WO2018194225A1 - Battery monitoring and protection system - Google Patents

Battery monitoring and protection system Download PDF

Info

Publication number
WO2018194225A1
WO2018194225A1 PCT/KR2017/010109 KR2017010109W WO2018194225A1 WO 2018194225 A1 WO2018194225 A1 WO 2018194225A1 KR 2017010109 W KR2017010109 W KR 2017010109W WO 2018194225 A1 WO2018194225 A1 WO 2018194225A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery pack
battery
resistance
capacity
ocv
Prior art date
Application number
PCT/KR2017/010109
Other languages
French (fr)
Korean (ko)
Inventor
이정환
Original Assignee
이정환
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이정환 filed Critical 이정환
Publication of WO2018194225A1 publication Critical patent/WO2018194225A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4207Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/441Methods for charging or discharging for several batteries or cells simultaneously or sequentially
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a battery monitoring and protection system, and more particularly, the characteristics of the battery cells change as they age, and the accuracy of measuring the performance of the battery at high and low temperatures is not accurate to monitor the battery cells.
  • the present invention is to provide a system and method for aging the battery and the stable monitoring and protection of the battery even in a high or low temperature environment.
  • Electric vehicles or energy storage systems require large-capacity batteries, which are secondary batteries. As the battery is repeatedly charged and discharged, its performance deteriorates and ends its life. At this time, the degree of degradation of the battery performance is quantitatively evaluated through a parameter of storage of health (SOH).
  • SOH storage of health
  • the aging of the battery is detected by measuring the change in the internal resistance of the battery.
  • the internal resistance is very small, and as the charge and discharge are repeated, the internal resistance increases, The internal resistance becomes large enough to transfer power. Therefore, it is necessary to effectively manage the charging and discharging to extend the life of the battery.
  • the SOH can be estimated based on the internal resistance and temperature of the battery.
  • the estimating process first measures the internal resistance of the battery every time the charging and discharging is repeated, measures the capacity of the battery for each temperature, and then quantizes the relative capacity based on the initial capacity of the battery to store the mapping relationship with the SOH. Store and manage in a table.
  • the SOH of the battery may be estimated by measuring the internal resistance and the temperature of the battery in an actual environment of using the battery, and mapping the SOH corresponding to the internal resistance and the temperature from the mapping table.
  • C-Rate is a unit for estimating or marking the current value under various usage conditions and the possible use time of the battery when charging and discharging the battery.
  • the calculation of the current value according to the charge / discharge rate is based on the charge or discharge current. It is used to calculate the charge and discharge current values by dividing by the rated capacity.
  • the present invention changes the characteristics of the battery cells as they age, the accuracy of measuring the performance of the battery at high and low temperature is difficult to accurately monitor the battery cells, thereby overcoming the failure to properly protect the battery
  • the objective is to enable battery aging and stable monitoring and protection of batteries even in high or low temperature environments.
  • US Patent No. 8459978 (2013.05.28.) Is to monitor the state of the rechargeable battery, at least one associated with the battery during the discharge of the battery Obtain the measured value repeatedly, repeatedly calculate the state of the battery during the discharge of the battery (the state of the battery depends on the state of the previously calculated battery, the measured value and at least one battery parameter) Update the parameters of the battery at a first rate before the state of the battery exceeds the threshold, update the parameters of the battery at a second rate faster than the first rate after the state of the battery exceeds the threshold, and Responsive to each update characterized in that to correct the state of the battery.
  • US Patent No. 7808244 (October 5, 2010) relates to a method of measuring initial voltage and current and determining a state of charge using a previously predicted battery resistance. It includes a processor that updates parameters defining the state of charge (SOC) and the dependence of internal resistance on temperature. The database is used to obtain the information needed to calculate the correct remaining usage time. The processor may determine the characteristics of the measured open circuit voltage (OCV) value of the battery and the starting SOC value corresponding to the value of the most recently measured OCV value after the battery has stabilized. It reflects the item. The processor then determines the current SOC of the battery, the current battery capacity, and the remaining operating time of the device operating on battery power.
  • SOC open circuit voltage
  • US Patent No. 6789026 (2004.09.07.) Relates to a method for monitoring the state of charge of the battery, to determine the amount of charge currently stored in the battery by determining that the current flowing in the battery is in the zero state. It includes a circuit for measuring the OCV of the battery before the current flowing through the battery is not negligible and includes a processor for correlating the measured OCV with a corresponding variable value and selecting the corresponding value as the variable value.
  • the present invention has some similarities to the present invention, but there is no suggestion regarding monitoring or protecting the battery in consideration of changes in characteristics of the battery cell according to the aging or temperature of the present invention. Is the difference.
  • US Patent Application Publication No. 2011/0037475 (2011.02.17.) Relates to a method of estimating battery capacity using battery internal storage (DCIR), which sets a controlled discharge path in a battery module, and loads a system load. Despite the change in current, the battery discharge current has a constant value, and the internal resistance measured by setting the constant battery current can be used to accurately obtain the battery capacity.
  • DCIR battery internal storage
  • the present invention is partially related to the present invention, but there is no suggestion regarding monitoring or protecting the battery in consideration of changes in characteristics of the battery cell according to aging or temperature of the present invention. It is a difference from the present invention that there is no suggestion or description.
  • an object of the present invention is to propose a method for enabling stable monitoring and protection of a battery even in a high temperature or low temperature environment.
  • the present invention has been made to solve the above-mentioned conventional problems, and an object thereof is to provide a battery monitoring method, a battery monitoring device, a battery protection method and a battery protection device.
  • an object of the present invention is to calculate a factor for controlling the pack resistance of a battery at high temperature, room temperature, and low temperature through a battery monitoring method and apparatus according to an embodiment of the present invention.
  • Another object of the present invention is to provide a method for analyzing a load characteristic in order to predict a maximum current, a minimum current, and a temperature change at each resistance point through a battery monitoring method and an apparatus according to an embodiment of the present invention.
  • Another object of the present invention is to provide a method for predicting the remaining capacity and full charge capacity of a battery under load by analyzing the load characteristics and resistance through a battery monitoring method and apparatus according to an embodiment of the present invention. do.
  • Another object of the present invention is to provide a method for updating a current capacity and SOH of a battery through a battery monitoring method and an apparatus thereof according to an embodiment of the present invention.
  • Another object of the present invention is to provide an apparatus and method for monitoring the state of a battery and also protecting the battery by learning the resistance of a few weak cells having the largest pack resistance or resistance instead of the cell resistance of each battery for each temperature. It is done.
  • Another object of the present invention is to provide a method and an apparatus for finding a weak cell which determines a cell having a cell voltage or a pack voltage first reaching a discharge end voltage as a weak cell. If one battery cell reaches the discharge end voltage of the cell before the pack voltage reaches the end discharge voltage of the pack, the discharge is terminated. At low voltages, the life of the cell is greatly reduced, so the cell needs to be protected.
  • Another object of the present invention is to provide a method for detecting an internal and external short of a cell and opening of a parallel cell through a battery monitoring method and an apparatus according to an embodiment of the present invention.
  • Battery monitoring system for achieving the above object is a learning unit for learning the state information of the battery pack according to the aging or temperature and the remaining capacity and the total available capacity of the battery pack according to the learning results And a battery pack capacity gauging unit for gauging the battery pack.
  • the state information of the battery pack includes a total resistance of the battery pack according to a state of charge (SOC), resistance for each battery cell, and an amount of change in an open circuit voltage (OCV). It is characterized by including.
  • SOC state of charge
  • OCV open circuit voltage
  • the learning unit by discharging the battery pack to the discharge end voltage at a constant C-rate under the conditions of the normal temperature and no load through the first cycle, by tracking the OCV curve of the battery pack, the amount of OVC change according to aging and the corresponding It is characterized by learning the amount of change for the total capacity of the battery pack.
  • the learning unit divides the SOC into a plurality of grid points, which are OCV points, through a second cycle, discharges the battery pack to a specific C-rate for each temperature range, and the battery pack and the grid points for each grid point.
  • the learning unit By measuring the resistance for each battery cell, it characterized in that it further comprises learning the change amount of the resistance for each battery cell and the battery pack according to temperature and aging.
  • the battery pack resistance measuring unit may calculate an aging coefficient by comparing the total resistance of the previously learned battery pack with the total resistance of the battery pack currently discharged, and the resistance of each grid point previously learned to the calculated aging coefficient. By multiplying to update the respective resistance for the grid point of the battery pack that is currently discharged, it characterized in that the resistance for the battery pack and each battery cell is measured.
  • the battery pack capacity gauging unit detects a current OCV point of the battery pack by using recently measured OCV and a pass charge, and measures a passed charge, remaining capacity, and total available capacity at the detected current OCV point. And, by updating this for each of the OCV point, it is characterized in that the remaining capacity of the battery pack and the total available capacity.
  • the battery monitoring system may further include a protection unit that protects the battery pack by blocking a charge / discharge state of the battery pack when the measured resistance of the battery pack and each battery cell exceeds a preset value.
  • the battery monitoring method the learning step of learning the status information of the battery pack according to the aging or temperature and the battery to gauge the remaining capacity and the total available capacity of the battery pack according to the learning results And a pack capacity gauging step, wherein the state information of the battery pack includes a total resistance of the battery pack according to a state of charge (SOC), a resistance of each battery cell, and an amount of change of an open circuit voltage (OCV). It is done.
  • SOC state of charge
  • OCV open circuit voltage
  • the learning step by discharging the battery pack to the discharge end voltage at a constant C-rate under the conditions of the normal temperature and no load through the first cycle, by tracking the OCV curve of the battery pack, the amount of OVC change according to aging and It is characterized by learning the amount of change for the total capacity of the battery pack.
  • the SOC is divided into a plurality of grid points that are OCV points through a second cycle, and the battery pack is discharged to a specific C-rate at a predetermined range of temperatures, and the battery pack is stored for each grid point.
  • the resistance for each battery cell it characterized in that it further comprises learning the change amount of the resistance for the battery pack and each battery cell according to the temperature and aging.
  • the battery pack resistance measuring step the aging coefficient is calculated by comparing the total resistance of the previously learned battery pack and the total resistance of the currently discharged battery pack, and for each grid point previously learned to the calculated aging coefficient The resistance of the battery pack and each battery cell is measured by updating the resistance of each of the grid points of the battery pack that is currently discharged by multiplying the resistance.
  • the battery pack capacity gauging step may detect a current OCV point of the battery pack by using recently measured OCV and Passed charge, and calculate the passed charge, remaining capacity, and total available capacity from the detected current OCV point. By measuring and updating this for each OCV point, the remaining capacity and total available capacity of the battery pack are gauged.
  • the battery monitoring system may further include a protection step of protecting the battery pack by blocking a charge / discharge state of the battery pack when the measured battery pack and the resistance of each battery cell exceed a preset value.
  • the present invention relates to a method for monitoring and protecting a battery through machine learning, and as the battery pack is repeatedly charged and discharged, the resistance of the entire battery pack and the weak cells of the plurality of cells constituting the battery pack are changed.
  • FIG. 1 is a block diagram schematically illustrating a battery monitoring system according to a first embodiment of the present invention.
  • FIG. 2 is a block diagram schematically illustrating a battery monitoring system according to a second embodiment of the present invention.
  • FIG. 3 is a block diagram schematically illustrating a battery monitoring system according to a third exemplary embodiment of the present invention.
  • FIG. 4 is a diagram illustrating a first cycle for learning data for gauging according to an embodiment of the present invention.
  • FIG. 5 is a diagram illustrating a second cycle for learning data for gauging according to an embodiment of the present invention.
  • FIG. 6 is a block diagram showing the configuration of a battery monitoring apparatus according to an embodiment of the present invention.
  • FIGS. 7A and 7B are flowcharts illustrating a procedure of gauging a remaining capacity and total available capacity according to discharge of a battery pack and a weak cell according to an embodiment of the present invention and providing the same to a user.
  • FIG. 8 is a flowchart illustrating a method of updating a capacity and SOH of a battery pack according to an embodiment of the present invention.
  • FIG. 9 is a view illustrating a method of gauging the remaining capacity and the total available capacity according to the discharge of the battery pack according to an embodiment of the present invention.
  • FIG. 10 is a block diagram illustrating a battery monitoring system for detecting an internal / external short of a battery cell according to another exemplary embodiment of the present invention.
  • FIG. 11 is a graph for detecting an internal / external short of a battery cell according to another embodiment of the present invention.
  • FIG. 12 is a graph for detecting an internal / external short of a battery cell according to another exemplary embodiment of the present invention.
  • FIG. 13 is a block diagram illustrating a battery monitoring system for detecting internal / external disconnection of a battery cell according to another exemplary embodiment of the present invention.
  • FIGS. 1 to 3 a configuration of a battery monitoring system according to various embodiments of the present disclosure will be described with reference to FIGS. 1 to 3.
  • FIG. 1 is a view schematically showing a battery monitoring system according to a first embodiment of the present invention
  • Figure 2 is a view showing the configuration of a battery monitoring system according to a second embodiment of the present invention
  • 3 is a view showing the configuration of a battery monitoring system according to a third embodiment of the present invention.
  • a battery monitoring system 10 includes a battery monitoring device 100 for monitoring a state of a battery pack 200, and a battery pack including a plurality of battery cells ( 200), the battery pack 200 is connected to the battery pack 200 through the charger 700 or the external terminal for charging the battery pack 200 and the battery pack 200 through an external terminal, and is powered from the battery pack 200.
  • a load (not shown) driven by receiving power, a charge FET 300, a discharge FET 400, a temperature sensing unit 500 for sensing a temperature of the battery pack 200, and a current of the battery pack 200. It is configured to include a current sensing unit 600 for detecting.
  • the battery pack 200 is composed of a plurality of battery cells, the battery cell is the number of the battery cells according to the purpose, use or load connected to the battery pack 200, the battery pack 200 is used.
  • the battery pack 200 may be configured.
  • the battery cells may be connected in series, in parallel, or a combination thereof, and may be charged or discharged at a constant voltage through a charger 700 or a load connected to an external terminal.
  • the battery pack 200 may be composed of all kinds of secondary batteries known in the art, such as lithium ion batteries, lithium ion polymer batteries, nickel cadmium batteries, and the like.
  • the battery monitoring apparatus 100 controls the charge FET 300 and the discharge FET 400 composed of a field effect transistor (FET), the external device connected to the external terminal (ie, charger 700 or Load) to charge or discharge the battery pack 200.
  • FET field effect transistor
  • the charging FET 300 is turned on, and the discharge FET 400 is turned off (off) to direct the battery pack 200 from the charger 700. It is possible to charge the battery pack 200 by flowing a constant voltage and current.
  • the charge FET 300 and the discharge FET 400 are turned off and on, respectively, so that a constant voltage and current flow from the battery pack 200 in the load direction. It is possible to apply power to the load.
  • the battery monitoring apparatus 100 learns the resistance of the weak battery cell among the battery cells constituting the battery pack 200 and the total resistance of the battery pack 200 according to temperature, and loads the load connected to the external terminal. By analyzing the characteristics, by providing a user with the state of the battery pack 200 according to the resistance change of the battery pack 200 according to the temperature and deterioration, the charge / discharge of the battery pack 200 used repeatedly Get immediate status.
  • the battery monitoring device 100 provides a user with a gauging (remaining capacity) according to the temperature and deterioration of the battery pack 200 accurately when charging or discharging the battery pack 200, the user, The charging or discharging state of the battery pack 200 is monitored to prevent defects caused by overcharging or overdischarging of the battery pack 200.
  • the battery monitoring apparatus 100 monitors the state of charge of the battery pack, detects the battery pack 200 before entering the overcharge state, turns off the charge FET 300, and generates a battery pack due to overcharge ( 200) to prevent the occurrence of defects.
  • the battery monitoring apparatus 100 monitors the discharge state of the battery pack 200 and detects it before the battery pack 200 enters an over discharge state, thereby turning off the discharge FET 400. To prevent the occurrence of defects in the battery pack 200 due to over discharge.
  • the charge FET 300 and the discharge FET 400 refer to a switch for charging or discharging the battery pack 200 at a constant voltage.
  • the charge FET 300 and the discharge FET 400 may perform not only FET but also insulated gate bipolar transistor (IGBT) or charge / discharge. Of course, it can be composed of various switches such as a relay (relay) for.
  • IGBT insulated gate bipolar transistor
  • the temperature sensor 500 detects the temperature of the battery pack 200 or the battery cells during charging / discharging of the battery pack 200, and provides the temperature to the battery monitoring apparatus 100.
  • the current sensing unit 600 is composed of a sense resistor (sense resistor) for sensing the current, is connected in series with the external terminal and the battery pack 200 to detect the charge / discharge current of the battery pack 200 It provides to the battery monitoring device 100.
  • sense resistor sense resistor
  • the battery monitoring apparatus 100 measures the total resistance of the battery pack 200 and the resistance of each battery cell, and also, in order to accurately gauge the remaining capacity and the total available capacity of the battery pack 200 first, The change of the resistance of the battery pack 200 according to the change state and temperature of the open circuit voltage (OCV) for the battery pack 200 in the no-load state is learned.
  • OCV open circuit voltage
  • the learning is performed through a total of two learning cycles including a first cycle and a second cycle, and a detailed description thereof will be described with reference to FIGS. 4 and 5.
  • the total resistance of the battery pack 200 learned by the temperature monitoring by the battery monitoring apparatus 100 and the resistance (that is, internal resistance) of each battery cell are composed of parameters representing temperature and resistance at each temperature. Derived from the function, it is used to predict the remaining capacity and full charge capacity (meaning the total available capacity) of the battery pack 200 under load.
  • the battery monitoring apparatus 100 measures and learns the resistance of each battery cell and the total resistance of the battery pack 200, and a factor for adjusting the resistance of the battery pack 200 according to temperature ( factor) and load characteristics. In this way, the remaining capacity and total available capacity according to the use of the battery pack 200 are accurately reflected and the user is provided by reflecting the temperature change, so that the battery pack 200 can be efficiently used, and overcharged and over discharged. It is possible to protect the battery pack 200 from before.
  • the battery monitoring apparatus 100 includes the battery pack including the total resistance of the battery pack according to the SOC, the resistance for each battery cell, the OCV variation amount, and the total capacity of the battery pack 200 through the learning cycle ( By learning the status information of the 200, the battery pack 200 is accurately monitored.
  • FIG. 2 is a block diagram schematically illustrating a battery monitoring system according to a second embodiment of the present invention.
  • the battery monitoring system 10 may further include a plurality of current / voltage measuring units 800.
  • the battery monitoring system 10 described in detail with reference to FIG. 1 directly measures the voltage of each battery cell to calculate the resistance of each battery cell and the resistance of the weak battery cell, but according to the second embodiment of the present invention.
  • the battery monitoring system 10 according to an exemplary embodiment may be configured to measure resistance to the battery cell by providing at least one or more separate current / voltage measuring units 800.
  • each current / voltage measuring unit 800 is provided, and each current / voltage measuring unit 800 is connected to at least one battery cell, respectively.
  • the current / voltage measuring unit 800 measures the current and voltage for each of the battery cells covering it to provide to the battery monitoring device 1001, the battery monitoring device 1001 measures the respective current / voltage This is learned by measuring the resistance for each battery cell and the resistance for the weak battery cell using the current and voltage for each battery cell provided from the unit 800.
  • the battery monitoring apparatus 100 shown in FIG. 1 measures the internal resistance of each battery cell using the total current of the battery pack 200 and the voltage of each battery cell.
  • the battery monitoring apparatus 1001 illustrated in FIG. 2 measures the voltage and current of each battery cell and measures the resistance of each battery cell using the same, the battery resistance apparatus 1001 can more accurately measure internal resistance.
  • the resistance may be calculated and provided to the current / voltage measuring unit 800 or may be calculated by the battery monitoring device 1001.
  • FIG. 3 is a block diagram schematically illustrating a battery monitoring system according to a third exemplary embodiment of the present invention.
  • the battery monitoring system 10 may further include a plurality of battery data processing units 900.
  • the plurality of battery data processing units 900 is configured by modularly configuring a plurality of battery monitoring apparatuses 100 described with reference to FIG. 1, and performs data processing for gauging the remaining capacity in the battery monitoring apparatus 100.
  • the centralized performance can be processed by a plurality of modules, so that the centralized load can be distributed and processed.
  • each battery data processor 900 is connected to at least one battery cell, respectively, and learns the internal resistance of each battery cell according to a temperature change, and the result thereof is transferred to the battery monitoring apparatus 1002 shown in FIG. 3. to provide.
  • the battery monitoring apparatus 1002 simply integrates the learning results provided from each battery data processing unit 900 to display remaining capacity, usable capacity, and state of health (SOH) of the entire battery pack 200. Compute and store the cumulative, and monitors the charge / discharge state of the battery pack 200.
  • SOH state of health
  • the battery data processor 900 and the battery monitoring device 1002 use various communication methods such as an inter-integrated circuit (I2C), a server message block (SMB), a controller area network (CAN), and the like for the gauging. Can send and receive data.
  • I2C inter-integrated circuit
  • SMB server message block
  • CAN controller area network
  • FIG. 4 is a diagram illustrating a first cycle for learning data for gauging according to an embodiment of the present invention
  • FIG. 5 is a second cycle for learning data for gauging according to an embodiment of the present invention. It is a diagram showing.
  • the battery monitoring apparatus 100 measures an OCV curve of the battery pack 200 in a first cycle, accumulates and stores the measured OCV curve, thereby storing the battery. Each time the pack 200 is discharged, the OCV variation amount is learned.
  • the battery monitoring apparatus 100 preferentially, in order to gauge the resistance change and the capacity of the battery pack 200 according to temperature and aging, first of the battery pack 200 in a state of charge (SOC) through a first cycle. Learn how OCV changes (ie, OCV curves).
  • the first cycle discharges the battery pack 200 with a constant C-rate (eg, 1 / 20C) under no load, divides the battery pack 200 into a plurality of SOC grid points, and stores the corresponding battery pack 200 for each SOC grid point. By sensing the voltage of), the amount of change in the OCV can be measured. Meanwhile, the SOC grid point is shown in FIG. 5.
  • a constant C-rate eg, 1 / 20C
  • the amount of change in OCV can be measured through the self-discharge of the battery pack 200, but in the case of self-discharge, it takes a long time to complete discharge, so that a very small current flows to measure the amount of change in the OCV and measures it at no load. It is assumed to be equal to the amount of change in the OCV.
  • the battery monitoring apparatus 100 detects a flat region in which the OCV variation is slow or almost absent from the measured OCV curve on the SOC.
  • the flat region is detected by finding a point and b point, where each a point and b point is a place where the amount of voltage change is rapidly changed per unit time.
  • a point is a point where the voltage change amount per unit time is drastically reduced
  • b point is a place where the voltage change amount per unit time is rapidly increased.
  • the flat region is positioned between the a point and the b point, and means a section in which the voltage change amount is gentle or nearly equal.
  • point a is a point where a point larger than a preset value is first detected by differentiating the OCV curve in unit time
  • point b is a point where a point smaller than a preset value is first detected by differentiating the OCV curve in unit time. It means the point being.
  • a point having dV / dT> 30 uV / S can be detected as a point, and a point having dV / dT ⁇ 30 uV / S can be detected as a b point.
  • 30uV / S as a reference for detecting each point can be set differently according to the characteristics of the battery cell.
  • the battery monitoring apparatus 100 calculates the total capacity of the battery pack 200 through the first cycle.
  • the total capacity may be calculated by calculating a total amount of charge flowing while discharging the battery pack 200 to a discharge termination voltage in a no-load state, or may be measured by calculating an area of the OVC voltage curve.
  • the total capacity of the battery pack 200 may be measured by calculating the area of the battery pack 200.
  • FIG. 5 is a diagram illustrating a second cycle for learning data for gauging according to an embodiment of the present invention.
  • the battery monitoring apparatus 100 measures a resistance value for each SOC grid point of the battery pack 200 through a second cycle.
  • the battery monitoring device 100 discharges the battery pack 200 at 1/5 C-rate in order to measure the resistance value for each SOC grid point, and the total resistance and the first resistance of the corresponding battery pack 200.
  • the resistance of the weak battery cell that outputs the weak voltage is measured.
  • the second cycle is performed at least three times at each temperature (low temperature, room temperature, and high temperature), and measures the overall resistance of the battery pack 200 and the resistance of the weak battery cell for each temperature.
  • each temperature is set to 25 degrees at room temperature, 40 degrees or more at high temperature, 5 degrees or less at low temperature, and measures the total resistance of the battery pack 200 and the resistance of the weak battery cell for each set temperature.
  • each temperature can be set differently according to the usage of the battery, the environment of use, or the user's setting, and for more accurate precision, many temperature ranges (for example, -5 degrees or less, 0 degrees, 5 degrees, 10 degrees, 15 degrees, 25 degrees, 40 degrees or more) can be set.
  • the total voltage for each SOC grid point may be measured by Equation 1 since the voltage curve for each section has already been measured through the first cycle.
  • Vm [i] OCV [i]-IR [i]
  • Vm refers to the total measured voltage of the battery pack 200 and refers to the open circuit voltage in the no-load state measured through the first cycle.
  • i denotes a point at which a resistance value is calculated by using a preset virtual grid point on the SOC.
  • the battery monitoring apparatus 100 measures the resistance of each battery cell for each SOC grid point by using [Equation 1].
  • Vm denotes a voltage measured for each battery cell
  • I denotes a current measured for each battery cell.
  • the battery monitoring apparatus 100 learns a change in the internal resistance of the battery pack 200 for each temperature, and when the battery pack 200 is discharged, the internal resistance of the battery pack 200. Can be measured accurately. Through this, the capacity of the battery pack 200 can be accurately gauged and provided to the user. In addition, due to repetitive charging / discharging of the battery pack 200, an increase in internal resistance due to deterioration of the battery cell may be detected, and when the internal resistance of the corresponding battery pack 200 rises above a predetermined value, By notifying the user or by blocking the charging or discharging by itself, the risk of heat generation and explosion of the corresponding battery pack 200 may be blocked in advance.
  • FIG. 6 is a block diagram showing the configuration of a battery monitoring apparatus according to an embodiment of the present invention.
  • the battery monitoring apparatus 100 may charge or discharge the battery pack 200 to charge or discharge the corresponding battery pack 200 according to an external device connected in series with the battery pack 200.
  • Battery pack 200 current / voltage measuring unit 120 for measuring the current and voltage of the battery pack 200
  • battery pack temperature measuring unit 130 for measuring the temperature of the battery pack
  • battery pack 200 according to the temperature Learning unit 140 to measure the resistance of the learning unit 140
  • a battery pack resistance measuring unit 150 for measuring the resistance of the battery pack 200 according to the learning results
  • temperature and battery pack 200 in accordance with the learning results Protects the battery pack 200 according to a change in the resistance measured by the battery pack capacity gauging unit 160 and the battery pack resistance measuring unit 150 to gauge the capacity of the battery pack 200 due to deterioration of the battery pack 200.
  • the protection unit 170 for generating a control signal to the, the battery pack capacity crab It is configured to include a jingbu 160 gauging information, notifications provided by the condition information and the like of the battery pack 200 to the user unit 180, a controller 190 and a memory (not shown) through.
  • the battery pack charge / discharge control unit 110 generates and transmits a control signal for charging or discharging the battery pack 200 according to the type of external device connected through an external terminal.
  • the battery pack charge / discharge control unit 110 controls the charge FET 300 and the discharge FET 400 to charge or discharge the battery pack 200. For example, when an external power source including a charger 700 for charging the battery pack 200 is connected to the external terminal, each of the charging FET 300 and the discharge FET 400 is turned on through the control signal. And off, it is possible to charge the battery pack 200 with a constant voltage through the external power. In addition, when a load (for example, a car, etc.) driven by receiving power from the battery pack 200 is connected through the external terminal, the battery pack charge / discharge control unit 110 turns on the discharge FET 400. By turning off the charging FET 300, the battery pack 200 is discharged so that power can be applied to the load.
  • a load for example, a car, etc.
  • the battery pack current / voltage measuring unit 120 measures the current and voltage of the battery pack 200 when charging / discharging the battery pack 200.
  • the battery pack current / voltage measuring unit 120 measures the current and voltage of the entire battery pack 200, and also measures the current and voltage of each cell constituting the battery pack 200, respectively.
  • Current and voltage for the battery pack 200 or the battery cell may be measured through a current sensor and a voltage sensor.
  • the battery pack current / voltage measuring unit 120 may be modularized into a plurality of current / voltage measuring units 800 respectively covering a plurality of battery cells.
  • the battery monitoring apparatus 100 may receive a voltage and a current for each of the battery cells measured through the plurality of modularized current / voltage measuring units 800.
  • the battery pack temperature measuring unit 130 monitors the temperature change amount during charging / discharging by measuring the temperatures of the battery pack 200 and the battery cells during charging / discharging of the battery pack 200.
  • the learner 140 learns changes in the OCV curve, total capacity, and resistance of the battery pack 200 according to deterioration and temperature through a learning cycle.
  • the learning cycle includes a first cycle and a second cycle, and learns the OCV curve (ie, OCV variation) of the battery pack 200 and the total capacity of the battery pack 200 through the first cycle. .
  • the learner 140 learns resistance changes according to temperature and deterioration of the battery pack 200 through a second cycle.
  • the first cycle discharges the battery pack 200 with a specific C-rate (eg, 1/20 C-rate) at no load and normal temperature, and learns an OCV curve for the battery pack 200. This may be performed periodically or aperiodically according to a preset period or user.
  • a specific C-rate eg, 1/20 C-rate
  • the learner 140 detects the flat region of the OCV curve in the first cycle, and the flat region finds two points where the amount of change of the OCV curve changes rapidly as described with reference to FIG. 3. Is detected.
  • the learner 140 learns by calculating the total capacity in the no-load state. Calculating the total capacity means that the battery pack 200 is discharged to a discharge termination voltage at a constant C-rate in the battery pack 200 to measure the total capacity of the battery pack 200. to be. On the other hand, since the aging occurs as the battery pack 200 is connected to a load and is used, the total capacity of the battery pack 200 learned through the first cycle is inevitably changed (that is, reduced). .
  • the learning unit 140 accumulates and stores the measured OCV curve and the total capacity of the battery pack 200 in a memory (not shown) through a first cycle, thereby totaling the OCV curve and the battery pack 200. Learn about changes in capacity.
  • the C-rate is not limited to 1/20 C-rate, it can be set differently depending on the purpose of use, purpose of use or user of the battery pack 200.
  • the learner 140 learns the resistance of the battery pack 200 through a second cycle.
  • the resistance is learned by measuring the total resistance of the battery pack 200, the resistance of each battery cell constituting the battery pack 200, and the resistance of a weak cell that outputs the lowest voltage.
  • the second cycle discharges the battery pack at a constant C-rate at a normal temperature, a high temperature, and a low temperature, and weakly outputs a resistance of another battery pack 200, a resistance for each battery cell, and a lowest voltage at a temperature. Learn by measuring the resistance to a weak cell.
  • the second cycle may also be performed periodically or aperiodically according to a preset period or user.
  • the second cycle is to measure the resistance value of each grid point by dividing the SOC of the battery pack 200 into a plurality of sections (that is, grid points), the OCV curve for each grid point already through the first cycle Since we learned that, the measured voltage in the second cycle (measured voltage) is OCV-IR. Therefore, the voltage Vm [i] measured for each grid point becomes OCV [i]-IR [i], and R [i] becomes (Vm [i]-OCV [i]) / I. Where i represents each divided grid point.
  • the SOC grid points are measured by dividing the SOC grid points less. Otherwise, SOC grid points are divided more finely than the flat region, because the voltage changes rapidly. Measure the resistance per grid point and store it in memory.
  • Rnew means the resistance measured in the learning cycle (second cycle) currently being performed
  • Rold means the resistance measured in the learning cycle previously performed.
  • Rnew is calculated every time the learning cycle starts. Therefore, since Rnew / Rold is the current resistance compared to the previous resistance, it becomes an aging rate which is a resistance change of the battery pack 200 due to deterioration. I also denotes an SOC grid point.
  • the learning unit 140 calculates a variable (that is, a temperature factor) that each temperature has on the resistance through a second cycle, and reflects the calculated temperature factor to the measured resistance value to finalize the resistance in the corresponding learning cycle. Measure to learn.
  • a variable that is, a temperature factor
  • Rnew is the same as [Equation 2]
  • i represents the SOC grid point
  • j represents the temperature range.
  • j represents the range of temperature changes on the SOC, where low temperature (eg 5 ° to 24 °) is set to 0, normal temperature (eg 25 ° to 39 °) is set to 1, and high temperature (eg 40 ° or more) ) Can be set to 2.
  • the temperature range may be further divided according to the resource allocation capability of the battery monitoring apparatus 100.
  • the value for each temperature range may be set by setting the lowest temperature range to 0 and sequentially increasing the temperature by 1 for each temperature range.
  • the battery pack resistance measuring unit 150 measures the resistance of the battery pack 200 that is currently discharged by the load is connected to each SOC grid point according to the learning result. The measurement measures the resistance of each battery cell and the total resistance of the battery pack 200 for each predetermined SOC grid point.
  • the resistance is measured in the same manner as the method of calculating the resistance value through the second cycle. That is, the total resistance of the battery pack 200 and the resistance of the battery cells are measured by using Equations 2 and 3, respectively.
  • the weak cell instead of the cell resistance of each battery, only the resistance of several weak cells having the largest pack resistance or resistance is learned for each temperature.
  • the weak cell can be found by determining the cell in which the cell voltage or the pack voltage reaches the discharge end voltage as the weak cell. If one battery cell reaches the discharge end voltage of the cell before the pack voltage reaches the end discharge voltage of the pack, the discharge is terminated. At low voltages, the life of the cell is greatly reduced, so the cell needs to be protected.
  • the method of learning the change of the resistance value for the weak cell is the same as that of the pack resistance. However, finding the weak cell as a difference is finding the lowest voltage in the cell. Therefore, the voltage measurement of the weak cell may be expressed as the value obtained by multiplying the wire resistance between the current and the cell by the voltage measurement of the weak cell. These weak cell voltage measurements can be used to learn the weak cell resistance.
  • the battery pack resistance measurement unit 150 maps the measurement result of measuring the total resistance of the battery pack 200 and the resistance of each battery cell and the battery state (deterioration degree) for each resistance stored in advance. By comparing the tables, the battery state according to the measurement result may be extracted from the mapping table, provided to the user terminal, or output to the display.
  • the battery pack resistance measuring unit 150 protects when the total resistance of the battery pack 200 exceeds a preset value or when the resistance of each measured battery cell exceeds a preset value. Through the unit 170, it is possible to block the discharge (or charging) of the battery pack 200. Through this, it is possible to protect the external device or the user using the battery pack 200 from a defect (that is, explosion, etc.) of the battery pack 200.
  • the battery pack capacity gauging unit 160 user by gauging the remaining capacity (remaining capacity) and the total available capacity (useable capacity) of the battery pack 200 on the basis of the results learned through the learning unit 140 Make it available to
  • the protection unit 170 monitors the temperature change measured by the battery pack temperature measuring unit 130, and when the current temperature exceeds a preset value can block the charging or discharging of the battery pack 200. By doing so, it is possible to prevent damage of the battery pack 200 due to heat.
  • the protection unit 170 keeps track of the voltage change amount (that is, the voltage curve) of the battery pack 200 that is currently being discharged or charged, and the corresponding battery when it is equal to the discharge end voltage or the maximum charging voltage that is preset and stored. By blocking the discharge or charging of the pack 200, it is possible to prevent damage to the battery pack 200 due to over discharge or over charge.
  • the discharge termination voltage and the maximum charging voltage are set in advance and stored in the memory.
  • the notification unit 180 provides the remaining capacity and total available capacity of the battery pack 200 to the user terminal through the battery pack capacity gauging unit 160 or displays the current battery by displaying on the display of the user terminal. Get immediate insight into the pack's remaining capacity and total available capacity.
  • the notification unit 180 extracts battery pack state information from the mapping table according to the resistance measured by the battery pack 200 resistance measuring unit 150 and provides the user terminal with the state of the corresponding battery pack 200. To know.
  • the notification unit 180 provides a warning sound and information on this, thereby replacing the corresponding battery pack 200 or the battery cell. Allow for repair.
  • FIG. 7A and 7B are flowcharts illustrating a procedure of providing a user with a remaining capacity and total available capacity according to a discharge of a battery pack or a weak cell according to an embodiment of the present invention
  • FIG. 8 is a view of the present invention.
  • 9 is a flowchart illustrating a method of updating a battery pack capacity and an SOH according to an embodiment
  • FIG. 9 is a method of gauging the remaining capacity and total available capacity according to a discharge of a battery pack according to an embodiment of the present invention. Figure is shown to explain.
  • the procedure of gauging the remaining capacity and the total available capacity to the user by discharging the battery pack 200 is first provided by the battery capacity of the battery monitoring apparatus 100.
  • the gauging unit 160 detects the OCV point previously measured according to the discharge of the battery pack 200 and the current OCV point with the pass charge (S110 and S210).
  • the OCV point means the SOC grid point.
  • the SOC grid point is set in advance according to the learning cycle previously performed, and the total capacity of the battery pack 200 is measured. Therefore, the previously measured OCV point is already known so that the current OCV point can be detected based on the OCV point.
  • Passed Charge means a coulomb that has already flowed, and according to the learning result, the total capacity of the corresponding battery pack 200 is already known and the OCV curve is known. Even in this case, the current SOC can be obtained from the charge flowed at the voltage obtained from the previous OCV.
  • the passed charge refers to the total amount of charges flowing from the SOC grid points 1 to 6.
  • the voltage is the y-axis, and the area of the voltage curve and the figure constituting the x-axis and the y-axis is obtained, the capacity in the corresponding section can be obtained.
  • the passed charge can be measured by calculating the area of the voltage curve corresponding to the SOC grid points 1 to 6.
  • the area at each SOC grid point is the capacity at the corresponding SOC grid point. That is, if the SOC grid point is i, the area of the voltage curve between the previous SOC grid point i-1 and the SOC grid point i becomes the capacity, i.e. capacity [i], at the SOC grid point i.
  • the battery capacity gauging unit 160 subtracts the voltage measured at the current battery pack 200 (that is, current * battery pack resistance) from the detected voltage at the OCV position. The result of the subtraction is compared with the discharge end voltage (S120, S220).
  • the weak cell instead of the cell resistance of each battery, only the resistance of several weak cells having the largest pack resistance or resistance is learned for each temperature.
  • the weak cell can be found by determining the cell in which the cell voltage or the pack voltage reaches the discharge end voltage as the weak cell. If one battery cell reaches the discharge end voltage of the cell before the pack voltage reaches the end discharge voltage of the pack, the discharge is terminated. At low voltages, the life of the cell is greatly reduced, so the cell needs to be protected.
  • the method of learning the change of the resistance value for the weak cell is the same as that of the pack resistance. However, finding the weak cell as a difference is finding the lowest voltage in the cell. Therefore, the voltage measurement of the weak cell may be expressed as the value obtained by multiplying the wire resistance between the current and the cell by the voltage measurement of the weak cell. These weak cell voltage measurements can be used to learn the weak cell resistance.
  • the current Passed charge is calculated by adding the capacity (capacity [i] calculated at the current OCV position to the previously calculated Passed charge (S120).
  • the current residual capacity is updated by subtracting the capacity calculated from the current OCV position from the previously calculated residual capacity (S121 and S222).
  • FIG. 8 is a view illustrating a method of gauging the remaining capacity and the total available capacity according to the discharge of the battery pack according to an embodiment of the present invention.
  • updating the capacity is very important for controlling the charging current according to the current capacity to anticipate SOH or mitigate battery degradation.
  • SOH represents the rate of deterioration of a pack and is easily calculated by the current capacity / original capacity in the learning cycle or design capacity at the time of design. Many algorithms, however, cannot calculate current capacity accurately and often.
  • the method of updating the current capacity starts at the end of every full charge (S310).
  • the current used in the learning cycle is set to the current value or the current used in the capacity at the time of design by the manufacturer of the cell is set to the current value (S320).
  • the current OCV location is searched (S330). It is checked whether the result of calculating (OCV [i]-current * pack resistor [i]) is large compared to the discharge completion voltage (S340). If large, the result of adding the capacity (capacity [i]) to the current capacity is allocated to the current capacity (S350). Otherwise, the current capacity is allocated to the new capacity without separately calculating the current capacity (S360).
  • SOH is a value obtained by dividing learned capacity by present capacity.
  • the difference between capacity calculation and SOH calculation is that the remaining capacity and full charge capacity change depending on the actual system load current (due to voltage drop), but the capacity in the SOH calculation is an absolute cell. It should be represented only by deterioration of.
  • step S120 / S220 if the result of the subtraction in step S120 / S220 is less than the discharge end voltage (S120, S220), it means that the battery pack 200 is completely discharged, at this time, the battery pack capacity gauging unit 160 The total available capacity of the battery pack 200 is measured by adding the passed charge to the remaining capacity calculated by performing steps S120 and S121 (S130 and S230).
  • the battery capacity gauging unit 160 compares the measured total available capacity with a value obtained by multiplying the SOH by the MC (minimum capacity) previously stored and stored (S140 and S240).
  • MC is provided by the manufacturer of the battery pack 200, in some cases the total available capacity may be zero when the resistance is non-ideally large at cryogenic temperatures, the minimum available by the manufacturer to prevent this Value for capacity.
  • the MC represents the capacity when the minimum operating temperature and the maximum current of the initial battery pack 200 are discharged to the discharge end voltage. Since it decreases as the battery cell or battery pack 200 is aged, it may represent the MC of the current battery pack 200 by multiplying SOH.
  • the battery capacity gauging unit 160 sets the total available capacity to MC to total the corresponding battery pack 200.
  • the available capacity is measured (S150, S250).
  • the SOH is divided by the total available capacity of the initial battery pack 200 (that is, the maximum available capacity theoretically provided by the battery pack 200) by the aging does not occur in the current total available capacity by , Is calculated.
  • the battery capacity gauging unit 160 returns and stores the remaining capacity, the total available capacity, and the passed charge of the measured battery pack 200 (S160 and S260), and stores the measured remaining capacity and the total available capacity. It may be provided to the user terminal or displayed on the display so that the user may recognize it.
  • FIG. 10 is a block diagram illustrating a battery monitoring system according to another exemplary embodiment of the present invention.
  • the battery monitoring system 10 includes a battery monitoring apparatus 1003, a system MCU 7001, a current sensing unit 600, a battery pack 200, a charge FET 300, and a discharge FET ( 400, a temperature detector 501 for sensing the temperatures of the charge FET 300 and the discharge FET 400, and a cell temperature detector 502 for sensing the temperature of each cell of the battery pack 200.
  • a battery monitoring apparatus 1003 a system MCU 7001, a current sensing unit 600, a battery pack 200, a charge FET 300, and a discharge FET ( 400, a temperature detector 501 for sensing the temperatures of the charge FET 300 and the discharge FET 400, and a cell temperature detector 502 for sensing the temperature of each cell of the battery pack 200.
  • a current sensing unit 600 As shown in FIG. 10, the battery monitoring system 10 includes a battery monitoring apparatus 1003, a system MCU 7001, a current sensing unit 600, a battery pack 200, a charge FET 300, and a discharge FET ( 400,
  • the battery monitoring apparatus 1003 performs the same role as the battery monitoring apparatus 100 to monitor the state of the battery pack 200.
  • the temperature sensing unit 501 measures the FET temperature of the charging FET 300 to measure the battery monitoring device 1003. To provide. On the contrary, when the battery pack 200 is discharged, the FET temperature of the discharge FET 400 is measured and provided to the battery monitoring apparatus 1003.
  • the cell temperature detector 502 measures the temperature of each battery cell at the time of charging / discharging the battery pack 200 and provides it to the battery monitoring apparatus 1003.
  • the battery monitoring apparatus 1003 utilizes the FET temperature provided by the temperature sensing unit 501 and the cell temperature sensing unit 502 and the temperature of the battery cell to generate an internal / external short of the battery cell. detect (short)
  • the FET temperature provided by the temperature sensing unit 501 and the cell temperature sensing unit 502 and the temperature of the battery cell to generate an internal / external short of the battery cell. detect (short)
  • a method of detecting an internal / external short of the battery cell will be described in detail.
  • the battery monitoring apparatus 1003 is monitoring the temperature of each of the provided battery cells, and when there is only no load current or sleep current on the entire circuit, the temperature of the current battery cell is the FET. When the temperature is higher than the sum of the preset temperature and the predetermined temperature value, it is determined that an internal or external short occurs in the battery cell.
  • the sleep current is a current that does not affect the cell temperature, and may be provided by the battery pack 200 manufacturer or the user, and the cell temperature means a temperature of each battery cell during charging or discharging.
  • the FET temperature refers to the temperature of the charge FET 300 or the temperature of the discharge FET 400 according to the charge or discharge of the battery pack 200.
  • the margin value refers to a temperature value which is preset and stored, and is a value provided by a user or a manufacturer of the battery pack 200.
  • the internal / external short of the battery cell may be detected by the system MCU 7001.
  • the system MCU 7001 detects that the internal / external battery cells are shorted when the cell temperature> system temperature + margin value.
  • the slip current and the margin value which do not affect the cell temperature may be defined by the battery pack 200 manufacturer.
  • the battery monitoring apparatus 100 may detect an internal / external short of the battery cell through thermal modeling. That is, the battery monitoring apparatus 100 may be discharged from the battery cell when the room temperature estimated by the thermal modeling using the FET temperature is greater than the room temperature expected by the thermal modeling using the battery cell temperature. It is determined that an external short has occurred.
  • the thermal modeling is produced by experiments measuring temperature at variable current and variable room temperature, and the FET temperature can be replaced with the temperature measured at a different part from the battery cell temperature.
  • the internal / external short of the battery cell may be detected by the system MCU 7001.
  • the system MCU 7001 may receive the temperature value of the battery cell from the battery monitoring device 1003 and monitor the temperature change of the battery cell.
  • the system MCU 7001 measures the temperature value of the entire system, and adds the margin value which is set in advance and stored therein, and the temperature of the battery cell exceeds the summed value in the state of only no load current or slip current. In this case, it is determined that an internal / external short occurs in the battery cell.
  • the system MCU 7001 may sense an internal / external short of the battery cell through thermal modeling in addition to the above method. That is, the base system MCU 7001 may be configured in the battery cell when the room temperature expected by the thermal modeling using the system temperature is greater than the room temperature expected by the thermal modeling using the battery cell temperature. It is determined that an internal / external short has occurred.
  • the thermal modeling is generated by an experiment of measuring a temperature at a variable current and a variable room temperature, and the FET temperature may be replaced by a temperature measured at a portion different from the cell temperature.
  • the battery monitoring apparatus 100 may detect an internal / external short of the battery cell by Equation 4.
  • the no-load state should be maintained for the time between detecting the first OCV and the second OCV.
  • the battery monitoring apparatus 100 may detect an internal / external short of the battery cell by [Equation 5].
  • the expected OCV is the measured voltage plus the current multiplied by the resistance. And the measured voltage and current can be averaged due to the spike voltage and current. Error margin depends on spike voltage and current.
  • the amount of charge passed is calculated by periodic accumulation of current or by the Coulomb counter on the monitoring IC.
  • FIG. 13 is a block diagram illustrating a battery monitoring system for detecting internal / external disconnection of a battery cell according to another exemplary embodiment of the present invention.
  • the new SOH is divided by the latest SOH from the previous charge, and if it is less than the ratio set by the user, the parallel battery cell is disconnected.
  • the maximum degradation rate can be calculated by testing over long cycles.
  • the main MCU can accumulate capacity, usable capacity, remaining capacity, SOH, etc., from modules that generate data by machine learning gauging. That is, the total capacity is the sum of the capacity of each module, and the total usable capacity is the sum of the available capacity of each module. Also, the total remaining amount is the sum of the remaining amounts of each module.
  • Detecting an unexpected error in either the main system or any component error, such as ADC or communication on each module means that the main system's usable capacity is less than the total capacity minus the margin of error for the capacity. If subtracting the total available capacity is less than the error margin for usable capacity, then subtracting the total remaining capacity from the remaining capacity of the main system is less than the error margin for remaining capacity is an example of an unexpected error being detected.
  • the error margin can be set through a long cycle test.
  • the present invention the battery monitoring and protection method through the machine learning to learn the change of the resistance according to the repeated charge and discharge of the battery pack to accurately monitor the state of the battery pack due to temperature and aging, By precisely gauging the capacity and providing it to the user, there is an effect of providing convenience to the user while protecting the battery from being effectively protected from overcharging or overdischarging.
  • the present invention accurately monitors the state of the battery according to aging or temperature by learning a process of changing the resistance of the battery pack and the resistance of the plurality of cells constituting the battery pack as the battery pack is repeatedly charged and discharged.
  • the capacity (capacity) of the battery it is possible to effectively protect the battery from overcharging and overdischarging and to provide convenience to the user.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Secondary Cells (AREA)

Abstract

The present invention relates to a battery monitoring and protection system, and provides a system and a method therefor, the system enabling the stable monitoring and protection of a battery even when the battery ages and in high- or low-temperature environments in order to overcome the disability to precisely and effectively protect the battery because the battery cell cannot be accurately monitored due to the properties thereof changing as the battery cell ages and the accuracy of battery performance measurements decreasing at high and low temperatures.

Description

배터리 모니터링 및 보호 시스템Battery Monitoring and Protection System
본 발명은 배터리 모니터링 및 보호 시스템에 관한 것으로, 더욱 상세하게는 배터리 셀이 에이징됨에 따라 그 특성이 변하고, 고온과 저온에서 배터리의 성능을 측정하는 정확도가 떨어져 배터리 셀을 정밀하게 모니터링하지 못해 배터리를 정밀하고 효과적으로 보호하지 못하는 점을 극복하기 위해 배터리의 에이징 및 고온이나 저온의 환경에서도 배터리의 안정적인 모니터링과 보호를 가능하게 하는 시스템과 그 방법을 제공하고자 하는 것이다.The present invention relates to a battery monitoring and protection system, and more particularly, the characteristics of the battery cells change as they age, and the accuracy of measuring the performance of the battery at high and low temperatures is not accurate to monitor the battery cells. In order to overcome the inability to protect precisely and effectively, the present invention is to provide a system and method for aging the battery and the stable monitoring and protection of the battery even in a high or low temperature environment.
전기자동차나 에너지저장장치(ESS, Energy Storage System)에는 2차전지인 대용량의 배터리가 소요된다. 상기 배터리는 충전과 방전을 반복함에 따라 그 성능이 퇴화되어 수명을 다하게 된다. 이때 배터리의 성능이 퇴화되는 정도는 SOH(Storage of Health)라는 파라미터를 통해서 정량적으로 평가된다.Electric vehicles or energy storage systems (ESSs) require large-capacity batteries, which are secondary batteries. As the battery is repeatedly charged and discharged, its performance deteriorates and ends its life. At this time, the degree of degradation of the battery performance is quantitatively evaluated through a parameter of storage of health (SOH).
SOH를 평가하여 배터리의 교체 시점을 산출하고, 배터리의 사용기간에 따른 배터리의 충전 및 방전 용량을 조절하여 배터리의 과충전 및 과방전을 방지할 수 있다.By evaluating the SOH to calculate the replacement time of the battery, it is possible to prevent the overcharge and over-discharge of the battery by adjusting the charge and discharge capacity of the battery according to the period of use of the battery.
일반적으로 배터리의 노화는 배터리의 내부저항의 변화를 측정함으로써 검출되는데, 배터리가 처음 공장에서 생산되어 출하될 때는 내부저항이 매우 작다가 충전과 방전을 거듭함에 따라 내부저항이 커지다가 급기야 전자디바이스에 전력을 전달할 수 없을 정도로 내부저항이 커지게 된다. 따라서 배터리의 수명을 늘리기 위해서 충전과 방전을 효과적으로 관리할 필요가 있다.In general, the aging of the battery is detected by measuring the change in the internal resistance of the battery.When the battery is first manufactured and shipped from the factory, the internal resistance is very small, and as the charge and discharge are repeated, the internal resistance increases, The internal resistance becomes large enough to transfer power. Therefore, it is necessary to effectively manage the charging and discharging to extend the life of the battery.
배터리의 내부저항이 변화함에 따라 배터리의 용량이 변화하고, SOH는 배터리의 내부저항과 온도에 의해 추정이 가능하다. 상기 추정하는 과정은 먼저 충전과 방전을 반복할 때 마다 배터리의 내부저항을 측정하고 또한 온도별로 배터리의 용량을 측정한 다음, 이를 배터리의 초기용량을 기준으로 상대적으로 수치화하여 SOH와의 매핑관계를 메모리 테이블에 저장하여 관리한다. 그리고 실제 배터리의 사용 환경에서 배터리의 내부저항과 온도를 측정하고, 상기 매핑 테이블로부터 내부저항과 온도에 대응되는 SOH를 맵핑하면 해당 배터리의 SOH를 추정할 수 있다.As the internal resistance of the battery changes, the capacity of the battery changes, and the SOH can be estimated based on the internal resistance and temperature of the battery. The estimating process first measures the internal resistance of the battery every time the charging and discharging is repeated, measures the capacity of the battery for each temperature, and then quantizes the relative capacity based on the initial capacity of the battery to store the mapping relationship with the SOH. Store and manage in a table. The SOH of the battery may be estimated by measuring the internal resistance and the temperature of the battery in an actual environment of using the battery, and mapping the SOH corresponding to the internal resistance and the temperature from the mapping table.
그런데 전기자동차나 에너지저장장치와 같이 대용량의 전원을 필요로 하는 경우, 배터리 셀의 수가 많아지고 이에 따라 메모리의 용량도 증가하는데, 이러한 메모리의 증가는 상기 전기자동차나 에너지저장장치에서 주요 장해 중 하나이다. 저온이고 C-Rate(Current Rate)가 높은 경우 성능을 측정하는 것이 어렵다. 이는 메모리를 늘릴 수 없는 제약으로 인해서 그리드 포인트의 수를 늘리는데 한계가 있기 때문이다. 또한 C-Rate가 높은 경우 전압에 조금만 오차가 있어도, 용량 오차가 많이 생긴다. 이는 온도특징에 대해서 학습을 하지 않기 때문이다. 또한 셀 레벨에서 내부저항만을 학습하여서는 에이징에 따른 구성요소의 특징을 추적할 수 없다.However, when a large amount of power is required, such as an electric vehicle or an energy storage device, the number of battery cells increases and thus the memory capacity increases, which is one of the main obstacles in the electric vehicle or the energy storage device. . It is difficult to measure performance at low temperatures and high C-Rate (Current Rate). This is because there is a limit to increasing the number of grid points due to the constraint that memory cannot be increased. In addition, when the C-Rate is high, even a small error in voltage causes a large capacity error. This is because we do not learn about temperature features. Also, by learning only the internal resistance at the cell level, the characteristics of the component due to aging cannot be tracked.
여기서 C-Rate는 배터리의 충전과 방전시 다양한 사용조건하에서의 전류값 설정 및 배터리의 가능 사용시간을 예측하거나 표기하기 위한 단위로서, 충/방전률에 따른 전류값의 산출은 충전 또는 방전전류를 배터리 정격용량으로 나누어 충전 및 방전 전류값을 산출하는데 활용된다.Here, C-Rate is a unit for estimating or marking the current value under various usage conditions and the possible use time of the battery when charging and discharging the battery. The calculation of the current value according to the charge / discharge rate is based on the charge or discharge current. It is used to calculate the charge and discharge current values by dividing by the rated capacity.
따라서 본 발명은 배터리 셀이 에이징됨에 따라 그 특성이 변하고, 고온과 저온에서 배터리의 성능을 측정하는 정확도가 떨어져 배터리 셀을 정밀하게 모니터링하기 어렵고, 이로 인해 배터리를 적절하게 보호하지 못하는 점을 극복하기 위해 배터리의 에이징 및 고온이나 저온의 환경에서도 배터리의 안정적인 모니터링과 보호를 가능하게 하는 것을 목적으로 한다.Accordingly, the present invention changes the characteristics of the battery cells as they age, the accuracy of measuring the performance of the battery at high and low temperature is difficult to accurately monitor the battery cells, thereby overcoming the failure to properly protect the battery The objective is to enable battery aging and stable monitoring and protection of batteries even in high or low temperature environments.
상기와 유사한 목적을 달성하기 위한 종래의 선행기술로는 먼저, 미국등록특허 제8459978호(2013.05.28.)는 충전용 배터리의 상태를 모니터링하는 것으로, 배터리의 방전 동안에 배터리와 관련하여 적어도 하나의 측정된 값을 반복적으로 획득하고, 배터리의 방전동안에 배터리의 상태를 반복적으로 계산하며(상기 배터리의 상태는 이전에 계산된 배터리의 상태, 상기 측정된 값, 그리고 적어도 하나의 배터리 파라미터에 의존함), 배터리의 상태가 임계값을 초과하기 전에 제1 속도로 배터리의 파라미터를 업데이트하고, 배터리의 상태가 임계값을 초과한 후에 제1 속도보다 빠른 제2 속도로 배터리의 파라미터를 업데이트하며, 파라미터의 각 업데이트에 응답하여 배터리의 상태를 교정하는 것을 특징으로 한다.Conventional prior art for achieving a similar purpose as described above, US Patent No. 8459978 (2013.05.28.) Is to monitor the state of the rechargeable battery, at least one associated with the battery during the discharge of the battery Obtain the measured value repeatedly, repeatedly calculate the state of the battery during the discharge of the battery (the state of the battery depends on the state of the previously calculated battery, the measured value and at least one battery parameter) Update the parameters of the battery at a first rate before the state of the battery exceeds the threshold, update the parameters of the battery at a second rate faster than the first rate after the state of the battery exceeds the threshold, and Responsive to each update characterized in that to correct the state of the battery.
그러나 상기 선행기술에서는 배터리의 상태에 대한 파라미터를 업데이트하는 점은 본 발명과 일부 유사한 점이 있으나, 상기 선행기술에서는 본 발명의 에이징이나 온도에 따른 배터리 셀의 특성변화를 고려하는 것에 대한 아무런 시사나 암시 또는 기재가 없는 것이 본 발명과 차이점이다.However, in the prior art, the updating of the parameter for the state of the battery has some similarities to the present invention, but in the prior art, there is no suggestion or suggestion for considering the characteristic change of the battery cell according to the aging or temperature of the present invention. Or the absence of a description is different from the present invention.
또한 미국등록특허 제7808244호(2010.10.05.)는 초기전압과 전류를 측정 및 이전에 예측된 배터리 저항을 이용하여 충전상태를 결정하는 방법에 관한 것으로, 배터리의 내부 저항값을 계산하고 배터리 충전상태(SOC: State of Charge)와 온도에 따른 내부저항의 의존도를 정의하는 파라미터를 업데이트하는 프로세서를 구비한다. 상기 데이터베이스는 정확한 잔여 사용시간을 계산하는데 필요한 정보를 얻는데 사용된다. 상기 프로세서는 측정된 배터리의 개방회로전압(OCV: Open Circuit Voltage)값의 특징과 배터리가 안정화된 후에 가장 최근에 측정된 OCV의 값에 대응하는 출발 SOC값의 결정을 위해 대표하는 메모리에 데이터베이스의 항목을 반영하는 역할을 한다. 이로써 상기 프로세서는 배터리의 현재 SOC, 현재 배터리 용량, 배터리전원으로 동작하는 디바이스의 남아있는 동작시간을 결정한다.In addition, US Patent No. 7808244 (October 5, 2010) relates to a method of measuring initial voltage and current and determining a state of charge using a previously predicted battery resistance. It includes a processor that updates parameters defining the state of charge (SOC) and the dependence of internal resistance on temperature. The database is used to obtain the information needed to calculate the correct remaining usage time. The processor may determine the characteristics of the measured open circuit voltage (OCV) value of the battery and the starting SOC value corresponding to the value of the most recently measured OCV value after the battery has stabilized. It reflects the item. The processor then determines the current SOC of the battery, the current battery capacity, and the remaining operating time of the device operating on battery power.
상기 선행기술은 OCV를 측정하고 현재 SOC, 배터리 용량 및 남아 있는 동작시간을 계산하는 것에 대해서 기재하고 있으나, 본 발명의 에이징이나 온도에 따른 배터리 셀의 특성변화를 고려하는 것에 대한 아무런 시사나 암시 또는 기재가 없는 것이 본 발명과 차이점이다.While the prior art describes measuring OCV and calculating current SOC, battery capacity and remaining operating time, any implications or implications for taking into account changes in the characteristics of a battery cell with age or temperature of the present invention or The absence of a description is different from the present invention.
또한 미국등록특허 제6789026호(2004.09.07.)는 배터리 충전상태를 모니터링하는 방법에 관한 것으로, 배터리에 흐르는 전류가 제로인 상태에 있다는 것을 결정함으로써 현제 배터리에 저장된 충전량을 결정하는 것이다. 배터리를 통해서 흐르는 전류가 무시할 수 없는 시간 이전에 배터리의 OCV를 측정하는 회로를 구비하고 있으며, 측정된 OCV를 대응하는 변수값과 상관시키고 대응하는 값을 변수값으로 선택하는 프로세서를 포함한다.In addition, US Patent No. 6789026 (2004.09.07.) Relates to a method for monitoring the state of charge of the battery, to determine the amount of charge currently stored in the battery by determining that the current flowing in the battery is in the zero state. It includes a circuit for measuring the OCV of the battery before the current flowing through the battery is not negligible and includes a processor for correlating the measured OCV with a corresponding variable value and selecting the corresponding value as the variable value.
상기 선행기술은 배터리의 충전량을 모니터링하는 것은 본 발명과 일부 유사한 점이 있으나, 본 발명의 에이징이나 온도에 따른 배터리 셀의 특성변화를 고려하여 배터리를 모니터링하거나 보호하는 것에 대해서는 아무런 시사가 없다는 것이 본 발명과 차이점이다.Although the prior art monitors the amount of charge of the battery, the present invention has some similarities to the present invention, but there is no suggestion regarding monitoring or protecting the battery in consideration of changes in characteristics of the battery cell according to the aging or temperature of the present invention. Is the difference.
마지막으로 미국공개특허 제2011/0037475호(2011.02.17.)는 배터리 내부저장(DCIR)을 이용하여 배터리 용량을 추정하는 방법에 관한 것으로, 배터리 모듈 내에서 제어된 방전 경로를 설정하고, 시스템 부하전류의 변화에도 불구하고 배터리 방전 전류가 일정한 값을 가지며, 상기 일정한 배터리 전류를 설정하여 측정된 내부저항은 배터리 용량을 정확하게 얻는데 사용될 수 있다.Finally, US Patent Application Publication No. 2011/0037475 (2011.02.17.) Relates to a method of estimating battery capacity using battery internal storage (DCIR), which sets a controlled discharge path in a battery module, and loads a system load. Despite the change in current, the battery discharge current has a constant value, and the internal resistance measured by setting the constant battery current can be used to accurately obtain the battery capacity.
상기 선행기술은 배터리 내부저항을 이용하여 배터리 용량을 추정하는 것이 본 발명과 일부 관련은 있지만, 본 발명의 에이징이나 온도에 따른 배터리 셀의 특성변화를 고려하여 배터리를 모니터링하거나 보호하는 것에 대해서는 아무런 시사나 암시 또는 기재가 없는 것이 본 발명과 차이점이다.Although the prior art estimates the battery capacity using the battery internal resistance, the present invention is partially related to the present invention, but there is no suggestion regarding monitoring or protecting the battery in consideration of changes in characteristics of the battery cell according to aging or temperature of the present invention. It is a difference from the present invention that there is no suggestion or description.
상기 선행기술들을 참고하여 보면, 배터리 셀이 에이징됨에 따라 특성이 변하고, 고온과 저온에서 배터리의 성능을 측정하는 정확하지 않다는 점에 대해서 아무런 착상이 존재하지 아니한다. 따라서 본 발명에서는 배터리 셀을 정밀하게 모니터링할 수 없어서 배터리를 보호하는 것이 어려운 점을 극복하기 위해 배터리의 에이징 및 고온이나 저온의 환경에서도 배터리의 안정적인 모니터링과 보호를 가능하게 하는 방법을 제시하고자 한다.Referring to the above prior arts, there is no idea that the characteristics change as the battery cell ages, and that it is not accurate to measure the performance of the battery at high and low temperatures. Therefore, in order to overcome the difficulty of protecting a battery because the battery cell cannot be precisely monitored, an object of the present invention is to propose a method for enabling stable monitoring and protection of a battery even in a high temperature or low temperature environment.
본 발명은 상기와 같은 종래의 문제점을 해결하기 위하여 창안한 것으로, 배터리 모니터링 방법, 배터리 모니터링 장치, 배터리 보호 방법 및 배터리 보호 장치를 제공하는 것을 목적으로 한다.The present invention has been made to solve the above-mentioned conventional problems, and an object thereof is to provide a battery monitoring method, a battery monitoring device, a battery protection method and a battery protection device.
또한 본 발명의 일 실시예에 따른 배터리 모니터링 방법과 그 장치를 통해서, 상기 기계학습을 위해서 배터리 팩저항과 약한 셀의 저항이 충방전을 거듭함에 따라 변화하는 과정을 학습하는 방법을 제공하고자 한다.In addition, through the battery monitoring method and apparatus according to an embodiment of the present invention, to provide a method for learning the process of changing the battery pack resistance and the weak cell resistance as the charge and discharge repeatedly for the machine learning.
또한 본 발명의 일 실시예에 따른 배터리 모니터링 방법과 그 장치를 통해서, 고온, 실온 및 저온에서 배터리의 팩저항을 조절하기 위한 팩터를 산출하는 것을 목적으로 한다.In addition, an object of the present invention is to calculate a factor for controlling the pack resistance of a battery at high temperature, room temperature, and low temperature through a battery monitoring method and apparatus according to an embodiment of the present invention.
또한 본 발명의 일 실시예에 따른 배터리 모니터링 방법과 그 장치를 통해서, 각 저항 포인트에서 최대전류, 최소전류 및 온도변화를 예측하기 위해서 부하특징을 분석하는 방법을 제공하는 것을 그 목적으로 한다.Another object of the present invention is to provide a method for analyzing a load characteristic in order to predict a maximum current, a minimum current, and a temperature change at each resistance point through a battery monitoring method and an apparatus according to an embodiment of the present invention.
또한 본 발명의 일 실시예에 따른 배터리 모니터링 방법과 그 장치를 통해서, 상기 부하특성, 저항을 분석함으로써 부하가 걸려있는 상황에서 배터리의 잔존용량과 완전충전용량을 예측하는 방법을 제공하는 것을 목적으로 한다.Another object of the present invention is to provide a method for predicting the remaining capacity and full charge capacity of a battery under load by analyzing the load characteristics and resistance through a battery monitoring method and apparatus according to an embodiment of the present invention. do.
또한 본 발명의 일 실시예에 따른 배터리 모니터링 방법과 그 장치를 통해서, 배터리의 현재용량과 SOH를 갱신하는 방법을 제공하는 것을 또 다른 목적으로 한다.Another object of the present invention is to provide a method for updating a current capacity and SOH of a battery through a battery monitoring method and an apparatus thereof according to an embodiment of the present invention.
또한 본 발명은 각 배터리의 셀저항 대신 팩저항 또는 저항이 가장 큰 몇 개의 위크셀들의 저항만을 각 온도 별로 학습하여 배터리의 상태를 모니터링하고 또한 배터리를 보호하는 장치와 방법을 제공하는 것을 또 다른 목적으로 한다.Another object of the present invention is to provide an apparatus and method for monitoring the state of a battery and also protecting the battery by learning the resistance of a few weak cells having the largest pack resistance or resistance instead of the cell resistance of each battery for each temperature. It is done.
또한 본 발명은 방전종료전압에 셀전압 또는 팩전압이 가장 먼저 도달하는 셀을 위크셀로 결정하는 위크셀을 찾는 방법과 장치를 제공하는 것을 또 다른 목적으로 한다. 팩전압이 팩의 방전종료전압에 도달하기 전에 하나의 배터리셀이 셀의 방전종료전압에 먼저 도달하면 방전이 종료된다. 저전압에서 셀의 수명이 크게 저하되기 때문에 셀을 보호여야 할 필요가 있다. Another object of the present invention is to provide a method and an apparatus for finding a weak cell which determines a cell having a cell voltage or a pack voltage first reaching a discharge end voltage as a weak cell. If one battery cell reaches the discharge end voltage of the cell before the pack voltage reaches the end discharge voltage of the pack, the discharge is terminated. At low voltages, the life of the cell is greatly reduced, so the cell needs to be protected.
또한 본 발명의 일 실시예에 따른 배터리 모니터링 방법과 그 장치를 통해서, 셀의 내부 및 외부 쇼트와 병렬 셀의 개방을 검출하는 방법을 제공하는 것을 또 다른 목적으로 한다.Another object of the present invention is to provide a method for detecting an internal and external short of a cell and opening of a parallel cell through a battery monitoring method and an apparatus according to an embodiment of the present invention.
이와 같은 목적을 달성하기 위한 본 발명의 일 실시예에 따른 배터리 모니터링 시스템은 에이징이나 온도에 따른 배터리팩의 상태정보를 학습하는 학습부 및 상기 학습결과에 따라 상기 배터리팩의 잔여용량과 전체 가용용량을 게이징하는 배터리팩 용량 게이징부를 포함하며, 상기 배터리팩의 상태정보는 SOC(state of charge)에 따른 배터리팩의 전체 저항, 상기 각 배터리셀에 대한 저항 및 OCV(open circuit voltage) 변화량을 포함하는 것을 특징으로 한다.Battery monitoring system according to an embodiment of the present invention for achieving the above object is a learning unit for learning the state information of the battery pack according to the aging or temperature and the remaining capacity and the total available capacity of the battery pack according to the learning results And a battery pack capacity gauging unit for gauging the battery pack. The state information of the battery pack includes a total resistance of the battery pack according to a state of charge (SOC), resistance for each battery cell, and an amount of change in an open circuit voltage (OCV). It is characterized by including.
또한 상기 학습부는, 제1 사이클을 통해 정상온도 및 무부하의 조건 하에서 일정한 C-rate로 상기 배터리팩을 방전 종지전압까지 방전시켜, 상기 배터리팩의 OCV 곡선을 추적함으로써, 에이징에 따른 OVC 변화량 및 해당 배터리팩의 총 용량에 대한 변화량을 학습하는 것을 특징으로 한다.In addition, the learning unit, by discharging the battery pack to the discharge end voltage at a constant C-rate under the conditions of the normal temperature and no load through the first cycle, by tracking the OCV curve of the battery pack, the amount of OVC change according to aging and the corresponding It is characterized by learning the amount of change for the total capacity of the battery pack.
또한 상기 학습부는, 제2 사이클을 통해 상기 SOC를 OCV 포인트인 복수의 그리드 포인트로 나누고, 일정 범위의 온도별로 상기 배터리팩을 특정 C-rate로 방전시켜가며, 상기 각 그리드 포인트별로 상기 배터리팩 및 각 배터리셀에 대한 저항을 측정함으로써, 온도 및 에이징에 따른 상기 배터리팩 및 각 배터리셀에 대한 저항의 변화량을 학습하는 것을 더 포함하는 것을 특징으로 한다.In addition, the learning unit divides the SOC into a plurality of grid points, which are OCV points, through a second cycle, discharges the battery pack to a specific C-rate for each temperature range, and the battery pack and the grid points for each grid point. By measuring the resistance for each battery cell, it characterized in that it further comprises learning the change amount of the resistance for each battery cell and the battery pack according to temperature and aging.
또한 상기 배터리팩 저항 측정부는, 이전에 학습된 배터리팩의 전체 저항과 현재 방전되는 배터리팩의 전체 저항을 대비하여 에이징 계수를 산출하고, 상기 산출한 에이징 계수에 이전에 학습된 각 그리드 포인트별 저항을 곱하여 현재 방전되는 상기 배터리팩의 그리드 포인트에 대한 각각의 저항을 업데이트함으로써, 상기 배터리팩 및 각 배터리셀에 대한 저항을 측정하는 것을 특징으로 한다.The battery pack resistance measuring unit may calculate an aging coefficient by comparing the total resistance of the previously learned battery pack with the total resistance of the battery pack currently discharged, and the resistance of each grid point previously learned to the calculated aging coefficient. By multiplying to update the respective resistance for the grid point of the battery pack that is currently discharged, it characterized in that the resistance for the battery pack and each battery cell is measured.
또한 상기 배터리팩 용량 게이징부는, 최근에 측정된 OCV와 Passed charge를 이용하여, 상기 배터리팩의 현재 OCV 포인트를 검출하고, 상기 검출한 현재 OCV 포인트에서 Passed charge, 잔여용량, 전체 가용용량을 측정하고, 이를 상기 각 OCV 포인트마다 업데이트함으로써, 상기 배터리팩의 잔여 용량 및 전체 가용용량을 게이징하는 것을 특징으로 한다.The battery pack capacity gauging unit detects a current OCV point of the battery pack by using recently measured OCV and a pass charge, and measures a passed charge, remaining capacity, and total available capacity at the detected current OCV point. And, by updating this for each of the OCV point, it is characterized in that the remaining capacity of the battery pack and the total available capacity.
또한 상기 배터리 모니터링 시스템은, 상기 측정한 배터리팩 및 각 배터리셀에 대한 저항이 미리 설정한 값을 초과하는 경우, 해당 배터리팩의 충방전 상태를 차단함으로써, 해당 배터리팩을 보호하는 보호부 및 상기 저항별 배터리 상태를 매핑한 매핑테이블을 참조하여 상기 측정한 배터리팩 및 각 배터리셀에 대한 저항에 따른 배터리 상태, 상기 측정한 배터리팩의 잔여용량 및 전체 가용용량을 사용자 단말로 제공하는 알림부를 더 포함하는 것을 특징으로 한다.The battery monitoring system may further include a protection unit that protects the battery pack by blocking a charge / discharge state of the battery pack when the measured resistance of the battery pack and each battery cell exceeds a preset value. A notification unit for providing the user terminal with the measured battery pack and the battery status according to the resistance of each battery cell, the remaining capacity of the measured battery pack, and the total available capacity, with reference to the mapping table mapping the battery status for each resistance. It is characterized by including.
아울러 본 발명의 일 실시예에 따른 배터리 모니터링 방법은, 에이징이나 온도에 따른 배터리팩의 상태정보를 학습하는 학습 단계 및 상기 학습결과에 따라 상기 배터리팩의 잔여용량과 전체 가용용량을 게이징하는 배터리팩 용량 게이징 단계를 포함하며, 상기 배터리팩의 상태정보는 SOC(state of charge)에 따른 배터리팩의 전체 저항, 상기 각 배터리셀에 대한 저항 및 OCV(open circuit voltage) 변화량을 포함하는 것을 특징으로 한다.In addition, the battery monitoring method according to an embodiment of the present invention, the learning step of learning the status information of the battery pack according to the aging or temperature and the battery to gauge the remaining capacity and the total available capacity of the battery pack according to the learning results And a pack capacity gauging step, wherein the state information of the battery pack includes a total resistance of the battery pack according to a state of charge (SOC), a resistance of each battery cell, and an amount of change of an open circuit voltage (OCV). It is done.
또한 상기 학습 단계는, 제1 사이클을 통해 정상온도 및 무부하의 조건 하에서 일정한 C-rate로 상기 배터리팩을 방전 종지전압까지 방전시켜, 상기 배터리팩의 OCV 곡선을 추적함으로써, 에이징에 따른 OVC 변화량 및 해당 배터리팩의 총 용량에 대한 변화량을 학습하는 것을 특징으로 한다.In addition, the learning step, by discharging the battery pack to the discharge end voltage at a constant C-rate under the conditions of the normal temperature and no load through the first cycle, by tracking the OCV curve of the battery pack, the amount of OVC change according to aging and It is characterized by learning the amount of change for the total capacity of the battery pack.
또한 상기 학습 단계는, 제2 사이클을 통해 상기 SOC를 OCV 포인트인 복수의 그리드 포인트로 나누고, 일정 범위의 온도별로 상기 배터리팩을 특정 C-rate로 방전시켜가며, 상기 각 그리드 포인트별로 상기 배터리팩 및 각 배터리셀에 대한 저항을 측정함으로써, 온도 및 에이징에 따른 상기 배터리팩 및 각 배터리셀에 대한 저항의 변화량을 학습하는 것을 더 포함하는 것을 특징으로 한다.In the learning step, the SOC is divided into a plurality of grid points that are OCV points through a second cycle, and the battery pack is discharged to a specific C-rate at a predetermined range of temperatures, and the battery pack is stored for each grid point. And by measuring the resistance for each battery cell, it characterized in that it further comprises learning the change amount of the resistance for the battery pack and each battery cell according to the temperature and aging.
또한 상기 배터리팩 저항 측정 단계는, 이전에 학습된 배터리팩의 전체 저항과 현재 방전되는 배터리팩의 전체 저항을 대비하여 에이징 계수를 산출하고, 상기 산출한 에이징 계수에 이전에 학습된 각 그리드 포인트별 저항을 곱하여 현재 방전되는 상기 배터리팩의 그리드 포인트에 대한 각각의 저항을 업데이트함으로써, 상기 배터리팩 및 각 배터리셀에 대한 저항을 측정하는 것을 특징으로 한다.In addition, the battery pack resistance measuring step, the aging coefficient is calculated by comparing the total resistance of the previously learned battery pack and the total resistance of the currently discharged battery pack, and for each grid point previously learned to the calculated aging coefficient The resistance of the battery pack and each battery cell is measured by updating the resistance of each of the grid points of the battery pack that is currently discharged by multiplying the resistance.
또한 상기 배터리팩 용량 게이징 단계는, 최근에 측정된 OCV와 Passed charge를 이용하여, 상기 배터리팩의 현재 OCV 포인트를 검출하고, 상기 검출한 현재 OCV 포인트에서 Passed charge, 잔여용량, 전체 가용용량을 측정하고, 이를 상기 각 OCV 포인트마다 업데이트함으로써, 상기 배터리팩의 잔여 용량 및 전체 가용용량을 게이징하는 것을 특징으로 한다.In addition, the battery pack capacity gauging step may detect a current OCV point of the battery pack by using recently measured OCV and Passed charge, and calculate the passed charge, remaining capacity, and total available capacity from the detected current OCV point. By measuring and updating this for each OCV point, the remaining capacity and total available capacity of the battery pack are gauged.
또한 상기 배터리 모니터링 시스템은, 상기 측정한 배터리팩 및 각 배터리셀에 대한 저항이 미리 설정한 값을 초과하는 경우, 해당 배터리팩의 충방전 상태를 차단함으로써, 해당 배터리팩을 보호하는 보호 단계 및 상기 저항별 배터리 상태를 매핑한 매핑테이블을 참조하여 상기 측정한 배터리팩 및 각 배터리셀에 대한 저항에 따른 배터리 상태, 상기 측정한 배터리팩의 잔여용량 및 전체 가용용량을 사용자 단말로 제공하는 알림 단계를 더 포함하는 것을 특징으로 한다.The battery monitoring system may further include a protection step of protecting the battery pack by blocking a charge / discharge state of the battery pack when the measured battery pack and the resistance of each battery cell exceed a preset value. A notification step of providing a battery terminal according to the measured battery pack and the resistance of each battery cell, the remaining capacity of the measured battery pack, and the total available capacity to a user terminal by referring to a mapping table that maps the battery state for each resistance. It further comprises.
본 발명은 기계학습을 통한 배터리 모니터링 및 보호 방법에 관한 것으로, 배터리 팩의 충방전을 거듭함에 따라 배터리 팩의 전체 저항 및 상기 배터리 팩을 구성하는 복수의 셀 중 약한 셀에 대한 저항이 변화 과정을 학습하여 에이징이나 온도에 따른 배터리의 상태를 정확하게 모니터링하고, 충방전시 배터리의 용량(capacity)을 정확하게 게이징하여 사용자에게 제공함으로써, 배터리의 과충전 및 과방전으로부터 효과적으로 보호함과 동시에 사용자에게 편의를 제공할 수 있는 효과가 있다.The present invention relates to a method for monitoring and protecting a battery through machine learning, and as the battery pack is repeatedly charged and discharged, the resistance of the entire battery pack and the weak cells of the plurality of cells constituting the battery pack are changed. By accurately monitoring the status of the battery according to aging or temperature, and accurately gauging the capacity of the battery during charging and discharging, it is provided to the user, which effectively protects the battery from overcharging and overdischarging and provides convenience to the user. There is an effect that can be provided.
도 1은 본 발명의 제1 실시예에 따른 배터리 모니터링 시스템을 개략적으로 나타낸 블록도이다.1 is a block diagram schematically illustrating a battery monitoring system according to a first embodiment of the present invention.
도 2는 본 발명의 제2 실시예에 따른 배터리 모니터링 시스템을 개략적으로 나타내 블록도이다.2 is a block diagram schematically illustrating a battery monitoring system according to a second embodiment of the present invention.
도 3은 본 발명의 제3 실시예에 따른 배터리 모니터링 시스템을 개략적으로 나타낸 블록도이다.3 is a block diagram schematically illustrating a battery monitoring system according to a third exemplary embodiment of the present invention.
도 4는 본 발명의 일 실시예에 따른 게이징을 위한 데이터를 학습하기 위한 첫 번째 사이클 나타낸 도면이다.4 is a diagram illustrating a first cycle for learning data for gauging according to an embodiment of the present invention.
도 5는 본 발명의 일 실시예에 따른 게이징을 위한 데이터를 학습하기 위한 두 번째 사이클 나타낸 도면이다.5 is a diagram illustrating a second cycle for learning data for gauging according to an embodiment of the present invention.
도 6은 본 발명의 일 실시예에 따른 배터리 모니터링 장치의 구성을 나타낸 블록도이다.6 is a block diagram showing the configuration of a battery monitoring apparatus according to an embodiment of the present invention.
도 7a 및 도 7b는 각각 본 발명의 일 실시예에 따른 배터리팩과 위크셀의 방전에 따른 잔여용량과 전체 가용용량을 게이징하여 사용자에게 제공하는 절차를 나타낸 흐름도이다.7A and 7B are flowcharts illustrating a procedure of gauging a remaining capacity and total available capacity according to discharge of a battery pack and a weak cell according to an embodiment of the present invention and providing the same to a user.
도 8은 본 발명의 일 실시예에 따른 배터리팩의 용량과 SOH를 업데이트하는 방법을 설명하기 위해 나타낸 순서도이다.8 is a flowchart illustrating a method of updating a capacity and SOH of a battery pack according to an embodiment of the present invention.
도 9는 본 발명의 일 실시예에 따른 배터리팩의 방전에 따른 잔여용량과 전체 가용용량을 게이징하는 방법을 설명하기 위해 나타낸 도면이다.9 is a view illustrating a method of gauging the remaining capacity and the total available capacity according to the discharge of the battery pack according to an embodiment of the present invention.
도 10은 본 발명의 또 다른 일 실시예에 따른 배터리 셀의 내부/외부 쇼트를 감지하기 위한 배터리 모니터링 시스템을 나타낸 블록도이다.10 is a block diagram illustrating a battery monitoring system for detecting an internal / external short of a battery cell according to another exemplary embodiment of the present invention.
도 11은 본 발명의 또 다른 일 실시예에 따른 배터리 셀의 내부/외부 쇼트를 감지하기 위한 그래프이다.11 is a graph for detecting an internal / external short of a battery cell according to another embodiment of the present invention.
도 12는 본 발명의 또 다른 일 실시예에 따른 배터리 셀의 내부/외부 쇼트를 감지하기 위한 그래프이다.12 is a graph for detecting an internal / external short of a battery cell according to another exemplary embodiment of the present invention.
도 13은 본 발명의 또 다른 일 실시예에 따른 배터리 셀의 내부/외부 단선을 감지하기 위한 배터리 모니터링 시스템을 나타낸 블록도이다.FIG. 13 is a block diagram illustrating a battery monitoring system for detecting internal / external disconnection of a battery cell according to another exemplary embodiment of the present invention.
본 명세서 또는 출원에 개시되어 있는 본 발명의 실시 예들에 대해서 특정한 구조적 내지 기능적 설명들은 단지 본 발명에 따른 실시 예를 설명하기 위한 목적으로 예시된 것으로, 다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가지고 있다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥상 가지는 의미와 일치하는 의미를 가지는 것으로 해석되어야 하며, 본 명세서에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다. Specific structural to functional descriptions of embodiments of the invention disclosed in this specification or the application are illustrated for the purpose of describing embodiments according to the invention only, and unless otherwise defined, technical or scientific terms are used. All terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which the present invention belongs. Terms such as those defined in the commonly used dictionaries should be construed as having meanings consistent with the meanings in the context of the related art, and are not construed in ideal or excessively formal meanings unless expressly defined herein. Do not.
이하, 첨부한 도면을 참조하여 본 발명의 바람직한 실시 예를 설명함으로써, 본 발명을 상세히 설명한다. 각 도면에 제시된 동일한 참조부호는 동일한 부재를 나타낸다. Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings. Like reference numerals in the drawings denote like elements.
이하에서는 도 1 내지 도 3을 참조하여 본 발명의 다양한 실시예에 따른 배터리 모니터링 시스템의 구성을 설명하도록 한다.Hereinafter, a configuration of a battery monitoring system according to various embodiments of the present disclosure will be described with reference to FIGS. 1 to 3.
도 1은 본 발명의 제1 실시예에 따른 배터리 모니터링 시스템을 개략적으로 나타낸 도면이며, 도 2는 본 발명의 제2 실시예에 따른 배터리 모니터링 시스템의 구성을 나타낸 도면이다. 또한 도 3은 본 발명의 제3 실시예에 따른 배터리 모니터링 시스템의 구성을 나타낸 도면이다.1 is a view schematically showing a battery monitoring system according to a first embodiment of the present invention, Figure 2 is a view showing the configuration of a battery monitoring system according to a second embodiment of the present invention. 3 is a view showing the configuration of a battery monitoring system according to a third embodiment of the present invention.
도 1에 도시한 바와 같이, 본 발명의 제 1실시예에 따른 배터리 모니터링 시스템(10)은 배터리팩(200)의 상태를 모니터링하는 배터리 모니터링 장치(100), 복수의 배터리 셀로 구성되는 배터리 팩(200), 외부단자를 통해 상기 배터리팩(200)과 배터리팩(200)을 충전하기 위한 충전기(700) 또는 상기 외부단자를 통해 상기 배터리팩(200)과 연결되어 상기 배터리팩(200)으로부터 파워(power)를 인가받아 구동되는 부하(미도시), 충전 FET(300), 방전 FET(400), 배터리팩(200)의 온도를 감지하는 온도 감지부(500), 배터리팩(200)의 전류를 감지하는 전류 감지부(600)를 포함하여 구성된다.As shown in FIG. 1, a battery monitoring system 10 according to a first embodiment of the present invention includes a battery monitoring device 100 for monitoring a state of a battery pack 200, and a battery pack including a plurality of battery cells ( 200), the battery pack 200 is connected to the battery pack 200 through the charger 700 or the external terminal for charging the battery pack 200 and the battery pack 200 through an external terminal, and is powered from the battery pack 200. A load (not shown) driven by receiving power, a charge FET 300, a discharge FET 400, a temperature sensing unit 500 for sensing a temperature of the battery pack 200, and a current of the battery pack 200. It is configured to include a current sensing unit 600 for detecting.
또한 배터리팩(200)은 복수의 배터리셀로 구성되며, 상기 배터리셀은 해당 배터리팩(200)이 이용되는 목적, 용도 또는 해당 배터리팩(200)에 연결되는 부하에 따라 상기 배터리셀의 개수를 달리하여 상기 배터리팩(200)을 구성할 수 있다.In addition, the battery pack 200 is composed of a plurality of battery cells, the battery cell is the number of the battery cells according to the purpose, use or load connected to the battery pack 200, the battery pack 200 is used. Alternatively, the battery pack 200 may be configured.
또한 배터리셀은 직렬, 병렬 또는 이들의 조합으로 연결될 수 있으며, 외부단자로 연결되는 충전기(700) 또는 부하를 통해 일정한 전압으로 충전되거나, 또는 방전된다.In addition, the battery cells may be connected in series, in parallel, or a combination thereof, and may be charged or discharged at a constant voltage through a charger 700 or a load connected to an external terminal.
한편 상기 배터리팩(200)은 리튬 이온 배터리, 리튬 이온 폴리머 배터리, 니켈 카드뮴 배터리 등과 같이 공지된 모든 종류의 2차 배터리로 구성될 수 있다.Meanwhile, the battery pack 200 may be composed of all kinds of secondary batteries known in the art, such as lithium ion batteries, lithium ion polymer batteries, nickel cadmium batteries, and the like.
또한 배터리 모니터링 장치(100)는 전계효과 트랜지스터(FET, field effect transistor)로 구성된 충전 FET(300)와 방전 FET(400)를 제어하여 상기 외부단자와 연결되는 외부장치(즉, 충전기(700) 또는 부하)에 따라 상기 배터리팩(200)을 충전하거나 방전할 수 있도록 한다.In addition, the battery monitoring apparatus 100 controls the charge FET 300 and the discharge FET 400 composed of a field effect transistor (FET), the external device connected to the external terminal (ie, charger 700 or Load) to charge or discharge the battery pack 200.
예를 들어, 상기 외부단자에 충전기(700)가 연결되는 경우, 상기 충전 FET(300)를 온하고, 방전 FET(400)를 차단(오프)함으로써 상기 충전기(700)로부터 배터리팩(200) 방향으로 일정한 전압 및 전류를 흐르도록 하여 상기 배터리팩(200)을 충전할 수 있도록 한다. 이와 반대로, 상기 외부단자에 부하가 연결되는 경우, 상기 충전 FET(300) 및 방전 FET(400)를 각각 오프 및 온 함으로써, 상기 배터리팩(200)으로부터 부하방향으로 일정한 전압 및 전류를 흐르도록 하여 상기 부하로 파워를 인가할 수 있도록 한다.For example, when the charger 700 is connected to the external terminal, the charging FET 300 is turned on, and the discharge FET 400 is turned off (off) to direct the battery pack 200 from the charger 700. It is possible to charge the battery pack 200 by flowing a constant voltage and current. On the contrary, when a load is connected to the external terminal, the charge FET 300 and the discharge FET 400 are turned off and on, respectively, so that a constant voltage and current flow from the battery pack 200 in the load direction. It is possible to apply power to the load.
또한 배터리 모니터링 장치(100)는 온도에 따른 배터리팩(200)의 전체저항 및 상기 배터리팩(200)을 구성하는 배터리 셀 중 약한 배터리 셀에 대한 저항을 학습하고, 상기 외부단자에 연결되는 부하에 대한 특성을 분석함으로써, 온도 및 열화에 따른 배터리팩(200)에 대한 저항변화에 따라 해당 배터리팩(200)의 상태를 사용자에게 제공하여, 충/방전이 거듭되어 사용된 배터리팩(200)의 상태를 즉각적으로 알 수 있도록 한다. 또한 배터리 모니터링 장치(100)는 배터리팩(200)의 충전 혹은 방전 시 해당 배터리팩(200)의 온도 및 열화에 따른 잔여용량(remaining capacity)을 정확하게 게이징(gauging)하여 사용자에게 제공하며, 상기 배터리팩(200)의 충전 혹은 방전상태를 모니터링하여 상기 배터리팩(200)의 과충전 혹은 과방전으로 인한 결함발생을 방지한다. In addition, the battery monitoring apparatus 100 learns the resistance of the weak battery cell among the battery cells constituting the battery pack 200 and the total resistance of the battery pack 200 according to temperature, and loads the load connected to the external terminal. By analyzing the characteristics, by providing a user with the state of the battery pack 200 according to the resistance change of the battery pack 200 according to the temperature and deterioration, the charge / discharge of the battery pack 200 used repeatedly Get immediate status. In addition, the battery monitoring device 100 provides a user with a gauging (remaining capacity) according to the temperature and deterioration of the battery pack 200 accurately when charging or discharging the battery pack 200, the user, The charging or discharging state of the battery pack 200 is monitored to prevent defects caused by overcharging or overdischarging of the battery pack 200.
즉, 배터리 모니터링 장치(100)는 상기 배터리팩의 충전상태를 모니터링하다가 상기 배터리팩(200)이 과충전 상태로 진입하기 전에 이를 감지하여 상기 충전 FET(300)를 오프시켜, 과충전으로 인한 배터리팩(200)의 결함발생을 방지할 수 있도록 한다. 이와 같은 맥락으로 상기 배터리 모니터링 장치(100)는 상기 배터리팩(200)의 방전상태를 모니터링하다가 상기 배터리팩(200)이 과방전 상태로 진입하기 전에 이를 감지하여 상기 방전 FET(400)를 오프시켜, 과방전으로 인한 배터리팩(200)의 결함발생을 방지할 수 있도록 한다.That is, the battery monitoring apparatus 100 monitors the state of charge of the battery pack, detects the battery pack 200 before entering the overcharge state, turns off the charge FET 300, and generates a battery pack due to overcharge ( 200) to prevent the occurrence of defects. In this context, the battery monitoring apparatus 100 monitors the discharge state of the battery pack 200 and detects it before the battery pack 200 enters an over discharge state, thereby turning off the discharge FET 400. To prevent the occurrence of defects in the battery pack 200 due to over discharge.
한편 상기 충전 FET(300) 및 방전 FET(400)는 배터리팩(200)을 일정한 전압으로 충전하거나, 방전하기 위한 스위치를 의미하는 것으로, FET 뿐만 아니라 IGBT(insulated gate bipolar transistor) 또는 충/방전을 위한 릴레이(relay) 등과 같은 다양한 스위치로 구성될 수 있음은 당연하다.Meanwhile, the charge FET 300 and the discharge FET 400 refer to a switch for charging or discharging the battery pack 200 at a constant voltage. In addition, the charge FET 300 and the discharge FET 400 may perform not only FET but also insulated gate bipolar transistor (IGBT) or charge / discharge. Of course, it can be composed of various switches such as a relay (relay) for.
또한 온도 감지부(500)는 배터리팩(200)의 충/방전 시에 배터리팩(200) 혹은 배터리셀에 대한 온도를 감지하여 상기 배터리 모니터링 장치(100)로 제공한다.In addition, the temperature sensor 500 detects the temperature of the battery pack 200 or the battery cells during charging / discharging of the battery pack 200, and provides the temperature to the battery monitoring apparatus 100.
또한 전류 감지부(600)는 전류를 감지하기 위한 센스 레지스터(sense resistor)로 구성되며, 상기 외부단자와 배터리팩(200)과 직렬로 연결되어 배터리팩(200)의 충/방전 전류를 감지하여 상기 배터리 모니터링 장치(100)로 제공한다.In addition, the current sensing unit 600 is composed of a sense resistor (sense resistor) for sensing the current, is connected in series with the external terminal and the battery pack 200 to detect the charge / discharge current of the battery pack 200 It provides to the battery monitoring device 100.
또한 배터리 모니터링 장치(100)는 배터리팩(200)의 전체 저항과 각 배터리셀에 대한 저항을 측정하고, 또한 상기 배터리팩(200)의 잔여용량 및 전체 가용용량을 정확하게 게이징하기 위해 우선적으로, 무부하 상태에서 상기 배터리팩(200)에 대한 OCV(open circuit voltage)의 변화상태 및 온도에 따른 배터리팩(200)의 저항의 변화를 학습한다.In addition, the battery monitoring apparatus 100 measures the total resistance of the battery pack 200 and the resistance of each battery cell, and also, in order to accurately gauge the remaining capacity and the total available capacity of the battery pack 200 first, The change of the resistance of the battery pack 200 according to the change state and temperature of the open circuit voltage (OCV) for the battery pack 200 in the no-load state is learned.
상기 학습은 제1 사이클 및 제2 사이클을 포함하여 총 두 번의 학습 사이클을 통해 수행되며, 이에 대한 상세한 설명은 도 4 및 도 5를 참조하여 상세히 설명하도록 한다.The learning is performed through a total of two learning cycles including a first cycle and a second cycle, and a detailed description thereof will be described with reference to FIGS. 4 and 5.
또한 상기 배터리 모니터링 장치(100)에 의해 온도 변화에 따라 학습한 배터리팩(200)의 전체 저항과 상기 각 배터리셀의 저항(즉, 내부저항)은 온도 및 각 온도에서의 저항을 나타내는 파라미터로 구성된 함수로부터 도출되며, 이는 부하 하에서(under load) 해당 배터리팩(200)의 잔여용량과 완전충전용량(full charge capacity)(전체 가용용량을 의미함)을 예측하기 위해 이용된다.In addition, the total resistance of the battery pack 200 learned by the temperature monitoring by the battery monitoring apparatus 100 and the resistance (that is, internal resistance) of each battery cell are composed of parameters representing temperature and resistance at each temperature. Derived from the function, it is used to predict the remaining capacity and full charge capacity (meaning the total available capacity) of the battery pack 200 under load.
한편 상기 배터리팩(200)의 잔여용량과 전체 가용용량을 게이징하는 과정은 도 7a 및 도 7b를 참조하여 상세히 설명하도록 한다.Meanwhile, the process of gauging the remaining capacity and the total available capacity of the battery pack 200 will be described in detail with reference to FIGS. 7A and 7B.
상술한 바와 같이 상기 배터리 모니터링 장치(100)는 배터리팩(200)의 전체 저항과 각 배터리셀에 대한 저항을 측정하여 학습하며, 온도에 따른 배터리팩(200)에 대한 저항을 조정하기 위한 팩터(factor)를 도출하고, 부하 특성을 분석한다. 이를 통해 온도 변화를 반영하여 배터리팩(200)의 사용에 따른 잔여용량 및 전체가용용량을 정확하게 게이징하고, 이를 사용자에게 제공함으로써, 배터리팩(200)을 효율적으로 사용할 수 있도록 하며, 과충전 및 과방전으로부터 상기 배터리팩(200)을 보호할 수 있도록 한다.As described above, the battery monitoring apparatus 100 measures and learns the resistance of each battery cell and the total resistance of the battery pack 200, and a factor for adjusting the resistance of the battery pack 200 according to temperature ( factor) and load characteristics. In this way, the remaining capacity and total available capacity according to the use of the battery pack 200 are accurately reflected and the user is provided by reflecting the temperature change, so that the battery pack 200 can be efficiently used, and overcharged and over discharged. It is possible to protect the battery pack 200 from before.
즉, 상기 배터리 모니터링 장치(100)는 상기 학습 사이클을 통해 SOC에 따른 배터리팩의 전체 저항, 각 배터리셀에 대한 저항, OCV 변화량, 상기 배터리팩(200)의 총 용량을 포함하는 상기 배터리팩(200)의 상태정보를 학습하여, 해당 배터리팩(200)을 정확하게 모니터링한다. That is, the battery monitoring apparatus 100 includes the battery pack including the total resistance of the battery pack according to the SOC, the resistance for each battery cell, the OCV variation amount, and the total capacity of the battery pack 200 through the learning cycle ( By learning the status information of the 200, the battery pack 200 is accurately monitored.
도 2는 본 발명의 제2 실시예에 따른 배터리 모니터링 시스템을 개략적으로 나타내 블록도이다.2 is a block diagram schematically illustrating a battery monitoring system according to a second embodiment of the present invention.
도 2에 도시한 바와 같이, 본 발명의 제2 실시예에 따른 배터리 모니터링 시스템(10)은 복수의 전류/전압 측정부(800)를 더 포함하여 구성될 수 있다.As shown in FIG. 2, the battery monitoring system 10 according to the second embodiment of the present invention may further include a plurality of current / voltage measuring units 800.
즉, 도 1을 참조하여 상세히 설명한 배터리 모니터링 시스템(10)은 각각의 배터리셀의 전압을 직접적으로 측정하여 상기 각 배터리셀의 저항 및 약한 배터리셀에 대한 저항을 산출하였으나, 본 발명의 제2 실시예에 따른 배터리 모니터링 시스템(10)은 별도의 전류/전압 측정부(800)를 적어도 하나 이상으로 구비하여 상기 배터리셀에 대한 저항을 측정할 수 있도록 구성할 수 있다.That is, the battery monitoring system 10 described in detail with reference to FIG. 1 directly measures the voltage of each battery cell to calculate the resistance of each battery cell and the resistance of the weak battery cell, but according to the second embodiment of the present invention. The battery monitoring system 10 according to an exemplary embodiment may be configured to measure resistance to the battery cell by providing at least one or more separate current / voltage measuring units 800.
즉, 전류/전압 측정부(800)는 적어도 하나 이상으로 구비되며, 각각의 전류/전압 측정부(800)는 적어도 하나 이상의 배터리셀과 각각 연결된다.That is, at least one current / voltage measuring unit 800 is provided, and each current / voltage measuring unit 800 is connected to at least one battery cell, respectively.
또한 전류/전압 측정부(800)는 자신이 커버링하는 각각의 배터리셀에 대한 전류 및 전압을 측정하여 배터리 모니터링 장치(1001)로 제공하고, 상기 배터리 모니터링 장치(1001)는 상기 각 전류/전압 측정부(800)로부터 제공받은 각 배터리셀에 대한 전류 및 전압을 이용하여 상기 배터리셀별 저항 및 약한 배터리셀에 대한 저항을 측정함으로써, 이를 학습한다. In addition, the current / voltage measuring unit 800 measures the current and voltage for each of the battery cells covering it to provide to the battery monitoring device 1001, the battery monitoring device 1001 measures the respective current / voltage This is learned by measuring the resistance for each battery cell and the resistance for the weak battery cell using the current and voltage for each battery cell provided from the unit 800.
상기 저항을 측정함에 있어서, 도 1에 도시한 배터리 모니터링 장치(100)는 배터리팩(200)에 대한 전체 전류와 각 배터리셀에 대한 전압을 이용하여 각 배터리셀에 대한 내부저항을 측정한다. 그러나 도 2에 도시한 배터리 모니터링 장치(1001)는 각 배터리셀에 대한 전압 및 전류를 측정하고 이를 이용하여 각 배터리셀의 저항을 측정하기 때문에 더욱 정확하게 내부저항을 측정할 수 있다.In measuring the resistance, the battery monitoring apparatus 100 shown in FIG. 1 measures the internal resistance of each battery cell using the total current of the battery pack 200 and the voltage of each battery cell. However, since the battery monitoring apparatus 1001 illustrated in FIG. 2 measures the voltage and current of each battery cell and measures the resistance of each battery cell using the same, the battery resistance apparatus 1001 can more accurately measure internal resistance.
한편 상기 저항은 상기 전류/전압 측정부(800)에 계산되어 제공되거나, 상기 배터리 모니터링 장치(1001)에 의해 계산될 수 있다.Meanwhile, the resistance may be calculated and provided to the current / voltage measuring unit 800 or may be calculated by the battery monitoring device 1001.
도 3은 본 발명의 제3 실시예에 따른 배터리 모니터링 시스템을 개략적으로 나타낸 블록도이다.3 is a block diagram schematically illustrating a battery monitoring system according to a third exemplary embodiment of the present invention.
도 3에 도시한 바와 같이, 본 발명의 제3 실시예에 따른 배터리 모니터링 시스템(10)은 복수의 배터리 데이터 처리부(900)를 더 포함하여 구성될 수 있다.As shown in FIG. 3, the battery monitoring system 10 according to the third exemplary embodiment of the present invention may further include a plurality of battery data processing units 900.
복수의 배터리 데이터 처리부(900)는 상기 도 1을 참조하여 설명한 배터리 모니터링 장치(100)가 복수개로 모듈화되어 구성되는 것으로, 상기 배터리 모니터링 장치(100)에서 잔여용량 등을 게이징하기 위한 데이터처리를 중앙 집중적으로 수행하는 것을 복수의 모듈에서 처리할 수 있도록 하여, 중앙으로 집중되는 부하를 분산하여 처리할 수 있도록 한다.The plurality of battery data processing units 900 is configured by modularly configuring a plurality of battery monitoring apparatuses 100 described with reference to FIG. 1, and performs data processing for gauging the remaining capacity in the battery monitoring apparatus 100. The centralized performance can be processed by a plurality of modules, so that the centralized load can be distributed and processed.
이때, 각 배터리 데이터 처리부(900)는 적어도 하나 이상의 배터리셀과 각각 연결되며, 온도변화에 따른 상기 각 배터리셀의 내부저항을 학습하여 이에 대한 결과를 도 3에 도시한 배터리 모니터링 장치(1002)로 제공한다.In this case, each battery data processor 900 is connected to at least one battery cell, respectively, and learns the internal resistance of each battery cell according to a temperature change, and the result thereof is transferred to the battery monitoring apparatus 1002 shown in FIG. 3. to provide.
또한 배터리 모니터링 장치(1002)는 단순히 각 배터리 데이터 처리부(900)로부터 제공받은 학습결과를 통합하여, 전체 배터리팩(200)에 대한 잔여용량, 가용용량(usable), SOH(state of health) 등을 계산하여 누적 저장하고, 상기 배터리팩(200)의 충/방전상태를 모니터링한다.In addition, the battery monitoring apparatus 1002 simply integrates the learning results provided from each battery data processing unit 900 to display remaining capacity, usable capacity, and state of health (SOH) of the entire battery pack 200. Compute and store the cumulative, and monitors the charge / discharge state of the battery pack 200.
한편 상기 배터리 데이터 처리부(900) 및 배터리 모니터링 장치(1002)는 I2C(inter-integrated circuit), SMB(server message block), CAN(controller area network) 등의 다양한 통신방식을 이용하여 상기 게이징을 위한 데이터를 송수신할 수 있다.Meanwhile, the battery data processor 900 and the battery monitoring device 1002 use various communication methods such as an inter-integrated circuit (I2C), a server message block (SMB), a controller area network (CAN), and the like for the gauging. Can send and receive data.
이하에서는 도 4 및 도 5를 참조하여 학습 사이클을 통해 게이징을 위한 데이터를 학습하는 방법을 상세히 설명하도록 한다.Hereinafter, a method of learning data for gauging through a learning cycle will be described in detail with reference to FIGS. 4 and 5.
도 4는 본 발명의 일 실시예에 따른 게이징을 위한 데이터를 학습하기 위한 제1 사이클 나타낸 도면이며, 도 5는 본 발명의 일 실시예에 따른 게이징을 위한 데이터를 학습하기 위한 제2 사이클을 나타낸 도면이다.4 is a diagram illustrating a first cycle for learning data for gauging according to an embodiment of the present invention, and FIG. 5 is a second cycle for learning data for gauging according to an embodiment of the present invention. It is a diagram showing.
도 4에 도시한 바와 같이, 배터리 모니터링 장치(100)는 제1 사이클(1st cycle)에서의 상기 배터리팩(200)의 OCV곡선을 측정하고, 상기 측정한 OCV 곡선을 누적하여 저장함으로써, 상기 배터리팩(200)이 방전될 때마다 OCV 변화량을 학습한다. As shown in FIG. 4, the battery monitoring apparatus 100 measures an OCV curve of the battery pack 200 in a first cycle, accumulates and stores the measured OCV curve, thereby storing the battery. Each time the pack 200 is discharged, the OCV variation amount is learned.
즉, 배터리 모니터링 장치(100)는 온도와 에이징에 따른 배터리팩(200)의 저항변화와 용량을 게이징하기 위해 우선적으로, 제1 사이클을 통해 SOC(state of charge)에서 배터리팩(200)의 OCV 변화량(즉, OCV 곡선)을 학습한다.That is, the battery monitoring apparatus 100 preferentially, in order to gauge the resistance change and the capacity of the battery pack 200 according to temperature and aging, first of the battery pack 200 in a state of charge (SOC) through a first cycle. Learn how OCV changes (ie, OCV curves).
상기 첫 번째 사이클은 무부하 상태에서 일정한 C-rate(예: 1/20C)로 상기 배터리팩을(200)을 방전시켜가며, 복수의 SOC 그리드 포인트로 나누어, 해당 SOC 그리드 포인트마다 해당 배터리팩(200)의 전압을 감지함으로써, OCV의 변화량을 측정할 수 있다. 한편 상기 SOC 그리드 포인트는 도 5에 도시되어 있다.The first cycle discharges the battery pack 200 with a constant C-rate (eg, 1 / 20C) under no load, divides the battery pack 200 into a plurality of SOC grid points, and stores the corresponding battery pack 200 for each SOC grid point. By sensing the voltage of), the amount of change in the OCV can be measured. Meanwhile, the SOC grid point is shown in FIG. 5.
한편 OCV 변화량은 배터리팩(200)의 자가 방전을 통해 측정할 수 있으나, 자가 방전의 경우 완전 방전까지 오랜 시간이 소요되므로, 아주 작은 전류를 흐르도록 하여 상기 OCV 변화량을 측정하고, 이를 무부하시 측정되는 OCV의 변화량과 동일한 것으로 간주한다.On the other hand, the amount of change in OCV can be measured through the self-discharge of the battery pack 200, but in the case of self-discharge, it takes a long time to complete discharge, so that a very small current flows to measure the amount of change in the OCV and measures it at no load. It is assumed to be equal to the amount of change in the OCV.
또한 배터리 모니터링 장치(100)는 상기 측정한 SOC상의 OCV 곡선에서 OCV 변화량이 완만하거나 거의 없는 Flat Region을 검출한다.In addition, the battery monitoring apparatus 100 detects a flat region in which the OCV variation is slow or almost absent from the measured OCV curve on the SOC.
도 4에 도시한 바와 같이, 상기 Flat Region은 a 포인트 및 b 포인트를 찾음으로써, 검출되는데 상기 각 a 포인트 및 b 포인트는 단위시간당 전압변화량이 급격하게 변하는 곳이다.As shown in FIG. 4, the flat region is detected by finding a point and b point, where each a point and b point is a place where the amount of voltage change is rapidly changed per unit time.
즉, a 포인트는 단위시간당 전압변화량이 급격하게 감소하는 지점이며, b포인트는 단위시간당 전압변화량이 급격하게 증가하는 곳을 의미한다. 이때, 상기 Flat Region은 상기 a 포인트 및 b 포인트 사이에 위치하며, 전압변화량이 완만하거나 거의 동일한 구간을 의미한다.That is, a point is a point where the voltage change amount per unit time is drastically reduced, and b point is a place where the voltage change amount per unit time is rapidly increased. In this case, the flat region is positioned between the a point and the b point, and means a section in which the voltage change amount is gentle or nearly equal.
한편 a 포인트는 상기 OCV 곡선을 단위시간으로 미분하여 미리 설정한 값보다 큰 지점이 최초로 검출되는 포인트이며, 상기 b 포인트는 상기 OCV 곡선을 단위시간으로 미분하여 미리 설정한 값보다 작은 지점이 최초로 검출되는 포인트를 의미한다.On the other hand, point a is a point where a point larger than a preset value is first detected by differentiating the OCV curve in unit time, and point b is a point where a point smaller than a preset value is first detected by differentiating the OCV curve in unit time. It means the point being.
본 발명의 일 실시예로써, dV/dT > 30uV/S인 지점을 a 포인트로 하여 검출할 수 있으며, dV/dT < 30uV/S인 지점을 b 포인트로 하여 검출할 수 있다. 한편 상기 각 포인트를 검출하기 위해 기준이 되는 30uV/S는 배터리셀의 특성에 따라 달리 설정될 수 있음은 당연하다.As an embodiment of the present invention, a point having dV / dT> 30 uV / S can be detected as a point, and a point having dV / dT <30 uV / S can be detected as a b point. On the other hand, it is a matter of course that 30uV / S as a reference for detecting each point can be set differently according to the characteristics of the battery cell.
또한 배터리 모니터링 장치(100)는 상기 제1 사이클을 통해 해당 배터리팩(200)의 총 용량을 계산한다. 상기 총 용량은 상기 배터리팩(200)을 무부하 상태에서 종지전압(discharge termination voltage)까지 방전하면서 흐르는 총 전하량을 계산함으로써 계산되거나, 상기 OVC 전압곡선의 면적을 계산하여 측정할 수 있다.In addition, the battery monitoring apparatus 100 calculates the total capacity of the battery pack 200 through the first cycle. The total capacity may be calculated by calculating a total amount of charge flowing while discharging the battery pack 200 to a discharge termination voltage in a no-load state, or may be measured by calculating an area of the OVC voltage curve.
즉 해당 배터리팩(200)의 총 쿨롬(coulomb)을 계산하여 상기 배터리팩(200)의 총 용량을 측정하거나, 또한 도 4에 도시한 것과 같이 OCV 전압곡선과 x축 및 y축으로 형성되는 도형에 대한 면적을 계산하여 해당 배터리팩(200)의 총 용량을 측정할 수 있다. That is, a figure formed by calculating the total coulomb of the corresponding battery pack 200 to measure the total capacity of the battery pack 200 or the OCV voltage curve, the x-axis and the y-axis as shown in FIG. 4. The total capacity of the battery pack 200 may be measured by calculating the area of the battery pack 200.
도 5는 본 발명의 일 실시예에 따른 게이징을 위한 데이터를 학습하기 위한 제2 사이클을 나타낸 도면이다.5 is a diagram illustrating a second cycle for learning data for gauging according to an embodiment of the present invention.
도 5에 도시한 바와 같이, 배터리 모니터링 장치(100)는 제2 사이클(2nd cycle)을 통해 배터리팩(200)의 SOC 그리드 포인트 별 저항값을 측정한다.As shown in FIG. 5, the battery monitoring apparatus 100 measures a resistance value for each SOC grid point of the battery pack 200 through a second cycle.
또한 상기 배터리 모니터링 장치(100)는 각 SOC 그리드 포인트에 대한 저항값을 측정하기 위해 1/5 C-rate로 상기 배터리팩(200)을 방전시켜가면서, 해당 배터리팩(200)의 전체 저항과 제일 약한 전압을 출력하는 약한 배터리셀(weak cell)에 대한 저항을 측정한다.In addition, the battery monitoring device 100 discharges the battery pack 200 at 1/5 C-rate in order to measure the resistance value for each SOC grid point, and the total resistance and the first resistance of the corresponding battery pack 200. The resistance of the weak battery cell that outputs the weak voltage is measured.
상기 제2 사이클은 각 온도별(저온, 상온, 고온)로 적어도 3번 이상 수행되며, 각 온도별로 해당 배터리팩(200)의 전체 저항과 약한 배터리셀의 저항을 측정한다. 이때 상기 각 온도는 상온은 25도, 고온은 40도 이상, 저온은 5도 이하로 설정하여, 상기 설정한 온도별로 상기 배터리팩(200)의 전체 저항과 약한 배터리셀의 저항을 측정한다.The second cycle is performed at least three times at each temperature (low temperature, room temperature, and high temperature), and measures the overall resistance of the battery pack 200 and the resistance of the weak battery cell for each temperature. At this time, each temperature is set to 25 degrees at room temperature, 40 degrees or more at high temperature, 5 degrees or less at low temperature, and measures the total resistance of the battery pack 200 and the resistance of the weak battery cell for each set temperature.
다만, 상기 각 온도는 배터리의 사용용도, 사용환경, 또는 사용자의 설정에 따라 달리 설정할 수 있으며, 더욱 정확한 정밀성을 위해 많은 온도 구간(예: -5오 이하, 0도, 5도, 10도, 15도, 25도, 40도 이상 등)을 설정할 수 있다.However, each temperature can be set differently according to the usage of the battery, the environment of use, or the user's setting, and for more accurate precision, many temperature ranges (for example, -5 degrees or less, 0 degrees, 5 degrees, 10 degrees, 15 degrees, 25 degrees, 40 degrees or more) can be set.
또한 상기 각 SOC 그리드 포인트별 전체 전압은 상기 도 4를 참조하여 설명한 것과 같이, 상기 제1 사이클을 통해 이미 각 구간별 전압곡선을 측정하였기 때문에 다음의 [수학식 1]을 통해 측정할 수 있다.In addition, as described above with reference to FIG. 4, the total voltage for each SOC grid point may be measured by Equation 1 since the voltage curve for each section has already been measured through the first cycle.
[수학식 1][Equation 1]
Vm[i] = OCV[i] - IR[i],Vm [i] = OCV [i]-IR [i],
-> R[i] = (Vm[i] - OCV[i])/I -> R [i] = (Vm [i]-OCV [i]) / I
여기서 Vm은 배터리팩(200)의 전체 측정전압을 의미하며, 제1 사이클을 통해 측정된 무부하 상태에서의 개방회로전압을 의미한다. 또한 i는 SOC상에서 미리 설정한 가상의 그리드 포인트로 저항값을 계산하는 지점을 의미한다.Here, Vm refers to the total measured voltage of the battery pack 200 and refers to the open circuit voltage in the no-load state measured through the first cycle. In addition, i denotes a point at which a resistance value is calculated by using a preset virtual grid point on the SOC.
또한 상기 배터리 모니터링 장치(100)는 상기 [수학식 1]을 이용하여 각 배터리셀의 저항을 SOC 그리드 포인트 별로 측정한다. 이때, Vm은 배터리셀별로 측정되는 전압을 의미하며, I는 상기 배터리셀별로 측정되는 전류를 의미한다. 한편 상기 배터리팩(200)의 전체 저항과 각 배터리셀에 대한 저항을 측정하는 과정은 도 6을 참조하여 상세히 설명하도록 한다.In addition, the battery monitoring apparatus 100 measures the resistance of each battery cell for each SOC grid point by using [Equation 1]. In this case, Vm denotes a voltage measured for each battery cell, and I denotes a current measured for each battery cell. Meanwhile, a process of measuring the overall resistance of the battery pack 200 and the resistance of each battery cell will be described in detail with reference to FIG. 6.
이러한 과정을 통해 상기 배터리 모니터링 장치(100)는 각 온도별 배터리팩(200)의 내부저항에 대한 변화를 학습하여, 상기 배터리팩(200)이 방전될 때, 해당 배터리팩(200)의 내부저항을 정확하게 측정할 수 있다. 이를 통해 배터리팩(200)의 용량을 정확하게 게이징하여 사용자에게 제공할 수 있다. 또한 배터리팩(200)의 반복적인 충/방전으로 인해 배터리셀의 열화에 따른 내부저항의 상승을 감지할 수 있으며, 미리 설정한 값 이상으로 해당 배터리팩(200)의 내부저항이 상승하는 경우, 이를 사용자에게 알리거나, 자체적으로 충전 혹은 방전을 차단함으로써, 해당 배터리팩(200)의 발열 및 폭발로 인한 위험성을 사전에 차단할 수 있다.Through this process, the battery monitoring apparatus 100 learns a change in the internal resistance of the battery pack 200 for each temperature, and when the battery pack 200 is discharged, the internal resistance of the battery pack 200. Can be measured accurately. Through this, the capacity of the battery pack 200 can be accurately gauged and provided to the user. In addition, due to repetitive charging / discharging of the battery pack 200, an increase in internal resistance due to deterioration of the battery cell may be detected, and when the internal resistance of the corresponding battery pack 200 rises above a predetermined value, By notifying the user or by blocking the charging or discharging by itself, the risk of heat generation and explosion of the corresponding battery pack 200 may be blocked in advance.
도 6은 본 발명의 일 실시예에 따른 배터리 모니터링 장치의 구성을 나타낸 블록도이다.6 is a block diagram showing the configuration of a battery monitoring apparatus according to an embodiment of the present invention.
도 6에 도시한 바와 같이, 배터리 모니터링 장치(100)는 배터리팩(200)에 직렬로 연결되는 외부장치에 따라 해당 배터리팩(200)을 충전하거나 방전하도록 하는 배터리팩 충/방전 제어부(110), 배터리팩(200)의 전류 및 전압을 측정하는 배터리팩(200) 전류/전압 측정부(120), 배터리팩의 온도를 측정하는 배터리팩 온도 측정부(130), 온도에 따른 배터리팩(200)의 저항을 측정하여 학습하는 학습부(140), 상기 학습결과에 따라 배터리팩(200)의 저항을 측정하는 배터리팩 저항 측정부(150), 상기 학습결과에 따라 온도 및 배터리팩(200)의 열화에 따른 배터리팩(200) 용량을 게이징하는 배터리팩 용량 게이징부(160), 상기 배터리팩 저항 측정부(150)를 통해 측정한 저항의 변화에 따라 해당 배터리팩(200)을 보호하기 위한 제어신호를 생성하는 보호부(170), 상기 배터리팩 용량 게이징부(160)를 통한 게이징 정보, 상기 배터리팩(200)의 상태정보 등을 사용자에게 제공하는 알림부(180), 제어부(190) 및 메모리(미도시)를 포함하여 구성된다.As shown in FIG. 6, the battery monitoring apparatus 100 may charge or discharge the battery pack 200 to charge or discharge the corresponding battery pack 200 according to an external device connected in series with the battery pack 200. , Battery pack 200 current / voltage measuring unit 120 for measuring the current and voltage of the battery pack 200, battery pack temperature measuring unit 130 for measuring the temperature of the battery pack, battery pack 200 according to the temperature Learning unit 140 to measure the resistance of the learning unit 140, a battery pack resistance measuring unit 150 for measuring the resistance of the battery pack 200 according to the learning results, temperature and battery pack 200 in accordance with the learning results Protects the battery pack 200 according to a change in the resistance measured by the battery pack capacity gauging unit 160 and the battery pack resistance measuring unit 150 to gauge the capacity of the battery pack 200 due to deterioration of the battery pack 200. The protection unit 170 for generating a control signal to the, the battery pack capacity crab It is configured to include a jingbu 160 gauging information, notifications provided by the condition information and the like of the battery pack 200 to the user unit 180, a controller 190 and a memory (not shown) through.
배터리팩 충/방전 제어부(110)는 외부단자를 통해 연결되는 외부장치의 종류에 따라 배터리팩(200)의 충전 혹은 방전을 위한 제어신호를 생성하여 전송한다.The battery pack charge / discharge control unit 110 generates and transmits a control signal for charging or discharging the battery pack 200 according to the type of external device connected through an external terminal.
즉, 상기 배터리팩 충/방전 제어부(110)는 충전 FET(300) 및 방전 FET(400)를 제어하여 상기 배터리팩(200)을 충전하거나, 방전할 수 있도록 한다. 예를 들어, 상기 외부단자에 배터리팩(200)을 충전하기 위한 충전기(700)를 포함하는 외부전원이 연결되는 경우, 상기 제어신호를 통해 충전 FET(300) 및 방전 FET(400)를 각각 온 및 오프시켜, 상기 외부전원을 통해 일정한 전압으로 상기 배터리팩(200)을 충전할 수 있도록 한다. 또한 상기 외부단자를 통해 상기 배터리팩(200)으로부터 전원을 인가받아 구동되는 부하(예: 자동차 등)가 연결되는 경우, 배터리팩 충/방전 제어부(110)는 상기 방전 FET(400)를 온하고 상기 충전 FET(300)를 오프시킴으로써, 배터리팩(200)을 방전시켜 상기 부하로 전원을 인가할 수 있도록 한다.That is, the battery pack charge / discharge control unit 110 controls the charge FET 300 and the discharge FET 400 to charge or discharge the battery pack 200. For example, when an external power source including a charger 700 for charging the battery pack 200 is connected to the external terminal, each of the charging FET 300 and the discharge FET 400 is turned on through the control signal. And off, it is possible to charge the battery pack 200 with a constant voltage through the external power. In addition, when a load (for example, a car, etc.) driven by receiving power from the battery pack 200 is connected through the external terminal, the battery pack charge / discharge control unit 110 turns on the discharge FET 400. By turning off the charging FET 300, the battery pack 200 is discharged so that power can be applied to the load.
또한 배터리팩 전류/전압 측정부(120)는 배터리팩(200)의 충/방전 시 해당 배터리팩(200)의 전류 및 전압을 측정한다.In addition, the battery pack current / voltage measuring unit 120 measures the current and voltage of the battery pack 200 when charging / discharging the battery pack 200.
또한 배터리팩 전류/전압 측정부(120)는 상기 배터리팩(200) 전체에 대한 전류 및 전압을 측정하고, 또한 상기 배터리팩(200)을 구성하는 각각의 셀에 대한 전류 및 전압을 각각 측정한다. 상기 배터리팩(200) 또는 배터리셀에 대한 전류 및 전압은 전류감지센서 및 전압감지센서를 통해 측정될 수 있다.In addition, the battery pack current / voltage measuring unit 120 measures the current and voltage of the entire battery pack 200, and also measures the current and voltage of each cell constituting the battery pack 200, respectively. . Current and voltage for the battery pack 200 or the battery cell may be measured through a current sensor and a voltage sensor.
한편 상기 배터리팩 전류/전압 측정부(120)는 도 2 및 도 3을 참조하여 설명한 것과 같이, 복수의 배터리셀을 각각 커버링하는 복수의 전류/전압 측정부(800)로 모듈화될 수 있다. 이때, 상기 배터리 모니터링 장치(100)는 상기 모듈화된 복수의 전류/전압 측정부(800)를 통해 측정된 상기 각 배터리셀에 대한 전압 및 전류를 제공받을 수 있다.Meanwhile, as described with reference to FIGS. 2 and 3, the battery pack current / voltage measuring unit 120 may be modularized into a plurality of current / voltage measuring units 800 respectively covering a plurality of battery cells. In this case, the battery monitoring apparatus 100 may receive a voltage and a current for each of the battery cells measured through the plurality of modularized current / voltage measuring units 800.
또한 배터리팩 온도 측정부(130)는 상기 배터리팩(200)의 충/방전 시에 해당 배터리팩(200) 및 배터리셀의 온도를 측정함으로써, 충/방전시에 대한 온도 변화량을 모니터링한다.In addition, the battery pack temperature measuring unit 130 monitors the temperature change amount during charging / discharging by measuring the temperatures of the battery pack 200 and the battery cells during charging / discharging of the battery pack 200.
또한 학습부(140)는 학습 사이클을 통해 열화 및 온도에 따른 상기 배터리팩(200)의 OCV 곡선, 총 용량 및 저항의 변화를 학습한다.In addition, the learner 140 learns changes in the OCV curve, total capacity, and resistance of the battery pack 200 according to deterioration and temperature through a learning cycle.
상기 학습 사이클은 제1 사이클 및 제2 사이클을 포함하여 구성되며, 상기 제1 사이클을 통해 배터리팩(200)의 OCV 곡선(즉, OCV 변화량) 및 해당 배터리팩(200)의 총 용량을 학습한다.The learning cycle includes a first cycle and a second cycle, and learns the OCV curve (ie, OCV variation) of the battery pack 200 and the total capacity of the battery pack 200 through the first cycle. .
또한 학습부(140)는 제2 사이클을 통해 상기 배터리팩(200)의 온도 및 열화에 따른 저항변화를 학습한다.In addition, the learner 140 learns resistance changes according to temperature and deterioration of the battery pack 200 through a second cycle.
상기 제1 사이클은 무부하상태 및 정상온도에서 특정 C-rate(예:1/20C-rate)로 상기 배터리팩(200)을 방전시켜가며, 상기 배터리팩(200)에 대한 OCV 곡선을 학습한다. 이는 미리 설정한 기간 또는 사용자에 따라 주기적 혹은 비주기적으로 수행될 수 있다.The first cycle discharges the battery pack 200 with a specific C-rate (eg, 1/20 C-rate) at no load and normal temperature, and learns an OCV curve for the battery pack 200. This may be performed periodically or aperiodically according to a preset period or user.
또한 학습부(140)는 해당 제1 사이클에서 상기 OCV 곡선의 Flat Region을 검출하며, 상기 Flat Region은 도 3을 참조하여 설명한 것과 같이 상기 OCV 곡선의 변화량이 급격하게 변화는 두 지점을 찾음으로써, 검출된다.In addition, the learner 140 detects the flat region of the OCV curve in the first cycle, and the flat region finds two points where the amount of change of the OCV curve changes rapidly as described with reference to FIG. 3. Is detected.
또한 상기 학습부(140)는 무부하 상태에서의 총 용량을 계산하여 학습한다. 상기 총 용량을 계산하는 것은 상기 배터리팩(200)에 일정한 C-rate로 상기 배터리팩(200)을 방전종지전압(discharge termination voltage)까지 방전하여 해당 배터리팩(200)의 총 용량을 측정한다는 의미이다. 한편, 상기 배터리팩(200)은 부하에 연결되어 사용됨에 따라 에이징이 발생되는 것이 당연하므로, 상기 제1 사이클을 통해 학습되는 배터리팩(200)의 총 용량은 변화(즉, 줄어듦)될 수밖에 없다.In addition, the learner 140 learns by calculating the total capacity in the no-load state. Calculating the total capacity means that the battery pack 200 is discharged to a discharge termination voltage at a constant C-rate in the battery pack 200 to measure the total capacity of the battery pack 200. to be. On the other hand, since the aging occurs as the battery pack 200 is connected to a load and is used, the total capacity of the battery pack 200 learned through the first cycle is inevitably changed (that is, reduced). .
또한 상기 학습부(140)는 제1 사이클을 통해 상기 측정한 OCV 곡선 및 배터리팩(200)의 총 용량을 메모리(미도시)에 누적하여 저장함으로써, 상기 OCV 곡선 및 배터리팩(200)의 총 용량에 대한 변화를 학습한다.In addition, the learning unit 140 accumulates and stores the measured OCV curve and the total capacity of the battery pack 200 in a memory (not shown) through a first cycle, thereby totaling the OCV curve and the battery pack 200. Learn about changes in capacity.
한편 상기 C-rate는 1/20C-rate로 한정하지 않으며, 상기 배터리팩(200)의 사용용도, 사용목적 또는 사용자에 따라 달리 설정될 수 있다.On the other hand, the C-rate is not limited to 1/20 C-rate, it can be set differently depending on the purpose of use, purpose of use or user of the battery pack 200.
또한 상기 학습부(140)는 제2 사이클을 통해 상기 배터리팩(200)의 저항을 학습한다. 상기 저항은 상기 배터리팩(200)의 전체 저항, 배터리팩(200)을 구성하는 각각의 배터리셀에 대한 저항 및 제일 낮은 전압을 출력하는 약한 셀(weak cell)의 저항을 측정하여 학습한다.In addition, the learner 140 learns the resistance of the battery pack 200 through a second cycle. The resistance is learned by measuring the total resistance of the battery pack 200, the resistance of each battery cell constituting the battery pack 200, and the resistance of a weak cell that outputs the lowest voltage.
상기 제2 사이클은 정상온도, 고온 및 저온에서 상기 배터리팩을 일정한 C-rate로 방전시켜가며, 온도에 다른 배터리팩(200)의 저항, 각 배터리셀에 대한 저항, 제일 낮은 전압을 출력하는 약한 셀(weak cell)에 대한 저항을 측정하여 학습한다.The second cycle discharges the battery pack at a constant C-rate at a normal temperature, a high temperature, and a low temperature, and weakly outputs a resistance of another battery pack 200, a resistance for each battery cell, and a lowest voltage at a temperature. Learn by measuring the resistance to a weak cell.
상기 제2 사이클 또한 이는 미리 설정한 기간 또는 사용자에 따라 주기적 혹은 비주기적으로 수행될 수 있다.The second cycle may also be performed periodically or aperiodically according to a preset period or user.
또한 상기 제 2사이클은 배터리팩(200)의 SOC를 복수의 구간(즉, 그리드 포인트)으로 나누어 상기 각 그리드 포인트별 저항값을 측정하는 것으로, 상기 제1 사이클을 통해 이미 각 그리드 포인트별 OCV 곡선을 학습하였으므로, 상기 제2 사이클에서 측정되는 전압(measured voltage)은 OCV - IR이 된다. 따라서, 그리드 포인트별로 측정되는 전압 Vm[i]는 OCV[i] - IR[i]가 되며, R[i]는 (Vm[i] - OCV[i])/I가 된다. 여기서 i는 상기 나눈 각 그리드 포인트를 나타낸다.In addition, the second cycle is to measure the resistance value of each grid point by dividing the SOC of the battery pack 200 into a plurality of sections (that is, grid points), the OCV curve for each grid point already through the first cycle Since we learned that, the measured voltage in the second cycle (measured voltage) is OCV-IR. Therefore, the voltage Vm [i] measured for each grid point becomes OCV [i]-IR [i], and R [i] becomes (Vm [i]-OCV [i]) / I. Where i represents each divided grid point.
한편 Flat Region에서는 전압의 변화량이 거의 없거나 완만하므로, 상기 SOC 그리드 포인트를 적게 나누어 저항을 측정하며, 그 외에서는 전압의 변화량이 급격하게 변하기 때문에 SOC 그리드 포인트를 상기 Flat Region보다 더욱 세밀하게 나누어, 상기 그리드 포인트별 저항을 측정하여 메모리에 저장한다.On the other hand, since there is little or no change in voltage in the flat region, the SOC grid points are measured by dividing the SOC grid points less. Otherwise, SOC grid points are divided more finely than the flat region, because the voltage changes rapidly. Measure the resistance per grid point and store it in memory.
또한 정상온도에서의 그리드 포인트별 저항은 다음의 [수학식 2]를 통해 측정된다.In addition, the resistance of each grid point at normal temperature is measured by the following [Equation 2].
[수학식 2][Equation 2]
Rnew[i] = Rold[i] * (Rnew/Rold),Rnew [i] = Rold [i] * (Rnew / Rold),
Rnew = (OCV - Vm) / IRnew = (OCV-Vm) / I
여기서 Rnew는 현재 수행되고 있는 학습 사이클(제2 사이클)에서 측정된 저항을 의미하며, Rold는 이전에 수행된 학습 사이클에서 측정된 저항을 의미한다. 한편 상기 Rnew는 상기 학습 사이클이 시작될 때 마다 계산된다. 따라서 Rnew/Rold는 이전 저항 대비 현재 저항이므로, 열화에 따른 배터리팩(200)의 저항변화인 에이징 레이트(aging rate)가 된다. 또한 i는 SOC 그리드 포인트를 나타낸다.Here, Rnew means the resistance measured in the learning cycle (second cycle) currently being performed, and Rold means the resistance measured in the learning cycle previously performed. Meanwhile, Rnew is calculated every time the learning cycle starts. Therefore, since Rnew / Rold is the current resistance compared to the previous resistance, it becomes an aging rate which is a resistance change of the battery pack 200 due to deterioration. I also denotes an SOC grid point.
또한 상기 학습부(140)는 제2 사이클을 통해 각 온도가 저항에 미치는 변수(즉 온도팩터)를 계산하여 상기 계산한 온도팩터를 상기 측정한 저항값에 반영하여 해당 학습 사이클에서의 저항을 최종적으로 측정하여 학습한다.In addition, the learning unit 140 calculates a variable (that is, a temperature factor) that each temperature has on the resistance through a second cycle, and reflects the calculated temperature factor to the measured resistance value to finalize the resistance in the corresponding learning cycle. Measure to learn.
상기 온도를 반영한 각 그리드 포인트에서의 배터리팩(200)에 대한 저항값은 다음의 [수학식 3]을 통해 최종적으로 측정된다.The resistance value for the battery pack 200 at each grid point reflecting the temperature is finally measured through the following [Equation 3].
[수학식 3][Equation 3]
Rnew = (OCV - Vm) / I,Rnew = (OCV-Vm) / I,
Rnew[i][j] = Rold[i][j] * (Rnew/Rold)Rnew [i] [j] = Rold [i] [j] * (Rnew / Rold)
여기서, Rnew는 상기 [수학식 2]와 동일하며, i는 SOC 그리드 포인트를 나타내며, j는 온도범위를 나타낸다. 즉, j는 SOC상에서 변화되는 온도의 범위를 나타내는 것으로 저온(예 : 5도 ~ 24도)은 0, 정상온도(예: 25도 ~ 39도)는 1로 설정하고 고온(예: 40도 이상)은 2로 설정할 수 있다. 다만 상기 온도의 범위는 상기 배터리 모니터링 장치(100)의 자원할당 능력에 따라 더욱 세분화하여 설정할 수 있다. 또한 각 온도 범위에 대한 값은 최저 온도범위를 0으로 설정하고, 순차적으로 각 온도범위마다 1씩 증가시켜 설정할 수 있다.Here, Rnew is the same as [Equation 2], i represents the SOC grid point, j represents the temperature range. In other words, j represents the range of temperature changes on the SOC, where low temperature (eg 5 ° to 24 °) is set to 0, normal temperature (eg 25 ° to 39 °) is set to 1, and high temperature (eg 40 ° or more) ) Can be set to 2. However, the temperature range may be further divided according to the resource allocation capability of the battery monitoring apparatus 100. In addition, the value for each temperature range may be set by setting the lowest temperature range to 0 and sequentially increasing the temperature by 1 for each temperature range.
또한 배터리팩 저항 측정부(150)는 상기 학습결과에 따라 부하가 연결되어 현재 방전되고 있는 배터리팩(200)의 저항을 각 SOC 그리드 포인트별로 측정한다. 상기 측정은 미리 설정한 SOC 그리드 포인트 별로 배터리팩(200)의 전체 저항 및 각각의 배터리셀에 대한 저항을 측정한다.In addition, the battery pack resistance measuring unit 150 measures the resistance of the battery pack 200 that is currently discharged by the load is connected to each SOC grid point according to the learning result. The measurement measures the resistance of each battery cell and the total resistance of the battery pack 200 for each predetermined SOC grid point.
상기 저항은, 제2 사이클을 통해 저항값을 계산하는 방법과 동일한 방법으로 측정된다. 즉, 상기 [수학식 2] 및 [수학식 3]을 활용하여 상기 배터리팩(200)의 전체 저항 및 배터리셀에 대한 저항을 각각 측정한다.The resistance is measured in the same manner as the method of calculating the resistance value through the second cycle. That is, the total resistance of the battery pack 200 and the resistance of the battery cells are measured by using Equations 2 and 3, respectively.
본 발명에서는 각 배터리의 셀저항 대신 팩저항 또는 저항이 가장 큰 몇 개의 위크셀들의 저항만을 각 온도 별로 학습한다. 방전종료전압에 셀전압 또는 팩전압이 가장 먼저 도달하는 셀을 위크셀로 결정하여 위크셀을 찾을 수 있다. 팩전압이 팩의 방전종료전압에 도달하기 전에 하나의 배터리셀이 셀의 방전종료전압에 먼저 도달하면 방전이 종료된다. 저전압에서 셀의 수명이 크게 저하되기 때문에 셀을 보호여야 할 필요가 있다. 위크셀에 대한 저항값의 변화를 학습하는 방법은 팩저항을 학습하는 것과 동일하다. 다만, 차이점으로 위크셀을 찾는 것은 셀에서 가장 낮은 전압을 가지는 것을 찾는 것이다. 따라서 위크셀의 전압 측정치는 위크셀의 자체 전압 측정치에 전류와 셀간의 와이어 저항을 곱한 값을 더한 것으로 나타낼 수 있다. 이러한 위크셀의 전압 측정치는 위크셀 저항을 학습하는데 사용될 수 있다.In the present invention, instead of the cell resistance of each battery, only the resistance of several weak cells having the largest pack resistance or resistance is learned for each temperature. The weak cell can be found by determining the cell in which the cell voltage or the pack voltage reaches the discharge end voltage as the weak cell. If one battery cell reaches the discharge end voltage of the cell before the pack voltage reaches the end discharge voltage of the pack, the discharge is terminated. At low voltages, the life of the cell is greatly reduced, so the cell needs to be protected. The method of learning the change of the resistance value for the weak cell is the same as that of the pack resistance. However, finding the weak cell as a difference is finding the lowest voltage in the cell. Therefore, the voltage measurement of the weak cell may be expressed as the value obtained by multiplying the wire resistance between the current and the cell by the voltage measurement of the weak cell. These weak cell voltage measurements can be used to learn the weak cell resistance.
또한 배터리팩 저항 측정부(150)는 상기 배터리팩(200)의 전체저항 및 각 배터리셀에 대한 저항을 측정한 측정결과와 사전에 설정하여 저장한 저항별 배터리상태(열화된 정도)에 대한 매핑테이블을 비교하여, 상기 측정결과에 따른 배터리상태를 상기 매핑테이블로부터 추출하여, 사용자 단말로 제공하거나 또는 디스플레이에 출력할 수 있다.In addition, the battery pack resistance measurement unit 150 maps the measurement result of measuring the total resistance of the battery pack 200 and the resistance of each battery cell and the battery state (deterioration degree) for each resistance stored in advance. By comparing the tables, the battery state according to the measurement result may be extracted from the mapping table, provided to the user terminal, or output to the display.
또한 배터리팩 저항 측정부(150)는 상기 배터리팩(200)의 전체 저항이 미리 설정한 값을 초과하거나, 또는 상기 측정한 각각의 배터리셀에 대한 저항이 미리 설정한 값을 초과하는 경우, 보호부(170)를 통해 해당 배터리팩(200)의 방전(혹은 충전)을 차단할 수 있도록 한다. 이를 통해, 배터리팩(200)의 결함(즉, 폭발 등)으로부터 해당 배터리팩(200)을 이용하는 외부 장치 혹은 사용자를 보호할 수 있도록 한다.In addition, the battery pack resistance measuring unit 150 protects when the total resistance of the battery pack 200 exceeds a preset value or when the resistance of each measured battery cell exceeds a preset value. Through the unit 170, it is possible to block the discharge (or charging) of the battery pack 200. Through this, it is possible to protect the external device or the user using the battery pack 200 from a defect (that is, explosion, etc.) of the battery pack 200.
또한 배터리팩 용량 게이징부(160)는 상기 학습부(140)를 통해 학습한 결과를 토대로 해당 배터리팩(200)의 잔여용량(remaining capacity) 및 전체 가용용량(usable capacity)을 게이징하여 사용자에게 제공할 수 있도록 한다.In addition, the battery pack capacity gauging unit 160 user by gauging the remaining capacity (remaining capacity) and the total available capacity (useable capacity) of the battery pack 200 on the basis of the results learned through the learning unit 140 Make it available to
한편 상기 게이징에 관한 절차는 도 7a 및 도 7b를 참조하여 상세히 설명하도록 한다.Meanwhile, the procedure for gauging will be described in detail with reference to FIGS. 7A and 7B.
또한 보호부(170)는 배터리팩 온도 측정부(130)를 통해 측정되는 온도 변화를 모니터링하여, 현재 온도가 미리 설정한 값을 초과하는 경우에는 해당 배터리팩(200)의 충전 혹은 방전을 차단할 수 있도록 함으로써, 열로 인한 배터리팩(200)의 손상을 방지할 수 있도록 한다.In addition, the protection unit 170 monitors the temperature change measured by the battery pack temperature measuring unit 130, and when the current temperature exceeds a preset value can block the charging or discharging of the battery pack 200. By doing so, it is possible to prevent damage of the battery pack 200 due to heat.
또한 보호부(170)는 현재 방전 또는 충전되고 있는 배터리팩(200)의 전압변화량(즉, 전압곡선)을 추적해 나가면서 미리 설정하여 저장한 방전 종지전압 또는 최대 충전전압과 동일할 때 해당 배터리팩(200)의 방전 또는 충전을 차단함으로써, 과방전 또는 과충전으로 인한 배터리팩(200)의 손상을 방지할 수 있도록 한다. 상기 방전 종지전압과 최대 충전전압은 미리 설정하여 상기 메모리에 저장된다.In addition, the protection unit 170 keeps track of the voltage change amount (that is, the voltage curve) of the battery pack 200 that is currently being discharged or charged, and the corresponding battery when it is equal to the discharge end voltage or the maximum charging voltage that is preset and stored. By blocking the discharge or charging of the pack 200, it is possible to prevent damage to the battery pack 200 due to over discharge or over charge. The discharge termination voltage and the maximum charging voltage are set in advance and stored in the memory.
또한 알림부(180)는 상기 배터리팩 용량 게이징부(160)를 통해 해당 배터리팩(200)의 잔여용량과 전체 가용용량을 사용자 단말로 제공하거나, 상기 사용자 단말의 디스플레이에 표시함으로써, 현재 배터리팩의 잔여용량과 전체 가용용량을 즉각적으로 알 수 있도록 한다.In addition, the notification unit 180 provides the remaining capacity and total available capacity of the battery pack 200 to the user terminal through the battery pack capacity gauging unit 160 or displays the current battery by displaying on the display of the user terminal. Get immediate insight into the pack's remaining capacity and total available capacity.
또한 알림부(180)는 배터리팩(200) 저항 측정부(150)를 통해 측정되는 저항에 따라 배터리팩 상태정보를 상기 매핑테이블로부터 추출하여 상기 사용자 단말로 제공하여 해당 배터리팩(200)의 상태를 알 수 있도록 한다.In addition, the notification unit 180 extracts battery pack state information from the mapping table according to the resistance measured by the battery pack 200 resistance measuring unit 150 and provides the user terminal with the state of the corresponding battery pack 200. To know.
또한 알림부(180)는 상기 측정한 배터리팩(200)의 저항이 미리 설정한 값을 초과하는 경우에는, 경고음과 함께 이에 대한 정보를 제공함으로써, 해당 배터리팩(200) 혹은 배터리셀을 교체하거나 수리할 수 있도록 한다.In addition, when the resistance of the measured battery pack 200 exceeds a preset value, the notification unit 180 provides a warning sound and information on this, thereby replacing the corresponding battery pack 200 or the battery cell. Allow for repair.
이하에서는 도 7 내지 도 9를 참조하여 배터리팩의 방전에 따른 잔여용량과 전체 가용용량을 게이징하는 절차를 상세히 설명하도록 한다.Hereinafter, a procedure of gauging the remaining capacity and the total available capacity according to the discharge of the battery pack will be described in detail with reference to FIGS. 7 to 9.
도 7a 및 도 7b는 본 발명의 일 실시예에 따른 배터리팩이나 위크셀의 방전에 따른 잔여용량과 전체 가용용량을 게이징하여 사용자에게 제공하는 절차를 나타낸 흐름도이며, 도 8은 본 발명의 일 실시예에 따른 배터리팩의 용량과 SOH를 업데이트하는 방법을 설명하기 위해 나타낸 순서도이고, 도 9는 본 발명의 일 실시예에 따른 배터리팩의 방전에 따른 잔여용량과 전체 가용용량을 게이징하는 방법을 설명하기 위해 나타낸 도면이다.7A and 7B are flowcharts illustrating a procedure of providing a user with a remaining capacity and total available capacity according to a discharge of a battery pack or a weak cell according to an embodiment of the present invention, and FIG. 8 is a view of the present invention. 9 is a flowchart illustrating a method of updating a battery pack capacity and an SOH according to an embodiment, and FIG. 9 is a method of gauging the remaining capacity and total available capacity according to a discharge of a battery pack according to an embodiment of the present invention. Figure is shown to explain.
도 7a 및 도 7b에 도시한 바와 같이, 배터리팩(200)의 방전에 다른 잔여용량과 전체 가용용량을 게이징하여 사용자에게 제공하는 절차는 우선, 배터리 모니터링 장치(100)에 구비되는 상기 배터리 용량 게이징부(160)는 배터리팩(200)의 방전에 따른 이전에 측정된 OCV 포인트와 Passed Charge로 현재 OCV 포인트를 검출한다(S110, S210).As shown in FIGS. 7A and 7B, the procedure of gauging the remaining capacity and the total available capacity to the user by discharging the battery pack 200 is first provided by the battery capacity of the battery monitoring apparatus 100. The gauging unit 160 detects the OCV point previously measured according to the discharge of the battery pack 200 and the current OCV point with the pass charge (S110 and S210).
여기서 OCV 포인트는 상기 SOC 그리드 포인트를 의미하는 것으로, 이전에 수행된 상기 학습 사이클에 따라 미리 SOC 그리드 포인트가 설정되어 있고, 배터리팩(200)의 전체 용량이 측정되어 있다. 따라서 이전에 측정된 OCV 포인트는 이미 알고 있으므로 해당 OCV 포인트를 토대로 현재 OCV 포인트를 검출할 수 있다.Here, the OCV point means the SOC grid point. The SOC grid point is set in advance according to the learning cycle previously performed, and the total capacity of the battery pack 200 is measured. Therefore, the previously measured OCV point is already known so that the current OCV point can be detected based on the OCV point.
또한 Passed Charge는 이미 흐른 쿨롬(coulomb)을 의미하는 것으로, 상기 학습결과에 따라 이미 해당 배터리팩(200)의 전체 용량을 알고 있고, OCV 곡선을 알고 있기 때문에 다음부터는 OCV 상태가 아니고 부하에 의한 방전이라 하더라도 이전의 OCV를 구한 전압에서 흐른 전하량을 통하여 현재 SOC를 구할 수 있다.In addition, Passed Charge means a coulomb that has already flowed, and according to the learning result, the total capacity of the corresponding battery pack 200 is already known and the OCV curve is known. Even in this case, the current SOC can be obtained from the charge flowed at the voltage obtained from the previous OCV.
또한 도 9에 도시한 바와 같이, 현재 OCV 포인트가 SOC 그리드 포인트 6이라고 가정하면 Passed Charge는 SOC 그리드 포인트 1 내지 6까지 흐른 총 전하량을 의미하는 것이다. 또한 종지전압 라인을 x축으로 하고, 전압을 y축으로 하여, 전압곡선과 상기 x축 및 y축을 이루는 도형에 대한 면적을 구하면 해당 구간에서의 용량을 구할 수 있다.In addition, as shown in FIG. 9, assuming that the current OCV point is the SOC grid point 6, the passed charge refers to the total amount of charges flowing from the SOC grid points 1 to 6. In addition, if the final voltage line is the x-axis, the voltage is the y-axis, and the area of the voltage curve and the figure constituting the x-axis and the y-axis is obtained, the capacity in the corresponding section can be obtained.
즉, 현재 OCV 포인트가 6일 때, Passed Charge는 SOC 그리드 포인트 1 내지 6까지에 해당하는 전압곡선의 면적을 계산하면 측정할 수 있다. 이때, 각 SOC 그리드 포인트에서의 면적은 해당 SOC 그리드 포인트에서의 용량(capacity)이 된다. 즉, SOC 그리드 포인트가 i이면, 이전의 SOC 그리드 포인트(i-1)와 해당 SOC 그리드 포인트 i사이의 전압곡선에 대한 면적은 해당 SOC 그리드 포인트 i에서 용량 즉, capacity[i]가 된다.That is, when the current OCV point is 6, the passed charge can be measured by calculating the area of the voltage curve corresponding to the SOC grid points 1 to 6. At this time, the area at each SOC grid point is the capacity at the corresponding SOC grid point. That is, if the SOC grid point is i, the area of the voltage curve between the previous SOC grid point i-1 and the SOC grid point i becomes the capacity, i.e. capacity [i], at the SOC grid point i.
다음으로 배터리 용량 게이징부(160)는 상기 검출한 OCV 포지션에서의 전압에 현재 배터리팩(200)에서 측정되는 전압(즉, 전류(current) * 배터리팩 저항(pack resistance))을 차감하여, 상기 차감한 결과가 방전 종지전압과 비교한다(S120, S220).Next, the battery capacity gauging unit 160 subtracts the voltage measured at the current battery pack 200 (that is, current * battery pack resistance) from the detected voltage at the OCV position. The result of the subtraction is compared with the discharge end voltage (S120, S220).
또한 본 발명에서는 각 배터리의 셀저항 대신 팩저항 또는 저항이 가장 큰 몇 개의 위크셀들의 저항만을 각 온도 별로 학습한다. 방전종료전압에 셀전압 또는 팩전압이 가장 먼저 도달하는 셀을 위크셀로 결정하여 위크셀을 찾을 수 있다. 팩전압이 팩의 방전종료전압에 도달하기 전에 하나의 배터리셀이 셀의 방전종료전압에 먼저 도달하면 방전이 종료된다. 저전압에서 셀의 수명이 크게 저하되기 때문에 셀을 보호여야 할 필요가 있다. 위크셀에 대한 저항값의 변화를 학습하는 방법은 팩저항을 학습하는 것과 동일하다. 다만, 차이점으로 위크셀을 찾는 것은 셀에서 가장 낮은 전압을 가지는 것을 찾는 것이다. 따라서 위크셀의 전압 측정치는 위크셀의 자체 전압 측정치에 전류와 셀간의 와이어 저항을 곱한 값을 더한 것으로 나타낼 수 있다. 이러한 위크셀의 전압 측정치는 위크셀 저항을 학습하는데 사용될 수 있다.In addition, in the present invention, instead of the cell resistance of each battery, only the resistance of several weak cells having the largest pack resistance or resistance is learned for each temperature. The weak cell can be found by determining the cell in which the cell voltage or the pack voltage reaches the discharge end voltage as the weak cell. If one battery cell reaches the discharge end voltage of the cell before the pack voltage reaches the end discharge voltage of the pack, the discharge is terminated. At low voltages, the life of the cell is greatly reduced, so the cell needs to be protected. The method of learning the change of the resistance value for the weak cell is the same as that of the pack resistance. However, finding the weak cell as a difference is finding the lowest voltage in the cell. Therefore, the voltage measurement of the weak cell may be expressed as the value obtained by multiplying the wire resistance between the current and the cell by the voltage measurement of the weak cell. These weak cell voltage measurements can be used to learn the weak cell resistance.
비교결과 상기 차감한 결과가 상기 방전 종지전압보다 큰 경우(S120, S220), 이전에 계산된 Passed charge에 현재 OCV 포지션에서 계산되는 용량(capacity[i])을 가산하여 현재 Passed charge를 계산하고(S121, S221), 이전에 계산된 잔여용량에 현재 OCV 포지션에서 계산되는 용량(capacity[i])을 차감하여 현재 잔여용량을 업데이트 한다(S121, S222).If the result of the comparison is greater than the discharge termination voltage (S120, S220), the current Passed charge is calculated by adding the capacity (capacity [i] calculated at the current OCV position to the previously calculated Passed charge (S120). S121 and S221, the current residual capacity is updated by subtracting the capacity calculated from the current OCV position from the previously calculated residual capacity (S121 and S222).
도 8은 본 발명의 일 실시예에 따른 배터리팩의 방전에 따른 잔여용량과 전체 가용용량을 게이징하는 방법을 설명하기 위해 나타낸 도면이다.8 is a view illustrating a method of gauging the remaining capacity and the total available capacity according to the discharge of the battery pack according to an embodiment of the present invention.
도 8에 보인 바와 같이, 용량을 업데이트하는 것은 SOH를 예상하거나 배터리 열화를 완화시키기 위해 현재 용량에 따라 충전전류를 제어하는 데에 매우 중요하다. SOH는 팩의 열화에 대한 속도를 나타내며, 학습 사이클이나 설계 당시의 설계 용량에서 현재 용량/원래 용량에 의해 쉽게 계산된다. 그러나 많은 알고리즘들은 전류용량을 정확하게 그리고 자주 계산할 수 없다.As shown in Figure 8, updating the capacity is very important for controlling the charging current according to the current capacity to anticipate SOH or mitigate battery degradation. SOH represents the rate of deterioration of a pack and is easily calculated by the current capacity / original capacity in the learning cycle or design capacity at the time of design. Many algorithms, however, cannot calculate current capacity accurately and often.
즉, 현재용량을 업데이트하는 방법은 먼저 매 완전충전 종료 시에 시작한다(S310). 다음으로 용량을 알기 위해서 학습 사이클에 사용된 전류를 전류값으로 설정하거나 셀의 제조자에 의해서 설계당시의 용량에서 사용된 전류를 전류값으로 설정한다(S320).That is, the method of updating the current capacity starts at the end of every full charge (S310). Next, in order to know the capacity, the current used in the learning cycle is set to the current value or the current used in the capacity at the time of design by the manufacturer of the cell is set to the current value (S320).
이어서 현재 OCV 위치를 서치하고(S330). (OCV[i] - current * pack resistor[i])를 계산한 결과가 방전 완료 전압과 비교하여 큰지 체크한다(S340). 만약 크다면 현재 용량에 저장된 용량(capacity[i])을 더한 결과를 현재 용량에 할당한다(S350). 그렇지 않으면, 현재용량을 별도로 계산하지 않고 현재 용량을 새로운 용량에 할당한다(S360).Subsequently, the current OCV location is searched (S330). It is checked whether the result of calculating (OCV [i]-current * pack resistor [i]) is large compared to the discharge completion voltage (S340). If large, the result of adding the capacity (capacity [i]) to the current capacity is allocated to the current capacity (S350). Otherwise, the current capacity is allocated to the new capacity without separately calculating the current capacity (S360).
또한 SOH는 학습한 용량(learning capacity)을 현재 용량(present capacity)로 나눈 값이다. 용량 계산과 SOH 계산의 차이점은 일반 잔량(remaining capacity)과 완전충전용량(full charge capacity)은 실제 시스템의 부하전류(load current)에 따라서 변하지만(전압 드롭 때문에), SOH 계산에서 용량은 절대적인 셀의 열화만으로 나타내어야 하는 것이다.In addition, SOH is a value obtained by dividing learned capacity by present capacity. The difference between capacity calculation and SOH calculation is that the remaining capacity and full charge capacity change depending on the actual system load current (due to voltage drop), but the capacity in the SOH calculation is an absolute cell. It should be represented only by deterioration of.
따라서 SOH 계산은 반드시 배터리가 완전 충전된 조건에서만 수행하고, 시뮬레이션에도 강제로 전류를 학습 사이클에서의 전류로 설정한다. 따라서 최종적으로 SOH = 학습 용량(learning capacity) / 현재 용량(present capacity)으로 계산된다.Therefore, the SOH calculation must be performed only when the battery is fully charged, and the simulation forces the current to be the current in the learning cycle. Therefore, it is finally calculated as SOH = learning capacity / present capacity.
한편, 도 9에 나타낸 것과 같이, 현재 OCV[i]는 OCV[6]이므로, 이전에 계산된 잔여용량은 OCV[5]에 해당한다. 따라서 OCV[6]에서의 잔여용량을 측정하기 위해서는 상기 OCV[5]와 OCV[6] 구간에 대한 전압곡선의 면적을 차감해야 된다. 즉 capacity[6]을 차감하면 현재 OCV 포인트에서의 잔여용량을 계산할 수 있다.Meanwhile, as shown in FIG. 9, since the current OCV [i] is OCV [6], the previously calculated residual capacity corresponds to OCV [5]. Therefore, in order to measure the remaining capacity in OCV [6], the area of the voltage curve for the OCV [5] and OCV [6] sections should be subtracted. That is, by subtracting capacity [6], the remaining capacity at the current OCV point can be calculated.
상기 S120/S220 단계 및 S121/S221 단계를 반복적으로 수행하여 해당 배터리팩(200)이 완전방전(즉, 상기 차감결과가 방전 종지전압과 같은 상태)될 때까지 해당 배터리팩(200)의 잔여용량을 계산한다.Remaining capacity of the battery pack 200 until the battery pack 200 is fully discharged (that is, the result of the subtraction equals the discharge end voltage) by repeatedly performing the steps S120 / S220 and S121 / S221. Calculate
한편 S120/S220단계에서 상기 차감한 결과가 방전 종지전압보다 적은 경우(S120, S220), 해당 배터리팩(200)이 완전 방전된 것을 의미하므로, 이때, 상기 배터리팩 용량 게이징부(160)는 상기 S120 단계 및 S121 단계를 수행하여 계산한 잔여용량에 Passed charge를 가산하여 해당 배터리팩(200)의 전체 가용용량을 측정한다(S130, S230).On the other hand, if the result of the subtraction in step S120 / S220 is less than the discharge end voltage (S120, S220), it means that the battery pack 200 is completely discharged, at this time, the battery pack capacity gauging unit 160 The total available capacity of the battery pack 200 is measured by adding the passed charge to the remaining capacity calculated by performing steps S120 and S121 (S130 and S230).
다음으로 배터리 용량 게이징부(160)는 상기 측정한 전체 가용용량과 미리 설정하여 저장한 MC(minimum capacity)에 SOH를 곱한 값과 비교한다(S140, S240).Next, the battery capacity gauging unit 160 compares the measured total available capacity with a value obtained by multiplying the SOH by the MC (minimum capacity) previously stored and stored (S140 and S240).
한편 MC는 배터리팩(200)의 제조자에 의해 제공되는 것으로, 간혹 극저온에서 저항이 비 이상적으로 큰 경우 전체 가용용량이 0이 되는 경우가 발생할 수 있으므로, 이를 방지하기 위해 상기 제조자가 정한 최소한의 가용용량에 대한 값이다. 상기 MC는 초기 배터리팩(200)의 동작 가능한 최소온도와 최대전류를 방전 종지전압까지 방전했을 때의 용량을 나타낸다. 이는 배터리셀 혹은 배터리팩(200)이 에이징됨에 따라 줄어들기 때문에 SOH를 곱함으로써, 현재 배터리팩(200)의 MC를 나타낼 수 있다.On the other hand, MC is provided by the manufacturer of the battery pack 200, in some cases the total available capacity may be zero when the resistance is non-ideally large at cryogenic temperatures, the minimum available by the manufacturer to prevent this Value for capacity. The MC represents the capacity when the minimum operating temperature and the maximum current of the initial battery pack 200 are discharged to the discharge end voltage. Since it decreases as the battery cell or battery pack 200 is aged, it may represent the MC of the current battery pack 200 by multiplying SOH.
즉, 배터리팩(200)의 전체 가용용량은 상기 MC보다 적을 수가 없다. 따라서 상기 배터리 용량 게이징부(160)는 상기 비교결과, S130/S230 단계에서 측정한 전체 가용용량이 MC * SOH보다 큰 경우에는 상기 전체 가용용량을 MC로 설정하여 해당 배터리팩(200)의 전체 가용용량을 측정한다(S150, S250).That is, the total available capacity of the battery pack 200 cannot be less than the MC. Therefore, if the total available capacity measured in step S130 / S230 is greater than MC * SOH, the battery capacity gauging unit 160 sets the total available capacity to MC to total the corresponding battery pack 200. The available capacity is measured (S150, S250).
또한 상기 SOH는 현재 전체 가용용량에 에이징이 발생하지 않은 초기 배터리팩(200)의 전체 가용용량(즉, 해당 배터리팩(200)에서 이론적으로 제공할 수 있는 최대 가용용량을 의미함)을 나눔으로써, 계산된다.In addition, the SOH is divided by the total available capacity of the initial battery pack 200 (that is, the maximum available capacity theoretically provided by the battery pack 200) by the aging does not occur in the current total available capacity by , Is calculated.
다음으로 배터리 용량 게이징부(160)는 상기 측정한 배터리팩(200)의 잔여용량과 전체 가용용량 및 Passed charge를 리턴(S160, S260)하여 저장하고, 상기 측정한 잔여용량과 전체 가용용량을 사용자 단말로 제공하거나, 디스플레이에 표시하여 사용자가 이를 인식할 수 있도록 한다.Next, the battery capacity gauging unit 160 returns and stores the remaining capacity, the total available capacity, and the passed charge of the measured battery pack 200 (S160 and S260), and stores the measured remaining capacity and the total available capacity. It may be provided to the user terminal or displayed on the display so that the user may recognize it.
도 10은 본 발명의 또 다른 일 실시예에 따른 배터리 모니터링 시스템을 나타낸 블록도이다.10 is a block diagram illustrating a battery monitoring system according to another exemplary embodiment of the present invention.
도 10에 도시한 바와 같이, 배터리 모니터링 시스템(10)은 배터리 모니터링 장치(1003), 시스템 MCU(7001), 전류감지부(600), 배터리팩(200), 충전 FET(300), 방전 FET(400), 상기 충전 FET(300) 및 방전 FET(400)의 온도를 감지하는 온도 감지부(501), 배터리팩(200)의 각 셀에 대한 온도를 감지하는 셀온도 감지부(502)를 포함하여 구성될 수 있다.As shown in FIG. 10, the battery monitoring system 10 includes a battery monitoring apparatus 1003, a system MCU 7001, a current sensing unit 600, a battery pack 200, a charge FET 300, and a discharge FET ( 400, a temperature detector 501 for sensing the temperatures of the charge FET 300 and the discharge FET 400, and a cell temperature detector 502 for sensing the temperature of each cell of the battery pack 200. Can be configured.
상기 배터리 모니터링 장치(1003)는 상기 도 1 내지 도 9를 참조하여 설명한 것과 같이, 배터리 모니터링 장치(100)와 동일한 역할을 수행하여, 해당 배터리팩(200)의 상태를 모니티링한다.As described above with reference to FIGS. 1 to 9, the battery monitoring apparatus 1003 performs the same role as the battery monitoring apparatus 100 to monitor the state of the battery pack 200.
또한 온도 감지부(501)는 외부단자에 연결되는 외부장치(미도시)에 따라 배터리팩(200)이 충전되는 경우, 상기 충전 FET(300)의 FET 온도를 측정하여 상기 배터리 모니터링 장치(1003)로 제공한다. 이와 반대로 상기 배터리팩(200)이 방전되는 경우 상기 방전 FET(400)의 FET 온도를 측정하여 상기 배터리 모니터링 장치(1003)로 제공한다.In addition, when the battery pack 200 is charged according to an external device (not shown) connected to an external terminal, the temperature sensing unit 501 measures the FET temperature of the charging FET 300 to measure the battery monitoring device 1003. To provide. On the contrary, when the battery pack 200 is discharged, the FET temperature of the discharge FET 400 is measured and provided to the battery monitoring apparatus 1003.
또한 셀온도 감지부(502)는 상기 배터리팩(200)의 충/방전시에 각 배터리셀에 대한 온도를 측정하여 상기 배터리 모니터링 장치(1003)로 제공한다.In addition, the cell temperature detector 502 measures the temperature of each battery cell at the time of charging / discharging the battery pack 200 and provides it to the battery monitoring apparatus 1003.
또한 상기 배터리 모니터링 장치(1003)는 상기 온도 감지부(501) 및 셀온도 감지부(502)로부터 제공받은 FET 온도와 배터리셀에 대한 온도를 활용하여 배터리셀의 내/외부(inter/external) 쇼트(short)를 감지한다. 이하에서는 배터리셀의 내부/외부 쇼트를 감지하는 방법에 대해서 구체적으로 설명하고자 한다.In addition, the battery monitoring apparatus 1003 utilizes the FET temperature provided by the temperature sensing unit 501 and the cell temperature sensing unit 502 and the temperature of the battery cell to generate an internal / external short of the battery cell. detect (short) Hereinafter, a method of detecting an internal / external short of the battery cell will be described in detail.
<방법 1><Method 1>
먼저 배터리 모니터링 장치(1003)는 상기 제공받은 각 배터리셀의 온도를 모니터링하고 있으면서, 전체 회로 상에서 무부하전류(no load current) 또는 슬립전류(sleep current)만 있는 경우, 현재 배터리셀의 온도가 상기 FET 온도와 미리 설정한 온도값을 합산한 것보다 높아지는 경우에 상기 배터리셀에서 내부 혹은 외부 쇼트가 발생한 것으로 판단한다.First, the battery monitoring apparatus 1003 is monitoring the temperature of each of the provided battery cells, and when there is only no load current or sleep current on the entire circuit, the temperature of the current battery cell is the FET. When the temperature is higher than the sum of the preset temperature and the predetermined temperature value, it is determined that an internal or external short occurs in the battery cell.
이를 수식으로 일반화하면, 셀 온도 > FET 온도 + 마진값(margin value)이 된다. 상기 슬립전류는 셀온도에 영향을 미치지 않는 전류로써, 배터리팩(200) 제조자 또는 사용자에 의해 제공될 수 있으며, 셀 온도는 충전 혹은 방전시의 각 배터리셀의 온도를 의미한다. 또한 FET 온도는 상기 배터리팩(200)의 충전 혹은 방전에 따라 충전 FET(300)의 온도 또는 방전 FET(400)의 온도를 의미한다. 또한 상기 마진값은 미리 설정하여 저장한 온도값을 의미하는 것으로 사용자 또는 배터리팩(200)의 제조자에 의해 제공되는 값이다.Generalizing this to the equation, cell temperature> FET temperature + margin value. The sleep current is a current that does not affect the cell temperature, and may be provided by the battery pack 200 manufacturer or the user, and the cell temperature means a temperature of each battery cell during charging or discharging. In addition, the FET temperature refers to the temperature of the charge FET 300 or the temperature of the discharge FET 400 according to the charge or discharge of the battery pack 200. In addition, the margin value refers to a temperature value which is preset and stored, and is a value provided by a user or a manufacturer of the battery pack 200.
또한 상기 배터리셀의 내/외부 쇼트는 상기 시스템 MCU(7001)에 의해서도 감지될 수 있다. 이때 상기 시스템 MCU(7001)는 셀 온도 > 시스템 온도 + 마진값인 경우 내부/외부 배터리셀에 쇼트가 난 것으로 감지한다. 여기서 셀 온도에 영향을 미치지 않는 슬립전류와 마진값은 배터리팩(200) 제조자에 의해서 정의될 수 있다.In addition, the internal / external short of the battery cell may be detected by the system MCU 7001. In this case, the system MCU 7001 detects that the internal / external battery cells are shorted when the cell temperature> system temperature + margin value. Here, the slip current and the margin value which do not affect the cell temperature may be defined by the battery pack 200 manufacturer.
<방법 2><Method 2>
또한 배터리 모니터링 장치(100)는 상기의 방법 이외에 열적 모델링(thermal modeling)을 통해 상기 배터리셀의 내/외부 쇼트를 감지할 수 있다. 즉, 상기 배터리 모니터링 장치(100)는 FET 온도를 이용한 열적 모델링에 의해 예상된 룸 온도(room temperature)가 상기 배터리셀 온도를 이용한 열적 모델링에 의해 예상된 룸 온도보다 큰 경우에 상기 배터리셀에서 내/외부 쇼트가 발생한 것으로 판단한다. 상기 열적 모델링은 가변전류 및 가변적인 룸 온도에서 온도를 측정하는 실험에 의해 생성되며, 상기 FET 온도는 상기 배터리셀 온도와 다른 부분에서 측정된 온도로 대체될 수 있다.In addition to the above method, the battery monitoring apparatus 100 may detect an internal / external short of the battery cell through thermal modeling. That is, the battery monitoring apparatus 100 may be discharged from the battery cell when the room temperature estimated by the thermal modeling using the FET temperature is greater than the room temperature expected by the thermal modeling using the battery cell temperature. It is determined that an external short has occurred. The thermal modeling is produced by experiments measuring temperature at variable current and variable room temperature, and the FET temperature can be replaced with the temperature measured at a different part from the battery cell temperature.
또한 상기 배터리셀의 내/외부 쇼트는 상기 시스템 MCU(7001)에 의해서도 감지될 수 있다. 이때 상기 시스템 MCU(7001)는 상기 배터리셀에 대한 온도값을 상기 배터리 모니터링 장치(1003)로부터 제공받아 해당 배터리셀의 온도변화를 모니터링할 수 있다.In addition, the internal / external short of the battery cell may be detected by the system MCU 7001. In this case, the system MCU 7001 may receive the temperature value of the battery cell from the battery monitoring device 1003 and monitor the temperature change of the battery cell.
또한 상기 시스템 MCU(7001)는 전체 시스템의 온도값을 측정하여, 이에 미리 설정하여 저장한 마진값을 합산하고, 무부하전류 혹은 슬립전류만 있는 상태에서 상기 배터리셀의 온도가 상기 합산한 값을 초과하는 경우, 상기 배터리셀에서 내/외부 쇼트가 발생한 것으로 판단한다.In addition, the system MCU 7001 measures the temperature value of the entire system, and adds the margin value which is set in advance and stored therein, and the temperature of the battery cell exceeds the summed value in the state of only no load current or slip current. In this case, it is determined that an internal / external short occurs in the battery cell.
또한 상기 시스템 MCU(7001)는 상기의 방법 이외에 열적 모델링(thermal modeling)을 통해 상기 배터리셀의 내/외부 쇼트를 감지할 수 있다. 즉, 상기 기 시스템 MCU(7001)는 상기 시스템 온도를 이용한 열적 모델링에 의해 예상된 룸 온도(room temperature)가 상기 배터리셀 온도를 이용한 열적 모델링에 의해 예상된 룸 온도보다 큰 경우에 상기 배터리셀에서 내/외부 쇼트가 발생한 것으로 판단한다. 여기서 상기 열적 모델링은 가변전류 및 가변적인 룸 온도에서 온도를 측정하는 실험에 의해 생성되며, 상기 FET 온도는 상기 셀온도와 다른 부분에서 측정된 온도로 대체될 수 있다.In addition, the system MCU 7001 may sense an internal / external short of the battery cell through thermal modeling in addition to the above method. That is, the base system MCU 7001 may be configured in the battery cell when the room temperature expected by the thermal modeling using the system temperature is greater than the room temperature expected by the thermal modeling using the battery cell temperature. It is determined that an internal / external short has occurred. Here, the thermal modeling is generated by an experiment of measuring a temperature at a variable current and a variable room temperature, and the FET temperature may be replaced by a temperature measured at a portion different from the cell temperature.
<방법 3><Method 3>
또한 도 11에서 볼 수 있듯이, 배터리 모니터링 장치(100)는 [수학식 4]에 의해서 배터리셀의 내부/외부 쇼트를 검출할 수 있다.In addition, as shown in FIG. 11, the battery monitoring apparatus 100 may detect an internal / external short of the battery cell by Equation 4.
[수학식 4][Equation 4]
Figure PCTKR2017010109-appb-I000001
Figure PCTKR2017010109-appb-I000001
즉, 첫 번째 OCV와 두 번째 OCV에 대한 전하량을 모두 더한 값이 첫 번째 OCV와 두 번째 OCV를 검출한 사이의 시간 동안에 방전된 예상되는 자체방전 전하량(Q)보다 큰 경우, 내부/외부 쇼트를 검출한다. 이때 첫 번째 OCV와 두 번째 OCV를 검출한 사이의 시간 동안 무부하 상태를 유지하여야 한다.That is, if the sum of the charge amounts for the first OCV and the second OCV is greater than the expected self-discharge charge amount (Q) discharged during the time between detecting the first OCV and the second OCV, the internal / external short Detect. At this time, the no-load state should be maintained for the time between detecting the first OCV and the second OCV.
<방법 4><Method 4>
또한 도 12에서 볼 수 있듯이, 배터리 모니터링 장치(100)는 [수학식 5]에 의해서 배터리셀의 내부/외부 쇼트를 검출할 수 있다.In addition, as shown in FIG. 12, the battery monitoring apparatus 100 may detect an internal / external short of the battery cell by [Equation 5].
[수학식 5][Equation 5]
Figure PCTKR2017010109-appb-I000002
Figure PCTKR2017010109-appb-I000002
즉, 첫 번째 OCV와 예상되는 OCV간의 전하량을 모두 더한 값이 지나온 전하량에 에러 마진을 더한 것 보다 큰 경우, 내부/외부 쇼트를 검출한다. 이때 예상되는 OCV는 측정된 전압에 전류와 저항을 곱한 것을 더한 것이다. 그리고 측정된 전압과 전류는 스파이크 전압과 전류로 인해서 평균값을 취할 수 있다. 에러 마진은 스파이크 전압과 전류에 의존한다. 지나간 전하량은 전류를 주기적으로 축적하거나 모니터링 IC에 있는 쿨롱 카운터에 의해서 계산된다.That is, when the sum of the charge amount between the first OCV and the expected OCV is greater than the past charge amount plus the error margin, an internal / external short is detected. The expected OCV is the measured voltage plus the current multiplied by the resistance. And the measured voltage and current can be averaged due to the spike voltage and current. Error margin depends on spike voltage and current. The amount of charge passed is calculated by periodic accumulation of current or by the Coulomb counter on the monitoring IC.
이어서 병렬 배터리셀의 단선(disconnect)을 감지하는 방법에 대해서 설명하고자 한다.Next, a method of detecting disconnection of a parallel battery cell will be described.
도 13은 본 발명의 또 다른 일 실시예에 따른 배터리 셀의 내부/외부 단선을 감지하기 위한 배터리 모니터링 시스템을 나타낸 블록도이다.FIG. 13 is a block diagram illustrating a battery monitoring system for detecting internal / external disconnection of a battery cell according to another exemplary embodiment of the present invention.
도 13에서 보인 바와 같이, 먼저 이전 방전에서 새로운 저항값에 가장 최근의 저항값을 나누어서 사용자가 설정한 비율값보다 크다면 단선되었다고 감지한다. 여기서 저항은 정상조건에서 서서히 증가될 것이다. 그 값은 긴 사이클을 두고 테스트하여 계산될 수 있다. 그래서 본 발명에서는 저항이 급격하게(sharply) 증가되면 병렬 배터리셀이 단선되었다고 결정한다.As shown in FIG. 13, first, by dividing the most recent resistance value by a new resistance value in a previous discharge, it is detected as disconnected if it is larger than a ratio value set by the user. Here the resistance will increase slowly under normal conditions. The value can be calculated by testing over a long cycle. Thus, in the present invention, if the resistance is sharply increased, the parallel battery cell is determined to be disconnected.
또한 새로운 SOH에 이전 충전에서의 최근 SOH를 나누어서 이것이 사용자가 설정한 비율값보다 작으면 병렬 배터리셀이 단선되었다고 감지한다. 여기서 최대 열화속도는 긴 사이클에 걸친 테스트에 의해서 계산될 수 있다.In addition, the new SOH is divided by the latest SOH from the previous charge, and if it is less than the ratio set by the user, the parallel battery cell is disconnected. Here the maximum degradation rate can be calculated by testing over long cycles.
아울러 본 발명에서의 예기치 못한 오류를 검출하는 방법에 대해서 설명하고자 한다. 먼저 블록 다이어그램 디자인 기법이 많은 자동차 배터리 팩에서 사용된다. 본 발명에서 제시하는 머신러닝 게이징 알고리즘은 모듈의 문제를 감지하기 위해서 각 모듈의 MCU에서 사용될 수 있거나, 팩레벨의 계산을 모듈 레벨의 계산과 비교함으로써 알고리즘을 강화한다.In addition, a method of detecting an unexpected error in the present invention will be described. First, block diagram design techniques are used in many automotive battery packs. The machine learning gauging algorithm proposed in the present invention can be used in the MCU of each module to detect a problem of the module, or enhance the algorithm by comparing the pack level calculation with the module level calculation.
메인 MCU는 어떤 디자인에서는 기계학습 게이징으로 데이터를 산출하는 모듈로부터, 용량(capacity), 사용가능 용량(usable capacity), 잔량(remaining capacity), SOH 등을 축적할 수 있다. 즉, 전체 용량(total capacity)은 각 모듈 용량의 합이고, 전체 사용가능한 용량은 각 모듈의 사용가능한 용량을 합친 것이다. 또한 전체 잔량은 각 모듈의 잔량을 합친 것이다.In some designs, the main MCU can accumulate capacity, usable capacity, remaining capacity, SOH, etc., from modules that generate data by machine learning gauging. That is, the total capacity is the sum of the capacity of each module, and the total usable capacity is the sum of the available capacity of each module. Also, the total remaining amount is the sum of the remaining amounts of each module.
메인 시스템이나 각 모듈상의 ADC나 통신과 같은 컴포넌트 에러 중 어느 것에서 예기치 못한 오류를 검출하는 것은, 메인 시스템의 용량에 전체용량을 뺀 값이 용량에 대한 에러 마진보다 작은 경우, 메인 시스템의 사용가능 용량에 전체 사용가능 용량을 뺀 것이 사용가능 용량에 대한 에러 마진 보다 작은 경우, 메인 시스템의 잔존 용량에 전체 잔존 용량을 뺀 것이 잔존 용양에 대한 에러 마진 보다 작은 경우가 예기치 못한 오류가 감지되는 예이다. 여기서 에러 마진은 긴 사이클 테스트를 통해서 설정될 수 있다.Detecting an unexpected error in either the main system or any component error, such as ADC or communication on each module, means that the main system's usable capacity is less than the total capacity minus the margin of error for the capacity. If subtracting the total available capacity is less than the error margin for usable capacity, then subtracting the total remaining capacity from the remaining capacity of the main system is less than the error margin for remaining capacity is an example of an unexpected error being detected. The error margin can be set through a long cycle test.
이상에서 설명하였듯이, 본 발명인 기계학습을 통한 배터리 모니터링 및 보호 방법은 배터리팩의 충방전을 거듭함에 따른 저항의 변화를 학습하여 온도와 에이징으로 인한 배터리팩의 상태를 정확하게 모니터링하고, 상기 배터리팩의 용량을 정확하게 게이징하여 사용자에게 제공함으로써, 배터리의 과충전이나 과방전으로부터 효과적으로 보호할 수 있는 보호함과 동시에 사용자에게 편의를 제공할 수 있는 효과가 있다.As described above, the present invention, the battery monitoring and protection method through the machine learning to learn the change of the resistance according to the repeated charge and discharge of the battery pack to accurately monitor the state of the battery pack due to temperature and aging, By precisely gauging the capacity and providing it to the user, there is an effect of providing convenience to the user while protecting the battery from being effectively protected from overcharging or overdischarging.
상기에서는 본 발명에 따른 바람직한 실시예를 위주로 상술하였으나, 본 발명의 기술적 사상은 이에 한정되는 것은 아니며 본 발명의 각 구성요소는 동일한 목적 및 효과의 달성을 위하여 본 발명의 기술적 범위 내에서 변경 또는 수정될 수 있을 것이다.Although the above has been described above with reference to a preferred embodiment according to the present invention, the technical idea of the present invention is not limited thereto, and each component of the present invention is changed or modified within the technical scope of the present invention for achieving the same object and effect. Could be.
또한, 이상에서는 본 발명의 바람직한 실시예에 대하여 도시하고 설명하였지만, 본 발명은 상술한 특정의 실시예에 한정되지 아니하며, 청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 다양한 변형 실시가 가능한 것은 물론이고, 이러한 변형 실시들은 본 발명의 기술적 사상이나 전망으로부터 개별적으로 이해되어서는 안 될 것이다.In addition, although the preferred embodiment of the present invention has been shown and described above, the present invention is not limited to the specific embodiments described above, but the technical field to which the invention belongs without departing from the spirit of the invention claimed in the claims. Of course, various modifications can be made by those skilled in the art, and these modifications should not be individually understood from the technical spirit or the prospect of the present invention.
본 발명은 배터리 팩의 충방전을 거듭함에 따라 배터리 팩의 전체 저항 및 상기 배터리 팩을 구성하는 복수의 셀 중 약한 셀에 대한 저항이 변화 과정을 학습하여 에이징이나 온도에 따른 배터리의 상태를 정확하게 모니터링하고, 충방전시 배터리의 용량(capacity)을 정확하게 게이징하여 사용자에게 제공함으로써, 배터리의 과충전 및 과방전으로부터 효과적으로 보호함과 동시에 사용자에게 편의를 제공할 수 있다.The present invention accurately monitors the state of the battery according to aging or temperature by learning a process of changing the resistance of the battery pack and the resistance of the plurality of cells constituting the battery pack as the battery pack is repeatedly charged and discharged. In addition, by accurately gauging the capacity (capacity) of the battery during charging and discharging, it is possible to effectively protect the battery from overcharging and overdischarging and to provide convenience to the user.

Claims (12)

  1. 에이징이나 온도에 따른 배터리팩의 상태정보를 학습하는 학습부; 및Learning unit for learning the state information of the battery pack according to the aging or temperature; And
    상기 학습결과에 따라 상기 배터리팩의 잔여용량과 전체 가용용량을 게이징하는 배터리팩 용량 게이징부;를 포함하며,And a battery pack capacity gauging unit for gauging the remaining capacity of the battery pack and the total available capacity according to the learning result.
    상기 배터리팩의 상태정보는 SOC(state of charge)에 따른 배터리팩의 전체 저항, 각각의 배터리셀에 대한 저항 및 OCV(open circuit voltage) 변화량을 포함하는 것을 특징으로 하는 배터리 모니터링 시스템.The state information of the battery pack includes a total resistance of the battery pack, the resistance for each battery cell and the amount of change in the open circuit voltage (OCV) according to the state of charge (SOC).
  2. 청구항 1에 있어서,The method according to claim 1,
    상기 학습부는,The learning unit,
    제1 사이클을 통해 정상온도 및 무부하의 조건 하에서 일정한 C-rate로 상기 배터리팩을 방전 종지전압까지 방전시켜, 상기 배터리팩의 OCV 곡선을 추적함으로써, 에이징에 따른 OVC 변화량 및 해당 배터리팩의 총 용량에 대한 변화량을 학습하는 것을 특징으로 하는 배터리 모니터링 시스템.Through the first cycle, the battery pack is discharged to a discharge end voltage at a constant C-rate under normal temperature and no-load conditions, and the OCV curve of the battery pack is tracked to change the amount of OVC and the total capacity of the battery pack according to aging. Battery monitoring system, characterized in that for learning the amount of change for.
  3. 청구항 2에 있어서,The method according to claim 2,
    상기 학습부는,The learning unit,
    제2 사이클을 통해 상기 SOC를 OCV 포인트인 복수의 그리드 포인트로 나누고, 일정 범위의 온도별로 상기 배터리팩을 특정 C-rate로 방전시켜가며, 각각의 그리드 포인트별로 상기 배터리팩 및 각 배터리셀에 대한 저항을 측정함으로써, 온도 및 에이징에 따른 상기 배터리팩 및 각 배터리셀에 대한 저항의 변화량을 학습하는 것을 특징으로 하는 배터리 모니터링 시스템.A second cycle divides the SOC into a plurality of grid points, which are OCV points, discharges the battery pack to a specific C-rate for a certain range of temperatures, and for each grid point for the battery pack and each battery cell. By measuring the resistance, the battery monitoring system, characterized in that for learning the amount of change of the resistance for the battery pack and each battery cell according to the temperature and aging.
  4. 청구항 3에 있어서,The method according to claim 3,
    상기 배터리팩 저항 측정부는,The battery pack resistance measuring unit,
    이전에 학습된 배터리팩의 전체 저항과 현재 방전되는 배터리팩의 전체 저항을 대비하여 에이징 계수를 산출하고, 상기 산출한 에이징 계수에 이전에 학습된 각 그리드 포인트별 저항을 곱하여 현재 방전되는 상기 배터리팩의 그리드 포인트에 대한 각각의 저항을 업데이트함으로써, 상기 배터리팩 및 각 배터리셀에 대한 저항을 측정하는 것을 특징으로 하는 배터리 모니터링 시스템.An aging coefficient is calculated by comparing the total resistance of the previously learned battery pack with the total resistance of the currently discharged battery pack, and the aging coefficient is multiplied by the previously learned resistance of each grid point to discharge the current battery pack. Measuring the resistance for each of the battery pack and each battery cell by updating each resistance for a grid point of.
  5. 청구항 4에 있어서,The method according to claim 4,
    상기 배터리팩 용량 게이징부는,The battery pack capacity gauging unit,
    최근에 측정된 OCV와 Passed charge를 이용하여, 상기 배터리팩의 현재 OCV 포인트를 검출하고, 상기 검출한 현재 OCV 포인트에서 Passed charge, 잔여용량, 전체 가용용량을 측정하고, 이를 상기 각 OCV 포인트마다 업데이트함으로써, 상기 배터리팩의 잔여 용량 및 전체 가용용량을 게이징하는 것을 특징으로 하는 배터리 모니터링 시스템.Using the recently measured OCV and Passed charge, the current OCV point of the battery pack is detected, and the Passed charge, remaining capacity, and total available capacity are measured at the detected current OCV point, and updated for each of the OCV points. Thereby gauging the remaining capacity and total available capacity of the battery pack.
  6. 청구항 5에 있어서,The method according to claim 5,
    상기 배터리 모니터링 시스템은,The battery monitoring system,
    상기 측정한 배터리팩 및 각 배터리셀에 대한 저항이 미리 설정한 값을 초과하는 경우, 해당 배터리팩의 충방전 상태를 차단함으로써, 해당 배터리팩을 보호하는 보호부; 및A protection unit that protects the battery pack by blocking a charge / discharge state of the battery pack when the measured resistance of the battery pack and each battery cell exceeds a preset value; And
    저항별 배터리 상태를 매핑한 매핑테이블을 참조하여 상기 측정한 배터리팩 및 각 배터리셀에 대한 저항에 따른 배터리 상태, 상기 측정한 배터리팩의 잔여용량 및 전체 가용용량을 사용자 단말로 제공하는 알림부;를 더 포함하는 것을 특징으로 하는 배터리 모니터링 시스템.A notification unit configured to provide a user terminal with a battery state according to the measured battery pack and the resistance of each battery cell, the remaining capacity of the measured battery pack, and the total available capacity with reference to a mapping table mapping the battery states for each resistance; Battery monitoring system further comprising.
  7. 에이징이나 온도에 따른 배터리팩의 상태정보를 학습하는 학습 단계; 및Learning step of learning the status information of the battery pack according to the aging or temperature; And
    상기 학습결과에 따라 상기 배터리팩의 잔여용량과 전체 가용용량을 게이징하는 배터리팩 용량 게이징 단계;를 포함하며,And a battery pack capacity gauging step of gauging the remaining capacity and total available capacity of the battery pack according to the learning result.
    상기 배터리팩의 상태정보는 SOC(state of charge)에 따른 배터리팩의 전체 저항, 각각의 배터리셀에 대한 저항 및 OCV(open circuit voltage) 변화량을 포함하는 것을 특징으로 하는 배터리 모니터링 방법.The state information of the battery pack includes a total resistance of the battery pack, the resistance for each battery cell and the amount of change in the open circuit voltage (OCV) according to the state of charge (SOC).
  8. 청구항 7에 있어서,The method according to claim 7,
    상기 학습 단계는,The learning step,
    제1 사이클을 통해 정상온도 및 무부하의 조건 하에서 일정한 C-rate로 상기 배터리팩을 방전 종지전압까지 방전시켜, 상기 배터리팩의 OCV 곡선을 추적함으로써, 에이징에 따른 OVC 변화량 및 해당 배터리팩의 총 용량에 대한 변화량을 학습하는 것을 특징으로 하는 배터리 모니터링 방법.Through the first cycle, the battery pack is discharged to a discharge end voltage at a constant C-rate under normal temperature and no-load conditions, and the OCV curve of the battery pack is tracked, thereby changing the amount of OVC according to aging and the total capacity of the battery pack. Battery monitoring method characterized in that for learning about the amount of change.
  9. 청구항 8에 있어서,The method according to claim 8,
    상기 학습 단계는,The learning step,
    제2 사이클을 통해 상기 SOC를 OCV 포인트인 복수의 그리드 포인트로 나누고, 일정 범위의 온도별로 상기 배터리팩을 특정 C-rate로 방전시켜가며, 각각의 그리드 포인트별로 상기 배터리팩 및 각 배터리셀에 대한 저항을 측정함으로써, 온도 및 에이징에 따른 상기 배터리팩 및 각 배터리셀에 대한 저항의 변화량을 학습하는 것을 더 포함하는 것을 특징으로 하는 배터리 모니터링 방법.A second cycle divides the SOC into a plurality of grid points, which are OCV points, discharges the battery pack to a specific C-rate for a certain range of temperatures, and for each grid point for the battery pack and each battery cell. The method of monitoring the battery further comprises the step of learning the change amount of the resistance for each of the battery pack and each battery cell by temperature and aging.
  10. 청구항 9에 있어서,The method according to claim 9,
    상기 배터리팩 저항 측정 단계는,The battery pack resistance measuring step,
    이전에 학습된 배터리팩의 전체 저항과 현재 방전되는 배터리팩의 전체 저항을 대비하여 에이징 계수를 산출하고, 상기 산출한 에이징 계수에 이전에 학습된 각 그리드 포인트별 저항을 곱하여 현재 방전되는 상기 배터리팩의 그리드 포인트에 대한 각각의 저항을 업데이트함으로써, 상기 배터리팩 및 각 배터리셀에 대한 저항을 측정하는 것을 특징으로 하는 배터리 모니터링 방법.An aging coefficient is calculated by comparing the total resistance of the previously learned battery pack with the total resistance of the currently discharged battery pack, and the aging coefficient is multiplied by the previously learned resistance of each grid point to discharge the current battery pack. Measuring the resistance of the battery pack and each of the battery cells by updating each resistance for a grid point of the battery pack.
  11. 청구항 10에 있어서,The method according to claim 10,
    상기 배터리팩 용량 게이징 단계는,The battery pack capacity gauging step,
    최근에 측정된 OCV와 Passed charge를 이용하여, 상기 배터리팩의 현재 OCV 포인트를 검출하고, 상기 검출한 현재 OCV 포인트에서 Passed charge, 잔여용량, 전체 가용용량을 측정하고, 이를 상기 각 OCV 포인트마다 업데이트함으로써, 상기 배터리팩의 잔여 용량 및 전체 가용용량을 게이징하는 것을 특징으로 하는 배터리 모니터링 방법.Using the recently measured OCV and Passed charge, the current OCV point of the battery pack is detected, and the Passed charge, remaining capacity, and total available capacity are measured at the detected current OCV point, and updated for each of the OCV points. Thereby gauging the remaining capacity and total available capacity of the battery pack.
  12. 청구항 11에 있어서,The method according to claim 11,
    상기 배터리 모니터링 방법은,The battery monitoring method,
    상기 측정한 배터리팩 및 각 배터리셀에 대한 저항이 미리 설정한 값을 초과하는 경우, 해당 배터리팩의 충방전 상태를 차단함으로써, 해당 배터리팩을 보호하는 보호 단계; 및A protection step of protecting the battery pack by blocking a charge / discharge state of the battery pack when the measured resistance of the battery pack and each battery cell exceeds a preset value; And
    저항별 배터리 상태를 매핑한 매핑테이블을 참조하여 상기 측정한 배터리팩 및 각 배터리셀에 대한 저항에 따른 배터리 상태, 상기 측정한 배터리팩의 잔여용량 및 전체 가용용량을 사용자 단말로 제공하는 알림 단계;를 더 포함하는 것을 특징으로 하는 배터리 모니터링 방법.A notification step of providing, to a user terminal, a battery state according to the measured battery pack and the resistance of each battery cell, the remaining capacity of the measured battery pack, and the total available capacity with reference to a mapping table mapping the battery states for each resistance; Battery monitoring method comprising a further.
PCT/KR2017/010109 2017-04-20 2017-09-15 Battery monitoring and protection system WO2018194225A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2017-0050936 2017-04-20
KR1020170050936A KR101912615B1 (en) 2017-04-20 2017-04-20 System for monitoring and protecting batteries

Publications (1)

Publication Number Publication Date
WO2018194225A1 true WO2018194225A1 (en) 2018-10-25

Family

ID=63855917

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/010109 WO2018194225A1 (en) 2017-04-20 2017-09-15 Battery monitoring and protection system

Country Status (2)

Country Link
KR (1) KR101912615B1 (en)
WO (1) WO2018194225A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112198443A (en) * 2020-09-28 2021-01-08 烽火通信科技股份有限公司 Method and device for detecting service life of storage battery
CN112433162A (en) * 2020-10-26 2021-03-02 惠州市豪鹏科技有限公司 Lithium ion battery aging method
CN115020845A (en) * 2021-11-09 2022-09-06 荣耀终端有限公司 Cell temperature detection method, device, storage medium, and program product
CN115657552A (en) * 2022-10-25 2023-01-31 孙翀 New energy automobile battery fire safety intelligent monitoring control system and method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200140093A (en) 2019-06-05 2020-12-15 삼성에스디아이 주식회사 Prediction Method and Prediction System for predicting Capacity Change according to Charging / Discharging Cycle of Battery
KR102378777B1 (en) * 2019-10-25 2022-04-04 주식회사 메가테크 Rechargeable Battery Device for digital doorlock

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010107687A (en) * 2000-05-23 2001-12-07 미다라이 후지오 Detecting method for detecting internal state of a rechargeable battery, detecting device for practicing said detectiong method, and instrument provided with said detecting device
KR20060129962A (en) * 2005-06-13 2006-12-18 주식회사 엘지화학 Apparatus and method for testing state of charge in battery
JP2009112113A (en) * 2007-10-30 2009-05-21 Sony Corp Battery pack, and method and apparatus for charging secondary cell
KR20100063344A (en) * 2008-12-03 2010-06-11 기아자동차주식회사 Calculating apparatus and method of soc of a battery in a vehicle
JP2013228246A (en) * 2012-04-25 2013-11-07 Yokogawa Electric Corp Battery monitoring device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5808445A (en) 1995-12-06 1998-09-15 The University Of Virginia Patent Foundation Method for monitoring remaining battery capacity
WO2014119328A1 (en) 2013-02-01 2014-08-07 三洋電機株式会社 Battery state estimating device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010107687A (en) * 2000-05-23 2001-12-07 미다라이 후지오 Detecting method for detecting internal state of a rechargeable battery, detecting device for practicing said detectiong method, and instrument provided with said detecting device
KR20060129962A (en) * 2005-06-13 2006-12-18 주식회사 엘지화학 Apparatus and method for testing state of charge in battery
JP2009112113A (en) * 2007-10-30 2009-05-21 Sony Corp Battery pack, and method and apparatus for charging secondary cell
KR20100063344A (en) * 2008-12-03 2010-06-11 기아자동차주식회사 Calculating apparatus and method of soc of a battery in a vehicle
JP2013228246A (en) * 2012-04-25 2013-11-07 Yokogawa Electric Corp Battery monitoring device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112198443A (en) * 2020-09-28 2021-01-08 烽火通信科技股份有限公司 Method and device for detecting service life of storage battery
CN112198443B (en) * 2020-09-28 2023-09-22 烽火通信科技股份有限公司 Method and device for detecting service life of storage battery
CN112433162A (en) * 2020-10-26 2021-03-02 惠州市豪鹏科技有限公司 Lithium ion battery aging method
CN112433162B (en) * 2020-10-26 2023-09-01 惠州市豪鹏科技有限公司 Aging method of lithium ion battery
CN115020845A (en) * 2021-11-09 2022-09-06 荣耀终端有限公司 Cell temperature detection method, device, storage medium, and program product
CN115020845B (en) * 2021-11-09 2023-01-13 荣耀终端有限公司 Cell temperature detection method, device, storage medium, and program product
CN115657552A (en) * 2022-10-25 2023-01-31 孙翀 New energy automobile battery fire safety intelligent monitoring control system and method

Also Published As

Publication number Publication date
KR101912615B1 (en) 2018-10-29

Similar Documents

Publication Publication Date Title
WO2018194225A1 (en) Battery monitoring and protection system
WO2010016647A1 (en) Apparatus and method for estimating state of health of battery based on battery voltage variation pattern
WO2018105881A1 (en) Battery management apparatus and method
WO2023085906A1 (en) Battery soh estimation system, and parameter extraction system and method therefor
WO2018139764A2 (en) Battery management apparatus and method
WO2020189914A1 (en) Device for estimating battery condition
WO2020189919A1 (en) Device for estimating battery condition
WO2019074221A1 (en) Apparatus for estimating state-of-charge of secondary battery and method thereof
WO2022114871A1 (en) Battery diagnosis device, battery diagnosis method, battery pack, and vehicle
WO2017034277A1 (en) Apparatus and method for estimating degree of aging of secondary battery
WO2017082705A1 (en) System for controlling output parameters of secondary battery, and method therefor
WO2018235995A1 (en) Method for fast charging and maximum discharging while reducing degradation of electric vehicle battery, and apparatus therefor
WO2021107655A1 (en) Battery state diagnostic device and method
WO2021118118A1 (en) Device and method for diagnosing battery degradation degree
WO2018038383A1 (en) Device and method for testing performance of battery cell
WO2020153637A1 (en) Battery management device, battery management method, and battery pack
WO2021107220A1 (en) Device and method for estimating state of battery
WO2021006708A1 (en) Device and method for diagnosing state of battery pack
WO2021080161A1 (en) Battery management system, battery pack, electric vehicle, and battery management method
WO2018151431A1 (en) Method for estimating state of charge of energy storage device
WO2016068652A2 (en) Open circuit voltage estimating device and method
WO2023068899A1 (en) Apparatus of detecting abnormal cell in battery pack and method thereof
WO2021054716A1 (en) Abnormal state pre-sensing system using battery voltage data and temperature data
WO2019151674A1 (en) Method for determining power limit of battery, and battery management system
WO2020214000A1 (en) Battery management device and method using non-destructive resistance analysis

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17906572

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 31/01/2020)

122 Ep: pct application non-entry in european phase

Ref document number: 17906572

Country of ref document: EP

Kind code of ref document: A1