WO2018235944A1 - Optical distance measurement device - Google Patents

Optical distance measurement device Download PDF

Info

Publication number
WO2018235944A1
WO2018235944A1 PCT/JP2018/023817 JP2018023817W WO2018235944A1 WO 2018235944 A1 WO2018235944 A1 WO 2018235944A1 JP 2018023817 W JP2018023817 W JP 2018023817W WO 2018235944 A1 WO2018235944 A1 WO 2018235944A1
Authority
WO
WIPO (PCT)
Prior art keywords
timing
time
light
distance measuring
correction
Prior art date
Application number
PCT/JP2018/023817
Other languages
French (fr)
Japanese (ja)
Inventor
晶文 植野
武廣 秦
柏田 真司
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2018111123A external-priority patent/JP2019007950A/en
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to CN201880040986.1A priority Critical patent/CN110799854B/en
Publication of WO2018235944A1 publication Critical patent/WO2018235944A1/en
Priority to US16/720,553 priority patent/US11662442B2/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • G01S17/10Systems determining position data of a target for measuring distance only using transmission of interrupted, pulse-modulated waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/497Means for monitoring or calibrating

Definitions

  • the present disclosure relates to a light ranging device that measures a distance from a round trip time of light to an object, and relates to a technique for detecting light using a SPAD.
  • Patent Document 1 proposes a technique for detecting light incident on a SPAD by detecting the presence or absence of responses of a plurality of SPADs in synchronization with a clock.
  • the technique of Patent Document 1 below it is considered that the number of SPADs responding (hereinafter, the number of SPAD responses) is detected in synchronization with a clock, and the number of SPAD responses increases as the light intensity increases. .
  • One aspect of the present disclosure is to provide a technology that enables a SPAD to accurately estimate the timing at which light is detected by a light ranging device that detects light using a SPAD.
  • the optical distance measuring apparatus includes an irradiation unit, a plurality of SPADs, a plurality of signal output units, a response number detection unit, a timing recognition unit, and a timing correction unit.
  • the irradiating unit is configured to irradiate a light wave to an area where an object is to be detected.
  • the plurality of SPADs are configured to respond to the incidence of photons including reflected waves of light waves.
  • the plurality of signal output units are configured to output a pulse signal when the SPAD responds to each of the plurality of SPADs.
  • the response number detection unit is configured to detect the number of responses representing the number of SPADs that are responding based on the pulse signal.
  • the timing recognition unit recognizes temporary timing based on the change state of the number of responses along the time series, and recognizes detection timing representing the timing at which the optical distance measuring device detects light according to the temporary timing. Configured
  • the timing correction unit obtains a correction time representing a time difference between the temporary timing and the true timing corresponding to the distance to the object, and detects the timing corrected by the correction time with respect to the temporary timing. Configured to set.
  • the timing obtained by correcting the provisional timing by the correction time is recognized as the detection timing, the true timing and the provisional timing corresponding to the distance to the object are obtained. Time difference can be corrected. Therefore, the timing at which the SPAD detects light can be accurately estimated.
  • An optical distance measuring apparatus 1A shown in FIG. 1 is an apparatus for measuring a distance from a round trip time of light to an object, and is a light detector for detecting light using an avalanche photodiode (hereinafter referred to as APD), particularly SPAD. Equipped with The optical distance measuring apparatus 1A recognizes the distance to the object by, for example, emitting signal light such as a laser radar, and using a light detector to recognize the timing at which the reflected light is received with respect to the timing at which the signal light is emitted. Have a function to
  • SPAD is an abbreviation of Single Photon Avalanche Diode. SPAD operates by applying a voltage higher than the breakdown voltage as a reverse bias voltage. Since SPAD breaks down upon incidence of photons, this type of photodetector usually detects a voltage change when SPAD breaks down and outputs a digital pulse of a predetermined pulse width (hereinafter referred to as a pulse signal) Configured.
  • a pulse signal a digital pulse of a predetermined pulse width
  • the optical distance measuring apparatus 1 ⁇ / b> A includes an irradiation unit 3, a plurality of light receiving units 2, and a plurality of level detection circuits 20.
  • the optical distance measuring apparatus 1A may include an adder 40, a peak detection unit 45, and an arithmetic unit 50A.
  • At least the plurality of light receiving units 2 and the plurality of level detection circuits 20 of the light ranging device 1A constitute a light detector that detects light.
  • part of the adder 40 and the peak detection unit 45 also constitutes a light detector.
  • the irradiation unit 3 includes, for example, a laser diode as a light source, and irradiates a light wave to a region where it is intended to detect an object to be a target of distance measurement from the light source.
  • the irradiation unit 3 irradiates the light wave every cycle set according to a clock to be described later, for example, every 100 ms, so that the reflected wave can be received by the light detector.
  • each light receiving unit 2 is arranged in a grid in the vertical and horizontal directions to form a light receiving unit array 10 that constitutes one pixel for light detection.
  • Each light receiving unit 2 is configured to output a pulse signal as a response when photons are incident.
  • each light receiving unit 2 includes an SPAD 4, a quench resistor 6, and a pulse output unit 8.
  • SPAD 4 has a cathode connected to reverse bias voltage VB and an anode connected to quench resistor 6 and pulse output 8.
  • the quench resistor 6 is connected in series to the conduction path to the SPAD 4.
  • the quench resistor 6 applies a reverse bias voltage VB to the SPAD 4 and generates a voltage drop due to the current flowing through the SPAD 4 when photons are incident on the SPAD 4 and the SPAD 4 breaks down, thereby stopping the Geiger discharge of the SPAD 4 It is a thing.
  • the quench resistor 6 is formed of a resistive element having a predetermined resistance value, or a MOSFET or the like whose on-resistance can be set by a gate voltage.
  • the pulse output unit 8 is connected to the connection point of the SPAD 4 and the quench resistor 6.
  • the pulse output unit 8 outputs the value 1 when the SPAD 4 is not broken down.
  • the pulse output unit 8 when the SPAD 4 breaks down, a current flows through the quench resistor 6, and a voltage equal to or greater than the threshold voltage is generated at both ends of the quench resistor 6, the above-described pulse signal has a value 0 Output digital pulse. That is, the quench resistor 6 and the pulse output unit 8 are configured to output a pulse signal when the SPAD 4 responds to each of the plurality of SPADs 4.
  • Each level detection circuit 20 is provided for each light receiving unit 2 and has a function of detecting whether a pulse signal from the light receiving unit 2 is obtained, that is, whether the SPAD 4 responds.
  • the level detection circuit 20 includes an inverter 21 and a clock synchronization unit 22.
  • the inverter 21 is configured as a known inverter in a logic circuit that inverts and outputs an input.
  • the clock synchronization unit 22 is configured as a clock synchronization circuit that receives a clock (CLK) that is a periodic pulse, and outputs an input signal value at the time of clock input each time the clock is input.
  • CLK clock
  • the input signal value here is the output of the inverter 21 in the clock synchronization unit 22.
  • the clock synchronization unit 22 is configured as, for example, a D flip flop.
  • the clock synchronization unit 22 outputs the value input from the inverter 21 each time a clock is input.
  • the adders 40 are known adders that add and output the pulses output from the respective level detection circuits 20.
  • the output from the adder 40 is referred to as a level value.
  • the level value is a response number representing the number of light receiving units 2 outputting pulse signals, that is, the number of light receiving units 2 outputting a value of 0. Therefore, the level value also indicates the intensity of incident light. It can be said.
  • a pulse signal is output from the light receiving unit 2 configured in this way at a frequency according to the amount of light in the surrounding area. For this reason, when strong light such as sunlight is incident on the light receiving unit 2, the number of pulse signals output from the light receiving unit 2 per unit time, that is, the pulse rate is significantly increased.
  • the peak detection unit 45 recognizes a detection timing representing a timing at which the optical distance measuring device 1A detects light by recognizing a temporary timing obtained based on a change state of the level value along the time series.
  • the detection timing here is a provisional detection timing before correction.
  • the provisional timing indicates the timing at which this change state satisfies a preset condition based on the change state of the number of responses along the time series.
  • the provisional timing is timing to be a reference for obtaining detection timing, and here, for example, a timing at which the actual level value becomes the maximum value is adopted.
  • any timing that satisfies a predetermined condition such as the timing when the calculated level value becomes the maximum value or the timing when the level value increases and becomes the predetermined value may be adopted.
  • this timing is based on the rate of change of the level value as the slope of the tangent when the level value is a specific value when the level value increases and decreases. It may be expressed as the timing of the intersection of a plurality of tangents. Specifically, in a graph as shown in FIG. 4 in which the horizontal axis is time series and the vertical axis is level value, when crossing points at a plurality of tangents when the level value is a predetermined value such as half of the maximum value are obtained Good.
  • the timing when the calculated level value becomes the maximum value may be the timing when the level value becomes the center value with respect to a plurality of timing when the level value becomes a specific value.
  • the peak detection unit 45 acquires the operating state of the irradiation unit 3, that is, the irradiation timing of the light wave. Then, a signal corresponding to the difference between the irradiation timing and the provisional timing is output. The output from the peak detection unit 45 is input to the calculation unit 50A.
  • the arithmetic unit 50A is mainly configured of a well-known microcomputer including a CPU 51 and a semiconductor memory (hereinafter, memory 52) such as a RAM, a ROM, and a flash memory.
  • memory 52 such as a RAM, a ROM, and a flash memory.
  • the various functions of the calculation unit 50A are realized by the CPU 51 executing a program stored in a non-transitional tangible recording medium.
  • the memory 52 corresponds to a non-transitional tangible storage medium storing a program.
  • the non-transitional tangible recording medium has a meaning excluding the electromagnetic wave in the recording medium.
  • the number of microcomputers constituting the arithmetic unit 50A may be one or more.
  • the arithmetic unit 50A includes a response time correction unit 56 and a light amount correction unit 57 as shown in FIG. 1 as a configuration of functions realized by the CPU 51 executing a program.
  • the method for realizing these elements constituting the arithmetic unit 50A is not limited to software, and part or all of the elements may be realized using one or more hardware.
  • the electronic circuit may be realized by a digital circuit including many logic circuits, an analog circuit, or a combination thereof.
  • the level value indicates the maximum value at the timing when the number of responding SPADs 4 becomes maximum.
  • the SPAD [3] when the SPAD [3] responds, the level value becomes 4 and becomes the maximum value.
  • the light receiving unit 2 is described as SPAD [N].
  • N is a number for specifying one of the four light receiving units 2 by a number, and is any one of 0, 1, 2, 3.
  • the relationship between the amount of light received by the signal light, that is, the amount of light incident on the plurality of SPADs, and the level value is as shown in FIG. Referring to FIG. 4, the level value increases as the amount of light received by the signal light increases. However, a time difference ⁇ T1 occurs between the true timing P at which the amount of light received by the signal light is maximum and the timing L at which the level value is maximum. Therefore, in order to detect the timing of light reception using the level value, it is preferable to correct by the time difference ⁇ T1.
  • the true timing P is the timing corresponding to the distance to the object, and the timing at which the amount of light emitted to the optical distance measuring device 1A is maximum is ideal, but the true timing P is Since it can not be detected by the optical distance measuring apparatus 1A, when using the true timing P, the timing experimentally obtained in advance is used.
  • the timing L at which the level value becomes maximum is the timing at which the amount of light received by the signal light is maximized by the functions of the response time correction unit 56 and the light amount correction unit 57. Correct to get closer to P. That is, in the functions as the response time correction unit 56 and the light amount correction unit 57, the time difference ⁇ T1 from the true timing P at which the light reception amount peaks with respect to the temporary timing, here the timing L at which the response number peaks It is calculated as a correction time, and this timing is recognized as the timing when light is detected.
  • the response time correction unit 56 corrects the tentative timing using the correction time corresponding to the length of the response continuation time that represents the time for which the responding SPAD 4 continues the response.
  • a fixed value set in advance is adopted as the correction time corresponding to the response continuation time.
  • the light quantity correction unit 57 is configured to calculate the correction time according to the light reception environment of the light ranging device 1A.
  • the present invention is not limited to this configuration, and the correction time is calculated using an equation that returns the correction time when a parameter indicating the light reception environment is input. It may be calculated.
  • the light amount correction unit 57 obtains a correction time according to the light intensity in the light reception environment.
  • the light intensity is a value indicating the magnitude of the amount of incident light, and, for example, the height of the peak of the level value or the rate of change of the level value (for example, the slope of the tangent at a specific point in the level value graph of FIG. 4). It can be obtained by the size.
  • the time difference ⁇ TA between the timing A1 at which the incident light quantity peaks and the timing A2 at which the level value reaches the maximum value Lmax becomes relatively small.
  • the amount of incident light is large, so many SPADs 4 respond in a relatively short time, and when the amount of incident light reaches a peak, most SPADs 4 have responded It is from.
  • the time difference ⁇ TB between the timing B1 at which the incident light quantity peaks and the timing B2 at which the level value reaches the maximum Lmax is large relative to the time difference ⁇ TA.
  • the SPAD 4 responds gradually according to the increase in the amount of light.
  • the number of responses increases by 8 during the period [A] which is the initial stage of light detection, and the period of [B] where the light intensity reaches its peak and the light intensity weakens.
  • the number of responses is increased by 4 or 3 which is less than 8.
  • the number of responses increases by one in the period of [A]
  • the number of responses increases by three or four more than one in the periods of [B] and [C]. That is, when the light is strong, many SPADs 4 respond in the early stage of detection, and the increase in the number of responses slows down in the subsequent period. As a result, a difference occurs between the timings A2 and B2 at which the level value becomes the maximum value Lmax between when the light is strong and when the light is weak.
  • the light amount correction unit 57 of the present embodiment obtains the correction time according to the light intensity according to the map as shown in FIG. That is, as the maximum value Lmax of the level value increases, a map in which the correction amount decreases is adopted.
  • the SPAD 4 approaches saturation before the timing when the incident light amount peaks, and this timing is shifted to the near distance side than the timing when the original level value becomes the maximum Lmax. is there.
  • the light amount correction unit 57 sets a time value obtained by adding the correction time corresponding to the light intensity and the correction time corresponding to the response duration time obtained by the response time correction unit 56 to the above-described time difference ⁇ T1, as a level value. Is corrected so as to be close to the true timing P at which the light reception amount peaks. Specifically, the timing obtained by subtracting the time difference ⁇ T1 from the timing L at which the level value becomes maximum is recognized as a detection timing.
  • the provisional timing is corrected by ⁇ T1 to be the true timing by the functions of the response time correction unit 56 and the light amount correction unit 57, the difference between the irradiation timing and the provisional timing is the irradiation timing and the true timing. Corrected to the difference between
  • the calculated distance representing the distance to the object obtained only by the peak of the level value is corrected to be the corrected distance.
  • the corrected distance roughly corresponds to the true distance to the object.
  • the optical distance measuring apparatus 1A described above includes a plurality of SPADs 4, a plurality of quench resistors 6 and pulse output units 8, a level detection circuit 20, an adder 40, a peak detection unit 45, and a response time correction unit And a light amount correction unit 57.
  • the plurality of SPADs 4 are configured to respond to the incidence of photons.
  • the plurality of quench resistors 6 and the pulse output unit 8 are configured to output a pulse signal when the SPAD 4 responds to each of the plurality of SPADs 4.
  • the level detection circuit 20 and the adder 40 are configured to detect the number of responses representing the number of SPADs 4 that are responding based on the pulse signal.
  • the peak detection unit 45 recognizes temporary timing based on the change state along the time series of the number of responses, and recognizes detection timing representing the timing at which the light ranging device 1A detects light according to the temporary timing. Configured to The response time correction unit 56 and the light amount correction unit 57 obtain a correction time representing a time difference between the temporary timing and the true timing corresponding to the distance to the object, and for the temporary timing, only the correction time It is configured to set the corrected timing as the detection timing.
  • the peak detection unit 45 is configured to recognize the timing at which the number of responses takes the maximum value as a temporary timing. According to such an optical distance measuring apparatus 1A, since the timing when the number of responses reaches the maximum value may be set as the tentative timing, the tentative timing can be recognized by a simple process.
  • the light quantity correction unit 57 is configured to calculate the correction time according to the light reception environment of the light ranging apparatus 1A. According to such an optical distance measuring apparatus 1A, since the correction time is calculated according to the light receiving environment of the optical distance measuring apparatus 1A, when the light receiving environment changes, it is possible to cope with the change. Therefore, detection timing can be estimated more accurately.
  • the response time correction unit 56 calculates the correction time in consideration of the number of responses at temporary timing and the response continuation time representing the time for which the responding SPAD 4 continues the response. Configured to
  • the correction time is calculated in consideration of the number of responses and the response continuation time, so that the light quantity for the optical distance measuring apparatus 1A and the characteristics of the SPAD 4 can be considered. . Therefore, detection timing can be estimated more accurately.
  • the light quantity correction unit 57 is configured to calculate the correction time according to the intensity of light incident on the light ranging apparatus 1A.
  • SPAD 4 saturates early when the light intensity becomes strong, and temporary timing tends to change, so correction is performed using this tendency.
  • the correction time is calculated according to the intensity of the light incident on the light distance measuring apparatus 1A. Therefore, the correction time is calculated according to the change of the temporary timing. Can. Therefore, detection timing can be estimated more accurately.
  • the level detection circuit 20 is configured as a clock synchronous circuit having a function of recognizing a pulse signal each time a clock input in a preset cycle is received.
  • the pulse signal can be recognized with a simple configuration as compared with the configuration using software. .
  • the correction time is determined using the maximum value of the level value.
  • the optical distance measuring apparatus 1B of the second embodiment is different from the first embodiment in that the correction time is obtained using the offset value of the level value in addition to the maximum value of the level value.
  • the light quantity correction unit 57 calculates the offset value Loff of the level value in addition to the maximum value Lmax of the level value, as shown in FIGS.
  • the offset value Loff of the level value represents the number of SPADs 4 that constantly respond.
  • the light receiving unit 2 receives light according to the ambient brightness as disturbance light, and a part of the SPAD 4 responds with the disturbance light.
  • the light quantity correction unit 57 recognizes an arbitrary value such as an average value or a median value of the number of SPADs 4 that respond in a period in which signal light is not emitted as the number of SPADs 4 that constantly respond, and this value as an offset value Loff. recognize.
  • the offset value Loff increases or decreases depending on the amount of disturbance light, and when there is little disturbance light, as shown in FIG. 9, the maximum value Lmax of the level value becomes larger than the offset value Loff. On the other hand, when there is much disturbance light, as shown in FIG. 10, the maximum value Lmax of the level value is smaller than the offset value Loff.
  • the light quantity correction unit 57 may set the correction time using a map in which the offset value Loff is also taken into consideration in addition to the maximum value Lmax of the level value, as shown in FIG.
  • the light quantity correction unit 57 may adopt a map in which the correction amount decreases as the offset value Loff increases.
  • the response time correction unit 56 and the light amount correction unit 57 are configured to calculate the correction time in consideration of the offset value representing the number of regularly responding SPADs.
  • an optical ranging device 1B it is possible to recognize the intensity of incident light excluding disturbance light by adding the offset value. Then, the detection timing can be corrected according to the intensity of the incident light.
  • the computing unit 50C further includes a response time computing unit 58 as shown in FIG. 1 as a configuration of functions realized by the CPU 51 executing a program.
  • the function of the response time calculation unit 58 is configured to calculate the correction time according to the light reception environment of the light ranging device 1A.
  • the above-mentioned time difference ⁇ T1 tends to be larger as the response duration time of the SPAD 4 becomes longer. Therefore, in the function of the response time calculation unit 58, the correction time is varied according to the response continuation time of the SPAD 4 in the light reception environment.
  • the function of the response time calculation unit 58 inputs a signal from at least one level detection circuit 20, and monitors whether or not a pulse signal is output from the level detection circuit 20. Then, the response continuation time of the monitoring target SPAD 4 is recognized by measuring the time from when the pulse signal is output until when it is not output.
  • a correction time according to the length of the measured response continuation time is set using a map as shown in FIG.
  • the map shown in FIG. 13 when the response duration time becomes long, the timing when the level value takes the maximum value is shifted to the long distance side, and a map is adopted in which the correction amount increases as the response duration time increases.
  • the response time calculation unit 58 measures the response continuation time for the SPAD 4 by monitoring whether or not the SPAD 4 is responding for at least one SPAD 4. Configured The response time correction unit 56 and the light amount correction unit 57 are configured to calculate the correction time in consideration of the response continuation time measured by the response time calculation unit 58.
  • An optical distance measuring apparatus 1D further includes a SPAD temperature detection unit 48, as shown in FIG.
  • the SPAD temperature detection unit 48 is configured as a known temperature sensor that detects the temperature of the SPAD 4 or the temperature around the SPAD 4.
  • the function as the light amount correction unit 57 of the calculation unit 50D corresponds to the SPAD temperature detection unit 48 using a previously prepared relational expression or map for specifying the relationship between the SPAD temperature detection unit 48 and the response continuation time.
  • the response duration time is specified, and the correction time is calculated using the map shown in FIG. 13 described above.
  • the SPAD temperature detection unit 48 is configured to acquire the temperature of the SPAD 4 or the temperature around the SPAD 4 for at least one SPAD 4.
  • the response time correction unit 56 and the light amount correction unit 57 are configured to calculate the response continuation time according to the temperature, and to calculate the correction time in consideration of the response continuation time.
  • the temperature of the SPAD 4 or the temperature around it is obtained, and the response continuation time is calculated according to the temperature, so that the accuracy of the correction can be improved. Therefore, detection timing can be estimated more accurately.
  • the correction time ⁇ T1 is determined according to the number of responses of SPAD2.
  • the fifth embodiment is different from the first embodiment in that the correction time ⁇ T1 is determined according to the degree of saturation of SPAD2.
  • the light amount correction unit 57 of the fifth embodiment determines the correction time ⁇ T1 according to the saturation of the SPAD 2 as shown in FIG.
  • the degree of saturation of SPAD2 indicates the ratio of the number of SPAD2 responses to the total number of SPAD2. For example, in the example of the timing [C] in FIG. 5, the total number of SPAD2s is 16 and the number of SPADs 2 that respond is 15, so the degree of saturation is about 94%.
  • the relationship between the degree of saturation of the SPAD 2 and the correction time is set so that the correction time decreases as the degree of saturation increases, as shown in the graph of FIG.
  • the tendency in this graph is almost the same as the relationship between the number of responses of SPAD 2 and the correction time shown in FIG.
  • the light quantity correction unit 57 calculates the correction time in consideration of the response rate to the total number of SPADs. According to such a configuration, not only the amount of incident light but also the ratio to the number of SPADs is taken into consideration, a system in which the number of SPADs in a pixel dynamically changes, or a system in which pixels of different SPAD numbers coexist However, the same correction time can be adopted without changing the correction time according to the total number of SPADs.
  • the tentative timing is determined based on the number of responses of the SPAD 2 obtained by the one-time light wave irradiation.
  • the sixth embodiment is different from the first embodiment in that the number of responses of the SPAD 2 obtained by irradiation of light waves a plurality of times is integrated, and a provisional timing is determined based on this value.
  • the peak detection unit 45 of the sixth embodiment recognizes a change in the number of responses along the time series each time the irradiation unit 3 irradiates a light wave. For example, as shown in FIG. 16, for the irradiation of light waves for an arbitrary number of times including the latest irradiation, the relationship between the time from the time of irradiation of the light waves and the number of responses is acquired as data indicating a change state. Here, data indicating the change state for the past three times is acquired.
  • data indicating a change state in the past is recorded in any memory.
  • data indicating a change state is stored in the memory 52 of the arithmetic unit 50 and obtained from the memory 52.
  • the peak detection unit 45 integrates the number of responses for each time after each light wave is irradiated on data indicating a change state in the past, and obtains an integrated change state which is data after the integration.
  • the integrated change state is obtained by simply integrating the number of responses for three times, as shown in the second diagram from the bottom of FIG.
  • the peak detection unit 45 divides the integrated change state by the number of integrations, here three times, and determines the position of the peak from the number of responses or the saturation based on the integrated change state after division. To recognize the tentative timing.
  • the peak detection unit 45 recognizes the change state along the time series of the number of responses every time the irradiation unit 3 irradiates the light waves, and integrates the number of responses for each time after each light wave is irradiated The temporary timing is recognized based on the change state.
  • the configuration for obtaining the correction time is realized as software processing, and the configuration of the peak detection unit 45 is realized as hardware, but the present invention is not limited to this.
  • the configuration for obtaining the correction time and the configuration of the peak detection unit 45 may be implemented as software processing, hardware, or a combination thereof.
  • the plurality of functions of one component in the above embodiment may be realized by a plurality of components, or one function of one component may be realized by a plurality of components . Also, a plurality of functions possessed by a plurality of components may be realized by one component, or one function realized by a plurality of components may be realized by one component.
  • part of the configuration of the above embodiment may be omitted. Further, at least a part of the configuration of the above-described embodiment may be added to or replaced with the configuration of the other above-described embodiment.
  • all the aspects contained in the technical thought specified from the wording described in the claim are an embodiment of this indication.
  • the present disclosure can be realized in various forms such as a program for causing a computer to function as a part of the configuration, a non-transitional real recording medium such as a semiconductor memory storing the program, a light detection method, and the like.
  • the quench resistor 6 and the pulse output unit 8 correspond to the signal output unit in the present disclosure
  • the level detection circuit 20 and the adder 40 correspond to the response number detection unit in the present disclosure
  • the peak detection unit 45 corresponds to the timing recognition unit in the present disclosure
  • the SPAD temperature detection unit 48 corresponds to the temperature acquisition unit in the present disclosure.
  • the response time correction unit 56 and the light amount correction unit 57 correspond to a timing correction unit and a correction operation unit in the present disclosure
  • the response time calculation unit 58 is a response measurement unit in the present disclosure. Equivalent to.
  • the level detection circuit 70 corresponds to a clock synchronization circuit as referred to in the present disclosure.

Abstract

The optical distance measurement device (1A, 1B, 1C, 1D) according to one aspect of the present disclosure is provided with an irradiation unit (3), a plurality of SPADs (4), a plurality of signal output units (6, 8), a response number detection unit (20, 40), a timing recognition unit (45), and a timing correction unit (56, 57). The response number detection unit is configured to detect, on the basis of a pulse signal, a response number representing the number of responding SPADs. The timing recognition unit is configured to recognize a temporary timing on the basis of the state of time-series change in the number of responses and to recognize, according to the temporary timing, a detection timing that represents a timing at which the optical distance measurement device has detected light. The timing correction unit is configured to acquire a correction time that represents a time difference between the temporary timing and a real timing corresponding to the distance to an object, and to set, as the detection timing, the timing obtained by correcting the temporary timing by the amount of the correction time.

Description

光測距装置Optical ranging device 関連出願の相互参照Cross-reference to related applications
 本国際出願は、2017年6月22日に日本国特許庁に出願された日本国特許出願第2017-122287号、及び2018年6月11日に日本国特許庁に出願された日本国特許出願第2018-111123号に基づく優先権を主張するものであり、日本国特許出願第2017-122287号、及び日本国特許出願第2018-111123号の全内容を本国際出願に参照により援用する。 This international application is filed in Japan Patent Application No. 2017-122287 filed with the Japan Patent Office on June 22, 2017, and the Japanese Patent Application filed with the Japan Patent Office on June 11, 2018. The Japanese Patent Application No. 2017-122287 and the Japanese Patent Application No. 2018-111123 are hereby incorporated by reference in their entirety.
 本開示は、対象物までの光の往復時間から距離を計測する光測距装置であって、SPADを用いて光を検出する技術に関する。 The present disclosure relates to a light ranging device that measures a distance from a round trip time of light to an object, and relates to a technique for detecting light using a SPAD.
 下記の特許文献1には、クロックに同期して複数のSPADの応答の有無を検出することでSPADに入射される光を検出する技術が提案されている。下記の特許文献1の技術では、応答しているSPADの数(以下、SPADの応答数)をクロックに同期して検出し、光の強さが強くなるにつれてSPADの応答数が増加すると考えられる。 Patent Document 1 below proposes a technique for detecting light incident on a SPAD by detecting the presence or absence of responses of a plurality of SPADs in synchronization with a clock. In the technique of Patent Document 1 below, it is considered that the number of SPADs responding (hereinafter, the number of SPAD responses) is detected in synchronization with a clock, and the number of SPAD responses increases as the light intensity increases. .
特開2014-081253号公報JP, 2014-081253, A
 特許文献1の技術では、複数のSPADの内、応答状態にある個数が少ないほど、及び、SPADが応答している時間、すなわちSPADがパルスを出力する時間、が長くなるほど、対象物までの距離に対応する真のタイミングに対して遅れる傾向がある。 According to the technique of Patent Document 1, the smaller the number of SPADs in response, and the longer the time during which SPAD responds, that is, the time when SPAD outputs a pulse, the distance to the object. Tend to lag behind the true timing corresponding to
 発明者の詳細な検討の結果、特許文献1の技術では、SPADの応答数から光を検出したタイミングを精度よく推定することが難しいという課題が見出された。
 本開示の一側面は、SPADを用いて光を検出する光測距装置において、SPADが光を検出したタイミングを精度よく推定できるようにする技術を提供することにある。
As a result of detailed investigations by the inventor, it has been found that in the technique of Patent Document 1, it is difficult to accurately estimate the timing at which light is detected from the number of responses of SPAD.
One aspect of the present disclosure is to provide a technology that enables a SPAD to accurately estimate the timing at which light is detected by a light ranging device that detects light using a SPAD.
 本開示の一側面の光測距装置は、照射部と、複数のSPADと、複数の信号出力部と、応答数検出部と、タイミング認識部と、タイミング補正部と、を備える。
 照射部は、対象物を検知しようとする領域に光波を照射するように構成される。複数のSPADは、光波の反射波を含むフォトンの入射に応答するように構成される。複数の信号出力部は、複数のSPAD毎に、SPADが応答するとパルス信号を出力するように構成される。応答数検出部は、パルス信号に基づいて、応答しているSPADの個数を表す応答数を検出するように構成される。
The optical distance measuring apparatus according to one aspect of the present disclosure includes an irradiation unit, a plurality of SPADs, a plurality of signal output units, a response number detection unit, a timing recognition unit, and a timing correction unit.
The irradiating unit is configured to irradiate a light wave to an area where an object is to be detected. The plurality of SPADs are configured to respond to the incidence of photons including reflected waves of light waves. The plurality of signal output units are configured to output a pulse signal when the SPAD responds to each of the plurality of SPADs. The response number detection unit is configured to detect the number of responses representing the number of SPADs that are responding based on the pulse signal.
 タイミング認識部は、応答数の時系列に沿った変化状態に基づいて仮のタイミングを認識し、仮のタイミングに応じて当該光測距装置が光を検出したタイミングを表す検出タイミングを認識するように構成される。タイミング補正部は、仮のタイミングと、対象物までの距離に対応する真のタイミングと、の時間差を表す補正時間を取得し、仮のタイミングに対して補正時間分だけ補正したタイミングを検出タイミングに設定するように構成される。 The timing recognition unit recognizes temporary timing based on the change state of the number of responses along the time series, and recognizes detection timing representing the timing at which the optical distance measuring device detects light according to the temporary timing. Configured The timing correction unit obtains a correction time representing a time difference between the temporary timing and the true timing corresponding to the distance to the object, and detects the timing corrected by the correction time with respect to the temporary timing. Configured to set.
 このような光測距装置によれば、仮のタイミングを補正時間で補正することによって得られたタイミングを検出タイミングとして認識するので、対象物までの距離に対応する真のタイミングと仮のタイミングとの時間差を補正することができる。よって、SPADが光を検出したタイミングを精度よく推定することができる。 According to such an optical distance measuring apparatus, since the timing obtained by correcting the provisional timing by the correction time is recognized as the detection timing, the true timing and the provisional timing corresponding to the distance to the object are obtained. Time difference can be corrected. Therefore, the timing at which the SPAD detects light can be accurately estimated.
 なお、請求の範囲に記載した括弧内の符号は、一つの態様として後述する実施形態に記載の具体的手段との対応関係を示すものであって、本開示の技術的範囲を限定するものではない。 In addition, the code in the parentheses described in the claims indicates the correspondence with the specific means described in the embodiment described later as one aspect, and the technical scope of the present disclosure is limited. Absent.
第1実施形態の光測距装置の構成を示すブロック図である。It is a block diagram showing composition of an optical ranging device of a 1st embodiment. 光測距装置の構成を表す説明図である。It is an explanatory view showing composition of an optical ranging device. 第1実施形態において光測距装置モデルの作動例である。It is an operation example of a light ranging device model in a 1st embodiment. 受光量、レベル値の時間変化の一例を示すグラフである。It is a graph which shows an example of the light reception amount and the time change of a level value. 光が強い場合のSPADの応答例を示す説明図である。It is explanatory drawing which shows the example of a response of SPAD when light is strong. 光が弱い場合のSPADの応答例を示す説明図である。It is explanatory drawing which shows the example of a response of SPAD when light is weak. 光量による補正に用いるマップの一例を示すグラフである。It is a graph which shows an example of the map used for correction | amendment by a light quantity. 距離補正結果の効果の一例を示すグラフである。It is a graph which shows an example of the effect of a distance correction result. 外乱光が少ないときのオフセット値の一例を示すグラフである。It is a graph which shows an example of an offset value when there are few disturbing lights. 外乱光が多いときのオフセット値の一例を示すグラフである。It is a graph which shows an example of an offset value when disturbance light is large. オフセット値および光量による補正に用いるマップの一例を示すグラフである。It is a graph which shows an example of the map used for correction | amendment by offset value and light quantity. 第3実施形態の光測距装置の構成を示すブロック図である。It is a block diagram which shows the structure of the optical distance measuring apparatus of 3rd Embodiment. 応答継続時間による補正に用いるマップの一例を示すグラフである。It is a graph which shows an example of the map used for the correction | amendment by response duration. 第4実施形態の光測距装置の構成を示すブロック図である。It is a block diagram which shows the structure of the optical distance measuring apparatus of 4th Embodiment. 飽和度による補正に用いるマップの一例を示すグラフである。It is a graph which shows an example of the map used for the correction | amendment by saturation. 複数回の光波照射によるSPADの応答数を積算する処理の一例を示すグラフである。It is a graph which shows an example of the process which integrates the response number of SPAD by multiple light wave irradiation.
 以下、図面を参照しながら、本開示の実施形態を説明する。
 [1.第1実施形態]
 [1-1.構成]
 図1に示す光測距装置1Aは、対象物までの光の往復時間から距離を計測する装置であって、アバランシェフォトダイオード(以下、APD)、特にSPADを用いて光を検出する光検出器を備える。光測距装置1Aは、例えば、レーザレーダ等の信号光を発し、光検出器を用いて信号光を射出したタイミングに対する反射光を受けたタイミングを認識することにより、対象物までの距離を認識する機能を有する。
Hereinafter, embodiments of the present disclosure will be described with reference to the drawings.
[1. First embodiment]
[1-1. Constitution]
An optical distance measuring apparatus 1A shown in FIG. 1 is an apparatus for measuring a distance from a round trip time of light to an object, and is a light detector for detecting light using an avalanche photodiode (hereinafter referred to as APD), particularly SPAD. Equipped with The optical distance measuring apparatus 1A recognizes the distance to the object by, for example, emitting signal light such as a laser radar, and using a light detector to recognize the timing at which the reflected light is received with respect to the timing at which the signal light is emitted. Have a function to
 なお、SPADは、Single Photon Avalanche Diode の略である。SPADは、逆バイアス電圧としてブレイクダウン電圧よりも高い電圧を印加することにより動作する。SPADはフォトンの入射によりブレイクダウンするため、この種の光検出器は、通常、SPADがブレイクダウンしたときの電圧変化を検出して、所定パルス幅のデジタルパルス(以下、パルス信号)を出力するよう構成される。 SPAD is an abbreviation of Single Photon Avalanche Diode. SPAD operates by applying a voltage higher than the breakdown voltage as a reverse bias voltage. Since SPAD breaks down upon incidence of photons, this type of photodetector usually detects a voltage change when SPAD breaks down and outputs a digital pulse of a predetermined pulse width (hereinafter referred to as a pulse signal) Configured.
 光測距装置1Aは、図1に示すように、照射部3と、複数の受光部2と、複数のレベル検出回路20と、を備える。また、光測距装置1Aは、加算器40、ピーク検出部45、演算部50Aを備えてもよい。光測距装置1Aのうちの、少なくとも複数の受光部2、複数のレベル検出回路20は、光を検出する光検出器を構成する。本実施形態では、加算器40およびピーク検出部45の一部も、光検出器を構成する。 As shown in FIG. 1, the optical distance measuring apparatus 1 </ b> A includes an irradiation unit 3, a plurality of light receiving units 2, and a plurality of level detection circuits 20. In addition, the optical distance measuring apparatus 1A may include an adder 40, a peak detection unit 45, and an arithmetic unit 50A. At least the plurality of light receiving units 2 and the plurality of level detection circuits 20 of the light ranging device 1A constitute a light detector that detects light. In the present embodiment, part of the adder 40 and the peak detection unit 45 also constitutes a light detector.
 照射部3は、例えば、光源となるレーザダイオードを備え、この光源から測距の対象となる対象物を検知しようとする領域に対して光波を照射する。照射部3は、例えば100ms毎等、後述するクロックに応じて設定された周期毎に光波を照射し、光検出器によって反射波を受光できるようにする。 The irradiation unit 3 includes, for example, a laser diode as a light source, and irradiates a light wave to a region where it is intended to detect an object to be a target of distance measurement from the light source. The irradiation unit 3 irradiates the light wave every cycle set according to a clock to be described later, for example, every 100 ms, so that the reflected wave can be received by the light detector.
 複数の受光部2は、図2に示すように、縦・横方向に格子状に配置されることにより、光検出用の一つの画素を構成する受光部アレイ10を構成している。それぞれの受光部2は、フォトンが入射されると、その応答としてパルス信号を出力するように構成される。それぞれの受光部2は、図2に示すように、SPAD4と、クエンチ抵抗6と、パルス出力部8とを備える。 As shown in FIG. 2, the plurality of light receiving units 2 are arranged in a grid in the vertical and horizontal directions to form a light receiving unit array 10 that constitutes one pixel for light detection. Each light receiving unit 2 is configured to output a pulse signal as a response when photons are incident. As shown in FIG. 2, each light receiving unit 2 includes an SPAD 4, a quench resistor 6, and a pulse output unit 8.
 SPAD4は、カソードが逆バイアス電圧VBに接続され、アノードがクエンチ抵抗6およびパルス出力部8に接続される。クエンチ抵抗6は、SPAD4への通電経路に直列接続されている。 SPAD 4 has a cathode connected to reverse bias voltage VB and an anode connected to quench resistor 6 and pulse output 8. The quench resistor 6 is connected in series to the conduction path to the SPAD 4.
 クエンチ抵抗6は、SPAD4に逆バイアス電圧VBを印加すると共に、SPAD4にフォトンが入射してSPAD4がブレイクダウンしたときに、SPAD4に流れる電流により電圧降下を発生して、SPAD4のガイガー放電を停止させるものである。なお、クエンチ抵抗6は、所定の抵抗値を有する抵抗素子、或いは、ゲート電圧にてオン抵抗を設定することのできるMOSFET、等にて構成される。 The quench resistor 6 applies a reverse bias voltage VB to the SPAD 4 and generates a voltage drop due to the current flowing through the SPAD 4 when photons are incident on the SPAD 4 and the SPAD 4 breaks down, thereby stopping the Geiger discharge of the SPAD 4 It is a thing. The quench resistor 6 is formed of a resistive element having a predetermined resistance value, or a MOSFET or the like whose on-resistance can be set by a gate voltage.
 また、パルス出力部8は、SPAD4とクエンチ抵抗6との接続点に接続されている。パルス出力部8は、SPAD4がブレイクダウンしていないときに値1を出力する。また、パルス出力部8は、SPAD4がブレイクダウンして、クエンチ抵抗6に電流が流れ、クエンチ抵抗6の両端に閾値電圧以上の電圧が発生したときに、上述したパルス信号として、値0となるデジタルパルスを出力する。つまり、クエンチ抵抗6およびパルス出力部8は、複数のSPAD4毎に、SPAD4が応答するとパルス信号を出力するように構成される。 The pulse output unit 8 is connected to the connection point of the SPAD 4 and the quench resistor 6. The pulse output unit 8 outputs the value 1 when the SPAD 4 is not broken down. In the pulse output unit 8, when the SPAD 4 breaks down, a current flows through the quench resistor 6, and a voltage equal to or greater than the threshold voltage is generated at both ends of the quench resistor 6, the above-described pulse signal has a value 0 Output digital pulse. That is, the quench resistor 6 and the pulse output unit 8 are configured to output a pulse signal when the SPAD 4 responds to each of the plurality of SPADs 4.
 それぞれのレベル検出回路20は、受光部2毎に備えられており、受光部2によるパルス信号が得られているか、すなわちSPAD4が応答しているかを検出する機能を有する。 Each level detection circuit 20 is provided for each light receiving unit 2 and has a function of detecting whether a pulse signal from the light receiving unit 2 is obtained, that is, whether the SPAD 4 responds.
 レベル検出回路20は、インバータ21およびクロック同期部22を備える。インバータ21は、入力を反転して出力する論理回路における周知のインバータとして構成される。クロック同期部22は、周期的なパルスであるクロック(CLK)が入力され、クロックが入力される毎に、クロック入力時の入力信号値を出力するクロック同期回路として構成される。 The level detection circuit 20 includes an inverter 21 and a clock synchronization unit 22. The inverter 21 is configured as a known inverter in a logic circuit that inverts and outputs an input. The clock synchronization unit 22 is configured as a clock synchronization circuit that receives a clock (CLK) that is a periodic pulse, and outputs an input signal value at the time of clock input each time the clock is input.
 ここでの入力信号値は、クロック同期部22ではインバータ21の出力である。また、クロック同期部22は、例えば、Dフリップフロップ等として構成される。クロック同期部22は、クロックが入力される毎にインバータ21より入力された値を出力する。 The input signal value here is the output of the inverter 21 in the clock synchronization unit 22. The clock synchronization unit 22 is configured as, for example, a D flip flop. The clock synchronization unit 22 outputs the value input from the inverter 21 each time a clock is input.
 加算器40は、それぞれのレベル検出回路20から出力されたパルスを加算して出力する周知の加算器である。加算器40からの出力は、レベル値と表記する。レベル値は、パルス信号を出力している受光部2の個数を表す応答数、つまり、値0を出力している受光部2の個数を示すため、入射される光の強さを示す値ともいえる。 The adders 40 are known adders that add and output the pulses output from the respective level detection circuits 20. The output from the adder 40 is referred to as a level value. The level value is a response number representing the number of light receiving units 2 outputting pulse signals, that is, the number of light receiving units 2 outputting a value of 0. Therefore, the level value also indicates the intensity of incident light. It can be said.
 このように構成された受光部2からは、周囲の光量に応じた頻度でパルス信号が出力される。このため、受光部2に太陽光等の強い光が入射したときには、受光部2から単位時間当たりに出力されるパルス信号の数、つまり、パルスレートが著しく増加する。 A pulse signal is output from the light receiving unit 2 configured in this way at a frequency according to the amount of light in the surrounding area. For this reason, when strong light such as sunlight is incident on the light receiving unit 2, the number of pulse signals output from the light receiving unit 2 per unit time, that is, the pulse rate is significantly increased.
 ピーク検出部45は、レベル値の時系列に沿った変化状態に基づいて求められる仮のタイミングを認識することで、当該光測距装置1Aが光を検出したタイミングを表す検出タイミングを認識する。ただし、ここでの検出タイミングは、補正前の仮の検出タイミングである。 The peak detection unit 45 recognizes a detection timing representing a timing at which the optical distance measuring device 1A detects light by recognizing a temporary timing obtained based on a change state of the level value along the time series. However, the detection timing here is a provisional detection timing before correction.
 また、仮のタイミングとは、応答数の時系列に沿った変化状態に基づいて、この変化状態が予め設定された条件を満たすタイミングを表す。具体的に仮のタイミングとは、検出タイミングを得るための基準となるタイミングであり、例えば、ここでは、実際のレベル値が最大値となるタイミングを採用する。なお、仮のタイミングとしては、計算上のレベル値が最大値となるタイミング、レベル値が増加して所定の値となるタイミング等の所定の条件を満たす任意のタイミングを採用してもよい。 Further, the provisional timing indicates the timing at which this change state satisfies a preset condition based on the change state of the number of responses along the time series. Specifically, the provisional timing is timing to be a reference for obtaining detection timing, and here, for example, a timing at which the actual level value becomes the maximum value is adopted. Note that as the provisional timing, any timing that satisfies a predetermined condition such as the timing when the calculated level value becomes the maximum value or the timing when the level value increases and becomes the predetermined value may be adopted.
 計算上のレベル値が最大値となるタイミングを採用する場合、このタイミングは、レベル値の増加時および減少時においてレベル値がそれぞれある特定値のときに、レベル値の変化率を接線の傾きとして表現し、複数の接線の交点となるタイミングとしてもよい。具体的には、横軸を時系列、縦軸をレベル値とした図4に示すようなグラフにおいて、レベル値が最大値の半分等の所定の値のときの複数の接線における交点を求めるとよい。 When adopting the timing at which the calculated level value becomes the maximum value, this timing is based on the rate of change of the level value as the slope of the tangent when the level value is a specific value when the level value increases and decreases. It may be expressed as the timing of the intersection of a plurality of tangents. Specifically, in a graph as shown in FIG. 4 in which the horizontal axis is time series and the vertical axis is level value, when crossing points at a plurality of tangents when the level value is a predetermined value such as half of the maximum value are obtained Good.
 また、計算上のレベル値が最大値となるタイミングは、レベル値がそれぞれある特定値となる複数のタイミングに対して、これらの中央値となるタイミングであってもよい。ピーク検出部45は、照射部3の作動状態、すなわち、光波の照射タイミングを取得する。そして、照射タイミングと仮のタイミングとの差に応じた信号を出力する。ピーク検出部45からの出力は演算部50Aに入力される。 Further, the timing when the calculated level value becomes the maximum value may be the timing when the level value becomes the center value with respect to a plurality of timing when the level value becomes a specific value. The peak detection unit 45 acquires the operating state of the irradiation unit 3, that is, the irradiation timing of the light wave. Then, a signal corresponding to the difference between the irradiation timing and the provisional timing is output. The output from the peak detection unit 45 is input to the calculation unit 50A.
 演算部50Aは、CPU51と、RAM、ROM、フラッシュメモリ等の半導体メモリ(以下、メモリ52)と、を有する周知のマイクロコンピュータを中心に構成される。演算部50Aの各種機能は、CPU51が非遷移的実体的記録媒体に格納されたプログラムを実行することにより実現される。この例では、メモリ52が、プログラムを格納した非遷移的実体的記録媒体に該当する。 The arithmetic unit 50A is mainly configured of a well-known microcomputer including a CPU 51 and a semiconductor memory (hereinafter, memory 52) such as a RAM, a ROM, and a flash memory. The various functions of the calculation unit 50A are realized by the CPU 51 executing a program stored in a non-transitional tangible recording medium. In this example, the memory 52 corresponds to a non-transitional tangible storage medium storing a program.
 また、このプログラムが実行されることで、プログラムに対応する方法が実行される。なお、非遷移的実体的記録媒体とは、記録媒体のうちの電磁波を除く意味である。また、演算部50Aを構成するマイクロコンピュータの数は1つでも複数でもよい。 Also, by executing this program, a method corresponding to the program is executed. Note that the non-transitional tangible recording medium has a meaning excluding the electromagnetic wave in the recording medium. Further, the number of microcomputers constituting the arithmetic unit 50A may be one or more.
 [1-2.処理および作動]
 演算部50Aは、CPU51がプログラムを実行することで実現される機能の構成として、図1に示すように、応答時間補正部56と、光量補正部57と、を備える。演算部50Aを構成するこれらの要素を実現する手法はソフトウェアに限るものではなく、その一部または全部の要素について、一つあるいは複数のハードウェアを用いて実現してもよい。例えば、上記機能がハードウェアである電子回路によって実現される場合、その電子回路は多数の論理回路を含むデジタル回路、またはアナログ回路、あるいはこれらの組合せによって実現してもよい。
[1-2. Processing and operation]
The arithmetic unit 50A includes a response time correction unit 56 and a light amount correction unit 57 as shown in FIG. 1 as a configuration of functions realized by the CPU 51 executing a program. The method for realizing these elements constituting the arithmetic unit 50A is not limited to software, and part or all of the elements may be realized using one or more hardware. For example, when the above function is realized by an electronic circuit that is hardware, the electronic circuit may be realized by a digital circuit including many logic circuits, an analog circuit, or a combination thereof.
 ここで、SPAD4が4個である光測距装置モデルの作動例を図3に示す。レベル値は、応答しているSPAD4の数が最大となるタイミングで最大値を示す。図3に示す例では、SPAD[3]が応答したときに、レベル値が4となり最大値となる。なお、図3では、受光部2をSPAD[N]と表記する。ただし、Nは4つの受光部2のうちの1つを番号によって特定するための数字であり、0,1,2,3の何れかである。 Here, an operation example of the optical distance measuring apparatus model in which four SPADs 4 are provided is shown in FIG. The level value indicates the maximum value at the timing when the number of responding SPADs 4 becomes maximum. In the example shown in FIG. 3, when the SPAD [3] responds, the level value becomes 4 and becomes the maximum value. In FIG. 3, the light receiving unit 2 is described as SPAD [N]. However, N is a number for specifying one of the four light receiving units 2 by a number, and is any one of 0, 1, 2, 3.
 ここで、本実施形態の光測距装置1Aにおいて信号光による受光量、つまり、複数のSPAD4に入射される光の量と、レベル値との関係は、例えば、図4に示すようになる。
 図4を参照すると、信号光による受光量が増加すれば、レベル値が増加する。ただし、信号光による受光量が最大となる真のタイミングPと、レベル値が最大となるタイミングLとには、時間差ΔT1が生じる。このため、レベル値を用いて光を受けたタイミングを検出するには、時間差ΔT1分だけ補正することが好ましい。
Here, in the optical distance measuring apparatus 1A of this embodiment, the relationship between the amount of light received by the signal light, that is, the amount of light incident on the plurality of SPADs, and the level value is as shown in FIG.
Referring to FIG. 4, the level value increases as the amount of light received by the signal light increases. However, a time difference ΔT1 occurs between the true timing P at which the amount of light received by the signal light is maximum and the timing L at which the level value is maximum. Therefore, in order to detect the timing of light reception using the level value, it is preferable to correct by the time difference ΔT1.
 なお、真のタイミングPは、対象物までの距離に対応するタイミングであり、光測距装置1Aに照射される光の量が最大となるタイミングが理想的であるが、この真のタイミングPは、光測距装置1Aで検出することはできないため、真のタイミングPを利用する場合には、予め実験的に求められたタイミングを用いる。 The true timing P is the timing corresponding to the distance to the object, and the timing at which the amount of light emitted to the optical distance measuring device 1A is maximum is ideal, but the true timing P is Since it can not be detected by the optical distance measuring apparatus 1A, when using the true timing P, the timing experimentally obtained in advance is used.
 本実施形態では、より正確な検出タイミングを認識するために、応答時間補正部56および光量補正部57の機能で、レベル値が最大となるタイミングLが、信号光による受光量が最大となるタイミングPに近づくように補正する。つまり、応答時間補正部56および光量補正部57としての機能では、仮のタイミング、ここでは応答数がピークとなるタイミングLに対して、受光量がピークとなる真のタイミングPとの時間差ΔT1を補正時間として演算し、このタイミングを、光を検出したタイミングとして認識する。 In this embodiment, in order to recognize more accurate detection timing, the timing L at which the level value becomes maximum is the timing at which the amount of light received by the signal light is maximized by the functions of the response time correction unit 56 and the light amount correction unit 57. Correct to get closer to P. That is, in the functions as the response time correction unit 56 and the light amount correction unit 57, the time difference ΔT1 from the true timing P at which the light reception amount peaks with respect to the temporary timing, here the timing L at which the response number peaks It is calculated as a correction time, and this timing is recognized as the timing when light is detected.
 詳細には、応答時間補正部56は、応答したSPAD4が応答を継続する時間を表す応答継続時間の長さに対応する補正時間を用いて仮のタイミングを補正する。本実施形態では、応答継続時間に対応する補正時間として、予め設定された固定値を採用する。 In detail, the response time correction unit 56 corrects the tentative timing using the correction time corresponding to the length of the response continuation time that represents the time for which the responding SPAD 4 continues the response. In this embodiment, a fixed value set in advance is adopted as the correction time corresponding to the response continuation time.
 光量補正部57は、光測距装置1Aの受光環境に応じて補正時間を演算するように構成される。以下の説明では、光量補正部57がマップを用いて補正時間を演算する構成について説明するが、この構成に限らず、受光環境を示すパラメータを入力すると補正時間を返す数式を用いて補正時間を演算してもよい。 The light quantity correction unit 57 is configured to calculate the correction time according to the light reception environment of the light ranging device 1A. In the following description, although the configuration in which the light amount correction unit 57 calculates the correction time using a map is described, the present invention is not limited to this configuration, and the correction time is calculated using an equation that returns the correction time when a parameter indicating the light reception environment is input. It may be calculated.
 ここでの光量補正部57は、受光環境のうちの光の強さに応じて補正時間を求める。光の強さとは、入射光量の大小を示す値であり、例えば、レベル値のピークの高さや、レベル値の変化率(例えば図4のレベル値のグラフにおける特定の点における接線の傾き)の大きさによって得ることができる。 Here, the light amount correction unit 57 obtains a correction time according to the light intensity in the light reception environment. The light intensity is a value indicating the magnitude of the amount of incident light, and, for example, the height of the peak of the level value or the rate of change of the level value (for example, the slope of the tangent at a specific point in the level value graph of FIG. 4). It can be obtained by the size.
 光の強さが比較的強い場合には、図5に示すように、入射光量がピークとなるタイミングA1とレベル値が最大値LmaxとなるタイミングA2との時間差ΔTAが比較的小さくなる。光の強さが強い場合には、入射光量が多いため、比較的短時間で多くのSPAD4が応答してしまい、入射光量がピークとなる頃には大多数のSPAD4が応答してしまっているからである。 When the light intensity is relatively strong, as shown in FIG. 5, the time difference ΔTA between the timing A1 at which the incident light quantity peaks and the timing A2 at which the level value reaches the maximum value Lmax becomes relatively small. When the light intensity is strong, the amount of incident light is large, so many SPADs 4 respond in a relatively short time, and when the amount of incident light reaches a peak, most SPADs 4 have responded It is from.
 一方で、光の強さが弱い場合には、図6に示すように、入射光量がピークとなるタイミングB1とレベル値が最大値LmaxとなるタイミングB2との時間差ΔTBが時間差ΔTAに対して大きくなる。光の強さが弱い場合には、入射光量が少ないため、光量の増加に追従して徐々にSPAD4が応答するからである。 On the other hand, when the light intensity is weak, as shown in FIG. 6, the time difference ΔTB between the timing B1 at which the incident light quantity peaks and the timing B2 at which the level value reaches the maximum Lmax is large relative to the time difference ΔTA. Become. When the light intensity is weak, the amount of incident light is small, so the SPAD 4 responds gradually according to the increase in the amount of light.
 図5に示す光が強い例では、光の検出初期である[A]の期間に応答数が8増加し、光の強さがピークとなる[B]の期間および光の強さが弱くなる[C]の期間には、応答数が8よりも少ない4や3だけ増加している。図6に示す光が弱い例では、[A]の期間に応答数が1増加し、[B]および[C]の期間には、応答数が1よりも多い3や4増加している。つまり、光が強い場合には、検出初期に多くのSPAD4が応答し、その後の期間で応答数の増加が鈍化する。この結果、光が強い場合と光が弱い場合とでは、レベル値が最大値LmaxとなるタイミングA2、B2に差異が生じる。 In the case where the light shown in FIG. 5 is strong, the number of responses increases by 8 during the period [A] which is the initial stage of light detection, and the period of [B] where the light intensity reaches its peak and the light intensity weakens. In the period [C], the number of responses is increased by 4 or 3 which is less than 8. In the example shown in FIG. 6 where the light is weak, the number of responses increases by one in the period of [A], and the number of responses increases by three or four more than one in the periods of [B] and [C]. That is, when the light is strong, many SPADs 4 respond in the early stage of detection, and the increase in the number of responses slows down in the subsequent period. As a result, a difference occurs between the timings A2 and B2 at which the level value becomes the maximum value Lmax between when the light is strong and when the light is weak.
 そこで、本実施形態の光量補正部57は、図7に示すようなマップに従って光の強さに応じた補正時間を求める。すなわち、レベル値の最大値Lmaxが大きくなるにつれて、補正量が減少するマップを採用する。レベル値の最大値Lmaxが大きくなると、入射光量がピークとなるタイミングより前にSPAD4が飽和に近づき、本来のレベル値が最大値Lmaxとなるタイミングよりも、このタイミングが近距離側にずれるためである。 Therefore, the light amount correction unit 57 of the present embodiment obtains the correction time according to the light intensity according to the map as shown in FIG. That is, as the maximum value Lmax of the level value increases, a map in which the correction amount decreases is adopted. When the maximum value Lmax of the level value becomes large, the SPAD 4 approaches saturation before the timing when the incident light amount peaks, and this timing is shifted to the near distance side than the timing when the original level value becomes the maximum Lmax. is there.
 光量補正部57は、光の強さに応じた補正時間と、応答時間補正部56にて得られた応答継続時間に対応する補正時間とを加算した時間を、前述の時間差ΔT1として、レベル値が最大となるタイミングLを受光量がピークとなる真のタイミングPに近づけるように補正する。具体的には、レベル値が最大となるタイミングLから時間差ΔT1を減算したタイミングを検出タイミングとして認識する。 The light amount correction unit 57 sets a time value obtained by adding the correction time corresponding to the light intensity and the correction time corresponding to the response duration time obtained by the response time correction unit 56 to the above-described time difference ΔT1, as a level value. Is corrected so as to be close to the true timing P at which the light reception amount peaks. Specifically, the timing obtained by subtracting the time difference ΔT1 from the timing L at which the level value becomes maximum is recognized as a detection timing.
 このような応答時間補正部56および光量補正部57の機能によって、仮のタイミングがΔT1だけ補正されて真のタイミングになるので、照射タイミングと仮のタイミングとの差は、照射タイミングと真のタイミングとの差に補正される。 Since the provisional timing is corrected by ΔT1 to be the true timing by the functions of the response time correction unit 56 and the light amount correction unit 57, the difference between the irradiation timing and the provisional timing is the irradiation timing and the true timing. Corrected to the difference between
 この結果、図8に示すように、レベル値のピークのみによって得られる物体までの距離を表す計算距離は、補正後距離となるように補正される。補正後距離は、概ね物体までの真の距離と概ね一致する。 As a result, as shown in FIG. 8, the calculated distance representing the distance to the object obtained only by the peak of the level value is corrected to be the corrected distance. The corrected distance roughly corresponds to the true distance to the object.
 [1-3.効果]
 以上詳述した第1実施形態によれば、以下の効果を奏する。
  (1a)上記の光測距装置1Aは、複数のSPAD4と、複数のクエンチ抵抗6およびパルス出力部8と、レベル検出回路20と、加算器40と、ピーク検出部45と、応答時間補正部56と、光量補正部57と、を備える。
[1-3. effect]
According to the first embodiment described above, the following effects can be obtained.
(1a) The optical distance measuring apparatus 1A described above includes a plurality of SPADs 4, a plurality of quench resistors 6 and pulse output units 8, a level detection circuit 20, an adder 40, a peak detection unit 45, and a response time correction unit And a light amount correction unit 57.
 複数のSPAD4は、フォトンの入射に応答するように構成される。複数のクエンチ抵抗6およびパルス出力部8は、複数のSPAD4毎に、SPAD4が応答するとパルス信号を出力するように構成される。レベル検出回路20および加算器40は、パルス信号に基づいて、応答しているSPAD4の個数を表す応答数を検出するように構成される。 The plurality of SPADs 4 are configured to respond to the incidence of photons. The plurality of quench resistors 6 and the pulse output unit 8 are configured to output a pulse signal when the SPAD 4 responds to each of the plurality of SPADs 4. The level detection circuit 20 and the adder 40 are configured to detect the number of responses representing the number of SPADs 4 that are responding based on the pulse signal.
 ピーク検出部45は、応答数の時系列に沿った変化状態に基づいて仮のタイミングを認識し、仮のタイミングに応じて当該光測距装置1Aが光を検出したタイミングを表す検出タイミングを認識するように構成される。応答時間補正部56および光量補正部57は、仮のタイミングと、対象物までの距離に対応する真のタイミングと、の時間差を表す補正時間を取得し、仮のタイミングに対して補正時間分だけ補正したタイミングを検出タイミングに設定するように構成される。 The peak detection unit 45 recognizes temporary timing based on the change state along the time series of the number of responses, and recognizes detection timing representing the timing at which the light ranging device 1A detects light according to the temporary timing. Configured to The response time correction unit 56 and the light amount correction unit 57 obtain a correction time representing a time difference between the temporary timing and the true timing corresponding to the distance to the object, and for the temporary timing, only the correction time It is configured to set the corrected timing as the detection timing.
 このような光測距装置1Aによれば、仮のタイミングを補正時間で補正することによって得られたタイミングを検出タイミングとして認識するので、対象物までの距離に対応する真のタイミングと仮のタイミングとの時間差を補正することができる。よって、SPAD4が光を検出したタイミングを精度よく推定することができる。 According to such an optical distance measuring apparatus 1A, since the timing obtained by correcting the provisional timing by the correction time is recognized as the detection timing, the true timing and the provisional timing corresponding to the distance to the object are obtained. And the time difference between Therefore, the timing at which the SPAD 4 detects light can be accurately estimated.
 (1b)上記の光測距装置1Aにおいてピーク検出部45は、応答数が最大値を取るタイミングを仮のタイミングとして認識するように構成される。
 このような光測距装置1Aによれば、応答数が最大値となったときを仮のタイミングとすればよいので、簡素な処理で仮のタイミングを認識することができる。
(1b) In the above-described optical distance measuring apparatus 1A, the peak detection unit 45 is configured to recognize the timing at which the number of responses takes the maximum value as a temporary timing.
According to such an optical distance measuring apparatus 1A, since the timing when the number of responses reaches the maximum value may be set as the tentative timing, the tentative timing can be recognized by a simple process.
 (1c)上記の光測距装置1Aにおいて光量補正部57は、光測距装置1Aの受光環境に応じて補正時間を演算するように構成される。
 このような光測距装置1Aによれば、光測距装置1Aの受光環境に応じて補正時間を演算するので、受光環境が変化したときに、その変化に対応させることができる。よって、より精度よく検出タイミングを推定することができる。
(1c) In the above-described light ranging apparatus 1A, the light quantity correction unit 57 is configured to calculate the correction time according to the light reception environment of the light ranging apparatus 1A.
According to such an optical distance measuring apparatus 1A, since the correction time is calculated according to the light receiving environment of the optical distance measuring apparatus 1A, when the light receiving environment changes, it is possible to cope with the change. Therefore, detection timing can be estimated more accurately.
 (1d)上記の光測距装置1Aにおいて応答時間補正部56は、仮のタイミングでの応答数、および応答したSPAD4が応答を継続する時間を表す応答継続時間、を加味して補正時間を演算するように構成される。 (1d) In the above-described optical distance measuring apparatus 1A, the response time correction unit 56 calculates the correction time in consideration of the number of responses at temporary timing and the response continuation time representing the time for which the responding SPAD 4 continues the response. Configured to
 このような光測距装置1Aによれば、応答数と応答継続時間とを加味して補正時間を演算するので、光測距装置1Aに対する光量やSPAD4の特性を考慮する構成とすることができる。よって、より精度よく検出タイミングを推定することができる。 According to such an optical distance measuring apparatus 1A, the correction time is calculated in consideration of the number of responses and the response continuation time, so that the light quantity for the optical distance measuring apparatus 1A and the characteristics of the SPAD 4 can be considered. . Therefore, detection timing can be estimated more accurately.
 (1e)上記の光測距装置1Aにおいて光量補正部57は、光測距装置1Aに入射される光の強さに応じて補正時間を演算するように構成される。SPAD4は光の強さが強くなると、早期に飽和し、仮のタイミングが変化する傾向があるため、この傾向を用いて補正を行う。 (1e) In the above-described light ranging apparatus 1A, the light quantity correction unit 57 is configured to calculate the correction time according to the intensity of light incident on the light ranging apparatus 1A. SPAD 4 saturates early when the light intensity becomes strong, and temporary timing tends to change, so correction is performed using this tendency.
 このような光測距装置1Aによれば、光測距装置1Aに入射される光の強さに応じて補正時間を演算するので、仮のタイミングの変化に対応して補正時間を演算することができる。
よって、より精度よく検出タイミングを推定することができる。
According to such an optical distance measuring apparatus 1A, the correction time is calculated according to the intensity of the light incident on the light distance measuring apparatus 1A. Therefore, the correction time is calculated according to the change of the temporary timing. Can.
Therefore, detection timing can be estimated more accurately.
 (1f)上記の光測距装置1Aにおいてレベル検出回路20は、予め設定された周期で入力されるクロックを受ける毎に、パルス信号を認識する機能を有するクロック同期回路として構成される。 (1f) In the above-described optical distance measuring apparatus 1A, the level detection circuit 20 is configured as a clock synchronous circuit having a function of recognizing a pulse signal each time a clock input in a preset cycle is received.
 このような光測距装置1Aによれば、クロック同期回路というハードウェアでパルス信号を認識する機能を実現するので、ソフトウェアを用いる構成と比較して簡素な構成でパルス信号を認識することができる。 According to such an optical distance measuring apparatus 1A, since the function of recognizing a pulse signal is realized by hardware called a clock synchronization circuit, the pulse signal can be recognized with a simple configuration as compared with the configuration using software. .
 [2.第2実施形態]
 [2-1.第1実施形態との相違点]
 第2実施形態以下は、基本的な構成は第1実施形態と同様であるため、相違点について以下に説明する。なお、第1実施形態と同じ符号は、同一の構成を示すものであって、先行する説明を参照する。
[2. Second embodiment]
[2-1. Differences from the First Embodiment]
Second Embodiment The basic configuration of the second embodiment is the same as that of the first embodiment, and the difference will be described below. The same reference numerals as those in the first embodiment denote the same components, and reference is made to the preceding description.
 前述した第1実施形態では、レベル値の最大値を用いて補正時間を決定した。これに対し、第2実施形態の光測距装置1Bでは、レベル値の最大値に加えてレベル値のオフセット値を用いて補正時間を求める点で、第1実施形態と相違する。 In the first embodiment described above, the correction time is determined using the maximum value of the level value. On the other hand, the optical distance measuring apparatus 1B of the second embodiment is different from the first embodiment in that the correction time is obtained using the offset value of the level value in addition to the maximum value of the level value.
 [2-2.構成]
 第2実施形態の光測距装置1Bにおいて、光量補正部57は、図9および図10に示すように、レベル値の最大値Lmaxに加えて、レベル値のオフセット値Loffを演算する。レベル値のオフセット値Loffとは、定常的に応答するSPAD4の個数を表す。受光部2は、受光しようとする信号光以外にも、周囲の明るさに応じた光を外乱光として受光し、外乱光によって一部のSPAD4が応答する。
[2-2. Constitution]
In the light ranging device 1B of the second embodiment, the light quantity correction unit 57 calculates the offset value Loff of the level value in addition to the maximum value Lmax of the level value, as shown in FIGS. The offset value Loff of the level value represents the number of SPADs 4 that constantly respond. In addition to the signal light to be received, the light receiving unit 2 receives light according to the ambient brightness as disturbance light, and a part of the SPAD 4 responds with the disturbance light.
 光量補正部57は、信号光が発せられない期間で応答するSPAD4の個数の平均値や中央値等の任意の値を定常的に応答するSPAD4の個数として認識し、この値をオフセット値Loffとして認識する。 The light quantity correction unit 57 recognizes an arbitrary value such as an average value or a median value of the number of SPADs 4 that respond in a period in which signal light is not emitted as the number of SPADs 4 that constantly respond, and this value as an offset value Loff. recognize.
 オフセット値Loffは、外乱光の多さによって増減し、外乱光が少ない場合には、図9に示すように、オフセット値Loffに対してレベル値の最大値Lmaxが大きくなる。一方で、外乱光が多い場合には、図10に示すように、オフセット値Loffに対してレベル値の最大値Lmaxが小さくなる。 The offset value Loff increases or decreases depending on the amount of disturbance light, and when there is little disturbance light, as shown in FIG. 9, the maximum value Lmax of the level value becomes larger than the offset value Loff. On the other hand, when there is much disturbance light, as shown in FIG. 10, the maximum value Lmax of the level value is smaller than the offset value Loff.
 光量補正部57は、図11に示すように、レベル値の最大値Lmaxに加えて、オフセット値Loffも考慮したマップを用いて補正時間を設定してもよい。ここで、レベル値の最大値Lmaxに占めるオフセット値Loffが大きくなると、入射光による応答が開始する以前からSPAD4が飽和に近づいているため、より早い時間でピークとなりやすい。そのため光量補正部57は、オフセット値Loffが増加するにつれて、補正量が減少するマップを採用するとよい。 The light quantity correction unit 57 may set the correction time using a map in which the offset value Loff is also taken into consideration in addition to the maximum value Lmax of the level value, as shown in FIG. Here, when the offset value Loff occupied in the maximum value Lmax of the level value increases, the SPAD 4 tends to be saturated before the response due to the incident light starts, and thus the peak tends to occur earlier. Therefore, the light quantity correction unit 57 may adopt a map in which the correction amount decreases as the offset value Loff increases.
 [2-3.効果]
 以上詳述した第2実施形態によれば、前述した第1実施形態の効果(1a)を奏し、さらに、以下の効果を奏する。
[2-3. effect]
According to the second embodiment described above, the effect (1a) of the first embodiment described above is exhibited, and further, the following effect is exhibited.
 (2a)上記の光測距装置1Bにおいて応答時間補正部56、光量補正部57は、定常的に応答するSPAD4の個数を表すオフセット値を加味して補正時間を演算するように構成される。 (2a) In the above-described optical distance measuring apparatus 1B, the response time correction unit 56 and the light amount correction unit 57 are configured to calculate the correction time in consideration of the offset value representing the number of regularly responding SPADs.
 このような光測距装置1Bによれば、オフセット値を加味することで外乱光を除く入射光の強さを認識することができる。そして、入射光の強さに応じて検出タイミングを補正することができる。 According to such an optical ranging device 1B, it is possible to recognize the intensity of incident light excluding disturbance light by adding the offset value. Then, the detection timing can be corrected according to the intensity of the incident light.
 [3.第3実施形態]
 [3-1.第1実施形態との相違点]
 前述した第1実施形態では、応答継続時間の長さに応じて仮のタイミングを補正するための補正時間として固定値を採用した。これに対し、第3実施形態では、応答継続時間の長さに応じて補正時間を変動させる点で、第1実施形態と相違する。
[3. Third embodiment]
3-1. Differences from the First Embodiment]
In the first embodiment described above, a fixed value is adopted as the correction time for correcting the temporary timing in accordance with the length of the response continuation time. On the other hand, the third embodiment is different from the first embodiment in that the correction time is varied according to the length of the response continuation time.
 [3-2.構成]
 第3実施形態の光測距装置1Cにおいて、演算部50Cは、CPU51がプログラムを実行することで実現される機能の構成として、図1に示すように、応答時間演算部58をさらに備える。
[3-2. Constitution]
In the optical distance measuring apparatus 1C according to the third embodiment, the computing unit 50C further includes a response time computing unit 58 as shown in FIG. 1 as a configuration of functions realized by the CPU 51 executing a program.
 応答時間演算部58の機能では、光測距装置1Aの受光環境に応じて補正時間を演算するように構成される。ここで、SPAD4の応答継続時間が長くなるほど、前述の時間差ΔT1は大きくなる傾向がある。そこで、応答時間演算部58の機能では、受光環境のうちのSPAD4の応答継続時間に応じて補正時間を変動させる。 The function of the response time calculation unit 58 is configured to calculate the correction time according to the light reception environment of the light ranging device 1A. Here, the above-mentioned time difference ΔT1 tends to be larger as the response duration time of the SPAD 4 becomes longer. Therefore, in the function of the response time calculation unit 58, the correction time is varied according to the response continuation time of the SPAD 4 in the light reception environment.
 より詳細には、応答時間演算部58の機能では、少なくとも1つのレベル検出回路20からの信号を入力し、このレベル検出回路20からパルス信号が出力されているか否かを監視する。そして、パルス信号が出力されてから出力されなくなるまでの時間を測定することによって監視対象のSPAD4の応答継続時間を認識する。 More specifically, the function of the response time calculation unit 58 inputs a signal from at least one level detection circuit 20, and monitors whether or not a pulse signal is output from the level detection circuit 20. Then, the response continuation time of the monitoring target SPAD 4 is recognized by measuring the time from when the pulse signal is output until when it is not output.
 また、応答時間演算部58の機能では、図13に示すようなマップを用いて、測定した応答継続時間の長さに応じた補正時間を設定する。図13に示すマップでは、応答継続時間が長くなると、その分レベル値が最大値を取るタイミングが遠距離側にずれるため、応答継続時間が増加するにつれて補正量が増加するマップを採用する。 Further, in the function of the response time calculation unit 58, a correction time according to the length of the measured response continuation time is set using a map as shown in FIG. In the map shown in FIG. 13, when the response duration time becomes long, the timing when the level value takes the maximum value is shifted to the long distance side, and a map is adopted in which the correction amount increases as the response duration time increases.
 [3-3.効果]
 以上詳述した第3実施形態によれば、前述した第1実施形態の効果(1a)を奏し、さらに、以下の効果を奏する。
[3-3. effect]
According to the third embodiment described above, the effect (1a) of the first embodiment described above is exhibited, and further, the following effect is exhibited.
 (3a)上記の光測距装置1Cにおいて応答時間演算部58は、少なくとも1つのSPAD4について、該SPAD4が応答しているか否かを監視することにより該SPAD4についての応答継続時間を計測するように構成される。応答時間補正部56および光量補正部57は、応答時間演算部58にて計測された応答継続時間を加味して補正時間を演算するように構成される。 (3a) In the above-described optical distance measuring apparatus 1C, the response time calculation unit 58 measures the response continuation time for the SPAD 4 by monitoring whether or not the SPAD 4 is responding for at least one SPAD 4. Configured The response time correction unit 56 and the light amount correction unit 57 are configured to calculate the correction time in consideration of the response continuation time measured by the response time calculation unit 58.
 このような光測距装置1Cによれば、応答継続時間を実際に計測し、この応答継続時間を用いて補正時間を求めるので、補正の精度を向上させることができる。よって、より精度よく検出タイミングを推定することができる。 According to such an optical distance measuring apparatus 1C, since the response continuation time is actually measured and the correction time is determined using this response continuation time, the accuracy of the correction can be improved. Therefore, detection timing can be estimated more accurately.
 [4.第4実施形態]
 [4-1.第3実施形態との相違点]
 前述した第3実施形態では、応答継続時間を実際に計測して補正時間を決定した。これに対し、第4実施形態では、応答継続時間を温度によって推定し、推定した応答継続時間を用いて補正時間を決定する点で、第3実施形態と相違する。なお、本実施形態で応答継続時間を温度によって推定するのは、SPAD4は温度変化に対応して応答継続時間が変化することが知られているからである。
[4. Fourth embodiment]
[4-1. Differences from the Third Embodiment]
In the third embodiment described above, the response continuation time is actually measured to determine the correction time. On the other hand, the fourth embodiment is different from the third embodiment in that the response continuation time is estimated by temperature and the correction time is determined using the estimated response continuation time. The reason why the response duration time is estimated from the temperature in the present embodiment is that it is known that the SPAD 4 changes its response duration time according to the temperature change.
 [4-2.構成]
 第4実施形態の光測距装置1Dは、図14に示すように、SPAD温度検出部48をさらに備える。SPAD温度検出部48は、SPAD4の温度、或いはSPAD4の周囲の温度を検出する周知の温度センサとして構成される。演算部50Dの光量補正部57としての機能では、SPAD温度検出部48と応答継続時間との関係を特定するための、予め準備された関係式やマップを用いて、SPAD温度検出部48に対応する応答継続時間を特定し、前述の図13に示すマップを用いて補正時間を演算する。
[4-2. Constitution]
An optical distance measuring apparatus 1D according to the fourth embodiment further includes a SPAD temperature detection unit 48, as shown in FIG. The SPAD temperature detection unit 48 is configured as a known temperature sensor that detects the temperature of the SPAD 4 or the temperature around the SPAD 4. The function as the light amount correction unit 57 of the calculation unit 50D corresponds to the SPAD temperature detection unit 48 using a previously prepared relational expression or map for specifying the relationship between the SPAD temperature detection unit 48 and the response continuation time. The response duration time is specified, and the correction time is calculated using the map shown in FIG. 13 described above.
 [4-3.効果]
 以上詳述した第4実施形態によれば、前述した第1実施形態の効果(1a)を奏し、さらに、以下の効果を奏する。
[4-3. effect]
According to the fourth embodiment described above, the effect (1a) of the first embodiment described above is exhibited, and further, the following effect is exhibited.
 (4a)上記の光測距装置1CにおいてSPAD温度検出部48は、少なくとも1つのSPAD4について、該SPAD4の温度または該SPAD4の周囲の温度を取得するように構成される。応答時間補正部56および光量補正部57は、温度に応じて応答継続時間を演算し、応答継続時間を加味して補正時間を演算するように構成される。 (4a) In the above-described optical distance measuring apparatus 1C, the SPAD temperature detection unit 48 is configured to acquire the temperature of the SPAD 4 or the temperature around the SPAD 4 for at least one SPAD 4. The response time correction unit 56 and the light amount correction unit 57 are configured to calculate the response continuation time according to the temperature, and to calculate the correction time in consideration of the response continuation time.
 このような光測距装置1Cによれば、SPAD4の温度またはその周囲の温度を取得し、温度に応じて応答継続時間を演算するので、補正の精度を向上させることができる。よって、より精度よく検出タイミングを推定することができる。 According to such an optical distance measuring apparatus 1C, the temperature of the SPAD 4 or the temperature around it is obtained, and the response continuation time is calculated according to the temperature, so that the accuracy of the correction can be improved. Therefore, detection timing can be estimated more accurately.
 [5.第5実施形態]
 [5-1.第1実施形態との相違点]
 前述した第1実施形態では、SPAD2の応答数に応じて補正時間ΔT1を決定した。
これに対し、第5実施形態では、SPAD2の飽和度に応じて補正時間ΔT1を決定する点で、第1実施形態と相違する。
[5. Fifth embodiment]
[5-1. Differences from the First Embodiment]
In the first embodiment described above, the correction time ΔT1 is determined according to the number of responses of SPAD2.
On the other hand, the fifth embodiment is different from the first embodiment in that the correction time ΔT1 is determined according to the degree of saturation of SPAD2.
 [5-2.構成]
 第5実施形態の光量補正部57は、図15に示すように、SPAD2の飽和度に応じて補正時間ΔT1を決定する。
5-2. Constitution]
The light amount correction unit 57 of the fifth embodiment determines the correction time ΔT1 according to the saturation of the SPAD 2 as shown in FIG.
 SPAD2の飽和度とは、SPAD2の総数に対する応答したSPAD2の個数の割合を示す。例えば、図5のタイミング[C]の例では、SPAD2の総数が16個であり、応答したSPAD2の数が15個であるため、飽和度は約94%である。 The degree of saturation of SPAD2 indicates the ratio of the number of SPAD2 responses to the total number of SPAD2. For example, in the example of the timing [C] in FIG. 5, the total number of SPAD2s is 16 and the number of SPADs 2 that respond is 15, so the degree of saturation is about 94%.
 SPAD2の飽和度と補正時間との関係は、図15のグラフに示すように、飽和度が高くなるにつれて、補正時間が小さくなるように設定される。このグラフでの傾向は、図7にて示すSPAD2の応答数と補正時間との関係と概ね同様である。 The relationship between the degree of saturation of the SPAD 2 and the correction time is set so that the correction time decreases as the degree of saturation increases, as shown in the graph of FIG. The tendency in this graph is almost the same as the relationship between the number of responses of SPAD 2 and the correction time shown in FIG.
 [5-3.効果]
 以上詳述した第5実施形態によれば、前述した第1実施形態の効果(1a)を奏し、さらに、以下の効果を奏する。
5-3. effect]
According to the fifth embodiment described above, the effect (1a) of the first embodiment described above is exhibited, and further, the following effect is exhibited.
 (5a)第5実施形態の光量補正部57は、SPAD2の総数に対する応答率を加味して補正時間を演算する。
 このような構成によれば、入射光量のみでなく、SPADの個数に対する割合を加味するので、画素内のSPAD個数が動的に変化するシステム、或いは異なるSPAD個数の画素が混在するシステム等であっても、SPADの総数に応じて補正時間を変更することなく、同一の補正時間を採用することができる。
(5a) The light quantity correction unit 57 according to the fifth embodiment calculates the correction time in consideration of the response rate to the total number of SPADs.
According to such a configuration, not only the amount of incident light but also the ratio to the number of SPADs is taken into consideration, a system in which the number of SPADs in a pixel dynamically changes, or a system in which pixels of different SPAD numbers coexist However, the same correction time can be adopted without changing the correction time according to the total number of SPADs.
 [6.第6実施形態]
 [6-1.第1実施形態との相違点]
 前述した第1実施形態では、1回限りの光波の照射で得られるSPAD2の応答数に基づいて仮のタイミングを決定した。これに対し、第6実施形態では、複数回の光波の照射で得られるSPAD2の応答数を積算し、この値に基づいて仮のタイミングを決定する点で、第1実施形態と相違する。
[6. Sixth embodiment]
6-1. Differences from the First Embodiment]
In the first embodiment described above, the tentative timing is determined based on the number of responses of the SPAD 2 obtained by the one-time light wave irradiation. On the other hand, the sixth embodiment is different from the first embodiment in that the number of responses of the SPAD 2 obtained by irradiation of light waves a plurality of times is integrated, and a provisional timing is determined based on this value.
 [6-2.構成]
 第6実施形態のピーク検出部45は、照射部3が光波を照射する毎に応答数の時系列に沿った変化状態を認識する。例えば、図16に示すように、直近の照射を含む任意の回数分の光波の照射について、光波の照射時からの時間と応答数との関係を、変化状態を示すデータとして取得する。ここでは、過去3回分の変化状態を示すデータを取得する。
6-2. Constitution]
The peak detection unit 45 of the sixth embodiment recognizes a change in the number of responses along the time series each time the irradiation unit 3 irradiates a light wave. For example, as shown in FIG. 16, for the irradiation of light waves for an arbitrary number of times including the latest irradiation, the relationship between the time from the time of irradiation of the light waves and the number of responses is acquired as data indicating a change state. Here, data indicating the change state for the past three times is acquired.
 なお、過去における変化状態を示すデータは、任意のメモリに記録される。例えば、変化状態を示すデータは、演算部50のメモリ52に格納され、このメモリ52から取得される。 Note that data indicating a change state in the past is recorded in any memory. For example, data indicating a change state is stored in the memory 52 of the arithmetic unit 50 and obtained from the memory 52.
 ピーク検出部45は、過去における変化状態を示すデータについて、各光波が照射されてからの時間毎に応答数を積算し、この積算後のデータである積算変化状態を得る。積算変化状態は、図16の下から2図目に示すように、3回分の応答数が単純に積算されたものである。 The peak detection unit 45 integrates the number of responses for each time after each light wave is irradiated on data indicating a change state in the past, and obtains an integrated change state which is data after the integration. The integrated change state is obtained by simply integrating the number of responses for three times, as shown in the second diagram from the bottom of FIG.
 続いて、ピーク検出部45は、積算変化状態を積算回数、ここでは3回で除算し、この除算後の積算変化状態に基づいて、応答数、或いは飽和度からピークの位置を求め、前述のように仮のタイミングを認識する。 Subsequently, the peak detection unit 45 divides the integrated change state by the number of integrations, here three times, and determines the position of the peak from the number of responses or the saturation based on the integrated change state after division. To recognize the tentative timing.
 [6-3.効果]
 以上詳述した第6実施形態によれば、前述した第1実施形態の効果(1a)を奏し、さらに、以下の効果を奏する。
6-3. effect]
According to the sixth embodiment described above, the effect (1a) of the first embodiment described above is exhibited, and further, the following effect is exhibited.
 (6a)ピーク検出部45は、照射部3が光波を照射する毎に応答数の時系列に沿った変化状態を認識し、各光波が照射されてからの時間毎に応答数を積算した積算変化状態に基づいて、仮のタイミングを認識する。 (6a) The peak detection unit 45 recognizes the change state along the time series of the number of responses every time the irradiation unit 3 irradiates the light waves, and integrates the number of responses for each time after each light wave is irradiated The temporary timing is recognized based on the change state.
 このような構成によれば、応答数を平滑化することができるので、ノイズ耐性を向上させることができる。
 [7.他の実施形態]
 以上、本開示の実施形態について説明したが、本開示は上述の実施形態に限定されることなく、種々変形して実施することができる。
According to such a configuration, since the number of responses can be smoothed, noise resistance can be improved.
[7. Other embodiments]
As mentioned above, although embodiment of this indication was described, this indication can be variously deformed and implemented, without being limited to the above-mentioned embodiment.
 (7a)上記実施形態では、補正時間を求める構成をソフトウェアの処理として実現し、ピーク検出部45の構成をハードウェアとして実現したが、これに限定されるものではない。例えば、補正時間を求める構成、およびピーク検出部45の構成は、ソフトウェアの処理として実現してもよいし、ハードウェアとして実現してもよいし、またこれらの組み合わせによって実現してもよい。 (7a) In the above embodiment, the configuration for obtaining the correction time is realized as software processing, and the configuration of the peak detection unit 45 is realized as hardware, but the present invention is not limited to this. For example, the configuration for obtaining the correction time and the configuration of the peak detection unit 45 may be implemented as software processing, hardware, or a combination thereof.
 (7b)上記実施形態における1つの構成要素が有する複数の機能を、複数の構成要素によって実現したり、1つの構成要素が有する1つの機能を、複数の構成要素によって実現したりしてもよい。また、複数の構成要素が有する複数の機能を、1つの構成要素によって実現したり、複数の構成要素によって実現される1つの機能を、1つの構成要素によって実現したりしてもよい。また、上記実施形態の構成の一部を省略してもよい。また、上記実施形態の構成の少なくとも一部を、他の上記実施形態の構成に対して付加または置換してもよい。なお、請求の範囲に記載した文言から特定される技術思想に含まれるあらゆる態様が本開示の実施形態である。 (7b) The plurality of functions of one component in the above embodiment may be realized by a plurality of components, or one function of one component may be realized by a plurality of components . Also, a plurality of functions possessed by a plurality of components may be realized by one component, or one function realized by a plurality of components may be realized by one component. In addition, part of the configuration of the above embodiment may be omitted. Further, at least a part of the configuration of the above-described embodiment may be added to or replaced with the configuration of the other above-described embodiment. In addition, all the aspects contained in the technical thought specified from the wording described in the claim are an embodiment of this indication.
 (7c)上述した光測距装置1A,1B,1C,1Dの他、当該光測距装置1A,1B,1C,1Dを構成要素とするシステム、当該光測距装置1A,1B,1C,1Dの一部の構成としてコンピュータを機能させるためのプログラム、このプログラムを記録した半導体メモリ等の非遷移的実態的記録媒体、光検出方法など、種々の形態で本開示を実現することもできる。 (7c) A system including the light ranging devices 1A, 1B, 1C, and 1D in addition to the light ranging devices 1A, 1B, 1C, and 1D described above, the light ranging devices 1A, 1B, 1C, and 1D. The present disclosure can be realized in various forms such as a program for causing a computer to function as a part of the configuration, a non-transitional real recording medium such as a semiconductor memory storing the program, a light detection method, and the like.
 [8.実施形態の構成と本開示の構成との対応関係]
 上記実施形態においてクエンチ抵抗6、パルス出力部8は本開示でいう信号出力部に相当し、上記実施形態においてレベル検出回路20、加算器40は本開示でいう応答数検出部に相当する。また、上記実施形態においてピーク検出部45は本開示でいうタイミング認識部に相当し、上記実施形態においてSPAD温度検出部48は本開示でいう温度取得部に相当する。
[8. Correspondence between the configuration of the embodiment and the configuration of the present disclosure]
In the above embodiment, the quench resistor 6 and the pulse output unit 8 correspond to the signal output unit in the present disclosure, and in the above embodiment, the level detection circuit 20 and the adder 40 correspond to the response number detection unit in the present disclosure. Further, in the above embodiment, the peak detection unit 45 corresponds to the timing recognition unit in the present disclosure, and in the above embodiment, the SPAD temperature detection unit 48 corresponds to the temperature acquisition unit in the present disclosure.
 また、上記実施形態において応答時間補正部56、光量補正部57は本開示でいうタイミング補正部、補正演算部に相当し、上記実施形態において応答時間演算部58は本開示でいう応答計測部に相当する。また、上記実施形態においてレベル検出回路70は本開示でいうクロック同期回路に相当する。 Further, in the above embodiment, the response time correction unit 56 and the light amount correction unit 57 correspond to a timing correction unit and a correction operation unit in the present disclosure, and in the above embodiment, the response time calculation unit 58 is a response measurement unit in the present disclosure. Equivalent to. Further, in the above embodiment, the level detection circuit 70 corresponds to a clock synchronization circuit as referred to in the present disclosure.

Claims (10)

  1.  対象物までの光の往復時間から距離を計測する光測距装置(1A,1B,1C,1D)であって、
     対象物を検知しようとする領域に光波を照射する照射部(3)と、
     前記光波の反射波を含むフォトンの入射に応答するように構成された複数のSPAD(4)と、
     前記複数のSPAD毎に、前記SPADが応答するとパルス信号を出力するように構成された複数の信号出力部(6、8)と、
     前記パルス信号に基づいて、応答しているSPADの個数を表す応答数を検出するように構成された応答数検出部(20、40)と、
     前記応答数の時系列に沿った変化状態に基づいて前記変化状態が予め設定された条件を満たす仮のタイミングを認識し、前記仮のタイミングに応じて当該光測距装置が光を検出したタイミングを表す検出タイミングを認識するように構成されたタイミング認識部(45)と、
     前記仮のタイミングと、前記対象物までの距離に対応する真のタイミングと、の時間差を表す補正時間を取得し、前記仮のタイミングに対して前記補正時間分だけ補正したタイミングを前記検出タイミングに設定するように構成されたタイミング補正部(56、57)と、
     を備えた光測距装置。
    An optical distance measuring apparatus (1A, 1B, 1C, 1D) which measures a distance from a round trip time of light to an object,
    An irradiation unit (3) for irradiating a light wave to an area where an object is to be detected;
    A plurality of SPADs (4) configured to respond to the incidence of photons including the reflected waves of the lightwaves;
    A plurality of signal output units (6, 8) configured to output a pulse signal when the SPAD responds to the plurality of SPADs;
    A response number detection unit (20, 40) configured to detect the number of responses representing the number of SPADs that are responding based on the pulse signal;
    The timing at which the optical distance measuring device detects light according to the tentative timing, recognizing the tentative timing that satisfies the preset condition based on the chronological change of the number of responses. A timing recognition unit (45) configured to recognize a detection timing representing
    A correction time representing a time difference between the provisional timing and the true timing corresponding to the distance to the object is acquired, and the timing corrected by the correction time with respect to the provisional timing is used as the detection timing. A timing correction unit (56, 57) configured to set;
    Light range finder equipped with
  2.  請求項1に記載の光測距装置であって、
     前記タイミング認識部は、前記応答数が最大値を取るタイミングを前記仮のタイミングとして認識する
     ように構成された光測距装置。
    The optical distance measuring apparatus according to claim 1, wherein
    The optical distance measuring apparatus, wherein the timing recognition unit recognizes the timing at which the number of responses takes a maximum value as the temporary timing.
  3.  請求項1または請求項2に記載の光測距装置であって、
     当該光測距装置の受光環境に応じて前記補正時間を演算するように構成された補正演算部(56、57)、
     をさらに備えた光測距装置。
    The optical distance measuring apparatus according to claim 1 or 2, wherein
    A correction operation unit (56, 57) configured to calculate the correction time according to the light reception environment of the light ranging device;
    Optical ranging device further equipped with
  4.  請求項3に記載の光測距装置であって、
     前記補正演算部は、当該光測距装置に入射される光の強さに応じて前記補正時間を演算する
     ように構成された光測距装置。
    The optical distance measuring apparatus according to claim 3, wherein
    A light distance measuring apparatus, wherein the correction operation unit is configured to calculate the correction time according to the intensity of light incident on the light distance measuring device.
  5.  請求項3または請求項4に記載の光測距装置であって、
     前記補正演算部は、前記SPADの総数に対する応答率を加味して前記補正時間を演算する
     ように構成された光測距装置。
    The optical distance measuring apparatus according to claim 3 or 4, wherein
    The optical distance measuring apparatus, wherein the correction calculation unit calculates the correction time in consideration of a response rate to the total number of the SPADs.
  6.  請求項3~請求項5の何れか1項に記載の光測距装置であって、
     前記補正演算部は、定常的に応答するSPADの個数を表すオフセット値を加味して前記補正時間を演算する
     ように構成された光測距装置。
    The optical distance measuring apparatus according to any one of claims 3 to 5, wherein
    The optical distance measuring apparatus, wherein the correction calculation unit calculates the correction time in consideration of an offset value representing the number of regularly responding SPADs.
  7.  請求項3~請求項6の何れか1項に記載の光測距装置であって、
     前記補正演算部は、前記仮のタイミングでの前記応答数、および応答したSPADが応答を継続する時間を表す応答継続時間、を加味して前記補正時間を演算する
     ように構成された光測距装置。
    The optical distance measuring apparatus according to any one of claims 3 to 6, wherein
    The light ranging configured to calculate the correction time in consideration of the number of responses at the temporary timing, and a response continuation time representing a time for which a response SPAD continues a response. apparatus.
  8.  請求項7に記載の光測距装置であって、
     少なくとも1つのSPADについて、該SPADが応答しているか否かを監視することにより該SPADについての前記応答継続時間を計測するように構成された応答計測部(58)、
     をさらに備え、
     前記補正演算部は、前記応答計測部にて計測された応答継続時間を加味して前記補正時間を演算する
     ように構成された光測距装置。
    The optical distance measuring apparatus according to claim 7, wherein
    A response measuring unit (58) configured to measure the response continuation time for the SPAD by monitoring whether or not the SPAD is responding for at least one SPAD;
    And further
    The optical distance measuring apparatus, wherein the correction calculation unit calculates the correction time in consideration of the response duration time measured by the response measurement unit.
  9.  請求項7に記載の光測距装置であって、
     少なくとも1つのSPADについて、該SPADの温度または該SPADの周囲の温度を取得するように構成された温度取得部(48)、
     をさらに備え、
     前記補正演算部は、前記温度に応じて前記応答継続時間を演算し、該応答継続時間を加味して前記補正時間を演算する
     ように構成された光測距装置。
    The optical distance measuring apparatus according to claim 7, wherein
    A temperature acquisition unit (48) configured to acquire the temperature of the SPAD or the temperature around the SPAD for at least one SPAD;
    And further
    The optical distance measuring apparatus, wherein the correction calculation unit calculates the response continuation time according to the temperature, and calculates the correction time in consideration of the response continuation time.
  10.  請求項1~請求項9の何れか1項に記載の光測距装置であって、
     前記タイミング認識部は、前記照射部が光波を照射する毎に前記応答数の時系列に沿った変化状態を認識し、各光波が照射されてからの時間毎に前記応答数を積算した積算変化状態に基づいて、前記仮のタイミングを認識する
     ように構成された光測距装置。
    The optical distance measuring apparatus according to any one of claims 1 to 9, wherein
    The timing recognition unit recognizes a change state along the time series of the response number each time the irradiation unit irradiates a light wave, and integrates change of the response number for each time after each light wave is irradiated. An optical ranging device configured to recognize the temporary timing based on a state.
PCT/JP2018/023817 2017-06-22 2018-06-22 Optical distance measurement device WO2018235944A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201880040986.1A CN110799854B (en) 2017-06-22 2018-06-22 Optical distance measuring device
US16/720,553 US11662442B2 (en) 2017-06-22 2019-12-19 Distance measurement apparatus with detection timing correction

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017122287 2017-06-22
JP2017-122287 2017-06-22
JP2018111123A JP2019007950A (en) 2017-06-22 2018-06-11 Optical distance measuring device
JP2018-111123 2018-06-11

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/720,553 Continuation US11662442B2 (en) 2017-06-22 2019-12-19 Distance measurement apparatus with detection timing correction

Publications (1)

Publication Number Publication Date
WO2018235944A1 true WO2018235944A1 (en) 2018-12-27

Family

ID=64737741

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/023817 WO2018235944A1 (en) 2017-06-22 2018-06-22 Optical distance measurement device

Country Status (1)

Country Link
WO (1) WO2018235944A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019194039A1 (en) * 2018-04-04 2019-10-10 株式会社デンソー Optical distance measuring apparatus
JP2020118695A (en) * 2020-04-14 2020-08-06 株式会社デンソー Light distance measuring device
CN113518929A (en) * 2019-03-06 2021-10-19 株式会社电装 Optical distance measuring device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150041625A1 (en) * 2013-08-06 2015-02-12 Stmicroelectronics (Research & Development) Limited Time to digital converter and applications thereof
JP2016151458A (en) * 2015-02-17 2016-08-22 株式会社デンソー Arithmetic device
WO2017042993A1 (en) * 2015-09-10 2017-03-16 ソニー株式会社 Correction device, correction method, and distance measuring device
JP2018091760A (en) * 2016-12-05 2018-06-14 株式会社豊田中央研究所 Optical measurement device, optical measurement method, and optical measurement program

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150041625A1 (en) * 2013-08-06 2015-02-12 Stmicroelectronics (Research & Development) Limited Time to digital converter and applications thereof
JP2016151458A (en) * 2015-02-17 2016-08-22 株式会社デンソー Arithmetic device
WO2017042993A1 (en) * 2015-09-10 2017-03-16 ソニー株式会社 Correction device, correction method, and distance measuring device
JP2018091760A (en) * 2016-12-05 2018-06-14 株式会社豊田中央研究所 Optical measurement device, optical measurement method, and optical measurement program

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019194039A1 (en) * 2018-04-04 2019-10-10 株式会社デンソー Optical distance measuring apparatus
JP2019184297A (en) * 2018-04-04 2019-10-24 株式会社デンソー Optical distance measuring device
CN113518929A (en) * 2019-03-06 2021-10-19 株式会社电装 Optical distance measuring device
JP2020118695A (en) * 2020-04-14 2020-08-06 株式会社デンソー Light distance measuring device

Similar Documents

Publication Publication Date Title
JP6665873B2 (en) Photo detector
US11769775B2 (en) Distance-measuring imaging device, distance measuring method of distance-measuring imaging device, and solid-state imaging device
JP6881074B2 (en) Photodetector
US10545239B2 (en) Distance-measuring imaging device and solid-state imaging device
US20180259647A1 (en) Imaging device and solid-state imaging element used in same
US8610043B2 (en) Proximity sensor having an array of single photon avalanche diodes and circuitry for switching off illumination source and associated method, computer readable medium and firmware
US10073164B2 (en) Distance-measuring/imaging apparatus, distance measuring method of the same, and solid imaging element
US9927516B2 (en) Distance measuring apparatus and distance measuring method
KR102631502B1 (en) analog-to-digital converter
WO2018235944A1 (en) Optical distance measurement device
JP2019215260A (en) Distance measuring apparatus outputting accuracy information
WO2018181013A1 (en) Light detector
WO2021095657A1 (en) Distance measuring device
CN107272010B (en) Distance sensor, distance measuring method thereof and 3D image sensor
WO2018190276A1 (en) Optical measuring device
CN109716539B (en) Optical sensor and electronic device
JP2019007950A (en) Optical distance measuring device
JP6210906B2 (en) Laser radar equipment
JP7388141B2 (en) distance measuring device
US11984908B2 (en) Analogue-to-digital converter
US20210011140A1 (en) Light detection device, light detection method and optical distance sensor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18820168

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18820168

Country of ref document: EP

Kind code of ref document: A1