example 24 Na0.7(Mn0.975Rh0.025)O2 Na 0.7 (Mn 0.975 Rh 0.025 ) O 2
활물질 제조예 25Active Material Preparation Example 25 Na0.7(Mn0.975Sc0.025)O2 Na 0.7 (Mn 0.975 Sc 0.025 ) O 2
활물질 제조예 26Active Material Preparation Example 26 Na0.7(Mn0.95Zn0.05)O2 Na 0.7 (Mn 0.95 Zn 0.05 ) O 2
활물질 제조예 27Active Material Preparation Example 27 Na0 . 7(Mn0.9Zn0.1)O2 Na 0 . 7 (Mn 0.9 Zn 0.1 ) O 2
활물질 비교예 1Active material comparative example 1 Na0 . 7MnO2 Na 0 . 7 MnO 2 2121 7979 10001000
활물질 비교예 2Active material comparative example 2 Mn3O4 Mn 3 O 4 일반 대기 분위기General atmosphere 12001200
활물질 비교예 3Active material comparative example 3 Na0.7(Mn0.75Fe0.25)O2 Na 0.7 (Mn 0.75 Fe 0.25 ) O 2 2121 7979 900900
활물질 비교예 4Active material comparative example 4 Na0 . 7(Mn0.5Fe0.5)O2 Na 0 . 7 (Mn 0.5 Fe 0.5 ) O 2 2121 7979 10001000
도 2는 활물질 제조예들 1 내지 4 및 활물질 비교예 1에 따른 Na0 . 7MnO2들의 XRD 분석결과를 나타낸 그래프이고, 도 3은 활물질 제조예 1에 따른 Na0 . 7MnO2의 XRD 분석결과를 확대하여 나타낸 그래프이며, 도 4는 활물질 제조예들 5 내지 8에 따른 Na0.7MnO2들의 XRD 분석결과를 나타낸 그래프이다. 2 is Na 0 according to the active material preparation examples 1 to 4 and Comparative Example 1 active material . 7 is a graph showing the XRD analysis results of MnO 2 , Figure 3 is Na 0 according to the active material preparation example 1 . 7 is a graph showing an enlarged XRD analysis result of MnO 2 , Figure 4 is a graph showing the XRD analysis results of Na 0.7 MnO 2 according to active material preparation examples 5 to 8.
도 2를 참조하면, 1000℃로 열처리한 비교예 1에 다른 Na0 . 7MnO2은 P63/mmc 및 Cmcm인 공간군을 갖는 육방정 (hexagonal) 위주의 P2구조의 XRD 피크를 나타내는 반면, 1100 내지 1300℃로 열처리한 활물질 제조예들 1 내지 4에 따른 Na0 . 7MnO2은 Cmcm인 공간군을 갖는 사방정 구조의 XRD 피크를 나타내는 것을 알 수 있다.Referring to Figure 2, Na 0 different from Comparative Example 1 heat-treated at 1000 ℃ . 7 MnO 2 is P6 3 / mmc and Cmcm space while showing an XRD peak of the hexagonal P2 structure oriented (hexagonal) with the group, Na in accordance with an active material Preparation Example 1 through 4 the heat treatment at 1100 to 1300 ℃ 0. It can be seen that 7 MnO 2 represents an XRD peak of a tetragonal structure having a space group of Cmcm.
도 3을 참조하면, 1200℃로 열처리한 활물질 제조예 1에 다른 Na0 . 7MnO2은 제조예들 2 내지 4에 따른 Na0 . 7MnO2와 마찬가지로 Cmcm인 공간군을 갖는 사방정 구조의 XRD 피크를 나타냄을 알 수 있다. 구체적으로, Cmcm인 공간군을 갖는 사방정 구조의 Na0 . 7MnO2는 약 15도에서 (002)면을 나타내는 제1 피크와 약 32도에서 (004)면을 나타내는 제2 피크가 나타났다. 다만, 1200℃로 열처리한 활물질 제조예 1에 따른 Na0 . 7MnO2은 활물질 제조예들 2 내지 4에 따른 Na0 . 7MnO2에 비해 Cmcm인 공간군을 갖는 사방정 구조의 XRD 피크들이 다소 선명함을 알 수 있다.Referring to Figure 3, Na 0 and other active material preparation example 1 heat-treated at 1200 ℃ . 7 MnO 2 is Na 0 . Similar to 7 MnO 2 , it can be seen that the XRD peak of the tetragonal structure having a space group of Cmcm is shown. Specifically, Na 0 having a tetragonal structure having a space group of Cmcm . 7 MnO 2 exhibited a first peak representing the (002) plane at about 15 degrees and a second peak representing the (004) plane at about 32 degrees. However, Na 0 according to the active material preparation example 1 heat-treated at 1200 ℃ . 7 MnO 2 is Na 0 . It can be seen that the XRD peaks of the tetragonal structure having a space group of Cmcm compared to 7 MnO 2 are somewhat clear.
도 4를 참조하면, 21vol.%의 O2와 79vol.%의 N2를 함유한 건조 공기 분위기에서 열처리한 활물질 제조예들 1 내지 4에 따른 Na0 . 7MnO2와 동일하게 30, 50, 70, 및 100vol.%의 O2를 함유한 건조 공기 분위기(나머지 N2)에서 열처리한 활물질 제조예들 5 내지 8에 따른 Na0 . 7MnO2 또한 Cmcm인 공간군을 갖는 사방정 구조의 XRD 피크를 나타내는 것을 알 수 있다.Referring to Figure 4, Na 0 according to the active material Preparation Examples 1 to 4 heat-treated in a dry air atmosphere containing 21 vol.% O 2 and 79vol.% N 2 . Na 0 according to Preparation Examples 5 to 8 heat-treated in a dry air atmosphere (remaining N 2 ) containing 30, 50, 70, and 100 vol.% O 2 in the same manner as 7 MnO 2 . 7 MnO 2 It can also be seen that the XRD peak of the tetragonal structure having a space group of Cmcm is shown.
한편, 도 2, 도 3, 및 도 4을 다시 참조하면, Cmcm인 공간군을 갖는 사방정 구조의 활물질은 약 15도에서 (002)면을 나타내는 제1 피크의 반치폭은 약 0.2 내지 약 0.3 구체적으로, 약 0.21 내지 약 0.24일 수 있다. 또한, 제1 피크의 강도는 제2 피크의 강도에 비해 약 5배 내지 약 8.5배 구체적으로, 약 5.47배 내지 약 8.076배정도인 것으로 나타났다. 그러나, 비교예 1에 따른 P63/mmc 및 Cmcm인 공간군을 갖는 육방정 (hexagonal) 위주의 P2구조의 활물질은 제1 피크의 강도는 제2 피크의 강도 대비 약 2 배 정도인 것으로 나타났다. Meanwhile, referring back to FIGS. 2, 3, and 4, in the active material having a tetragonal structure having a space group of Cmcm, the half width of the first peak representing the (002) plane at about 15 degrees is about 0.2 to about 0.3. , From about 0.21 to about 0.24. In addition, the intensity of the first peak was about 5 times to about 8.5 times the intensity of the second peak, specifically, about 5.47 times to about 8.076 times. However, in the hexagonal-oriented P2 structure active material having a space group of P6 3 / mmc and Cmcm according to Comparative Example 1, the intensity of the first peak was about 2 times higher than that of the second peak.
이와 같이, (002)면을 나타내는 제1 피크의 반치폭이 0.3 이하인 것, 이에 더하여 (002)면을 나타내는 제1 피크의 강도가 매우 큰 것은 본 제조예들에 따른 Na0.7MnO2가 결정성이 매우 좋다는 것을 의미할 수 있다. 또한, (002)면을 나타내는 제1 피크의 강도가 (004)면을 나타내는 제2 피크의 강도에 비해 5 이상의 비를 나타내는 것은 층상 구조 내에 (002)면이 지속적으로 형성된 것을 의미할 수 있다.The In this manner, (002) the full width at half maximum of the first peak represents the surface being less than 0.3, In addition, the (002) have a very large intensity of the first peak represents the surface is Na 0.7 MnO 2 is determined in accordance with the preparation Castle It can mean very good. In addition, the ratio of the intensity of the first peak representing the (002) plane to the ratio of 5 or more relative to the intensity of the second peak representing the (004) plane may mean that the (002) plane is continuously formed in the layered structure.
이에 더하여, 본 실험예들에 따른 Cmcm인 공간군을 갖는 사방정 구조의 활물질은 약 25도 부근에서 나타나는 불순물 피크가 거의 나타나지 않음을 알 수 있다. 다시 말해서, 25도 부근에서 나타나는 불순물 피크의 강도에 대한 (002)면을 나타내는 제1 피크의 강도는 약 100 배 이상일 수 있다. 이는 본 실험예들에 따른 Cmcm인 공간군을 갖는 사방정 구조의 활물질이 매우 우수한 결정구조를 갖는 것을 의미할 수 있다.In addition, it can be seen that the active material having a tetragonal structure having a space group of Cmcm according to the present experimental examples showed almost no impurity peaks appearing at about 25 degrees. In other words, the intensity of the first peak representing the (002) plane with respect to the intensity of the impurity peak appearing near 25 degrees may be about 100 times or more. This may mean that the active material having a tetragonal structure having a space group of Cmcm according to the present experimental examples has a very excellent crystal structure.
도 5는 활물질 제조예 1에 따른 Na0 . 7MnO2의 결정구조를 예측한 모식도로서, 상기 XRD 피크들로부터 활물질 제조예 1에 따른 Na0 . 7MnO2의 결정구조를 예측하여 도시하였다.5 is Na 0 according to the active material preparation example 1 . 7 MnO 2 is a schematic diagram for predicting the crystal structure, Na 0 . The crystal structure of 7 MnO 2 is predicted and shown.
도 5를 참조하면, 활물질 제조예 1에 따른 Na0 . 7MnO2의 결정구조는 나트륨층과 망간산화물층이 서로 교대로 적층된 층상화합물임을 알 수 있다. Referring to Figure 5, Na 0 according to the active material preparation example 1 . It can be seen that the crystal structure of 7 MnO 2 is a layered compound in which a sodium layer and a manganese oxide layer are alternately stacked.
도 6은 활물질 제조예 1 및 활물질 비교예 2에 따른 고체 분말들의 XRD 분석결과를 나타낸 그래프이다.Figure 6 is a graph showing the XRD analysis of the solid powders according to the active material Preparation Example 1 and Comparative Example 2.
도 6을 참조하면, 건조 공기 분위기에서 1200℃로 열처리한 제조예 1에 다른 고체 분말은 Cmcm인 공간군을 갖는 사방정 구조의 Na0 . 7MnO2를 나타내는 반면, 일반 대기 분위기에서 1200℃로 열처리한 비교예 2에 따른 고체 분말은 Mn3O4를 나타냄을 알 수 있다. 이와 같은 결과는 일반 대기 분위기가 아닌 건조 공기 분위기에서의 열처리를 통해 나트륨의 휘발을 막을 수 있음을 보여준다. Referring to FIG. 6, another solid powder of Preparation Example 1 heat-treated at 1200 ° C. in a dry air atmosphere had Na 0 . While 7 MnO 2 is shown, it can be seen that the solid powder according to Comparative Example 2 heat-treated at 1200 ° C. in a general atmosphere has Mn 3 O 4 . These results show that the volatilization of sodium can be prevented by heat treatment in a dry air atmosphere rather than a normal atmosphere.
도 7 내지 도 25는 각각 활물질 제조예들 9 내지 27에 따른 Nax[Mn1-yMy]O2들의 XRD 분석결과를 나타낸 그래프들이다.7 to 25 are graphs showing XRD analysis results of Na x [Mn 1-y M y ] O 2 according to active material preparation examples 9 to 27, respectively.
도 7 내지 25를 참조하면, 약 15도에서 (002)면을 나타내는 제1 피크와 약 32도에서 (004)면을 나타내는 제2 피크가 나타남과 더불어서, 도 2에서 살펴본 바와 같이 Cmcm인 공간군을 갖는 사방정 구조의 특징적인 피크들이 나타나는 것으로 미루어 보아 Cmcm인 공간군을 갖는 사방정 구조의 Nax[Mn1-yMy]O2들이 형성되었음을 알 수 있다.Referring to FIGS. 7 to 25, the first peak representing the (002) plane at about 15 degrees and the second peak representing the (004) plane at about 32 degrees are shown, and as shown in FIG. It can be seen that the characteristic peaks of the tetragonal structure having the appearance of Na x [Mn 1-y M y ] O 2 of the tetragonal structure having a space group of Cmcm.
또한, 도 2 및 4에서 살펴본 것과 마찬가지로, 활물질 제조예들 9 내지 27에 따른 Nax[Mn1-yMy]O2들 또한, (002)면을 나타내는 제1 피크의 반치폭은 약 0.2 내지 약 0.3 구체적으로, 약 0.21 내지 약 0.24일 수 있다. 또한, 제1 피크의 강도는 제2 피크의 강도에 비해 약 5배 내지 약 8.5배 구체적으로, 약 5.47배 내지 약 8.076배정도일 수 있다. 이에 더하여, 활물질 제조예들 9 내지 27에 따른 Nax[Mn1-yMy]O2들 또한 약 25도 부근에서 나타나는 불순물 피크가 거의 나타나지 않음을 알 수 있다. 다시 말해서, 25도 부근에서 나타나는 불순물 피크의 강도에 대한 (002)면을 나타내는 제1 피크의 강도는 약 100 배 이상일 수 있다.In addition, as shown in FIGS. 2 and 4, Na x [Mn 1-y M y ] O 2 according to Active Material Preparation Examples 9 to 27 Also, the half width of the first peak representing the (002) plane is about 0.2 to about About 0.3 specifically, about 0.21 to about 0.24. In addition, the intensity of the first peak may be about 5 times to about 8.5 times the intensity of the second peak, specifically, about 5.47 times to about 8.076 times. In addition, it can be seen that Na x [Mn 1-y M y ] O 2 according to active material preparation examples 9 to 27 also hardly exhibit an impurity peak appearing at about 25 degrees. In other words, the intensity of the first peak representing the (002) plane with respect to the intensity of the impurity peak appearing near 25 degrees may be about 100 times or more.
<전지 제조예 1: 사방정계 Na0 . 7MnO2를 사용한 양극 및 반전지 제조>Battery Preparation Example 1: Orthotropic Na 0 . 7 Fabrication of Anode and Half Cell Using MnO 2 >
활물질 제조예 1에서 제조된 사방정계 Na0 . 7MnO2 분말, 도전재(Super-P, KS-6), 및 결합제(Poly vinylidene fluoride)를 85:7.5:7.5의 중량비로 유기 용매(NMP(N-Methyl-2-Pyrrolidone)) 내에서 혼합한 후, 알루미늄 집전체 상에 코팅한 후 프레스하여 양극을 형성하였다.The tetragonal Na 0 prepared in Preparation Example 1 of the active material . 7 MnO 2 powder, conductive material (Super-P, KS-6), and binder (Poly vinylidene fluoride) were mixed in an organic solvent (N-Methyl-2-Pyrrolidone (NMP)) at a weight ratio of 85: 7.5: 7.5 After the coating on the aluminum current collector, it was pressed to form a positive electrode.
이 후, 금속 나트륨을 음극으로 사용하였고, 유리 필터를 분리막으로 사용하고, 전해질 NaPF6와 유기용매 프로필렌 카보네이트(PC, 98vol.%)와 플루오로에틸렌 카보네이트(FEC, 2vol.%)를 함유하는 비수전해액을 사용하여 반전지를 제조하였다. Thereafter, was used as the metal sodium as a cathode, using a glass filter as a separator, and an electrolyte NaPF 6 and fluoro with the organic solvent of propylene carbonate (PC, 98vol.%) Non-aqueous containing ethylene carbonate (FEC, 2vol.%) A half cell was prepared using electrolyte solution.
<전지 제조예들 2 내지 20: 사방정계 Nax[Mn1-yMy]O2를 사용한 양극 및 반전지 제조><Preparation Examples 2 to 20: Preparation of a positive electrode and a half cell using a tetragonal Na x [Mn 1-y M y ] O 2 >
활물질 제조예 1에서 제조된 사방정계 Na0 . 7MnO2 분말 대신에 활물질 제조예들 9 내지 27에서 제조된 사방정계 Nax[Mn1-yMy]O2 중 어느 하나를 사용한 것을 제외하고는 전지 제조예 1과 동일한 방법을 사용하여 양극들 및 반전지들을 제조하였다.The tetragonal Na 0 prepared in Preparation Example 1 of the active material . 7 Positive electrode using the same method as in Battery Preparation Example 1, except that one of the tetragonal Na x [Mn 1-y M y ] O 2 prepared in Active Materials Preparation Examples 9 to 27 was used instead of the 7 MnO 2 powder. And half cells were prepared.
<전지 비교예 1: 육방정계 Na0 . 7MnO2를 사용한 양극 및 반전지 제조>Comparative Example 1: Hexagonal Na 0 . 7 Fabrication of Anode and Half Cell Using MnO 2 >
활물질 제조예 1에서 제조된 Na0 . 7MnO2 분말 대신에 활물질 비교예 1에서 제조된 육방정계 Na0 . 7MnO2분말을 사용한 것을 제외하고는 전지 제조예 1과 동일한 방법을 사용하여 양극 및 반전지를 제조하였다.Na 0 prepared in Active Material Preparation Example 1 . Instead of 7 MnO 2 powder, hexagonal Na 0 . A positive electrode and a half cell were prepared using the same method as in Battery Preparation Example 1, except that 7 MnO 2 powder was used.
<전지 비교예 2: 육방정계 Na0 . 7(Mn0.75Fe0.25)O2를 사용한 양극 및 반전지 제조>Comparative Example 2: Hexagonal Na 0 . 7 Fabrication of Anode and Half Cell Using (Mn 0.75 Fe 0.25 ) O 2 >
활물질 제조예 1에서 제조된 Na0 . 7MnO2 분말 대신에 활물질 비교예 3에서 제조된 육방정계 Na0 . 7(Mn0.75Fe0.25)O2 분말을 사용한 것을 제외하고는 전지 제조예 1과 동일한 방법을 사용하여 양극 및 반전지를 제조하였다.Na 0 prepared in Active Material Preparation Example 1 . 7 compares the active material in place of MnO 2 powder, the hexagonal system prepared in Example 3 Na 0. Except for using 7 (Mn 0.75 Fe 0.25 ) O 2 powder to prepare a positive electrode and a half cell using the same method as in Battery Preparation Example 1.
<전지 비교예 3: 육방정계 Na0 . 7(Mn0.5Fe0.5)O2를 사용한 양극 및 반전지 제조 >Comparative Example 3: Hexagonal System Na 0 . Fabrication of Anode and Half Cell Using 7 (Mn 0.5 Fe 0.5 ) O 2 >
활물질 제조예 1에서 제조된 Na0 . 7MnO2 분말 대신에 활물질 비교예 4에서 제조된 육방정계 Na0 . 7(Mn0.5Fe0.5)O2 분말을 사용한 것을 제외하고는 전지 제조예 1과 동일한 방법을 사용하여 양극 및 반전지를 제조하였다.Na 0 prepared in Active Material Preparation Example 1 . Hexagonal Na 0. Prepared in Comparative Example 4 instead of the 7 MnO 2 powder . Except for using 7 (Mn 0.5 Fe 0.5 ) O 2 powder to prepare a positive electrode and a half cell using the same method as in Battery Preparation Example 1.
도 26a, 도 26b, 도 26c, 및 도 26d는 전지 제조예 1 및 전지 비교예들 1 내지 3에 따른 반전지의 충방전 특성을 각각 나타낸 그래프들이다. 이 때, 충전은 4.3V까지 20 mA/g으로 정전류 충전을 행하였고, 방전은 상기 충전 속도와 동일한 속도로 정전류 방전을 1.5V까지 행하였다. 충방전은 2 사이클 진행하였다.26A, 26B, 26C, and 26D are graphs illustrating charge and discharge characteristics of half cells according to Battery Preparation Example 1 and Comparative Examples 1 to 3, respectively. At this time, the charge was constant current charged at 20 mA / g up to 4.3 V, and the discharge was performed at 1.5 V at the same speed as the above charge rate. Charge and discharge proceeded 2 cycles.
도 26a, 도 26b, 도 26c, 및 도 26d를 참조하면, 육방정계 결정구조를 갖는 Na0.7MnO2 (전지 비교예 1, 도 26b), Na0 . 7(Mn0.75Fe0.25)O2 (전지 비교예 2, 도 26c), 및 Na0.7(Mn0.5Fe0.5)O2 (전지 비교예 3, 도 26d)를 사용하여 제조한 반전지 대비, 사방정계 결정구조를 갖는 Na0 . 7MnO2을 사용하여 반전지를 제조한 경우(전지 제조예 1, 도 26a) 방전용량이 200 mAhg- 1를 넘는 등 우수한 고용량의 성능을 나타냄을 알 수 있다.Referring to FIGS. 26A, 26B, 26C, and 26D, Na 0.7 MnO 2 (battery comparison example 1, FIG. 26B) having a hexagonal crystal structure, Na 0 . 7 (Mn 0.75 Fe 0.25 ) O 2 (Comparative Example 2, FIG. 26C), and Na 0 having a tetragonal crystal structure compared to a half cell prepared using Na 0.7 (Mn 0.5 Fe 0.5 ) O 2 (Comparative Example 3, FIG. 26D) . 7 by using the MnO 2 when manufactured if inverted (cells prepared in Example 1, Fig. 26a) the discharge capacity is 200 mAhg - it can be seen that indicates the capacity of a superior performance such as greater than 1.
도 27a 및 도 27b는 전지 제조예 1에 따른 반전지의 사이클 횟수에 따른 충방전 특성 및 방전용량을 각각 나타낸 그래프들이다. 이 때, 충전은 4.3V까지 20 mA/g으로 정전류 충전을 행하였고, 방전은 상기 충전 속도와 동일한 속도로 정전류 방전을 1.5V까지 행하였다. 충방전은 25 사이클 진행하였다. 27A and 27B are graphs showing charge and discharge characteristics and discharge capacities according to the number of cycles of a half cell according to Battery Preparation Example 1, respectively. At this time, the charge was constant current charged at 20 mA / g up to 4.3 V, and the discharge was performed at 1.5 V at the same speed as the above charge rate. Charge and discharge proceeded for 25 cycles.
도 27a 및 도 27b를 참조하면, 사방정계 결정구조를 갖는 Na0 . 7MnO2을 사용하여 반전지를 제조한 경우 충방전 사이클이 늘더라도 방전용량 저하가 크지 않은(25사이클에서 약 90%) 다시 말해서 용량유지율이 우수하고 안정성이 뛰어난 것을 알 수 있다. 이와 같이, 방전용량 유지특성의 개선은 양극 활물질로 사용된 사방정계이면서 구조를 가지고, 공간군이 Cmcm인 Na0 . 7MnO2가 안정적인 결정구조를 가짐에 따라 나타나는 결과라고 사료된다.27A and 27B, Na 0 having a tetragonal crystal structure . When the half cell was manufactured using 7 MnO 2 , even if the charge / discharge cycle was increased, the discharge capacity was not significantly decreased (about 90% at 25 cycles), that is, the capacity retention ratio was excellent and the stability was excellent. As described above, the improvement in discharge capacity retention characteristics is a tetragonal system and a structure used as the positive electrode active material, and the space group is Na 0 . 7 MnO 2 is believed to be the result of having a stable crystal structure.
도 28 내지 도 46은 전지 제조예들 2 내지 20에 따른 반전지의 충방전 특성을 각각 나타낸 그래프들이다. 이 때, 충전은 4.3V까지 20 mA/g으로 정전류 충전을 행하였고, 방전은 상기 충전 속도와 동일한 속도로 정전류 방전을 1.5V까지 행하였다. 충방전은 2 사이클 진행하였다.28 to 46 are graphs showing charge and discharge characteristics of half-cells according to battery preparation examples 2 to 20, respectively. At this time, the charge was constant current charged at 20 mA / g up to 4.3 V, and the discharge was performed at 1.5 V at the same speed as the above charge rate. Charge and discharge proceeded 2 cycles.
도 28 내지 도 46을 참조하면, 사방정계 결정구조를 갖는 Nax[Mn1-yMy]O2을 사용하여 반전지를 제조한 경우 전지의 작동이 이루어짐을 알 수 있다. 특히, Nax[Mn1-yMy]O2에서 M이 Al, Co, Cd, Nd, Rh, Sc, Zn인 경우 방전용량이 150 mAhg- 1이상을 나타내고, 나아가 M이 Fe 및 Ni인 경우에는 방전용량이 200 mAhg-1을 넘는 등 우수한 고용량의 성능을 나타냄을 알 수 있다.28 to 46, it can be seen that the operation of the battery is performed when a half cell is manufactured using Na x [Mn 1-y M y ] O 2 having a tetragonal crystal structure. In particular, in Na x [Mn 1-y M y ] O 2 , when M is Al, Co, Cd, Nd, Rh, Sc, Zn, the discharge capacity is 150 mAhg - 1 or more, and M is Fe and Ni. In this case, it can be seen that the discharge capacity is excellent in high capacity, such as more than 200 mAhg -1 .
도 47은 전지 제조예 1에 따른 반전지와 전지 제조예 14에 따른 반전지의 사이클 횟수에 따른 방전용량을 나타낸 그래프이다. 이 때, 충전은 4.3V까지 20 mA/g으로 정전류 충전을 행하였고, 방전은 상기 충전 속도와 동일한 속도로 정전류 방전을 1.5V까지 행하였다. 충방전은 50 사이클 진행하였다.47 is a graph showing discharge capacity according to the number of cycles of a half cell according to Battery Preparation Example 1 and a half cell according to Battery Preparation Example 14. FIG. At this time, the charge was constant current charged at 20 mA / g up to 4.3 V, and the discharge was performed at 1.5 V at the same speed as the above charge rate. Charge and discharge proceeded 50 cycles.
도 47을 참조하면, 전지 제조예 1에 따른 반전지 즉, 양극 활물질로 활물질 제조예 1에 따른 Na0 . 7MnO2를 사용한 반전지의 경우 50 사이클 경과후 초기 방전 용량 대비 75%의 방전 용량을 나타내었다. 그러나, 전지 제조예 14에 따른 반전지 즉, 양극 활물질로 활물질 제조예 21에 따른 Na0 . 7(Mn0.95Ni0.05)O2를 사용한 반전지의 경우 50 사이클 경과후 초기 방전 용량 대비 92%의 방전 용량을 나타내어 수명특성이 더 향상된 것을 알 수 있다.Referring to FIG. 47, a half cell according to Battery Preparation Example 1, that is, Na 0 . The half cell using 7 MnO 2 showed a discharge capacity of 75% of the initial discharge capacity after 50 cycles. However, the reverse paper according to Battery Preparation Example 14, that is, the Na 0 . The half cell using 7 (Mn 0.95 Ni 0.05 ) O 2 showed a discharge capacity of 92% compared to the initial discharge capacity after 50 cycles.
도 48은 전지 제조예 1에 따른 반전지와 전지 제조예 14에 따른 반전지의 초기 사이클 과정에서 양극 활물질들의 인시츄 싱크로트론 XRD 그래프를 나타낸다. 이 때, 전압범위 1.5 - 4.3V, 정전류 20mAh으로 충전과 방전을 실시하였다.48 illustrates an in situ synchrotron XRD graph of positive electrode active materials during an initial cycle of a half cell according to Preparation Example 1 and a half cell according to Preparation Example 14; At this time, charging and discharging were performed in a voltage range of 1.5 to 4.3 V and a constant current of 20 mAh.
도 48을 참고하면, 전지 제조예 1에 따른 반전지 즉, 양극 활물질로 활물질 제조예 1에 따른 Na0 . 7MnO2를 사용한 반전지와 전지 제조예 14에 따른 반전지 즉, 양극 활물질로 활물질 제조예 21에 따른 Na0 . 7(Mn0.95Ni0.05)O2를 사용한 반전지 모두에서 양극 활물질들은 공통적으로 충전 과정에서 OP4구조(공간군:P-6m2)로 상변화를 나타내었고, 반대로 방전 과정에는 다시 사방정계 구조로 가역적 상변화를 나타내었다. 한편, Na0 . 7(Mn0.95Ni0.05)O2의 경우, 15.6도와 16도 사이의 2θ 영역에서 초격자 구조(Superstructure 또는 Superlattice)가 관찰되었다.Referring to FIG. 48, a half cell according to Battery Preparation Example 1, that is, Na 0 . 7 A half cell using MnO 2 and a half cell according to Preparation Example 14, that is, a Na 0 . In both half cells using 7 (Mn 0.95 Ni 0.05 ) O 2 , the positive electrode active materials commonly showed a phase change to the OP 4 structure (space group: P-6 m 2) during the charging process. Phase change was shown. On the other hand, Na 0 . In the case of 7 (Mn 0.95 Ni 0.05 ) O 2 , a superlattice structure (Superstructure or Superlattice) was observed in the 2θ region between 15.6 and 16 degrees.
도 49는 전지 제조예 1에 따른 반전지와 전지 제조예 14에 따른 반전지가 충전 상태일 때, 양극 활물질들의 인시츄 고온 XRD 그래프를 나타낸다. 이 때, 반전지는 전압 4.3V까지 정전류 20mAh로 충전된 상태(나트륨이 양극 활물질로부터 탈리된 상태)였고, 양극 활물질을 상온에서 600℃까지 승온시키면서 그리고 다시 상온에서 XRD 데이터를 수득하였다.FIG. 49 illustrates an in-situ high temperature XRD graph of positive electrode active materials when the half cell according to Battery Preparation Example 1 and the half cell according to Battery Preparation Example 14 are in a charged state. At this time, the half cell was charged with a constant current of 20 mAh up to a voltage of 4.3 V (sodium was detached from the positive electrode active material), and the XRD data was obtained while the positive electrode active material was raised from room temperature to 600 ° C and again at room temperature.
도 49를 참조하면, 전지 제조예 1에 따른 반전지 즉, 양극 활물질로 활물질 제조예 1에 따른 Na0 . 7MnO2를 사용한 반전지와 전지 제조예 14에 따른 반전지 즉, 양극 활물질로 활물질 제조예 21에 따른 Na0 . 7(Mn0.95Ni0.05)O2를 사용한 반전지 모두에서 양극 활물질들은 OP4구조(Main)와 사방정 구조의 피크들이 관찰되었다. 또한, 100 내지 150 ℃의 온도범위에서는 수화물 피크의 강도가 모두 감소되었는데, 이는 대기에 존재하는 물 또는 습기에 의한 피크로 물이 증발된 것을 의미한다. 이후, 고온영역에서는 나트륨의 및 산소의 증발로 인해 망간 산화물(Manganese oxide)이 관찰되는데, 망간 산화물은 MnO2 위주로 존재함에 따라 Mn의 주요 산화수는 4가임을 유추할 수 있다. Referring to FIG. 49, a half cell according to Battery Preparation Example 1, that is, Na 0 . 7 A half cell using MnO 2 and a half cell according to Preparation Example 14, that is, a Na 0 . In both half- cells using 7 (Mn 0.95 Ni 0.05 ) O 2 , positive electrode active materials showed peaks of OP4 structure and tetragonal structure. In addition, in the temperature range of 100 to 150 ℃ all the intensity of the hydrate peak was reduced, which means that the water evaporated to the peak due to water or moisture present in the atmosphere. Thereafter, manganese oxide is observed due to evaporation of sodium and oxygen in the high temperature region. As the manganese oxide is mainly located in MnO 2, it can be inferred that the main oxidation number of Mn is tetravalent.
한편, Na0 . 7(Mn0.95Ni0.05)O2의 경우, 15.6도와 16도 사이의 2θ 영역에서 초격자 구조(Superstructure 또는 Superlattice)가 관찰되었다.On the other hand, Na 0 . In the case of 7 (Mn 0.95 Ni 0.05 ) O 2 , a superlattice structure (Superstructure or Superlattice) was observed in the 2θ region between 15.6 and 16 degrees.
<반전지 제조예 25: 사방정계 Na0 . 7(Mn0.95Ni0.05)O2 및 첨가제를 사용한 양극 및 반전지 제조>Half Battery Manufacturing Example 25: Rhombic System Na 0 . 7 Fabrication of Anode and Half Cell Using (Mn 0.95 Ni 0.05 ) O 2 and Additives>
활물질 제조예 21에서 제조된 사방정계 Na0 . 7(Mn0.95Ni0.05)O2 분말, 첨가제인 NaNO2, 도전재(Super-P, KS-6), 및 결합제(Poly vinylidene fluoride)를 85:6:4.5:4.5의 중량비로 유기 용매(NMP(N-Methyl-2-Pyrrolidone)) 내에서 혼합한 후, 알루미늄 집전체 상에 코팅한 후 프레스하여 양극을 형성하였다.Orthotropic Na 0 prepared in Preparation 21 of the active material . 7 (Mn 0.95 Ni 0.05 ) O 2 Powders, additives NaNO 2 , conductive materials (Super-P, KS-6), and binders (Poly vinylidene fluoride) in an organic solvent (NMP (N-Methyl-2-Pyrrolidone) (NMP) in a weight ratio of 85: 6: 4.5: 4.5 After mixing in), it was coated on an aluminum current collector and then pressed to form a positive electrode.
이 후, 금속 나트륨을 음극으로 사용하였고, 유리 필터를 분리막으로 사용하고, 전해질 NaPF6와 유기용매 프로필렌 카보네이트(PC, 98vol.%)와 플루오로에틸렌 카보네이트(FEC, 2vol.%)를 함유하는 비수전해액을 사용하여 반전지를 제조하였다. Thereafter, metal sodium was used as a cathode, a glass filter was used as a separator, and a nonaqueous solution containing electrolyte NaPF 6 and an organic solvent propylene carbonate (PC, 98 vol.%) And fluoroethylene carbonate (FEC, 2 vol.%) Was used. A half cell was prepared using electrolyte solution.
<반전지 제조예 26: 육방정계 Na0 . 7(Mn0.7Fe0.3)O2 및 첨가제를 사용한 양극 및 반전지 제조>Half Battery Manufacturing Example 26 Hexagonal System Na 0 . 7 Fabrication of Anode and Half Cell Using (Mn 0.7 Fe 0.3 ) O 2 and Additives>
활물질 제조예 21에서 제조된 사방정계 Na0 . 7(Mn0.95Ni0.05)O2 분말 대신에 활물질 제조예 32에서 제조된 육방정계 Na0 . 7(Mn0.7Fe0.3)O2 분말을 사용한 것을 제외하고는 반전지 제조예 25와 동일한 방법을 사용하여 양극 및 반전지를 제조하였다.Orthotropic Na 0 prepared in Preparation 21 of the active material . 7 (Mn 0.95 Ni 0.05 ) O 2 Hexagonal Na 0 prepared in Preparation Example 32 instead of powder . A positive electrode and a half cell were prepared in the same manner as in the preparation of Example 25, except that 7 (Mn 0.7 Fe 0.3 ) O 2 powder was used.
<온전지(full-cell) 제조예><Full-Cell Manufacturing Example>
금속 나트륨을 음극으로 사용한 것 대신에, 하드카본인 음극활물질과 도전재로서 카본 블랙 및 바인더로서 PVdF를 70:15:15의 중량비로 NMP 내에서 혼합을 하고 집전체로 사용되는 구리 호일에 코팅을 한 후 건조시켜 완성된 음극을 사용한 것을 제외하고는 반전지 제조예 25와 동일한 방법을 사용하여 온전지를 제조하였다.Instead of using sodium metal as a cathode, a mixture of hard carbon anode material and carbon black as a conductive material and PVdF as a binder in a weight ratio of 70:15:15 is mixed in NMP and the coating is applied to a copper foil used as a current collector. After the drying was completed using the same method as in Preparation Example 25, except that a negative electrode was used to produce an on-cell.
도 50a는 반전지 제조예 25에 따른 반전지의 충방전 특성을 각각 나타낸 그래프이고, 도 50b은 반전지 제조예 25에 따른 반전지의 사이클 횟수에 따른 방전용량을 나타낸 그래프이다. 도 51a는 반전지 제조예 26에 따른 반전지의 충방전 특성을 각각 나타낸 그래프이고, 도 51b은 반전지 제조예 26에 따른 반전지의 사이클 횟수에 따른 방전용량을 나타낸 그래프이다. 이 때, 충전은 4.3V까지 20 mA/g으로 정전류 충전을 행하였고, 방전은 상기 충전 속도와 동일한 속도로 정전류 방전을 1.5V까지 행하였다. 충방전은 2 사이클 진행하였다.50A is a graph showing the charge / discharge characteristics of the half cells according to the half cell manufacturing example 25, and FIG. 50B is a graph showing the discharge capacity according to the number of cycles of the half cell according to the half cell manufacturing example 25. FIG. 51A is a graph showing charge / discharge characteristics of the half cell according to the half cell manufacturing example 26, and FIG. 51B is a graph showing the discharge capacity according to the number of cycles of the half cell according to the half cell manufacturing example 26. FIG. At this time, the charge was constant current charged at 20 mA / g up to 4.3 V, and the discharge was performed at 1.5 V at the same speed as the above charge rate. Charge and discharge proceeded 2 cycles.
하기 표 2는 상기 반전지 제조예들 14, 24, 25, 및 26에 따른 반전지의 초기 충전용량과 초기방전용량을 정리하여 나타낸다.Table 2 below summarizes the initial charge capacity and the initial discharge capacity of the half-cell according to the half-cell manufacturing examples 14, 24, 25, and 26.
활물질Active material 첨가제additive 충전용량 (mAh)Charge capacity (mAh) 방전용량 (mAh)Discharge Capacity (mAh)
반전지 제조예 14Half-cell manufacture example 14 사방정계Na0 . 7(Mn0.95Ni0.05)O2 Rhombic system Na 0 . 7 (Mn 0.95 Ni 0.05 ) O 2 -- 0.2630.263 0.3510.351
반전지 제조예 25Half-cell manufacture example 25 NaNO2 NaNO 2 0.3620.362 0.3610.361
반전지 제조예 24Half-cell manufacture example 24 육방정계 Na0 . 7(Mn0.7Fe0.3)O2 Hexagonal Na 0 . 7 (Mn 0.7 Fe 0.3 ) O 2 -- 0.1660.166 0.2040.204
반전지 제조예 26Half-cell production example 26 NaNO2 NaNO 2 0.2340.234 0.2230.223
도 50a, 50b, 51a, 및 51b, 그리고 표 2를 참조하면, 첨가제인 NaNO2를 양극 내에 첨가한 경우, 양극 활물질로 활물질 제조예 21에 따른 사방정계 Na0.7(Mn0.95Ni0.05)O2를 사용한 경우와 활물질 제조예 32에 따른 육방정계 Na0.7(Mn0.7Fe0.3)O2를 사용한 경우 모두에서 초기 충전용량의 큰 증가와 더불에서 초기 방전용량이 다소 증가되었음을 알 수 있다. 이는 첨가제인 NaNO2가 충전과정에서 Na+ 이온의 공급원 역할을 하였기 때문으로 추정되었다. 특히, 양극 활물질로 사방정계 Na0 . 7(Mn0.95Ni0.05)O2를 사용하고 첨가제를 추가한 경우 초기 충전용량이 0.362 mAh로 일반 P2 구조의 양극 활물질을 사용하는 나트륨 이차전지에 비해 크게 향상된 것을 알 수 있다.Referring to FIGS. 50A, 50B, 51A, and 51B, and Table 2, when NaNO 2 as an additive is added to a positive electrode, tetragonal Na 0.7 (Mn 0.95 Ni 0.05 ) O 2 according to Preparation Example 21 is used as a positive electrode active material. It can be seen that both the use and the use of hexagonal Na 0.7 (Mn 0.7 Fe 0.3 ) O 2 according to Preparation Example 32 showed a large increase in initial charge capacity and a slight increase in initial discharge capacity. This was presumably because the additive NaNO 2 served as a source of Na + ions during the charging process. In particular, the positive electrode active material to the orthorhombic Na 0. When 7 (Mn 0.95 Ni 0.05 ) O 2 is used and an additive is added, it can be seen that the initial charging capacity is 0.362 mAh, which is significantly improved compared to a sodium secondary battery using a cathode active material having a general P2 structure.
또한, 첨가제를 사용하지 않은 경우 대비 첨가제를 사용한 경우 수명특성이 더 향상된 것을 알 수 있다.In addition, it can be seen that the life characteristics are further improved when the additive is used compared to the case where the additive is not used.
도 52a는 온전지(full-cell) 제조예에 따른 반전지의 충방전 특성을 각각 나타낸 그래프이고, 도 52b는 온전지 제조예에 따른 반전지의 사이클 횟수에 따른 방전용량을 나타낸 그래프이다.52A is a graph showing charge and discharge characteristics of a half cell according to a full-cell manufacturing example, and FIG. 52B is a graph showing discharge capacity according to the number of cycles of a half cell according to a full-cell manufacturing example.
도 52a 및 도 52b를 참조하면, 양극 활물질로 활물질 제조예 21에 따른 사방정계 Na0 . 7(Mn0.95Ni0.05)O2를 사용하고 첨가제를 추가하여 양극을 형성하고 이를 사용하여 온전지를 구성한 경우 초기 충전용량이 약 0.362 mAh로 일반 P2 구조의 양극 활물질을 사용하는 나트륨 이차전지에 비해 크게 향상되었으며, 수명특성이 향상된 것을 알 수 있다.52A and 52B, tetragonal Na 0 according to Preparation Example 21 of the active material as the positive electrode active material . When using 7 (Mn 0.95 Ni 0.05 ) O 2 and adding an additive to form a positive electrode and constructing an on-cell using the same, the initial charging capacity is about 0.362 mAh, which is significantly higher than that of a sodium secondary battery using a cathode active material having a general P2 structure. It can be seen that the life characteristics have been improved.
이상, 본 발명을 바람직한 실시예를 들어 상세하게 설명하였으나, 본 발명은 상기 실시예에 한정되지 않고, 본 발명의 기술적 사상 및 범위 내에서 당 분야에서 통상의 지식을 가진 자에 의하여 여러가지 변형 및 변경이 가능하다.In the above, the present invention has been described in detail with reference to preferred embodiments, but the present invention is not limited to the above embodiments, and various modifications and changes by those skilled in the art within the spirit and scope of the present invention. This is possible.

Claims (22)

  1. 하기 화학식 1로 나타내어지고, 사방정계 결정구조를 가지며 공간군이 Cmcm인 전극 활물질:An electrode active material represented by the following Chemical Formula 1 and having a tetragonal crystal structure and having a space group of Cmcm:
    [화학식 1][Formula 1]
    Nax[Mn1-y-zM1 yM2 z]O2-αAα Na x [Mn 1-yz M 1 y M 2 z ] O 2-α A α
    상기 화학식 1에서, In Chemical Formula 1,
    x은 0.5 내지 0.8이고,x is 0.5 to 0.8,
    M1과 M2는 서로에 관계없이 Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Nd, Mo, Tc, Ru, Rh, Pd, Pb, Ag, Cd, Al, Ga, In, Sn, 또는 Bi이고,M 1 and M 2 are independently of each other Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Nd, Mo, Tc, Ru, Rh, Pd, Pb, Ag, Cd, Al, Ga, In, Sn, or Bi,
    y는 0 내지 0.25이고, y is 0 to 0.25,
    z는 0 내지 0.25이고,z is from 0 to 0.25,
    A는 N,O,F, 또는 S이고,A is N, O, F, or S,
    α는 0 내지 0.1이다.α is 0 to 0.1.
  2. 제1항에 있어서,The method of claim 1,
    상기 화학식 1로 나타내어지는 활물질은 상기 화학식 2로 나타내어지는 전극 활물질: The active material represented by Chemical Formula 1 is an electrode active material represented by Chemical Formula 2:
    [화학식 2][Formula 2]
    Nax[Mn1-yMy]O2-αAα Na x [Mn 1-y M y ] O 2-α A α
    상기 화학식 2에서, x은 0.5 내지 0.8이고,In Formula 2, x is 0.5 to 0.8,
    M은 Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Nd, Mo, Tc, Ru, Rh, Pd, Pb, Ag, Cd, Al, Ga, In, Sn, 또는 Bi이고,M is Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Nd, Mo, Tc, Ru, Rh, Pd, Pb, Ag, Cd, Al, Ga, In, Sn, or Bi,
    y는 0 내지 0.25이고,y is 0 to 0.25,
    A는 N,O,F, 또는 S이고,A is N, O, F, or S,
    α는 0 내지 0.1이다.α is 0 to 0.1.
  3. 제1항에 있어서,The method of claim 1,
    상기 화학식 1로 나타내어지는 활물질은 상기 화학식 3으로 나타내어지는 전극 활물질: The active material represented by Chemical Formula 1 is an electrode active material represented by Chemical Formula 3:
    [화학식 3][Formula 3]
    NaxMnO2(x는 0.5 내지 0.8).Na x MnO 2 (x is from 0.5 to 0.8).
  4. 제1항에 있어서,The method of claim 1,
    상기 화학식 1로 나타내어지는 활물질은 상기 화학식 4로 나타내어지는 전극 활물질: The active material represented by Chemical Formula 1 is an electrode active material represented by Chemical Formula 4:
    [화학식 4][Formula 4]
    Nax[Mn1-yMy]O2 Na x [Mn 1-y M y ] O 2
    상기 화학식 4에서, In Chemical Formula 4,
    x은 0.5 내지 0.8이고,x is 0.5 to 0.8,
    M은 Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Nd, Mo, Tc, Ru, Rh, Pd, Pb, Ag, Cd, Al, Ga, In, Sn, 또는 Bi이고,M is Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Nd, Mo, Tc, Ru, Rh, Pd, Pb, Ag, Cd, Al, Ga, In, Sn, or Bi,
    y는 0.02 내지 0.25이다.y is 0.02 to 0.25.
  5. 제1항 내지 제4항 중 어느 한 항에 있어서,The method according to any one of claims 1 to 4,
    x는 0.65 내지 0.75인 전극 활물질.x is 0.65 to 0.75 electrode active material.
  6. 제2항 및 제4항 중 어느 한 항에 있어서,The method according to any one of claims 2 and 4,
    y는 0.025 내지 0.1인 전극 활물질.y is 0.025 to 0.1 electrode active material.
  7. 제1항에 있어서,The method of claim 1,
    상기 화학식 1로 나타내어지는 활물질은 Na0.7MnO2인 전극 활물질.The active material represented by Chemical Formula 1 is Na 0.7 MnO 2 electrode active material.
  8. 제2항 및 제4항 중 어느 한 항에 있어서,The method according to any one of claims 2 and 4,
    M은 Al, Co, Cd, Nd, Rh, Sc, Zn, Fe, 또는 Ni인 전극 활물질.M is Al, Co, Cd, Nd, Rh, Sc, Zn, Fe, or Ni electrode active material.
  9. 제8항에 있어서,The method of claim 8,
    M은 Fe 또는 Ni인 전극 활물질.M is Fe or Ni electrode active material.
  10. 제1항에 있어서,The method of claim 1,
    상기 사방정계 결정구조를 가지며 공간군이 Cmcm인 전극 활물질은 (002)면을 나타내는 제1 피크의 강도는 (004)면을 나타내는 제2 피크의 강도 대비 5 내지 8.5배를 나타내는 전극 활물질.The electrode active material having the tetragonal crystal structure and the space group is Cmcm, the intensity of the first peak representing the (002) plane is 5 to 8.5 times the intensity of the second peak representing the (004) plane.
  11. 제1항에 있어서,The method of claim 1,
    상기 사방정계 결정구조를 가지며 공간군이 Cmcm인 전극 활물질은 (002)면을 나타내는 제1 피크의 반치폭은 0.2 내지 0.3인 전극 활물질.The electrode active material having the tetragonal crystal structure and the space active group of Cmcm has a half width of the first peak showing the (002) plane is 0.2 to 0.3.
  12. 나트륨염과 망간염을 함유하는 금속염 용액을 제조하는 단계;Preparing a metal salt solution containing sodium salt and manganese salt;
    상기 금속염 용액을 초음파 분무 열분해(ultrasonic spray pyrolysis)하여 고체 분말을 얻는 단계; 및Ultrasonic spray pyrolysis of the metal salt solution to obtain a solid powder; And
    상기 고체 분말을 열처리하여 하기 화학식 1로 나타내어지고, 사방정 구조를 가지며 공간군이 Cmcm인 전극 활물질을 얻는 단계를 포함하는 전극 활물질 제조방법:Heat treatment of the solid powder is represented by the following formula (1), and has a tetragonal structure and comprises a step of obtaining an electrode active material having a space group of Cmcm:
    [화학식 1][Formula 1]
    Nax[Mn1-y-zM1 yM2 z]O2-αAα Na x [Mn 1-yz M 1 y M 2 z ] O 2-α A α
    상기 화학식 1에서, In Chemical Formula 1,
    x은 0.5 내지 0.8이고,x is 0.5 to 0.8,
    M1과 M2는 서로에 관계없이 Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Nd, Mo, Tc, Ru, Rh, Pd, Pb, Ag, Cd, Al, Ga, In, Sn, 또는 Bi이고,M 1 and M 2 are independently selected Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Nd, Mo, Tc, Ru, Rh, Pd, Pb, Ag, Cd, Al, Ga, In, Sn, or Bi,
    y는 0 내지 0.25이고,y is 0 to 0.25,
    z는 0 내지 0.25이고,z is from 0 to 0.25,
    A는 N,O,F, 또는 S이고,A is N, O, F, or S,
    α는 0 내지 0.1이다.α is 0 to 0.1.
  13. 제12항에 있어서,The method of claim 12,
    상기 열처리는 1100℃ 내지 1300℃에서 수행하는 전극 활물질 제조방법.The heat treatment is an electrode active material manufacturing method performed at 1100 ℃ to 1300 ℃.
  14. 제12항에 있어서,The method of claim 12,
    상기 열처리는 15 vol.% 내지 100vol.%의 산소와 나머지의 비활성 기체 분위기에서 수행하는 전극 활물질 제조방법.The heat treatment is a method of manufacturing an electrode active material is carried out in the oxygen and the remaining inert gas atmosphere of 15 vol.% To 100 vol.%.
  15. 제14항에 있어서,The method of claim 14,
    상기 분위기는 건조 분위기인 전극 활물질 제조방법.The atmosphere is a dry atmosphere electrode active material manufacturing method.
  16. 제14항에 있어서,The method of claim 14,
    상기 비활성 기체는 질소인 전극 활물질 제조방법.The inert gas is nitrogen electrode active material manufacturing method.
  17. 하기 화학식 1로 나타내어지고, 사방정계 결정구조를 가지며 공간군이 Cmcm양극활물질을 포함하는 양극;An anode represented by the following Chemical Formula 1, having a tetragonal crystal structure and having a space group containing a Cmcm anode active material;
    음극활물질을 함유하는 음극; 및A negative electrode containing a negative electrode active material; And
    상기 양극과 상기 음극 사이에 배치된 전해질을 포함하는 이차전지.A secondary battery comprising an electrolyte disposed between the positive electrode and the negative electrode.
    [화학식 1][Formula 1]
    Nax[Mn1-y-zM1 yM2 z]O2-αAα Na x [Mn 1-yz M 1 y M 2 z ] O 2-α A α
    상기 화학식 1에서, In Chemical Formula 1,
    x은 0.5 내지 0.8이고,x is 0.5 to 0.8,
    M1과 M2는 서로에 관계없이 Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Nd, Mo, Tc, Ru, Rh, Pd, Pb, Ag, Cd, Al, Ga, In, Sn, 또는 Bi이고,M 1 and M 2 are independently of each other Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Nd, Mo, Tc, Ru, Rh, Pd, Pb, Ag, Cd, Al, Ga, In, Sn, or Bi,
    y는 0 내지 0.25이고,y is 0 to 0.25,
    z는 0 내지 0.25이고,z is from 0 to 0.25,
    A는 N,O,F, 또는 S이고,A is N, O, F, or S,
    α는 0 내지 0.1이다.α is 0 to 0.1.
  18. 제17항에 있어서,The method of claim 17,
    상기 양극은 나트륨염을 더 포함하는 이차전지.The positive electrode further comprises a sodium salt.
  19. 제18항에 있어서,The method of claim 18,
    상기 나트륨염은 NaNO2인 이차전지.The sodium salt is NaNO 2 secondary battery.
  20. 제19항에 있어서,The method of claim 19,
    상기 NaNO2는 상기 양극활물질 100 중량부에 대해 3 내지 20 중량부로 함유되는 이차전지.The NaNO 2 is a secondary battery containing 3 to 20 parts by weight based on 100 parts by weight of the positive electrode active material.
  21. 제18항에 있어서,The method of claim 18,
    상기 양극은 도전재를 더 포함하고,The anode further includes a conductive material,
    상기 도전재는 상기 양극활물질 100 중량부에 대해 2 내지 9 중량부로 함유되는 이차전지.The conductive material is a secondary battery containing 2 to 9 parts by weight based on 100 parts by weight of the positive electrode active material.
  22. 제18항에 있어서,The method of claim 18,
    상기 양극은 결합제를 더 포함하고,The anode further comprises a binder,
    상기 결합제는 상기 양극활물질 100 중량부에 대해 2 내지 9 중량부로 함유되는 이차전지.The binder is a secondary battery containing 2 to 9 parts by weight based on 100 parts by weight of the positive electrode active material.
PCT/KR2017/003981 2016-04-12 2017-04-12 Sodium-based electrode active material and secondary battery comprising same WO2017179917A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/093,042 US10938029B2 (en) 2016-04-12 2017-04-12 Sodium-based electrode active material and secondary battery comprising same

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
KR20160045097 2016-04-12
KR10-2016-0045097 2016-04-12
KR10-2017-0047609 2017-04-12
KR10-2017-0047610 2017-04-12
KR1020170047610A KR101936501B1 (en) 2016-04-12 2017-04-12 Secondary battery having positive electrode including sodium-based electrode active material and sodium salt
KR1020170047609A KR101989668B1 (en) 2016-04-12 2017-04-12 Sodium-Based Electrode Active Material and Secondary Battery Having the Same

Publications (1)

Publication Number Publication Date
WO2017179917A1 true WO2017179917A1 (en) 2017-10-19

Family

ID=60041690

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/003981 WO2017179917A1 (en) 2016-04-12 2017-04-12 Sodium-based electrode active material and secondary battery comprising same

Country Status (1)

Country Link
WO (1) WO2017179917A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115207339A (en) * 2022-08-25 2022-10-18 江苏正力新能电池技术有限公司 Positive electrode material, preparation method thereof, positive electrode piece and O3-type layered sodium-ion battery
CN115602826A (en) * 2021-07-09 2023-01-13 南开大学(Cn) Air and water stable sodium ion battery positive electrode material and preparation method and application thereof
CN116573683A (en) * 2023-04-07 2023-08-11 北京航空航天大学 Sodium-rich P2/O3 biphase layered oxide, preparation method thereof, sodium ion battery positive electrode material and battery
CN116588984A (en) * 2023-04-07 2023-08-15 北京航空航天大学 Sodium-rich P2 phase layered oxide, preparation method thereof, sodium ion battery positive electrode material and battery

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070100918A (en) * 2005-02-07 2007-10-12 산요덴키가부시키가이샤 Positive electrode and nonaqueous electrolyte secondary battery
US20100266900A1 (en) * 2007-11-22 2010-10-21 Sumitomo Chemical Company,Limited Sodium-manganese mixed metal oxide, production method thereof and sodium secondary battery
KR20150038831A (en) * 2013-09-30 2015-04-09 삼성전자주식회사 cathode active material and cathode and sodium secondary battery using the same
KR101510528B1 (en) * 2013-08-28 2015-04-10 건국대학교 산학협력단 Method for producing electrode active material agglomerates for lithium secondary battery by spray drying process and the electrode active material particles prepared therefrom

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070100918A (en) * 2005-02-07 2007-10-12 산요덴키가부시키가이샤 Positive electrode and nonaqueous electrolyte secondary battery
US20100266900A1 (en) * 2007-11-22 2010-10-21 Sumitomo Chemical Company,Limited Sodium-manganese mixed metal oxide, production method thereof and sodium secondary battery
KR101510528B1 (en) * 2013-08-28 2015-04-10 건국대학교 산학협력단 Method for producing electrode active material agglomerates for lithium secondary battery by spray drying process and the electrode active material particles prepared therefrom
KR20150038831A (en) * 2013-09-30 2015-04-09 삼성전자주식회사 cathode active material and cathode and sodium secondary battery using the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PAULSEN, J. M. ET AL.: "Studies of the Layered Manganese Bronzes, Na2/3[Mnl-xMx]O2 with M=Co, Ni, Li, and Li2/3[Mnl -xMx ]O2 Prepared by Ion-exchange", SOLID STATE IONICS, vol. 126, no. 1 / 2, 1999, pages 3 - 24, XP002399348 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115602826A (en) * 2021-07-09 2023-01-13 南开大学(Cn) Air and water stable sodium ion battery positive electrode material and preparation method and application thereof
CN115207339A (en) * 2022-08-25 2022-10-18 江苏正力新能电池技术有限公司 Positive electrode material, preparation method thereof, positive electrode piece and O3-type layered sodium-ion battery
CN116573683A (en) * 2023-04-07 2023-08-11 北京航空航天大学 Sodium-rich P2/O3 biphase layered oxide, preparation method thereof, sodium ion battery positive electrode material and battery
CN116588984A (en) * 2023-04-07 2023-08-15 北京航空航天大学 Sodium-rich P2 phase layered oxide, preparation method thereof, sodium ion battery positive electrode material and battery

Similar Documents

Publication Publication Date Title
WO2015020486A1 (en) Cathode material for lithium secondary battery, and lithium secondary battery containing same
WO2015084036A1 (en) Porous silicon-based anode active material and method for preparing same, and lithium secondary battery including same
WO2018169247A2 (en) Anode for lithium secondary battery, production method therefor, and lithium secondary battery comprising same
WO2017179917A1 (en) Sodium-based electrode active material and secondary battery comprising same
WO2020235909A1 (en) Cathode active material for calcium-doped sodium secondary battery, and sodium secondary battery including same
WO2020111543A1 (en) Octahedral lithium manganese-based positive electrode active material, and positive electrode and lithium secondary battery including same
WO2016148441A1 (en) Lithium metal oxide, and negative electrode active material for lithium secondary battery having same, and manufaturing method therefor
WO2022260383A1 (en) Composite cathode active material, cathode and lithium battery which employ same, and preparation method therefor
WO2020091453A1 (en) Lithium secondary battery
WO2020111545A1 (en) Positive electrode active material, and positive electrode and lithium secondary battery comprising positive electrode active material
WO2022182019A1 (en) Sacrificial anode material having reduced gas generation, and preparation method therefor
WO2018236168A1 (en) Lithium secondary battery
WO2020197278A1 (en) Lithium secondary battery
WO2020171367A1 (en) Cathode active material, method for manufacturing same, and lithium secondary battery comprising cathode including same
WO2022092906A1 (en) Cathode active material and preparation method therefor
WO2018169370A1 (en) Electrolyte additive and electrolyte, comprising same, for lithium secondary battery
WO2020263023A1 (en) Electrode for lithium secondary battery having specific composition conditions and lithium secondary battery comprising same
WO2022055258A1 (en) Non-aqueous electrolyte for lithium secondary battery and lithium secondary battery comprising same
WO2022255665A1 (en) Master batch comprising positive electrode active material and irreversible additive, and positive electrode slurry, for lithium secondary battery, containing same
WO2020091428A1 (en) Lithium secondary battery
WO2022103101A1 (en) Lithium secondary battery
WO2020159284A1 (en) Electrode and lithium secondary battery comprising same
WO2021241976A1 (en) Electrolyte additive for secondary battery, non-aqueous electrolyte for lithium secondary battery comprising same, and lithium secondary battery
WO2021194220A1 (en) Electrolyte additive for secondary battery, non-aqueous electrolyte containing same for lithium secondary battery, and lithium secondary battery
WO2020091448A1 (en) Lithium secondary battery

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17782672

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17782672

Country of ref document: EP

Kind code of ref document: A1