WO2018235995A1 - Method for fast charging and maximum discharging while reducing degradation of electric vehicle battery, and apparatus therefor - Google Patents

Method for fast charging and maximum discharging while reducing degradation of electric vehicle battery, and apparatus therefor Download PDF

Info

Publication number
WO2018235995A1
WO2018235995A1 PCT/KR2017/010111 KR2017010111W WO2018235995A1 WO 2018235995 A1 WO2018235995 A1 WO 2018235995A1 KR 2017010111 W KR2017010111 W KR 2017010111W WO 2018235995 A1 WO2018235995 A1 WO 2018235995A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
current
battery pack
maximum
battery
Prior art date
Application number
PCT/KR2017/010111
Other languages
French (fr)
Korean (ko)
Inventor
이정환
Original Assignee
이정환
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이정환 filed Critical 이정환
Publication of WO2018235995A1 publication Critical patent/WO2018235995A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/11DC charging controlled by the charging station, e.g. mode 4
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/66Data transfer between charging stations and vehicles
    • B60L53/665Methods related to measuring, billing or payment
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/90Vehicles comprising electric prime movers
    • B60Y2200/91Electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Definitions

  • the present invention relates to a method and apparatus for performing fast charging and discharging while reducing the occurrence of deterioration of a battery for an electric vehicle, and more particularly, And the maximum charge current and the maximum discharge current are adjusted according to the state of the battery, so that the fast charge and the maximum discharge are performed, thereby preventing the performance from being deteriorated due to the high voltage or the high temperature. And more particularly, to a method and apparatus for performing fast charging and discharging of a battery for an electric vehicle.
  • the electric vehicle refers to an automobile that uses an electric battery and an electric motor without using petroleum fuel and an engine, and drives an automobile by rotating an electric motor that is stored in a battery.
  • the hybrid electric vehicle refers to a vehicle that drives a vehicle by combining two or more different kinds of power sources, that is, an engine that obtains a driving force by using fuel and a vehicle that acquires a driving force by an electric motor driven by battery power.
  • Such an hybrid electric vehicle is an environmentally friendly automobile in which an electric motor and an engine are appropriately driven according to the traveling speed, and is an automobile that improves fuel economy by charging an electric motor to charge the battery and auxiliary driving the motor at low- .
  • Typical hybrid electric vehicles include an MCU (Motor Control Unit) that controls motor operation, a BMS (Battery Management System) that performs battery power management, a Hybrid Control Unit (HCU) that controls the entire vehicle, An engine control unit (ECU) for controlling the engine, a motor for driving the vehicle, and a transmission control unit (TCU) for controlling the transmission.
  • MCU Motor Control Unit
  • BMS Battery Management System
  • HCU Hybrid Control Unit
  • ECU engine control unit
  • TCU transmission control unit
  • controllers are connected to a high-speed CAN (Controller Area Network) communication line (communication system developed by Bosch for sharing data between ECUs in the vehicle) centered on the HCU as an upper controller and exchange information among the controllers, To transmit the command to the lower controller.
  • CAN Controller Area Network
  • the HCU substantially controls the driving of the electric motor through the MCU.
  • the MCU controls the driving torque and the driving speed of the driving electric motor according to the control signal applied from the HCU, .
  • the main driving mode of the hybrid electric vehicle constructed as described above is an EV (electric vehicle) mode, which is a pure electric vehicle mode using only motor power, an auxiliary mode in which the rotational force of the engine is used as the main driving force and the rotational force of the motor is used as auxiliary power
  • EV electric vehicle
  • RB regenerative braking
  • the HEV mode is a parallel type hybrid which mainly uses an engine and is assisted by an electric motor, and a Strong HEV which has a merit of generating a powerful force, and a single HEV that uses one engine and two motors, It is a direct-parallel type hybrid that produces electricity by a motor and assists in parallel operation through another motor, and can be classified into a mild HEV having excellent fuel economy and driving ability.
  • a vehicle such as the hybrid electric vehicle is equipped with an internal combustion engine driven by gasoline and a battery engine, and drives the vehicle using either or both of them.
  • the vehicle is equipped with a large- The plug-in hybrid electric vehicle (PHEV) has also been developed, which can be used continuously, since the charging station can charge the cell phone or charge the electricity just like gasoline.
  • PHEV plug-in hybrid electric vehicle
  • the hybrid electric vehicle uses a large capacity battery, which is a secondary battery.
  • the battery is an energy source for driving a motor of a hybrid electric vehicle.
  • the battery monitors the voltage, current, and temperature of the battery through the BMS, .
  • FIG. 1 is a view for schematically explaining an operation performed in a BMS (battery management system) of such a general electric vehicle, wherein the BMS is a function of the safety of a secondary battery supplying power required by a drive system of an electric vehicle It is a key element of electric vehicles and hybrid electric vehicles because it plays a role in ensuring reliability.
  • BMS battery management system
  • the functions of the BMS can be roughly classified into the following two types. In other words, it can be classified into the thermal management control technology that can uniformly cool the weak battery in the heat and the uniform performance at all times, and the battery charge state (SOC: state of charge) control technology that determines the state of the battery and operates at the optimum efficiency point It is.
  • SOC state of charge
  • the thermal management control technology monitors the voltage, current, and temperature of the system to maintain it in an optimal state, and can take an alarm and advance safety precautions for safe operation of the system.
  • overcharge and overdischarge of the battery are suppressed to uniformly control the voltage between the cells, thereby prolonging the energy efficiency and the life of the battery. It is possible to save the alarm history status and to preserve the data and to diagnose the system through external diagnosis system or monitoring PC.
  • the battery charge state control technique is realized by a cell balance that keeps all the cells always in a uniform charge state. Furthermore, the battery management system comprehensively analyzes various change factors to predict the remaining travelable distance, and provides the information to an upper vehicle electronic control unit (ECU). In-vehicle communications typically utilize CAN, an ISO standard network.
  • the software supporting the functions of the BMS includes measuring algorithms for voltage, current and temperature, state of charge calculation (SOC), state of health (SOH) estimation, Cell balancing algorithm, Thermal management, Diagnostic algorithm, Protection algorithm and Communication with vehicle.
  • SOC state of charge calculation
  • SOH state of health estimation
  • Cell balancing algorithm Thermal management
  • Diagnostic algorithm Protection algorithm
  • Communication with vehicle includes measuring algorithms for voltage, current and temperature, state of charge calculation (SOC), state of health (SOH) estimation, Cell balancing algorithm, Thermal management, Diagnostic algorithm, Protection algorithm and Communication with vehicle.
  • the degradation degree of the performance of the battery can be quantitatively evaluated through the SOH parameter. That is, the SOH is evaluated in the BMS to calculate the replacement time of the battery, and the charging and discharging capacity of the battery is controlled according to the use period of the battery, thereby preventing overcharging and over discharge of the battery.
  • the capacity of the battery changes, and SOH can be estimated by the internal resistance and temperature of the battery.
  • the internal resistance of the battery is measured each time charging and discharging are repeated, and the capacity of the battery is measured by temperature. Then, the battery capacity is relatively quantified based on the initial capacity of the battery, And stored in a table. Then, the SOH of the battery can be estimated by measuring the internal resistance and temperature of the battery in an actual battery usage environment, and mapping the SOH corresponding to the internal resistance and the temperature from the mapping table.
  • an electric vehicle requiring a large-capacity power source as described above can not define the maximum electric power because the discharge battery electric power depends on the battery voltage and the load electric current, thereby deteriorating battery performance.
  • CC Constant Current, constant current mode that does not exceed the current set by maintaining the current by fluctuating voltage
  • CV Constant Voltage, Constant Voltage Mode Since the charging current can not be changed in CC (Constant Charging), the charging mode can not effectively prevent overcharge and overdischarge based on the current adjustment according to the state of the battery.
  • charging and discharging are performed while adjusting the maximum charging current or the maximum discharging current based on the voltage or temperature information by monitoring the charging and discharging states of the battery for an electric vehicle, thereby causing deterioration due to high voltage or high temperature
  • charging and discharging are performed while adjusting the maximum charging current or the maximum discharging current based on the voltage or temperature information by monitoring the charging and discharging states of the battery for an electric vehicle, thereby causing deterioration due to high voltage or high temperature
  • Korean Patent Registration No. 0949260 (Mar. 16, 2010) relates to a battery charging system for an electric vehicle, and more particularly, to a battery charging system for a hybrid electric vehicle, which optimizes a set value of a battery charge state quantity (SOC [%] (State of Charge) And more particularly, to a battery charging system for an electric vehicle capable of extending energy consumption efficiency of an electric vehicle and battery life.
  • SOC [%] Stable charge state quantity
  • the prior art provides an effect of improving the energy consumption efficiency of a battery of a hybrid electric vehicle by determining a weighted filling rate and a predicted charging rate, and increasing the lifetime of the battery by reducing overcharge and overcharging of the battery.
  • the process of changing the resistance of the battery pack resistance and the weak cell is learned to precisely monitor the charging state and the discharging state of the battery, And the maximum discharge current can be adjusted according to the state of the battery including the combination of the charge current and the maximum discharge current to perform the fast charge and the maximum discharge are not described in the prior art at all, It is the characteristic composition of the invention only.
  • U.S. Patent No. 8459978 discloses a method for monitoring the state of a rechargeable battery, which repeatedly acquires at least one measured value with respect to the battery during discharging of the battery, (The state of the battery is dependent on the previously calculated state of the battery, the measured value, and the at least one battery parameter), and the state of the battery is measured at a first rate Updating the parameter of the battery, updating the parameter of the battery at a second rate faster than the first rate after the status of the battery exceeds the threshold value, and calibrating the status of the battery in response to each update of the parameter .
  • the present invention has been made in order to solve the above problems, and it is an object of the present invention to provide a battery used in an electric vehicle capable of performing a fast charging and a maximum discharge while preventing performance deterioration due to high voltage and high temperature .
  • Another object of the present invention is to learn the process of changing the resistance of the battery pack resistance and the resistance of the wick cell as the charging and discharging are repeated, and precisely monitor the charging state and the discharging state of the battery based on the learning contents.
  • the present invention precisely monitors the charged state and the discharged state of a battery used in an electric automobile and adjusts the maximum charging current or the maximum discharging current according to the battery state including voltage, temperature, or a combination thereof, So that the user can perform the operation.
  • An apparatus for performing fast charging while reducing the occurrence of deterioration of a battery for an electric vehicle includes an learning unit for learning charge state information of a battery pack according to deterioration or temperature, And a charge processing unit for adjusting the maximum charge current according to a wick cell state of the battery pack to charge the battery pack based on a state of charge of the battery pack, A temperature and a resistance for the OCV, an OCV variation according to the SOC, a maximum set voltage at the current OCV point, or a combination thereof.
  • CCmax is the maximum charge current
  • Vmax is the maximum voltage preset for each SOC
  • OCVanode is the Anode OCV voltage mapped to the open circuit voltage
  • WR is the resistance of the wick cell
  • i is the point of the measured resistance
  • j is the temperature range to be.
  • Cathode Voltage and Anode Voltage can be measured through the internal ground.
  • the anode voltage is dropped, and when it drops below the anode potential voltage, lithium plating occurs and the cell deterioration is accelerated. Therefore, the anode voltage is prevented from dropping below the potential voltage during charging, thereby preventing cell deterioration.
  • the cell usually consists of +/- two terminals. Therefore, it is necessary to measure each OCV profile data before applying it to actual application, and OCV is mapped to OCVanode according to the SOC section, In the application, OCV is measured to obtain OCVanode. Therefore, Vmax is set to anode potential voltage + tolerance voltage.
  • the charge processing unit detects the current OCV point of the battery pack using the recently measured OCV and the passed charge, and calculates a maximum charge current with reference to the wick cell temperature and resistance of the battery pack at the detected current OCV point And determines whether the current wick cell voltage is the highest among all the battery cells in the process of charging the battery pack with the maximum charging current. If the wick cell voltage is the highest among all the battery cells, The charging of the battery pack is performed at the maximum charging current until the SOC of the battery pack reaches the SOC threshold value.
  • the charging processor determines that the current wick cell voltage is the highest among all the battery cells in the process of charging the battery pack with the maximum charging current, and the current wick cell voltage is the highest voltage among all the battery cells The cell having the highest voltage is changed to the Weck cell, and the resistance of all the battery cells is remeasured. If the voltage measured at the weck cell is greater than the predetermined maximum voltage, the resistance is measured again. And when the voltage measured by the weak cell is less than a preset maximum voltage, the battery pack is charged with the maximum charge current until the current SOC reaches the SOC threshold, The charging operation is performed.
  • the charging processor may determine whether the current temperature of the battery pack exceeds a predetermined temperature limit in the process of charging the battery pack with the maximum charging current. If it is determined that the current temperature of the cell is less than a predetermined temperature limit The maximum charge current is adjusted so that the charge can be performed while the temperature of the cell is kept below the temperature limit, and then the charge of the battery pack is performed at the maximum charge current until the current SOC reaches the SOC threshold , Thereby preventing deterioration occurring when charging is performed at a temperature exceeding a predetermined range of temperature.
  • an apparatus for performing maximum discharge while reducing the occurrence of deterioration of a battery for an electric vehicle includes an learning unit for learning discharge status information of a battery pack according to deterioration or temperature, And a discharge processor for adjusting the maximum discharge current and the maximum power according to the wick cell state of the battery pack based on the state information to perform discharge of the battery pack, And a total voltage, a temperature and a resistance for each battery cell, an OCV change amount according to SOC, a cutoff voltage as a preset discharge end voltage, a margin setting voltage before a cutoff voltage, or a combination thereof.
  • MAXdisc (OCV - (cutoff voltage + delta voltage)) / WR [i] [j]
  • MAXp current battery pack voltage * MAXdisc .
  • MAXdisc the maximum discharge current
  • OCV the open circuit voltage
  • the cutoff voltage is the discharge end voltage
  • the delta voltage is the margin setting voltage before the cutoff voltage
  • WR is the resistance of the wick cell
  • i the point of the measured resistance
  • Range MAXp is the maximum power.
  • the discharge processor may detect a current OCV point of the battery pack using recently measured OCV and pass charge, and determine a wick cell temperature, a resistance, a cutoff voltage, and a margin setting of the battery pack at the detected current OCV point Determining whether the current wick cell voltage is the lowest among all the battery cells in the process of discharging the battery pack with the maximum discharge current and the maximum power, setting the maximum discharge current and the maximum power with reference to the voltage, Off voltage and a margin setting voltage when the current wick cell voltage is the lowest voltage among all the battery cells, and determines whether the voltage measured by the wick cell is less than the sum of the cut- If the current SOC is less than the SOC threshold value or the maximum power is less than the predetermined minimum power And discharging the battery pack with the maximum discharge current and the maximum power until the voltage is less than the threshold value.
  • the current wick cell voltage is not the lowest voltage among all the battery cells, it is determined that the current wick cell voltage is the lowest among all the battery cells in the process of discharging the battery pack.
  • the battery cell having a low voltage is changed to a wick cell and the resistance of all the cells is remeasured to determine whether the voltage measured in the corresponding weak cell based on the resistance measurement result is less than the sum of the cut- If the measured voltage at the weak cell is smaller than the sum of the cutoff voltage and the margin set voltage, the resistance is calculated again, and then the discharge is performed by adjusting the maximum charge current and the maximum power.
  • the current SOC is less than the SOC threshold value, Until it is below a predetermined minimum power threshold, characterized in that to perform the discharge of the battery pack to the maximum discharging current and maximum power.
  • the discharge processor may determine whether a current temperature of the battery pack exceeds a predetermined temperature limit in a process of discharging the battery pack. If the measured temperature of the currently measured cell exceeds a predetermined temperature limit, The maximum discharge current and the maximum power are adjusted so that the discharge can be performed while the temperature of the cell is kept below the temperature limit, and then the maximum discharge current and the maximum power are adjusted until the current SOC is less than the SOC threshold value or the maximum power is less than the predetermined minimum power threshold And discharging the battery pack at a current and a maximum power, thereby preventing deterioration occurring when discharging is performed at a temperature exceeding a predetermined range of temperature.
  • a method for performing fast charging while reducing the occurrence of deterioration of a battery for an electric vehicle includes a learning step of learning charge state information of a battery pack according to deterioration or temperature, And a charging processing step of adjusting the maximum charging current according to the wick cell state of the battery pack based on the state information to perform charging of the battery pack, wherein the charging state information includes a total resistance of the battery pack according to SOC A temperature and a resistance of the battery cell, an OCV variation amount according to the SOC, a maximum setting voltage at a current OCV point, or a combination thereof.
  • the charging process may further include detecting a current OCV point of the battery pack using a recently measured OCV and a passed charge, calculating a maximum OCV point by referring to a wick cell temperature and a resistance of the battery pack at the detected current OCV point Determining whether the current wick cell voltage is the highest among all the battery cells in the process of charging the battery pack with the maximum charging current, determining whether the current wick cell voltage is the highest among all the battery cells, And charging the battery pack with the maximum charge current until the current SOC reaches the SOC threshold value when the battery voltage is a high voltage.
  • the current wick cell voltage is the highest among all the battery cells in the process of charging the battery pack with the maximum charging current. If the current wick cell voltage is the highest among all the battery cells Measuring the resistance of all the battery cells after changing the cell having the highest voltage if the voltage is not higher than the maximum cell voltage, measuring the resistance again if the voltage measured at the corresponding wick cell is greater than a preset maximum voltage, Adjusting the maximum charge current based on the temperature and the resistance to proceed with charging; and, if the measured voltage at the weak cell is less than a preset maximum voltage, changing the maximum charge current until the current SOC reaches the SOC threshold And performing charging of the battery pack.
  • the charging process may further include determining whether a current temperature of the battery pack exceeds a predetermined temperature limit in a process of charging the battery pack with the maximum charging current, If the temperature limit is exceeded, the maximum charge current is adjusted so that the charge can be maintained while the temperature of the cell is kept below the temperature limit, and then the charge of the battery pack is charged to the maximum charge current until the current SOC reaches the SOC threshold So as to prevent deterioration occurring when charging is performed at a temperature exceeding a predetermined range of temperatures.
  • a method for performing maximum discharge while reducing the occurrence of deterioration of a battery for an electric vehicle includes a learning step of learning discharge status information of a battery pack according to deterioration or temperature, And a discharge processing step of adjusting the maximum discharge current and the maximum power according to the wick cell state of the battery pack based on the state information to perform discharge of the battery pack, A resistance and a total voltage, a temperature and a resistance for each battery cell, an OCV variation amount according to SOC, a cutoff voltage as a preset discharge end voltage, a margin setting voltage before a cutoff voltage, or a combination thereof.
  • the discharging process may further include detecting a current OCV point of the battery pack using a recently measured OCV and a pass charge, detecting a wick cell temperature and a resistance of the battery pack at the detected current OCV point, a cutoff voltage, Determining a maximum discharge current and a maximum power with reference to a margin setting voltage, determining whether a current wick cell voltage is the lowest among all the battery cells in a process of discharging the battery pack, Determining whether a voltage measured by the weak cell is less than a sum of the cut-off voltage and a margin setting voltage when the voltage is the lowest voltage among all the battery cells, and determining whether the voltage measured by the weak cell is less than the sum of the cut- Sum, the current SOC is less than the SOC threshold, or the maximum power is less than the predetermined minimum power threshold Discharging the battery pack with the maximum discharge current and the maximum power until the maximum discharge current is less than the maximum discharge current.
  • the discharging process may be performed such that if the current weak cell voltage is the lowest among all the battery cells in the process of discharging the battery pack, if the current weak cell voltage is not the lowest voltage among all the battery cells
  • the battery cell having the lowest voltage is changed to the Weck cell and the resistance of all the cells is remeasured to determine whether the voltage measured at the detected weak cell based on the resistance measurement result is less than the sum of the cut- Calculating a resistance when the voltage measured by the weak cell is less than the sum of the cut-off voltage and the margin setting voltage, and adjusting the maximum charge current and the maximum power to proceed with discharging; If a voltage is greater than the sum of the cutoff voltage and the margin set voltage, the current SOC is less than the SOC threshold Or until the maximum power is less than a predetermined minimum power threshold, it characterized in that it further comprises the step of performing discharge of the battery pack to the maximum discharging current and maximum power.
  • the discharging process may further include determining whether a current temperature of the battery pack exceeds a predetermined temperature limit in a process of discharging the battery pack, and if the measured temperature of the currently measured cell exceeds a predetermined temperature limit The maximum discharge current and the maximum power are adjusted so that the discharge can be performed while the temperature of the corresponding cell is kept below the temperature limit, and then the maximum discharge current and the maximum power are adjusted until the current SOC is less than the SOC threshold value or the maximum power is less than the predetermined minimum power threshold And discharging the battery pack at a maximum discharge current and a maximum power so as to prevent deterioration occurring when discharging is performed at a temperature exceeding a predetermined range of temperature.
  • the charging and discharging state of the battery for an electric vehicle is monitored, Charging and discharging are performed while adjusting the maximum charging current or the maximum discharging current on the basis of the maximum charging current and the maximum discharging current so that the fast charging and the maximum discharging can be performed while suppressing the occurrence of deterioration due to the high voltage or the high temperature.
  • the charge and discharge states of the battery are precisely monitored, and the charge and discharge are controlled based on the battery charge resistance and the discharge state.
  • the battery can be restrained as much as possible, thereby improving the quality of the battery, and can be used stably for a long time.
  • FIG. 1 is a schematic view for explaining an operation performed in a BMS of a general electric vehicle.
  • FIG. 2 is a view schematically showing a configuration of an embodiment of a battery management system to which the present invention is applied.
  • FIG. 3 is a view schematically showing a configuration of another embodiment of a battery management system to which the present invention is applied.
  • FIG. 4 is a diagram schematically showing a configuration of another embodiment of a battery management system to which the present invention is applied.
  • FIG. 5 is a view showing a first cycle for learning data for charging and discharging state monitoring of a battery pack applied to the present invention.
  • FIG. 6 is a diagram illustrating a second cycle for learning data for charging and discharging state monitoring of a battery pack according to the present invention.
  • FIG. 7 is a detailed view showing a configuration of a battery management device applied to each embodiment of the present invention.
  • FIG. 8 is a flowchart illustrating an operation procedure of a method for performing fast charging while reducing occurrence of deterioration of a battery for an electric vehicle according to an embodiment of the present invention.
  • FIG. 9 is a flowchart illustrating an operation of a method for performing a maximum discharge while reducing occurrence of deterioration of a battery for an electric vehicle according to an embodiment of the present invention.
  • FIG. 10 is a flowchart illustrating an operation procedure of a temperature control method for preventing deterioration due to high temperature of a battery for an electric vehicle according to an embodiment of the present invention.
  • FIG. 2 is a view schematically showing the configuration of an embodiment of a battery management system to which the present invention is applied
  • FIG. 3 is a view schematically showing a configuration of another embodiment of a battery management system to which the present invention is applied
  • FIG. Fig. 2 is a schematic view showing the configuration of another embodiment of the applied battery management system.
  • the battery management system 10 monitors the state of the battery pack 200 to perform a quick charge and a maximum discharge while causing less deterioration, A battery charger 700 for charging the battery pack 200 and the battery pack 200 through an external terminal or a charger 700 for charging the battery pack 200 through the external terminal, The charging FET 300, the discharging FET 400, and the battery pack 200, such as an electric motor driven by receiving power from the battery pack 200, A temperature sensing unit 500, and a current sensing unit 600 that senses the current of the battery pack 200.
  • the battery management apparatus 100 controls the charging FET 300 and the discharging FET 400 constituted by field effect transistors (FETs) and controls the external device connected to the external terminals (i.e., the charger 700 or the load So that the battery pack 200 can be charged or discharged.
  • the battery management device 100 monitors the state of the battery pack 200, and based on the result of the monitoring, the battery management device 100 generates less deterioration due to a high voltage or a high temperature depending on the state of the battery pack 200, The fast charge and the maximum discharge of the pack 200 proceed.
  • the battery management device 100 when the charger 700 is connected to the external terminal, the battery management device 100 turns on the charging FET 300 and turns off the discharging FET 400, So that the battery pack 200 can be charged with a constant voltage and current. Conversely, when a load such as an electric motor is connected to the external terminal, the battery management apparatus 100 turns off and on the charging FET 300 and the discharging FET 400, respectively, So that the power can be applied to the load.
  • the battery management apparatus 100 learns the total resistance of the battery pack 200 according to the temperature and the resistance of the battery cells constituting the battery pack 200 to weak battery cells (i.e., weak cells) The charge / discharge is repeated based on the resistance change of the battery pack 200 due to deterioration so that the state of the used battery pack 200 can be immediately recognized.
  • the battery management apparatus 100 accurately gauges the remaining capacity due to temperature and deterioration of the battery pack 200 when the battery pack 200 is charged or discharged, The charging or discharging of the battery pack 200 is controlled to prevent deterioration and defects due to overcharge or overdischarge of the battery pack 200.
  • the battery management device 100 monitors the state of charge of the battery pack 200, detects the state of the battery pack 200 before the battery pack 200 enters the overcharged state, and turns off the charge FET 300, So that defects and deterioration of the pack 200 can be prevented.
  • the battery management device 100 monitors the discharging state of the battery pack 200, detects the discharging state of the battery pack 200 before the battery pack 200 enters the over-discharge state, and turns off the discharging FET 400, Thereby preventing the battery pack 200 from being damaged or deteriorated.
  • the battery management apparatus 100 must know or monitor the power used in the electric motor and the system. For example, if the maximum power that can be supplied from the battery pack 200 is 50 KW, the power used in the motor drive and the system should be controlled to 50 KW or less. In order to do this, the power budget must be measured and set at the development stage according to the system operation.
  • the electric vehicle to which the battery pack of the present invention is applied can limit the maximum speed to the maximum power with battery voltage, sends a signal to the user when the maximum power that can be set by the automobile manufacturer is too low, It has two modes: low-speed mode and high-speed mode at the expense of runtime.
  • the battery pack for an electric vehicle according to the present invention should be controlled such that the cell temperature does not exceed the temperature threshold in any case in order to prevent deterioration at a high temperature and acceleration of the deterioration at a high temperature or a high voltage . It is therefore natural that battery energy must be managed to lower the temperature and lower the voltage.
  • the battery pack 200 includes a plurality of battery cells, and the number of the battery cells may be varied according to the purpose or use of the battery pack 200, or a load connected to the battery pack 200
  • the battery pack 200 can be configured.
  • the battery cells may be connected in series, in parallel, or a combination thereof, and may be charged or discharged to a predetermined voltage through a charger 700 or a load connected to an external terminal.
  • the battery pack 200 may be constructed of all kinds of secondary batteries such as a lithium ion battery, a lithium ion polymer battery, a nickel cadmium battery, and the like.
  • the charging FET 300 and the discharging FET 400 refer to a switch for charging or discharging the battery pack 200 at a constant voltage.
  • an insulated gate bipolar transistor (IGBT) or a relay for charging / discharging relay and the like.
  • the temperature sensing unit 500 senses the temperature of the battery pack 200 or the battery cell 200 during charging / discharging of the battery pack 200 and provides the sensed temperature to the battery management device 100.
  • the current sensing unit 600 includes a sense resistor for sensing a current and is connected in series with the external terminal and the battery pack 200 to detect a charge / discharge current of the battery pack 200 And provides it to the battery management apparatus 100.
  • the battery management apparatus 100 may be configured to perform rapid charging and maximum discharge of the battery pack 200 while causing less deterioration due to high voltage or high temperature depending on the state of the battery pack 200
  • the OCV for the battery pack 200 in a no-load state to accurately gauge the total resistance of the battery pack 200, the resistance to each battery cell, and the remaining capacity and the total usable capacity of the battery pack 200, the change of the open circuit voltage and the resistance change of the battery pack 200 according to the temperature are learned.
  • the learning is performed through a total of two learning cycles including a first cycle and a second cycle, and a detailed description thereof will be described with reference to FIGS. 5 and 6.
  • the total resistance of the battery pack 200 and the resistance of each battery cell (i.e., the internal resistance), which are learned by the battery management apparatus 100 according to a temperature change, are determined by a function Which is used to perform the fast charging or the maximum discharge of the battery pack 200 while adjusting the maximum charging current or the maximum discharging current so that deterioration that may be caused by a high voltage or a temperature is less generated.
  • the battery management device 100 learns the total resistance of the battery pack 200 and the resistance to each battery cell and learns the maximum charge current and the maximum discharge current of the battery pack 200 according to the temperature. Derive the factor for adjustment and analyze the characteristics of the load. Accordingly, the battery pack 200 can be quickly charged or discharged at a maximum while causing less deterioration due to high voltage or temperature.
  • the battery management apparatus 100 determines whether or not the battery pack 200 (200) including the total resistance of the battery pack 200 according to the SOC, the resistance to each battery cell, the OCV variation amount, So that the state of charge and discharge of the battery pack 200 can be accurately confirmed.
  • FIG. 3 is a view schematically showing a configuration of another embodiment of a battery management system to which the present invention is applied.
  • the battery management system 10 may further include the configuration of FIG. 2 and a plurality of current / voltage measurement units 800.
  • the battery management system 10 described in the embodiment of FIG. 2 directly measures the voltage of each battery cell to calculate the resistance of each battery cell and the resistance to a weak battery cell
  • the battery management system 10 according to the present invention includes a separate current / voltage measurement unit 800 to measure the resistance of the battery cell.
  • At least one current / voltage measuring unit 800 is provided, and each current / voltage measuring unit 800 is connected to at least one battery cell.
  • the current / voltage measuring unit 800 measures current and voltage for each battery cell that the current / voltage measuring unit 800 itself provides to the battery management apparatus 1000, and the battery management apparatus 1000 measures the current / Learning is performed based on the resistance of each battery cell and the resistance of the weak battery cell using the current and voltage for each battery cell provided from the measuring unit 800.
  • the battery management apparatus 100 in the embodiment of FIG. 2 uses the total current for the battery pack 200 and the voltage for each battery cell
  • the battery management apparatus 1000 in the embodiment of FIG. 3 measures the resistance of each battery cell by measuring the voltage and current for each battery cell and using it to measure the resistance of each battery cell more accurately, Can be measured.
  • the resistance may be calculated by the current / voltage measuring unit 800 and provided to the battery management apparatus 1000 or may be calculated by the battery management apparatus 1000.
  • FIG. 4 is a diagram schematically showing a configuration of another embodiment of a battery management system to which the present invention is applied.
  • the battery management system 10 may further include the configuration of FIG. 2 and a plurality of battery data processing units 900.
  • the battery data processing unit 900 includes a plurality of battery management apparatuses 100 as shown in FIG. 2.
  • the battery management apparatus 100 processes data related to status information monitoring of the battery pack 200
  • the centralized processing can be performed by a plurality of modules so that the centralized load can be distributed and processed.
  • the battery data processor 900 is connected to at least one battery cell, and learns the internal resistance of each battery cell according to the temperature change, and provides the result to the battery management device 2000.
  • the battery management apparatus 2000 integrates data related to battery monitoring provided from each battery data processing unit 900, so that the maximum charge current or maximum discharge current, voltage and temperature information of the battery pack 200, And the state of health (SOH) of the battery pack 200 are accumulated and stored, and the charging and discharging states of the battery pack 200 are monitored. Based on the monitoring information, deterioration due to high voltage or temperature is less So that the battery pack 200 is rapidly charged or discharged.
  • the battery data processing unit 900 and the battery management device 2000 are connected to the charging and discharging state using various communication methods such as an inter-integrated circuit (I2C), a server message block (SMB), and a controller area network Related monitoring data can be transmitted and received.
  • I2C inter-integrated circuit
  • SMB server message block
  • controller area network Related monitoring data can be transmitted and received.
  • FIG. 5 is a diagram showing a first cycle for learning data for charging and discharging state monitoring of a battery pack applied to the present invention.
  • the battery management apparatus 100 measures an OCV curve of the battery pack 200 in a first cycle (first cycle), accumulates and stores the measured OCV curve, The OCV variation amount is learned every time the battery pack 200 is discharged. That is, the battery management apparatus 100 preferentially controls the OCV of the battery pack 200 at the SOC through the first cycle to gauges the resistance change and the capacity of the battery pack 200 due to temperature and deterioration (aging) (I.e., the OCV curve).
  • the battery pack 200 is discharged at a constant C-rate (for example, 1/20 C) in a no-load state.
  • the battery pack 200 is divided into a plurality of SOC grid points, The change amount of the OCV can be measured.
  • the SOC grid point is shown in FIG.
  • the OCV change amount can be measured through self-discharge of the battery pack 200, but it takes a long time to complete discharge in the case of self-discharge, so that the OCV change amount is measured by flowing a very small current, It is considered to be equal to the change in OCV measured.
  • the battery management apparatus 100 detects a flat region in which the OCV variation amount is moderate or not in the OCV curve on the measured SOC.
  • the flat region is detected by finding an a point and a b point, as shown in FIG. 5, where the a point and the b point are locations where the amount of voltage change per unit time changes abruptly.
  • a point is a point where the amount of voltage change per unit time drastically decreases
  • a point b means a place where the amount of voltage change per unit time increases sharply.
  • the flat region is located between the points a and b, and means a period in which the amount of voltage change is moderate or substantially equal.
  • a point is a point at which a point larger than a predetermined value is differentiated by unit time and the point b is differentiated by the unit time and a point smaller than a preset value is detected first Quot;
  • a point of dV / dT> 30 uV / S can be detected as a point, and a point of dV / dT ⁇ 30 uV / S can be detected as a point b.
  • the reference value of 30 uV / S for detecting each point can be set differently according to the characteristics of the battery cell.
  • the battery management apparatus 100 calculates the total capacity of the battery pack 200 through the first cycle.
  • the total capacity may be calculated by calculating the total amount of charges flowing while discharging the battery pack 200 from no-load state to a discharge termination voltage, or may be calculated by calculating an area of the OCV voltage curve.
  • the total capacity of the battery pack 200 may be measured by calculating a total coulomb of the battery pack 200, or the OCV voltage curve and the shapes formed by the x and y axes, The total capacity of the battery pack 200 can be measured.
  • the battery management apparatus 100 measures the resistance value of each battery pack 200 according to the SOC grid point through a second cycle (second cycle).
  • the battery management apparatus 100 discharges the battery pack 200 at a rate of 1/5 C-rate in order to measure a resistance value for each SOC grid point, The resistance to a weak battery cell (i.e., a weak cell) that outputs a weak voltage is measured.
  • a weak battery cell i.e., a weak cell
  • the second cycle is performed at least three times for each temperature (e.g., low temperature, normal temperature, and high temperature), and the total resistance of the battery pack 200 and the resistance of the weak battery cell are measured for each temperature.
  • the temperatures of the battery pack 200 and the battery cell 200 are measured at a room temperature of 25 degrees, a high temperature of 40 degrees, and a low temperature of 5 degrees or less.
  • the above temperature can be set differently according to the use purpose of the battery, the usage environment, the user's setting, and the like.
  • many temperature ranges e.g., -5 degrees, 0 degrees, 5 degrees, , 25 degrees, 40 degrees or more) can be set.
  • the total voltage for each SOC grid point can be measured through the following equation (1) because the voltage curve for each interval has already been measured through the first cycle.
  • Vm [i] OCV [i] - IR [i]
  • Vm denotes the total measured voltage of the battery pack 200, which means an open circuit voltage in a no-load state measured through the first cycle.
  • i represents a point at which a resistance value is calculated by a virtual grid point preset in the SOC.
  • the battery management apparatus 100 can measure the resistance of each battery cell by SOC grid point using Equation (1).
  • Vm denotes a voltage measured for each battery cell
  • I denotes a current measured for each battery cell.
  • the battery management apparatus 100 learns a change in the internal resistance of the battery pack 200 at each temperature to accurately measure the internal resistance of the battery pack 200 when the battery pack 200 is discharged Can be measured. Therefore, it is possible to sense the process of the resistance change of the battery pack due to repetitive charging and discharging of the battery pack 200 and the resistance of the weak battery cell, and the internal resistance of the battery pack 200 can be detected The charging or discharging of the battery pack 200 can be stopped so that the risk of heat generation and explosion of the battery pack 200 can be prevented in advance.
  • FIG. 7 is a detailed view showing the configuration of a battery management apparatus according to the present invention.
  • the battery management apparatus 100 of the present invention includes a learning unit 110, a measurement unit 120, a charge processing unit 130, a discharge processing unit 140, a temperature control unit 150, 160, a storage unit 170, a control unit 180, and the like.
  • the learning unit 110 is a part that performs a function of measuring and measuring the resistance of the battery pack 200 according to the temperature.
  • the learning cycle includes the first cycle and the second cycle described with reference to FIGS. 5 and 6.
  • the OCV curve i.e., the OCV variation
  • the OCV curve 200 learns a change in resistance due to temperature and deterioration of the battery pack 200 through the second cycle.
  • the first cycle discharges the battery pack 200 at a specific C-rate (for example, 1/20 C-rate) in a no-load state and a normal temperature, and learns an OCV curve for the battery pack 200. This can be performed periodically or non-periodically according to a preset period or a user.
  • a specific C-rate for example, 1/20 C-rate
  • the learning unit 110 detects a flat region of the OCV curve in the first cycle, and as described with reference to FIG. 5, the flat region is obtained by finding two points in which the variation amount of the OCV curve rapidly changes .
  • the learning unit 110 learns by calculating the total capacity in a no-load state.
  • the calculation of the total capacity means that the total capacity of the battery pack 200 is measured by discharging the battery pack 200 to the discharge termination voltage at a constant C-rate in the battery pack 200 to be. At this time, it is natural that the battery pack 200 deteriorates as it is used in connection with a load, so that the total capacity of the battery pack 200 learned through the first cycle must be changed (that is, reduced).
  • the learning unit 110 accumulates the measured OCV curves and the total capacity of the battery pack 200 in the storage unit 170 through the first cycle so that the OCV curve and the total number of the battery packs 200 Learn about changes in capacity.
  • the C-rate is not limited to 1/20 C-rate, and may be set differently depending on the use purpose of the battery pack 200, the purpose of use, and the user.
  • the learning unit 110 learns the resistance of the battery pack 200 through the second cycle shown in FIG.
  • the resistance is learned by measuring the total resistance of the battery pack 200, the resistance of each battery cell constituting the battery pack 200, and the resistance of the weak cell outputting the lowest voltage.
  • the battery pack is discharged at a constant C-rate at a normal temperature, a high temperature, and a low temperature, and the battery pack 200, Learning by measuring the resistance of the cell.
  • the second cycle may be performed periodically or non-periodically according to a preset period or a user.
  • the second cycle divides the SOC of the battery pack 200 into a plurality of intervals (i.e., grid points) and measures a resistance value of each of the grid points.
  • the OCV curve for each grid point is obtained through the first cycle
  • the measured voltage in the second cycle becomes OCV-IR. Therefore, the voltage Vm [i] measured for each grid point is OCV [i] - IR [i], and R [i] becomes (OCV [i] - Vm [i]) / I. Where i represents each grid point.
  • the resistance is measured by dividing the SOC grid point by a small amount because the amount of change of the voltage is little or gradual in the flat region, and the amount of change of the voltage rapidly changes at other positions. Therefore, the SOC grid point is more finely divided than the flat region, The point-by-point resistance is measured and stored in the storage unit 170.
  • the learning unit 110 calculates a variable (i.e., a temperature factor) that each temperature has on the resistance through the second cycle, reflects the calculated temperature factor on the measured resistance value, .
  • a variable i.e., a temperature factor
  • the cell resistance of each battery instead of the cell resistance of each battery, only the resistance of several wick cells having the largest pack resistance or resistance is learned for each temperature through the learning unit 100, so that the cell voltage or the pack voltage
  • the cell to be reached can be determined as a wick cell and the wick cell can be found.
  • the discharge is terminated when one battery cell first reaches the discharge end voltage of the cell before the pack voltage reaches the discharge end voltage of the pack. It is necessary to protect the cell because the lifetime of the cell is greatly lowered at the low voltage.
  • the method of learning the change of the resistance value to the Weak cell is the same as learning the pack resistance. However, the difference is that finding the Weeks cell finds the lowest voltage in the cell.
  • the voltage measurement of a wick cell can be represented as a sum of the wick cell self-voltage measurement multiplied by the current multiplied by the wire resistance between the cells.
  • the voltage measurements of these Weck cells can be used to learn the Weck cell resistance.
  • the measurement unit 120 includes a voltage / current measurement unit 121, a temperature measurement unit 123, a resistance measurement unit 125, and the like, which measure current, voltage, temperature, and resistance of the battery pack 200 do.
  • the voltage / current measuring unit 121 measures the current and voltage of the battery pack 200 when the battery pack 200 is charged or discharged. That is, the current and voltage for the entire battery pack 200 as well as the current and voltage for each battery cell constituting the battery pack 200 are measured. At this time, the current and voltage for the battery pack 200 or each battery cell can be measured through the current sensor and the voltage sensor.
  • the voltage / current measuring unit 121 may be configured as a plurality of current / voltage measuring units 800 and a battery data processing unit 900 that cover a plurality of battery cells, respectively, have.
  • the battery management apparatus 100 may receive voltage and current for each battery cell measured through the plurality of modularized current / voltage measurement units 800 and the battery data processing unit 900.
  • the temperature measuring unit 123 measures the temperature of the battery pack 200 and the battery cell at the time of charging or discharging the battery pack 200 so that the charging unit 130, the discharging unit 140, the temperature controller 150 ) Or the like so that the amount of change in temperature at the time of charging or discharging can be confirmed.
  • the resistance measuring unit 125 measures the resistance of the battery pack 200 connected to the load due to the learning result of the learning unit 110 for each SOC grid point. That is, the total resistance of the battery pack 200 and the resistance of each battery cell are measured for each of the preset SOC grid points. At this time, the total resistance of the battery pack 200 and the resistance of the battery cell are measured in the same manner as the method of calculating the resistance value through the second cycle.
  • the resistance measuring unit 125 measures the resistance of the battery pack 200
  • the charging or discharging of the battery pack 200 can be blocked through the charging processor 130 or the discharging processor 140 based on the control of the controller 180. [ Accordingly, an external device or user using the battery pack 200 can be protected from defects (e.g., explosion) of the battery pack 200.
  • the charging processing unit 130 is a part that functions to charge the battery pack 200 by receiving power from a charger 700 connected through an external terminal and is connected to the learning unit 110 and the measurement unit 120 And charges the battery pack 200 while adjusting the maximum charge current based on the measured charge state information of the battery pack 200. Speed charging of the battery pack 200 while causing less deterioration due to high voltage or temperature.
  • a method for performing the fast charging of the battery for an electric vehicle performed in the charge processing unit 130 will be described in detail with reference to FIG.
  • the charging processor 130 determines whether the current temperature of the battery pack 200 exceeds a predetermined temperature limit in the process of charging the battery pack 200 by setting the maximum charging current, When charging is performed at a temperature higher than a preset range by adjusting the charging current so that the charging can be performed while the temperature of the cell is kept below the temperature limit when the temperature of the cell exceeds a predetermined temperature limit, To prevent possible deterioration.
  • the discharge processing unit 140 is a part for supplying power charged in the battery pack 200 to a load (for example, an electric motor) connected via an external terminal.
  • the discharge unit 140 includes a learning unit 110, The maximum power is supplied to the load side while adjusting the maximum discharge current based on the discharge state information of the battery pack 200 measured through the battery 120, thereby achieving the maximum discharge. That is, the charge voltage of the battery pack 200 is discharged to the load side with the maximum power while causing less deterioration due to high voltage or temperature as in the case of the charge processing unit 130.
  • a method for performing the maximum discharge of the battery for an electric vehicle performed in the discharge processing unit 140 will be described in more detail with reference to FIG.
  • the discharge processor 140 determines whether the current temperature of the battery pack 200 exceeds a predetermined temperature limit in the course of performing the discharge of the battery pack 200 by setting the maximum discharge current and the maximum power, When the temperature of the currently measured cell exceeds a predetermined temperature limit, discharge is performed at a temperature higher than a predetermined range by adjusting the discharge current so that the discharge can be performed while the temperature of the cell is maintained below the temperature limit Thereby preventing degradation that can be accelerated.
  • the maximum power set in the discharge processing unit 140 is basically useful for increasing the vehicle speed in the electric motor.
  • the temperature controller 150 compares the cell temperature of the battery pack 200 performing charging or discharging with a predetermined temperature threshold value (i.e., a maximum temperature set value at which deterioration of the battery pack is accelerated) And functions to allow the temperature of the pack 200 to operate at a normal range of temperatures (e.g., about 35 degrees Celsius).
  • a predetermined temperature threshold value i.e., a maximum temperature set value at which deterioration of the battery pack is accelerated
  • the temperature controller 150 performs thermal modeling When the current SOC for temperature control becomes less than the SOC threshold or the current MAXp becomes less than the MAXp threshold or the voltage of the weak cell becomes less than the cutoff voltage of the discharge termination voltage Temperature control is performed. At this time, the temperature modeling may be configured in various control methods including a maximum charge current adjustment, a maximum discharge current adjustment, a maximum power adjustment, or a combination thereof.
  • the temperature controller 150 provides the user terminal with the temperature control necessity information so that the user can immediately perform the temperature control .
  • the communication unit 160 performs communication connection between the battery management system 10 and the user terminal of the user using the electric vehicle and transmits various data related to the temperature control and the like necessary for charging or discharging the battery for the electric vehicle Lt; / RTI >
  • the storage unit 170 stores the learning result performed by the learning unit 110 and the currents measured in each battery cell constituting the battery pack 200 and the battery pack 200 processed by the measurement unit 120, Voltage, temperature, resistance, and so on.
  • the storage unit 170 accumulates information about the battery pack 200 that changes as charging or discharging is repeated and accumulates information of the battery pack 200 in the charging processor 130, the discharging processor 140, the temperature controller 150, And stores and manages the processing result.
  • the controller 180 performs a function of collectively managing various operations of the battery management device 100.
  • FIG. 8 is a flowchart for explaining an operation procedure of a method for performing fast charging while reducing the occurrence of deterioration of a battery for an electric vehicle
  • FIG. 9 is a flowchart illustrating a method for performing maximum discharge while reducing occurrence of deterioration of a battery for an electric vehicle
  • FIG. 10 is a flowchart for explaining an operation procedure of a temperature control method for preventing generation of deterioration due to high temperature of an electric vehicle battery.
  • the charge processing unit 130 of the battery management apparatus 100 detects the current OCV position using the recently measured OCV point and the passed charge according to the discharge of the battery pack 200 at step S101.
  • the OCV point means the SOC grid point.
  • the SOC grid point is set in advance according to a previously performed learning cycle, and the total capacity of the battery pack 200 is measured. Therefore, since the previously measured OCV point is already known, the current OCV position can be detected based on the corresponding OCV point.
  • the Passed Charge means a coulomb that has already flown. Since the OCV curve is already known and the total capacity of the battery pack 200 is already known according to the learning result, The current SOC can be obtained through the amount of charge flowing at the voltage obtained from the previous OCV.
  • the charge processing unit 130 After detecting the current OCV position in step S101, the charge processing unit 130 sets the maximum charge current CCmax according to the following formula (2) (S103). At this time, the maximum charge current CCmax is continuously set to the charge current according to Equation (2) up to the SOC [%] set by the user. That is, the charging processor 130 sets the maximum charging current CCmax to the charging current of the battery pack 200 to charge the battery pack 200.
  • CCmax (OCVanode - Vmax) / WR [i] [j]
  • Vmax is the maximum voltage preset for each SOC
  • OCVanode is the Anode OCV voltage mapped to the open circuit voltage
  • WR is the resistance of the wick cell
  • i is the point of the measured resistance
  • j is the temperature range to be.
  • Vmax is the maximum voltage preset in consideration of the maximum voltage affecting the deterioration as the SOC through the engineer's open circuit anode voltage check during cell development, that is, the maximum voltage preset for each SOC.
  • the cell's total voltage consists of Cathode Voltage + Anode Voltage, and Cathode Voltage and Anode Voltage can also be measured through the internal ground.
  • the anode voltage is dropped, and when it drops below the anode potential voltage, lithium plating occurs and the cell deterioration is accelerated. Therefore, the anode voltage is prevented from dropping below the potential voltage during charging, thereby preventing cell deterioration.
  • the cell when the cell development is completed, the cell usually consists of +/- two terminals. Therefore, it is necessary to measure each OCV profile data before applying it to actual application, and OCV is mapped to OCVanode according to the SOC section, In the application, OCV is measured to obtain OCVanode. Therefore, Vmax is set to anode potential voltage + tolerance voltage.
  • the charge processing unit 130 After the maximum charge current CCmax is set in step S103, the charge processing unit 130 performs temperature control such that the temperature of each battery cell is controlled in a temperature range for normal operation in the process of charging the battery pack 200 (S105), and determines whether the current cell temperature is lower than a predetermined temperature limit according to a result of the temperature control (S107).
  • the charge processing unit 130 recognizes that the temperature control is required and the charging can be performed while the temperature of the corresponding cell is maintained below the temperature limit
  • the charging current is adjusted (S109). That is, the charge processing unit 130 prevents deterioration that may occur when the currently measured cell temperature is charged at a temperature higher than a predetermined range.
  • step S107 If it is determined in step S107 that the current cell temperature is lower than the predefined temperature limit, the charge processing unit 130 recognizes the normal operation and sets the maximum charge current CCmax set in step S103 as the charge current , This value is set as a new charging current to control the driving of the charging FET 300 to charge the battery pack 200 (S111).
  • the charge processor 130 determines whether the voltage measured in the current wake cell is greater than the voltage (S113).
  • step S113 If it is determined in step S113 that the voltage of the current wake cell is not the highest among all cells, the charge processing unit 130 changes the battery cell having the highest voltage to the wake cell and then measures all the resistances again (step S115 ), It is determined whether the voltage Vmeasured measured at the weak cell is greater than a preset maximum voltage Vmax at the corresponding point (S117).
  • the reason why the charging processor 130 performs the step S117 is that if the voltage Vmeasured measured by the weak cell is greater than the preset maximum voltage Vmax at the corresponding point, This is because deterioration due to charging is accelerated.
  • the charge processing unit 130 checks whether the voltage Vmeasured measured at the corresponding wick cell is larger than a preset maximum voltage Vmax at the corresponding point, and charging is performed in a state where Vmeasured does not exceed Vmax .
  • step S117 If it is determined in step S117 that Vmeasured is greater than Vmax, the charge processing unit 130 calculates the resistance of the battery cell again (S119), and repeats the steps after step S103 to set the maximum charge current again.
  • step S117 determines whether the current SOC has reached a preset SOC threshold, and if the current SOC reaches a preset SOC threshold The battery pack 200 is charged while the maximum charge current is adjusted until the battery pack 200 becomes fully charged (S121). At this time, the SOC threshold value means the 100% full charge capacity in the present battery state according to the learning result in the learning unit 110.
  • step S113 if it is determined in step S113 that the current wic cell has the highest voltage among all the cells, if the current wic cell voltage is the highest among all the cells, And the charging of the battery pack 200 is performed at the maximum charging current set in the step S103 until the current SOC reaches the preset SOC threshold value.
  • steps S105 to S109 may be omitted, and temperature control may be separately performed through the temperature controller 150 as shown in FIG.
  • the discharge processing unit 140 of the battery management device 100 detects the current OCV position using the recently measured OCV point and the passed charge according to the discharge of the battery pack 200 (S201).
  • the discharge processing unit 140 After detecting the current OCV position in step S201, the discharge processing unit 140 sets the maximum discharge current MAXdisc and the maximum power MAXp according to the following formula (3) (S203). That is, the discharge processor 140 supplies the power charged in the battery pack 200 to the load side (i.e., the electric motor) through the maximum discharge current MAXdisc and the maximum power MAXp.
  • the cutoff voltage means a discharging termination voltage
  • the delta voltage means a margin setting voltage before a cutoff voltage
  • the discharge processor 140 stops discharging when the voltage of the battery pack 200 reaches the cutoff voltage. This is related to the life of the battery, which can cause the system to shut down at low voltages.
  • the reason for setting the delta voltage is that when a momentary load is applied, the voltage of the battery pack 200 may be lowered below the cutoff voltage and deteriorated.
  • the discharge processor 140 controls the temperature of each battery cell in the temperature range for normal operation in the process of discharging the battery pack 200 (S205). Then, it is determined whether the current cell temperature is lower than a preset temperature limit according to the temperature control result (S207).
  • step S207 If it is determined in step S207 that the current cell temperature is higher than the predetermined temperature limit, the discharge processing unit 140 recognizes that the temperature control is required and discharges can be performed while the temperature of the relevant cell is maintained below the temperature limit The maximum discharge current and the maximum power are adjusted (S209). That is, the discharge processor 130 prevents deterioration that may occur when the currently measured cell temperature is discharged at a temperature higher than a predetermined range.
  • step S207 If it is determined in step S207 that the current cell temperature is lower than the predefined temperature limit, the discharge processing unit 140 recognizes the normal operation as the normal operation, and outputs the maximum discharge current MAXdisc and the maximum power MAXp set in step S203, (S213), and the power of the battery pack 200 is discharged to the load side (i.e., the electric motor) according to the maximum discharge current MAXdisc and the maximum power MAXp.
  • the load side i.e., the electric motor
  • the discharging unit 140 discharges the voltage measured in the current wick cell to all the battery cells It is determined whether the voltage is the lowest voltage (S215).
  • step S215 If it is determined in step S215 that the voltage of the current wake cell is not the lowest among all cells, the discharge processing unit 140 changes the battery cell having the lowest voltage to the wake cell and then measures all the resistances again (S217 ).
  • the discharge processing unit 140 changes the current wake cell to the battery cell having the lowest voltage and then measures all the resistances again as in step S217, or after the determination of step S215, If it is the lowest voltage among all the cells, it is determined whether the measured weak cell voltage of the weak cell is less than the sum of the cutoff voltage, the discharge end voltage, and the delta voltage, which is the margin setting voltage before the cutoff voltage (S219) . This is because when the voltage measured at the weak cell is smaller than the sum of the cutoff voltage and the delta voltage, the deterioration due to the overdischarge is accelerated below the discharge end voltage.
  • step S219 If it is determined in step S219 that the voltage measured by the weak cell is less than the sum of the cutoff voltage and the delta voltage, the discharge processor 140 calculates the resistance again in step S221, and sets the maximum charge current and the maximum power The process is repeated.
  • step S219 If it is determined in step S219 that the voltage measured by the weak cell is greater than the sum of the cutoff voltage and the delta voltage, the discharge processor 140 determines whether the current SOC is less than the predetermined SOC threshold, (Minimum power set by the system engineer) threshold (S223).
  • the predetermined SOC threshold Minimum power set by the system engineer
  • the discharge is performed while adjusting the maximum discharge current MAXdisc and the maximum power MAXp until the current SOC becomes smaller than the predetermined SOC threshold value or MAXp becomes smaller than the MINp threshold value.
  • the SOC threshold value or the MINp threshold value indicates the maximum discharge state in the current battery state according to the learning result in the learning unit 110.
  • steps S205 to S209 may be omitted, and temperature control may be separately performed through the temperature controller 150 as shown in FIG.
  • the temperature controller 150 controls the temperature of each battery cell constituting the battery pack 200, which performs charging or discharging, to a predetermined temperature threshold value (i.e., a maximum temperature set value that is a reference for accelerating deterioration of the battery pack) (S301).
  • a predetermined temperature threshold value i.e., a maximum temperature set value that is a reference for accelerating deterioration of the battery pack
  • the temperature controller 150 may perform temperature modeling The thermal control is performed through thermal modeling (S303). At this time, the temperature modeling may be configured in various control methods including a maximum charge current adjustment, a maximum discharge current adjustment, a maximum power adjustment, or a combination thereof.
  • the temperature controller 150 performing the temperature control in step S303 may notify the user of the temperature of the battery pack 200 through the communication unit 160
  • a user terminal including a smart phone or a mobile device may be provided with information indicating that temperature control is required and a user who has confirmed the related information may perform an operation for temperature control.
  • the temperature control unit 150 determines whether the current SOC for temperature control is less than the SOC threshold value It is determined whether the current MAXp is less than the MAXp threshold or the voltage of the weak cell is less than the cutoff voltage (S305). If the current SOC for temperature control becomes less than the SOC threshold value, The temperature control is continuously performed until the MAXp of the wick cell becomes less than the MAXp threshold or the voltage of the wick cell becomes less than the cutoff voltage of the discharge end voltage.
  • the SOC threshold value means the minimum SOC% at which the battery can be used, and the minimum SOC% is set by the automobile manufacturer.
  • the MAXp threshold is the minimum max power threshold at which the battery can be used and is similarly set by the car manufacturer.
  • the SOC threshold for temperature control is the minimum SOC% that can control the temperature system and can be set by the vehicle manufacturer or owner.
  • the present invention monitors charging and discharging states of a battery for an electric vehicle and performs charging and discharging while adjusting a maximum charging current or a maximum discharging current based on voltage or temperature information. It is possible to perform the fast charging and the maximum discharge while suppressing the occurrence as much as possible.
  • the charge and discharge states of the battery are monitored, and charge and discharge are controlled based on this, so that the occurrence of overcharge and overdischarge deterioration can be minimized ,
  • the quality of the battery can be improved, and the battery can be used stably for a long time.
  • the present invention monitors the charging and discharging states of an electric vehicle battery and performs charging and discharging while adjusting the maximum charging current or the maximum discharging current based on voltage or temperature information to thereby prevent occurrence of deterioration due to high voltage or high temperature It is possible to perform the fast charge and the maximum discharge while suppressing the maximum.

Abstract

The present invention relates to a method for fast charging and maximum discharging while reducing degradation of an electric vehicle battery, and an apparatus therefor. The charge state and discharge state of a battery used in electric vehicles are closely monitored in order to enable fast charging and maximum discharging while adjusting the maximum charge current or maximum discharge current in accordance with the state of the battery, so that fast charging and maximum discharging of the battery can be performed while preventing performance degradation due to high voltage or high temperature.

Description

전기자동차용 배터리의 열화 발생을 저감하면서 고속충전과 최대방전을 수행하기 위한 방법 및 그 장치A method and apparatus for performing fast charging and discharging while reducing the occurrence of deterioration of a battery for an electric vehicle
본 발명은 전기자동차용 배터리의 열화 발생을 저감하면서 고속충전과 최대방전을 수행하기 위한 방법 및 그 장치에 관한 것으로, 더욱 상세하게는 전기자동차에 사용되는 배터리의 충전상태와 방전상태를 정밀하게 모니터링하여 배터리 상태에 따라 최대충전전류나 최대방전전류를 조정해가면서 고속충전과 최대방전이 이루어지도록 함으로써, 높은 전압이나 높은 온도로 인하여 성능이 저하되는 것을 방지하면서 배터리를 빠르게 충전하고 최대한 방전을 수행할 수 있도록 하는 전기자동차용 배터리의 고속충전과 최대방전을 수행하기 위한 방법 및 그 장치에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and apparatus for performing fast charging and discharging while reducing the occurrence of deterioration of a battery for an electric vehicle, and more particularly, And the maximum charge current and the maximum discharge current are adjusted according to the state of the battery, so that the fast charge and the maximum discharge are performed, thereby preventing the performance from being deteriorated due to the high voltage or the high temperature. And more particularly, to a method and apparatus for performing fast charging and discharging of a battery for an electric vehicle.
최근 들어 가솔린 자동차에 의한 환경오염문제가 대두되면서 여러 자동차 메이커에 의해 친환경적인 전기자동차나 하이브리드 전기자동차의 연구와 개발이 활발하게 진행되고 있다.Recently, environmental pollution caused by gasoline automobiles has been emerging, and research and development of environmentally friendly electric vehicles and hybrid electric vehicles have been actively conducted by various automobile manufacturers.
상기 전기자동차(Electric Vehicle)는 석유 연료와 엔진을 사용하지 않고 전기 배터리와 전기모터를 사용하는 자동차를 말하며, 배터리에 축적된 전기로 모터를 회전시켜 자동차를 구동시킨다.The electric vehicle refers to an automobile that uses an electric battery and an electric motor without using petroleum fuel and an engine, and drives an automobile by rotating an electric motor that is stored in a battery.
또한 상기 하이브리드 전기자동차는 서로 다른 두 종류 이상의 동력원을 조합하여 차량을 구동시키는 것으로서, 연료를 사용하여 구동력을 얻는 엔진과 배터리 전력으로 구동되는 전기모터에 의해 구동력을 얻는 차량을 일컫는다. 이러한 하이브리드 전기자동차는 주행속도에 따라 전기모터와 엔진이 적절히 구동되는 환경친화적인 자동차로서 전기모터를 발전하여 배터리를 충전하고, 저속주행시나 가속시에 모터로 보조 구동함으로써 연비 등을 개선하는 자동차이다.Further, the hybrid electric vehicle refers to a vehicle that drives a vehicle by combining two or more different kinds of power sources, that is, an engine that obtains a driving force by using fuel and a vehicle that acquires a driving force by an electric motor driven by battery power. Such an hybrid electric vehicle is an environmentally friendly automobile in which an electric motor and an engine are appropriately driven according to the traveling speed, and is an automobile that improves fuel economy by charging an electric motor to charge the battery and auxiliary driving the motor at low- .
일반적인 하이브리드 전기자동차는 모터작동을 제어하는 MCU(Motor Control Unit), 배터리 전원의 관리를 수행하는 BMS(Battery Management System), 차량 전반의 제어를 담당하는 HCU(Hybrid Control Unit), 엔진 작동의 전반을 제어하는 ECU(Engine Control Unit), 차량 주행용 구동원인 모터, 변속기를 제어하는 TCU(Transmission Control Unit) 등으로 구성된다.Typical hybrid electric vehicles include an MCU (Motor Control Unit) that controls motor operation, a BMS (Battery Management System) that performs battery power management, a Hybrid Control Unit (HCU) that controls the entire vehicle, An engine control unit (ECU) for controlling the engine, a motor for driving the vehicle, and a transmission control unit (TCU) for controlling the transmission.
이러한 제어기들은 상위 제어기인 HCU를 중심으로 고속 CAN(Controller Area Network, 차량 내 ECU들 간의 데이터 공유를 위해 Bosch에 의해 개발된 통신 시스템) 통신라인 등으로 연결되어 제어기들 상호 간의 정보를 주고받으면서 상위 제어기는 하위 제어기에 명령을 전달하도록 되어있다. 예를 들면, HCU는 MCU를 통해 전기모터의 구동을 실질적으로 제어하게 되는데, 이때 상기 MCU는 상위 제어기인 HCU에서 인가되는 제어신호에 따라 구동원인 전기모터의 구동 토크와 구동 속도를 제어하여 주행성을 유지시키게 된다.These controllers are connected to a high-speed CAN (Controller Area Network) communication line (communication system developed by Bosch for sharing data between ECUs in the vehicle) centered on the HCU as an upper controller and exchange information among the controllers, To transmit the command to the lower controller. For example, the HCU substantially controls the driving of the electric motor through the MCU. At this time, the MCU controls the driving torque and the driving speed of the driving electric motor according to the control signal applied from the HCU, .
상기와 같이 구성된 하이브리드 전기자동차의 주요 주행 모드는 다음과 같이, 모터 동력만을 이용하는 순수 전기자동차 모드인 EV(electric vehicle) 모드, 엔진의 회전력을 주동력으로 하면서 모터의 회전력을 보조 동력으로 이용하는 보조 모드인 HEV(hybrid electric vehicle) 모드, 전기자동차의 제동 혹은 관성에 의한 주행시 차량의 제동 및 관성 에너지를 상기 모터에서 발전을 통하여 회수하여 배터리에 충전하는 회생제동(RB: Regenerative Braking) 모드 등이 있다.The main driving mode of the hybrid electric vehicle constructed as described above is an EV (electric vehicle) mode, which is a pure electric vehicle mode using only motor power, an auxiliary mode in which the rotational force of the engine is used as the main driving force and the rotational force of the motor is used as auxiliary power A hybrid electric vehicle (HEV) mode, a regenerative braking (RB) mode in which the braking and inertial energy of the vehicle is recovered through power generation at the time of braking or inertia of the electric vehicle and charged into the battery.
또한 상기 HEV 모드는 주로 엔진을 사용하다가 전기모터가 보조하는 방식인 병렬형 하이브리드로서 강력한 힘을 내는 장점을 지닌 스트롱(Strong) HEV와, 1개의 엔진과 2개의 모터를 사용하여 직렬 방식처럼 하나의 모터로 전기를 생산하고 다른 하나의 모터를 통해 병렬 방식으로 운행을 보조하는 직병렬형 하이브리드로서 우수한 연비와 주행능력을 지닌 마일드(Mild) HEV로 구분할 수 있다.In addition, the HEV mode is a parallel type hybrid which mainly uses an engine and is assisted by an electric motor, and a Strong HEV which has a merit of generating a powerful force, and a single HEV that uses one engine and two motors, It is a direct-parallel type hybrid that produces electricity by a motor and assists in parallel operation through another motor, and can be classified into a mild HEV having excellent fuel economy and driving ability.
또한 상기 하이브리드 전기자동차와 같이 휘발유로 구동되는 내연엔진 기관과 배터리 엔진을 동시에 장착하여 둘 중 하나 혹은 양쪽 모두를 이용해 차량을 구동하지만, 대용량 전기 배터리를 장착해 전기로 충전할 수 있는 차량으로서, 집이나 충전소에서 핸드폰을 충전하거나 휘발유를 주유하듯이 전기를 충전할 수 있으므로 지속적으로 사용이 가능한 플러그인 하이브리드 전기자동차(Plug In Hybrid Electric Vehicle : PHEV)도 개발되어 있다.In addition, a vehicle such as the hybrid electric vehicle is equipped with an internal combustion engine driven by gasoline and a battery engine, and drives the vehicle using either or both of them. However, the vehicle is equipped with a large- The plug-in hybrid electric vehicle (PHEV) has also been developed, which can be used continuously, since the charging station can charge the cell phone or charge the electricity just like gasoline.
한편, 상기 하이브리드 전기자동차에는 2차전지인 대용량의 배터리가 사용되는데, 상기 배터리는 하이브리드 전기자동차의 모터를 구동하는 에너지원으로서, BMS를 통해 배터리의 전압, 전류, 온도를 모니터링하여 배터리의 충전 상태량을 조절한다.The hybrid electric vehicle uses a large capacity battery, which is a secondary battery. The battery is an energy source for driving a motor of a hybrid electric vehicle. The battery monitors the voltage, current, and temperature of the battery through the BMS, .
도 1은 이와 같은 일반적인 전기자동차의 BMS(배터리 관리 시스템)에서 수행하는 동작을 개략적으로 설명하기 위한 도면으로서, 상기 BMS는 전기자동차의 구동 시스템에서 필요로 하는 전력을 공급하는 2차 전지의 안전성과 신뢰성을 보증하는 역할을 하기 때문에 전기자동차 및 하이브리드 전기자동차의 핵심 요소이다.FIG. 1 is a view for schematically explaining an operation performed in a BMS (battery management system) of such a general electric vehicle, wherein the BMS is a function of the safety of a secondary battery supplying power required by a drive system of an electric vehicle It is a key element of electric vehicles and hybrid electric vehicles because it plays a role in ensuring reliability.
상기 BMS의 기능은 다음과 같이 크게 두 가지로 나눌 수 있다. 즉 열에 약한 배터리를 균등 냉각하여 항상 균일한 성능을 나타낼 수 있도록 하는 열관리 제어기술과 배터리의 각 상태를 판단하여 최적 효율 지점에서 작동하도록 하는 배터리 충전상태(SOC: State Of Charge) 제어기술로 구분할 수 있는 것이다.The functions of the BMS can be roughly classified into the following two types. In other words, it can be classified into the thermal management control technology that can uniformly cool the weak battery in the heat and the uniform performance at all times, and the battery charge state (SOC: state of charge) control technology that determines the state of the battery and operates at the optimum efficiency point It is.
상기 열관리 제어기술은 시스템의 전압, 전류 및 온도를 모니터링하여 최적의 상태로 유지 관리하며 시스템의 안전한 운영을 위한 경보 및 사전 안전예방 조치를 취할 수 있다. 또한 배터리의 과충전 및 과방전을 억제하여 셀(cell)간의 전압을 균일하게 제어함으로써 에너지 효율 및 배터리의 수명이 연장된다. 경보 관련 이력 상태의 저장과 외부 진단시스템 혹은 모니터링 PC를 통한 데이터의 보전 및 시스템 진단이 가능하다.The thermal management control technology monitors the voltage, current, and temperature of the system to maintain it in an optimal state, and can take an alarm and advance safety precautions for safe operation of the system. In addition, overcharge and overdischarge of the battery are suppressed to uniformly control the voltage between the cells, thereby prolonging the energy efficiency and the life of the battery. It is possible to save the alarm history status and to preserve the data and to diagnose the system through external diagnosis system or monitoring PC.
상기 배터리 충전상태 제어기술은 모든 셀을 항상 균등한 충전상태로 유지시켜주는 셀 밸런스를 통해 실현하고 있다. 더욱이 배터리 관리 시스템은 각종 변화 요소들을 종합 분석하여 남은 주행 가능거리를 예측하고 그 정보를 상위의 차량 전자제어장치(ECU)에 제공한다. 차량 내 통신은 일반적으로 ISO 표준 네트워크인 CAN을 활용하고 있다.The battery charge state control technique is realized by a cell balance that keeps all the cells always in a uniform charge state. Furthermore, the battery management system comprehensively analyzes various change factors to predict the remaining travelable distance, and provides the information to an upper vehicle electronic control unit (ECU). In-vehicle communications typically utilize CAN, an ISO standard network.
상기 BMS의 기능을 지원하는 소프트웨어에는 전압, 전류, 온도 등을 계측하는 계측 알고리즘(Measuring algorithm for voltage, current and temperature), 충전량 계산(SOC; State of Charge calculation), 수명 예측(SOH; State of Health estimation), 셀 밸런싱 알고리즘(Cell balancing algorithm), 온도 관리(Thermal Management), 진단 알고리즘(Diagnostic algorithm), 방호 알고리즘(Protection algorithm)과 차량 내 통신(Communication with vehicle) 등이 있다.The software supporting the functions of the BMS includes measuring algorithms for voltage, current and temperature, state of charge calculation (SOC), state of health (SOH) estimation, Cell balancing algorithm, Thermal management, Diagnostic algorithm, Protection algorithm and Communication with vehicle.
한편, 상기 배터리는 충전과 방전을 반복함에 따라 그 성능이 퇴화되어 수명을 다하게 된다. 이때 배터리의 성능이 퇴화되는 정도는 SOH 파라미터를 통해서 정량적으로 평가될 수 있다. 즉 상기 BMS에서 SOH를 평가하여 배터리의 교체 시점을 산출하고, 배터리의 사용기간에 따른 배터리의 충전 및 방전 용량을 조절하여 배터리의 과충전 및 과방전을 방지할 수 있는 것이다.On the other hand, as the battery is repeatedly charged and discharged, its performance deteriorates and its service life is shortened. At this time, the degradation degree of the performance of the battery can be quantitatively evaluated through the SOH parameter. That is, the SOH is evaluated in the BMS to calculate the replacement time of the battery, and the charging and discharging capacity of the battery is controlled according to the use period of the battery, thereby preventing overcharging and over discharge of the battery.
통상적인 배터리의 노화는 배터리의 내부저항의 변화를 측정함으로써 검출되는데, 배터리가 처음 공장에서 생산되어 출하될 때는 내부저항이 매우 작다가 충전과 방전을 거듭함에 따라 내부저항이 커지다가 급기야 전자디바이스에 전력을 전달할 수 없을 정도로 내부저항이 커지게 된다. 따라서 배터리의 수명을 늘리기 위해서 충전과 방전을 효과적으로 관리할 필요가 있다.Conventional battery aging is detected by measuring the change in the internal resistance of a battery. When the battery is first manufactured and shipped from the factory, the internal resistance is very small. As the battery is repeatedly charged and discharged, the internal resistance becomes large. The internal resistance becomes large enough to transmit electric power. Therefore, it is necessary to effectively manage charging and discharging in order to increase the life of the battery.
배터리의 내부저항이 변화함에 따라 배터리의 용량이 변화하고, SOH는 배터리의 내부저항과 온도에 의해 추정이 가능하다. 상기 추정하는 과정은 먼저 충전과 방전을 반복할 때마다 배터리의 내부저항을 측정하고 또한 온도별로 배터리의 용량을 측정한 다음, 이를 배터리의 초기용량을 기준으로 상대적으로 수치화하여 SOH와의 매핑관계를 메모리 테이블에 저장하여 관리한다. 그리고 실제 배터리의 사용 환경에서 배터리의 내부저항과 온도를 측정하고, 상기 매핑 테이블로부터 내부저항과 온도에 대응되는 SOH를 맵핑하면 해당 배터리의 SOH를 추정할 수 있다.As the internal resistance of the battery changes, the capacity of the battery changes, and SOH can be estimated by the internal resistance and temperature of the battery. In the estimation process, the internal resistance of the battery is measured each time charging and discharging are repeated, and the capacity of the battery is measured by temperature. Then, the battery capacity is relatively quantified based on the initial capacity of the battery, And stored in a table. Then, the SOH of the battery can be estimated by measuring the internal resistance and temperature of the battery in an actual battery usage environment, and mapping the SOH corresponding to the internal resistance and the temperature from the mapping table.
그러나 상술한 바와 같은 대용량의 전원을 필요로 하는 전기자동차는 방전 배터리 전력이 배터리 전압 및 부하 전류에 의존하기 때문에 최대 전력을 정의할 수 없으며, 이에 따라 배터리 성능이 저하되는 문제가 있었다.However, an electric vehicle requiring a large-capacity power source as described above can not define the maximum electric power because the discharge battery electric power depends on the battery voltage and the load electric current, thereby deteriorating battery performance.
또한 전형적인 CC(Constant Current, 전압을 변동시켜 전류를 유지하여 설정한 전류를 초과하지 않는 정전류 모드) 충전모드, CV(Constant Voltage, 전류를 변화시켜 전압을 유지함에 따라 파워가 변하더라도 전압은 변하지 않는 정전압 모드) 충전모드는 CC(Constant Charging)에서 충전 전류를 변경할 수 없기 때문에 배터리의 상태에 따른 전류조정을 토대로 과충전 및 과방전을 효율적으로 방지하지 못하였다.In addition, a typical CC (Constant Current, constant current mode that does not exceed the current set by maintaining the current by fluctuating voltage) Charge mode, CV (Constant Voltage, Constant Voltage Mode) Since the charging current can not be changed in CC (Constant Charging), the charging mode can not effectively prevent overcharge and overdischarge based on the current adjustment according to the state of the battery.
또한 배터리 내부의 높은 전압과 온도로 인해 배터리의 열화현상이 가속되는 문제가 있었다.In addition, there is a problem that battery deterioration is accelerated due to high voltage and temperature inside the battery.
따라서 본 발명에서는 전기자동차용 배터리의 충전 및 방전상태를 모니터링하여 전압이나 온도정보를 토대로 최대충전전류나 최대방전전류를 조정해가면서 충전과 방전을 수행함으로써, 높은 전압이나 높은 온도로 인한 열화의 발생을 최대한 억제하면서 고속충전과 최대방전을 수행할 수 있는 방안을 제시하고자 한다.Therefore, in the present invention, charging and discharging are performed while adjusting the maximum charging current or the maximum discharging current based on the voltage or temperature information by monitoring the charging and discharging states of the battery for an electric vehicle, thereby causing deterioration due to high voltage or high temperature And to propose a method of performing the fast charge and the maximum discharge while suppressing the maximum discharge.
다음으로 본 발명의 기술분야에 존재하는 선행기술에 대하여 간단하게 설명하고, 이어서 본 발명이 상기 선행기술에 비해서 차별적으로 이루고자 하는 기술적 사항에 대해서 기술하고자 한다.Next, a brief description will be given of the prior arts that exist in the technical field of the present invention, and technical matters which the present invention intends to differentiate from the prior arts will be described.
먼저 한국등록특허 제0949260호(2010.03.16.)는 전기자동차용 전지 충전 시스템에 관한 것으로, 특히 하이브리드 전기자동차에서 배터리 충전상태량(SOC[%](State of Charge))의 설정값을 최적화하여 하이브리드 전기자동차의 에너지 소비효율 및 배터리의 수명을 연장할 수 있는 전기자동차용 전지 충전 시스템에 관한 것이다.Korean Patent Registration No. 0949260 (Mar. 16, 2010) relates to a battery charging system for an electric vehicle, and more particularly, to a battery charging system for a hybrid electric vehicle, which optimizes a set value of a battery charge state quantity (SOC [%] (State of Charge) And more particularly, to a battery charging system for an electric vehicle capable of extending energy consumption efficiency of an electric vehicle and battery life.
상기 선행기술은 가중 충전율 및 예측충전율을 결정하여 하이브리드 전기자동차의 배터리의 사용에너지 소비효율을 개선하고, 배터리의 과방전 과충전을 줄임으로써 배터리의 수명을 증가시키는 효과를 제공하는 것으로서, 배터리의 과방전 과충전을 줄여 배터리 수명을 증가하는 점에서 본 발명의 전기자동차용 배터리의 충전 및 방전상태를 모니터링하여 충전과 방전을 수행하는 구성과 일부 유사성이 있다.The prior art provides an effect of improving the energy consumption efficiency of a battery of a hybrid electric vehicle by determining a weighted filling rate and a predicted charging rate, and increasing the lifetime of the battery by reducing overcharge and overcharging of the battery. There is some similarity between the charging and discharging of the battery of the present invention by monitoring the charging and discharging states of the battery of the present invention in that the overcharging is reduced and the battery life is increased.
하지만, 본 발명에서 제시하는 충방전을 거듭함에 따라 배터리 팩저항과 위크 셀(weak cell)의 저항이 변화하는 과정을 학습하여 배터리의 충전상태와 방전상태를 정밀하게 모니터링하고, 전압, 온도 또는 이들의 조합을 포함한 배터리 상태에 따라 최대충전전류나 최대방전전류를 조정해 가면서 고속충전과 최대방전을 수행할 수 있는 기술적 구성은 상기 선행기술에 전혀 기재되어 있지 않으며, 그 어떠한 암시도 되어 있지 않은 본 발명만의 특징적 구성입니다.However, as the charging / discharging according to the present invention is repeated, the process of changing the resistance of the battery pack resistance and the weak cell is learned to precisely monitor the charging state and the discharging state of the battery, And the maximum discharge current can be adjusted according to the state of the battery including the combination of the charge current and the maximum discharge current to perform the fast charge and the maximum discharge are not described in the prior art at all, It is the characteristic composition of the invention only.
또한 미국등록특허 제8459978호(2013.05.28.)는 충전용 배터리의 상태를 모니터링하는 것으로, 배터리의 방전 동안에 배터리와 관련하여 적어도 하나의 측정된 값을 반복적으로 획득하고, 배터리의 방전동안에 배터리의 상태를 반복적으로 계산하며(상기 배터리의 상태는 이전에 계산된 배터리의 상태, 상기 측정된 값, 그리고 적어도 하나의 배터리 파라미터에 의존함), 배터리의 상태가 임계값을 초과하기 전에 제1 속도로 배터리의 파라미터를 업데이트하고, 배터리의 상태가 임계값을 초과한 후에 제1 속도보다 빠른 제2 속도로 배터리의 파라미터를 업데이트하며, 파라미터의 각 업데이트에 응답하여 배터리의 상태를 교정하는 것을 특징으로 한다.U.S. Patent No. 8459978 (May 31, 2013) discloses a method for monitoring the state of a rechargeable battery, which repeatedly acquires at least one measured value with respect to the battery during discharging of the battery, (The state of the battery is dependent on the previously calculated state of the battery, the measured value, and the at least one battery parameter), and the state of the battery is measured at a first rate Updating the parameter of the battery, updating the parameter of the battery at a second rate faster than the first rate after the status of the battery exceeds the threshold value, and calibrating the status of the battery in response to each update of the parameter .
그러나 상기 선행기술에서는 배터리의 상태에 대한 파라미터를 업데이트하여 배터리 상태를 모니터링하는 점은 본 발명과 일부 유사한 점이 있으나, 상기 선행기술에서는 본 발명의 전기자동차용 배터리의 전압, 온도 또는 이들의 조합을 포함한 배터리 상태에 따라 최대충전전류나 최대방전전류를 조정해 가면서 고속충전과 최대방전을 수행할 수 있는 구성에 대한 아무런 시사나 암시 또는 기재가 없기 때문에 기술적 구성의 차이점이 분명하다.However, in the prior art, there are some similarities to the present invention in that the parameter of the battery is updated to monitor the battery condition. However, in the prior art, the voltage, temperature, It is clear that there is no difference in technical structure because there is no suggestion, suggestion or description about the configuration that can perform the fast charge and the maximum discharge while adjusting the maximum charge current or the maximum discharge current according to the battery condition.
상기 선행기술들을 참고하여 보면, 배터리의 과방전 과충전을 줄여 배터리 수명을 증가하는 구성, 배터리의 상태에 대한 파라미터를 업데이트하여 배터리 상태를 모니터링하는 구성에 대해서는 일부 유사한 구성을 제시하고 있지만, 본 발명에서 제시하는 기술적 특징인 배터리의 충전상태와 방전상태를 모니터링하여 배터리 상태에 따라 최대충전전류나 최대방전전류를 조정해 가면서 고속충전과 최대방전을 수행하는 구성에 대해서는 아무런 기재가 없기 때문에 기술적 차이점이 분명한 것이다.Some of similar configurations are proposed for the configuration for increasing the battery life by reducing over-discharge overcharging of the battery, and for monitoring the battery status by updating the parameters of the battery status. However, There is no description of a structure for monitoring the state of charge and discharge of the battery, which is a technical feature to be presented, to perform the fast charge and the maximum discharge while adjusting the maximum charge current or the maximum discharge current according to the battery state, will be.
본 발명은 상기와 같은 문제점을 해결하기 위해 창작된 것으로서, 전기자동차에 사용되는 배터리가 높은 전압과 높은 온도로 인하여 성능이 저하되지 않도록 하면서 고속충전과 최대방전을 수행할 수 있도록 하는 것을 목적으로 한다.SUMMARY OF THE INVENTION The present invention has been made in order to solve the above problems, and it is an object of the present invention to provide a battery used in an electric vehicle capable of performing a fast charging and a maximum discharge while preventing performance deterioration due to high voltage and high temperature .
또한 본 발명은 충방전을 거듭함에 따라 배터리 팩저항과 위크 셀의 저항이 변화하는 과정을 학습하고, 학습 내용을 토대로 배터리의 충전상태와 방전상태를 정밀하게 모니터링하도록 하는 것을 다른 목적으로 한다.Another object of the present invention is to learn the process of changing the resistance of the battery pack resistance and the resistance of the wick cell as the charging and discharging are repeated, and precisely monitor the charging state and the discharging state of the battery based on the learning contents.
또한 본 발명은 전기자동차에 사용되는 배터리의 충전상태와 방전상태를 정밀하게 모니터링하여 전압, 온도 또는 이들의 조합을 포함한 배터리 상태에 따라 최대충전전류나 최대방전전류를 조정해 가면서 고속충전과 최대방전을 수행할 수 있도록 하는 것을 또 다른 목적으로 한다.In addition, the present invention precisely monitors the charged state and the discharged state of a battery used in an electric automobile and adjusts the maximum charging current or the maximum discharging current according to the battery state including voltage, temperature, or a combination thereof, So that the user can perform the operation.
본 발명의 일 실시예에 따른 전기자동차용 배터리의 열화 발생을 저감하면서 고속충전을 수행하기 위한 장치는, 열화나 온도에 따른 배터리팩의 충전상태정보를 학습하는 학습부 및 상기 학습한 충전상태정보를 토대로 상기 배터리팩의 위크 셀 상태에 따라 최대충전전류를 조정하여 상기 배터리팩의 충전을 수행하는 충전 처리부를 포함하며, 상기 충전상태정보는, SOC에 따른 배터리팩의 전체저항, 각각의 배터리 셀에 대한 온도 및 저항, SOC에 따른 OCV 변화량, 현재의 OCV 포인트에서의 최대설정전압 또는 이들의 조합을 포함하는 것을 특징으로 한다.An apparatus for performing fast charging while reducing the occurrence of deterioration of a battery for an electric vehicle according to an embodiment of the present invention includes an learning unit for learning charge state information of a battery pack according to deterioration or temperature, And a charge processing unit for adjusting the maximum charge current according to a wick cell state of the battery pack to charge the battery pack based on a state of charge of the battery pack, A temperature and a resistance for the OCV, an OCV variation according to the SOC, a maximum set voltage at the current OCV point, or a combination thereof.
이때 상기 최대충전전류는, CCmax = (OCVanode - Vmax)/WR[i][j]의 수학식에 의해 설정되는 것을 특징으로 한다. 여기서, CCmax는 최대충전전류, Vmax는 각 SOC별로 미리 설정되는 최대전압, OCVanode는 개방회로전압과 맵핑된 Anode OCV 전압, WR은 위크 셀의 저항, i는 측정된 저항의 포인트, j는 온도 범위이다.At this time, the maximum charging current is set by the following equation: CCmax = (OCVanode - Vmax) / WR [i] [j] Where CCmax is the maximum charge current, Vmax is the maximum voltage preset for each SOC, OCVanode is the Anode OCV voltage mapped to the open circuit voltage, WR is the resistance of the wick cell, i is the point of the measured resistance, j is the temperature range to be.
셀 전체 전압은 Cathode Voltage + Anode Voltage로 이루어지며 Cathode Voltage와 Anode Voltage 또한 내부 그라운드(ground)를 통해 측정이 가능하다. 충전시 Anode Voltage는 드롭(drop)이 발생하게 되고 Anode Potential Voltage 이하로 드롭되는 경우 리튬 플레이팅(lithium plating)이 발생하여 셀 열화가 가속화된다. 그러므로 충전시 Anode 전압이 Potential Voltage 이하로 떨어지지 못하게 관리함으로써 셀 열화를 방지한다. 그러나 셀 개발이 완료되는 경우 통상적으로 셀은 단자가 +/- 두 개로 구성되어 실제 응용에 적용하기 전에 이미 각각의 OCV 프로파일(profile) 데이터를 측정해야하며 SOC 구간에 따라서 OCV를 OCVanode와 맵핑하여 실제 응용에서는 OCV를 측정하여 OCVanode를 구한다. 그러므로 Vmax는 Anode potential voltage + tolerance voltage로 설정한다.Cathode Voltage and Anode Voltage can be measured through the internal ground. When the charge is dropped, the anode voltage is dropped, and when it drops below the anode potential voltage, lithium plating occurs and the cell deterioration is accelerated. Therefore, the anode voltage is prevented from dropping below the potential voltage during charging, thereby preventing cell deterioration. However, when the cell development is completed, the cell usually consists of +/- two terminals. Therefore, it is necessary to measure each OCV profile data before applying it to actual application, and OCV is mapped to OCVanode according to the SOC section, In the application, OCV is measured to obtain OCVanode. Therefore, Vmax is set to anode potential voltage + tolerance voltage.
또한 상기 충전 처리부는, 최근에 측정된 OCV와 Passed charge를 이용하여 상기 배터리팩의 현재 OCV 포인트를 검출하고, 상기 검출한 현재 OCV 포인트에서 상기 배터리팩의 위크 셀 온도 및 저항을 참조하여 최대충전전류를 설정하고, 상기 최대충전전류로 상기 배터리팩을 충전하는 과정에서 현재의 위크 셀 전압이 모든 배터리 셀 중에서 가장 높은 전압인지를 판단하며, 현재의 위크 셀 전압이 모든 배터리 셀 중에서 가장 높은 전압이면 현재의 SOC가 SOC 임계값에 도달될 때까지 상기 최대충전전류로 상기 배터리팩의 충전을 수행하는 것을 특징으로 한다.Also, the charge processing unit detects the current OCV point of the battery pack using the recently measured OCV and the passed charge, and calculates a maximum charge current with reference to the wick cell temperature and resistance of the battery pack at the detected current OCV point And determines whether the current wick cell voltage is the highest among all the battery cells in the process of charging the battery pack with the maximum charging current. If the wick cell voltage is the highest among all the battery cells, The charging of the battery pack is performed at the maximum charging current until the SOC of the battery pack reaches the SOC threshold value.
또한 상기 충전 처리부는, 상기 최대충전전류로 상기 배터리팩을 충전하는 과정에서 현재의 위크 셀 전압이 모든 배터리 셀 중에서 가장 높은 전압인지를 판단한 결과, 현재의 위크 셀 전압이 모든 배터리 셀 중에서 가장 높은 전압이 아니면 가장 높은 전압을 갖는 셀을 위크 셀로 변경한 다음 모든 배터리 셀의 저항을 재측정하고, 해당 위크 셀에서 측정한 전압이 미리 설정된 최대전압보다 크면 저항을 다시 측정한 다음 해당 위크 셀의 온도 및 저항을 토대로 상기 최대충전전류를 조정하여 충전을 진행하며, 해당 위크 셀에서 측정한 전압이 미리 설정된 최대전압보다 작으면 현재의 SOC가 SOC 임계값에 도달될 때까지 상기 최대충전전류로 상기 배터리팩의 충전을 수행하는 것을 특징으로 한다.Also, the charging processor determines that the current wick cell voltage is the highest among all the battery cells in the process of charging the battery pack with the maximum charging current, and the current wick cell voltage is the highest voltage among all the battery cells The cell having the highest voltage is changed to the Weck cell, and the resistance of all the battery cells is remeasured. If the voltage measured at the weck cell is greater than the predetermined maximum voltage, the resistance is measured again. And when the voltage measured by the weak cell is less than a preset maximum voltage, the battery pack is charged with the maximum charge current until the current SOC reaches the SOC threshold, The charging operation is performed.
또한 상기 충전 처리부는, 상기 최대충전전류로 상기 배터리팩을 충전하는 과정에서 상기 배터리팩의 현재 온도가 기 설정된 온도 한계를 초과하는지를 판단하며, 판단결과 현재 측정된 셀의 온도가 기 설정된 온도 한계를 초과하면 해당 셀의 온도를 온도 한계 이하로 유지하면서 충전이 이루어질 수 있도록 최대충전전류를 조정한 다음 현재의 SOC가 SOC 임계값에 도달될 때까지 상기 최대충전전류로 상기 배터리팩의 충전을 수행함으로써, 기 설정된 범위의 온도를 초과하는 온도에서 충전이 이루어질 때 발생하는 열화를 방지하도록 하는 것을 특징으로 한다.Also, the charging processor may determine whether the current temperature of the battery pack exceeds a predetermined temperature limit in the process of charging the battery pack with the maximum charging current. If it is determined that the current temperature of the cell is less than a predetermined temperature limit The maximum charge current is adjusted so that the charge can be performed while the temperature of the cell is kept below the temperature limit, and then the charge of the battery pack is performed at the maximum charge current until the current SOC reaches the SOC threshold , Thereby preventing deterioration occurring when charging is performed at a temperature exceeding a predetermined range of temperature.
아울러, 본 발명의 일 실시예에 따른 전기자동차용 배터리의 열화 발생을 저감하면서 최대방전을 수행하기 위한 장치는, 열화나 온도에 따른 배터리팩의 방전상태정보를 학습하는 학습부 및 상기 학습한 방전상태정보를 토대로 상기 배터리팩의 위크 셀 상태에 따라 최대방전전류와 최대파워를 조정하여 상기 배터리팩의 방전을 수행하는 방전 처리부를 포함하며, 상기 방전상태정보는, SOC에 따른 배터리팩의 전체저항 및 전체전압, 각각의 배터리 셀에 대한 온도 및 저항, SOC에 따른 OCV 변화량, 미리 설정한 방전종지전압인 컷오프 전압, 컷오프 전압 이전의 마진 설정 전압 또는 이들의 조합을 포함하는 것을 특징으로 한다.In addition, an apparatus for performing maximum discharge while reducing the occurrence of deterioration of a battery for an electric vehicle according to an embodiment of the present invention includes an learning unit for learning discharge status information of a battery pack according to deterioration or temperature, And a discharge processor for adjusting the maximum discharge current and the maximum power according to the wick cell state of the battery pack based on the state information to perform discharge of the battery pack, And a total voltage, a temperature and a resistance for each battery cell, an OCV change amount according to SOC, a cutoff voltage as a preset discharge end voltage, a margin setting voltage before a cutoff voltage, or a combination thereof.
이때 상기 최대방전전류와 상기 최대파워는, MAXdisc = (OCV - (cutoff voltage + delta voltage))/WR[i][j], MAXp = 현재 배터리팩 전압*MAXdisc의 수학식에 의해 설정되는 것을 특징으로 한다. 여기서, MAXdisc는 최대방전전류, OCV는 개방회로전압, cutoff voltage는 방전종지전압, delta voltage는 cutoff voltage 이전의 마진 설정 전압, WR은 위크 셀의 저항, i는 측정된 저항의 포인트, j는 온도 범위, MAXp는 최대파워이다.At this time, the maximum discharge current and the maximum power are set by a formula of MAXdisc = (OCV - (cutoff voltage + delta voltage)) / WR [i] [j], MAXp = current battery pack voltage * MAXdisc . In this case, MAXdisc is the maximum discharge current, OCV is the open circuit voltage, the cutoff voltage is the discharge end voltage, the delta voltage is the margin setting voltage before the cutoff voltage, WR is the resistance of the wick cell, i is the point of the measured resistance, Range, MAXp is the maximum power.
또한 상기 방전 처리부는, 최근에 측정된 OCV와 Passed charge를 이용하여 상기 배터리팩의 현재 OCV 포인트를 검출하고, 상기 검출한 현재 OCV 포인트에서 상기 배터리팩의 위크 셀 온도 및 저항, 컷오프 전압, 마진 설정 전압을 참조하여 최대방전전류와 최대파워를 설정하고, 상기 최대방전전류와 최대파워로 상기 배터리팩의 방전을 수행하는 과정에서 현재의 위크 셀 전압이 모든 배터리 셀 중에서 가장 낮은 전압인지를 판단하고, 현재의 위크 셀 전압이 모든 배터리 셀 중에서 가장 낮은 전압이면 해당 위크 셀에서 측정한 전압이 상기 컷오프 전압과 마진 설정 전압의 합보다 작은지를 판단하며, 해당 위크 셀에서 측정한 전압이 상기 컷오프 전압과 마진 설정 전압의 합보다 크면 현재의 SOC가 SOC 임계값 미만이거나 또는 최대파워가 미리 설정된 최소파워 임계값 미만일 때까지 상기 최대방전전류와 최대파워로 상기 배터리팩의 방전을 수행하는 것을 특징으로 한다.Also, the discharge processor may detect a current OCV point of the battery pack using recently measured OCV and pass charge, and determine a wick cell temperature, a resistance, a cutoff voltage, and a margin setting of the battery pack at the detected current OCV point Determining whether the current wick cell voltage is the lowest among all the battery cells in the process of discharging the battery pack with the maximum discharge current and the maximum power, setting the maximum discharge current and the maximum power with reference to the voltage, Off voltage and a margin setting voltage when the current wick cell voltage is the lowest voltage among all the battery cells, and determines whether the voltage measured by the wick cell is less than the sum of the cut- If the current SOC is less than the SOC threshold value or the maximum power is less than the predetermined minimum power And discharging the battery pack with the maximum discharge current and the maximum power until the voltage is less than the threshold value.
또한 상기 방전 처리부는, 상기 배터리팩의 방전을 수행하는 과정에서 현재의 위크 셀 전압이 모든 배터리 셀 중에서 가장 낮은 전압인지를 판단한 결과, 현재의 위크 셀 전압이 모든 배터리 셀 중에서 가장 낮은 전압이 아니면 가장 낮은 전압을 갖는 배터리 셀을 위크 셀로 변경한 다음 모든 셀의 저항을 재측정하여, 저항 재측정 결과를 토대로 검출된 해당 위크 셀에서 측정한 전압이 상기 컷오프 전압과 마진 설정 전압의 합보다 작은지를 판단하고, 해당 위크 셀에서 측정한 전압이 상기 컷오프 전압과 마진 설정 전압의 합보다 작으면 저항을 다시 계산한 다음 최대충전전류와 최대파워를 조정하여 방전을 진행하며, 해당 위크 셀에서 측정한 전압이 상기 컷오프 전압과 마진 설정 전압의 합보다 크면 현재의 SOC가 SOC 임계값 미만이거나 또는 최대파워가 미리 설정된 최소파워 임계값 미만일 때까지 상기 최대방전전류와 최대파워로 상기 배터리팩의 방전을 수행하는 것을 특징으로 한다.When the current wick cell voltage is not the lowest voltage among all the battery cells, it is determined that the current wick cell voltage is the lowest among all the battery cells in the process of discharging the battery pack. The battery cell having a low voltage is changed to a wick cell and the resistance of all the cells is remeasured to determine whether the voltage measured in the corresponding weak cell based on the resistance measurement result is less than the sum of the cut- If the measured voltage at the weak cell is smaller than the sum of the cutoff voltage and the margin set voltage, the resistance is calculated again, and then the discharge is performed by adjusting the maximum charge current and the maximum power. If the sum of the cutoff voltage and the margin setting voltage is larger than the sum of the cutoff voltage and the margin setting voltage, the current SOC is less than the SOC threshold value, Until it is below a predetermined minimum power threshold, characterized in that to perform the discharge of the battery pack to the maximum discharging current and maximum power.
또한 상기 방전 처리부는, 상기 배터리팩의 방전을 수행하는 과정에서 상기 배터리팩의 현재 온도가 기 설정된 온도 한계를 초과하는지를 판단하며, 판단결과 현재 측정된 셀의 온도가 기 설정된 온도 한계를 초과하면 해당 셀의 온도를 온도 한계 이하로 유지하면서 방전이 이루어질 수 있도록 최대방전전류와 최대파워를 조정한 다음 현재의 SOC가 SOC 임계값 미만이거나 또는 최대파워가 미리 설정된 최소파워 임계값 미만일 때까지 상기 최대방전전류와 최대파워로 상기 배터리팩의 방전을 수행함으로써, 기 설정된 범위의 온도를 초과하는 온도에서 방전이 이루어질 때 발생하는 열화를 방지하도록 하는 것을 특징으로 한다.Also, the discharge processor may determine whether a current temperature of the battery pack exceeds a predetermined temperature limit in a process of discharging the battery pack. If the measured temperature of the currently measured cell exceeds a predetermined temperature limit, The maximum discharge current and the maximum power are adjusted so that the discharge can be performed while the temperature of the cell is kept below the temperature limit, and then the maximum discharge current and the maximum power are adjusted until the current SOC is less than the SOC threshold value or the maximum power is less than the predetermined minimum power threshold And discharging the battery pack at a current and a maximum power, thereby preventing deterioration occurring when discharging is performed at a temperature exceeding a predetermined range of temperature.
아울러, 본 발명의 일 실시예에 따른 전기자동차용 배터리의 열화 발생을 저감하면서 고속충전을 수행하기 위한 방법은, 열화나 온도에 따른 배터리팩의 충전상태정보를 학습하는 학습 단계 및 상기 학습한 충전상태정보를 토대로 상기 배터리팩의 위크 셀 상태에 따라 최대충전전류를 조정하여 상기 배터리팩의 충전을 수행하는 충전 처리 단계를 포함하며, 상기 충전상태정보는, SOC에 따른 배터리팩의 전체저항, 각각의 배터리 셀에 대한 온도 및 저항, SOC에 따른 OCV 변화량, 현재의 OCV 포인트에서의 최대설정전압 또는 이들의 조합을 포함하는 것을 특징으로 한다.In addition, a method for performing fast charging while reducing the occurrence of deterioration of a battery for an electric vehicle according to an embodiment of the present invention includes a learning step of learning charge state information of a battery pack according to deterioration or temperature, And a charging processing step of adjusting the maximum charging current according to the wick cell state of the battery pack based on the state information to perform charging of the battery pack, wherein the charging state information includes a total resistance of the battery pack according to SOC A temperature and a resistance of the battery cell, an OCV variation amount according to the SOC, a maximum setting voltage at a current OCV point, or a combination thereof.
또한 상기 충전 처리 단계는, 최근에 측정된 OCV와 Passed charge를 이용하여 상기 배터리팩의 현재 OCV 포인트를 검출하는 단계, 상기 검출한 현재 OCV 포인트에서 상기 배터리팩의 위크 셀 온도 및 저항을 참조하여 최대충전전류를 설정하는 단계, 상기 최대충전전류로 상기 배터리팩을 충전하는 과정에서 현재의 위크 셀 전압이 모든 배터리 셀 중에서 가장 높은 전압인지를 판단하는 단계 및 현재의 위크 셀 전압이 모든 배터리 셀 중에서 가장 높은 전압이면 현재의 SOC가 SOC 임계값에 도달될 때까지 상기 최대충전전류로 상기 배터리팩의 충전을 수행하는 단계를 포함하는 것을 특징으로 한다.The charging process may further include detecting a current OCV point of the battery pack using a recently measured OCV and a passed charge, calculating a maximum OCV point by referring to a wick cell temperature and a resistance of the battery pack at the detected current OCV point Determining whether the current wick cell voltage is the highest among all the battery cells in the process of charging the battery pack with the maximum charging current, determining whether the current wick cell voltage is the highest among all the battery cells, And charging the battery pack with the maximum charge current until the current SOC reaches the SOC threshold value when the battery voltage is a high voltage.
또한 상기 충전 처리 단계는, 상기 최대충전전류로 상기 배터리팩을 충전하는 과정에서 현재의 위크 셀 전압이 모든 배터리 셀 중에서 가장 높은 전압인지를 판단한 결과, 현재의 위크 셀 전압이 모든 배터리 셀 중에서 가장 높은 전압이 아니면 가장 높은 전압을 갖는 셀을 위크 셀로 변경한 다음 모든 배터리 셀의 저항을 재측정하는 단계, 해당 위크 셀에서 측정한 전압이 미리 설정된 최대전압보다 크면 저항을 다시 측정한 다음 해당 위크 셀의 온도 및 저항을 토대로 상기 최대충전전류를 조정하여 충전을 진행하는 단계 및 해당 위크 셀에서 측정한 전압이 미리 설정된 최대전압보다 작으면 현재의 SOC가 SOC 임계값에 도달될 때까지 상기 최대충전전류로 상기 배터리팩의 충전을 수행하는 단계를 더 포함하는 것을 특징으로 한다.In the charging process, it is determined that the current wick cell voltage is the highest among all the battery cells in the process of charging the battery pack with the maximum charging current. If the current wick cell voltage is the highest among all the battery cells Measuring the resistance of all the battery cells after changing the cell having the highest voltage if the voltage is not higher than the maximum cell voltage, measuring the resistance again if the voltage measured at the corresponding wick cell is greater than a preset maximum voltage, Adjusting the maximum charge current based on the temperature and the resistance to proceed with charging; and, if the measured voltage at the weak cell is less than a preset maximum voltage, changing the maximum charge current until the current SOC reaches the SOC threshold And performing charging of the battery pack.
또한 상기 충전 처리 단계는, 상기 최대충전전류로 상기 배터리팩을 충전하는 과정에서 상기 배터리팩의 현재 온도가 기 설정된 온도 한계를 초과하는지를 판단하는 단계, 및 판단결과 현재 측정된 셀의 온도가 기 설정된 온도 한계를 초과하면 해당 셀의 온도를 온도 한계 이하로 유지하면서 충전이 이루어질 수 있도록 최대충전전류를 조정한 다음 현재의 SOC가 SOC 임계값에 도달될 때까지 상기 최대충전전류로 상기 배터리팩의 충전을 수행함으로써, 기 설정된 범위의 온도를 초과하는 온도에서 충전이 이루어질 때 발생하는 열화를 방지하도록 하는 단계를 더 포함하는 것을 특징으로 한다.The charging process may further include determining whether a current temperature of the battery pack exceeds a predetermined temperature limit in a process of charging the battery pack with the maximum charging current, If the temperature limit is exceeded, the maximum charge current is adjusted so that the charge can be maintained while the temperature of the cell is kept below the temperature limit, and then the charge of the battery pack is charged to the maximum charge current until the current SOC reaches the SOC threshold So as to prevent deterioration occurring when charging is performed at a temperature exceeding a predetermined range of temperatures.
아울러, 본 발명의 일 실시예에 따른 전기자동차용 배터리의 열화 발생을 저감하면서 최대방전을 수행하기 위한 방법은, 열화나 온도에 따른 배터리팩의 방전상태정보를 학습하는 학습 단계 및 상기 학습한 방전상태정보를 토대로 상기 배터리팩의 위크 셀 상태에 따라 최대방전전류와 최대파워를 조정하여 상기 배터리팩의 방전을 수행하는 방전 처리 단계를 포함하며, 상기 방전상태정보는, SOC에 따른 배터리팩의 전체저항 및 전체전압, 각각의 배터리 셀에 대한 온도 및 저항, SOC에 따른 OCV 변화량, 미리 설정한 방전종지전압인 컷오프 전압, 컷오프 전압 이전의 마진 설정 전압 또는 이들의 조합을 포함하는 것을 특징으로 한다.In addition, a method for performing maximum discharge while reducing the occurrence of deterioration of a battery for an electric vehicle according to an embodiment of the present invention includes a learning step of learning discharge status information of a battery pack according to deterioration or temperature, And a discharge processing step of adjusting the maximum discharge current and the maximum power according to the wick cell state of the battery pack based on the state information to perform discharge of the battery pack, A resistance and a total voltage, a temperature and a resistance for each battery cell, an OCV variation amount according to SOC, a cutoff voltage as a preset discharge end voltage, a margin setting voltage before a cutoff voltage, or a combination thereof.
또한 상기 방전 처리 단계는, 최근에 측정된 OCV와 Passed charge를 이용하여 상기 배터리팩의 현재 OCV 포인트를 검출하는 단계, 상기 검출한 현재 OCV 포인트에서 상기 배터리팩의 위크 셀 온도 및 저항, 컷오프 전압, 마진 설정 전압을 참조하여 최대방전전류와 최대파워를 설정하는 단계, 상기 배터리팩의 방전을 수행하는 과정에서 현재의 위크 셀 전압이 모든 배터리 셀 중에서 가장 낮은 전압인지를 판단하는 단계, 현재의 위크 셀 전압이 모든 배터리 셀 중에서 가장 낮은 전압이면 해당 위크 셀에서 측정한 전압이 상기 컷오프 전압과 마진 설정 전압의 합보다 작은지를 판단하는 단계 및 해당 위크 셀에서 측정한 전압이 상기 컷오프 전압과 마진 설정 전압의 합보다 크면 현재의 SOC가 SOC 임계값 미만이거나 또는 최대파워가 미리 설정된 최소파워 임계값 미만일 때까지 상기 최대방전전류와 최대파워로 상기 배터리팩의 방전을 수행하는 단계를 포함하는 것을 특징으로 한다.The discharging process may further include detecting a current OCV point of the battery pack using a recently measured OCV and a pass charge, detecting a wick cell temperature and a resistance of the battery pack at the detected current OCV point, a cutoff voltage, Determining a maximum discharge current and a maximum power with reference to a margin setting voltage, determining whether a current wick cell voltage is the lowest among all the battery cells in a process of discharging the battery pack, Determining whether a voltage measured by the weak cell is less than a sum of the cut-off voltage and a margin setting voltage when the voltage is the lowest voltage among all the battery cells, and determining whether the voltage measured by the weak cell is less than the sum of the cut- Sum, the current SOC is less than the SOC threshold, or the maximum power is less than the predetermined minimum power threshold Discharging the battery pack with the maximum discharge current and the maximum power until the maximum discharge current is less than the maximum discharge current.
또한 상기 방전 처리 단계는, 상기 배터리팩의 방전을 수행하는 과정에서 현재의 위크 셀 전압이 모든 배터리 셀 중에서 가장 낮은 전압인지를 판단한 결과, 현재의 위크 셀 전압이 모든 배터리 셀 중에서 가장 낮은 전압이 아니면 가장 낮은 전압을 갖는 배터리 셀을 위크 셀로 변경한 다음 모든 셀의 저항을 재측정하여, 저항 재측정 결과를 토대로 검출된 해당 위크 셀에서 측정한 전압이 상기 컷오프 전압과 마진 설정 전압의 합보다 작은지를 판단하는 단계, 해당 위크 셀에서 측정한 전압이 상기 컷오프 전압과 마진 설정 전압의 합보다 작으면 저항을 다시 계산한 다음 최대충전전류와 최대파워를 조정하여 방전을 진행하는 단계 및 해당 위크 셀에서 측정한 전압이 상기 컷오프 전압과 마진 설정 전압의 합보다 크면 현재의 SOC가 SOC 임계값 미만이거나 또는 최대파워가 미리 설정된 최소파워 임계값 미만일 때까지 상기 최대방전전류와 최대파워로 상기 배터리팩의 방전을 수행하는 단계를 더 포함하는 것을 특징으로 한다.Also, the discharging process may be performed such that if the current weak cell voltage is the lowest among all the battery cells in the process of discharging the battery pack, if the current weak cell voltage is not the lowest voltage among all the battery cells The battery cell having the lowest voltage is changed to the Weck cell and the resistance of all the cells is remeasured to determine whether the voltage measured at the detected weak cell based on the resistance measurement result is less than the sum of the cut- Calculating a resistance when the voltage measured by the weak cell is less than the sum of the cut-off voltage and the margin setting voltage, and adjusting the maximum charge current and the maximum power to proceed with discharging; If a voltage is greater than the sum of the cutoff voltage and the margin set voltage, the current SOC is less than the SOC threshold Or until the maximum power is less than a predetermined minimum power threshold, it characterized in that it further comprises the step of performing discharge of the battery pack to the maximum discharging current and maximum power.
또한 상기 방전 처리 단계는, 상기 배터리팩의 방전을 수행하는 과정에서 상기 배터리팩의 현재 온도가 기 설정된 온도 한계를 초과하는지를 판단하는 단계 및 판단결과 현재 측정된 셀의 온도가 기 설정된 온도 한계를 초과하면 해당 셀의 온도를 온도 한계 이하로 유지하면서 방전이 이루어질 수 있도록 최대방전전류와 최대파워를 조정한 다음 현재의 SOC가 SOC 임계값 미만이거나 또는 최대파워가 미리 설정된 최소파워 임계값 미만일 때까지 상기 최대방전전류와 최대파워로 상기 배터리팩의 방전을 수행함으로써, 기 설정된 범위의 온도를 초과하는 온도에서 방전이 이루어질 때 발생하는 열화를 방지하도록 하는 단계를 더 포함하는 것을 특징으로 한다.The discharging process may further include determining whether a current temperature of the battery pack exceeds a predetermined temperature limit in a process of discharging the battery pack, and if the measured temperature of the currently measured cell exceeds a predetermined temperature limit The maximum discharge current and the maximum power are adjusted so that the discharge can be performed while the temperature of the corresponding cell is kept below the temperature limit, and then the maximum discharge current and the maximum power are adjusted until the current SOC is less than the SOC threshold value or the maximum power is less than the predetermined minimum power threshold And discharging the battery pack at a maximum discharge current and a maximum power so as to prevent deterioration occurring when discharging is performed at a temperature exceeding a predetermined range of temperature.
이상에서와 같이 본 발명의 전기자동차용 배터리의 열화 발생을 저감하면서 고속충전과 최대방전을 수행하기 위한 방법 및 그 장치에 따르면, 전기자동차용 배터리의 충전 및 방전상태를 모니터링하여 전압이나 온도정보를 토대로 최대충전전류나 최대방전전류를 조정해가면서 충전과 방전을 수행함으로써, 높은 전압이나 높은 온도로 인한 열화의 발생을 최대한 억제하면서 고속충전과 최대방전을 수행할 수 있는 효과가 있다.As described above, according to the method and apparatus for performing the fast charge and the maximum discharge while reducing the deterioration of the battery for an electric vehicle according to the present invention, the charging and discharging state of the battery for an electric vehicle is monitored, Charging and discharging are performed while adjusting the maximum charging current or the maximum discharging current on the basis of the maximum charging current and the maximum discharging current so that the fast charging and the maximum discharging can be performed while suppressing the occurrence of deterioration due to the high voltage or the high temperature.
또한 배터리 팩저항과 위크 셀의 저항이 변화하는 과정을 학습하여 배터리의 충전상태와 방전상태를 정밀하게 모니터링하고 이를 토대로 충전 및 방전을 제어함으로써, 과충전 및 과방전으로 인해 발생할 수 있는 열화의 발생을 최대한 억제할 수 있으며, 이에 따라 배터리의 품질을 높일 수 있음은 물론, 오랫동안 안정적으로 사용할 수 있는 효과가 있다.In addition, by learning how the resistance of the battery pack and the resistance of the wick cell are changed, the charge and discharge states of the battery are precisely monitored, and the charge and discharge are controlled based on the battery charge resistance and the discharge state. The battery can be restrained as much as possible, thereby improving the quality of the battery, and can be used stably for a long time.
도 1은 일반적인 전기자동차의 BMS에서 수행하는 동작을 개략적으로 설명하기 위한 도면이다.FIG. 1 is a schematic view for explaining an operation performed in a BMS of a general electric vehicle.
도 2는 본 발명이 적용된 배터리 관리 시스템의 일 실시예의 구성을 개략적으로 나타낸 도면이다.2 is a view schematically showing a configuration of an embodiment of a battery management system to which the present invention is applied.
도 3은 본 발명이 적용된 배터리 관리 시스템의 다른 실시예의 구성을 개략적으로 나타낸 도면이다.3 is a view schematically showing a configuration of another embodiment of a battery management system to which the present invention is applied.
도 4는 본 발명이 적용된 배터리 관리 시스템의 또 다른 실시예의 구성을 개략적으로 나타낸 도면이다.4 is a diagram schematically showing a configuration of another embodiment of a battery management system to which the present invention is applied.
도 5는 본 발명에 적용되는 배터리팩의 충전 및 방전상태 모니터링을 위한 데이터를 학습하기 위한 제1 사이클을 나타낸 도면이다.5 is a view showing a first cycle for learning data for charging and discharging state monitoring of a battery pack applied to the present invention.
도 6은 본 발명에 적용되는 배터리팩의 충전 및 방전상태 모니터링을 위한 데이터를 학습하기 위한 제2 사이클을 나타낸 도면이다.6 is a diagram illustrating a second cycle for learning data for charging and discharging state monitoring of a battery pack according to the present invention.
도 7은 본 발명의 각 실시예에 적용되는 배터리 관리 장치의 구성을 상세하게 나타낸 도면이다.7 is a detailed view showing a configuration of a battery management device applied to each embodiment of the present invention.
도 8은 본 발명의 일 실시예에 따른 전기자동차용 배터리의 열화 발생을 저감하면서 고속충전을 수행하기 위한 방법의 동작과정을 설명하기 위한 순서도이다.FIG. 8 is a flowchart illustrating an operation procedure of a method for performing fast charging while reducing occurrence of deterioration of a battery for an electric vehicle according to an embodiment of the present invention. Referring to FIG.
도 9는 본 발명의 일 실시예에 따른 전기자동차용 배터리의 열화 발생을 저감하면서 최대방전을 수행하기 위한 방법의 동작과정을 설명하기 위한 순서도이다.9 is a flowchart illustrating an operation of a method for performing a maximum discharge while reducing occurrence of deterioration of a battery for an electric vehicle according to an embodiment of the present invention.
도 10은 본 발명의 일 실시예에 따른 전기자동차용 배터리의 고온에 의한 열화 발생을 방지하는 온도제어 방법의 동작과정을 설명하기 위한 순서도이다.FIG. 10 is a flowchart illustrating an operation procedure of a temperature control method for preventing deterioration due to high temperature of a battery for an electric vehicle according to an embodiment of the present invention. Referring to FIG.
이하, 첨부한 도면을 참조하여 본 발명의 전기자동차용 배터리의 열화 발생을 저감하면서 고속충전과 최대방전을 수행하기 위한 방법 및 그 장치에 대한 바람직한 실시 예를 상세히 설명한다. 각 도면에 제시된 동일한 참조부호는 동일한 부재를 나타낸다. 또한 본 발명의 실시 예들에 대해서 특정한 구조적 내지 기능적 설명들은 단지 본 발명에 따른 실시 예를 설명하기 위한 목적으로 예시된 것으로, 다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가지고 있다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥상 가지는 의미와 일치하는 의미를 가지는 것으로 해석되어야 하며, 본 명세서에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는 것이 바람직하다.DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Reference will now be made in detail to the present embodiments of the present invention, examples of which are illustrated in the accompanying drawings, wherein like reference numerals refer to the like elements throughout. Like reference symbols in the drawings denote like elements. Furthermore, specific structural and functional descriptions for embodiments of the present invention are presented for the purpose of describing an embodiment of the present invention only, and, unless otherwise defined, all terms used herein, including technical or scientific terms Have the same meaning as commonly understood by those of ordinary skill in the art to which the present invention belongs. Terms such as those defined in commonly used dictionaries are to be interpreted as having a meaning consistent with the contextual meaning of the related art and are to be interpreted as ideal or overly formal in the sense of the art unless explicitly defined herein .
도 2는 본 발명이 적용된 배터리 관리 시스템의 일 실시예의 구성을 개략적으로 나타낸 도면이고, 도 3은 본 발명이 적용된 배터리 관리 시스템의 다른 실시예의 구성을 개략적으로 나타낸 도면이며, 도 4는 본 발명이 적용된 배터리 관리 시스템의 또 다른 실시예의 구성을 개략적으로 나타낸 도면이다.FIG. 2 is a view schematically showing the configuration of an embodiment of a battery management system to which the present invention is applied, FIG. 3 is a view schematically showing a configuration of another embodiment of a battery management system to which the present invention is applied, FIG. Fig. 2 is a schematic view showing the configuration of another embodiment of the applied battery management system.
도 2에 도시된 바와 같이, 본 발명의 일 실시예에 다른 배터리 관리 시스템(10)은 배터리팩(200)의 상태를 모니터링하여 열화가 덜 발생되도록 하면서 고속충전과 최대방전을 수행하는 배터리 관리 장치(100), 복수의 배터리 셀로 구성되는 배터리팩(200), 외부단자를 통해 상기 배터리팩(200)과 배터리팩(200)을 충전하기 위한 충전기(700) 또는 상기 외부단자를 통해 상기 배터리팩(200)과 연결되어 상기 배터리팩(200)으로부터 파워를 인가받아 구동되는 전기모터 등의 부하(미도시), 충전 FET(300), 방전 FET(400), 배터리팩(200)의 온도를 감지하는 온도 감지부(500), 배터리팩(200)의 전류를 감지하는 전류 감지부(600) 등으로 구성된다.2, the battery management system 10 according to an exemplary embodiment of the present invention monitors the state of the battery pack 200 to perform a quick charge and a maximum discharge while causing less deterioration, A battery charger 700 for charging the battery pack 200 and the battery pack 200 through an external terminal or a charger 700 for charging the battery pack 200 through the external terminal, The charging FET 300, the discharging FET 400, and the battery pack 200, such as an electric motor driven by receiving power from the battery pack 200, A temperature sensing unit 500, and a current sensing unit 600 that senses the current of the battery pack 200.
배터리 관리 장치(100)는 전계효과 트랜지스터(FET, field effect transistor)로 구성된 충전 FET(300)와 방전 FET(400)를 제어하여 상기 외부단자와 연결되는 외부장치(즉, 충전기(700) 또는 부하)에 따라 상기 배터리팩(200)을 충전하거나 방전할 수 있도록 한다. 이때 상기 배터리 관리 장치(100)는 상기 배터리팩(200)의 상태를 모니터링하고, 모니터링 결과를 토대로 상기 배터리팩(200)의 상태에 따라 높은 전압이나 높은 온도에 의한 열화가 덜 발생되도록 하면서 상기 배터리팩(200)의 고속충전과 최대방전을 진행한다.The battery management apparatus 100 controls the charging FET 300 and the discharging FET 400 constituted by field effect transistors (FETs) and controls the external device connected to the external terminals (i.e., the charger 700 or the load So that the battery pack 200 can be charged or discharged. At this time, the battery management device 100 monitors the state of the battery pack 200, and based on the result of the monitoring, the battery management device 100 generates less deterioration due to a high voltage or a high temperature depending on the state of the battery pack 200, The fast charge and the maximum discharge of the pack 200 proceed.
예를 들어, 상기 외부단자에 충전기(700)가 연결되는 경우, 상기 배터리 관리 장치(100)는 상기 충전 FET(300)를 온하고, 방전 FET(400)를 차단(오프)함으로써 상기 충전기(700)로부터 배터리팩(200) 방향으로 일정한 전압 및 전류를 흐르도록 하여 상기 배터리팩(200)을 충전할 수 있도록 한다. 이와 반대로, 상기 외부단자에 전기모터 등의 부하가 연결되는 경우, 상기 배터리 관리 장치(100)는 상기 충전 FET(300) 및 방전 FET(400)를 각각 오프 및 온 함으로써, 상기 배터리팩(200)으로부터 부하방향으로 일정한 전압 및 전류를 흐르도록 하여 상기 부하로 파워를 인가할 수 있도록 한다.For example, when the charger 700 is connected to the external terminal, the battery management device 100 turns on the charging FET 300 and turns off the discharging FET 400, So that the battery pack 200 can be charged with a constant voltage and current. Conversely, when a load such as an electric motor is connected to the external terminal, the battery management apparatus 100 turns off and on the charging FET 300 and the discharging FET 400, respectively, So that the power can be applied to the load.
또한 상기 배터리 관리 장치(100)는 온도에 따른 배터리팩(200)의 전체저항 및 상기 배터리팩(200)을 구성하는 배터리 셀 중 약한 배터리 셀(즉 위크 셀)에 대한 저항을 학습함으로써, 온도 및 열화에 따른 상기 배터리팩(200)에 대한 저항변화를 토대로 충/방전이 거듭되어 사용된 배터리팩(200)의 상태를 즉각적으로 알 수 있도록 한다. 그리고 상기 배터리 관리 장치(100)는 상기 배터리팩(200)의 충전 혹은 방전 시 해당 배터리팩(200)의 온도 및 열화에 따른 잔여용량(remaining capacity)을 정확하게 게이징(gauging)하며, 이를 토대로 상기 배터리팩(200)의 충전 혹은 방전을 관리하여 상기 배터리팩(200)의 과충전 혹은 과방전으로 인한 열화 및 결함발생을 방지하도록 한다.The battery management apparatus 100 learns the total resistance of the battery pack 200 according to the temperature and the resistance of the battery cells constituting the battery pack 200 to weak battery cells (i.e., weak cells) The charge / discharge is repeated based on the resistance change of the battery pack 200 due to deterioration so that the state of the used battery pack 200 can be immediately recognized. The battery management apparatus 100 accurately gauges the remaining capacity due to temperature and deterioration of the battery pack 200 when the battery pack 200 is charged or discharged, The charging or discharging of the battery pack 200 is controlled to prevent deterioration and defects due to overcharge or overdischarge of the battery pack 200. [
즉 상기 배터리 관리 장치(100)는 상기 배터리팩(200)의 충전상태를 모니터링하다가 상기 배터리팩(200)이 과충전 상태로 진입하기 전에 이를 감지하여 상기 충전 FET(300)를 오프시킴으로써 과충전으로 인한 배터리팩(200)의 결함 및 열화발생을 방지할 수 있도록 한다. 마찬가지로, 상기 배터리 관리 장치(100)는 상기 배터리팩(200)의 방전상태를 모니터링하다가 상기 배터리팩(200)이 과방전 상태로 진입하기 전에 이를 감지하여 상기 방전 FET(400)를 오프시킴으로써 과방전으로 인한 배터리팩(200)의 결함 및 열화발생을 방지할 수 있도록 한다.That is, the battery management device 100 monitors the state of charge of the battery pack 200, detects the state of the battery pack 200 before the battery pack 200 enters the overcharged state, and turns off the charge FET 300, So that defects and deterioration of the pack 200 can be prevented. Similarly, the battery management device 100 monitors the discharging state of the battery pack 200, detects the discharging state of the battery pack 200 before the battery pack 200 enters the over-discharge state, and turns off the discharging FET 400, Thereby preventing the battery pack 200 from being damaged or deteriorated.
한편 상기 배터리 관리 장치(100)는 전기모터와 시스템에서 사용하는 파워를 알고 있거나 혹은 모니터링을 수행하여야 한다. 예를 들어 현재 배터리팩(200)에서 제공 가능한 최대파워가 50KW라고 하면, 모터 구동 및 시스템에서 사용하는 파워를 50KW 이하로 제어하여야 하기 때문이다. 이를 위해서는 이미 파워 버짓(power budget)이 시스템 동작에 따라 개발단계에서 측정되어 설정되어야 한다.Meanwhile, the battery management apparatus 100 must know or monitor the power used in the electric motor and the system. For example, if the maximum power that can be supplied from the battery pack 200 is 50 KW, the power used in the motor drive and the system should be controlled to 50 KW or less. In order to do this, the power budget must be measured and set at the development stage according to the system operation.
또한 본 발명의 배터리팩을 적용하는 전기자동차는 배터리 전압으로 최대파워로 최대 스피드를 제한할 수 있고, 자동차 제조사에 의해 설정될 수 있는 최대파워가 너무 낮은 경우 사용자에게 신호를 보내며, 전기모터 성능으로서 저속모드와 런타임을 희생하는 고속모드의 두 가지 모드를 가지고 있다.Further, the electric vehicle to which the battery pack of the present invention is applied can limit the maximum speed to the maximum power with battery voltage, sends a signal to the user when the maximum power that can be set by the automobile manufacturer is too low, It has two modes: low-speed mode and high-speed mode at the expense of runtime.
또한 본 발명에 적용되는 전기자동차용 배터리팩은 높은 온도 또는 높은 전압에서 열화가 가속화되고 높은 온도에서 폭발이 일어날 수 있는 것을 방지하기 위하여 어떠한 경우에도 셀 온도가 온도 임계값 이상이 되지 않도록 제어하여야 한다. 그러므로 온도를 낮추고 전압을 낮추기 위하여 배터리 에너지를 관리하여야 함은 당연하다.The battery pack for an electric vehicle according to the present invention should be controlled such that the cell temperature does not exceed the temperature threshold in any case in order to prevent deterioration at a high temperature and acceleration of the deterioration at a high temperature or a high voltage . It is therefore natural that battery energy must be managed to lower the temperature and lower the voltage.
배터리팩(200)은 복수의 배터리 셀로 구성되며, 상기 배터리 셀은 해당 배터리팩(200)이 이용되는 목적, 용도 또는 해당 배터리팩(200)에 연결되는 부하에 따라 상기 배터리 셀의 개수를 달리하여 상기 배터리팩(200)을 구성할 수 있다.The battery pack 200 includes a plurality of battery cells, and the number of the battery cells may be varied according to the purpose or use of the battery pack 200, or a load connected to the battery pack 200 The battery pack 200 can be configured.
이때 상기 배터리 셀은 직렬, 병렬 또는 이들의 조합으로 연결될 수 있으며, 외부단자로 연결되는 충전기(700) 또는 부하를 통해 일정한 전압으로 충전되거나, 또는 방전된다.The battery cells may be connected in series, in parallel, or a combination thereof, and may be charged or discharged to a predetermined voltage through a charger 700 or a load connected to an external terminal.
또한 상기 배터리팩(200)은 리튬 이온 배터리, 리튬 이온 폴리머 배터리, 니켈 카드뮴 배터리 등과 같이 공지된 모든 종류의 2차 배터리로 구성될 수 있다.Also, the battery pack 200 may be constructed of all kinds of secondary batteries such as a lithium ion battery, a lithium ion polymer battery, a nickel cadmium battery, and the like.
충전 FET(300) 및 방전 FET(400)는 상기 배터리팩(200)을 일정한 전압으로 충전하거나 방전하기 위한 스위치를 의미하는 것으로, FET 이외에 IGBT(insulated gate bipolar transistor) 또는 충/방전을 위한 릴레이(relay) 등과 같은 다양한 스위치로 구성될 수 있다.The charging FET 300 and the discharging FET 400 refer to a switch for charging or discharging the battery pack 200 at a constant voltage. In addition to the FET, an insulated gate bipolar transistor (IGBT) or a relay for charging / discharging relay, and the like.
온도 감지부(500)는 상기 배터리팩(200)의 충/방전 시에 상기 배터리팩(200) 혹은 배터리 셀에 대한 온도를 감지하여 상기 배터리 관리 장치(100)로 제공한다.The temperature sensing unit 500 senses the temperature of the battery pack 200 or the battery cell 200 during charging / discharging of the battery pack 200 and provides the sensed temperature to the battery management device 100.
전류 감지부(600)는 전류를 감지하기 위한 센스 레지스터(sense resistor)로 구성되며, 상기 외부단자 및 상기 배터리팩(200)과 직렬로 연결되어 상기 배터리팩(200)의 충/방전 전류를 감지하여 상기 배터리 관리 장치(100)로 제공한다.The current sensing unit 600 includes a sense resistor for sensing a current and is connected in series with the external terminal and the battery pack 200 to detect a charge / discharge current of the battery pack 200 And provides it to the battery management apparatus 100.
한편, 상기 배터리 관리 장치(100)는 상기 배터리팩(200)의 상태에 따라 높은 전압이나 높은 온도에 의한 열화가 덜 발생되도록 하면서 상기 배터리팩(200)의 고속충전과 최대방전을 수행할 수 있도록, 상기 배터리팩(200)의 전체 저항과 각 배터리 셀에 대한 저항, 그리고 상기 배터리팩(200)의 잔여용량 및 전체 가용용량을 정확하게 게이징하기 위해 무부하 상태에서 상기 배터리팩(200)에 대한 OCV(open circuit voltage)의 변화상태 및 온도에 따른 상기 배터리팩(200)의 저항 변화를 학습한다. 이때 상기 학습은 제1 사이클 및 제2 사이클을 포함하여 총 두 번의 학습 사이클을 통해 수행되는데, 이에 대한 상세한 설명은 하기의 도 5와 도 6을 참조하여 상세하게 설명하기로 한다.The battery management apparatus 100 may be configured to perform rapid charging and maximum discharge of the battery pack 200 while causing less deterioration due to high voltage or high temperature depending on the state of the battery pack 200 The OCV for the battery pack 200 in a no-load state to accurately gauge the total resistance of the battery pack 200, the resistance to each battery cell, and the remaining capacity and the total usable capacity of the battery pack 200, the change of the open circuit voltage and the resistance change of the battery pack 200 according to the temperature are learned. At this time, the learning is performed through a total of two learning cycles including a first cycle and a second cycle, and a detailed description thereof will be described with reference to FIGS. 5 and 6. FIG.
또한 상기 배터리 관리 장치(100)에 의해 온도 변화에 따라 학습한 상기 배터리팩(200)의 전체 저항과 각 배터리 셀의 저항(즉 내부저항)은 온도 및 각 온도에서의 저항을 나타내는 파라미터로 구성된 함수로부터 도출되며, 이는 높은 전압이나 온도에 의해 발생될 수 있는 열화가 덜 발생되도록 최대충전전류나 최대방전전류를 조정해가면서 상기 배터리팩(200)의 고속충전이나 최대방전을 수행하는데 이용된다.The total resistance of the battery pack 200 and the resistance of each battery cell (i.e., the internal resistance), which are learned by the battery management apparatus 100 according to a temperature change, are determined by a function Which is used to perform the fast charging or the maximum discharge of the battery pack 200 while adjusting the maximum charging current or the maximum discharging current so that deterioration that may be caused by a high voltage or a temperature is less generated.
한편 상기 열화가 덜 발생되도록 하면서 상기 배터리팩(200)의 고속충전이나 최대방전을 수행하는 과정과, 온도제어를 수행하는 과정은 하기의 도 8 내지 도 10을 참조하여 상세하게 설명하기로 한다.Meanwhile, a process of performing fast charging or discharging of the battery pack 200 while performing less deterioration and performing a temperature control will be described in detail with reference to FIGS. 8 to 10.
이처럼, 상기 배터리 관리 장치(100)는 상기 배터리팩(200)의 전체 저항과 각 배터리 셀에 대한 저항을 측정하여 학습하며, 온도에 따른 상기 배터리팩(200)의 최대충전전류와 최대방전전류를 조정하기 위한 팩터를 도출하고 부하의 특성을 분석한다. 이를 통해 높은 전압이나 온도에 의한 열화가 덜 발생되도록 하면서 상기 배터리팩(200)을 고속충전하거나 최대방전을 수행하도록 할 수 있다.The battery management device 100 learns the total resistance of the battery pack 200 and the resistance to each battery cell and learns the maximum charge current and the maximum discharge current of the battery pack 200 according to the temperature. Derive the factor for adjustment and analyze the characteristics of the load. Accordingly, the battery pack 200 can be quickly charged or discharged at a maximum while causing less deterioration due to high voltage or temperature.
즉 상기 배터리 관리 장치(100)는 상기 학습 사이클을 통해 SOC에 따른 배터리팩의 전제 저항, 각 배터리 셀에 대한 저항, OCV 변화량, 상기 배터리팩(200)의 총 용량을 포함하는 상기 배터리팩(200)의 상태정보를 학습하여, 해당 배터리팩(200)의 충전 및 방전상태를 정확하게 확인할 수 있는 것이다.That is, the battery management apparatus 100 determines whether or not the battery pack 200 (200) including the total resistance of the battery pack 200 according to the SOC, the resistance to each battery cell, the OCV variation amount, So that the state of charge and discharge of the battery pack 200 can be accurately confirmed.
도 3은 본 발명이 적용된 배터리 관리 시스템의 다른 실시예의 구성을 개략적으로 나타낸 도면이다.3 is a view schematically showing a configuration of another embodiment of a battery management system to which the present invention is applied.
도 3에 도시된 바와 같이, 본 발명의 다른 실시예에 따른 배터리 관리 시스템(10)은 상기 도 2의 구성과 복수의 전류/전압 측정부(800)를 더 포함하여 구성될 수 있다.As shown in FIG. 3, the battery management system 10 according to another embodiment of the present invention may further include the configuration of FIG. 2 and a plurality of current / voltage measurement units 800.
즉 도 2의 실시예에서 설명한 배터리 관리 시스템(10)은 각각의 배터리 셀의 전압을 직접 측정하여 상기 각 배터리 셀의 저항 및 약한 배터리 셀에 대한 저항을 산출하는 구성이나, 도 3의 실시예에 따른 배터리 관리 시스템(10)은 별도의 전류/전압 측정부(800)를 구비하여 상기 배터리 셀에 대한 저항을 측정할 수 있도록 구성한 것이다.That is, the battery management system 10 described in the embodiment of FIG. 2 directly measures the voltage of each battery cell to calculate the resistance of each battery cell and the resistance to a weak battery cell, The battery management system 10 according to the present invention includes a separate current / voltage measurement unit 800 to measure the resistance of the battery cell.
이때 상기 전류/전압 측정부(800)는 적어도 하나 이상으로 구비되며, 각각의 전류/전압 측정부(800)는 적어도 하나 이상의 배터리 셀과 각각 연결된다.At least one current / voltage measuring unit 800 is provided, and each current / voltage measuring unit 800 is connected to at least one battery cell.
또한 상기 전류/전압 측정부(800)는 자신이 담당하는 각각의 배터리 셀에 대한 전류 및 전압을 측정하여 배터리 관리 장치(1000)로 제공하고, 상기 배터리 관리 장치(1000)는 상기 각 전류/전압 측정부(800)로부터 제공받은 각 배터리 셀에 대한 전류 및 전압을 이용하여 각각의 배터리 셀 저항 및 약한 배터리 셀에 대한 저항을 토대로 학습을 수행한다.Also, the current / voltage measuring unit 800 measures current and voltage for each battery cell that the current / voltage measuring unit 800 itself provides to the battery management apparatus 1000, and the battery management apparatus 1000 measures the current / Learning is performed based on the resistance of each battery cell and the resistance of the weak battery cell using the current and voltage for each battery cell provided from the measuring unit 800. [
배터리 셀의 저항을 측정할 때, 상기 도 2의 실시예에서의 배터리 관리 장치(100)는 상기 배터리팩(200)에 대한 전체 전류와 각 배터리 셀에 대한 전압을 이용하여 각각의 배터리 셀에 대한 내부저항을 측정하였으나, 상기 도 3의 실시예에서의 배터리 관리 장치(1000)는 각각의 배터리 셀에 대한 전압 및 전류를 측정하고 이를 이용하여 각각의 배터리 셀의 저항을 측정하기 때문에 더욱 정확하게 내부저항을 측정할 수 있다. 이때 상기 저항은 상기 전류/전압 측정부(800)에 계산되어 상기 배터리 관리 장치(1000)로 제공되거나, 상기 배터리 관리 장치(1000)에 의해 계산될 수 있다.When measuring the resistance of the battery cell, the battery management apparatus 100 in the embodiment of FIG. 2 uses the total current for the battery pack 200 and the voltage for each battery cell, The battery management apparatus 1000 in the embodiment of FIG. 3 measures the resistance of each battery cell by measuring the voltage and current for each battery cell and using it to measure the resistance of each battery cell more accurately, Can be measured. The resistance may be calculated by the current / voltage measuring unit 800 and provided to the battery management apparatus 1000 or may be calculated by the battery management apparatus 1000.
도 4는 본 발명이 적용된 배터리 관리 시스템의 또 다른 실시예의 구성을 개략적으로 나타낸 도면이다.4 is a diagram schematically showing a configuration of another embodiment of a battery management system to which the present invention is applied.
도 4에 도시된 바와 같이, 본 발명의 또 다른 실시예에 따른 배터리 관리 시스템(10)은 상기 도 2의 구성과 복수의 배터리 데이터 처리부(900)를 더 포함하여 구성될 수 있다.As shown in FIG. 4, the battery management system 10 according to another embodiment of the present invention may further include the configuration of FIG. 2 and a plurality of battery data processing units 900.
상기 배터리 데이터 처리부(900)는 상기 도 2에서 설명한 배터리 관리 장치(100)가 복수개로 모듈화되어 구성되는 것으로, 상기 배터리 관리 장치(100)에서 상기 배터리팩(200)의 상태정보 모니터링에 관련된 데이터 처리를 중앙 집중적으로 수행하던 것을 복수의 모듈에서 처리할 수 있도록 함으로써, 중앙으로 집중되는 부하를 분산하여 처리할 수 있도록 한다.The battery data processing unit 900 includes a plurality of battery management apparatuses 100 as shown in FIG. 2. The battery management apparatus 100 processes data related to status information monitoring of the battery pack 200 The centralized processing can be performed by a plurality of modules so that the centralized load can be distributed and processed.
이때 상기 배터리 데이터 처리부(900)는 적어도 하나 이상의 배터리 셀과 각각 연결되며, 온도변화에 따른 각각의 배터리 셀의 내부저항을 학습하여 이에 대한 결과를 배터리 관리 장치(2000)로 제공한다.At this time, the battery data processor 900 is connected to at least one battery cell, and learns the internal resistance of each battery cell according to the temperature change, and provides the result to the battery management device 2000.
또한 상기 배터리 관리 장치(2000)는 단순히 각각의 배터리 데이터 처리부(900)로부터 제공받은 배터리 모니터링에 관련된 데이터를 통합함으로써, 배터리팩(200)의 최대충전전류 또는 최대방전전류, 전압 및 온도정보, 잔여용량, 가용용량(usable), SOH(state of health) 등을 계산하여 누적 저장하고, 상기 배터리팩(200)의 충전 및 방전상태를 모니터링하며, 모니터링 정보를 토대로 높은 전압이나 온도에 의한 열화가 덜 발생되도록 하면서 상기 배터리팩(200)을 고속충전하거나 최대방전을 수행하도록 한다.Also, the battery management apparatus 2000 integrates data related to battery monitoring provided from each battery data processing unit 900, so that the maximum charge current or maximum discharge current, voltage and temperature information of the battery pack 200, And the state of health (SOH) of the battery pack 200 are accumulated and stored, and the charging and discharging states of the battery pack 200 are monitored. Based on the monitoring information, deterioration due to high voltage or temperature is less So that the battery pack 200 is rapidly charged or discharged.
한편 상기 배터리 데이터 처리부(900) 및 배터리 관리 장치(2000)는 I2C(inter-integrated circuit), SMB(server message block), CAN(controller area network) 등의 다양한 통신방식을 이용하여 충전 및 방전상태에 관련된 모니터링 데이터를 송수신할 수 있다.Meanwhile, the battery data processing unit 900 and the battery management device 2000 are connected to the charging and discharging state using various communication methods such as an inter-integrated circuit (I2C), a server message block (SMB), and a controller area network Related monitoring data can be transmitted and received.
다음에는, 도 5와 도 6을 참조하여 상기 배터리팩(200)의 고속충전 및 최대방전을 수행하도록, 상기 배터리팩(200)의 충전 및 방전상태 모니터링을 위한 데이터를 학습하는 방법에 대하여 상세하게 설명한다.5 and 6, a method of learning data for monitoring the charging and discharging states of the battery pack 200 so as to perform the fast charging and the discharging of the battery pack 200 will be described in detail Explain.
도 5는 본 발명에 적용되는 배터리팩의 충전 및 방전상태 모니터링을 위한 데이터를 학습하기 위한 제1 사이클을 나타낸 도면이며, 도 6은 본 발명에 적용되는 배터리팩의 충전 및 방전상태 모니터링을 위한 데이터를 학습하기 위한 제2 사이클을 나타낸 도면이다.FIG. 5 is a diagram showing a first cycle for learning data for charging and discharging state monitoring of a battery pack applied to the present invention. FIG. 6 is a diagram for explaining the data for monitoring charging and discharging states of the battery pack, Lt; RTI ID = 0.0 > 2 < / RTI >
도 5에 도시한 바와 같이, 상기 배터리 관리 장치(100)는 제1 사이클(1st cycle)에서의 상기 배터리팩(200)의 OCV 곡선을 측정하고, 상기 측정한 OCV 곡선을 누적하여 저장함으로써, 상기 배터리팩(200)이 방전될 때마다 OCV 변화량을 학습한다. 즉 상기 배터리 관리 장치(100)는 온도와 열화(에이징)에 따른 상기 배터리팩(200)의 저항변화와 용량을 게이징하기 위해 우선적으로 제1 사이클을 통해 SOC에서 상기 배터리팩(200)의 OCV 변화량(즉 OCV 곡선)을 학습하는 것이다.5, the battery management apparatus 100 measures an OCV curve of the battery pack 200 in a first cycle (first cycle), accumulates and stores the measured OCV curve, The OCV variation amount is learned every time the battery pack 200 is discharged. That is, the battery management apparatus 100 preferentially controls the OCV of the battery pack 200 at the SOC through the first cycle to gauges the resistance change and the capacity of the battery pack 200 due to temperature and deterioration (aging) (I.e., the OCV curve).
상기 첫 번째 사이클은 무부하 상태에서 일정한 C-rate(예: 1/20C)로 상기 배터리팩을(200)을 방전시켜가며, 복수의 SOC 그리드 포인트로 나누어 해당 SOC 그리드 포인트마다 해당 배터리팩(200)의 전압을 감지함으로써, OCV의 변화량을 측정할 수 있다. 한편 상기 SOC 그리드 포인트는 도 6에 도시되어 있다.In the first cycle, the battery pack 200 is discharged at a constant C-rate (for example, 1/20 C) in a no-load state. The battery pack 200 is divided into a plurality of SOC grid points, The change amount of the OCV can be measured. The SOC grid point is shown in FIG.
한편 OCV 변화량은 상기 배터리팩(200)의 자가 방전을 통해 측정할 수 있으나, 자가 방전의 경우 완전 방전까지 오랜 시간이 소요되므로, 아주 작은 전류를 흐르도록 하여 상기 OCV 변화량을 측정하고, 이를 무부하시 측정되는 OCV의 변화량과 동일한 것으로 간주한다.On the other hand, the OCV change amount can be measured through self-discharge of the battery pack 200, but it takes a long time to complete discharge in the case of self-discharge, so that the OCV change amount is measured by flowing a very small current, It is considered to be equal to the change in OCV measured.
또한 상기 배터리 관리 장치(100)는 상기 측정한 SOC상의 OCV 곡선에서 OCV 변화량이 완만하거나 거의 없는 평탄 영역(Flat Region)을 검출한다.In addition, the battery management apparatus 100 detects a flat region in which the OCV variation amount is moderate or not in the OCV curve on the measured SOC.
상기 평탄 영역은 도 5에 도시된 바와 같이, a 포인트 및 b 포인트를 찾음으로써 검출되는데 상기 a 포인트 및 b 포인트는 단위시간당 전압변화량이 급격하게 변하는 곳이다.The flat region is detected by finding an a point and a b point, as shown in FIG. 5, where the a point and the b point are locations where the amount of voltage change per unit time changes abruptly.
즉 a 포인트는 단위시간당 전압변화량이 급격하게 감소하는 지점이며, b포인트는 단위시간당 전압변화량이 급격하게 증가하는 곳을 의미한다. 이때 상기 평탄 영역은 상기 a 포인트 및 b 포인트 사이에 위치하며, 전압변화량이 완만하거나 거의 동일한 구간을 의미한다.That is, a point is a point where the amount of voltage change per unit time drastically decreases, and a point b means a place where the amount of voltage change per unit time increases sharply. In this case, the flat region is located between the points a and b, and means a period in which the amount of voltage change is moderate or substantially equal.
한편 a 포인트는 상기 OCV 곡선을 단위시간으로 미분하여 미리 설정한 값보다 큰 지점이 최초로 검출되는 포인트이며, 상기 b 포인트는 상기 OCV 곡선을 단위시간으로 미분하여 미리 설정한 값보다 작은 지점이 최초로 검출되는 포인트를 의미한다.On the other hand, a point is a point at which a point larger than a predetermined value is differentiated by unit time and the point b is differentiated by the unit time and a point smaller than a preset value is detected first Quot;
본 발명의 일 실시예로써, dV/dT > 30uV/S인 지점을 a 포인트로 하여 검출할 수 있으며, dV/dT < 30uV/S인 지점을 b 포인트로 하여 검출할 수 있다. 한편 상기 각 포인트를 검출하기 위해 기준이 되는 30uV/S는 배터리 셀의 특성에 따라 달리 설정될 수 있음은 당연하다.According to an embodiment of the present invention, a point of dV / dT> 30 uV / S can be detected as a point, and a point of dV / dT <30 uV / S can be detected as a point b. On the other hand, it is natural that the reference value of 30 uV / S for detecting each point can be set differently according to the characteristics of the battery cell.
또한 상기 배터리 관리 장치(100)는 상기 제1 사이클을 통해 해당 배터리팩(200)의 총 용량을 계산한다. 상기 총 용량은 상기 배터리팩(200)을 무부하 상태에서 종지전압(discharge termination voltage)까지 방전하면서 흐르는 총 전하량을 계산함으로써 계산되거나, 상기 OCV 전압 곡선의 면적을 계산하여 측정할 수 있다.Also, the battery management apparatus 100 calculates the total capacity of the battery pack 200 through the first cycle. The total capacity may be calculated by calculating the total amount of charges flowing while discharging the battery pack 200 from no-load state to a discharge termination voltage, or may be calculated by calculating an area of the OCV voltage curve.
즉 해당 배터리팩(200)의 총 쿨롬(coulomb)을 계산하여 상기 배터리팩(200)의 총 용량을 측정하거나, 또한 도 5에 도시한 것과 같이 OCV 전압곡선과 x축 및 y축으로 형성되는 도형에 대한 면적을 계산하여 해당 배터리팩(200)의 총 용량을 측정할 수 있다.That is, the total capacity of the battery pack 200 may be measured by calculating a total coulomb of the battery pack 200, or the OCV voltage curve and the shapes formed by the x and y axes, The total capacity of the battery pack 200 can be measured.
상기 배터리 관리 장치(100)는 도 6에 도시된 바와 같이, 제2 사이클(2nd cycle)을 통해 배터리팩(200)의 SOC 그리드 포인트 별 저항값을 측정한다.6, the battery management apparatus 100 measures the resistance value of each battery pack 200 according to the SOC grid point through a second cycle (second cycle).
또한 상기 배터리 관리 장치(100)는 각 SOC 그리드 포인트에 대한 저항값을 측정하기 위해 1/5 C-rate로 상기 배터리팩(200)을 방전시켜가면서, 해당 배터리팩(200)의 전체 저항과 제일 약한 전압을 출력하는 약한 배터리 셀(즉 위크 셀)에 대한 저항을 측정한다.Also, the battery management apparatus 100 discharges the battery pack 200 at a rate of 1/5 C-rate in order to measure a resistance value for each SOC grid point, The resistance to a weak battery cell (i.e., a weak cell) that outputs a weak voltage is measured.
상기 제2 사이클은 각 온도별(예: 저온, 상온, 고온)로 적어도 3번 이상 수행되며, 각 온도별로 해당 배터리팩(200)의 전체 저항과 약한 배터리 셀의 저항을 측정한다. 상기 각 온도는 상온은 25도, 고온은 40도 이상, 저온은 5도 이하로 설정하여, 상기 설정한 온도별로 상기 배터리팩(200)의 전체 저항과 약한 배터리 셀의 저항을 측정한다. 이때 상기 각 온도는 배터리의 사용용도, 사용환경, 사용자의 설정 등에 따라 달리 설정할 수 있으며, 더욱 정확한 정밀성을 위해 많은 온도 구간(예: -5도 이하, 0도, 5도, 10도, 15도, 25도, 40도 이상 등)을 설정할 수 있음은 물론이다.The second cycle is performed at least three times for each temperature (e.g., low temperature, normal temperature, and high temperature), and the total resistance of the battery pack 200 and the resistance of the weak battery cell are measured for each temperature. The temperatures of the battery pack 200 and the battery cell 200 are measured at a room temperature of 25 degrees, a high temperature of 40 degrees, and a low temperature of 5 degrees or less. At this time, the above temperature can be set differently according to the use purpose of the battery, the usage environment, the user's setting, and the like. In order to more precise precision, many temperature ranges (e.g., -5 degrees, 0 degrees, 5 degrees, , 25 degrees, 40 degrees or more) can be set.
또한 상기 각 SOC 그리드 포인트별 전체 전압은 상기 도 5에서 설명한 것과 같이, 상기 제1 사이클을 통해 이미 각 구간별 전압곡선을 측정하였기 때문에 다음의 [수학식 1]을 통해 측정할 수 있다.As described above with reference to FIG. 5, the total voltage for each SOC grid point can be measured through the following equation (1) because the voltage curve for each interval has already been measured through the first cycle.
[수학식 1][Equation 1]
Vm[i] = OCV[i] - IR[i],Vm [i] = OCV [i] - IR [i]
-> R[i] = (OCV[i] - Vm[i])/I- > R [i] = OCV [i] - Vm [i]) / I
여기서 Vm은 배터리팩(200)의 전체 측정전압을 의미하며, 제1 사이클을 통해 측정된 무부하 상태에서의 개방회로전압을 의미한다. 또한 i는 SOC상에서 미리 설정한 가상의 그리드 포인트로 저항값을 계산하는 지점을 의미한다.Here, Vm denotes the total measured voltage of the battery pack 200, which means an open circuit voltage in a no-load state measured through the first cycle. Also, i represents a point at which a resistance value is calculated by a virtual grid point preset in the SOC.
또한 상기 배터리 관리 장치(100)는 상기 [수학식 1]을 이용하여 각 배터리 셀의 저항을 SOC 그리드 포인트 별로 측정할 수 있다. 이때 Vm은 배터리 셀별로 측정되는 전압을 의미하며, I는 상기 배터리 셀별로 측정되는 전류를 의미한다.Also, the battery management apparatus 100 can measure the resistance of each battery cell by SOC grid point using Equation (1). Here, Vm denotes a voltage measured for each battery cell, and I denotes a current measured for each battery cell.
이러한 과정을 통해 상기 배터리 관리 장치(100)는 각 온도별 배터리팩(200)의 내부저항에 대한 변화를 학습하여 상기 배터리팩(200)이 방전될 때 해당 배터리팩(200)의 내부저항을 정확하게 측정할 수 있다. 그러므로 상기 배터리팩(200)의 반복적인 충방전에 의한 배터리팩 저항과 약한 배터리 셀의 저항이 변화하는 과정을 감지할 수 있고, 이를 토대로 해당 배터리팩(200)의 내부저항이 미리 설정된 값 이상으로 상승하는 경우 충전 혹은 방전을 중단하여 해당 배터리팩(200)의 발열 및 폭발로 인한 위험성을 사전에 차단할 수 있다.The battery management apparatus 100 learns a change in the internal resistance of the battery pack 200 at each temperature to accurately measure the internal resistance of the battery pack 200 when the battery pack 200 is discharged Can be measured. Therefore, it is possible to sense the process of the resistance change of the battery pack due to repetitive charging and discharging of the battery pack 200 and the resistance of the weak battery cell, and the internal resistance of the battery pack 200 can be detected The charging or discharging of the battery pack 200 can be stopped so that the risk of heat generation and explosion of the battery pack 200 can be prevented in advance.
도 7은 본 발명에 적용되는 배터리 관리 장치의 구성을 상세하게 나타낸 도면이다.7 is a detailed view showing the configuration of a battery management apparatus according to the present invention.
도 7에 도시된 바와 같이 본 발명의 배터리 관리 장치(100)는, 학습부(110), 측정부(120), 충전 처리부(130), 방전 처리부(140), 온도 제어부(150), 통신부(160), 저장부(170), 제어부(180) 등으로 구성된다.7, the battery management apparatus 100 of the present invention includes a learning unit 110, a measurement unit 120, a charge processing unit 130, a discharge processing unit 140, a temperature control unit 150, 160, a storage unit 170, a control unit 180, and the like.
학습부(110)는 온도에 따른 배터리팩(200)의 저항을 측정하여 학습하는 기능을 수행하는 부분으로서, 학습 사이클을 통해 열화 및 온도에 따른 상기 배터리팩(200)의 OCV 곡선, 총 용량 및 저항의 변화를 학습한다.The learning unit 110 is a part that performs a function of measuring and measuring the resistance of the battery pack 200 according to the temperature. The OCV curve of the battery pack 200 according to deterioration and temperature, Learn how to change the resistance.
이때 상기 학습 사이클은 상기 도 5 및 도 6에 설명한 제1 사이클 및 제2 사이클을 포함하여 구성되는데, 상기 제1 사이클을 통해 배터리팩(200)의 OCV 곡선(즉 OCV 변화량) 및 해당 배터리팩(200)의 총 용량을 학습하며, 상기 제2 사이클을 통해 상기 배터리팩(200)의 온도 및 열화에 따른 저항변화를 학습한다.The learning cycle includes the first cycle and the second cycle described with reference to FIGS. 5 and 6. The OCV curve (i.e., the OCV variation) of the battery pack 200 through the first cycle and the OCV curve 200), and learns a change in resistance due to temperature and deterioration of the battery pack 200 through the second cycle.
상기 제1 사이클은 무부하상태 및 정상온도에서 특정 C-rate(예:1/20C-rate)로 상기 배터리팩(200)을 방전시켜가며, 상기 배터리팩(200)에 대한 OCV 곡선을 학습한다. 이는 미리 설정한 기간 또는 사용자에 따라 주기적 혹은 비주기적으로 수행될 수 있다.The first cycle discharges the battery pack 200 at a specific C-rate (for example, 1/20 C-rate) in a no-load state and a normal temperature, and learns an OCV curve for the battery pack 200. This can be performed periodically or non-periodically according to a preset period or a user.
또한 상기 학습부(110)는 해당 제1 사이클에서 상기 OCV 곡선의 평탄 영역을 검출하며, 상기 평탄 영역은 도 5를 참조하여 설명한 것과 같이 상기 OCV 곡선의 변화량이 급격하게 변화는 두 지점을 찾음으로써 검출된다.Also, the learning unit 110 detects a flat region of the OCV curve in the first cycle, and as described with reference to FIG. 5, the flat region is obtained by finding two points in which the variation amount of the OCV curve rapidly changes .
또한 상기 학습부(110)는 무부하 상태에서의 총 용량을 계산하여 학습한다. 이때 총 용량을 계산하는 것은 상기 배터리팩(200)에 일정한 C-rate로 상기 배터리팩(200)을 방전종지전압(discharge termination voltage)까지 방전하여 해당 배터리팩(200)의 총 용량을 측정한다는 의미이다. 이때 상기 배터리팩(200)은 부하에 연결되어 사용됨에 따라 열화가 발생되는 것이 당연하므로, 상기 제1 사이클을 통해 학습되는 배터리팩(200)의 총 용량은 변화(즉 줄어듦)될 수밖에 없다.Also, the learning unit 110 learns by calculating the total capacity in a no-load state. The calculation of the total capacity means that the total capacity of the battery pack 200 is measured by discharging the battery pack 200 to the discharge termination voltage at a constant C-rate in the battery pack 200 to be. At this time, it is natural that the battery pack 200 deteriorates as it is used in connection with a load, so that the total capacity of the battery pack 200 learned through the first cycle must be changed (that is, reduced).
또한 상기 학습부(110)는 제1 사이클을 통해 상기 측정한 OCV 곡선 및 배터리팩(200)의 총 용량을 저장부(170)에 누적하여 저장함으로써, 상기 OCV 곡선 및 배터리팩(200)의 총 용량에 대한 변화를 학습한다. 이때 상기 C-rate는 1/20C-rate로 한정하지 않으며, 상기 배터리팩(200)의 사용용도, 사용목적, 사용자에 따라 달리 설정될 수 있다.The learning unit 110 accumulates the measured OCV curves and the total capacity of the battery pack 200 in the storage unit 170 through the first cycle so that the OCV curve and the total number of the battery packs 200 Learn about changes in capacity. At this time, the C-rate is not limited to 1/20 C-rate, and may be set differently depending on the use purpose of the battery pack 200, the purpose of use, and the user.
또한 상기 학습부(110)는 도 6에 설명한 제2 사이클을 통해 상기 배터리팩(200)의 저항을 학습한다. 상기 저항은 상기 배터리팩(200)의 전체 저항, 배터리팩(200)을 구성하는 각각의 배터리 셀에 대한 저항 및 제일 낮은 전압을 출력하는 위크 셀의 저항을 측정하여 학습한다.Also, the learning unit 110 learns the resistance of the battery pack 200 through the second cycle shown in FIG. The resistance is learned by measuring the total resistance of the battery pack 200, the resistance of each battery cell constituting the battery pack 200, and the resistance of the weak cell outputting the lowest voltage.
상기 제2 사이클은 정상온도, 고온 및 저온에서 상기 배터리팩을 일정한 C-rate로 방전시켜가며, 온도에 다른 배터리팩(200)의 저항, 각 배터리 셀에 대한 저항, 제일 낮은 전압을 출력하는 위크 셀에 대한 저항을 측정하여 학습한다. 그리고 상기 제2 사이클은 미리 설정한 기간 또는 사용자에 따라 주기적 혹은 비주기적으로 수행될 수 있다.In the second cycle, the battery pack is discharged at a constant C-rate at a normal temperature, a high temperature, and a low temperature, and the battery pack 200, Learning by measuring the resistance of the cell. The second cycle may be performed periodically or non-periodically according to a preset period or a user.
또한 상기 제 2사이클은 배터리팩(200)의 SOC를 복수의 구간(즉 그리드 포인트)으로 나누어 상기 각 그리드 포인트별 저항값을 측정하는 것으로, 상기 제1 사이클을 통해 이미 각 그리드 포인트별 OCV 곡선을 학습하였으므로, 상기 제2 사이클에서 측정되는 전압(measured voltage)은 OCV - IR이 된다. 따라서 그리드 포인트별로 측정되는 전압 Vm[i]는 OCV[i] - IR[i]가 되며, R[i]는 (OCV[i] - Vm[i])/I가 된다. 여기서 i는 각 그리드 포인트를 나타낸다.Also, the second cycle divides the SOC of the battery pack 200 into a plurality of intervals (i.e., grid points) and measures a resistance value of each of the grid points. The OCV curve for each grid point is obtained through the first cycle The measured voltage in the second cycle becomes OCV-IR. Therefore, the voltage Vm [i] measured for each grid point is OCV [i] - IR [i], and R [i] becomes (OCV [i] - Vm [i]) / I. Where i represents each grid point.
한편 상기 평탄 영역에서는 전압의 변화량이 거의 없거나 완만하므로 SOC 그리드 포인트를 적게 나누어 저항을 측정하며, 그 외의 위치에서는 전압의 변화량이 급격하게 변하기 때문에 SOC 그리드 포인트를 상기 평탄 영역보다 더욱 세밀하게 나누어 상기 그리드 포인트별 저항을 측정하여 저장부(170)에 저장한다.On the other hand, the resistance is measured by dividing the SOC grid point by a small amount because the amount of change of the voltage is little or gradual in the flat region, and the amount of change of the voltage rapidly changes at other positions. Therefore, the SOC grid point is more finely divided than the flat region, The point-by-point resistance is measured and stored in the storage unit 170.
또한 상기 학습부(110)는 제2 사이클을 통해 각 온도가 저항에 미치는 변수(즉 온도 팩터)를 계산하여 상기 계산한 온도팩터를 상기 측정한 저항값에 반영하여 해당 학습 사이클에서의 저항을 최종적으로 측정하여 학습한다.Further, the learning unit 110 calculates a variable (i.e., a temperature factor) that each temperature has on the resistance through the second cycle, reflects the calculated temperature factor on the measured resistance value, .
한편 본 발명에서는 상기 학습부(100)를 통해 각 배터리의 셀저항 대신 팩저항 또는 저항이 가장 큰 몇 개의 위크 셀들의 저항만을 각 온도 별로 학습함으로써, 방전종료전압에 셀전압 또는 팩전압이 가장 먼저 도달하는 셀을 위크 셀로 결정하여 위크 셀을 찾을 수 있다. 팩전압이 팩의 방전종료전압에 도달하기 전에 하나의 배터리 셀이 셀의 방전종료전압에 먼저 도달하면 방전이 종료된다. 저전압에서 셀의 수명이 크게 저하되기 때문에 셀을 보호여야 할 필요가 있다. 위크 셀에 대한 저항값의 변화를 학습하는 방법은 팩저항을 학습하는 것과 동일하다. 다만, 차이점으로 위크 셀을 찾는 것은 셀에서 가장 낮은 전압을 가지는 것을 찾는 것이다. 따라서 위크 셀의 전압 측정치는 위크 셀의 자체 전압 측정치에 전류와 셀간의 와이어 저항을 곱한 값을 더한 것으로 나타낼 수 있다. 이러한 위크 셀의 전압 측정치는 위크 셀 저항을 학습하는데 사용될 수 있다.In the present invention, instead of the cell resistance of each battery, only the resistance of several wick cells having the largest pack resistance or resistance is learned for each temperature through the learning unit 100, so that the cell voltage or the pack voltage The cell to be reached can be determined as a wick cell and the wick cell can be found. The discharge is terminated when one battery cell first reaches the discharge end voltage of the cell before the pack voltage reaches the discharge end voltage of the pack. It is necessary to protect the cell because the lifetime of the cell is greatly lowered at the low voltage. The method of learning the change of the resistance value to the Weak cell is the same as learning the pack resistance. However, the difference is that finding the Weeks cell finds the lowest voltage in the cell. Thus, the voltage measurement of a wick cell can be represented as a sum of the wick cell self-voltage measurement multiplied by the current multiplied by the wire resistance between the cells. The voltage measurements of these Weck cells can be used to learn the Weck cell resistance.
측정부(120)는 배터리팩(200)의 전류 및 전압, 온도, 저항을 측정하는 부분으로서, 전압/전류 측정부(121), 온도 측정부(123), 저항 측정부(125) 등으로 구성된다.The measurement unit 120 includes a voltage / current measurement unit 121, a temperature measurement unit 123, a resistance measurement unit 125, and the like, which measure current, voltage, temperature, and resistance of the battery pack 200 do.
전압/전류 측정부(121)는 상기 배터리팩(200)의 충전 또는 방전 시 해당 배터리팩(200)의 전류 및 전압을 측정한다. 즉 상기 배터리팩(200) 전체에 대한 전류 및 전압은 물론, 상기 배터리팩(200)을 구성하는 각각의 배터리 셀에 대한 전류 및 전압을 측정하는 것이다. 이때 상기 배터리팩(200) 또는 각각의 배터리 셀에 대한 전류 및 전압은 전류감지센서 및 전압감지센서를 통해 측정될 수 있다.The voltage / current measuring unit 121 measures the current and voltage of the battery pack 200 when the battery pack 200 is charged or discharged. That is, the current and voltage for the entire battery pack 200 as well as the current and voltage for each battery cell constituting the battery pack 200 are measured. At this time, the current and voltage for the battery pack 200 or each battery cell can be measured through the current sensor and the voltage sensor.
한편 상기 전압/전류 측정부(121)는 도 3 및 도 4에서 설명한 것과 같이, 복수의 배터리 셀을 각각 커버링하는 복수의 전류/전압 측정부(800) 및 배터리 데이터 처리부(900)로 모듈화될 수 있다. 이때 상기 배터리 관리 장치(100)는 상기 모듈화된 복수의 전류/전압 측정부(800) 및 배터리 데이터 처리부(900)를 통해 측정된 상기 각 배터리 셀에 대한 전압 및 전류를 제공받을 수 있다.3 and 4, the voltage / current measuring unit 121 may be configured as a plurality of current / voltage measuring units 800 and a battery data processing unit 900 that cover a plurality of battery cells, respectively, have. At this time, the battery management apparatus 100 may receive voltage and current for each battery cell measured through the plurality of modularized current / voltage measurement units 800 and the battery data processing unit 900.
온도 측정부(123)는 상기 배터리팩(200)의 충전 또는 방전 시에 해당 배터리팩(200) 및 배터리 셀의 온도를 측정함으로써, 충전 처리부(130), 방전 처리부(140), 온도 제어부(150) 등에서 충전 또는 방전 시의 온도 변화량을 확인할 수 있도록 한다.The temperature measuring unit 123 measures the temperature of the battery pack 200 and the battery cell at the time of charging or discharging the battery pack 200 so that the charging unit 130, the discharging unit 140, the temperature controller 150 ) Or the like so that the amount of change in temperature at the time of charging or discharging can be confirmed.
저항 측정부(125)는 상기 학습부(110)에서의 학습결과에 따라 부하가 연결되어 현재 방전되고 있는 배터리팩(200)의 저항을 각 SOC 그리드 포인트별로 측정한다. 즉 미리 설정한 SOC 그리드 포인트 별로 배터리팩(200)의 전체 저항 및 각각의 배터리 셀에 대한 저항을 측정하는 것이다. 이때 상기 배터리팩(200)의 전체 저항 및 배터리 셀에 대한 저항은 상기 제2 사이클을 통해 저항값을 계산하는 방법과 동일한 방법으로 측정된다.The resistance measuring unit 125 measures the resistance of the battery pack 200 connected to the load due to the learning result of the learning unit 110 for each SOC grid point. That is, the total resistance of the battery pack 200 and the resistance of each battery cell are measured for each of the preset SOC grid points. At this time, the total resistance of the battery pack 200 and the resistance of the battery cell are measured in the same manner as the method of calculating the resistance value through the second cycle.
또한 상기 저항 측정부(125)는 상기 배터리팩(200)의 전체 저항이 미리 설정한 값을 초과하거나, 또는 상기 측정한 각각의 배터리 셀에 대한 저항이 미리 설정한 값을 초과하는 경우, 제어부(180)의 제어를 토대로 충전 처리부(130) 또는 방전 처리부(140)를 통해 해당 배터리팩(200)의 충전 또는 방전을 차단할 수 있도록 한다. 이를 통해 배터리팩(200)의 결함(즉 폭발 등)으로부터 해당 배터리팩(200)을 이용하는 외부 장치 혹은 사용자를 보호할 수 있다.When the total resistance of the battery pack 200 exceeds a preset value or the resistance of each of the measured battery cells exceeds a predetermined value, the resistance measuring unit 125 measures the resistance of the battery pack 200 The charging or discharging of the battery pack 200 can be blocked through the charging processor 130 or the discharging processor 140 based on the control of the controller 180. [ Accordingly, an external device or user using the battery pack 200 can be protected from defects (e.g., explosion) of the battery pack 200.
충전 처리부(130)는 외부단자를 통해 연결된 충전기(700)로부터 전원을 공급받아 상기 배터리팩(200)을 충전하는 기능을 수행하는 부분으로서, 상기 학습부(110)와 측정부(120)를 통해 측정되는 상기 배터리팩(200)의 충전상태정보를 토대로 최대충전전류를 조정해가면서 배터리팩(200)의 충전을 수행한다. 즉 높은 전압이나 온도에 의한 열화가 덜 발생하도록 하면서 상기 배터리팩(200)의 고속충전이 이루어지도록 하는 것이다.The charging processing unit 130 is a part that functions to charge the battery pack 200 by receiving power from a charger 700 connected through an external terminal and is connected to the learning unit 110 and the measurement unit 120 And charges the battery pack 200 while adjusting the maximum charge current based on the measured charge state information of the battery pack 200. Speed charging of the battery pack 200 while causing less deterioration due to high voltage or temperature.
상기 충전 처리부(130)에서 수행되는 전기자동차용 배터리의 고속충전을 수행하기 위한 방법은 하기의 도 8에서 보다 상세하게 설명하기로 한다.A method for performing the fast charging of the battery for an electric vehicle performed in the charge processing unit 130 will be described in detail with reference to FIG.
한편 상기 충전 처리부(130)는 최대충전전류를 설정하여 배터리팩(200)의 충전을 수행하는 과정에서, 배터리팩(200)의 현재 온도가 기 설정된 온도 한계를 초과하는지를 판단하고, 만일 현재 측정된 셀의 온도가 기 설정된 온도 한계를 초과하면, 해당 셀의 온도를 온도 한계 이하로 유지하면서 충전이 이루어질 수 있도록 충전전류를 조정함으로써, 기 설정된 범위의 온도보다 높은 온도 상태에서 충전을 수행하는 경우 가속화될 수 있는 열화를 방지하도록 한다.Meanwhile, the charging processor 130 determines whether the current temperature of the battery pack 200 exceeds a predetermined temperature limit in the process of charging the battery pack 200 by setting the maximum charging current, When charging is performed at a temperature higher than a preset range by adjusting the charging current so that the charging can be performed while the temperature of the cell is kept below the temperature limit when the temperature of the cell exceeds a predetermined temperature limit, To prevent possible deterioration.
방전 처리부(140)는 외부단자를 통해 연결된 부하(예를 들어, 전기모터) 측으로 상기 배터리팩(200)에 충전된 전력을 공급하는 기능을 수행하는 부분으로서, 상기 학습부(110)와 측정부(120)를 통해 측정되는 상기 배터리팩(200)의 방전상태정보를 토대로 최대방전전류를 조정해가면서 최대파워를 부하측에 공급함으로써, 최대방전이 이루어지도록 한다. 즉 상기 충전 처리부(130)에서와 마찬가지로 높은 전압이나 온도에 의한 열화가 덜 발생하도록 하면서 상기 배터리팩(200)의 충전전압을 최대파워로 부하 측으로 방전되도록 하는 것이다.The discharge processing unit 140 is a part for supplying power charged in the battery pack 200 to a load (for example, an electric motor) connected via an external terminal. The discharge unit 140 includes a learning unit 110, The maximum power is supplied to the load side while adjusting the maximum discharge current based on the discharge state information of the battery pack 200 measured through the battery 120, thereby achieving the maximum discharge. That is, the charge voltage of the battery pack 200 is discharged to the load side with the maximum power while causing less deterioration due to high voltage or temperature as in the case of the charge processing unit 130.
상기 방전 처리부(140)에서 수행되는 전기자동차용 배터리의 최대방전을 수행하기 위한 방법은 하기의 도 9에서 보다 상세하게 설명하기로 한다.A method for performing the maximum discharge of the battery for an electric vehicle performed in the discharge processing unit 140 will be described in more detail with reference to FIG.
한편 상기 방전 처리부(140)는 최대방전전류와 최대파워를 설정하여 배터리팩(200)의 빙전을 수행하는 과정에서, 배터리팩(200)의 현재 온도가 기 설정된 온도 한계를 초과하는지를 판단하고, 만일 현재 측정된 셀의 온도가 기 설정된 온도 한계를 초과하면, 해당 셀의 온도를 온도 한계 이하로 유지하면서 방전이 이루어질 수 있도록 방전전류를 조정함으로써, 기 설정된 범위의 온도보다 높은 온도 상태에서 방전을 수행하는 경우 가속화될 수 있는 열화를 방지하도록 한다.Meanwhile, the discharge processor 140 determines whether the current temperature of the battery pack 200 exceeds a predetermined temperature limit in the course of performing the discharge of the battery pack 200 by setting the maximum discharge current and the maximum power, When the temperature of the currently measured cell exceeds a predetermined temperature limit, discharge is performed at a temperature higher than a predetermined range by adjusting the discharge current so that the discharge can be performed while the temperature of the cell is maintained below the temperature limit Thereby preventing degradation that can be accelerated.
또한 상기 방전 처리부(140)에서 설정되는 최대파워는 전기모터에서 기본적으로 자동차 속도를 증가시키는데 유용하다.Further, the maximum power set in the discharge processing unit 140 is basically useful for increasing the vehicle speed in the electric motor.
온도 제어부(150)는 충전 또는 방전을 수행하는 상기 배터리팩(200)의 셀 온도가 기 설정된 온도 임계값(즉 배터리팩의 열화가 가속화되는 기준이 되는 최대 온도 설정값)과 비교하여, 상기 배터리팩(200)의 온도를 정상적인 범위의 온도(예를 들어, 35도 내외)로 동작할 수 있도록 하는 기능을 수행한다.The temperature controller 150 compares the cell temperature of the battery pack 200 performing charging or discharging with a predetermined temperature threshold value (i.e., a maximum temperature set value at which deterioration of the battery pack is accelerated) And functions to allow the temperature of the pack 200 to operate at a normal range of temperatures (e.g., about 35 degrees Celsius).
즉 상기 온도 제어부(150)는 상기 배터리팩(200)을 구성하는 각각의 셀 온도가 기 설정된 온도 임계값보다 높은 경우, 셀 온도를 정상 온도로 만들기 위하여 기 설정되어 있는 온도 모델링(thermal modeling)을 통해 온도 제어를 수행하되, 온도 제어를 위한 현재의 SOC가 SOC 임계값 미만이 되거나, 또는 현재의 MAXp가 MAXp 임계값 미만이 되거나, 또는 위크 셀의 전압이 방전종지전압인 cutoff voltage 미만이 될 때까지 온도제어를 수행한다. 이때 상기 온도 모델링은 최대충전전류 조정, 최대방전전류 조정, 최대파워 조정 또는 이들의 조합을 포함한 다양한 제어방식으로 구성될 수 있다.That is, when the temperature of each cell constituting the battery pack 200 is higher than a preset temperature threshold, the temperature controller 150 performs thermal modeling When the current SOC for temperature control becomes less than the SOC threshold or the current MAXp becomes less than the MAXp threshold or the voltage of the weak cell becomes less than the cutoff voltage of the discharge termination voltage Temperature control is performed. At this time, the temperature modeling may be configured in various control methods including a maximum charge current adjustment, a maximum discharge current adjustment, a maximum power adjustment, or a combination thereof.
한편 상기 온도 제어부(150)는 상기 배터리팩(200)의 현재 온도가 기 설정된 온도 임계값을 초과하면, 사용자 단말로 온도제어 필요정보를 제공함으로써, 사용자가 온도 제어를 위한 조치를 즉시 수행하도록 할 수 있다.Meanwhile, when the current temperature of the battery pack 200 exceeds a preset temperature threshold value, the temperature controller 150 provides the user terminal with the temperature control necessity information so that the user can immediately perform the temperature control .
통신부(160)는 상기 배터리 관리 시스템(10)과 전기자동차를 사용하는 사용자가 소지한 사용자 단말 사이의 통신접속을 수행하여, 상호 간에 전기자동차용 배터리의 충전 또는 방전시 필요한 온도 제어 등에 관련된 각종 데이터의 송수신을 처리한다.The communication unit 160 performs communication connection between the battery management system 10 and the user terminal of the user using the electric vehicle and transmits various data related to the temperature control and the like necessary for charging or discharging the battery for the electric vehicle Lt; / RTI &gt;
저장부(170)는 상기 학습부(110)에서 수행한 학습결과와 상기 측정부(120)에서 처리하는 배터리팩(200) 및 배터리팩(200)을 구성하는 각각의 배터리 셀에서 측정되는 전류/전압, 온도, 저항 등에 대한 정보를 저장 관리한다.The storage unit 170 stores the learning result performed by the learning unit 110 and the currents measured in each battery cell constituting the battery pack 200 and the battery pack 200 processed by the measurement unit 120, Voltage, temperature, resistance, and so on.
또한 상기 저장부(170)는 충전 또는 방전이 반복됨에 따라 변화하는 배터리팩(200)에 대한 정보를 누적 저장하며, 충전 처리부(130), 방전 처리부(140), 온도 제어부(150) 등에서 수행하는 처리결과를 저장 관리한다.The storage unit 170 accumulates information about the battery pack 200 that changes as charging or discharging is repeated and accumulates information of the battery pack 200 in the charging processor 130, the discharging processor 140, the temperature controller 150, And stores and manages the processing result.
제어부(180)는 상기 배터리 관리 장치(100)의 제반적인 동작을 총괄적으로 관리하는 기능을 수행한다.The controller 180 performs a function of collectively managing various operations of the battery management device 100.
다음에는, 이와 같이 구성된 본 발명에 따른 고속충전을 수행하기 위한 방법, 최대방전을 수행하기 위한 방법, 온도제어 방법의 실시예를 도 8 내지 도 10을 참조하여 상세하게 설명한다. 이때 본 발명의 방법에 따른 각 단계는 사용 환경이나 당업자에 의해 순서가 변경될 수 있다.Next, embodiments of a method for performing fast charging, a method for performing maximum discharge, and a temperature control method according to the present invention will be described in detail with reference to FIGS. 8 to 10. FIG. At this time, each step according to the method of the present invention may be changed in the use environment or the order by a person skilled in the art.
도 8은 전기자동차용 배터리의 열화 발생을 저감하면서 고속충전을 수행하기 위한 방법의 동작과정을 설명하기 위한 순서도이고, 도 9는 전기자동차용 배터리의 열화 발생을 저감하면서 최대방전을 수행하기 위한 방법의 동작과정을 설명하기 위한 순서도이며, 도 10은 전기자동차용 배터리의 고온에 의한 열화 발생을 방지하는 온도제어 방법의 동작과정을 설명하기 위한 순서도이다.FIG. 8 is a flowchart for explaining an operation procedure of a method for performing fast charging while reducing the occurrence of deterioration of a battery for an electric vehicle, FIG. 9 is a flowchart illustrating a method for performing maximum discharge while reducing occurrence of deterioration of a battery for an electric vehicle FIG. 10 is a flowchart for explaining an operation procedure of a temperature control method for preventing generation of deterioration due to high temperature of an electric vehicle battery.
먼저 도 8을 참조하여 전기자동차용 배터리의 고속충전을 수행하기 위한 방법을 설명하면 다음과 같다.A method for performing fast charging of an electric vehicle battery will be described with reference to FIG.
상기 배터리 관리 장치(100)의 충전 처리부(130)에서 상기 배터리팩(200)의 방전에 따른 최근에 측정된 OCV 포인트와 Passed Charge를 이용하여 현재 OCV 위치를 검출한다(S101).The charge processing unit 130 of the battery management apparatus 100 detects the current OCV position using the recently measured OCV point and the passed charge according to the discharge of the battery pack 200 at step S101.
이때 상기 OCV 포인트는 상기 SOC 그리드 포인트를 의미하는 것으로, 이전에 수행된 학습 사이클에 따라 미리 SOC 그리드 포인트가 설정되어 있고, 상기 배터리팩(200)의 전체 용량이 측정되어 있다. 따라서 이전에 측정된 OCV 포인트는 이미 알고 있으므로 해당 OCV 포인트를 토대로 현재 OCV 위치를 검출할 수 있다.In this case, the OCV point means the SOC grid point. The SOC grid point is set in advance according to a previously performed learning cycle, and the total capacity of the battery pack 200 is measured. Therefore, since the previously measured OCV point is already known, the current OCV position can be detected based on the corresponding OCV point.
또한 상기 Passed Charge는 이미 흐른 쿨롬(coulomb)을 의미하는 것으로, 상기 학습결과에 따라 이미 해당 배터리팩(200)의 전체 용량을 알고 있고, OCV 곡선을 알고 있기 때문에 다음부터는 OCV 상태가 아니고 부하에 의한 방전이라 하더라도 이전의 OCV를 구한 전압에서 흐른 전하량을 통하여 현재 SOC를 구할 수 있다.The Passed Charge means a coulomb that has already flown. Since the OCV curve is already known and the total capacity of the battery pack 200 is already known according to the learning result, The current SOC can be obtained through the amount of charge flowing at the voltage obtained from the previous OCV.
상기 S101 단계를 통해 현재 OCV 위치를 검출한 후, 상기 충전 처리부(130)는 하기의 [수학식 2]에 따라 최대충전전류 CCmax를 설정한다(S103). 이때 상기 최대충전전류 CCmax는 사용자가 설정한 SOC[%]까지 [수학식 2]에 따라 충전전류로 계속 설정된다. 즉 충전 처리부(130)에서 최대충전전류 CCmax를 배터리팩(200)의 충전전류로 설정하여 상기 배터리팩(200)의 충전을 수행하도록 하는 것이다.After detecting the current OCV position in step S101, the charge processing unit 130 sets the maximum charge current CCmax according to the following formula (2) (S103). At this time, the maximum charge current CCmax is continuously set to the charge current according to Equation (2) up to the SOC [%] set by the user. That is, the charging processor 130 sets the maximum charging current CCmax to the charging current of the battery pack 200 to charge the battery pack 200.
[수학식 2]&Quot; (2) &quot;
CCmax = (OCVanode - Vmax)/WR[i][j]CCmax = (OCVanode - Vmax) / WR [i] [j]
여기서, CCmax는 최대충전전류, Vmax는 각 SOC별로 미리 설정되는 최대전압, OCVanode는 개방회로전압과 맵핑된 Anode OCV 전압, WR은 위크 셀의 저항, i는 측정된 저항의 포인트, j는 온도 범위이다. 이때 Vmax는 엔지니어가 셀 개발시 개방회로 애노드전압 확인을 통해 SOC로서의 열화에 영향을 미치는 최대전압을 고려하여 미리 설정하는 최대전압, 즉 각 SOC별로 미리 설정되는 최대전압이다.Where CCmax is the maximum charge current, Vmax is the maximum voltage preset for each SOC, OCVanode is the Anode OCV voltage mapped to the open circuit voltage, WR is the resistance of the wick cell, i is the point of the measured resistance, j is the temperature range to be. At this time, Vmax is the maximum voltage preset in consideration of the maximum voltage affecting the deterioration as the SOC through the engineer's open circuit anode voltage check during cell development, that is, the maximum voltage preset for each SOC.
또한 셀 전체 전압은 Cathode Voltage + Anode Voltage로 이루어지며 Cathode Voltage와 Anode Voltage 또한 내부 그라운드(ground)를 통해 측정이 가능하다. 충전시 Anode Voltage는 드롭(drop)이 발생하게 되고 Anode Potential Voltage 이하로 드롭되는 경우 리튬 플레이팅(lithium plating)이 발생하여 셀 열화가 가속화된다. 그러므로 충전시 Anode 전압이 Potential Voltage 이하로 떨어지지 못하게 관리함으로써 셀 열화를 방지한다. 그러나 셀 개발이 완료되는 경우 통상적으로 셀은 단자가 +/- 두 개로 구성되어 실제 응용에 적용하기 전에 이미 각각의 OCV 프로파일(profile) 데이터를 측정해야하며 SOC 구간에 따라서 OCV를 OCVanode와 맵핑하여 실제 응용에서는 OCV를 측정하여 OCVanode를 구한다. 그러므로 Vmax는 Anode potential voltage + tolerance voltage로 설정한다.In addition, the cell's total voltage consists of Cathode Voltage + Anode Voltage, and Cathode Voltage and Anode Voltage can also be measured through the internal ground. When the charge is dropped, the anode voltage is dropped, and when it drops below the anode potential voltage, lithium plating occurs and the cell deterioration is accelerated. Therefore, the anode voltage is prevented from dropping below the potential voltage during charging, thereby preventing cell deterioration. However, when the cell development is completed, the cell usually consists of +/- two terminals. Therefore, it is necessary to measure each OCV profile data before applying it to actual application, and OCV is mapped to OCVanode according to the SOC section, In the application, OCV is measured to obtain OCVanode. Therefore, Vmax is set to anode potential voltage + tolerance voltage.
상기 S103 단계를 통해 최대충전전류 CCmax가 설정된 후, 상기 충전 처리부(130)는 배터리팩(200)의 충전이 이루어지는 과정에서 각각의 배터리 셀의 온도가 정상적인 구동을 위한 온도범위에서 제어되도록 온도 제어를 수행하고(S105), 온도 제어 수행 결과에 따라 현재의 셀 온도가 기 설정되어 있는 온도 제한보다 작은지를 판단한다(S107).After the maximum charge current CCmax is set in step S103, the charge processing unit 130 performs temperature control such that the temperature of each battery cell is controlled in a temperature range for normal operation in the process of charging the battery pack 200 (S105), and determines whether the current cell temperature is lower than a predetermined temperature limit according to a result of the temperature control (S107).
상기 S107 단계의 판단결과 현재의 셀 온도가 기 설정되어 있는 온도 제한보다 커지면, 상기 충전 처리부(130)는 온도 제어가 필요한 상황으로 인지하여 해당 셀의 온도를 온도 한계 이하로 유지하면서 충전이 이루어질 수 있도록 충전전류를 조정한다(S109). 즉 상기 충전 처리부(130)는 현재 측정된 셀 온도가 기 설정된 범위의 온도보다 높은 온도 상태에서 충전을 수행할 때 발생할 수 있는 열화를 방지하도록 하는 것이다.If it is determined that the current cell temperature is higher than the preset temperature limit, the charge processing unit 130 recognizes that the temperature control is required and the charging can be performed while the temperature of the corresponding cell is maintained below the temperature limit The charging current is adjusted (S109). That is, the charge processing unit 130 prevents deterioration that may occur when the currently measured cell temperature is charged at a temperature higher than a predetermined range.
그리고 상기 S107 단계의 판단결과 현재의 셀 온도가 기 설정되어 있는 온도 제한보다 작으면, 상기 충전 처리부(130)는 정상적인 구동으로 인식하여 상기 S103 단계에서 설정한 최대충전전류 CCmax를 충전전류로 설정하고, 이 값을 새로운 충전전류로 하여 충전 FET(300)의 구동을 제어하여 배터리팩(200)의 충전을 수행한다(S111).If it is determined in step S107 that the current cell temperature is lower than the predefined temperature limit, the charge processing unit 130 recognizes the normal operation and sets the maximum charge current CCmax set in step S103 as the charge current , This value is set as a new charging current to control the driving of the charging FET 300 to charge the battery pack 200 (S111).
이와 같이 상기 S103 단계에서 설정한 최대충전전류 CCmax를 충전전류로 하여 상기 배터리팩(200)의 충전을 수행하는 과정에서, 상기 충전 처리부(130)는 현재의 위크 셀에서 측정한 전압이 모든 배터리 셀 중에서 가장 높은 전압인지를 판단한다(S113).In the process of charging the battery pack 200 using the maximum charge current CCmax set in step S103 as a charge current, the charge processor 130 determines whether the voltage measured in the current wake cell is greater than the voltage (S113).
상기 S113 단계의 판단결과 현재 위크 셀에서의 전압이 모든 셀 중에서 가장 높은 전압이 아니면, 상기 충전 처리부(130)는 가장 높은 전압을 갖는 배터리 셀을 위크 셀로 변경한 다음 모든 저항을 다시 측정하고(S115), 해당 위크 셀에서 측정한 전압 Vmeasured가 해당 지점에서 미리 설정된 최대전압 Vmax 보다 큰지를 판단한다(S117). 이때 상기 충전 처리부(130)에서 상기 S117 단계를 수행하는 이유는 해당 위크 셀에서 측정한 전압 Vmeasured가 해당 지점에서 미리 설정된 최대전압 Vmax 보다 큰 상태로 충전을 수행하게 되면, 설정된 최대전압보다 높은 전압으로 충전함에 따른 열화가 가속화되기 때문이다.If it is determined in step S113 that the voltage of the current wake cell is not the highest among all cells, the charge processing unit 130 changes the battery cell having the highest voltage to the wake cell and then measures all the resistances again (step S115 ), It is determined whether the voltage Vmeasured measured at the weak cell is greater than a preset maximum voltage Vmax at the corresponding point (S117). The reason why the charging processor 130 performs the step S117 is that if the voltage Vmeasured measured by the weak cell is greater than the preset maximum voltage Vmax at the corresponding point, This is because deterioration due to charging is accelerated.
보다 구체적으로 설명하면, 예를 들어 SOC 0%에서 OCV가 3V, 저항이 1옴, Vmax가 4V로 설정되어 있다면, [수학식 2]에 따라 최대충전전류 CCmax는 1A가 된다. 그러나 실제 셀의 저항이 2옴이었다면 해당 지점에서 측정되는 전압 Vmeasured는 3V + 2옴/1A = 5V가 되고, 이 상태를 그대로 적용하여 충전을 수행하게 되면 측정된 전압 Vmeasured가 해당 지점에서 미리 설정된 최대전압 Vmax 보다 높아지므로 높은 전압에 의한 열화가 가속화된다. 이러한 문제를 해소하기 위하여 상기 충전 처리부(130)에서는 해당 위크 셀에서 측정한 전압 Vmeasured가 해당 지점에서 미리 설정된 최대전압 Vmax 보다 큰지의 여부를 확인하고, Vmeasured가 Vmax를 초과하지 않는 상태에서 충전이 이루어질 수 있도록 한다.More specifically, for example, when the OCV is set to 3 V, the resistance is set to 1 ohm, and the Vmax is set to 4 V at SOC 0%, the maximum charging current CCmax becomes 1 A according to the formula (2). However, if the resistance of the actual cell is 2 ohms, the voltage Vmeasured measured at that point becomes 3 V + 2 ohms / 1A = 5 V. If the charging is performed by applying this state as it is, the measured voltage Vmeasured becomes the maximum Becomes higher than the voltage Vmax, the deterioration due to the high voltage is accelerated. In order to solve this problem, the charge processing unit 130 checks whether the voltage Vmeasured measured at the corresponding wick cell is larger than a preset maximum voltage Vmax at the corresponding point, and charging is performed in a state where Vmeasured does not exceed Vmax .
상기 S117 단계의 판단결과 Vmeasured가 Vmax 보다 크면, 상기 충전 처리부(130)는 배터리 셀의 저항을 다시 계산한 다음(S119), 최대충전전류를 설정하는 상기 S103 단계 이후를 반복하여 다시 수행한다.If it is determined in step S117 that Vmeasured is greater than Vmax, the charge processing unit 130 calculates the resistance of the battery cell again (S119), and repeats the steps after step S103 to set the maximum charge current again.
그러나 상기 S117 단계의 판단결과 Vmeasured가 Vmax 보다 작으면, 상기 충전 처리부(130)는 현재의 SOC가 기 설정된 SOC 임계값(threshold)에 도달하였는지를 판단하여, 현재의 SOC가 기 설정된 SOC 임계값에 도달될 때까지(즉 만충전 상태가 될 때까지) 최대충전전류를 조정해가면서 배터리팩(200)의 충전을 수행한다(S121). 이때 상기 SOC 임계값은 상기 학습부(110)에서의 학습 결과에 따른 현재 배터리 상태에서의 100% 만충전 용량을 의미한다.However, if it is determined in step S117 that Vmeasured is less than Vmax, the charge processing unit 130 determines whether the current SOC has reached a preset SOC threshold, and if the current SOC reaches a preset SOC threshold The battery pack 200 is charged while the maximum charge current is adjusted until the battery pack 200 becomes fully charged (S121). At this time, the SOC threshold value means the 100% full charge capacity in the present battery state according to the learning result in the learning unit 110. [
또한 상기 충전 처리부(130)는 상기 S113 단계를 통해 현재의 위크 셀이 모든 셀 중에서 가장 높은 전압을 가진 셀 여부를 판단한 결과, 현재 위크 셀에서의 전압이 모든 셀 중에서 가장 높은 전압이면, 현재의 SOC가 기 설정된 SOC 임계값에 도달하였는지를 판단하고, 현재의 SOC가 기 설정된 SOC 임계값에 도달될 때까지 상기 S103 단계에서 설정된 최대충전전류로 상기 배터리팩(200)의 충전을 수행한다.Also, if it is determined in step S113 that the current wic cell has the highest voltage among all the cells, if the current wic cell voltage is the highest among all the cells, And the charging of the battery pack 200 is performed at the maximum charging current set in the step S103 until the current SOC reaches the preset SOC threshold value.
한편 상기 S105 단계 내지 S109 단계에서 설명한 온도 제어과정은 생략될 수 있으며, 도 10에서와 같이 온도 제어부(150)를 통해 별개로 온도제어를 수행할 수 있다.Meanwhile, the temperature control process described in steps S105 to S109 may be omitted, and temperature control may be separately performed through the temperature controller 150 as shown in FIG.
다음에는, 도 9를 참조하여 전기자동차용 배터리의 최대방전을 수행하기 위한 방법을 설명한다.Next, a method for performing the maximum discharge of the battery for an electric vehicle will be described with reference to Fig.
우선 배터리 관리 장치(100)의 방전 처리부(140)는 상기 배터리팩(200)의 방전에 따른 최근에 측정된 OCV 포인트와 Passed Charge를 이용하여 현재 OCV 위치를 검출한다(S201).First, the discharge processing unit 140 of the battery management device 100 detects the current OCV position using the recently measured OCV point and the passed charge according to the discharge of the battery pack 200 (S201).
상기 S201 단계를 통해 현재 OCV 위치를 검출한 후, 상기 방전 처리부(140)는 하기의 [수학식 3]에 따라 최대방전전류 MAXdisc와 최대파워 MAXp를 설정한다(S203). 즉 상기 방전 처리부(140)에서 최대방전전류 MAXdisc와 최대파워 MAXp를 통해 상기 배터리팩(200)에 충전된 전원을 부하 측(즉 전기모터)에 제공하도록 하는 것이다.After detecting the current OCV position in step S201, the discharge processing unit 140 sets the maximum discharge current MAXdisc and the maximum power MAXp according to the following formula (3) (S203). That is, the discharge processor 140 supplies the power charged in the battery pack 200 to the load side (i.e., the electric motor) through the maximum discharge current MAXdisc and the maximum power MAXp.
[수학식 3]&Quot; (3) &quot;
(cutoff voltage + delta voltage) = OCV - MAXdisc*WR[i][j](cutoff voltage + delta voltage) = OCV - MAXdisc * WR [i] [j]
-> MAXdisc = (OCV - (cutoff voltage + delta voltage))/WR[i][j]-> MAXdisc = (OCV- (cutoff voltage + delta voltage)) / WR [i] [j]
MAXp = 현재 배터리팩 전압*MAXdiscMAXp = current battery pack voltage * MAXdisc
여기서 cutoff voltage는 방전종지전압(discharging termination voltage)을 의미하며, delta voltage는 cutoff voltage 이전의 마진 설정 전압을 의미한다.Here, the cutoff voltage means a discharging termination voltage, and the delta voltage means a margin setting voltage before a cutoff voltage.
이때 상기 방전 처리부(140)는 현재 배터리팩(200) 전압이 cutoff voltage에 도달하면 방전을 중지시킨다. 이는 배터리 수명과 관련이 있으며, 낮은 전압일 경우 시스템이 꺼지는 경우가 발생할 수 있기 때문이다. 그리고 delta voltage를 설정하는 이유는 순간적으로 큰 부하가 들어오면 현재 배터리팩(200) 전압이 cutoff voltage 아래로 내려가 열화가 발생될 수 있기 때문이다.At this time, the discharge processor 140 stops discharging when the voltage of the battery pack 200 reaches the cutoff voltage. This is related to the life of the battery, which can cause the system to shut down at low voltages. The reason for setting the delta voltage is that when a momentary load is applied, the voltage of the battery pack 200 may be lowered below the cutoff voltage and deteriorated.
상기 S203 단계를 통해 최대방전전류 MAXdisc와 최대파워 MAXp가 설정된 후, 상기 방전 처리부(140)는 배터리팩(200)의 방전이 이루어지는 과정에서 각각의 배터리 셀의 온도가 정상적인 구동을 위한 온도범위에서 제어되도록 온도 제어를 수행하고(S205), 온도 제어 수행 결과에 따라 현재의 셀 온도가 기 설정되어 있는 온도 제한보다 작은지를 판단한다(S207).After the maximum discharge current MAXdisc and the maximum power MAXp are set in step S203, the discharge processor 140 controls the temperature of each battery cell in the temperature range for normal operation in the process of discharging the battery pack 200 (S205). Then, it is determined whether the current cell temperature is lower than a preset temperature limit according to the temperature control result (S207).
상기 S207 단계의 판단결과 현재의 셀 온도가 기 설정되어 있는 온도 제한보다 커지면, 상기 방전 처리부(140)는 온도 제어가 필요한 상황으로 인지하여 해당 셀의 온도를 온도 한계 이하로 유지하면서 방전이 이루어질 수 있도록 최대방전전류나 최대파워를 조정한다(S209). 즉 상기 방전 처리부(130)는 현재 측정된 셀 온도가 기 설정된 범위의 온도보다 높은 온도 상태에서 방전을 수행할 때 발생할 수 있는 열화를 방지하도록 하는 것이다.If it is determined in step S207 that the current cell temperature is higher than the predetermined temperature limit, the discharge processing unit 140 recognizes that the temperature control is required and discharges can be performed while the temperature of the relevant cell is maintained below the temperature limit The maximum discharge current and the maximum power are adjusted (S209). That is, the discharge processor 130 prevents deterioration that may occur when the currently measured cell temperature is discharged at a temperature higher than a predetermined range.
그리고 상기 S207 단계의 판단결과 현재의 셀 온도가 기 설정되어 있는 온도 제한보다 작으면, 상기 방전 처리부(140)는 정상적인 구동으로 인식하여 상기 S203 단계에서 설정한 최대방전전류 MAXdisc와 최대파워 MAXp를 제어부(180)로 전달하고(S211), 최대방전전류 MAXdisc와 최대파워 MAXp에 따라 배터리팩(200)의 전원이 부하 측(즉 전기모터)으로 방전되도록 한다(S213).If it is determined in step S207 that the current cell temperature is lower than the predefined temperature limit, the discharge processing unit 140 recognizes the normal operation as the normal operation, and outputs the maximum discharge current MAXdisc and the maximum power MAXp set in step S203, (S213), and the power of the battery pack 200 is discharged to the load side (i.e., the electric motor) according to the maximum discharge current MAXdisc and the maximum power MAXp.
이처럼 상기 S213 단계를 통해 최대방전전류 MAXdisc와 최대파워 MAXp에 따라 상기 배터리팩(200)의 방전을 수행하는 과정에서, 상기 방전 처리부(140)는 현재의 위크 셀에서 측정한 전압이 모든 배터리 셀 중에서 가장 낮은 전압인지를 판단한다(S215).In the discharging process of the battery pack 200 according to the maximum discharging current MAXdisc and the maximum power MAXp through step S213, the discharging unit 140 discharges the voltage measured in the current wick cell to all the battery cells It is determined whether the voltage is the lowest voltage (S215).
상기 S215 단계의 판단결과 현재 위크 셀에서의 전압이 모든 셀 중에서 가장 낮은 전압이 아니면, 상기 방전 처리부(140)는 가장 낮은 전압을 갖는 배터리 셀을 위크 셀로 변경한 다음 모든 저항을 다시 측정한다(S217).If it is determined in step S215 that the voltage of the current wake cell is not the lowest among all cells, the discharge processing unit 140 changes the battery cell having the lowest voltage to the wake cell and then measures all the resistances again (S217 ).
그러면 상기 방전 처리부(140)는 상기 S217 단계에서와 같이 현재의 위크 셀을 가장 낮은 전압을 갖는 배터리 셀로 변경한 다음 모든 저항을 다시 측정한 이후, 또는 상기 S215 단계의 판단결과 현재 위크 셀에서의 전압이 모든 셀 중에서 가장 낮은 전압이면, 해당 위크 셀에서 측정한 전압(Measured weak cell voltage)이 방전종지전압인 cutoff voltage와 cutoff voltage 이전의 마진 설정 전압인 delta voltage의 합보다 작은지를 판단한다(S219). 이러한 과정을 수행하는 이유는 해당 위크 셀에서 측정한 전압이 cutoff voltage와 delta voltage의 합보다 작은 상태에서 방전을 수행하게 되면, 방전종지전압 이하에서 과방전함에 따른 열화가 가속화되기 때문이다.Then, the discharge processing unit 140 changes the current wake cell to the battery cell having the lowest voltage and then measures all the resistances again as in step S217, or after the determination of step S215, If it is the lowest voltage among all the cells, it is determined whether the measured weak cell voltage of the weak cell is less than the sum of the cutoff voltage, the discharge end voltage, and the delta voltage, which is the margin setting voltage before the cutoff voltage (S219) . This is because when the voltage measured at the weak cell is smaller than the sum of the cutoff voltage and the delta voltage, the deterioration due to the overdischarge is accelerated below the discharge end voltage.
상기 S219 단계의 판단결과 해당 위크 셀에서 측정한 전압이 cutoff voltage와 delta voltage의 합보다 작으면, 상기 방전 처리부(140)는 저항을 다시 계산한 다음(S221), 최대충전전류와 최대파워를 설정하는 과정부터 다시 수행한다.If it is determined in step S219 that the voltage measured by the weak cell is less than the sum of the cutoff voltage and the delta voltage, the discharge processor 140 calculates the resistance again in step S221, and sets the maximum charge current and the maximum power The process is repeated.
또한 상기 S219 단계의 판단결과 해당 위크 셀에서 측정한 전압이 cutoff voltage와 delta voltage의 합보다 크면, 상기 방전 처리부(140)는 현재의 SOC가 기 설정한 SOC 임계값 미만인지, 또는 MAXp가 MINp(시스템 엔지니어에 의해 설정되는 최소파워) 임계값 미만인지를 판단한다(S223).If it is determined in step S219 that the voltage measured by the weak cell is greater than the sum of the cutoff voltage and the delta voltage, the discharge processor 140 determines whether the current SOC is less than the predetermined SOC threshold, (Minimum power set by the system engineer) threshold (S223).
그리고 상기 S223 단계의 판단결과 현재의 SOC가 기 설정한 SOC 임계값보다 작아지거나, 또는 MAXp가 MINp 임계값보다 작아질 때까지 최대방전전류 MAXdisc와 최대파워 MAXp를 조정해가면서 방전을 수행한다. 이때 상기 SOC 임계값 또는 MINp 임계값은 상기 학습부(110)에서의 학습 결과에 따른 현재 배터리 상태에서의 최대방전상태를 의미한다.As a result of the determination in step S223, the discharge is performed while adjusting the maximum discharge current MAXdisc and the maximum power MAXp until the current SOC becomes smaller than the predetermined SOC threshold value or MAXp becomes smaller than the MINp threshold value. Here, the SOC threshold value or the MINp threshold value indicates the maximum discharge state in the current battery state according to the learning result in the learning unit 110.
한편 상기 S205 단계 내지 S209 단계에서 설명한 방전 처리시의 온도 제어과정은 생략될 수 있으며, 도 10에서와 같이 온도 제어부(150)를 통해 별개로 온도제어를 수행할 수 있다.Meanwhile, the temperature control process during the discharging process described in steps S205 to S209 may be omitted, and temperature control may be separately performed through the temperature controller 150 as shown in FIG.
다음에는, 도 10을 참조하여 전기자동차용 배터리의 온도제어를 수행하는 방법을 설명한다.Next, a method of performing temperature control of a battery for an electric vehicle will be described with reference to Fig.
우선 온도 제어부(150)는 충전 또는 방전을 수행하는 상기 배터리팩(200)을 구성하는 각각의 배터리 셀 온도가 기 설정된 온도 임계값(즉 배터리팩의 열화가 가속화되는 기준이 되는 최대 온도 설정값)보다 큰지를 판단한다(S301).First, the temperature controller 150 controls the temperature of each battery cell constituting the battery pack 200, which performs charging or discharging, to a predetermined temperature threshold value (i.e., a maximum temperature set value that is a reference for accelerating deterioration of the battery pack) (S301).
상기 S301 단계의 판단결과 상기 배터리팩(200)을 구성하는 각각의 셀 온도가 기 설정된 온도 임계값보다 높으면, 상기 온도 제어부(150)는 셀 온도를 정상 온도로 만들기 위하여 기 설정되어 있는 온도 모델링(thermal modeling)을 통해 온도 제어를 수행한다(S303). 이때 상기 온도 모델링은 최대충전전류 조정, 최대방전전류 조정, 최대파워 조정 또는 이들의 조합을 포함한 다양한 제어방식으로 구성될 수 있다.If it is determined in step S301 that the cell temperature of the battery pack 200 is higher than a predetermined temperature threshold value, the temperature controller 150 may perform temperature modeling The thermal control is performed through thermal modeling (S303). At this time, the temperature modeling may be configured in various control methods including a maximum charge current adjustment, a maximum discharge current adjustment, a maximum power adjustment, or a combination thereof.
한편 상기 S303 단계를 통해 온도 제어를 수행하는 상기 온도 제어부(150)는 충전 또는 방전중인 배터리팩(200)의 현재 온도가 기 설정된 온도 임계값을 초과하는 경우, 통신부(160)를 통해 사용자가 소지한 스마트폰이나 모바일 디바이스를 포함한 사용자 단말로 온도 제어가 필요하다는 정보를 제공하고, 관련 정보를 확인한 사용자가 온도 제어를 위한 조치를 수행하도록 구성할 수도 있다.If the current temperature of the battery pack 200 during charging or discharging exceeds a preset temperature threshold value, the temperature controller 150 performing the temperature control in step S303 may notify the user of the temperature of the battery pack 200 through the communication unit 160 A user terminal including a smart phone or a mobile device may be provided with information indicating that temperature control is required and a user who has confirmed the related information may perform an operation for temperature control.
이제, 상기 S303 단계를 통해 임계값을 초과하는 셀 온도를 정상 온도로 만들기 위한 온도제어를 수행한 이후, 상기 온도 제어부(150)는 온도 제어를 위한 현재의 SOC가 SOC 임계값 미만이 되거나, 또는 현재의 MAXp가 MAXp 임계값 미만이 되거나, 또는 위크 셀의 전압이 방전종지전압인 cutoff voltage 미만이 되는지를 판단하여(S305), 온도 제어를 위한 현재의 SOC가 SOC 임계값 미만이 되거나, 또는 현재의 MAXp가 MAXp 임계값 미만이 되거나, 또는 위크 셀의 전압이 방전종지전압인 cutoff voltage 미만이 될 때까지 온도 제어를 지속적으로 수행한다.After performing the temperature control to bring the cell temperature exceeding the threshold value to the normal temperature through the step S303, the temperature control unit 150 determines whether the current SOC for temperature control is less than the SOC threshold value It is determined whether the current MAXp is less than the MAXp threshold or the voltage of the weak cell is less than the cutoff voltage (S305). If the current SOC for temperature control becomes less than the SOC threshold value, The temperature control is continuously performed until the MAXp of the wick cell becomes less than the MAXp threshold or the voltage of the wick cell becomes less than the cutoff voltage of the discharge end voltage.
이때 상기 SOC 임계값은 배터리를 사용할 수 있는 최소 SOC %를 의미하는 것으로서, 최소 SOC %는 자동차 제조사에 의해 설정된다. 그리고 MAXp 임계값은 배터리를 사용할 수 있는 최소의 최대파워 임계값(minimum max power threshold)으로서, 마찬가지로 자동차 제조사에 의해 설정된다. 그리고 온도 제어를 위한 SOC 임계값은 온도 시스템을 제어할 수 있는 최소 SOC %로서, 자동차 제조사나 소유자가 값을 설정할 수 있다.At this time, the SOC threshold value means the minimum SOC% at which the battery can be used, and the minimum SOC% is set by the automobile manufacturer. And the MAXp threshold is the minimum max power threshold at which the battery can be used and is similarly set by the car manufacturer. And the SOC threshold for temperature control is the minimum SOC% that can control the temperature system and can be set by the vehicle manufacturer or owner.
이처럼, 본 발명은 전기자동차용 배터리의 충전 및 방전상태를 모니터링하여 전압이나 온도정보를 토대로 최대충전전류나 최대방전전류를 조정해가면서 충전과 방전을 수행하기 때문에 높은 전압이나 높은 온도로 인한 열화의 발생을 최대한 억제하면서 고속충전과 최대방전을 수행할 수 있다.As described above, the present invention monitors charging and discharging states of a battery for an electric vehicle and performs charging and discharging while adjusting a maximum charging current or a maximum discharging current based on voltage or temperature information. It is possible to perform the fast charging and the maximum discharge while suppressing the occurrence as much as possible.
또한 배터리 팩저항과 위크 셀의 저항이 변화하는 과정을 학습하여 배터리의 충전상태와 방전상태를 모니터링하고 이를 토대로 충전 및 방전을 제어하기 때문에 과충전 및 과방전으로 인한 열화의 발생을 최대한 억제할 수 있으며, 배터리의 품질 향상은 물론, 오랫동안 안정적으로 사용할 수 있다.In addition, by learning the process of changing the battery pack resistance and the resistance of the wick cell, the charge and discharge states of the battery are monitored, and charge and discharge are controlled based on this, so that the occurrence of overcharge and overdischarge deterioration can be minimized , The quality of the battery can be improved, and the battery can be used stably for a long time.
이상으로 본 발명은 도면에 도시된 실시예를 참고로 하여 설명되었으나, 이는 예시적인 것에 불과하며, 당해 기술이 속하는 분야에서 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 타 실시예가 가능하다는 점을 이해할 것이다. 따라서 본 발명의 기술적 보호범위는 아래의 특허청구범위에 의해서 판단되어야 할 것이다.While the present invention has been particularly shown and described with reference to exemplary embodiments thereof, it is to be understood that the invention is not limited to the disclosed embodiments, but, on the contrary, I will understand the point. Accordingly, the technical scope of the present invention should be determined by the following claims.
본 발명은 전기자동차용 배터리의 충전 및 방전상태를 모니터링하여 전압이나 온도정보를 토대로 최대충전전류나 최대방전전류를 조정해가면서 충전과 방전을 수행함으로써, 높은 전압이나 높은 온도로 인한 열화의 발생을 최대한 억제하면서 고속충전과 최대방전을 수행할 수 있다.The present invention monitors the charging and discharging states of an electric vehicle battery and performs charging and discharging while adjusting the maximum charging current or the maximum discharging current based on voltage or temperature information to thereby prevent occurrence of deterioration due to high voltage or high temperature It is possible to perform the fast charge and the maximum discharge while suppressing the maximum.

Claims (20)

  1. 열화나 온도에 따른 배터리팩의 충전상태정보를 학습하는 학습부; 및A learning unit for learning charge state information of the battery pack according to deterioration or temperature; And
    상기 학습한 충전상태정보를 토대로 상기 배터리팩의 위크 셀 상태에 따라 최대충전전류를 조정하여 상기 배터리팩의 충전을 수행하는 충전 처리부;를 포함하며,And a charge processing unit for adjusting the maximum charge current according to the wake cell state of the battery pack to charge the battery pack based on the learned charge state information,
    상기 충전상태정보는, SOC(state of charge)에 따른 배터리팩의 전체저항, 각각의 배터리 셀에 대한 온도 및 저항, SOC에 따른 OCV(open circuit voltage) 변화량, 현재의 OCV 포인트에서의 최대설정전압 또는 이들의 조합을 포함하는 것을 특징으로 하는 전기자동차용 배터리의 열화 발생을 저감하면서 고속충전을 수행하기 위한 장치.The charge state information includes at least one of a total resistance of the battery pack according to a state of charge (SOC), a temperature and a resistance of each battery cell, an OCV (open circuit voltage) variation according to the SOC, Or a combination thereof. 2. An apparatus for performing fast charging while reducing the occurrence of deterioration of a battery for an electric vehicle.
  2. 청구항 1에 있어서,The method according to claim 1,
    상기 최대충전전류는 수학식 2에 의해 설정되는 것을 특징으로 하는 전기자동차용 배터리의 열화 발생을 저감하면서 고속충전을 수행하기 위한 장치.Wherein the maximum charge current is set by Equation (2). &Lt; RTI ID = 0.0 &gt; 11. &lt; / RTI &gt;
    [수학식 2]&Quot; (2) &quot;
    CCmax = (OCVanode - Vmax)/WR[i][j]CCmax = (OCVanode - Vmax) / WR [i] [j]
    여기서, CCmax는 최대충전전류, Vmax는 각 SOC별로 미리 설정되는 최대전압, OCVanode는 개방회로전압과 맵핑된 Anode OCV 전압, WR은 위크 셀의 저항, i는 측정된 저항의 포인트, j는 온도 범위이다.Where CCmax is the maximum charge current, Vmax is the maximum voltage preset for each SOC, OCVanode is the Anode OCV voltage mapped to the open circuit voltage, WR is the resistance of the wick cell, i is the point of the measured resistance, j is the temperature range to be.
  3. 청구항 1에 있어서,The method according to claim 1,
    상기 충전 처리부는,The charge processing unit
    최근에 측정된 OCV와 Passed charge를 이용하여 상기 배터리팩의 현재 OCV 포인트를 검출하고,The current OCV point of the battery pack is detected using the recently measured OCV and passed charge,
    상기 검출한 현재 OCV 포인트에서 상기 배터리팩의 위크 셀 온도 및 저항을 참조하여 최대충전전류를 설정하고,Setting a maximum charge current with reference to the wick cell temperature and resistance of the battery pack at the detected current OCV point,
    상기 최대충전전류로 상기 배터리팩을 충전하는 과정에서 현재의 위크 셀 전압이 모든 배터리 셀 중에서 가장 높은 전압인지를 판단하며,And determines whether the current wick cell voltage is the highest among all the battery cells in the process of charging the battery pack with the maximum charging current,
    현재의 위크 셀 전압이 모든 배터리 셀 중에서 가장 높은 전압이면 현재의 SOC가 SOC 임계값에 도달될 때까지 상기 최대충전전류로 상기 배터리팩의 충전을 수행하는 것을 특징으로 하는 전기자동차용 배터리의 열화 발생을 저감하면서 고속충전을 수행하기 위한 장치.Charging the battery pack with the maximum charge current until the current SOC reaches the SOC threshold value if the current weak cell voltage is the highest voltage among all the battery cells. To perform high-speed charging while reducing power consumption.
  4. 청구항 3에 있어서,The method of claim 3,
    상기 충전 처리부는,The charge processing unit
    상기 최대충전전류로 상기 배터리팩을 충전하는 과정에서 현재의 위크 셀 전압이 모든 배터리 셀 중에서 가장 높은 전압인지를 판단한 결과, 현재의 위크 셀 전압이 모든 배터리 셀 중에서 가장 높은 전압이 아니면 가장 높은 전압을 갖는 셀을 위크 셀로 변경한 다음 모든 배터리 셀의 저항을 재측정하고,If it is determined that the current wick cell voltage is the highest among all the battery cells in the process of charging the battery pack with the maximum charging current, if the current wick cell voltage is not the highest among all the battery cells, And the resistance of all the battery cells is remeasured,
    해당 위크 셀에서 측정한 전압이 미리 설정된 최대전압보다 크면 저항을 다시 측정한 다음 해당 위크 셀의 온도 및 저항을 토대로 상기 최대충전전류를 조정하여 충전을 진행하며,If the measured voltage at the wick cell is greater than a preset maximum voltage, the resistance is measured again, and then the maximum charging current is adjusted based on the temperature and resistance of the wick cell,
    해당 위크 셀에서 측정한 전압이 미리 설정된 최대전압보다 작으면 현재의 SOC가 SOC 임계값에 도달될 때까지 상기 최대충전전류로 상기 배터리팩의 충전을 수행하는 것을 특징으로 하는 전기자동차용 배터리의 열화 발생을 저감하면서 고속충전을 수행하기 위한 장치.And charging the battery pack with the maximum charge current until the current SOC reaches the SOC threshold value when the voltage measured at the weak cell is less than a preset maximum voltage. An apparatus for performing fast charging while reducing occurrence.
  5. 청구항 1에 있어서,The method according to claim 1,
    상기 충전 처리부는,The charge processing unit
    상기 최대충전전류로 상기 배터리팩을 충전하는 과정에서 상기 배터리팩의 현재 온도가 기 설정된 온도 한계를 초과하는지를 판단하며,Determining whether the current temperature of the battery pack exceeds a preset temperature limit in the process of charging the battery pack with the maximum charging current,
    판단결과 현재 측정된 셀의 온도가 기 설정된 온도 한계를 초과하면 해당 셀의 온도를 온도 한계 이하로 유지하면서 충전이 이루어질 수 있도록 최대충전전류를 조정한 다음 현재의 SOC가 SOC 임계값에 도달될 때까지 상기 최대충전전류로 상기 배터리팩의 충전을 수행함으로써, 기 설정된 범위의 온도를 초과하는 온도에서 충전이 이루어질 때 발생하는 열화를 방지하도록 하는 것을 특징으로 하는 전기자동차용 배터리의 열화 발생을 저감하면서 고속충전을 수행하기 위한 장치.As a result of the determination, when the temperature of the currently measured cell exceeds the predetermined temperature limit, the maximum charge current is adjusted so that the charging can be performed while the temperature of the cell is maintained below the temperature limit, and when the current SOC reaches the SOC threshold Wherein the battery pack is charged at the maximum charging current to prevent deterioration occurring when the battery pack is charged at a temperature exceeding a preset range. An apparatus for performing a fast charge.
  6. 열화나 온도에 따른 배터리팩의 방전상태정보를 학습하는 학습부; 및A learning unit for learning discharge status information of the battery pack according to deterioration or temperature; And
    상기 학습한 방전상태정보를 토대로 상기 배터리팩의 위크 셀 상태에 따라 최대방전전류와 최대파워를 조정하여 상기 배터리팩의 방전을 수행하는 방전 처리부;를 포함하며,And a discharge processor for adjusting the maximum discharge current and the maximum power according to the wake cell state of the battery pack based on the learned discharge state information to perform discharge of the battery pack,
    상기 방전상태정보는, SOC(state of charge)에 따른 배터리팩의 전체저항 및 전체전압, 각각의 배터리 셀에 대한 온도 및 저항, SOC에 따른 OCV(open circuit voltage) 변화량, 미리 설정한 방전종지전압인 컷오프 전압(cutoff voltage), 컷오프 전압 이전의 마진 설정 전압(delta voltage) 또는 이들의 조합을 포함하는 것을 특징으로 하는 전기자동차용 배터리의 열화 발생을 저감하면서 최대방전을 수행하기 위한 장치.The discharge status information includes at least one of a total resistance and a total voltage of the battery pack according to a state of charge (SOC), a temperature and a resistance for each battery cell, an OCV (open circuit voltage) A cutoff voltage, a cutoff voltage, a delta voltage prior to the cutoff voltage, or a combination thereof. The apparatus for performing the maximum discharge while reducing the occurrence of deterioration of the battery for an electric vehicle.
  7. 청구항 6에 있어서,The method of claim 6,
    상기 최대방전전류와 상기 최대파워는 수학식 3에 의해 설정되는 것을 특징으로 하는 전기자동차용 배터리의 열화 발생을 저감하면서 최대방전을 수행하기 위한 장치.Wherein the maximum discharge current and the maximum power are set by Equation (3).
    [수학식 3]&Quot; (3) &quot;
    MAXdisc = (OCV - (cutoff voltage + delta voltage))/WR[i][j]I = [OCV - (cutoff voltage + delta voltage) / WR [i] [j]
    MAXp = 현재 배터리팩 전압*MAXdiscMAXp = current battery pack voltage * MAXdisc
    여기서, MAXdisc는 최대방전전류, OCV는 개방회로전압, cutoff voltage는 방전종지전압, delta voltage는 cutoff voltage 이전의 마진 설정 전압, WR은 위크 셀의 저항, i는 측정된 저항의 포인트, j는 온도 범위, MAXp는 최대파워이다.In this case, MAXdisc is the maximum discharge current, OCV is the open circuit voltage, the cutoff voltage is the discharge end voltage, the delta voltage is the margin setting voltage before the cutoff voltage, WR is the resistance of the wick cell, i is the point of the measured resistance, Range, MAXp is the maximum power.
  8. 청구항 6에 있어서,The method of claim 6,
    상기 방전 처리부는,The discharge processing unit
    최근에 측정된 OCV와 Passed charge를 이용하여 상기 배터리팩의 현재 OCV 포인트를 검출하고,The current OCV point of the battery pack is detected using the recently measured OCV and passed charge,
    상기 검출한 현재 OCV 포인트에서 상기 배터리팩의 위크 셀 온도 및 저항, 컷오프 전압, 마진 설정 전압을 참조하여 최대방전전류와 최대파워를 설정하고,Setting a maximum discharge current and a maximum power with reference to a wick cell temperature, a resistance, a cut-off voltage, and a margin setting voltage of the battery pack at the detected current OCV point,
    상기 최대방전전류와 최대파워로 상기 배터리팩의 방전을 수행하는 과정에서 현재의 위크 셀 전압이 모든 배터리 셀 중에서 가장 낮은 전압인지를 판단하고,Determining whether the current wake cell voltage is the lowest among all the battery cells in the process of discharging the battery pack with the maximum discharge current and the maximum power,
    현재의 위크 셀 전압이 모든 배터리 셀 중에서 가장 낮은 전압이면 해당 위크 셀에서 측정한 전압이 상기 컷오프 전압과 마진 설정 전압의 합보다 작은지를 판단하며,Determines whether a voltage measured by the wick cell is less than a sum of the cut-off voltage and a margin setting voltage when the current wick cell voltage is the lowest among all the battery cells,
    해당 위크 셀에서 측정한 전압이 상기 컷오프 전압과 마진 설정 전압의 합보다 크면 현재의 SOC가 SOC 임계값 미만이거나 또는 최대파워가 미리 설정된 최소파워 임계값 미만일 때까지 상기 최대방전전류와 최대파워로 상기 배터리팩의 방전을 수행하는 것을 특징으로 하는 전기자동차용 배터리의 열화 발생을 저감하면서 최대방전을 수행하기 위한 장치.When the measured voltage at the weak cell is greater than the sum of the cut-off voltage and the margin set voltage, the SOC is less than the SOC threshold or the maximum power is less than a predetermined minimum power threshold, Wherein the discharging of the battery pack is carried out while the discharge of the battery pack is performed.
  9. 청구항 8에 있어서,The method of claim 8,
    상기 방전 처리부는,The discharge processing unit
    상기 배터리팩의 방전을 수행하는 과정에서 현재의 위크 셀 전압이 모든 배터리 셀 중에서 가장 낮은 전압인지를 판단한 결과, 현재의 위크 셀 전압이 모든 배터리 셀 중에서 가장 낮은 전압이 아니면 가장 낮은 전압을 갖는 배터리 셀을 위크 셀로 변경한 다음 모든 셀의 저항을 재측정하여, 저항 재측정 결과를 토대로 검출된 해당 위크 셀에서 측정한 전압이 상기 컷오프 전압과 마진 설정 전압의 합보다 작은지를 판단하고,If it is determined that the current wick cell voltage is the lowest among all the battery cells in the process of discharging the battery pack, if the current wick cell voltage is not the lowest among all the battery cells, The resistance value of all the cells is measured again to determine whether the voltage measured at the corresponding weak cell based on the resistance measurement result is smaller than the sum of the cutoff voltage and the margin setting voltage,
    해당 위크 셀에서 측정한 전압이 상기 컷오프 전압과 마진 설정 전압의 합보다 작으면 저항을 다시 계산한 다음 최대충전전류와 최대파워를 조정하여 방전을 진행하며,If the measured voltage at the weak cell is less than the sum of the cut-off voltage and the margin setting voltage, the resistance is calculated again, and then the discharge is performed by adjusting the maximum charge current and the maximum power,
    해당 위크 셀에서 측정한 전압이 상기 컷오프 전압과 마진 설정 전압의 합보다 크면 현재의 SOC가 SOC 임계값 미만이거나 또는 최대파워가 미리 설정된 최소파워 임계값 미만일 때까지 상기 최대방전전류와 최대파워로 상기 배터리팩의 방전을 수행하는 것을 특징으로 하는 전기자동차용 배터리의 열화 발생을 저감하면서 최대방전을 수행하기 위한 장치.When the measured voltage at the weak cell is greater than the sum of the cut-off voltage and the margin set voltage, the SOC is less than the SOC threshold or the maximum power is less than a predetermined minimum power threshold, Wherein the discharging of the battery pack is carried out while the discharge of the battery pack is performed.
  10. 청구항 6에 있어서,The method of claim 6,
    상기 방전 처리부는,The discharge processing unit
    상기 배터리팩의 방전을 수행하는 과정에서 상기 배터리팩의 현재 온도가 기 설정된 온도 한계를 초과하는지를 판단하며,Determining whether a current temperature of the battery pack exceeds a predetermined temperature limit in a process of discharging the battery pack,
    판단결과 현재 측정된 셀의 온도가 기 설정된 온도 한계를 초과하면 해당 셀의 온도를 온도 한계 이하로 유지하면서 방전이 이루어질 수 있도록 최대방전전류와 최대파워를 조정한 다음 현재의 SOC가 SOC 임계값 미만이거나 또는 최대파워가 미리 설정된 최소파워 임계값 미만일 때까지 상기 최대방전전류와 최대파워로 상기 배터리팩의 방전을 수행함으로써, 기 설정된 범위의 온도를 초과하는 온도에서 방전이 이루어질 때 발생하는 열화를 방지하도록 하는 것을 특징으로 하는 전기자동차용 배터리의 열화 발생을 저감하면서 최대방전을 수행하기 위한 장치.If the measured cell temperature exceeds the predetermined temperature limit, the maximum discharge current and the maximum power are adjusted so that the discharge can be performed while the temperature of the corresponding cell is maintained below the temperature limit. If the current SOC is less than the SOC threshold Or discharging the battery pack at the maximum discharge current and maximum power until the maximum power is less than a predetermined minimum power threshold, thereby preventing deterioration caused when discharging occurs at a temperature exceeding a predetermined range of temperatures And the maximum discharge is performed while reducing the occurrence of deterioration of the battery for an electric vehicle.
  11. 열화나 온도에 따른 배터리팩의 충전상태정보를 학습하는 학습 단계; 및A learning step of learning charge state information of the battery pack according to deterioration or temperature; And
    상기 학습한 충전상태정보를 토대로 상기 배터리팩의 위크 셀 상태에 따라 최대충전전류를 조정하여 상기 배터리팩의 충전을 수행하는 충전 처리 단계;를 포함하며,And charging the battery pack by adjusting a maximum charging current according to the wick cell state of the battery pack based on the learned charging state information,
    상기 충전상태정보는, SOC(state of charge)에 따른 배터리팩의 전체저항, 각각의 배터리 셀에 대한 온도 및 저항, SOC에 따른 OCV(open circuit voltage) 변화량, 현재의 OCV 포인트에서의 최대설정전압 또는 이들의 조합을 포함하는 것을 특징으로 하는 전기자동차용 배터리의 열화 발생을 저감하면서 고속충전을 수행하기 위한 방법.The charge state information includes at least one of a total resistance of the battery pack according to a state of charge (SOC), a temperature and a resistance of each battery cell, an OCV (open circuit voltage) variation according to the SOC, Or a combination thereof. 2. A method for performing fast charging while reducing the occurrence of deterioration of a battery for an electric vehicle.
  12. 청구항 11에 있어서,The method of claim 11,
    상기 최대충전전류는 수학식 2에 의해 설정되는 것을 특징으로 하는 전기자동차용 배터리의 열화 발생을 저감하면서 고속충전을 수행하기 위한 방법.Wherein the maximum charge current is set by Equation (2). &Lt; Desc / Clms Page number 20 &gt;
    [수학식 2]&Quot; (2) &quot;
    CCmax = (OCVanode - Vmax)/WR[i][j]CCmax = (OCVanode - Vmax) / WR [i] [j]
    여기서, CCmax는 최대충전전류, Vmax는 각 SOC별로 미리 설정되는 최대전압, OCVanode는 개방회로전압과 맵핑된 Anode OCV 전압, WR은 위크 셀의 저항, i는 측정된 저항의 포인트, j는 온도 범위이다.Where CCmax is the maximum charge current, Vmax is the maximum voltage preset for each SOC, OCVanode is the Anode OCV voltage mapped to the open circuit voltage, WR is the resistance of the wick cell, i is the point of the measured resistance, j is the temperature range to be.
  13. 청구항 11에 있어서,The method of claim 11,
    상기 충전 처리 단계는,Wherein the charging processing step includes:
    최근에 측정된 OCV와 Passed charge를 이용하여 상기 배터리팩의 현재 OCV 포인트를 검출하는 단계;Detecting a current OCV point of the battery pack using a recently measured OCV and a passed charge;
    상기 검출한 현재 OCV 포인트에서 상기 배터리팩의 위크 셀 온도 및 저항을 참조하여 최대충전전류를 설정하는 단계;Setting a maximum charging current with reference to the wick cell temperature and resistance of the battery pack at the detected current OCV point;
    상기 최대충전전류로 상기 배터리팩을 충전하는 과정에서 현재의 위크 셀 전압이 모든 배터리 셀 중에서 가장 높은 전압인지를 판단하는 단계; 및Determining whether the current wick cell voltage is the highest among all the battery cells in the process of charging the battery pack with the maximum charging current; And
    현재의 위크 셀 전압이 모든 배터리 셀 중에서 가장 높은 전압이면 현재의 SOC가 SOC 임계값에 도달될 때까지 상기 최대충전전류로 상기 배터리팩의 충전을 수행하는 단계;를 포함하는 것을 특징으로 하는 전기자동차용 배터리의 열화 발생을 저감하면서 고속충전을 수행하기 위한 방법.And charging the battery pack with the maximum charge current until the current SOC reaches the SOC threshold if the current weak cell voltage is the highest voltage among all the battery cells. A method for performing a fast charge while reducing the occurrence of deterioration of a battery for a battery.
  14. 청구항 13에 있어서,14. The method of claim 13,
    상기 충전 처리 단계는,Wherein the charging processing step includes:
    상기 최대충전전류로 상기 배터리팩을 충전하는 과정에서 현재의 위크 셀 전압이 모든 배터리 셀 중에서 가장 높은 전압인지를 판단한 결과, 현재의 위크 셀 전압이 모든 배터리 셀 중에서 가장 높은 전압이 아니면 가장 높은 전압을 갖는 셀을 위크 셀로 변경한 다음 모든 배터리 셀의 저항을 재측정하는 단계;If it is determined that the current wick cell voltage is the highest among all the battery cells in the process of charging the battery pack with the maximum charging current, if the current wick cell voltage is not the highest among all the battery cells, Changing a cell having a wake cell to a wake cell and remeasuring the resistance of all the battery cells;
    해당 위크 셀에서 측정한 전압이 미리 설정된 최대전압보다 크면 저항을 다시 측정한 다음 해당 위크 셀의 온도 및 저항을 토대로 상기 최대충전전류를 조정하여 충전을 진행하는 단계; 및If the measured voltage at the wick cell is greater than a preset maximum voltage, measuring the resistance again and then adjusting the maximum charging current based on the temperature and resistance of the wick cell to proceed with charging; And
    해당 위크 셀에서 측정한 전압이 미리 설정된 최대전압보다 작으면 현재의 SOC가 SOC 임계값에 도달될 때까지 상기 최대충전전류로 상기 배터리팩의 충전을 수행하는 단계;를 더 포함하는 것을 특징으로 하는 전기자동차용 배터리의 열화 발생을 저감하면서 고속충전을 수행하기 위한 방법.And charging the battery pack with the maximum charge current until the current SOC reaches the SOC threshold value if the measured voltage at the weak cell is less than a preset maximum voltage A method for performing fast charging while reducing the occurrence of deterioration of a battery for an electric vehicle.
  15. 청구항 11에 있어서,The method of claim 11,
    상기 충전 처리 단계는,Wherein the charging processing step includes:
    상기 최대충전전류로 상기 배터리팩을 충전하는 과정에서 상기 배터리팩의 현재 온도가 기 설정된 온도 한계를 초과하는지를 판단하는 단계; 및Determining whether a current temperature of the battery pack exceeds a predetermined temperature limit in a process of charging the battery pack with the maximum charging current; And
    판단결과 현재 측정된 셀의 온도가 기 설정된 온도 한계를 초과하면 해당 셀의 온도를 온도 한계 이하로 유지하면서 충전이 이루어질 수 있도록 최대충전전류를 조정한 다음 현재의 SOC가 SOC 임계값에 도달될 때까지 상기 최대충전전류로 상기 배터리팩의 충전을 수행함으로써, 기 설정된 범위의 온도를 초과하는 온도에서 충전이 이루어질 때 발생하는 열화를 방지하도록 하는 단계;를 더 포함하는 것을 특징으로 하는 전기자동차용 배터리의 열화 발생을 저감하면서 고속충전을 수행하기 위한 방법.As a result of the determination, when the temperature of the currently measured cell exceeds the predetermined temperature limit, the maximum charge current is adjusted so that the charging can be performed while the temperature of the cell is maintained below the temperature limit, and when the current SOC reaches the SOC threshold Further comprising charging the battery pack with the maximum charging current to prevent deterioration occurring when charging is performed at a temperature exceeding a predetermined range of temperature, Wherein the fast charging is performed while reducing the occurrence of deterioration of the battery.
  16. 열화나 온도에 따른 배터리팩의 방전상태정보를 학습하는 학습 단계; 및A learning step of learning discharge status information of the battery pack according to deterioration or temperature; And
    상기 학습한 방전상태정보를 토대로 상기 배터리팩의 위크 셀 상태에 따라 최대방전전류와 최대파워를 조정하여 상기 배터리팩의 방전을 수행하는 방전 처리 단계;를 포함하며,And discharging the battery pack by adjusting a maximum discharge current and a maximum power according to the wick cell state of the battery pack based on the learned discharge state information,
    상기 방전상태정보는, SOC(state of charge)에 따른 배터리팩의 전체저항 및 전체전압, 각각의 배터리 셀에 대한 온도 및 저항, SOC에 따른 OCV(open circuit voltage) 변화량, 미리 설정한 방전종지전압인 컷오프 전압(cutoff voltage), 컷오프 전압 이전의 마진 설정 전압(delta voltage) 또는 이들의 조합을 포함하는 것을 특징으로 하는 전기자동차용 배터리의 열화 발생을 저감하면서 최대방전을 수행하기 위한 방법.The discharge status information includes at least one of a total resistance and a total voltage of the battery pack according to a state of charge (SOC), a temperature and a resistance for each battery cell, an OCV (open circuit voltage) A cut-off voltage, a delta voltage prior to the cut-off voltage, or a combination thereof. &Lt; RTI ID = 0.0 &gt; 11. &lt; / RTI &gt;
  17. 청구항 16에 있어서,18. The method of claim 16,
    상기 최대방전전류와 상기 최대파워는 수학식 3에 의해 설정되는 것을 특징으로 하는 전기자동차용 배터리의 열화 발생을 저감하면서 최대방전을 수행하기 위한 방법.Wherein the maximum discharge current and the maximum power are set by Equation (3).
    [수학식 3]&Quot; (3) &quot;
    MAXdisc = (OCV - (cutoff voltage + delta voltage))/WR[i][j]I = [OCV - (cutoff voltage + delta voltage) / WR [i] [j]
    MAXp = 현재 배터리팩 전압*MAXdiscMAXp = current battery pack voltage * MAXdisc
    여기서, MAXdisc는 최대방전전류, OCV는 개방회로전압, cutoff voltage는 방전종지전압, delta voltage는 cutoff voltage 이전의 마진 설정 전압, WR은 위크 셀의 저항, i는 측정된 저항의 포인트, j는 온도 범위, MAXp는 최대파워이다.In this case, MAXdisc is the maximum discharge current, OCV is the open circuit voltage, the cutoff voltage is the discharge end voltage, the delta voltage is the margin setting voltage before the cutoff voltage, WR is the resistance of the wick cell, i is the point of the measured resistance, Range, MAXp is the maximum power.
  18. 청구항 16에 있어서,18. The method of claim 16,
    상기 방전 처리 단계는,In the discharge processing step,
    최근에 측정된 OCV와 Passed charge를 이용하여 상기 배터리팩의 현재 OCV 포인트를 검출하는 단계;Detecting a current OCV point of the battery pack using a recently measured OCV and a passed charge;
    상기 검출한 현재 OCV 포인트에서 상기 배터리팩의 위크 셀 온도 및 저항, 컷오프 전압, 마진 설정 전압을 참조하여 최대방전전류와 최대파워를 설정하는 단계;Setting a maximum discharge current and a maximum power with reference to a wick cell temperature, a resistance, a cutoff voltage, and a margin setting voltage of the battery pack at the detected current OCV point;
    상기 배터리팩의 방전을 수행하는 과정에서 현재의 위크 셀 전압이 모든 배터리 셀 중에서 가장 낮은 전압인지를 판단하는 단계;Determining whether a current wick cell voltage is the lowest among all the battery cells in a process of discharging the battery pack;
    현재의 위크 셀 전압이 모든 배터리 셀 중에서 가장 낮은 전압이면 해당 위크 셀에서 측정한 전압이 상기 컷오프 전압과 마진 설정 전압의 합보다 작은지를 판단하는 단계; 및Determining whether a voltage measured by the weak cell is less than a sum of the cut-off voltage and a margin setting voltage when the current weak cell voltage is the lowest voltage among all the battery cells; And
    해당 위크 셀에서 측정한 전압이 상기 컷오프 전압과 마진 설정 전압의 합보다 크면 현재의 SOC가 SOC 임계값 미만이거나 또는 최대파워가 미리 설정된 최소파워 임계값 미만일 때까지 상기 최대방전전류와 최대파워로 상기 배터리팩의 방전을 수행하는 단계;를 포함하는 것을 특징으로 하는 전기자동차용 배터리의 열화 발생을 저감하면서 최대방전을 수행하기 위한 방법.When the measured voltage at the weak cell is greater than the sum of the cut-off voltage and the margin set voltage, the SOC is less than the SOC threshold or the maximum power is less than a predetermined minimum power threshold, And performing discharging of the battery pack. The method for performing the maximum discharge while reducing the occurrence of deterioration of the battery for an electric vehicle.
  19. 청구항 18에 있어서,19. The method of claim 18,
    상기 방전 처리 단계는,In the discharge processing step,
    상기 배터리팩의 방전을 수행하는 과정에서 현재의 위크 셀 전압이 모든 배터리 셀 중에서 가장 낮은 전압인지를 판단한 결과, 현재의 위크 셀 전압이 모든 배터리 셀 중에서 가장 낮은 전압이 아니면 가장 낮은 전압을 갖는 배터리 셀을 위크 셀로 변경한 다음 모든 셀의 저항을 재측정하여, 저항 재측정 결과를 토대로 검출된 해당 위크 셀에서 측정한 전압이 상기 컷오프 전압과 마진 설정 전압의 합보다 작은지를 판단하는 단계;If it is determined that the current wick cell voltage is the lowest among all the battery cells in the process of discharging the battery pack, if the current wick cell voltage is not the lowest among all the battery cells, Measuring a resistance of all the cells and determining whether a voltage measured at the corresponding weak cell based on the resistance measurement result is less than a sum of the cutoff voltage and the margin setting voltage;
    해당 위크 셀에서 측정한 전압이 상기 컷오프 전압과 마진 설정 전압의 합보다 작으면 저항을 다시 계산한 다음 최대충전전류와 최대파워를 조정하여 방전을 진행하는 단계; 및If the measured voltage at the weak cell is less than the sum of the cut-off voltage and the margin set voltage, calculating the resistance again, and then adjusting the maximum charge current and the maximum power to progress the discharge; And
    해당 위크 셀에서 측정한 전압이 상기 컷오프 전압과 마진 설정 전압의 합보다 크면 현재의 SOC가 SOC 임계값 미만이거나 또는 최대파워가 미리 설정된 최소파워 임계값 미만일 때까지 상기 최대방전전류와 최대파워로 상기 배터리팩의 방전을 수행하는 단계;를 더 포함하는 것을 특징으로 하는 전기자동차용 배터리의 열화 발생을 저감하면서 최대방전을 수행하기 위한 방법.When the measured voltage at the weak cell is greater than the sum of the cut-off voltage and the margin set voltage, the SOC is less than the SOC threshold or the maximum power is less than a predetermined minimum power threshold, And performing discharging of the battery pack when the voltage of the battery pack is less than a predetermined voltage.
  20. 청구항 16에 있어서,18. The method of claim 16,
    상기 방전 처리 단계는,In the discharge processing step,
    상기 배터리팩의 방전을 수행하는 과정에서 상기 배터리팩의 현재 온도가 기 설정된 온도 한계를 초과하는지를 판단하는 단계; 및Determining whether a current temperature of the battery pack exceeds a predetermined temperature limit in a process of discharging the battery pack; And
    판단결과 현재 측정된 셀의 온도가 기 설정된 온도 한계를 초과하면 해당 셀의 온도를 온도 한계 이하로 유지하면서 방전이 이루어질 수 있도록 최대방전전류와 최대파워를 조정한 다음 현재의 SOC가 SOC 임계값 미만이거나 또는 최대파워가 미리 설정된 최소파워 임계값 미만일 때까지 상기 최대방전전류와 최대파워로 상기 배터리팩의 방전을 수행함으로써, 기 설정된 범위의 온도를 초과하는 온도에서 방전이 이루어질 때 발생하는 열화를 방지하도록 하는 단계;를 더 포함하는 것을 특징으로 하는 전기자동차용 배터리의 열화 발생을 저감하면서 최대방전을 수행하기 위한 방법.If the measured cell temperature exceeds the predetermined temperature limit, the maximum discharge current and the maximum power are adjusted so that the discharge can be performed while the temperature of the corresponding cell is maintained below the temperature limit. If the current SOC is less than the SOC threshold Or discharging the battery pack at the maximum discharge current and maximum power until the maximum power is less than a predetermined minimum power threshold, thereby preventing deterioration caused when discharging occurs at a temperature exceeding a predetermined range of temperatures The method of claim 1, further comprising the step of: determining whether the battery is charged with a predetermined voltage.
PCT/KR2017/010111 2017-06-23 2017-09-15 Method for fast charging and maximum discharging while reducing degradation of electric vehicle battery, and apparatus therefor WO2018235995A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020170079449A KR101998069B1 (en) 2017-06-23 2017-06-23 Method and apparatus for fast charging and maximum discharging with less-degradation of battery for an electric car
KR10-2017-0079449 2017-06-23

Publications (1)

Publication Number Publication Date
WO2018235995A1 true WO2018235995A1 (en) 2018-12-27

Family

ID=64735991

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/010111 WO2018235995A1 (en) 2017-06-23 2017-09-15 Method for fast charging and maximum discharging while reducing degradation of electric vehicle battery, and apparatus therefor

Country Status (2)

Country Link
KR (1) KR101998069B1 (en)
WO (1) WO2018235995A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112964994A (en) * 2021-02-01 2021-06-15 惠州亿纬锂能股份有限公司 Method and device for measuring maximum current of battery
CN113517736A (en) * 2021-05-31 2021-10-19 上海航天电源技术有限责任公司 Battery pack maintenance method
WO2021217662A1 (en) * 2020-04-30 2021-11-04 华为技术有限公司 Lithium plating detection method and apparatus, and polarization proportion acquisition method and apparatus
CN114094168A (en) * 2021-11-25 2022-02-25 东莞新能安科技有限公司 Electrochemical device, charging method for electrochemical device, charging device, electronic apparatus, and storage medium
US11374424B2 (en) * 2019-02-01 2022-06-28 Sk Innovation Co., Ltd. Battery management system
CN115144760A (en) * 2022-09-01 2022-10-04 中创新航科技股份有限公司 Estimation method and device for battery system SOP
US11511644B2 (en) * 2018-10-29 2022-11-29 Honda Motor Co., Ltd. Learning apparatus, learning method, and program

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200132002A (en) 2019-05-15 2020-11-25 에스케이이노베이션 주식회사 An apparatus and a control method for battery management system
WO2020246972A1 (en) * 2019-06-05 2020-12-10 Xilectric, Inc. Systems apparatus and methods of cyclic coulometry
KR102650175B1 (en) * 2019-06-17 2024-03-22 엘지전자 주식회사 Method for charging battery included in robot and apparatus thereof
KR20210039186A (en) 2019-10-01 2021-04-09 주식회사 엘지화학 Appratus and method for calculating battery power
KR102261294B1 (en) * 2019-11-19 2021-06-07 현대자동차 주식회사 Apparatus and method for preventing driver's misoperating driver's of mild hybrid electric vehicle
KR20210156919A (en) 2020-06-18 2021-12-28 현대자동차주식회사 System for providing battery management information of vehicl and method thereof
KR20220150484A (en) 2021-05-03 2022-11-11 한국전자기술연구원 Charging management device and method for high-efficiency and high-speed charging of a plurality of batteries
KR20230166362A (en) * 2022-05-30 2023-12-07 주식회사 엘지에너지솔루션 Apparatus and method for diagnosing battery
WO2024043721A1 (en) * 2022-08-26 2024-02-29 스탠다드에너지(주) Battery system supporting plurality of operation modes according to soc
KR102642886B1 (en) * 2022-12-27 2024-03-04 스탠다드에너지(주) Method and Apparatus for Verifying an Operational State of Redox Batteries
KR102609887B1 (en) 2023-03-28 2023-12-06 한국생산기술연구원 Method of controling current rate using preheating for charging battery fast

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010093871A (en) * 2008-10-03 2010-04-22 Denso Corp Temperature rise controller for battery
KR101187766B1 (en) * 2008-08-08 2012-10-05 주식회사 엘지화학 Apparatus and Method for cell balancing based on battery's voltage variation pattern
US20150108950A1 (en) * 2013-10-22 2015-04-23 Samsung Sdi Co., Ltd. Battery pack, energy storage system including battery pack, and method of charging battery pack
KR20150109643A (en) * 2014-03-20 2015-10-02 현대모비스 주식회사 Apparatus and Method for estimating deterioration of battery pack
KR101734704B1 (en) * 2015-11-05 2017-05-11 한양대학교 산학협력단 Method for charging battery and battery charger using temperature detection

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009133675A (en) * 2007-11-29 2009-06-18 Sony Corp Battery pack and method of calculating internal impedance
KR101402802B1 (en) * 2012-05-03 2014-06-03 주식회사 엘지화학 Apparatus and Method for cell balancing based on battery's voltage variation pattern
KR101783919B1 (en) * 2014-10-31 2017-10-10 주식회사 엘지화학 Apparatus and method for estimating open circuit voltage

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101187766B1 (en) * 2008-08-08 2012-10-05 주식회사 엘지화학 Apparatus and Method for cell balancing based on battery's voltage variation pattern
JP2010093871A (en) * 2008-10-03 2010-04-22 Denso Corp Temperature rise controller for battery
US20150108950A1 (en) * 2013-10-22 2015-04-23 Samsung Sdi Co., Ltd. Battery pack, energy storage system including battery pack, and method of charging battery pack
KR20150109643A (en) * 2014-03-20 2015-10-02 현대모비스 주식회사 Apparatus and Method for estimating deterioration of battery pack
KR101734704B1 (en) * 2015-11-05 2017-05-11 한양대학교 산학협력단 Method for charging battery and battery charger using temperature detection

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11511644B2 (en) * 2018-10-29 2022-11-29 Honda Motor Co., Ltd. Learning apparatus, learning method, and program
US11374424B2 (en) * 2019-02-01 2022-06-28 Sk Innovation Co., Ltd. Battery management system
WO2021217662A1 (en) * 2020-04-30 2021-11-04 华为技术有限公司 Lithium plating detection method and apparatus, and polarization proportion acquisition method and apparatus
CN112964994A (en) * 2021-02-01 2021-06-15 惠州亿纬锂能股份有限公司 Method and device for measuring maximum current of battery
CN113517736A (en) * 2021-05-31 2021-10-19 上海航天电源技术有限责任公司 Battery pack maintenance method
CN113517736B (en) * 2021-05-31 2023-04-07 上海航天电源技术有限责任公司 Battery pack maintenance method
CN114094168A (en) * 2021-11-25 2022-02-25 东莞新能安科技有限公司 Electrochemical device, charging method for electrochemical device, charging device, electronic apparatus, and storage medium
CN114094168B (en) * 2021-11-25 2024-03-01 东莞新能安科技有限公司 Electrochemical device, charging method thereof, charging device, electronic apparatus, and storage medium
CN115144760A (en) * 2022-09-01 2022-10-04 中创新航科技股份有限公司 Estimation method and device for battery system SOP

Also Published As

Publication number Publication date
KR101998069B1 (en) 2019-07-09
KR20190000445A (en) 2019-01-03

Similar Documents

Publication Publication Date Title
WO2018235995A1 (en) Method for fast charging and maximum discharging while reducing degradation of electric vehicle battery, and apparatus therefor
WO2017082705A1 (en) System for controlling output parameters of secondary battery, and method therefor
WO2018139764A2 (en) Battery management apparatus and method
WO2019027190A1 (en) Battery management device and battery pack including same
WO2018105881A1 (en) Battery management apparatus and method
WO2017142385A1 (en) Apparatus and method for diagnosing failure of switch component
WO2019117607A1 (en) Device and method for diagnosing negative electrode contactor of battery pack
WO2014137082A1 (en) Apparatus and method for estimating output of secondary battery including blended anode material
WO2010016647A1 (en) Apparatus and method for estimating state of health of battery based on battery voltage variation pattern
WO2014088325A1 (en) Method and device for estimating depth of discharge of secondary battery
WO2019074221A1 (en) Apparatus for estimating state-of-charge of secondary battery and method thereof
WO2020153637A1 (en) Battery management device, battery management method, and battery pack
WO2014084680A1 (en) Apparatus and method for estimating output of secondary battery comprising blended positive electrode material
WO2018124514A1 (en) Device for managing battery and method for protecting lithium-iron-phosphate cell from overcharge using same
WO2020189914A1 (en) Device for estimating battery condition
WO2021118049A1 (en) Apparatus and method for controlling operation of secondary battery by using relative degree of aging of electrode
WO2021006708A1 (en) Device and method for diagnosing state of battery pack
WO2018194225A1 (en) Battery monitoring and protection system
WO2020130430A1 (en) Charging control apparatus and method for secondary battery pack
WO2022092827A1 (en) Battery management device and method
WO2021045539A1 (en) Battery system and method for controlling battery system
WO2021080161A1 (en) Battery management system, battery pack, electric vehicle, and battery management method
WO2021054716A1 (en) Abnormal state pre-sensing system using battery voltage data and temperature data
WO2020145768A1 (en) Battery pack diagnosis apparatus
WO2022019664A1 (en) Device and method for controlling output of parallel multi-pack module

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17915093

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17915093

Country of ref document: EP

Kind code of ref document: A1