WO2018181013A1 - Light detector - Google Patents

Light detector Download PDF

Info

Publication number
WO2018181013A1
WO2018181013A1 PCT/JP2018/011754 JP2018011754W WO2018181013A1 WO 2018181013 A1 WO2018181013 A1 WO 2018181013A1 JP 2018011754 W JP2018011754 W JP 2018011754W WO 2018181013 A1 WO2018181013 A1 WO 2018181013A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
value
light
parameter setting
light receiving
Prior art date
Application number
PCT/JP2018/011754
Other languages
French (fr)
Japanese (ja)
Inventor
武廣 秦
尾崎 憲幸
木村 禎祐
謙太 東
柏田 真司
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2018011556A external-priority patent/JP6665873B2/en
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to CN201880022194.1A priority Critical patent/CN110462437B/en
Publication of WO2018181013A1 publication Critical patent/WO2018181013A1/en
Priority to US16/584,033 priority patent/US11668826B2/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C3/00Measuring distances in line of sight; Optical rangefinders
    • G01C3/02Details
    • G01C3/06Use of electric means to obtain final indication
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • G01S17/10Systems determining position data of a target for measuring distance only using transmission of interrupted, pulse-modulated waves

Definitions

  • This disclosure relates to a technique for detecting incoming light.
  • SPAD Single Photon Avalanche Diode
  • SPAD is an avalanche photodiode that operates in Geiger mode and can detect the incidence of a single photon.
  • TOF flight time of light from irradiation to light reception
  • a photodetector that is an aspect of the present disclosure includes a light receiving array unit, a time measuring unit, a response acquisition unit, a memory, and a histogram generation unit.
  • the light receiving array unit has a plurality of light receiving units that output pulse signals in response to the incidence of photons, receives the reflected light that is irradiated from the irradiation unit and reflected by the object, and is output from each of the plurality of light receiving units. Output pulse signals in parallel.
  • the time measuring unit measures an elapsed time from when an irradiation timing signal indicating a timing at which the irradiation unit irradiates light is input.
  • the response acquisition unit acquires a response number that is the number of light receiving units that output a pulse signal among a plurality of light receiving units at a fixed cycle timing, and subtracts a preset bias value from the response number or Outputs the number of adjustment responses divided.
  • the memory is associated with a time value whose address is measured by the time measuring unit.
  • the histogram generation unit accumulates and stores the number of adjustment responses as data of the address at the memory address specified from the time measured value in the time measuring unit.
  • FIG. 5 is a circuit diagram showing a configuration of a light receiving unit in the first to third embodiments. It is a block diagram which shows the structure of the laser radar of 4th Embodiment. It is a circuit diagram which shows the structure of the light-receiving part in 4th Embodiment.
  • the laser radar 1 of this embodiment is mounted on a vehicle, detects various objects existing around the vehicle, and generates information related to the object.
  • the laser radar 1 includes an irradiation unit 2, a light detection unit 3, a parameter setting unit 4, a signal processing unit 5, and a memory 6.
  • the light detection unit 3, the signal processing unit 5, and the memory 6 correspond to a light detector.
  • the photodetector may include at least one of the irradiation unit 2 and the parameter setting unit 4.
  • the irradiation unit 2 repeatedly irradiates pulsed laser light at a preset interval, and inputs an irradiation timing signal indicating the irradiation timing to the light detection unit 3.
  • the cycle of irradiating laser light is referred to as a measurement cycle.
  • the light detection unit 3 receives the reflected light of the laser light emitted from the irradiation unit 2, time information Tp representing TOF, which is a flight time of light required from irradiation to light reception, and a light amount representing the light amount at the time of light reception.
  • Information Cp is generated.
  • TOF is an abbreviation for Time Of Flight.
  • the light detection unit 3 includes a light receiving array unit 31, a trigger unit 32, a timer unit 33, and a response acquisition unit 34.
  • the light receiving array unit 31 includes M light receiving units 80.
  • M is an integer of 2 or more.
  • Each light receiving unit 80 includes a SPAD.
  • SPAD is an abbreviation for Single Photon Avalanche Diode.
  • the SPAD is an avalanche photodiode that operates in a Geiger mode in which a voltage higher than the breakdown voltage is applied as a reverse bias voltage, and is a detection element that can detect the incidence of a single photon.
  • a total of M SPADs each having one M light receiving unit 80 are two-dimensionally arranged to form a light receiving surface.
  • each light receiving unit 80 includes a SPAD 81, a quench resistor 82, an inverting circuit 83, a D flip-flop circuit (hereinafter referred to as a DFF circuit) 84, and a delay circuit 85.
  • the SPAD 81 has an anode connected to a negative power source and a cathode connected to a positive power source via a quench resistor 82.
  • the quench resistor 82 applies a reverse bias voltage to the SPAD 81.
  • the quench resistor 82 stops the Geiger discharge of the SPAD 81 due to a voltage drop caused by the current flowing through the SPAD 81 when the photons enter the SPAD 81 and the SPAD 81 is broken down.
  • As the quench resistor 82 a resistance element having a predetermined resistance value, or a MOSFET whose on-resistance can be set by a gate voltage is used.
  • An inversion circuit 83 is connected to the cathode of SPAD81.
  • the input of the inverting circuit 83 is at a high level.
  • a current flows through the quench resistor 82, whereby the input of the inverting circuit 83 changes to a low level.
  • the DFF circuit 84 changes its output to a high level at a rising edge at which the output of the inverting circuit 83 changes from a low level to a high level.
  • the output of the DFF circuit 84 is connected to the reset terminal of the latch circuit 84 via the delay circuit 83.
  • the delay circuit 83 inverts the signal level of the output of the DFF circuit 84 and delays the signal level by a preset delay time ⁇ and inputs it to the reset terminal. As a result, when the delay time ⁇ elapses after the output of the DFF circuit 84 changes to the high level, the DFF circuit 84 is reset to change to the low level.
  • the light receiving unit 80 when the photon is incident on the SPAD 81, the light receiving unit 80 outputs a pulse signal P having a pulse width ⁇ in response to the photon.
  • the pulse width ⁇ is set to such a length that can be detected individually when photons are continuously input to the same SPAD 81.
  • each pulse signal output from the M light receiving units 80 is represented by P 1 to P M.
  • the pulse signals P 1 to P M are output in parallel.
  • Trigger unit 32 the number of pulse signals P 1 ⁇ P M from the light receiving array 31 are simultaneously output, i.e., the number of responses is the number of light receiving portion 80 that outputs a pulse signal in response to photons, A trigger signal TG representing the light reception timing is output at a timing exceeding the trigger threshold TH set by the threshold setting unit 4.
  • the timer unit 33 is a so-called TDC, and measures the time from when the irradiation timing signal is input from the irradiation unit 2 to the light reception timing indicated by the trigger signal TG, and outputs it as time information Tp.
  • TDC is an abbreviation for Time-> Digital-> Converter.
  • the response number Cx is the number of the pulse signals P 1 ⁇ P M from the light receiving array portion 31 are output at the same time, acquired at a timing in accordance with the trigger signal TG, the bias value from the response speed Cx
  • the number of adjustment responses which is the result of subtracting Cb, is output as light amount information Cp representing the luminance of the received optical signal. That is, the light amount information (that is, the number of adjustment responses) Cp is expressed by equation (1).
  • the timing according to the trigger signal TG may be a timing when the trigger signal TG is output, or may be a timing obtained by delaying the trigger signal TG by a predetermined delay amount.
  • the bias value Cb is a value set by the parameter setting unit 4.
  • the parameter setting unit 4 includes a mechanical switch that can set the trigger threshold TH and the bias value Cb, or a register that can electrically write the trigger threshold TH and the bias value Cb.
  • only the trigger threshold value TH is arbitrarily set. That is, the trigger threshold value TH corresponds to the target value.
  • the bias value Cb is set to a value obtained by subtracting 1 from the set trigger threshold value TH. That is, the bias value Cb is expressed by equation (2). Substituting equation (2) into equation (1) yields equation (3).
  • the trigger threshold TH may be a value larger than 0, and may be an integer or not an integer.
  • the parameter setting unit 4 may be configured such that only the bias value Cb is arbitrarily set, and the trigger threshold value TH is calculated from the set bias value Cb. In this case, the bias value Cb corresponds to the target value. Further, the trigger threshold value TH and the bias value Cb do not necessarily need to be set in conjunction so as to satisfy the relationship shown in the expression (2). In this case, both the trigger threshold value TH and the bias value Cb correspond to the target value.
  • the memory 6 is an arbitrarily readable / writable RAM. As shown in FIG. 2, the address of the memory 6 is associated with the time bin of the timer unit 33. The time bin is an individual time region divided by the time resolution of the time measuring unit 33.
  • the bit width of the data stored in the memory 6 is at least one of the expected value of the number of responses detected in one measurement and the number of times of integration X which is the number of times of integration when the signal processing unit 5 generates a histogram. It is set appropriately according to The cumulative number X may be 1 or more.
  • the signal processing unit 5 includes an information generation unit 51 and a histogram generation unit 52.
  • the histogram generation unit 52 operates for each measurement cycle, and updates the contents of the histogram stored in the memory 6 according to the time information Tp and the light amount information Cp output from the light detection unit 3. Specifically, data is read from the address of the memory 6 associated with the time information Tp, and the result of adding the light amount information Cp to the read data is written to the same address. Thereby, the integrated value of the light quantity information Cp is updated for the time bin indicated by the time information Tp.
  • the information generation unit 51 operates every X measurement cycles, that is, every time a histogram is generated, and generates information on an object that reflects light based on the histogram generated by the histogram generation unit 52. Specifically, the maximum value of the histogram is extracted as luminance, and for each extracted maximum value, a time bin corresponding to the address from which the maximum value is obtained is specified. Further, based on the combination of the extracted luminance and time bin (ie, TOF), an object including the distance to each object that caused the maximum value on the histogram and the reliability of the object. Generate information. The generated object information is provided to various in-vehicle devices that use the object information via an in-vehicle LAN (not shown).
  • the response acquisition unit 34 does not use the response number Cx as it is, but uses the adjustment response number obtained by subtracting the bias value Cb as the light amount information Cp output to the signal processing unit 5. For this reason, when generating a histogram, the magnitude of the light quantity information Cp integrated in each measurement cycle is suppressed, and consequently the final integrated value of the light quantity information Cp is suppressed.
  • the integrated value can be set by changing the set value as appropriate according to the environment used. Can be suppressed more effectively.
  • the trigger threshold value TH and the bias value Cb are manually set by the parameter setting unit 4a.
  • the second embodiment is different from the first embodiment in that it is automatically variably set.
  • the laser radar 1 a of the present embodiment includes a disturbance light monitor unit 7 added to the laser radar 1 of the first embodiment, and the parameter setting unit 4 a detects the result of the disturbance light monitor unit 7.
  • the trigger threshold value TH is set according to the ambient light information Cm
  • the bias value Cb is set according to the above equation (1).
  • the disturbance light monitoring unit 7 includes a light receiving unit 71 and a counter 72 as shown in FIG.
  • the light receiving unit 71 has the same configuration as the light receiving unit 80 constituting the light receiving array unit 31.
  • the SPAD of the light receiving unit 71 is disposed adjacent to the light receiving surface formed by the M SPADs 81 included in the light receiving array unit 31.
  • the counter 72 counts the pulse signal output from the light receiving unit 71 at a timing when measurement by the light detection unit 3 is not performed, and generates and outputs disturbance light information Cm according to the count result.
  • the parameter setting unit 4a variably sets the trigger threshold TH and the bias value Cb according to the disturbance light information Cm obtained from the disturbance light monitoring unit 7 before the irradiation unit 2 emits light for each measurement cycle. Specifically, the trigger threshold value TH and the bias value Cb are set to larger values as the amount of disturbance light indicated by the disturbance light information Cm increases.
  • the parameter setting unit 4a sets the trigger threshold value TH and the bias value Cb based on, for example, the average level of ambient light or the size obtained by adding a predetermined margin to the average level.
  • the disturbance light refers to light other than the reflected light that is irradiated from the irradiation unit 2, reflected by an object, and incident on the light detection unit 3.
  • the trigger threshold value TH when the disturbance light is weak, the trigger threshold value TH is also set to a small value as shown in the upper part of FIG. 6, and when the disturbance light is strong, the trigger threshold value TH is given as shown in the lower part of FIG. Is also set to a large value.
  • the part of the response number Cx that exceeds the trigger threshold TH set to the average level of disturbance light that is, the part obtained by subtracting the bias value Cb from the response number Cx is output as the light amount information Cp. . 3 and 6 exemplify the case where the adjustment response number Cp, which is the subtraction result, is clamped at zero, the present invention is not limited to this.
  • the laser radar 1a According to the laser radar 1a, it is possible to suppress the histogram overflow while maintaining the detection accuracy even when the disturbance light condition changes. That is, if the trigger threshold value TH and the bias value Cb are fixed to a large value in accordance with the situation where disturbance light is strongest, the detection accuracy of reflected light from an object with low reflection intensity or a distant object decreases. On the other hand, if the trigger threshold value TH and the bias value Cb are fixed to a small value in accordance with a situation where disturbance light is weak, the integrated value of the histogram increases, and it is necessary to increase the memory capacity or reduce the number of integrations. However, the laser radar 1a can suppress both of these disadvantages.
  • the trigger threshold value TH is set according to the disturbance light, and the light amount information (that is, the number of adjustment responses) Cp is calculated using the bias value Cb set in conjunction with the trigger threshold value TH. Therefore, the light amount information Cp is obtained by removing noise components based on disturbance light. Further, according to the radar radar 1a, since a histogram is generated using such light quantity information Cp, signal light having an excellent signal-to-noise ratio can be extracted.
  • the trigger threshold value TH and the bias value Cb are manually set by the parameter setting unit 4.
  • the third embodiment is different from the first embodiment in that the trigger threshold value TH and the bias value Cb are automatically variably set.
  • the second embodiment is different from the second embodiment in that the setting of the trigger threshold value TH and the bias value Cb is changed according to the luminance value integration state in the histogram.
  • the laser radar 1b of the present embodiment differs from the laser radar 1 of the first embodiment in the configuration of a response acquisition unit 34b, a parameter setting unit 4b, and a signal processing unit 5b.
  • the response acquisition unit 34 b includes a maximum value monitor unit 341 in addition to the configuration that realizes the function of the response acquisition unit 34.
  • the maximum value monitor unit 341 monitors the response number Cx output from the light receiving array unit 31 and extracts the maximum value as the predicted response number B.
  • the extraction of the predicted response number B may be performed by an external instruction, may be performed periodically, or may be performed when a change in the surrounding environment is detected by some on-vehicle sensor.
  • the signal processing unit 5 b includes a margin calculation unit 53 in addition to the information generation unit 51 and the histogram generation unit 52.
  • the margin calculation unit 53 obtains a margin value A that represents the margin of memory each time the histogram generation unit 52 updates the histogram.
  • the maximum value among the maximum values of the histogram is extracted and set as the value Pmax.
  • Dmax be the upper limit of integration, which is the upper limit of data that can be stored in accordance with the bit width of the data area constituting the memory.
  • the margin value A may be obtained by equation (3) or may be obtained by equation (4). Where ⁇ represents the remaining number of integrations until the histogram generation is completed.
  • a in FIG. 2 indicates the margin value A obtained by equation (3).
  • the parameter setting unit 4b compares the trigger threshold value TH set at that time with AB in accordance with the predicted response number B and the margin value A, and adopts the larger one as the trigger threshold value TH.
  • the parameter setting unit 4b executes the variable setting of the trigger threshold value TH using A and B only when the remaining number of times of integration ⁇ is less than or equal to a predetermined value or when the margin value A is less than or equal to a predetermined value. May be.
  • the trigger threshold value TH to be compared with AB may be a fixed value, or may be a variable value set according to the situation as shown in the second embodiment. Further, the parameter setting unit 4b sets the bias value Cb by the above-described method instead of the trigger threshold value TH, and sets the trigger threshold value TH from the set bias value Cb using the relationship of the expression (1). It may be configured.
  • the trigger signal TG is generated, and the histogram is updated using only the light amount information Cp obtained at the timing of the trigger signal TG.
  • the fourth embodiment is different from the first embodiment in that the light amount information Cp is repeatedly generated in synchronization with the clock and the histogram is updated using all the light amount information Cp.
  • the laser radar 1 c of this embodiment includes an irradiation unit 2, a light detection unit 3 c, a parameter setting unit 4 c, a signal processing unit 5 c, and a memory 6.
  • the light detection unit 3c includes a light receiving array unit 31c, a timer unit 33c, and a response acquisition unit 34c.
  • the light receiving array part 31c has M light receiving parts 80c.
  • Each of the M light receiving portions 80c has a SPAD, and is similar to the first embodiment in that a light receiving surface in which M SPADs are two-dimensionally arranged is formed.
  • Each light receiving unit 80c includes a SPAD 81, a quench resistor 82, an inverting circuit 83, and a DFF circuit 84, as shown in FIG. That is, the light receiving unit 80c is different from the light receiving unit 80 of the first embodiment in that the delay circuit 85 is omitted and the connection state of the DFF circuit 84 is different.
  • the DFF circuit 84 latches the output of the inverting circuit 83 at the timing of the rising edge of the clock CK and outputs this as a pulse signal P. Further, the output of the DFF circuit 84 is reset by the reset signal RS.
  • the light receiving unit 80c outputs the pulse signal P in response thereto.
  • the pulse width of the pulse signal Pr output from the inverting circuit 83 continues until the Geiger discharge of the SPAD 81 is stopped by the voltage drop generated by the current flowing through the quench resistor 82.
  • This pulse signal Pr is converted into a pulse signal P synchronized with the clock CK by the DFF circuit 84. That is, the pulse width of the pulse signal P output from the DFF circuit 84 includes a shift corresponding to the quantization error due to the clock CK.
  • the time measuring unit 33c has a synchronous counter that operates according to the clock CK.
  • the timing unit 33c starts counting by the irradiation timing signal input from the irradiation unit 2, continues the counting operation at least for the time required for the optical signal to reciprocate the maximum detection distance, and calculates the count value as time information. Output as Tp. That is, the time information Tp changes in synchronization with the clock CK.
  • Response obtaining unit 34c is a response number Cx is the number of the pulse signals P 1 ⁇ P M outputted simultaneously from the light-receiving array portion 31c, determined at all times by using an encoder or the like. Further, the response acquisition unit 34c repeatedly calculates an adjustment response number, which is a result of subtracting the bias value Cb from the response number Cx, for each timing of the clock CK, and the calculation result represents the light amount representing the luminance of the received optical signal. Output as information Cp. That is, the light amount information Cp changes in synchronization with the clock CK, similarly to the time information Tp.
  • the parameter setting unit 4c variably sets the bias value Cb according to the disturbance light information Cm output from the signal processing unit 5c before the irradiation unit 2 emits light for each measurement cycle. Specifically, like the parameter setting unit 4a of the second embodiment, the parameter setting unit 4c sets the bias value Cb to a larger value as the amount of disturbance light indicated by the disturbance light information Cm increases.
  • the signal processing unit 5 c includes an information generation unit 51, a histogram generation unit 52, and an ambient light monitor unit 54.
  • the histogram generation unit 52 operates in the same manner as in the first embodiment, but the time information Tp and the light amount information Cp change in synchronization with the clock CK. Therefore, every time the time information Tp changes, the histogram generation unit 52 corresponds to the time information.
  • the stored value of the address in the memory 6 is updated using the light amount information Cp.
  • the light amount information (that is, the adjustment response number) Cp is obtained by subtracting the bias value Cb from the response number Cx, but the present disclosure is not limited to this.
  • the light amount information Cp may be obtained by dividing the bias value Cb from the response number Cx.
  • the trigger threshold value TH itself may be used as the bias value Cb.
  • the trigger threshold value TH must be set to a value larger than 1 so that Cp ⁇ Cx / TH.
  • the trigger threshold value TH and the bias value Cb are set manually, based on the ambient light information Cm, the margin value A, and the predicted response number B.
  • the present disclosure is limited to this. is not.
  • the trigger threshold value TH and the bias value Cb may be set on the basis of the amount of disturbance light obtained from the obtained information and estimated from the obtained information.
  • the disturbance light monitor unit 7 that measures the physical quantity of light is used to generate the disturbance light information Cm.
  • the disturbance light here refers to a response other than the signal emitted by itself, and the disturbance light information Cm only needs to know the magnitude of the disturbance light. Therefore, instead of the disturbance light monitor unit 7 or in addition to the disturbance light monitor unit 7, for example, a reflection characteristic monitor unit may be used.
  • the reflection characteristic monitor unit detects at least one of the reflection characteristic of the object, specifically, reflectance, reflection intensity distribution, wavelength characteristic, and deflection characteristic, and generates disturbance light information Cm from the detection result.
  • the disturbance light monitor unit 7 is applied to the single light receiving array unit 31, but the present disclosure is not limited to this.
  • the light detection unit 3 that is, the light receiving array unit 31, the trigger unit 32, the time measuring unit 33, the response acquisition
  • the disturbance light monitoring unit 7 may measure the disturbance light for each pixel, and the threshold setting unit 4a may be configured to change the trigger threshold TH for each pixel.
  • a reflection characteristic monitor unit is used instead of the ambient light monitor unit 7.
  • the present disclosure is not limited to this.
  • the number M of the light receiving units 311 constituting the light detecting unit 3 may be used as the predicted response number B.
  • the trigger threshold TH and the predicted response number B may be set based on a past histogram, or may be set based on at least one history of the trigger threshold TH, the bias value Cb, and the response number Cx. Good.
  • the number of responses measured last time may be used, or any of the most recent average number of responses, the maximum number of responses, and the number of most frequent responses may be used.
  • the trigger threshold value TH, the bias value Cb, and the predicted response number B may be set based on data obtained by analyzing past data and removing abnormal values.
  • the bias value Cb is set by the parameter setting unit, but the bias value may be set by the response acquisition unit.
  • the response acquisition unit may acquire the bias threshold value TH and calculate the bias value Cb based on the acquired bias value TH.
  • the fourth embodiment differs from the first to third embodiments in the configuration of the light detection unit, but the disturbance light monitoring unit 54 in the fourth embodiment is changed to the first to third embodiments.
  • the disturbance light monitoring unit 7 in the second embodiment, the maximum value monitoring unit 341 and the margin calculation unit 53 in the third embodiment may be applied to the fourth embodiment.
  • a plurality of functions of one constituent element in the above embodiment may be realized by a plurality of constituent elements, or a single function of one constituent element may be realized by a plurality of constituent elements. . Further, a plurality of functions possessed by a plurality of constituent elements may be realized by one constituent element, or one function realized by a plurality of constituent elements may be realized by one constituent element. Moreover, you may abbreviate
  • at least a part of the configuration of the above embodiment may be added to or replaced with the configuration of the other embodiment.
  • all the aspects included in the technical idea specified from the wording described in the claims are embodiments of the present disclosure.
  • the present disclosure can be realized in various forms such as a system including the laser radar as a constituent element and a light amount information integration method.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

A light-receiving array unit (31) receives light radiated from a radiation unit and reflected from an object and outputs, in parallel, pulse signals individually output from a plurality of light-receiving units (80c). A time measuring unit (33c) measures the time elapsed since the input of a radiation timing signal representing the timing of light radiation by the radiation unit. A response obtaining unit (34) obtains, at fixed-interval timing, the number of responses, which is the number of light-receiving units, amongst the plurality of light-receiving units, that output pulse signals, and outputs an adjusted number of responses obtained by subtracting a bias value from the number of responses or dividing the number of responses by the bias value. A memory (6) has addresses associated with values of time measured by the time measuring unit. A histogram generating unit (52) accumulates and stores the adjusted number of responses in the memory address identified from the value of time measured by the time measuring unit as data in that address.

Description

光検出器Photodetector 関連出願の相互参照Cross-reference of related applications
 本国際出願は、2017年3月29日に日本国特許庁に出願された日本国特許出願第2017-065325号および2018年1月26日に日本国特許庁に出願された日本国特許出願第2018-011556号に基づく優先権を主張するものであり、日本国特許出願第2017-065325号および日本国特許出願第2018-011556号の全内容を本国際出願に参照により援用する。 This international application is filed with Japanese Patent Application No. 2017-065325 filed with the Japan Patent Office on March 29, 2017 and with the Japan Patent Application No. filed with the Japan Patent Office on January 26, 2018. The contents of Japanese Patent Application No. 2017-0665325 and Japanese Patent Application No. 2018-011556 are hereby incorporated by reference into this international application.
 本開示は、到来する光を検出する技術に関する。 This disclosure relates to a technique for detecting incoming light.
 複数のSPADを配列したSPADアレイを用い、フォトンが入射された個々のSPADから出力されるパルス信号の数(以下、応答数)をカウントすることで受光強度を検出する光検出器が知られている。SPADは、Single Photon Avalanche Diodeの略である。SPADは、ガイガーモードで動作し、単一フォトンの入射を検出できるアバランシェフォトダイオードである。 There has been known a photodetector that uses a SPAD array in which a plurality of SPADs are arranged and detects the received light intensity by counting the number of pulse signals (hereinafter, the number of responses) output from individual SPADs on which photons are incident. Yes. SPAD stands for Single Photon Avalanche Diode. SPAD is an avalanche photodiode that operates in Geiger mode and can detect the incidence of a single photon.
 特許文献1には、光を照射した後、光検出器で検出される応答数がトリガ閾値以上である場合に反射光を受光したものとして、照射から受光までの光の飛翔時間(以下、TOF)を計測し、その計測されたTOFから光を反射した物体までの距離を求める技術が記載されている。TOFは、Time Of Flightの略である。また、SPADアレイに入射する外乱光等の影響を除去するために、TOFの計測を繰り返し実施して、計測時間毎に応答数を積算したヒストグラムを作成し、ヒストグラムの極大値から得られる時間を、距離の算出に用いることが行われている。 In Patent Document 1, it is assumed that the reflected light is received when the number of responses detected by the photodetector is equal to or greater than the trigger threshold after light irradiation, and the flight time of light from irradiation to light reception (hereinafter referred to as TOF). ), And a technique for obtaining a distance from the measured TOF to an object reflecting light is described. TOF is an abbreviation for Time Of Flight. In addition, in order to eliminate the influence of disturbance light incident on the SPAD array, the TOF measurement is repeatedly performed, a histogram in which the number of responses is integrated for each measurement time is created, and the time obtained from the maximum value of the histogram is obtained. The distance is used for calculation.
特開2014-81254号公報JP 2014-81254 A
 しかしながら、発明者の詳細な検討の結果、特許文献1に記載の従来技術では、以下の課題が見出された。即ち、外乱光が強い場合、個々の計測で検出される応答数が増加するため、ヒストグラムでの積算値も大きくなる。この積算値のオーバーフローを防ぐには、積算値を記憶するメモリとして、データ領域のビット幅が十分に大きいもの、即ち、記憶容量の大きいものを用意する必要があった。 However, as a result of detailed studies by the inventors, the following problems have been found in the prior art described in Patent Document 1. That is, when the disturbance light is strong, the number of responses detected in each measurement increases, and the integrated value in the histogram also increases. In order to prevent the overflow of the integrated value, it is necessary to prepare a memory having a sufficiently large bit width of the data area, that is, a memory having a large storage capacity, as a memory for storing the integrated value.
 本開示は、光の飛翔時間の算出にヒストグラムを用いるレーザレーダにおいて、ヒストグラムを格納するメモリの容量を従来技術と比べて削減可能な技術を提供する。
 本開示の一態様である光検出器は、受光アレイ部と、計時部と、応答取得部と、メモリと、ヒストグラム生成部とを備える。
The present disclosure provides a technique capable of reducing the capacity of a memory for storing a histogram as compared with the prior art in a laser radar that uses a histogram for calculating the flight time of light.
A photodetector that is an aspect of the present disclosure includes a light receiving array unit, a time measuring unit, a response acquisition unit, a memory, and a histogram generation unit.
 受光アレイ部は、フォトンの入射に応答してパルス信号を出力する複数の受光部を有し、照射部から照射され、物体に反射した反射光を受光して、複数の受光部からそれぞれ出力されるパルス信号を並列に出力する。計時部は、照射部が光を照射したタイミングを表す照射タイミング信号が入力されてからの経過時間を計測する。応答取得部は、一定周期のタイミング毎に、複数の受光部のうちパルス信号を出力している受光部の数である応答数を取得し、予め設定されるバイアス値を、応答数から減算または除算した調整応答数を出力する。メモリは、アドレスが計時部で計測される計時値に対応づけられている。ヒストグラム生成部は、計時部での計時値から特定されるメモリのアドレスに、該アドレスのデータとして、調整応答数を積算して格納する。 The light receiving array unit has a plurality of light receiving units that output pulse signals in response to the incidence of photons, receives the reflected light that is irradiated from the irradiation unit and reflected by the object, and is output from each of the plurality of light receiving units. Output pulse signals in parallel. The time measuring unit measures an elapsed time from when an irradiation timing signal indicating a timing at which the irradiation unit irradiates light is input. The response acquisition unit acquires a response number that is the number of light receiving units that output a pulse signal among a plurality of light receiving units at a fixed cycle timing, and subtracts a preset bias value from the response number or Outputs the number of adjustment responses divided. The memory is associated with a time value whose address is measured by the time measuring unit. The histogram generation unit accumulates and stores the number of adjustment responses as data of the address at the memory address specified from the time measured value in the time measuring unit.
 このような構成によれば、調整応答数の積算することでヒストグラムを生成する際に、応答数より小さな値となる調整応答数を積算するため、応答数をそのまま積算する場合と比較して、メモリの容量を削減できる。 According to such a configuration, when generating a histogram by integrating the number of adjustment responses, in order to integrate the number of adjustment responses that are smaller than the number of responses, compared to the case of integrating the number of responses as it is, Memory capacity can be reduced.
 なお、請求の範囲に記載した括弧内の符号は、一つの態様として後述する実施形態に記載の具体的手段との対応関係を示すものであって、本開示の技術的範囲を限定するものではない。 In addition, the code | symbol in the parenthesis described in the claim shows the correspondence with the specific means as described in embodiment mentioned later as one aspect, Comprising: It does not limit the technical scope of this indication. Absent.
第1実施形態のレーザレーダの構成を示すブロック図である。It is a block diagram which shows the structure of the laser radar of 1st Embodiment. 計測された時間に対応づけて応答数を積算したヒストグラムを例示するグラフである。It is a graph which illustrates the histogram which accumulated the number of responses in correspondence with measured time. 応答取得部の動作に関する説明図である。It is explanatory drawing regarding operation | movement of a response acquisition part. 第2実施形態のレーザレーダの構成を示すブロック図である。It is a block diagram which shows the structure of the laser radar of 2nd Embodiment. 外乱光モニタ部の構成を示すブロック図である。It is a block diagram which shows the structure of a disturbance light monitor part. トリガ閾値を外乱光の強弱に応じて変化させることによる効果を示す説明図である。It is explanatory drawing which shows the effect by changing a trigger threshold value according to the strength of disturbance light. 第3実施形態のレーザレーダの構成を示すブロック図である。It is a block diagram which shows the structure of the laser radar of 3rd Embodiment. 第1~第3実施形態における受光部の構成を示す回路図である。FIG. 5 is a circuit diagram showing a configuration of a light receiving unit in the first to third embodiments. 第4実施形態のレーザレーダの構成を示すブロック図である。It is a block diagram which shows the structure of the laser radar of 4th Embodiment. 第4実施形態における受光部の構成を示す回路図である。It is a circuit diagram which shows the structure of the light-receiving part in 4th Embodiment.
 以下、図面を参照しながら、本開示の実施形態を説明する。
 [1.第1実施形態]
 [1-1.構成]
 本実施形態のレーザレーダ1は、車両に搭載され、車両の周辺に存在する各種物体を検出し、その物体に関する情報を生成する。レーザレーダ1は、図1に示すように、照射部2と、光検出部3と、パラメータ設定部4と、信号処理部5と、メモリ6とを備える。なお、光検出部3、信号処理部5、及びメモリ6が光検出器に相当する。光検出器には、照射部2及びパラメータ設定部4の少なくとも一方が含まれていてもよい。
Hereinafter, embodiments of the present disclosure will be described with reference to the drawings.
[1. First Embodiment]
[1-1. Constitution]
The laser radar 1 of this embodiment is mounted on a vehicle, detects various objects existing around the vehicle, and generates information related to the object. As shown in FIG. 1, the laser radar 1 includes an irradiation unit 2, a light detection unit 3, a parameter setting unit 4, a signal processing unit 5, and a memory 6. The light detection unit 3, the signal processing unit 5, and the memory 6 correspond to a light detector. The photodetector may include at least one of the irradiation unit 2 and the parameter setting unit 4.
 照射部2は、パルス状のレーザ光を、予め設定された間隔で繰り返し照射すると共に、その照射タイミングを表す照射タイミング信号を光検出部3に入力する。以下、レーザ光を照射する周期を、計測サイクルという。 The irradiation unit 2 repeatedly irradiates pulsed laser light at a preset interval, and inputs an irradiation timing signal indicating the irradiation timing to the light detection unit 3. Hereinafter, the cycle of irradiating laser light is referred to as a measurement cycle.
 光検出部3は、照射部2から照射されたレーザ光の反射光を受光し、照射から受光までに要した光の飛翔時間であるTOFを表す時間情報Tp、および受光時の光量を表す光量情報Cpを生成する。TOFは、Time Of Flightの略である。 The light detection unit 3 receives the reflected light of the laser light emitted from the irradiation unit 2, time information Tp representing TOF, which is a flight time of light required from irradiation to light reception, and a light amount representing the light amount at the time of light reception. Information Cp is generated. TOF is an abbreviation for Time Of Flight.
 光検出部3は、受光アレイ部31と、トリガ部32と、計時部33と、応答取得部34とを備える。
 受光アレイ部31は、M個の受光部80を有する。Mは2以上の整数である。各受光部80は、SPADを備える。SPADは、Single Photon Avalanche Diodeの略である。SPADは、逆バイアス電圧としてブレイクダウン電圧よりも高い電圧を印加するガイガーモードで動作するアバランシェフォトダイオードであり、単一フォトンの入射を検出できる検出素子である。M個の受光部80が一つずつ有する合計M個のSPADは、2次元的に配列され受光面を形成する。
The light detection unit 3 includes a light receiving array unit 31, a trigger unit 32, a timer unit 33, and a response acquisition unit 34.
The light receiving array unit 31 includes M light receiving units 80. M is an integer of 2 or more. Each light receiving unit 80 includes a SPAD. SPAD is an abbreviation for Single Photon Avalanche Diode. The SPAD is an avalanche photodiode that operates in a Geiger mode in which a voltage higher than the breakdown voltage is applied as a reverse bias voltage, and is a detection element that can detect the incidence of a single photon. A total of M SPADs each having one M light receiving unit 80 are two-dimensionally arranged to form a light receiving surface.
 個々の受光部80は、図8に示すように、SPAD81と、クエンチ抵抗82と、反転回路83と、Dフリップフロップ回路(以下、DFF回路)84と、遅延回路85とを備える。SPAD81は、アノードが負電源に接続され、カソードがクエンチ抵抗82を介して正電源に接続される。クエンチ抵抗82は、SPAD81に逆バイアス電圧を印加する。また、クエンチ抵抗82は、SPAD81にフォトンが入射してSPAD81がブレイクダウンしたときに、SPAD81に流れる電流により発生する電圧降下によって、SPAD81のガイガー放電を停止させる。なお、クエンチ抵抗82には、所定の抵抗値を有する抵抗素子、或いは、ゲート電圧によってオン抵抗を設定可能なMOSFET等が用いられる。 As shown in FIG. 8, each light receiving unit 80 includes a SPAD 81, a quench resistor 82, an inverting circuit 83, a D flip-flop circuit (hereinafter referred to as a DFF circuit) 84, and a delay circuit 85. The SPAD 81 has an anode connected to a negative power source and a cathode connected to a positive power source via a quench resistor 82. The quench resistor 82 applies a reverse bias voltage to the SPAD 81. The quench resistor 82 stops the Geiger discharge of the SPAD 81 due to a voltage drop caused by the current flowing through the SPAD 81 when the photons enter the SPAD 81 and the SPAD 81 is broken down. As the quench resistor 82, a resistance element having a predetermined resistance value, or a MOSFET whose on-resistance can be set by a gate voltage is used.
 SPAD81のカソードには反転回路83が接続される。SPAD81がブレイクダウンしていない状態では、反転回路83の入力はハイレベルである。SPAD81がブレイクダウンした状態では、クエンチ抵抗82に電流が流れることで、反転回路83の入力はロウレベルに変化する。DFF回路84は、反転回路83の出力がロウレベルからハイレベルに変化する立上がりエッジで出力がハイレベルに変化する。DFF回路84の出力は、遅延回路83を介してラッチ回路84のリセット端子に接続される。遅延回路83は、DFF回路84の出力を、信号レベルを反転させ、かつ、予め設定された遅延時間τだけ遅延させてリセット端子に入力する。これにより、DFF回路84の出力は、ハイレベルに変化してから遅延時間τが経過すると、DFF回路84がリセットされることにより、ロウレベルに変化する。 An inversion circuit 83 is connected to the cathode of SPAD81. When the SPAD 81 is not broken down, the input of the inverting circuit 83 is at a high level. In a state where the SPAD 81 is broken down, a current flows through the quench resistor 82, whereby the input of the inverting circuit 83 changes to a low level. The DFF circuit 84 changes its output to a high level at a rising edge at which the output of the inverting circuit 83 changes from a low level to a high level. The output of the DFF circuit 84 is connected to the reset terminal of the latch circuit 84 via the delay circuit 83. The delay circuit 83 inverts the signal level of the output of the DFF circuit 84 and delays the signal level by a preset delay time τ and inputs it to the reset terminal. As a result, when the delay time τ elapses after the output of the DFF circuit 84 changes to the high level, the DFF circuit 84 is reset to change to the low level.
 つまり、受光部80は、SPAD81にフォトンが入射されると、これに応答して、パルス幅τを有するパルス信号Pを出力する。なお、パルス幅τは、同一のSPAD81に連続してフォトンが入力された場合に、これを個別に検出できるような長さに設定される。以下では、M個の受光部80が出力する各パルス信号をP~Pで表す。なお、パルス信号P~Pの出力は、並列に行われる。 That is, when the photon is incident on the SPAD 81, the light receiving unit 80 outputs a pulse signal P having a pulse width τ in response to the photon. The pulse width τ is set to such a length that can be detected individually when photons are continuously input to the same SPAD 81. Hereinafter, each pulse signal output from the M light receiving units 80 is represented by P 1 to P M. The pulse signals P 1 to P M are output in parallel.
 トリガ部32は、受光アレイ部31から同時に出力されているパルス信号P~Pの数、即ち、フォトンに応答してパルス信号を出力している受光部80の数である応答数が、閾値設定部4にて設定されたトリガ閾値THを越えたタイミングで、光の受光タイミングを表すトリガ信号TGを出力する。 Trigger unit 32, the number of pulse signals P 1 ~ P M from the light receiving array 31 are simultaneously output, i.e., the number of responses is the number of light receiving portion 80 that outputs a pulse signal in response to photons, A trigger signal TG representing the light reception timing is output at a timing exceeding the trigger threshold TH set by the threshold setting unit 4.
 計時部33は、いわゆるTDCであり、照射部2から照射タイミング信号が入力されてからトリガ信号TGが示す受光タイミングまでの時間を計測し時間情報Tpとして出力する。TDCは、Time to Digital Converterの略である。 The timer unit 33 is a so-called TDC, and measures the time from when the irradiation timing signal is input from the irradiation unit 2 to the light reception timing indicated by the trigger signal TG, and outputs it as time information Tp. TDC is an abbreviation for Time-> Digital-> Converter.
 応答取得部34は、受光アレイ部31から同時に出力されているパルス信号P~Pの数である応答数Cxを、トリガ信号TGに従ったタイミングで取得し、その応答数Cxからバイアス値Cbを減算した結果である調整応答数を、受光した光信号の輝度を表す光量情報Cpとして出力する。つまり、光量情報(即ち、調整応答数)Cpは(1)式で表される。 Response acquiring unit 34, the response number Cx is the number of the pulse signals P 1 ~ P M from the light receiving array portion 31 are output at the same time, acquired at a timing in accordance with the trigger signal TG, the bias value from the response speed Cx The number of adjustment responses, which is the result of subtracting Cb, is output as light amount information Cp representing the luminance of the received optical signal. That is, the light amount information (that is, the number of adjustment responses) Cp is expressed by equation (1).
  Cp=Cx-Cb        (1)
 トリガ信号TGに従ったタイミングとは、トリガ信号TGが出力されたタイミングであってもよいし、これを所定の遅延量だけ遅延させたタイミングであってもよい。バイアス値Cbは、パラメータ設定部4にて設定される値である。パラメータ設定部4は、トリガ閾値TH及びバイアス値Cbを設定できる機械的なスイッチ、又はトリガ閾値TH及びバイアス値Cbを電気的に書き込むことができるレジスタを有する。ここでは、トリガ閾値THのみが任意に設定される。つまり、トリガ閾値THが対象値に相当する。そして、バイアス値Cbは、設定されたトリガ閾値THから1を減算した値に設定される。つまり、バイアス値Cbは(2)式で表される。(2)式を(1)式に代入すると(3)式が得られる。
Cp = Cx−Cb (1)
The timing according to the trigger signal TG may be a timing when the trigger signal TG is output, or may be a timing obtained by delaying the trigger signal TG by a predetermined delay amount. The bias value Cb is a value set by the parameter setting unit 4. The parameter setting unit 4 includes a mechanical switch that can set the trigger threshold TH and the bias value Cb, or a register that can electrically write the trigger threshold TH and the bias value Cb. Here, only the trigger threshold value TH is arbitrarily set. That is, the trigger threshold value TH corresponds to the target value. The bias value Cb is set to a value obtained by subtracting 1 from the set trigger threshold value TH. That is, the bias value Cb is expressed by equation (2). Substituting equation (2) into equation (1) yields equation (3).
  Cb=TH-1         (2)
  Cp=Cx-TH+1      (3)
 トリガ閾値THは、0より大きい値であればよく、整数でもよいし整数でなくてもよい。また、パラメータ設定部4は、バイアス値Cbのみが任意に設定され、トリガ閾値THは、設定されたバイアス値Cbから算出されるように構成されてもよい。この場合、バイアス値Cbが対象値に相当する。また、トリガ閾値TH及びバイアス値Cbは、必ずしも(2)式に示す関係を満たすように連動して設定される必要はない。この場合、トリガ閾値TH及びバイアス値Cbのいずれもが対象値に相当する。
Cb = TH-1 (2)
Cp = Cx-TH + 1 (3)
The trigger threshold TH may be a value larger than 0, and may be an integer or not an integer. The parameter setting unit 4 may be configured such that only the bias value Cb is arbitrarily set, and the trigger threshold value TH is calculated from the set bias value Cb. In this case, the bias value Cb corresponds to the target value. Further, the trigger threshold value TH and the bias value Cb do not necessarily need to be set in conjunction so as to satisfy the relationship shown in the expression (2). In this case, both the trigger threshold value TH and the bias value Cb correspond to the target value.
 メモリ6は、任意に読み書き可能なRAMが用いられる。メモリ6のアドレスは、図2に示すように、計時部33の時間ビンに対応づけられる。時間ビンとは、計時部33の時間分解能で区切られた個々の時間領域をいう。メモリ6に格納されるデータのビット幅は、1回の計測で検出される応答数の期待値および信号処理部5がヒストグラムを生成する際に積算を繰り返す回数である積算回数Xのうち少なくとも一方に応じて適宜設定される。積算回数Xは1以上であればよい。 The memory 6 is an arbitrarily readable / writable RAM. As shown in FIG. 2, the address of the memory 6 is associated with the time bin of the timer unit 33. The time bin is an individual time region divided by the time resolution of the time measuring unit 33. The bit width of the data stored in the memory 6 is at least one of the expected value of the number of responses detected in one measurement and the number of times of integration X which is the number of times of integration when the signal processing unit 5 generates a histogram. It is set appropriately according to The cumulative number X may be 1 or more.
 信号処理部5は、情報生成部51と、ヒストグラム生成部52とを有する。
 ヒストグラム生成部52は、計測サイクル毎に動作し、光検出部3から出力される時間情報Tpと光量情報Cpとに従って、メモリ6に記憶されたヒストグラムの内容を更新する。具体的には、時間情報Tpに対応付けられたメモリ6のアドレスから、データを読み出し、読み出したデータに光量情報Cpを加算した結果を、同じアドレスに書き込む。これにより、時間情報Tpが示す時間ビンについて、光量情報Cpの積算値が更新される。
The signal processing unit 5 includes an information generation unit 51 and a histogram generation unit 52.
The histogram generation unit 52 operates for each measurement cycle, and updates the contents of the histogram stored in the memory 6 according to the time information Tp and the light amount information Cp output from the light detection unit 3. Specifically, data is read from the address of the memory 6 associated with the time information Tp, and the result of adding the light amount information Cp to the read data is written to the same address. Thereby, the integrated value of the light quantity information Cp is updated for the time bin indicated by the time information Tp.
 情報生成部51は、X回の計測サイクル毎、即ちヒストグラムが生成される毎に動作し、ヒストグラム生成部52によって生成されたヒストグラムに基づき、光を反射した物体に関する情報を生成する。具体的には、ヒストグラムの極大値を輝度として抽出すると共に、抽出された極大値毎に、その極大値が得られるアドレスに対応した時間ビンを特定する。更に、これら抽出された輝度と時間ビン(即ち、TOF)との組み合わせに基づいて、ヒストグラム上に極大値を発生させる原因となった各物体までの距離や、その物体の信頼度等を含む物体情報を生成する。生成された物体情報は、図示しない車載LANを介して、該物体情報を利用する各種車載装置に提供される。 The information generation unit 51 operates every X measurement cycles, that is, every time a histogram is generated, and generates information on an object that reflects light based on the histogram generated by the histogram generation unit 52. Specifically, the maximum value of the histogram is extracted as luminance, and for each extracted maximum value, a time bin corresponding to the address from which the maximum value is obtained is specified. Further, based on the combination of the extracted luminance and time bin (ie, TOF), an object including the distance to each object that caused the maximum value on the histogram and the reliability of the object. Generate information. The generated object information is provided to various in-vehicle devices that use the object information via an in-vehicle LAN (not shown).
 [1-2.動作]
 応答取得部34は、図3に示すように、信号処理部5に出力する光量情報Cpとして、応答数Cxをそのまま用いるのではなく、バイアス値Cbを減算した調整応答数を用いている。このため、ヒストグラムを生成する際に、各測定サイクルで積算される光量情報Cpの大きさが抑制され、ひいては光量情報Cpの最終的な積算値が抑制される。
[1-2. Operation]
As shown in FIG. 3, the response acquisition unit 34 does not use the response number Cx as it is, but uses the adjustment response number obtained by subtracting the bias value Cb as the light amount information Cp output to the signal processing unit 5. For this reason, when generating a histogram, the magnitude of the light quantity information Cp integrated in each measurement cycle is suppressed, and consequently the final integrated value of the light quantity information Cp is suppressed.
 [1-3.効果]
 以上詳述した第1実施形態によれば、以下の効果を奏する。
 (1a)レーザレーダ1によれば、ヒストグラムにおける光量情報Cpの最終的な積算値が抑制されるため、積算回数Xが同じであれば、従来技術と比較して、ヒストグラムを格納するメモリ6の容量を削減できる。また、メモリ6の容量が同じであれば、従来技術と比較して、積算回数Xを増加させ、検出精度を向上させることができる。
[1-3. effect]
According to the first embodiment described in detail above, the following effects are obtained.
(1a) According to the laser radar 1, since the final integrated value of the light quantity information Cp in the histogram is suppressed, if the integration count X is the same, the memory 6 for storing the histogram is compared with the conventional technique. Capacity can be reduced. Moreover, if the capacity | capacitance of the memory 6 is the same, compared with a prior art, the frequency | count X of integration can be increased and detection accuracy can be improved.
 (1b)レーザレーダ1によれば、パラメータ設定部4にてトリガ閾値TH及びバイアス値Cbを任意に設定できるため、使用される環境に応じて適宜設定値を変化させることによって、上記積算値を、より効果的に抑制できる。 (1b) According to the laser radar 1, since the trigger threshold value TH and the bias value Cb can be arbitrarily set by the parameter setting unit 4, the integrated value can be set by changing the set value as appropriate according to the environment used. Can be suppressed more effectively.
 [2.第2実施形態]
 [2-1.第1実施形態との相違点]
 第2実施形態は、基本的な構成は第1実施形態と同様であるため、相違点について以下に説明する。なお、第1実施形態と同じ符号は、同一の構成を示すものであって、先行する説明を参照する。
[2. Second Embodiment]
[2-1. Difference from the first embodiment]
Since the basic configuration of the second embodiment is the same as that of the first embodiment, differences will be described below. Note that the same reference numerals as those in the first embodiment indicate the same configuration, and the preceding description is referred to.
 前述した第1実施形態では、トリガ閾値TH及びバイアス値Cbは、パラメータ設定部4aにて手動設定される。これに対し、第2実施形態では、自動的に可変設定される点で、第1実施形態と相違する。 In the first embodiment described above, the trigger threshold value TH and the bias value Cb are manually set by the parameter setting unit 4a. On the other hand, the second embodiment is different from the first embodiment in that it is automatically variably set.
 本実施形態のレーザレーダ1aは、図4に示すように、第1実施形態のレーザレーダ1に、外乱光モニタ部7が追加され、パラメータ設定部4aが、外乱光モニタ部7での検出結果である外乱光情報Cmに従って、トリガ閾値THを設定し、更に、上述の(1)式に従って、バイアス値Cbを設定する。 As shown in FIG. 4, the laser radar 1 a of the present embodiment includes a disturbance light monitor unit 7 added to the laser radar 1 of the first embodiment, and the parameter setting unit 4 a detects the result of the disturbance light monitor unit 7. The trigger threshold value TH is set according to the ambient light information Cm, and the bias value Cb is set according to the above equation (1).
 外乱光モニタ部7は、図5に示すように、受光部71とカウンタ72とを備える。
 受光部71は、受光アレイ部31を構成する受光部80と同様の構成を有する。但し、受光部71のSPADは、受光アレイ部31に含まれるM個のSPAD81が形成する受光面に隣接して配置される。
The disturbance light monitoring unit 7 includes a light receiving unit 71 and a counter 72 as shown in FIG.
The light receiving unit 71 has the same configuration as the light receiving unit 80 constituting the light receiving array unit 31. However, the SPAD of the light receiving unit 71 is disposed adjacent to the light receiving surface formed by the M SPADs 81 included in the light receiving array unit 31.
 カウンタ72は、光検出部3による計測が行われていないタイミングで受光部71から出力されるパルス信号をカウントし、そのカウント結果に従って外乱光情報Cmを生成して出力する。 The counter 72 counts the pulse signal output from the light receiving unit 71 at a timing when measurement by the light detection unit 3 is not performed, and generates and outputs disturbance light information Cm according to the count result.
 パラメータ設定部4aは、計測サイクル毎に、照射部2が光を照射する前に、外乱光モニタ部7から得られる外乱光情報Cmに従って、トリガ閾値TH及びバイアス値Cbを可変設定する。具体的には、外乱光情報Cmが示す外乱光の光量が多いほど、トリガ閾値TH及びバイアス値Cbを大きな値に設定する。パラメータ設定部4aは、トリガ閾値TH及びバイアス値Cbを、例えば、外乱光の平均レベル、または平均レベルに所定のマージンを加えた大きさに基づいて設定する。なお、外乱光とは、照射部2から照射され、物体に反射して光検出部3に入射する反射光以外の光をいう。 The parameter setting unit 4a variably sets the trigger threshold TH and the bias value Cb according to the disturbance light information Cm obtained from the disturbance light monitoring unit 7 before the irradiation unit 2 emits light for each measurement cycle. Specifically, the trigger threshold value TH and the bias value Cb are set to larger values as the amount of disturbance light indicated by the disturbance light information Cm increases. The parameter setting unit 4a sets the trigger threshold value TH and the bias value Cb based on, for example, the average level of ambient light or the size obtained by adding a predetermined margin to the average level. The disturbance light refers to light other than the reflected light that is irradiated from the irradiation unit 2, reflected by an object, and incident on the light detection unit 3.
 [2-2.動作]
 レーザレーダ1aによれば、外乱光が弱いときには、図6の上段に示すように、トリガ閾値THも小さな値に設定され、外乱光が強いときには、図6の下段に示すように、トリガ閾値THも大きな値に設定される。いずれの場合も、応答数Cxのうち、外乱光の平均レベル程度に設定されるトリガ閾値THを超える分、即ち、応答数Cxからバイアス値Cbを減じた分のみが光量情報Cpとして出力される。なお、図3及び図6では、減算結果である調整応答数Cpがゼロでクランプされる場合を例示しているが、これに限定されるものではない。
[2-2. Operation]
According to the laser radar 1a, when the disturbance light is weak, the trigger threshold value TH is also set to a small value as shown in the upper part of FIG. 6, and when the disturbance light is strong, the trigger threshold value TH is given as shown in the lower part of FIG. Is also set to a large value. In any case, only the part of the response number Cx that exceeds the trigger threshold TH set to the average level of disturbance light, that is, the part obtained by subtracting the bias value Cb from the response number Cx is output as the light amount information Cp. . 3 and 6 exemplify the case where the adjustment response number Cp, which is the subtraction result, is clamped at zero, the present invention is not limited to this.
 [2-3.効果]
 以上詳述した第2実施形態によれば、前述した第1実施形態の効果(1a)を奏し、さらに、以下の効果を奏する。
[2-3. effect]
According to 2nd Embodiment explained in full detail above, there exists the effect (1a) of 1st Embodiment mentioned above, and also there exist the following effects.
 (2a)レーザレーダ1aによれば、外乱光の状況が変化するような場合でも、検出精度を保持しつつ、ヒストグラムのオーバーフローを抑制できる。即ち、外乱光が最も強い状況に合わせてトリガ閾値TH及びバイアス値Cbを大きな値に固定すると、反射強度の弱い物体や、遠方の物体からの反射光の検出精度が低下する。一方、外乱光が弱い状況に合わせてトリガ閾値TH及びバイアス値Cbを小さな値に固定すると、ヒストグラムの積算値が多くなり、メモリ容量を大きくするか、積算回数を減らす必要がある。しかし、レーザレーダ1aでは、これらの不都合をいずれも抑制できる。 (2a) According to the laser radar 1a, it is possible to suppress the histogram overflow while maintaining the detection accuracy even when the disturbance light condition changes. That is, if the trigger threshold value TH and the bias value Cb are fixed to a large value in accordance with the situation where disturbance light is strongest, the detection accuracy of reflected light from an object with low reflection intensity or a distant object decreases. On the other hand, if the trigger threshold value TH and the bias value Cb are fixed to a small value in accordance with a situation where disturbance light is weak, the integrated value of the histogram increases, and it is necessary to increase the memory capacity or reduce the number of integrations. However, the laser radar 1a can suppress both of these disadvantages.
 (2b)レーザレーダ1aによれば、外乱光に応じてトリガ閾値THが設定され、そのトリガ閾値THに連動して設定されるバイアス値Cbを用いて光量情報(即ち、調整応答数)Cpを求めるため、光量情報Cpは、外乱光に基づくノイズ成分が除去されたものとなる。また、レーダレーダ1aによれば、このような光量情報Cpを用いてヒストグラムが生成されるため、信号対雑音比の優れた信号光を抽出できる。 (2b) According to the laser radar 1a, the trigger threshold value TH is set according to the disturbance light, and the light amount information (that is, the number of adjustment responses) Cp is calculated using the bias value Cb set in conjunction with the trigger threshold value TH. Therefore, the light amount information Cp is obtained by removing noise components based on disturbance light. Further, according to the radar radar 1a, since a histogram is generated using such light quantity information Cp, signal light having an excellent signal-to-noise ratio can be extracted.
 [3.第3実施形態]
 [3-1.第1実施形態との相違点]
 第3実施形態は、基本的な構成は第1実施形態と同様であるため、相違点について以下に説明する。なお、第1実施形態と同じ符号は、同一の構成を示すものであって、先行する説明を参照する。
[3. Third Embodiment]
[3-1. Difference from the first embodiment]
Since the basic configuration of the third embodiment is the same as that of the first embodiment, differences will be described below. Note that the same reference numerals as those in the first embodiment indicate the same configuration, and the preceding description is referred to.
 前述した第1実施形態では、トリガ閾値TH及びバイアス値Cbは、パラメータ設定部4にて手動設定される。これに対し、第3実施形態では、トリガ閾値TH及びバイアス値Cbが自動的に可変設定される点で、第1実施形態と相違する。また、第2実施形態とは、トリガ閾値TH及びバイアス値Cbの設定を、ヒストグラムにおける輝度値の積算状況に応じて変化させる点で相違する。 In the first embodiment described above, the trigger threshold value TH and the bias value Cb are manually set by the parameter setting unit 4. On the other hand, the third embodiment is different from the first embodiment in that the trigger threshold value TH and the bias value Cb are automatically variably set. Further, the second embodiment is different from the second embodiment in that the setting of the trigger threshold value TH and the bias value Cb is changed according to the luminance value integration state in the histogram.
 本実施形態のレーザレーダ1bは、図7に示すように、第1実施形態のレーザレーダ1とは、応答取得部34b、パラメータ設定部4b、信号処理部5bの構成が異なる。
 応答取得部34bは、応答取得部34の機能を実現する構成に加えて、最大値モニタ部341を備える。最大値モニタ部341は、受光アレイ部31から出力される応答数Cxを監視し、その最大値を予測応答数Bとして抽出する。予測応答数Bの抽出は、外部からの指示によって行ってもよいし、周期的に行ってもよいし、何らかの車載センサによって周囲環境の変化が検出された場合に行ってもよい。
As shown in FIG. 7, the laser radar 1b of the present embodiment differs from the laser radar 1 of the first embodiment in the configuration of a response acquisition unit 34b, a parameter setting unit 4b, and a signal processing unit 5b.
The response acquisition unit 34 b includes a maximum value monitor unit 341 in addition to the configuration that realizes the function of the response acquisition unit 34. The maximum value monitor unit 341 monitors the response number Cx output from the light receiving array unit 31 and extracts the maximum value as the predicted response number B. The extraction of the predicted response number B may be performed by an external instruction, may be performed periodically, or may be performed when a change in the surrounding environment is detected by some on-vehicle sensor.
 信号処理部5bは、情報生成部51、ヒストグラム生成部52に加えて、余裕演算部53を備える。
 余裕演算部53は、ヒストグラム生成部52によって、ヒストグラムの更新が行われる毎に、メモリの余裕度を表す余裕値Aを求める。図2に示すように、ヒストグラムの極大値の中で最大の値を有するものを抽出し、その値Pmaxとする。メモリを構成するデータ領域のビット幅に応じた格納可能なデータの上限値である積算上限値をDmaxとする。余裕値Aは、(3)式で求めてもよいし、(4)式で求めてもよい。但し、αは、ヒストグラムの生成完了までの残り積算回数を表す。図2中のAは(3)式で求めた余裕値Aを示す。
The signal processing unit 5 b includes a margin calculation unit 53 in addition to the information generation unit 51 and the histogram generation unit 52.
The margin calculation unit 53 obtains a margin value A that represents the margin of memory each time the histogram generation unit 52 updates the histogram. As shown in FIG. 2, the maximum value among the maximum values of the histogram is extracted and set as the value Pmax. Let Dmax be the upper limit of integration, which is the upper limit of data that can be stored in accordance with the bit width of the data area constituting the memory. The margin value A may be obtained by equation (3) or may be obtained by equation (4). Where α represents the remaining number of integrations until the histogram generation is completed. A in FIG. 2 indicates the margin value A obtained by equation (3).
  A=Dmax-Pmax      (3)
  A=(Dmax-Pmax)/α  (4)
 パラメータ設定部4bは、予測応答数Bおよび余裕値Aに従い、その時点で設定されているトリガ閾値THと、A-Bを比較して、いずれか大きい方をトリガ閾値THとして採用する。
A = Dmax−Pmax (3)
A = (Dmax−Pmax) / α (4)
The parameter setting unit 4b compares the trigger threshold value TH set at that time with AB in accordance with the predicted response number B and the margin value A, and adopts the larger one as the trigger threshold value TH.
 パラメータ設定部4bは、A,Bを用いたトリガ閾値THの可変設定を、残り積算回数αが所定値以下となった場合、または、余裕値Aが所定値以下となった場合にだけ実行してもよい。 The parameter setting unit 4b executes the variable setting of the trigger threshold value TH using A and B only when the remaining number of times of integration α is less than or equal to a predetermined value or when the margin value A is less than or equal to a predetermined value. May be.
 A-Bとの比較の対象となるトリガ閾値THは、固定値であってもよいし、第2実施形態で示したように、状況に応じて設定される可変値であってもよい。また、パラメータ設定部4bは、トリガ閾値THの変わりに、バイアス値Cbを上述の方法で設定し、設定したバイアス値Cbから(1)式の関係等を用いてトリガ閾値THを設定するように構成されてもよい。 The trigger threshold value TH to be compared with AB may be a fixed value, or may be a variable value set according to the situation as shown in the second embodiment. Further, the parameter setting unit 4b sets the bias value Cb by the above-described method instead of the trigger threshold value TH, and sets the trigger threshold value TH from the set bias value Cb using the relationship of the expression (1). It may be configured.
 [3-2.効果]
 以上詳述した第2実施形態によれば、前述した第1実施形態の効果(1a)を奏し、さらに、以下の効果を奏する。
[3-2. effect]
According to 2nd Embodiment explained in full detail above, there exists the effect (1a) of 1st Embodiment mentioned above, and also there exist the following effects.
 (3a)レーザレーダ1bでは、余裕値Aに応じてトリガ閾値TH、ひいてはバイアス値Cbが設定されるため、ヒストグラムにおいて、光量情報Cpの積算値がオーバーフローすることを、より一層抑制できる。換言すれば、この機能を有することにより、より一層、メモリ容量の削減あるいは積算回数Xの増加による検出精度の向上を図ることができる。 (3a) In the laser radar 1b, since the trigger threshold value TH and thus the bias value Cb are set according to the margin value A, it is possible to further suppress the overflow of the integrated value of the light amount information Cp in the histogram. In other words, by having this function, it is possible to further improve the detection accuracy by reducing the memory capacity or increasing the number of integrations X.
 [4.第4実施形態]
 [4-1.第1実施形態との相違点]
 第4実施形態は、基本的な構成は第1実施形態と同様であるため、相違点について以下に説明する。なお、第1実施形態と同じ符号は、同一の構成を示すものであって、先行する説明を参照する。
[4. Fourth Embodiment]
[4-1. Difference from the first embodiment]
Since the basic configuration of the fourth embodiment is the same as that of the first embodiment, differences will be described below. Note that the same reference numerals as those in the first embodiment indicate the same configuration, and the preceding description is referred to.
 前述した第1実施形態では、トリガ信号TGを生成し、トリガ信号TGのタイミングで求められた光量情報Cpのみを用いてヒストグラムが更新される。これに対し、第4実施形態では、クロックに同期させて光量情報Cpを繰り返し生成し、その全ての光量情報Cpを用いてヒストグラムが更新される点で、第1実施形態と相違する。 In the first embodiment described above, the trigger signal TG is generated, and the histogram is updated using only the light amount information Cp obtained at the timing of the trigger signal TG. On the other hand, the fourth embodiment is different from the first embodiment in that the light amount information Cp is repeatedly generated in synchronization with the clock and the histogram is updated using all the light amount information Cp.
 本実施形態のレーザレーダ1cは、図9に示すように、照射部2と、光検出部3cと、パラメータ設定部4cと、信号処理部5cと、メモリ6とを備える。
 光検出部3cは、受光アレイ部31cと、計時部33cと、応答取得部34cとを備える。
As shown in FIG. 9, the laser radar 1 c of this embodiment includes an irradiation unit 2, a light detection unit 3 c, a parameter setting unit 4 c, a signal processing unit 5 c, and a memory 6.
The light detection unit 3c includes a light receiving array unit 31c, a timer unit 33c, and a response acquisition unit 34c.
 受光アレイ部31cは、M個の受光部80cを有する。M個の受光部80cのそれぞれがSPADを有し、M個のSPADが2次元的に配列された受光面を形成する点は、第1実施形態と同様である。 The light receiving array part 31c has M light receiving parts 80c. Each of the M light receiving portions 80c has a SPAD, and is similar to the first embodiment in that a light receiving surface in which M SPADs are two-dimensionally arranged is formed.
 個々の受光部80cは、図10に示すように、SPAD81と、クエンチ抵抗82と、反転回路83と、DFF回路84とを備える。つまり、受光部80cは、第1実施形態の受光部80と比較して、遅延回路85が省略され、DFF回路84の接続状態が異なる。 Each light receiving unit 80c includes a SPAD 81, a quench resistor 82, an inverting circuit 83, and a DFF circuit 84, as shown in FIG. That is, the light receiving unit 80c is different from the light receiving unit 80 of the first embodiment in that the delay circuit 85 is omitted and the connection state of the DFF circuit 84 is different.
 DFF回路84は、反転回路83の出力を、クロックCKの立ち上がりエッジのタイミングでラッチし、これをパルス信号Pとして出力する。また、DFF回路84は、リセット信号RSによって出力がリセットされる。 The DFF circuit 84 latches the output of the inverting circuit 83 at the timing of the rising edge of the clock CK and outputs this as a pulse signal P. Further, the output of the DFF circuit 84 is reset by the reset signal RS.
 つまり、受光部80cは、SPAD81にフォトンが入射されると、これに応答してパルス信号Pを出力する。このとき、反転回路83が出力するパルス信号Prのパルス幅は、クエンチ抵抗82に流れる電流により発生する電圧降下によって、SPAD81のガイガー放電が停止するまで継続する。このパルス信号Prは、DFF回路84によりクロックCKに同期したパルス信号Pに変換される。つまり、DFF回路84が出力するパルス信号Pのパルス幅は、クロックCKによる量子化誤差分のずれを含む。 That is, when the photon is incident on the SPAD 81, the light receiving unit 80c outputs the pulse signal P in response thereto. At this time, the pulse width of the pulse signal Pr output from the inverting circuit 83 continues until the Geiger discharge of the SPAD 81 is stopped by the voltage drop generated by the current flowing through the quench resistor 82. This pulse signal Pr is converted into a pulse signal P synchronized with the clock CK by the DFF circuit 84. That is, the pulse width of the pulse signal P output from the DFF circuit 84 includes a shift corresponding to the quantization error due to the clock CK.
 図9に戻り、計時部33cは、クロックCKに従って動作する同期式カウンタを有する。計時部33cは、照射部2から入力される照射タイミング信号によって、カウントを開始し、少なくとも光信号が最大検知距離を往復するのに要する時間の間、カウント動作を継続し、カウント値を時間情報Tpとして出力する。つまり、時間情報Tpは、クロックCKに同期して変化する。 Referring back to FIG. 9, the time measuring unit 33c has a synchronous counter that operates according to the clock CK. The timing unit 33c starts counting by the irradiation timing signal input from the irradiation unit 2, continues the counting operation at least for the time required for the optical signal to reciprocate the maximum detection distance, and calculates the count value as time information. Output as Tp. That is, the time information Tp changes in synchronization with the clock CK.
 応答取得部34cは、受光アレイ部31cから同時に出力されるパルス信号P~Pの数である応答数Cxを、エンコーダ等を用いて常時求める。更に、応答取得部34cは、その応答数Cxからバイアス値Cbを減算した結果である調整応答数を、クロックCKのタイミング毎に繰り返し算出し、算出結果を、受光した光信号の輝度を表す光量情報Cpとして出力する。つまり、光量情報Cpは、時間情報Tpと同様に、クロックCKに同期して変化する。 Response obtaining unit 34c is a response number Cx is the number of the pulse signals P 1 ~ P M outputted simultaneously from the light-receiving array portion 31c, determined at all times by using an encoder or the like. Further, the response acquisition unit 34c repeatedly calculates an adjustment response number, which is a result of subtracting the bias value Cb from the response number Cx, for each timing of the clock CK, and the calculation result represents the light amount representing the luminance of the received optical signal. Output as information Cp. That is, the light amount information Cp changes in synchronization with the clock CK, similarly to the time information Tp.
 パラメータ設定部4cは、計測サイクル毎に、照射部2が光を照射する前に、信号処理部5cから出力される外乱光情報Cmに従って、バイアス値Cbを可変設定する。具体的には、パラメータ設定部4cは、第2実施形態のパラメータ設定部4aと同様に、外乱光情報Cmが示す外乱光の光量が多いほど、バイアス値Cbを大きな値に設定する。 The parameter setting unit 4c variably sets the bias value Cb according to the disturbance light information Cm output from the signal processing unit 5c before the irradiation unit 2 emits light for each measurement cycle. Specifically, like the parameter setting unit 4a of the second embodiment, the parameter setting unit 4c sets the bias value Cb to a larger value as the amount of disturbance light indicated by the disturbance light information Cm increases.
 信号処理部5cは、情報生成部51と、ヒストグラム生成部52と、外乱光モニタ部54とを備える。
 ヒストグラム生成部52は、第1実施形態と同様の動作ではあるが、時間情報Tp及び光量情報CpがクロックCKに同期して変化するため、時間情報Tpが変化する毎に、時間情報に対応するメモリ6のアドレスの記憶値を、光量情報Cpを用いて更新する。
The signal processing unit 5 c includes an information generation unit 51, a histogram generation unit 52, and an ambient light monitor unit 54.
The histogram generation unit 52 operates in the same manner as in the first embodiment, but the time information Tp and the light amount information Cp change in synchronization with the clock CK. Therefore, every time the time information Tp changes, the histogram generation unit 52 corresponds to the time information. The stored value of the address in the memory 6 is updated using the light amount information Cp.
 外乱光モニタ部54は、情報生成部51による情報生成が終了してから、次の測定サイクルが開始されるまでの間、つまり、照射部2による光の照射が行われない期間に、バイアス値をCb=0に設定した状態で、ヒストグラム生成部52にヒストグラムを生成させる。更に、外乱光モニタ部54は、生成されたヒストグラムそのもの、または、ヒストグラムから抽出した外乱光の平均レベル等を、外乱光情報Cmとして出力する。 The disturbance light monitor unit 54 is configured to perform the bias value from the end of the information generation by the information generation unit 51 to the start of the next measurement cycle, that is, during the period when the irradiation unit 2 is not irradiated with light. Is set to Cb = 0, the histogram generation unit 52 is caused to generate a histogram. Further, the disturbance light monitor unit 54 outputs the generated histogram itself or the average level of disturbance light extracted from the histogram as disturbance light information Cm.
 [4-2.効果]
 以上詳述した第4実施形態によれば、前述した第1実施形態の効果(1a)及び第2実施形態の効果(2a)を奏し、さらに、以下の効果を奏する。
[4-2. effect]
According to the fourth embodiment described in detail above, the effect (1a) of the first embodiment and the effect (2a) of the second embodiment described above are exhibited, and the following effects are further achieved.
 (4a)レーザレーサ1cによれば、クロックCKに同期したタイミングで常時、時間情報Tp及び光量情報Cpを生成するため、トリガ信号TGを生成する必要がなく、トリガ部32を省略できるため、装置構成を簡略化できる。 (4a) According to the laser racer 1c, since the time information Tp and the light amount information Cp are always generated at the timing synchronized with the clock CK, it is not necessary to generate the trigger signal TG and the trigger unit 32 can be omitted. Can be simplified.
 (4b)レーザレーダ1cによれば、計測に使用する受光アレイ部31cを利用して、外乱光情報Cmを生成するため、外乱光情報Cmを生成するために新たなセンサを追加することなく、高機能化を実現できる。 (4b) According to the laser radar 1c, since the disturbance light information Cm is generated using the light receiving array unit 31c used for measurement, a new sensor is not added to generate the disturbance light information Cm. High functionality can be realized.
 [5.他の実施形態]
 以上、本開示の実施形態について説明したが、本開示は上述の実施形態に限定されることなく、種々変形して実施することができる。
[5. Other Embodiments]
As mentioned above, although embodiment of this indication was described, this indication is not limited to the above-mentioned embodiment, and can carry out various modifications.
 (5a)上記実施形態では、光量情報(即ち、調整応答数)Cpは、応答数Cxからバイアス値Cbを減算することで求めるが、本開示は、これに限定されるものではない。例えば、光量情報Cpは、応答数Cxからバイアス値Cbを除算することで求められてもよい。この場合、バイアス値Cbとして、トリガ閾値THそのものを用いてもよい。但し、トリガ閾値THは、Cp<Cx/THとなるように、1より大きな値に設定する必要がある。 (5a) In the above embodiment, the light amount information (that is, the adjustment response number) Cp is obtained by subtracting the bias value Cb from the response number Cx, but the present disclosure is not limited to this. For example, the light amount information Cp may be obtained by dividing the bias value Cb from the response number Cx. In this case, the trigger threshold value TH itself may be used as the bias value Cb. However, the trigger threshold value TH must be set to a value larger than 1 so that Cp <Cx / TH.
 (5b)上記実施形態では、トリガ閾値TH及びバイアス値Cbが、手動、外乱光情報Cm、余裕値Aおよび予測応答数Bに基づいて設定されるが、本開示は、これに限定されるものではない。例えば、現在の日時を表す日時情報、現在位置を表す位置情報、現在の進行方向を表す方位情報、及び現在位置の気象を表す気象情報のうち少なくとも一つの情報を、GPS装置や無線通信器等を介して取得し、これらの取得情報から推定された外乱光の光量に基づいて、トリガ閾値TH及びバイアス値Cbは設定されてもよい。 (5b) In the above embodiment, the trigger threshold value TH and the bias value Cb are set manually, based on the ambient light information Cm, the margin value A, and the predicted response number B. However, the present disclosure is limited to this. is not. For example, at least one of date / time information representing the current date / time, position information representing the current position, direction information representing the current traveling direction, and weather information representing the weather at the current position, a GPS device, a wireless communication device, etc. The trigger threshold value TH and the bias value Cb may be set on the basis of the amount of disturbance light obtained from the obtained information and estimated from the obtained information.
 (5c)上記第2実施形態では、外乱光情報Cmの生成に、光の物理量を計測する外乱光モニタ部7を用いるが、本開示は、これに限定されるものではない。ここでいう外乱光は、自身が発する信号以外の応答を指し、外乱光情報Cmは、この外乱光の大小がわかればよい。従って、外乱光モニタ部7の代わりに、あるいは外乱光モニタ部7に加えて、例えば、反射特性モニタ部を用いてもよい。反射特性モニタ部は、物体の反射特性、具体的には、反射率、反射強度分布、波長特性、及び偏向特性のうち少なくとも一つを検出し、その検出結果から外乱光情報Cmを生成する。 (5c) In the second embodiment, the disturbance light monitor unit 7 that measures the physical quantity of light is used to generate the disturbance light information Cm. However, the present disclosure is not limited to this. The disturbance light here refers to a response other than the signal emitted by itself, and the disturbance light information Cm only needs to know the magnitude of the disturbance light. Therefore, instead of the disturbance light monitor unit 7 or in addition to the disturbance light monitor unit 7, for example, a reflection characteristic monitor unit may be used. The reflection characteristic monitor unit detects at least one of the reflection characteristic of the object, specifically, reflectance, reflection intensity distribution, wavelength characteristic, and deflection characteristic, and generates disturbance light information Cm from the detection result.
 (5d)上記第2実施形態では、外乱光モニタ部7は、単一の受光アレイ部31に適用されるが、本開示は、これに限定されるものではない。例えば、複数の画素によって受光面を形成し、各画素が複数のSPADで構成される場合、画素毎に、光検出部3(即ち、受光アレイ部31、トリガ部32、計時部33、応答取得部34)を設ける。そして、外乱光モニタ部7は、画素毎に外乱光を計測し、閾値設定部4aは、画素毎に、トリガ閾値THを変化させるように構成してもよい。外乱光モニタ部7の代わりに反射特性モニタ部を用いる場合も同様である。 (5d) In the second embodiment, the disturbance light monitor unit 7 is applied to the single light receiving array unit 31, but the present disclosure is not limited to this. For example, when a light receiving surface is formed by a plurality of pixels and each pixel is composed of a plurality of SPADs, the light detection unit 3 (that is, the light receiving array unit 31, the trigger unit 32, the time measuring unit 33, the response acquisition) is obtained for each pixel. Part 34). The disturbance light monitoring unit 7 may measure the disturbance light for each pixel, and the threshold setting unit 4a may be configured to change the trigger threshold TH for each pixel. The same applies when a reflection characteristic monitor unit is used instead of the ambient light monitor unit 7.
 (5e)上記第3実施形態では、予測応答数Bとして、観測された応答数Cxの最大値を用いるが、本開示は、これに限定されるものではない。例えば、光検出部3を構成する受光部311の数Mを予測応答数Bとして用いてもよい。また、トリガ閾値TH及び予測応答数Bは、過去のヒストグラムに基づいて設定されてもよいし、トリガ閾値TH、バイアス値Cb、及び応答数Cxのうち少なくとも一つの履歴に基づいて設定されてもよい。この場合、例えば、前回計測した応答数を用いてもよいし、直近所定回の平均応答数、最大応答数、及び最頻応答数のいずれかを用いてもよい。更に、トリガ閾値TH、バイアス値Cb、及び予測応答数Bは、過去のデータを解析し、異常値を取り除いたデータに基づいて設定してもよい。 (5e) Although the maximum value of the observed response number Cx is used as the predicted response number B in the third embodiment, the present disclosure is not limited to this. For example, the number M of the light receiving units 311 constituting the light detecting unit 3 may be used as the predicted response number B. The trigger threshold TH and the predicted response number B may be set based on a past histogram, or may be set based on at least one history of the trigger threshold TH, the bias value Cb, and the response number Cx. Good. In this case, for example, the number of responses measured last time may be used, or any of the most recent average number of responses, the maximum number of responses, and the number of most frequent responses may be used. Furthermore, the trigger threshold value TH, the bias value Cb, and the predicted response number B may be set based on data obtained by analyzing past data and removing abnormal values.
 (5f)上記第1~第3実施形態では、バイアス値Cbが、パラメータ設定部にて設定されるが、バイアス値は、応答取得部にて設定されてもよい。この場合、応答取得部は、バイアス閾値THを取得して、取得したバイアス値THに基づいてバイアス値Cbを算出すればよい。 (5f) In the first to third embodiments, the bias value Cb is set by the parameter setting unit, but the bias value may be set by the response acquisition unit. In this case, the response acquisition unit may acquire the bias threshold value TH and calculate the bias value Cb based on the acquired bias value TH.
 (5g)第4実施形態は、第1~第3実施形態とは、光検出部の構成が異なるが、上記第4実施形態における外乱光モニタ部54を、上記第1~第3実施形態に適用したり、逆に、第2実施形態における外乱光モニタ部7、第3実施形態における最大値モニタ部341及び余裕演算部53を、第4実施形態に適用したりしてもよい。 (5g) The fourth embodiment differs from the first to third embodiments in the configuration of the light detection unit, but the disturbance light monitoring unit 54 in the fourth embodiment is changed to the first to third embodiments. Alternatively, the disturbance light monitoring unit 7 in the second embodiment, the maximum value monitoring unit 341 and the margin calculation unit 53 in the third embodiment may be applied to the fourth embodiment.
 (5h)上記実施形態における1つの構成要素が有する複数の機能を、複数の構成要素によって実現したり、1つの構成要素が有する1つの機能を、複数の構成要素によって実現したりしてもよい。また、複数の構成要素が有する複数の機能を、1つの構成要素によって実現したり、複数の構成要素によって実現される1つの機能を、1つの構成要素によって実現したりしてもよい。また、上記実施形態の構成の一部を省略してもよい。また、上記実施形態の構成の少なくとも一部を、他の上記実施形態の構成に対して付加又は置換してもよい。なお、請求の範囲に記載した文言から特定される技術思想に含まれるあらゆる態様が本開示の実施形態である。 (5h) A plurality of functions of one constituent element in the above embodiment may be realized by a plurality of constituent elements, or a single function of one constituent element may be realized by a plurality of constituent elements. . Further, a plurality of functions possessed by a plurality of constituent elements may be realized by one constituent element, or one function realized by a plurality of constituent elements may be realized by one constituent element. Moreover, you may abbreviate | omit a part of structure of the said embodiment. In addition, at least a part of the configuration of the above embodiment may be added to or replaced with the configuration of the other embodiment. In addition, all the aspects included in the technical idea specified from the wording described in the claims are embodiments of the present disclosure.
 (5i)上述したレーザレーダの他、当該レーザレーダを構成要素とするシステム、光量情報の積算方法など、種々の形態で本開示を実現することもできる。 (5i) In addition to the laser radar described above, the present disclosure can be realized in various forms such as a system including the laser radar as a constituent element and a light amount information integration method.

Claims (24)

  1.  フォトンの入射に応答してパルス信号を出力する複数の受光部(80c)を有し、照射部から照射され、物体に反射した反射光を受光して、前記複数の受光部からそれぞれ出力される前記パルス信号を並列に出力するように構成された受光アレイ部(31)と、
     前記照射部が光を照射したタイミングを表す照射タイミング信号が入力されてからの経過時間を計測するように構成された計時部(33c)と、
     一定周期のタイミング毎に、前記複数の受光部のうち前記パルス信号を出力している受光部の数である応答数を取得し、予め設定されるバイアス値を、前記応答数から減算または除算した調整応答数を出力するように構成された応答取得部(34)と、
     アドレスが前記計時部で計測される計時値に対応づけられたメモリ(6)と、
     前記計時部での計時値から特定される前記メモリのアドレスに、該アドレスのデータとして、前記調整応答数を積算して格納するように構成されたヒストグラム生成部(52)と、
     を備える光検出器。
    It has a plurality of light receiving sections (80c) that output pulse signals in response to the incidence of photons, receives reflected light that is irradiated from the irradiation section and reflected by the object, and is output from each of the plurality of light receiving sections. A light receiving array section (31) configured to output the pulse signals in parallel;
    A time measuring unit (33c) configured to measure an elapsed time since an irradiation timing signal indicating a timing at which the irradiation unit irradiated light is input;
    At each fixed cycle timing, the number of responses, which is the number of light receiving units outputting the pulse signal among the plurality of light receiving units, is obtained, and a preset bias value is subtracted or divided from the number of responses. A response acquisition unit (34) configured to output the number of adjustment responses;
    A memory (6) in which an address is associated with a time value measured by the time measuring unit;
    A histogram generation unit (52) configured to accumulate and store the number of adjustment responses as data of the address at the address of the memory specified from the time measured value in the time measuring unit;
    A photodetector.
  2.  フォトンの入射に応答してパルス信号を出力する複数の受光部(80)を有し、照射部から照射され、物体に反射した反射光を受光して、前記複数の受光部からそれぞれ出力される前記パルス信号を並列に出力するように構成された受光アレイ部(31)と、
     前記複数の受光部のうち前記パルス信号を出力している受光部の数である応答数とトリガ閾値とを比較して、前記応答数が前記トリガ閾値に達したタイミングで、トリガ信号を出力するように構成されたトリガ部(32)と、
     前記トリガ信号に従ったタイミング毎に、前記照射部が光を照射したタイミングを表す照射タイミング信号が入力されてから前記トリガ信号が示す前記光信号の受光タイミングまでの時間を計測するように構成された計時部(33)と、
     前記トリガ信号に従ったタイミング毎に、前記応答数を取得し、予め設定されるバイアス値を、前記応答数から減算または除算した調整応答数を出力するように構成された応答取得部(34)と、
     アドレスが前記計時部で計測される計時値に対応づけられたメモリ(6)と、
     前記計時部での計時値から特定される前記メモリのアドレスに、該アドレスのデータとして、前記調整応答数を積算して格納するように構成されたヒストグラム生成部(52)と、
     を備える光検出器。
    It has a plurality of light receiving sections (80) that output pulse signals in response to the incidence of photons, receives reflected light that is irradiated from the irradiation section and reflected by the object, and is output from each of the plurality of light receiving sections. A light receiving array section (31) configured to output the pulse signals in parallel;
    The number of responses, which is the number of light receiving units outputting the pulse signal among the plurality of light receiving units, is compared with a trigger threshold, and a trigger signal is output at the timing when the number of responses reaches the trigger threshold. A trigger unit (32) configured as follows:
    At each timing according to the trigger signal, it is configured to measure the time from the input of the irradiation timing signal indicating the timing at which the irradiation unit has irradiated the light to the light reception timing of the optical signal indicated by the trigger signal. The timekeeping section (33),
    A response acquisition unit (34) configured to acquire the number of responses at each timing according to the trigger signal and output an adjusted response number obtained by subtracting or dividing a preset bias value from the response number. When,
    A memory (6) in which an address is associated with a time value measured by the time measuring unit;
    A histogram generation unit (52) configured to accumulate and store the number of adjustment responses as data of the address at the address of the memory specified from the time measured value in the time measuring unit;
    A photodetector.
  3.  請求項1に記載の光検出器であって、
     前記バイアス値を対象値とし、該対象値を可変設定するように構成されたパラメータ設定部(4)を更に備える、
     光検出器。
    The photodetector of claim 1, comprising:
    A parameter setting unit (4) configured to set the bias value as a target value and variably set the target value;
    Photo detector.
  4.  請求項2に記載の光検出器であって、
     前記トリガ閾値及び前記バイアス値のうち少なくとも一方を対象値とし、該対象値を可変設定するように構成されたパラメータ設定部(4)を更に備える、
     光検出器。
    The photodetector according to claim 2, comprising:
    A parameter setting unit (4) configured to set at least one of the trigger threshold value and the bias value as a target value and variably set the target value;
    Photo detector.
  5.  請求項4に記載の光検出器であって、
     前記パラメータ設定部は、前記トリガ閾値を前記対象値とするように構成され、
     前記応答取得部は、前記トリガ閾値から1減算した値を前記バイアス値とし、減算によって前記調整応答数を求めるように構成された、
     光検出器。
    The photodetector according to claim 4, comprising:
    The parameter setting unit is configured to set the trigger threshold as the target value,
    The response acquisition unit is configured to obtain a value obtained by subtracting 1 from the trigger threshold as the bias value, and obtain the adjustment response number by subtraction.
    Photo detector.
  6.  請求項4に記載の光検出器であって、
     前記パラメータ設定部は、前記トリガ閾値及び前記バイアス値をいずれも前記対象値とし、前記バイアス値が前記トリガ閾値から1減算した値となるように、前記バイアス値と前記トリガ閾値とを連動させて設定するように構成され、
     前記応答取得部は、減算によって前記調整応答数を求めるように構成された、
     光検出器。
    The photodetector according to claim 4, comprising:
    The parameter setting unit sets the trigger threshold and the bias value as the target values, and links the bias value and the trigger threshold so that the bias value is a value obtained by subtracting 1 from the trigger threshold. Configured to set,
    The response acquisition unit is configured to obtain the adjustment response number by subtraction.
    Photo detector.
  7.  請求項3または請求項6に記載の光検出器であって、
     前記パラメータ設定部は、外乱光の光量を表す外乱光情報を取得し、前記外乱光情報が示す光量が大きいほど、前記対象値を大きな値に設定するように構成された、
     光検出器。
    The photodetector according to claim 3 or 6, wherein
    The parameter setting unit is configured to acquire disturbance light information representing the amount of disturbance light, and to set the target value to a larger value as the amount of light indicated by the disturbance light information increases.
    Photo detector.
  8.  請求項7に記載の光検出器であって、
     前記受光アレイ部に入射する外乱光を計測するように構成された外乱光モニタ部(7)を更に備え、
     前記パラメータ設定部は、前記外乱光モニタ部での計測値を前記外乱光情報として取得するように構成された、
     光検出器。
    The photodetector according to claim 7, comprising:
    A disturbance light monitor unit (7) configured to measure disturbance light incident on the light receiving array unit;
    The parameter setting unit is configured to acquire a measurement value in the disturbance light monitor unit as the disturbance light information.
    Photo detector.
  9.  請求項8に記載の光検出器であって、
     前記外乱光モニタ部は、前記応答取得部のバイアス値をゼロに設定した状態で、前記照射部による照射を実施することなく前記ヒストグラム生成部に前記調整応答数の積算を行わせた結果を、前記外乱光の計測結果とするように構成された、
     光検出器。
    The photodetector of claim 8, comprising:
    The disturbance light monitor unit is a state where the bias value of the response acquisition unit is set to zero, and the histogram generation unit accumulates the adjustment response number without performing irradiation by the irradiation unit, Configured to be a measurement result of the disturbance light,
    Photo detector.
  10.  請求項8または請求項9に記載の光検出器であって、
     前記反射光を受光する複数の画素を有し、
     前記画素毎に、少なくとも前記受光アレイ部及び前記応答取得部が設けられ、
     前記外乱光モニタ部は、前記画素毎に前記外乱光を計測するように構成され、
     前記パラメータ設定部は、前記画素毎に、前記対象値を変化させるように構成された、
     光検出器。
    The photodetector according to claim 8 or 9, wherein
    A plurality of pixels that receive the reflected light;
    For each pixel, at least the light receiving array unit and the response acquisition unit are provided,
    The disturbance light monitoring unit is configured to measure the disturbance light for each pixel,
    The parameter setting unit is configured to change the target value for each pixel.
    Photo detector.
  11.  請求項3または請求項4に記載の光検出器であって、
     前記パラメータ設定部は、物体の反射量を表す反射特性情報を取得し、前記反射特性情報が示す反射量が大きいほど、前記対象値を大きな値に設定するように構成された、
     光検出器。
    The photodetector according to claim 3 or claim 4, wherein
    The parameter setting unit is configured to acquire reflection characteristic information indicating the reflection amount of an object, and to set the target value to a larger value as the reflection amount indicated by the reflection characteristic information is larger.
    Photo detector.
  12.  請求項11に記載の光検出器であって、
     前記受光アレイ部に入射する反射光のもととなる物体の反射特性を計測するように構成された反射特性モニタ部を更に備え、
     前記パラメータ設定部は、前記反射特性モニタ部での計測値を前記反射特性情報として取得するように構成された、
     光検出器。
    The photodetector of claim 11, comprising:
    A reflection characteristic monitor unit configured to measure a reflection characteristic of an object that is a source of reflected light incident on the light receiving array unit;
    The parameter setting unit is configured to acquire a measurement value in the reflection characteristic monitor unit as the reflection characteristic information.
    Photo detector.
  13.  請求項12に記載の光検出器であって、
     前記反射光を受光する複数の画素を有し、
     前記画素毎に、少なくとも前記受光アレイ部及び前記応答取得部が設けられ、
     前記反射特性モニタ部は、前記画素毎に前記反射特性を計測するように構成され、
     前記パラメータ設定部は、前記画素毎に前記対象値を変化させるように構成された、
     光検出器。
    The photodetector of claim 12, comprising:
    A plurality of pixels that receive the reflected light;
    For each pixel, at least the light receiving array unit and the response acquisition unit are provided,
    The reflection characteristic monitor unit is configured to measure the reflection characteristic for each pixel,
    The parameter setting unit is configured to change the target value for each pixel.
    Photo detector.
  14.  請求項3または請求項4に記載の光検出器であって、
     前記パラメータ設定部は、日時情報、地図情報、方位情報を用いて前記対象値を設定するように構成された、
     光検出器。
    The photodetector according to claim 3 or claim 4, wherein
    The parameter setting unit is configured to set the target value using date and time information, map information, and direction information.
    Photo detector.
  15.  請求項3または請求項4に記載の光検出器であって、
     前記パラメータ設定部は、該パラメータ設定部による過去の設定値を用いて前記対象値を設定するように構成された、
     光検出器。
    The photodetector according to claim 3 or claim 4, wherein
    The parameter setting unit is configured to set the target value using a past setting value by the parameter setting unit;
    Photo detector.
  16.  請求項3または請求項4に記載の光検出器であって、
     前記パラメータ設定部は、前記ヒストグラム生成部により過去に生成された前記調整応答数の積算結果を用いて前記対象値を設定するように構成された、
     光検出器。
    The photodetector according to claim 3 or claim 4, wherein
    The parameter setting unit is configured to set the target value using an integration result of the number of adjustment responses generated in the past by the histogram generation unit.
    Photo detector.
  17.  請求項3または請求項4に記載の光検出器であって、
     前記パラメータ設定部は、前記受光アレイ部の予測応答数から前記メモリに積算できる余裕値を減算した値に、前記対象値を設定するように構成された、
     光検出器。
    The photodetector according to claim 3 or claim 4, wherein
    The parameter setting unit is configured to set the target value to a value obtained by subtracting a margin value that can be accumulated in the memory from the predicted response number of the light receiving array unit.
    Photo detector.
  18.  請求項17に記載の光検出器であって、
     前記パラメータ設定部は、前記メモリに格納可能なデータの最大値と、前記メモリに格納されている前記ヒストグラム中の極大値との差を前記余裕値とするように構成された、
     光検出器。
    The photodetector of claim 17, comprising:
    The parameter setting unit is configured to set a difference between a maximum value of data that can be stored in the memory and a maximum value in the histogram stored in the memory as the margin value.
    Photo detector.
  19.  請求項17に記載の光検出器であって
     前記パラメータ設定部は、前記メモリに格納可能なデータの最大値と、前記メモリに格納されている前記調整応答数の積算結果中の極大値との差を、残り積算回数で除した値を前記余裕値とするように構成された、
     光検出器。
    The photodetector according to claim 17, wherein the parameter setting unit includes a maximum value of data that can be stored in the memory and a maximum value in the integration result of the number of adjustment responses stored in the memory. A value obtained by dividing the difference by the remaining number of integrations is configured as the margin value.
    Photo detector.
  20.  請求項17から請求項19のいずれか1項に記載の光検出器であって、
     前記パラメータ設定部は、前記受光アレイ部に含まれる前記受光部の数を、前記予測応答数とするように構成された、
     光検出器。
    The photodetector according to any one of claims 17 to 19,
    The parameter setting unit is configured to set the number of the light receiving units included in the light receiving array unit as the predicted response number.
    Photo detector.
  21.  請求項17から請求項19のいずれか1項に記載の光検出器であって、
     前記応答取得部は、前記応答数の最大値である最大応答数を観測するように構成され、
     前記パラメータ設定部は、前記最大応答数を前記予測応答数とするように構成された、
     光検出器。
    The photodetector according to any one of claims 17 to 19,
    The response acquisition unit is configured to observe a maximum number of responses that is a maximum value of the number of responses,
    The parameter setting unit is configured to set the maximum response number as the predicted response number.
    Photo detector.
  22.  請求項1から請求項21のいずれか1項に記載の光検出器であって、
     前記ヒストグラム生成部にて生成された前記調整応答数の積算結果に基づいて光を反射した物体までの距離を求めるように構成された距離演算部(51)
     を更に備える、光検出器。
    The photodetector according to any one of claims 1 to 21,
    A distance calculation unit (51) configured to obtain a distance to an object that has reflected light based on an integration result of the number of adjustment responses generated by the histogram generation unit.
    A photodetector.
  23.  請求項1から請求項22のいずれか1項に記載の光検出器であって、
     前記照射部を更に備える、光検出器。
    The photodetector according to any one of claims 1 to 22,
    A photodetector further comprising the irradiation unit.
  24.  請求項1から請求項23のいずれか1項に記載の光検出器であって、
     前記応答数は、前記パルス信号を同時に出力している前記受光部の数である
     光検出器。
    The photodetector according to any one of claims 1 to 23, wherein:
    The number of responses is the number of the light receiving units that simultaneously output the pulse signals.
PCT/JP2018/011754 2017-03-29 2018-03-23 Light detector WO2018181013A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201880022194.1A CN110462437B (en) 2017-03-29 2018-03-23 Light detector
US16/584,033 US11668826B2 (en) 2017-03-29 2019-09-26 Photodetector

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017-065325 2017-03-29
JP2017065325 2017-03-29
JP2018011556A JP6665873B2 (en) 2017-03-29 2018-01-26 Photo detector
JP2018-011556 2018-01-26

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/584,033 Continuation US11668826B2 (en) 2017-03-29 2019-09-26 Photodetector

Publications (1)

Publication Number Publication Date
WO2018181013A1 true WO2018181013A1 (en) 2018-10-04

Family

ID=63677589

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/011754 WO2018181013A1 (en) 2017-03-29 2018-03-23 Light detector

Country Status (1)

Country Link
WO (1) WO2018181013A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110187356A (en) * 2019-06-14 2019-08-30 中国科学技术大学 Remote super-resolution single photon image reconstructing method
CN110596724A (en) * 2019-09-19 2019-12-20 深圳奥锐达科技有限公司 Method and system for measuring flight time distance during dynamic histogram drawing
WO2023145261A1 (en) * 2022-01-26 2023-08-03 ソニーセミコンダクタソリューションズ株式会社 Distance measurement device and control method for distance measurement device
WO2024040912A1 (en) * 2022-08-26 2024-02-29 上海禾赛科技有限公司 Laser radar echo signal processing method and apparatus, and laser radar detection system

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0767043A (en) * 1993-08-23 1995-03-10 Toshiba Corp Solid-state image pickup element
JP2006308522A (en) * 2005-05-02 2006-11-09 Matsushita Electric Works Ltd Space information detector
JP2014059302A (en) * 2012-09-18 2014-04-03 Sick Ag Photoelectric sensor and object detection method
JP2014081253A (en) * 2012-10-16 2014-05-08 Toyota Central R&D Labs Inc Photodetector
JP2014081254A (en) * 2012-10-16 2014-05-08 Toyota Central R&D Labs Inc Optical ranging apparatus
JP2015155872A (en) * 2014-02-21 2015-08-27 株式会社豊田中央研究所 Histogram generation device and laser radar device
US20160033644A1 (en) * 2014-07-31 2016-02-04 Stmicroelectronics (Research & Development) Ltd. Time of flight determination
JP2016161438A (en) * 2015-03-03 2016-09-05 株式会社デンソー Arithmetic unit

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0767043A (en) * 1993-08-23 1995-03-10 Toshiba Corp Solid-state image pickup element
JP2006308522A (en) * 2005-05-02 2006-11-09 Matsushita Electric Works Ltd Space information detector
JP2014059302A (en) * 2012-09-18 2014-04-03 Sick Ag Photoelectric sensor and object detection method
JP2014081253A (en) * 2012-10-16 2014-05-08 Toyota Central R&D Labs Inc Photodetector
JP2014081254A (en) * 2012-10-16 2014-05-08 Toyota Central R&D Labs Inc Optical ranging apparatus
JP2015155872A (en) * 2014-02-21 2015-08-27 株式会社豊田中央研究所 Histogram generation device and laser radar device
US20160033644A1 (en) * 2014-07-31 2016-02-04 Stmicroelectronics (Research & Development) Ltd. Time of flight determination
JP2016161438A (en) * 2015-03-03 2016-09-05 株式会社デンソー Arithmetic unit

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110187356A (en) * 2019-06-14 2019-08-30 中国科学技术大学 Remote super-resolution single photon image reconstructing method
CN110187356B (en) * 2019-06-14 2021-07-09 中国科学技术大学 Remote super-resolution single photon imaging reconstruction method
CN110596724A (en) * 2019-09-19 2019-12-20 深圳奥锐达科技有限公司 Method and system for measuring flight time distance during dynamic histogram drawing
CN110596724B (en) * 2019-09-19 2022-07-29 深圳奥锐达科技有限公司 Method and system for measuring flight time distance during dynamic histogram drawing
WO2023145261A1 (en) * 2022-01-26 2023-08-03 ソニーセミコンダクタソリューションズ株式会社 Distance measurement device and control method for distance measurement device
WO2024040912A1 (en) * 2022-08-26 2024-02-29 上海禾赛科技有限公司 Laser radar echo signal processing method and apparatus, and laser radar detection system

Similar Documents

Publication Publication Date Title
JP6665873B2 (en) Photo detector
US11769775B2 (en) Distance-measuring imaging device, distance measuring method of distance-measuring imaging device, and solid-state imaging device
Perenzoni et al. A 64$\times $64-Pixels Digital Silicon Photomultiplier Direct TOF Sensor With 100-MPhotons/s/pixel Background Rejection and Imaging/Altimeter Mode With 0.14% Precision Up To 6 km for Spacecraft Navigation and Landing
WO2018181013A1 (en) Light detector
US9316735B2 (en) Proximity detection apparatus and associated methods having single photon avalanche diodes for determining a quality metric based upon the number of events
JP6017916B2 (en) Photodetector
US9639063B2 (en) Time to digital converter and applications thereof
JP6225411B2 (en) Optical distance measuring device
JP6709335B2 (en) Optical sensor, electronic device, arithmetic unit, and method for measuring distance between optical sensor and detection target
US10073164B2 (en) Distance-measuring/imaging apparatus, distance measuring method of the same, and solid imaging element
CN109709531B (en) Optical sensor, distance measuring device and electronic equipment
US11984908B2 (en) Analogue-to-digital converter
JP2016161438A (en) Arithmetic unit
JP6690660B2 (en) Optical measuring device
US11415696B2 (en) Optical sensor and electronic device
WO2018190276A1 (en) Optical measuring device
WO2018180660A1 (en) Solid-state imaging device
JPWO2014181619A1 (en) Distance measuring device
KR20210002445A (en) Apparatus and method for determining distance of at least one object using optical signals
Sesta et al. Range-finding SPAD array with smart laser-spot tracking and TDC sharing for background suppression
WO2018235944A1 (en) Optical distance measurement device
US20210190950A1 (en) Method for operating a tof ranging array, corresponding circuit and device
JP2014163884A (en) Distance measurement device
WO2019225748A1 (en) Optical detector and optical measurement device using same
JP2019007950A (en) Optical distance measuring device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18776814

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18776814

Country of ref document: EP

Kind code of ref document: A1