WO2018235905A1 - Fiber-reinforced resin composition, fiber-reinforced molded body and method for producing same - Google Patents

Fiber-reinforced resin composition, fiber-reinforced molded body and method for producing same Download PDF

Info

Publication number
WO2018235905A1
WO2018235905A1 PCT/JP2018/023653 JP2018023653W WO2018235905A1 WO 2018235905 A1 WO2018235905 A1 WO 2018235905A1 JP 2018023653 W JP2018023653 W JP 2018023653W WO 2018235905 A1 WO2018235905 A1 WO 2018235905A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
group
cellulose
chemically modified
resin composition
Prior art date
Application number
PCT/JP2018/023653
Other languages
French (fr)
Japanese (ja)
Inventor
矢野 浩之
健 仙波
聡史 西岡
伊藤 彰浩
和男 北川
Original Assignee
国立大学法人京都大学
地方独立行政法人京都市産業技術研究所
日本製紙株式会社
星光Pmc株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人京都大学, 地方独立行政法人京都市産業技術研究所, 日本製紙株式会社, 星光Pmc株式会社 filed Critical 国立大学法人京都大学
Publication of WO2018235905A1 publication Critical patent/WO2018235905A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/22Compounding polymers with additives, e.g. colouring using masterbatch techniques
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/08Cellulose derivatives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/12Compositions of unspecified macromolecular compounds characterised by physical features, e.g. anisotropy, viscosity or electrical conductivity

Definitions

  • the present invention relates to a fiber reinforced resin composition, a fiber reinforced molded article and a method for producing the same.
  • the present invention relates to a fiber-reinforced thermoplastic resin composition containing cellulosic fibers and an inorganic filler, a molded article thereof and a method of producing the same.
  • Fiber-reinforced resin compositions are used in a wide range of fields, such as automobile parts, aircraft internal parts, household appliances, construction materials, etc., instead of metal materials because they have less energy load during manufacturing and are lighter than metal materials. It has been.
  • thermoplastic resins among various resins are attracting attention because they are excellent in productivity and versatility.
  • the molding method of the fiber reinforced resin composition may, for example, be an injection molding method, a press molding method, a RTM (Resin Transfer Molding) method, an autoclave method or a prepreg method.
  • the injection molding method is excellent in productivity and manufacturing cost because the molding speed is high (high productivity) and the cost in the molding process is low, and molding of a complicated shape is easy. .
  • Fibers used for the structure (molded body) of such a fiber-reinforced resin composition are required to have performances such as high rigidity, high strength and impact resistance of the structure (molded body).
  • GF GF
  • carbon fiber (CF) etc. are widely applied.
  • inorganic fibers such as glass fibers, carbon fibers, etc., in addition to consuming a great deal of energy at the time of production, a disposal and recycling system has not yet been fully established.
  • Patent Document 1 discloses a resin composition containing fine cellulose fibers or glass fibers.
  • Patent Document 2 discloses a composite resin composition containing carbon fibers and a resin, and further discloses that natural fibers such as wood fibers and cotton may be combined.
  • Patent Document 3 discloses a composition comprising glass fiber, cellulose and a thermoplastic resin.
  • Patent Document 4 discloses a resin molded article containing a thermoplastic resin, 1 to 6% by weight of glass fiber, and 10 to 40% by weight of vegetable fiber having a fiber length of 0.3 mm or less.
  • Patent Document 5 discloses a composite material comprising, in addition to a polyolefin and glass fiber, a filler having a particle size selected from the group of wood powder, cellulose fiber, metal powder, oxide, etc. of about 2 to 500 ⁇ m. There is.
  • Patent Document 6 discloses at least one fiber (filler) selected from the group consisting of inorganic fibers such as carbon fibers and glass fibers, vegetable fibers such as kenaf and cellulose fibers, and synthetic fibers such as polyvinyl alcohol fibers and polyimide fibers. And a biodegradable polymer are disclosed.
  • inorganic fibers such as carbon fibers and glass fibers
  • vegetable fibers such as kenaf and cellulose fibers
  • synthetic fibers such as polyvinyl alcohol fibers and polyimide fibers.
  • a biodegradable polymer are disclosed.
  • Patent Document 7 discloses a fiber-reinforced resin molded article containing carbon fiber, kenaf, hemp, cellulose-based plant fiber and biomass resin, and discloses that the average diameter of plant fiber used is 5 ⁇ m to 30 ⁇ m. ing.
  • Patent documents 8 and 9 have a plant-based resin-containing composition comprising polyamide 11, and at least one additive selected from the group consisting of silica, wollastonite, vegetable fibers, glass flakes, glass fibers, and talc. Objects are disclosed.
  • Patent Documents 1 to 9 disclose that inorganic fibers such as glass fibers and carbon fibers and cellulose fibers (plant fibers) can be used in a fiber reinforced resin composition.
  • inorganic fibers such as glass fibers and carbon fibers and fibrillated cellulose fibers (fibrillated plant fibers) is not specifically described, No mention is also made of the effects exerted by the combined use.
  • Patent document 10 describes 20 to 79% by weight of semiaromatic polyamide, 1 to 15% by weight of at least one impact modifier, 20 to 60% by weight of carbon fibers, and 0 to 5% by weight of additives. Disclosed is a polyamide molding composition containing (glass fiber, mineral powder, etc.). However, the composition of Patent Document 10 does not contain cellulosic fibers.
  • Patent Document 11 discloses a composition containing a biogenic reinforcing material (plant fiber, animal fiber, biogenic polymer, biogenic carbon fiber, biogenic carbon nanotube, etc.) and an aromatic polyamide, An example is described using cellulose microfibrils as plant fibers. However, Patent Document 11 does not describe a composition in which inorganic fibers (carbon fibers or glass fibers, etc.) and microfibrillated cellulose are used in combination, and also describes the effect of using two types of fibers in combination. It has not been.
  • Patent Documents 12 and 13 disclose epoxy resin compositions containing glass fibers, cellulose fibers, carbon fibers and combinations thereof. However, the inventions described in Patent Documents 12 and 13 do not use microfibrillated cellulose or chemically modified cellulose as cellulose fibers.
  • Patent Document 14 is a patent in which the inventor is included by the inventor.
  • Patent Document 14 discloses a fiber-reinforced thermosetting resin containing microfibrillated cellulose fibers modified with a carboxyalkyl group having a specific degree of substitution.
  • Patent Document 15 is a patent including the inventor of the present invention.
  • Patent Document 15 discloses a fiber-reinforced thermoplastic resin containing microfibrillated cellulose fibers or microfibrillated lignocellulose fibers modified with an acetyl group.
  • Patent Documents 14 and 15 do not disclose a resin composition containing glass fiber or carbon fiber.
  • Each of the above documents discloses a fiber reinforced resin composition containing (1) chemically modified microfibrillated cellulose fibers or chemically modified microfibrillated lignocellulose fibers and (2) inorganic fibers such as glass fibers and carbon fibers. And (1) chemically modified microfibrillated cellulose fibers or chemically modified microfibrillated lignocellulose fibers and (2) inorganic fibers such as glass fibers and carbon fibers in combination as a reinforcing material for the resin composition There is no specific disclosure about the effects of the case.
  • An object of the present invention is to provide a fiber-reinforced resin composition, a molded article thereof, and a method of producing the same, which are light in weight and excellent in strength properties.
  • An object of the present invention is a fiber-reinforced resin composition
  • a fiber-reinforced resin composition comprising (A) a specific chemically modified microfibrillated cellulose fiber, (B) an inorganic filler, and (C) a thermoplastic resin, and a molding thereof Achieved by the body, as well as their method of manufacture.
  • the “cellulose-based polymer” means at least one polymer selected from the group consisting of cellulose, holocellulose and lignocellulose, and is represented by the general formula “(Lg) Cell-OH”.
  • (Lg) Cell-” means a polysaccharide from which at least one polymer selected from the group of polymers consisting of cellulose, holocellulose and lignocellulose is removed, and residues obtained by removing hydroxyl groups from lignin.
  • Cellulose-based fiber means a fiber composed of at least one polymer selected from the group consisting of cellulose, holocellulose and lignocellulose. That is, the cellulose-based fiber referred to in the present invention means a fiber composed of a cellulose-based polymer "(Lg) Cell-OH”.
  • microfibrillated cellulosic fiber means that the cellulosic fiber is microfibrillated.
  • microfibrillated cellulosic fibers may be described as "MFC”.
  • the “chemically modified cellulose-based fiber” is a cellulose in “(Lg) Cell-OH” constituting cellulose-based fiber, a polysaccharide constituting holocellulose and / or lignocellulose, and a hydrogen atom of a part of hydroxyl groups in lignin A fiber consisting of a polymer substituted by a functional group (R) is meant.
  • “chemically modified cellulosic fiber” is described as “(Lg) Cell-O-R”.
  • the "chemically modified microfibrillated cellulosic fiber” means a fiber in a state where the chemically modified cellulosic fiber is microfibrillated.
  • it is also a cellulose in microfibrillated cellulose-based fibers, a polysaccharide constituting holocellulose and / or lignocellulose, and a fiber in which a hydrogen atom of a part of hydroxyl groups in lignin is substituted by a functional group (R).
  • “chemically modified microfibrillated cellulose fiber” may be described as "chemically modified MFC”.
  • lignocellulose means a substance in which lignin and cellulose are present in plants regardless of the lignin content, and / or a mixture of lignin and cellulose.
  • lignocellulose may be described as "LC”.
  • ligno pulp means a pulp containing lignocellulose.
  • ligno pulp may be described as "LP”.
  • Cellulose-based pulp means fibers made of a cellulose-based polymer separated from plants. This includes lignin-free pulp (cellulose pulp, holocellulose pulp, etc.) and lignin pulp (ligno pulp).
  • cellulose-based pulp may be described as "CP”.
  • the present invention relates to a fiber reinforced resin composition containing a chemically modified microfibrillated cellulose fiber and an inorganic filler according to the following items, a molded article thereof and a method of producing the same.
  • Fiber reinforced resin composition Item 1 A fiber reinforced resin composition, The fiber reinforced resin composition contains (A) chemically modified microfibrillated cellulose fiber, (B) an inorganic filler and (C) a thermoplastic resin, A fiber reinforced resin composition wherein the (A) chemically modified microfibrillated cellulose fiber and the (B) inorganic filler satisfy the following requirements (a) and (b): ( A ) (A) Chemically modified microfibrillated cellulosic fibers are The following formula (1): (Lg) Cell-OR (1) [Wherein, (Lg) Cell- represents a residue of cellulose, holocellulose and / or polysaccharide constituting lignocellulose and lignin from which hydroxyl group has been removed, in a cellulose polymer.
  • —OR indicates that a hydrogen atom of a part of hydroxyl groups in cellulose, holocellulose and / or polysaccharides constituting lignocellulose and lignin in the cellulose polymer is substituted by a substituent R.
  • the COO ⁇ X + represents a group in which the carboxy group is in the form of an inorganic or organic salt. ] It is a microfibrillated fiber of the fiber comprised from chemically modified cellulose polymer represented by these.
  • the inorganic filler is one or more fillers selected from the group consisting of glass fiber, glass wool, carbon fiber, glass fine powder, carbon black, carbon nanotube, graphene, kaolin and nanoclay.
  • R is an acetyl group, a propionyl group, a carboxymethyl group, a salt of a carboxymethyl group, a carboxyethyl group, a salt of a carboxyethyl group, a carboxyethyl carbonyl group or a carboxyethyl carbonyl group
  • Item 3 The fiber reinforced resin composition according to Item 1 or 2, wherein R in Formula (1) of the requirement (a) is an acetyl group.
  • Item 4 The fiber reinforced resin composition according to any one of Items 1 to 3, wherein the inorganic filler (B) in the requirement (b) is glass fiber or carbon fiber.
  • Item 5 The fiber-reinforced resin according to any one of the above items 1 to 4, wherein (Lg) Cell- in the formula (1) of the requirement (a) is a residue from which a hydroxyl group is removed from a polysaccharide and lignin constituting lignocellulose Composition.
  • thermoplastic resin is polyamide, polyolefin, aliphatic polyester, aromatic polyester, polyacetal, polycarbonate, polystyrene, acrylonitrile-butadiene-styrene copolymer (ABS resin), polycarbonate-ABS alloy (PC-ABS alloy) 6.
  • ABS resin acrylonitrile-butadiene-styrene copolymer
  • PC-ABS alloy polycarbonate-ABS alloy
  • the fiber reinforced resin composition according to any one of items 1 to 5, which is at least one resin selected from the group consisting of modified polyphenylene ether (m-PPE).
  • Molded Item 7 A molded article comprising the fiber reinforced resin composition according to any one of items 1 to 6.
  • Method for producing fiber reinforced resin composition comprising (I) The following equation (1): (Lg) Cell-OR (1) [Wherein, (Lg) Cell- represents a residue of cellulose, holocellulose and / or polysaccharide constituting lignocellulose and lignin from which hydroxyl group has been removed, in a cellulose polymer.
  • —OR indicates that a hydrogen atom of a part of hydroxyl groups in cellulose, holocellulose and / or polysaccharides constituting lignocellulose and lignin in the cellulose polymer is substituted by a substituent R.
  • the COO ⁇ X + represents a group in which the carboxy group is in the form of an inorganic or organic salt.
  • Chemically modified cellulosic pulp comprising a chemically modified cellulosic polymer represented by By melt-kneading (ii) (B) inorganic filler and (iii) (C) thermoplastic resin, (A) chemically modified microfibrillated cellulose fiber, (B) inorganic filler and (C) thermoplastic resin
  • a fiber-reinforced resin composition comprising: a) a chemically-modified microfibrillated cellulosic fiber according to the above (A), and a fiber-reinforced resin according to the above-mentioned (B): an inorganic filler satisfying the following requirements (a) and (b): Method of producing the composition: ( A ) (A) Chemically Modified Microfibrillated Cellulosic Fibers Containing the Following Formula (1): (Lg) Cell-OR (1) [Wherein, (Lg) Cell- represents a residue of cellulose, holocellulose and / or polysaccharide constituting
  • —OR indicates that a hydrogen atom of a part of hydroxyl groups in cellulose, holocellulose and / or polysaccharides constituting lignocellulose and lignin in the cellulose polymer is substituted by a substituent R.
  • the COO ⁇ X + represents a group in which the carboxy group is in the form of an inorganic or organic salt. ] It is a microfibrillated fiber of the fiber comprised from chemically modified cellulose polymer represented by these.
  • the inorganic filler is one or more fillers selected from the group consisting of glass fiber, glass wool, carbon fiber, glass fine powder, carbon black, carbon nanotube, graphene, kaolin and nanoclay.
  • the COO ⁇ X + represents a group in which the carboxy group is in the form of an inorganic or organic salt.
  • Chemically modified cellulosic pulp comprising a chemically modified cellulosic polymer represented by By melt-kneading (ii) (B) inorganic filler and (iii) (C) thermoplastic resin, (A) chemically modified microfibrillated cellulose fiber, (B) inorganic filler and (C) thermoplastic resin A fiber-reinforced resin composition containing the (A) chemically-modified microfibrillated cellulosic fiber and the (B) inorganic filler satisfying the requirements of the (a) and (b). Method of making the composition.
  • a method of producing a fiber reinforced resin composition comprising Process (1): The following formula (1): (Lg) Cell-OR (1) [Wherein, (Lg) Cell- represents a residue of cellulose, holocellulose and / or polysaccharide constituting lignocellulose and lignin from which hydroxyl group has been removed, in a cellulose polymer.
  • —OR indicates that a hydrogen atom of a part of hydroxyl groups in cellulose, holocellulose and / or polysaccharides constituting lignocellulose and lignin in the cellulose polymer is substituted by a substituent R.
  • the COO ⁇ X + represents a group in which the carboxy group is in the form of an inorganic or organic salt.
  • —OR indicates that a hydrogen atom of a part of hydroxyl groups in cellulose, holocellulose and / or polysaccharides constituting lignocellulose and lignin in the cellulose polymer is substituted by a substituent R.
  • the COO ⁇ X + represents a group in which the carboxy group is in the form of an inorganic or organic salt. ] It is a microfibrillated fiber of the fiber comprised from chemically modified cellulose polymer represented by these.
  • the inorganic filler is one or more fillers selected from the group consisting of glass fiber, glass wool, carbon fiber, glass fine powder, carbon black, carbon nanotube, graphene, kaolin and nanoclay.
  • the COO ⁇ X + represents a group in which the carboxy group is in the form of an inorganic or organic salt.
  • the fiber reinforced resin composition of the present invention contains a specific chemically modified microfibrillated cellulosic fiber and an inorganic filler such as glass fiber and carbon fiber.
  • the fiber reinforced resin composition of the present invention has a lower specific gravity than that of a fiber reinforced resin composition containing only a conventional inorganic filler, and has high strength characteristics (elastic modulus and strength) of the molded article.
  • the molded article of the fiber-reinforced resin composition of the present invention is particularly excellent in flexural modulus per density (flexural modulus / A synergetic effect is observed in the improvement of density).
  • the flexural modulus per density of 10/10) is 1.20 to 1.42.
  • the bending strength (MPa / composition density) per density of the molded article of the present invention made of the above composition is 1.07 to 1.16 times as large as that of the conventional product (see Table 5 below).
  • the composition containing the glass wool (GW) was also compared with the bending elastic modulus (MPa / composition density) per density of the molded article made of the conventional GW20 Wt% -containing PA6 composition, and the composition of the present invention
  • the bending elastic modulus (MPa / composition density) per density of the formed body was 1.31 to 1.78 times, and the bending strength per density (MPa / composition density) was 1.35 to 1.48 times.
  • the fiber reinforced resin composition of this invention can be shape
  • the fiber reinforced resin composition of the present invention when the chemically modified fibrillated cellulose fiber and the inorganic filler are used in combination, the complex viscosity becomes low, so the molding processability is good.
  • the fiber reinforced resin composition of the present invention is produced by melt kneading and chemically modified cellulose fiber (chemically modified pulp) by adopting a process of melt-kneading chemically modified cellulose fiber, inorganic filler and resin in its production. Since microfibrillation can be performed simultaneously, productivity is also high.
  • the fiber-reinforced resin composition of the present invention contains (A) chemically modified microfibrillated cellulose-based fiber, (B) an inorganic filler, and (C) a thermoplastic resin.
  • the present invention is a fiber reinforced resin composition in which the (A) chemically modified microfibrillated cellulose fiber and the (B) inorganic filler satisfy the following requirements (a) and (b).
  • (A) Chemically modified microfibrillated cellulosic fibers are The following formula (1): (Lg) Cell-OR (1) [Wherein, (Lg) Cell- represents a residue of cellulose, holocellulose and / or polysaccharide constituting lignocellulose and lignin from which hydroxyl group has been removed, in a cellulose polymer. In the formula, —OR indicates that a hydrogen atom of a part of hydroxyl groups in cellulose, holocellulose and / or polysaccharides constituting lignocellulose and lignin in the cellulose polymer is substituted by a substituent R.
  • the COO ⁇ X + represents a group in which the carboxy group is in the form of an inorganic or organic salt. ] It is a microfibrillated fiber of the fiber comprised from chemically modified cellulose polymer represented by these.
  • the inorganic filler is one or more fillers selected from the group consisting of glass fiber, glass wool, carbon fiber, glass fine powder, carbon black, carbon nanotube, graphene, kaolin and nanoclay.
  • at least one polymer selected from the group consisting of cellulose, holocellulose and lignocellulose (polymer group) is referred to as a cellulose-based polymer, and is described as a general formula "(Lg) Cell-OH”. .
  • (Lg) Cell- means a polysaccharide from which at least one polymer selected from the group of polymers consisting of cellulose, holocellulose and lignocellulose is removed, and residues obtained by removing hydroxyl groups from lignin.
  • the hydrogen atoms of some of the hydroxyl groups in the cellulose, holocellulose and / or polysaccharides constituting lignocellulose in (Lg) Cell-OH and lignin have functional groups R ( Details of R will be described later), that is, the following formula (1):
  • (Lg) Cell-OR (1) Is a fiber composed of a chemically modified cellulose-based polymer represented by
  • the chemically modified microfibrillated cellulosic fiber (chemically modified MFC) used in the present invention is a fiber in which the chemically modified cellulosic fiber represented by the above-mentioned formula (1) is microfibrillated.
  • the chemically modified MFC used in the present invention is cellulose, holocellulose and / or cellulose constituting microfibrillated fibers (microfibrillated cellulose fibers, MFC) of fibers (cellulose fibers) made of a cellulose polymer It can also be said that the fibers in which some of the hydroxyl group hydrogen atoms of polysaccharides and lignin in lignocellulose are substituted by functional groups R.
  • the chemically modified MFC used in the present invention is obtained by chemically modifying cellulose pulp (CP) to form chemically modified CP and then disaggregating it and microfibrillating it, or by chemically modifying MFC. (See below for manufacturing method).
  • the n is an integer of 2 to 4.
  • the COO ⁇ X + represents a group in which the carboxy group is in the form of an inorganic or organic salt.
  • an acyl group having a carbon number of 2 to 3 is more preferable.
  • an acetyl group is most preferable in terms of easiness of production and cost.
  • the salts thereof described above include salts of carboxymethyl group, salts of carboxyethyl group, salts of carboxyethyl carbonyl group, salts of carboxypropyl carbonyl group, salts of carboxy vinyl carbonyl group and the like.
  • —CH 2 COOH carboxymethyl group
  • —CO (CH 2 ) 2 COOH also referred to as 3-carboxypropionyl group, carboxyethyl carbonyl group
  • —COCH CHCOOH
  • the carboxy group of the substituent R having a carboxy group is a group (-COO - X + ) in the form of an inorganic or organic salt, respectively.
  • alkali metal salts such as sodium salt, lithium salt and potassium salt
  • divalent metal salts such as calcium salt, barium salt, zinc salt and copper salt
  • trivalent metal salts such as aluminum salt and the like are preferable.
  • organic salt primary to quaternary ammonium salts and salts with polyamines are also preferable.
  • Chemically modified MFCs having the above-mentioned various substituents are preferable because of their good dispersibility in the fiber reinforced resin composition.
  • a microfibrillated cellulose fiber in which R is an acetyl group
  • a microfibrillated cellulose fiber in which R is a carboxymethyl group
  • a microfibrillated cellulose fiber (3-carboxypropionyl group)
  • 3-carboxypropionyl MFC 3-carboxypropenoyl group
  • microfibrillated cellulosic fiber 3-carboxypropenoyl MFC
  • these chemically modified MFCs can be well dispersed in the fiber reinforced resin composition.
  • chemically modified MFC of the raw materials used for chemical modification MFC ingredients present invention wood, bamboo, hemp, jute, kenaf, cotton, beet, agricultural residue waste, pulp obtained from natural plants such as waste paper or textile preferred Be
  • Pulp refers to the separation of plant fibers contained in plants such as wood, bamboo, rice straw, etc., and includes cellulose, hemicellulose, holocellulose and / or lignocellulose.
  • wood of pulp raw material for example, wood derived from conifers or broad-leaved trees such as Sitka spruce, pine (Todomatsu, Japanese red pine etc.), cedar, cypress, eucalyptus, acacia etc. is preferably used.
  • waste paper as a pulp raw material deinked waste paper, corrugated cardboard waste paper, magazines, copy paper and the like are preferable. Pulp materials are not limited to these. One type of pulp may be used alone, or two or more types selected from these may be used.
  • any of lignin-free pulp and lignin-containing pulp i.e., lignocellulose-containing pulp
  • any of lignin-free pulp and lignin-containing pulp i.e., lignocellulose-containing pulp
  • a pulp containing lignin i.e., a pulp containing lignocellulose
  • a pulp which is a raw material of the chemically modified MFC used in the present invention it is preferable that (Lg) Cell- in the formula (1) of the requirement (a) is a polysaccharide which constitutes lignocellulose and a residue obtained by removing a hydroxyl group from lignin.
  • Lignocellulose is a complex hydrocarbon polymer (natural polymer mixture) constituting tree cell walls.
  • Lignocellulose is known to be composed mainly of polysaccharide cellulose, hemicellulose and lignin, which is an aromatic polymer (see Reference Example 1 and Reference Example 2 below).
  • Reference Example 1 Review Article Conversion of Lignocellulosic Biomass to Nanocellulose: Structure and Chemical Process HV Lee, SBA Hamid, and SK Zain, Scientific World Journal Volume 2014 ,, Article ID 631013, 20 pages, http://dx.doi.org/10.155/2014 / 631013
  • Reference example 2 New lignocellulose pretreatments using cellulose solvents: A review, Noppadon Sathitsuksanoh, Anthe George and YH Percival Zhang, J Chem Technol Biotechnol 2013; 88: 169-180
  • lignocellulose as used herein means lignocellulose of a chemical structure naturally occurring in plants, artificially modified lignocellulose, or a mixture thereof. This is contained in various pulps obtained by mechanical and / or chemical treatment of plants, for example, wood, and has natural chemical structure lignocellulose, chemically or mechanically modified lignocellulose, or It is a mixture of these.
  • the fibers comprising lignocellulose used in the present invention are not limited to fibers comprising lignocellulose having a naturally occurring chemical structure. Also, the lignin content in lignocellulose is not limited. The terms lignocellulose and ligno pulp used in the present invention are to be interpreted as lignocellulose and ligno pulp, respectively, even with a low content of lignin components.
  • wood derived from conifers or broad leaves such as Toka spruce, pine (Todomatsu, Japanese red pine, etc.), cedar, cypress, eucalyptus, acacia, bamboo, hemp, jute, kenaf, bagasse, rattan, beet milled Ligno pulp obtained by processing the raw material derived from the vegetal raw material contained in the like by the mechanical pulping method, the chemical pulping method, or the combination of the mechanical pulping method and the chemical pulping method can be used.
  • various kraft pulps softwood unbleached kraft pulp (NUKP), softwood oxygen bleached kraft pulp (NOKP), and softwood bleached kraft pulp (NBKP)
  • NUKP softwood unbleached kraft pulp
  • NOKP softwood oxygen bleached kraft pulp
  • NKP softwood bleached kraft pulp
  • MP mechanical pulps
  • GP ground pulp
  • RGP refiner GP
  • TMP thermomechanical pulp
  • CMP chemithermomechanical pulp
  • kraft pulps do not contain lignin, they can be used as raw materials for chemically modified MFC regardless of their content.
  • pulp containing lignin has fewer production steps compared to cellulose fiber or pulp containing no lignin, good yield from its raw material (for example, wood), and its production It is advantageous in terms of manufacturing cost because it requires less chemical agents and can be manufactured with less energy.
  • ligno-pulp can be used advantageously in the present invention.
  • ligno pulp obtained from Todo-matsu, Japanese red pine, or cedar can obtain a fiber-reinforced resin composition having excellent strength characteristics by containing a chemically modified ligno-MFC prepared using it It is preferable from that.
  • the lignin content of lignocellulose and ligno pulp can be quantified by the Classon method. In the present invention, it is preferable to use ligno pulp containing about 0.1 to 40% by mass of lignin.
  • the lignin content of ligno pulp is more preferably about 0.1 to 35% by mass, and particularly preferably about 0.1 to 30% by mass.
  • the chemically modified MFC used in the present invention is obtained by chemically modifying cellulosic pulp (CP) to obtain a chemically modified cellulosic pulp (chemically modified CP) and disentangling this .
  • the chemically modified MFC used in the present invention can also be obtained by disintegrating cellulosic pulp (CP) to obtain microfibrillated plant fibers (MFC) and chemically modifying it.
  • CP cellulosic pulp
  • MFC microfibrillated plant fibers
  • the acylation reaction is carried out by suspending the raw material in an anhydrous aprotic polar solvent capable of swelling the raw material CP, such as N-methylpyrrolidone, N, N-dimethylformamide and the like, and a carboxylic acid having a corresponding acyl group.
  • an anhydrous aprotic polar solvent capable of swelling the raw material CP, such as N-methylpyrrolidone, N, N-dimethylformamide and the like, and a carboxylic acid having a corresponding acyl group.
  • the reaction can be carried out according to a conventional method (the method described in JP-A-2016-176052 etc.) in the presence of a base with an anhydride or an acid chloride.
  • the method of measuring the degree of substitution by R in the formula (1) can be according to the conventional method (the method described in JP-A-2016-176052 etc.).
  • the degree of substitution can be adjusted by adjusting the amount of acylating agent in the above acylation, the reaction temperature, the reaction time, and the like.
  • Carboxyalkylated cellulosic pulp (Carboxyalkylated CP) Chemical modification in which R is a carboxyalkyl group [-(CH 2 ) n-1 COOH] or a salt thereof [-(CH 2 ) n-1 COO - X + ] in the above-mentioned formula: (Lg) Cell-OR (1)
  • the cellulose-based pulp (carboxyalkylated CP) can be produced according to a conventional method (the method described in JP-A-2011-195738 and the like).
  • Carboxyalkylated CP can be produced.
  • Carboxyalkyl carbonylated cellulosic pulp (Carboxy alkyl carbonylated CP) Chemically modified cellulose in which R is a carboxyalkyl carbonyl group [-CO (CH 2 ) n COOH] or a salt thereof [-CO (CH 2 ) n COO - X + ] in the above formula: (Lg) Cell-OR (1)
  • the pulp (carboxyalkyl carbonylated CP) can be produced according to the method described in the literature (Biomacromolecules 2017, 18, 242-248). That is, carboxyalkylcarbonylated CP can be produced by reacting the starting material CP with the corresponding acid anhydride (eg, succinic anhydride, glutaric anhydride, etc.).
  • 3-Carboxypropenoylated cellulose-based pulp (3-carboxypropenoylated CP, maleic acid monoester of CP)
  • Propenoylated CP can be produced according to the method described in the literature (ACS Macro Lett. 2015, 4, 80-83). That is, 3-carboxypropenoylated CP can be produced by reacting maleic anhydride with CP as a raw material.
  • MFC microfibrillated cellulose
  • CP cellulosic pulp
  • Degree of modification with substituent R degree of substitution, DS
  • the degree of modification (the degree of substitution, also referred to as “DS”) of the chemically modified CP or the chemically modified MFC by the substituent R is determined by the residue of the chemically modified cellulose polymer represented by the formula (1) [(Lg) Cell- The hydrogen atom of the hydroxyl group which exists in 1 unit (repeating unit) of] is substituted by the substituent R.
  • the chemically modified cellulose-based polymer is entirely composed of cellulose (in the case of cellulose), this repeating unit is a glucopyranose residue, and the number of hydroxyl groups per unit is three, so the upper limit of the degree of substitution Is three.
  • lignocellulose contains hemicellulose and lignin together with cellulose.
  • the number of hydroxyl groups of xylose residue in xylan contained in hemicellulose or galactose residue in arabinogalactan is 2, and the number of hydroxyl groups of standard lignin residues is also 2. Therefore, the number of these hydroxyl groups is less than 3.
  • the upper limit of the degree of substitution by substituent R in ligno pulp is less than 3.
  • the upper limit of the degree of substitution is about 2.7 to 2.8, depending on the content of hemicellulose and lignin contained in ligno pulp.
  • the cellulose-based polymer is holocellulose
  • the holocellulose contains hemicellulose together with cellulose, so the average number of hydroxyl groups in the repeating unit is smaller than 3. Therefore, the upper limit value of the degree of substitution is smaller than 3.
  • the above-mentioned substituent R of the chemically modified cellulose pulp (chemically modified CP) and the chemically modified microfibrillated cellulose fiber (chemically modified MFC) is preferably about 0.3 to 2.55.
  • degree of substitution (DS) is preferably about 0.3 to 2.55.
  • the degree of substitution is more preferably about 0.4 to 2.55, and still more preferably 0.56 to 2.52.
  • preferred DS is 0.56 to 2.52. With DS in that range, it is possible to maintain the degree of crystallinity at about 42.7% or more.
  • the degree of substitution (DS) is DS when R is an acyl group The smaller one is preferable.
  • DS is preferably 0.1 to 0.5.
  • the degree of substitution (DS) can be analyzed by various analysis methods such as elemental analysis, neutralization titration, FT-IR, two-dimensional NMR ( 1 H and 13 C-NMR), and the like.
  • the disintegration and microfibrillation of chemically modified CP are carried out, for example, by using chemically modified CP as a suspension or a slurry, and using a refiner, a high pressure homogenizer, a grinder, a uniaxial or multiaxial kneader (preferably biaxial) It can be carried out by using known means such as mechanical grinding or beating using a kneader, bead mill or the like.
  • the chemically modified CP is melted and kneaded under heating in a uniaxial or multiaxial kneader (preferably a multiaxial kneader) together with a thermoplastic resin. It is preferable to do.
  • Chemically modified CP can be fibrillated and microfibrillated by shear force during kneading, and made into chemically modified MFC in a thermoplastic resin. In this way, it is advantageous to melt and knead the chemically modified CP with the thermoplastic resin and to break up in the thermoplastic resin.
  • the fiber reinforced resin composition of the present invention When producing the fiber reinforced resin composition of the present invention using a chemically modified MFC, first, fibers of CP are disintegrated to prepare microfibrillated cellulosic fibers (MFC). Then, the fiber-reinforced resin composition of the present invention can be prepared by chemically modifying it according to the above-mentioned method and kneading it with a resin.
  • MFC microfibrillated cellulosic fibers
  • CP disintegration uses CP as a suspension or slurry, and mechanical grinding or beating using a refiner, a high pressure homogenizer, a grinder, a single or multi-screw kneader (preferably a twin-screw kneader), a bead mill, etc. Etc. can be carried out by using known means.
  • Fiber diameter chemical modification of MFC MFC and chemical modification MFC the chemically modified cellulosic pulps (e.g., chemically modified Rigunoparupu etc.) in which the fibers in the disentangling to nanosize level (the defibrated).
  • chemically modified cellulosic pulps e.g., chemically modified Rigunoparupu etc.
  • the average fiber diameter (fiber width) of the chemically modified MFC contained in the fiber reinforced resin composition is preferably in the range of about 4 to 200 nm, and more preferably in the range of about 4 to 150 nm.
  • the average value of the fiber length is preferably about 5 ⁇ m or more.
  • the chemically modified CP is melt-kneaded with a thermoplastic resin, and it disaggregates chemically modified CP into chemically modified MFC simultaneously with kneading. be able to.
  • the object of the present invention can be achieved even if the resin composition contains a chemically modified MFC in which the fibrillation of the chemically modified CP is insufficient and the fiber diameter after fibrillation is larger than the above fiber diameter.
  • chemically modified MFC-containing resin compositions are included in the present invention.
  • the flexural modulus of the chemically modified MFC-containing resin composition exhibits a flexural modulus of 1.1 or more times the flexural modulus of the unmodified MFC-containing resin composition, this corresponds to the chemically modified MFC-containing resin composition of the present invention It is a thing.
  • the preferred range of each of the average fiber diameter and the average fiber length of this MFC, and the more preferred range are also the same as those of the above-mentioned chemically modified MFC.
  • the fiber diameter and fiber length of MFC and chemically modified MFC can be measured using a scanning electron microscope (SEM).
  • SEM scanning electron microscope
  • the average value of the fiber diameter (average fiber diameter) and the average value of the fiber length (average fiber length) are determined as an average value when measured at least 50 or more of MFC or chemically modified MFC in the field of the scanning electron microscope .
  • the defibrated state of the fiber can also be observed by observing the fiber with a specific surface area scanning electron microscope (SEM) of MFC and chemically modified MFC .
  • SEM surface area scanning electron microscope
  • the specific surface area of the chemical modification MFC is preferably about 70 ⁇ 300m 2 / g, more preferably about 70 ⁇ 250m 2 / g, more preferably about 100 ⁇ 200m 2 / g.
  • the contact area can be increased, whereby the strength of the resin molding material can be improved.
  • the chemically modified MFC does not aggregate in the resin of the resin composition, the strength of the resin molding material can be improved.
  • the chemically modified MFC used in the present invention is a hydroxyl group of cellulose and hemicellulose of raw pulp (CP) in a state where the crystal structure of cellulose present in the raw pulp is retained as much as possible. It is preferable that the sugar chain hydroxyl group is chemically modified.
  • hydroxyl groups present on the surface of the raw material fiber such as hydroxyl groups of cellulose and hydroxyl groups of hemicellulose, are chemically modified so that the cellulose crystal structure originally present in the raw material pulp is not broken. Is preferred.
  • chemically modified MFC having excellent mechanical properties inherent to MFC can be obtained. Furthermore, the dispersibility of the chemically modified MFC in the resin is promoted, and the reinforcing effect of the chemically modified MFC on the resin is improved.
  • the degree of crystallinity of the chemically modified MFC contained in the composition is about 42.7% or more, and the crystal form has a cellulose I-type crystal.
  • the "crystallization degree” is an abundance ratio of crystals (mainly cellulose type I crystals) in all the cellulose.
  • the degree of crystallization (preferably cellulose I-type crystals) of the chemically modified MFC is preferably about 50% or more, more preferably about 55% or more, still more preferably about 55.6% or more, still more preferably about 60% or more, About 69.5% or more is particularly preferable.
  • the upper limit of the degree of crystallinity of the chemically modified MFC is about 80%. Chemically modified MFC maintains the crystalline structure of cellulose type I and exhibits performance such as high strength and low thermal expansion.
  • the cellulose type I crystal structure is, for example, as described in “The Dictionary of Cellulose” published by Asakura Shoten, pp. 81-86, or 93-99. Most natural cellulose is a cellulose type I crystal structure.
  • cellulose fibers having a cellulose type I crystal structure for example, a cellulose type II, III, or IV type structure are those derived from cellulose having a cellulose type I crystal structure.
  • the I-type crystal structure has a higher crystal elastic modulus than other structures.
  • Cellulose is a bundle of several linearly stretched celluloses formed by ⁇ -1,4 bonds, fixed by intramolecular or intermolecular hydrogen bonds, and forms extended chains of crystals. .
  • the proportion of crystalline regions in cellulose is estimated to be about 50 to 60% for wood pulp and about 70% for bacterial cellulose.
  • Cellulose not only has a high modulus of elasticity due to being an extended chain crystal, but also exhibits five times the strength of steel and a linear thermal expansion coefficient of 1/50 or less of glass.
  • the (B) inorganic filler contained in the fiber-reinforced resin composition of the present invention is glass fiber, glass wool, carbon fiber, glass fine powder, carbon black, carbon nanotube, graphene, kaolin and One or more inorganic fillers selected from the group consisting of nanoclays.
  • the inorganic filler is preferably one or more fibrous inorganic fillers selected from the group consisting of glass fibers, glass wool and carbon fibers. Furthermore, one or two fibrous inorganic fillers selected from the group consisting of glass fibers and carbon fibers are preferred.
  • Glass fiber and glass wool are preferably those whose surface is chemically modified in order to have affinity with the resin in the fiber-reinforced resin composition of the present invention.
  • glass fiber As glass fiber, what is marketed can be used. As glass fiber, CSX3J, CSF3PE etc. made from Nitto Boseki Co., Ltd. can be used preferably, for example.
  • the average fiber diameter of the glass fibers is preferably about 9 to 15 ⁇ m, and more preferably about 11 to 13 ⁇ m.
  • the average fiber length of the glass fiber is preferably about 3 to 10 mm.
  • glass wool those commercially available can be used.
  • glass wool for example, white wool manufactured by Asahi Fiber Glass Co., Ltd. can be preferably used.
  • the average fiber diameter of glass wool is preferably about 5 to 10 ⁇ m, and more preferably about 7 to 8 ⁇ m.
  • the average fiber length of glass wool is preferably about 20 to 100 mm.
  • the carbon fiber is preferably surface-treated to have affinity with the resin in the fiber-reinforced resin composition of the present invention.
  • Carbon fibers can be used.
  • the carbon fiber for example, Torayca (registered trademark) manufactured by Toray Industries, Inc., Tenax (registered trademark) manufactured by Toho Tenax Corporation, etc. can be preferably used.
  • the average fiber diameter of the carbon fibers is preferably about 5 to 18 ⁇ m, and more preferably about 5 to 7 ⁇ m.
  • the average fiber length of the carbon fiber is preferably about 3 to 25 mm.
  • the fiber reinforced resin composition of the present invention comprises (A) a chemically modified MFC, (B) an inorganic filler and (C) a thermoplastic resin.
  • a molded article excellent in strength can be produced.
  • thermoplastic resin polyamides, polyolefins, aliphatic polyesters, aromatic polyesters, polyacetals, polycarbonates, polystyrenes, acrylonitrile-butadiene-styrene copolymers from the viewpoint of excellent mechanical properties, heat resistance, surface smoothness and appearance
  • resin selected from the group consisting of a polymer (ABS resin), a polycarbonate-ABS alloy (PC-ABS alloy), and a modified polyphenylene ether (m-PPE).
  • thermoplastic resin may be used alone or in combination of two or more.
  • resins other than the above such as polyvinyl chloride, polyvinylidene chloride, fluorine resin, (meth) acrylic resin, (thermoplastic) polyurethane, vinyl ether resin, polysulfone resin, cellulose resin (for example, triacetylated cellulose) And diacetylated cellulose etc. can also be preferably used.
  • PA polyamide
  • PA 6 polyamide 6
  • PA 6 polyamide 66
  • PA 66 polyamide 610
  • PA 610 polyamide 612
  • PA 11 polyamide 11
  • PA 12 polyamide 12
  • PA 46 Polyamide XD10 (PAXD10), polyamide MXD6 (PAMXD6) and the like can be preferably used.
  • polypropylene PP
  • copolymer of polyethylene PE
  • polypropylene PP
  • maleic anhydride modified polypropylene MAPP
  • PE polyethylene
  • HDPE high density polyethylene
  • polypropylene isotactic polypropylene (iPP), syndiotactic polypropylene (sPP) or the like can be preferably used.
  • a polymer or copolymer of a diol and an aliphatic dicarboxylic acid such as succinic acid or valeric acid (for example, polybutylene succinate (PBS)), or a hydroxycarboxylic acid such as glycolic acid or lactic acid alone
  • PBS polybutylene succinate
  • a hydroxycarboxylic acid such as glycolic acid or lactic acid alone
  • Polymers or copolymers eg, polylactic acid, poly ⁇ -caprolactone (PCL), etc.
  • diols, copolymers of aliphatic dicarboxylic acids and the above-mentioned hydroxycarboxylic acids, etc. can be preferably used.
  • aromatic polyester polymers of diols such as ethylene glycol, propylene glycol, 1,4-butanediol and the like and aromatic dicarboxylic acids such as terephthalic acid can be preferably used.
  • diols such as ethylene glycol, propylene glycol, 1,4-butanediol and the like
  • aromatic dicarboxylic acids such as terephthalic acid
  • PET polyethylene terephthalate
  • PPT polypropylene terephthalate
  • PBT polybutylene terephthalate
  • polyacetal also referred to as polyoxymethylene, POM
  • a copolymer of paraformaldehyde and oxyethylene can also be preferably used.
  • PC polycarbonate
  • a reaction product of bisphenol A or a bisphenol which is a derivative thereof and phosgene or phenyl dicarbonate can be preferably used.
  • PS polystyrene
  • GPPS general-purpose PS
  • HIPS PS in which a rubber component is dispersed in a PS matrix to improve impact resistance
  • PS polystyrene
  • a copolymer of styrene acrylonitrile-butadiene-styrene copolymer, ABS resin
  • ABS resin acrylonitrile-butadiene-styrene copolymer
  • PC polycarbonate
  • ABS PC-ABS alloy
  • a blend of PPE and PS is a type of modified polyphenylene ether (PPE) (m-PPE).
  • PPE-PS blend is preferably used because of its high heat resistance and light weight.
  • thermoplastic resins PA, POM, PP, MAPP, PE, polylactic acid, lactic acid copolymer resin, PBS, PET, PPT, PBT, from the viewpoint of excellent mechanical properties, heat resistance, surface smoothness and appearance. It is preferable to use at least one resin selected from the group consisting of PS, ABS resin and PC-ABS alloy.
  • the fiber reinforced resin composition of the present invention comprises (A) a chemically modified MFC, (B) an inorganic filler and (C) a thermoplastic resin.
  • the content of the (A) chemically modified MFC in the fiber-reinforced resin composition of the present invention is preferably about 3 to 60 parts by mass, and more preferably 5 to 50 parts by mass with respect to 100 parts by mass of the (C) thermoplastic resin. Preferably, about 5 to 40 parts by mass is more preferable.
  • the content ratio of the (A) chemically modified MFC in the fiber reinforced resin composition is most preferably about 5 to 30 parts by mass.
  • the content ratio of the (B) inorganic filler in the fiber reinforced resin composition of the present invention is preferably about 3 to 60 parts by mass, more preferably about 5 to 50 parts by mass with respect to 100 parts by mass of the (C) thermoplastic resin. And about 5 to 40 parts by mass is more preferable.
  • the content of the (B) inorganic filler (preferably glass fiber or carbon fiber) in the fiber reinforced resin composition is most preferably about 5 to 30 parts by mass.
  • the ratio of the (A) chemically modified MFC to the (B) inorganic filler in the fiber reinforced resin composition of the present invention is 0.25 to 4, preferably 0.3 to 3, and more preferably 0.5 to 2 in mass ratio. That is, the blending amount of (A) chemically modified MFC / (B) inorganic filler is, as a mass ratio, 0.25 to 4, preferably 0.3 to 3, and more preferably 0.5 to 2.
  • Chemically modified MFC like vegetable fibers, is lightweight, has excellent strength, and has a low linear thermal expansion coefficient.
  • the fiber-reinforced resin composition of the present invention even if it contains (A) a chemically modified MFC and (B) an inorganic filler, softens easily upon heating and is easy to form as in general-purpose plastics. Sex can be expressed.
  • thermoplastic resin for example, a compatibilizer; surfactant; antioxidant; flame retardant Inorganic compounds such as tannins, zeolites, ceramics, metal powders, colorants, plasticizers, perfumes, pigments, flow control agents, leveling agents, conductive agents, antistatic agents, ultraviolet light absorbers, ultraviolet light dispersion agents, deodorant etc.
  • a compatibilizer for example, a surfactant; antioxidant; flame retardant Inorganic compounds such as tannins, zeolites, ceramics, metal powders, colorants, plasticizers, perfumes, pigments, flow control agents, leveling agents, conductive agents, antistatic agents, ultraviolet light absorbers, ultraviolet light dispersion agents, deodorant etc.
  • the additives of the above may be optionally blended.
  • the content of the additive can be appropriately adjusted within the range in which the effects of the present invention are not impaired.
  • the fiber reinforced resin composition of the present invention contains (A) chemically modified CMF, it is possible to suppress the self-aggregation of the fibers due to hydrogen bonding. Therefore, even when (A) chemically modified MFC, (B) inorganic filler and (C) thermoplastic resin are mixed, (A) aggregation of chemically modified MFCs is suppressed, (A) chemically modified MFC and (B) The inorganic filler and the (C) thermoplastic resin exhibit good dispersibility. As a result, the fiber reinforced resin composition of the present invention is excellent in mechanical properties, heat resistance, surface smoothness and appearance.
  • the (A) chemically modified MFC has a solubility parameter (SP) close to that of the (C) thermoplastic resin.
  • PA poly(ethylene glycol)
  • POM poly(ethylene glycol)
  • polylactic acid etc. are preferable, for example.
  • a resin of small polarity is used as a thermoplastic resin to form a matrix of a fiber reinforced resin composition
  • a chemically modified MFC having a degree of substitution (DS) of about 1.2 or more and a solubility parameter of about 8 to 12 is used. It is preferable to make it contain in resin.
  • a resin of small polarity for example, PP, PE, etc. are preferable.
  • chemically modified MFC acetylated MFC is preferred.
  • the fiber reinforced resin composition of the present invention is prepared by melt-kneading (A) chemically modified MFC, (B) inorganic filler and (C) thermoplastic resin (matrix material), (A) chemically modified MFC and (B) inorganic It can manufacture by making a filler disperse
  • the molded object of a fiber reinforced resin composition can be produced by shape
  • Production method 2 In the fiber-reinforced resin composition of the present invention, chemically modified cellulose pulp (chemically modified CP), (B) inorganic filler and (C) thermoplastic resin are collectively kneaded using a kneader etc., and these are composited It is preferable to manufacture by That is, Production method 2 is a method of simultaneously melt-kneading three of the chemically modified cellulose pulp, the inorganic filler and the thermoplastic resin.
  • Production method 2 is a production method of a fiber reinforced resin composition, and (I) The following equation (1): (Lg) Cell-OR (1) [Wherein, (Lg) Cell- represents a residue of cellulose, holocellulose and / or polysaccharide constituting lignocellulose and lignin from which hydroxyl group has been removed, in a cellulose polymer. In the formula, —OR indicates that a hydrogen atom of a part of hydroxyl groups in cellulose, holocellulose and / or polysaccharides constituting lignocellulose and lignin in the cellulose polymer is substituted by a substituent R.
  • the COO ⁇ X + represents a group in which the carboxy group is in the form of an inorganic or organic salt.
  • Chemically modified cellulosic pulp comprising a chemically modified cellulosic polymer represented by By melt-kneading (ii) (B) inorganic filler and (iii) (C) thermoplastic resin, (A) chemically modified microfibrillated cellulose fiber, (B) inorganic filler and (C) thermoplastic resin
  • a fiber-reinforced resin composition comprising: a) a chemically-modified microfibrillated cellulosic fiber according to the above (A), and a fiber-reinforced resin according to the above-mentioned (B): an inorganic filler satisfying the following requirements (a) and (b): It is a method of producing a composition.
  • (A) Chemically Modified Microfibrillated Cellulosic Fibers Containing the Following Formula (1):
  • (Lg) Cell-OR (1) [Wherein, (Lg) Cell- represents a residue of cellulose, holocellulose and / or polysaccharide constituting lignocellulose and lignin from which hydroxyl group has been removed, in a cellulose polymer. In the formula, —OR indicates that a hydrogen atom of a part of hydroxyl groups in cellulose, holocellulose and / or polysaccharides constituting lignocellulose and lignin in the cellulose polymer is substituted by a substituent R.
  • the COO ⁇ X + represents a group in which the carboxy group is in the form of an inorganic or organic salt. ] It is a microfibrillated fiber of the fiber comprised from chemically modified cellulose polymer represented by these.
  • the inorganic filler is one or more fillers selected from the group consisting of glass fiber, glass wool, carbon fiber, glass fine powder, carbon black, carbon nanotube, graphene, kaolin and nanoclay.
  • Production method 3 In the fiber-reinforced resin composition of the present invention, a chemically modified cellulose pulp (chemically modified CP) and (C) a thermoplastic resin are kneaded to obtain a kneaded product, and then the obtained kneaded product, (B) inorganic It is preferable to manufacture by the method of melt-kneading the resin composition containing a filler and a thermoplastic resin.
  • Production method 3 is a method in which a resin composition containing an inorganic filler is added and melt-kneaded after melt-kneading a chemically modified cellulose pulp and a thermoplastic resin, that is, a method in which kneading is performed in two steps.
  • Production method 3 is a production method of a fiber reinforced resin composition, and Process (1):
  • —OR indicates that a hydrogen atom of a part of hydroxyl groups in cellulose, holocellulose and / or polysaccharides constituting lignocellulose and lignin in the cellulose polymer is substituted by a substituent R.
  • the COO ⁇ X + represents a group in which the carboxy group is in the form of an inorganic or organic salt.
  • a fiber reinforced resin composition containing (B) an inorganic filler and (C) a thermoplastic resin It is a manufacturing method of the fiber reinforced resin composition whose above-mentioned (A) chemical modification micro fibrillated cellulose type fiber and the above-mentioned (B) inorganic filler fulfill the requirements of the following (a) and (b).
  • (A) Chemically Modified Microfibrillated Cellulosic Fibers Containing the Following Formula (1):
  • (Lg) Cell-OR (1) [Wherein, (Lg) Cell- represents a residue of cellulose, holocellulose and / or polysaccharide constituting lignocellulose and lignin from which hydroxyl group has been removed, in a cellulose polymer. In the formula, —OR indicates that a hydrogen atom of a part of hydroxyl groups in cellulose, holocellulose and / or polysaccharides constituting lignocellulose and lignin in the cellulose polymer is substituted by a substituent R.
  • the COO ⁇ X + represents a group in which the carboxy group is in the form of an inorganic or organic salt. ] It is a microfibrillated fiber of the fiber comprised from chemically modified cellulose polymer represented by these.
  • the inorganic filler is one or more fillers selected from the group consisting of glass fiber, glass wool, carbon fiber, glass fine powder, carbon black, carbon nanotube, graphene, kaolin and nanoclay.
  • thermoplastic resin As a resin composition containing an inorganic filler and a thermoplastic resin, which is used in Production method 3, a melt mixture of (I) (i) inorganic filler and (ii) thermoplastic resin (some commercially available products may be used), And (II) Both powder mixtures of (i) inorganic filler and (ii) thermoplastic resin can be used.
  • the heating set temperature at the time of melt-kneading in each production method is a temperature (A + 20) higher by 20 ° C. higher than the recommended processing temperature from the minimum processing temperature (A ° C.) recommended by the supplier supplying the thermoplastic resin used in the present invention.
  • the range of ° C.) is preferred.
  • the heating setting temperature at the time of melt-kneading is preferably 225 to 240 ° C.
  • the heating set temperature at the time of melt-kneading is preferably 170 to 190.degree.
  • the heating set temperature at the time of melt-kneading is preferably 160 to 180 ° C.
  • the mixing temperature in this temperature range, it is possible to uniformly mix (A) the chemically modified MFC or chemically modified pulp, (B) the inorganic filler and (C) the thermoplastic resin.
  • defibrillation is carried out by the shear stress of the kneader while mixing unchemically disintegrated chemically modified CP with the resin, so that the cost of production can be reduced.
  • chemically modified MFC with less fiber damage can be prepared from chemically modified CP in a state of being dispersed in a thermoplastic resin.
  • Production method 2 and Production method 3 it is possible to obtain a high-performance fiber reinforced resin composition in which the chemically modified MFC is dispersed.
  • the molded product of the present invention comprises a fiber-reinforced resin composition.
  • a molded object can be manufactured using the fiber reinforced resin composition of this invention.
  • the fiber-reinforced resin composition of the present invention is optionally prepared in the form of film, sheet, plate, pellet, powder, etc. to prepare a molding material, and this molding material is manufactured.
  • the fiber reinforced resin composition (molding material) of the present invention is molded by various known molding methods such as mold molding, injection molding, extrusion molding, hollow molding, foam molding, etc. It is possible to produce molded articles of various shapes.
  • the molded article of the present invention is molded from a fiber reinforced resin composition containing (A) a chemically modified MFC, (B) an inorganic filler and (C) a thermoplastic resin, so only inorganic fibers such as glass fibers and carbon fibers It is lighter than the molded object molded from the fiber reinforced resin composition containing C, and is excellent in the strength characteristic.
  • the molded article of the present invention as an interior material, exterior material, structural material, etc. of a transport machine such as a car, a train, a ship, and an airplane, improvement of energy efficiency of the transport machine and reduction of exhaust gas can be achieved. it can.
  • the molded article of the present invention for a housing such as an electric appliance such as a personal computer, a television, a telephone, etc., a structural material, an internal part, etc., it is possible to achieve weight reduction of them.
  • the reduction in weight can reduce the energy consumption during transportation of the electric appliances, and the electric appliances can be used comfortably.
  • the molded body of the present invention for a building material, it is possible to improve the earthquake resistance of the building.
  • the present invention is not limited to these examples.
  • the content rate of the cellulosic fiber in a composition is represented by the mass ratio of the fiber component (cellulose + hemicellulose) in the composition total mass. Therefore, the content rate of the chemically modified cellulosic fiber in the composition is indicated by the content rate (content%) of the mass converted to the non-chemically modified fiber.
  • test Methods The test methods used in Examples and Comparative Examples are as follows.
  • reaction solution After cooling, 100 ⁇ L of the reaction solution was diluted with ultrapure water, and subjected to ion chromatography analysis by Thermo Fisher Scientific Co., Ltd. to analyze sugar components contained in the sample.
  • the DS value of the sample is determined from the value of the absorption band and the calibration curve.
  • DS can be measured quickly and easily.
  • the X-ray measures 2 ⁇ 5 to 40 ° at an output of CuK ⁇ ray, 30 kV / 200 mA.
  • Izod Impact Test was conducted using the Izod impact tester (manufactured by Toyo Seiki Seisakusho Co., Ltd.). A 2 mm deep notch was inserted in the center of the test piece. In the 2.75 JN test, a 2.75 J hammer was used to strike the notch side to develop a crack from the notch, and in particular the impact strength was calculated. In the 5.5 JR test, a hammer of 5.5 J was used to hit the opposite side of the notch, and a crack was allowed to propagate from the surface of the molded article without the notch, and the impact strength at that time was calculated.
  • the fiber sample was observed with a field emission scanning electron microscope (FE-SEM), JSM-7800F manufactured by JEOL.
  • the measurement conditions were an acceleration voltage of 1.5 kV and a magnification of 200 to 5000 times.
  • the sample preparation method is as follows. 1) Preparation of fiber sample before compounding resin 1-1) The sample was placed in a glass vial containing ethanol, and ultrasonic agitation was performed to suspend the fiber in ethanol. 1-2) A small amount of ethanol suspension of fibers was dropped on a copper plate and ethanol was evaporated at room temperature. 1-3) The sample was platinum-coated using a sputtering apparatus (JEOL SEC-3000FC automatic fine coater).
  • Raw material pulp (1) Softwood-derived bleached kraft pulp (NBKP) Softwood bleached kraft pulp (NBKP, source: Oji Holdings Co., Ltd.) slurry (pulp slurry concentration 3% by mass aqueous suspension) is passed through a single disc refiner (Aikawa Tekko Co., Ltd.) and Canadian Standard The defibration treatment was performed by repeated refiner treatment until the freeness (CSF) value reached 50 mL.
  • NNKP Softwood-derived bleached kraft pulp
  • slurry pulp concentration 3% by mass aqueous suspension
  • CSF freeness
  • the fibers were observed with a scanning electron microscope (SEM). Although fibers of submicron order in diameter were also found, fibers having coarse fiber diameters of several tens to several hundreds of micrometers in diameter were scattered.
  • composition (% by mass) was as follows.
  • Acetylated NBKP (AcNBKP)
  • NMP N-methyl pyrrolidone
  • the degree of substitution for acetylation was calculated by adding an alkali to AcNBKP and titrating (back titration) the amount of acetic acid generated by hydrolyzing the ester bond.
  • Nittobo GF (CSX 3 J, fiber length 3 mm, fiber diameter 11 ⁇ m) was used as the inorganic filler (1) glass fiber (GF).
  • PA 6 powder As a resin (1) powdery polyamide 6 (sometimes described as “PA 6 powder”), polyamide (powder type, grade A1020LP) manufactured by Unitika Co., Ltd. was used.
  • Pellet-like polyamide 6 (grade: A1020 BRL) manufactured by Unitika Co., Ltd. was used as pellet-like polyamide 6 (also described as “PA6 pellet”).
  • PC-ABS alloy powder (grade: MB 8700) manufactured by Mitsubishi Engineering Plastics Co., Ltd. was used as a powdery polycarbonate (PC-ABS alloy (sometimes referred to as "PC-ABS alloy powder").
  • PC-ABS alloy pellet Pellet-like PC-ABS alloy (grade: MB 8700) made by Mitsubishi Engineering Plastics Co., Ltd. was used as pellet-like polycarbonate (PC) -ABS alloy (sometimes referred to as "PC-ABS alloy pellet").
  • E. Inorganic filler containing masterbatch (MB) (1) For glass fiber (GF) -containing PA6 pellets (sometimes referred to as "GF reinforced PA6 pellets"), master glass fiber reinforced PA (grade: A1030 GFL, reinforced glass fiber 30%) manufactured by Unitika Co., Ltd. Used as a batch.
  • GF glass fiber
  • PA6 pellets master glass fiber reinforced PA (grade: A1030 GFL, reinforced glass fiber 30%) manufactured by Unitika Co., Ltd. Used as a batch.
  • Extruder type used KZW15-60MG-KIK (manufactured by Technobel Co., Ltd.) Operating conditions: Two-axis cylinder set temperature 200 to 215 ° C Screw speed: 200 rpm
  • Powdered PA6-MB containing AcNBKP The following powdery PA6-MB (i) and (ii) were prepared using the above-mentioned PA6 powder and AcNBKP.
  • the slurry mixture was filtered and then dried to prepare a powdery mixture consisting of PA6 and AcNBKP.
  • a method of displaying chemically modified cellulosic fibers and resin compositions (or mixtures) containing the same by combining the type of chemically modified fibers and the content (parts by mass) thereof refers to the type of chemically modified fibers. It is displayed as a combination of the indication (abbreviation) shown and the content ratio (parts by mass) as its unmodified fiber.
  • the model of the twin-screw extruder used for preparation of the above-mentioned PA6-MB and the operating conditions are as follows.
  • Extruder model KZW15-60MG-KIK (manufactured by Technobel Co., Ltd.) Operating condition of extruder: Twin-cylinder setting temperature 200 to 215 ° C Screw speed: 200 rpm
  • PC-ABS alloy powder-like MB (vi) containing 30% of AcNBKP
  • a slurry of AcNBKP was mixed with the above powdery polycarbonate-ABS alloy (PC-ABS alloy) in order to obtain a powdery composition consisting of AcNBKP and an ABS alloy having a content of 30% by mass in terms of NBKP. .
  • the slurry mixture was filtered and then dried to obtain a powdery mixture consisting of PC-ABS alloy and AcNBKP.
  • Pellet-like PC-ABS alloy MB containing AcNBKP The pelleted PC-ABS alloy MB containing AcNBKP is referred to as AcNBKP-containing pelleted PC-ABS alloy MB.
  • a mixture of PC-ABS alloy powder MB (vi) containing 30% NBKP and the above PC-ABS alloy pellets is supplied to the feed port of a twin-screw extruder, melt-kneaded using a twin-screw extruder, and the following AcNBKP 10% PC- ABS alloy pellets MB (vii) and AcNBKP 15% PC-ABS alloy pellets MB (viii) were prepared. See below for extruder types and their operating conditions.
  • AcNBKP 10% PC-ABS alloy pellet MB (vii) This is a composition comprising AcNBKP in pellet form and PC-ABS alloy containing 10% by mass as NBKP.
  • the obtained mixtures are respectively fed to a twin-screw extruder, and these components are melt-kneaded at one time to give test numbers PA6-433, PA6-15, PA6-430, PA6-428, PA6-, respectively.
  • Composite pellets of 429, PA6-431, and PA6-432 were prepared.
  • the cylinder set temperature of the injection machine was set to 210 to 230.degree.
  • Test Results of Molded Body The flexural modulus and the flexural strength were measured for the above-mentioned molded body (test piece).
  • the density of a molded object can be calculated from the density and mass ratio of each composition which comprises it.
  • the PA6 molded body was manufactured by injection-molding PA6, AcNBKP and GF all at once into a kneader and melt-kneading.
  • the flexural strength (density ratio per density) of the compositions of Test Nos. PA6-429 to PA6-432 was 1.07 to 1.16 times as large as the reference value.
  • PA6 / AcNBKP material and PA6 / AcNBKP / GF material are lightweight, high strength and high modulus materials.
  • PA6-431 and PA6-432 have high intensity ratio per density (1.12 and 1.16 respectively). From this, it can be said that the hybridization between AcNBKP and CNF has made it possible to achieve lightweight and high strength as compared to PA6-430 containing only AcNBKP.
  • compositions of the present invention PA6-429 and PA6-431
  • PA6-430 complex viscosity
  • the model number of the injection machine is NPX7 (manufactured by Nissei Resin Industry Co., Ltd.).
  • the cylinder set temperature of the injection machine was set to 210 to 230.degree.
  • Test Results of Molded Body The flexural modulus and the flexural strength were measured for the above-mentioned molded body (test piece).
  • a PA6 compact containing acetylated NBKP and glass fiber (GF) shown in FIGS. 3 and 4 is supplied to an injection molding machine for melt mixing of a mixture of AcNBKP-containing PA6 pellets and GF-containing PA6 pellets, and this is injection molded Manufactured.
  • the elastic modulus ratio per density of each sample was compared based on the flexural modulus per density (elastic modulus ratio per density) of a glass fiber (GF) 20 Wt% -containing PA6 composition (Test No. PA6-442).
  • PA6 / AcNBKP / GF materials are lightweight and high modulus materials.
  • compositions of the present invention PA6-438, PA6-440, and PA6-441
  • PA6-439 complex viscosity
  • the resulting mixture was each fed to an injection machine and melted to produce a PA6 composition comprising AcNBKP and GW.
  • a rectangular molded product of width ⁇ length ⁇ thickness 10 ⁇ 80 ⁇ 4 mm (test number of test piece, PA 6-448, 449) by injection molding (NPX7 (manufactured by Nissei Resin Industry Co., Ltd.)). 450, 451, 452 and 453) were produced.
  • the model number of the used injection machine is NPX7 (manufactured by Nissei Resin Industry Co., Ltd.).
  • the cylinder set temperature of the injection machine was set to 210 to 230.degree.
  • Test Results of Molded Body The flexural modulus and the flexural strength were measured for the above-mentioned molded body (test piece).
  • AcNBKP, DS 0.67
  • GW glass wool
  • a PA6 molded body containing AcNBKP and GW was prepared by melt-mixing a mixture of AcNBKP-containing PA6 pellets and GW-containing PA6 pellets into an injection molding machine and injection molding it.
  • PA6 / AcNBKP and PA6 / AcNBKP / GW materials are lightweight, high strength and high modulus materials.
  • the flexural modulus ratio per density of PA6-450 is 1.55.
  • PA6-451 and PA6-452 are 1.69 and 1.78, respectively.
  • the composition (PA6-451) of the present invention has a lower complex viscosity and better molding processability than the control (PA6-450).
  • test numbers of the test pieces were PC-19, 20, 21, 22, 23 and 24, respectively.
  • the cylinder set temperature of the injection machine was set to 210 to 250.degree.
  • composition containing AcNBK, GF and PC-ABS alloy, and AcNBKP in the molded article is nanofibrillated.
  • Test Results of Molded Body The flexural modulus and the flexural strength were measured for the above-mentioned molded body (test piece).
  • the PC-ABS alloy molded body was manufactured by injection-molding a mixture of an AcNBKP-containing PC-ABS alloy pellet and a GF-containing PC pellet by supplying it to an injection molding machine and melt-mixing it.
  • the values obtained by plotting the bending strength values against the density (red ⁇ marks) showed high values at the same density. From this, it can be seen that the PC-ABS alloy / AcNBKP / GF composite material has higher reinforcement effect by AcNBKP and GF than reinforcement effect by GF at the same density.
  • the strength ratio per density of PC-6 is 0.84.
  • the model number of the injection machine is NPX7 (manufactured by Nissei Resin Industry Co., Ltd.).
  • the cylinder set temperature of the injection machine was set to 210 to 230.degree.
  • Test Results of Molded Body The flexural modulus and the flexural strength were measured for the above-mentioned molded body (test piece).
  • the flexural modulus per density of the former is 1.5 times that of the latter, and the flexural strength per density of the former is the latter It is 1.25 times.
  • PA6 composition containing AcNBKP and CF has a bending elastic modulus per density that is very similar to the flexural modulus per density of a PA6 composition containing AcNBKP and CF (see FIG. 9). It can be said that the same performance as the CF-containing composition is exhibited.
  • the flexural strength per density of a PA6 composition containing AcNBKP and CF can also be said to exhibit the same performance as a CF-containing composition (see FIG. 10). This means that energy saving and cost reduction may be achieved by using chemically modified microfibrillated cellulosic fibers and carbon fibers in combination instead of using carbon fibers that require high energy and cost for production. It can be said.
  • FIG. 12 An electron microscopic image of AcNBKP (AcNBKP before melt-kneading with PA6) used for the compact of Test No. PA6-430 is shown in FIG.
  • FIG. 12 An electron microscopic image of fibers in a sample prepared from the compact of Test No. PA6-430 is shown in FIG. 12, and an electron microscopic image of fibers in a sample prepared from the compact of Test No. PA6-431 is shown.
  • An electron microscopic image of the fibers in the sample shown in No. 13 and prepared from the compact of Test No. PA6-451 is shown in FIG.
  • the diameter of AcNBKP before being melt-kneaded with the resin was about several tens of nm to about 5 ⁇ m for thin ones and 20 to 50 ⁇ m for thick ones (microscope of AcNBKP before resin kneading of FIG. 11) See the observation image).
  • the chemically modified cellulose fiber is disintegrated by melting and kneading with the resin and fibrillated.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

Provided is a fiber-reinforced resin composition containing (A) a chemically modified MFC-based fiber, (B) an inorganic filler, and (C) a thermoplastic resin, wherein the (A) chemically modified MFC and the (B) inorganic filler satisfy the requirements of (a) and (b) below: (a) the (A) chemically modified MFC is a microfibrillated fiber of a fiber composed of a chemically modified cellulose polymer represented by formula (1), (Lg)Cell-O-R (1; and (b) the inorganic filler (B)is one or more fillers selected from the group consisting of glass fiber, glass wool, carbon fiber and the like.

Description

繊維強化樹脂組成物、繊維強化成形体及びその製造方法Fiber-reinforced resin composition, fiber-reinforced molded article and method for producing the same
 本発明は、繊維強化樹脂組成物、繊維強化成形体及びその製造方法に関する。 The present invention relates to a fiber reinforced resin composition, a fiber reinforced molded article and a method for producing the same.
 更に詳細には、本発明は、セルロース系繊維及び無機フィラーを含有する繊維強化熱可塑性樹脂組成物、その成形体及びその製造方法に関する。 More particularly, the present invention relates to a fiber-reinforced thermoplastic resin composition containing cellulosic fibers and an inorganic filler, a molded article thereof and a method of producing the same.
 地球環境の維持又は改善のために、力学特性及び機能性が確保されると同時に、製造、使用及び廃棄時に人及び環境に負荷の少ない素材の開発が要望されている。 In order to maintain or improve the global environment, there is a demand for development of materials with low impact on humans and the environment at the time of manufacturing, use and disposal while securing mechanical characteristics and functionality.
 繊維強化樹脂組成物は、金属材料に比べて製造時のエネルギー負荷が小さくまた軽量であることから、金属材料に代えて自動車部品、航空機内部品、家庭用機器、建設材料等の広い分野で使用されてきた。 Fiber-reinforced resin compositions are used in a wide range of fields, such as automobile parts, aircraft internal parts, household appliances, construction materials, etc., instead of metal materials because they have less energy load during manufacturing and are lighter than metal materials. It has been.
 自動車業界では、地球温暖化対策(炭酸ガス対策)、内燃エンジン搭載車の燃費向上対策、ハイブリッド車並びに電池搭載車のエネルギー効率向上等のために、車体の軽量化が急務である。自動車業界では、従来の鉄鋼製構造体から繊維強化樹脂組成物製の構造体への代替が加速化されている。 In the automobile industry, weight reduction of the vehicle body is urgently needed for global warming countermeasures (carbon dioxide countermeasures), fuel efficiency improvement measures for vehicles equipped with internal combustion engines, and energy efficiency improvements for hybrid vehicles and vehicles equipped with batteries. In the automobile industry, replacement of conventional steel structures with structures made of fiber reinforced resin compositions is accelerated.
 このような繊維強化樹脂組成物に使用されるマトリクス樹脂については、種々の樹脂の中でも熱可塑性樹脂が、生産性及び汎用性に優れることからその利用が注目されている。 Among matrix resins used for such fiber-reinforced resin compositions, thermoplastic resins among various resins are attracting attention because they are excellent in productivity and versatility.
 繊維強化樹脂組成物の成形法として、射出成形法、プレス成形法、RTM(Resin Transfer Molding)法、オートクレーブ法、プリプレグ法等が挙げられる。この中でも射出成形法は、成形速度が高い(生産性が高い)ことから成形工程におけるコストが低く、また複雑な形状の成形が容易であることから、生産性及び製造コストの点で優れている。 The molding method of the fiber reinforced resin composition may, for example, be an injection molding method, a press molding method, a RTM (Resin Transfer Molding) method, an autoclave method or a prepreg method. Among them, the injection molding method is excellent in productivity and manufacturing cost because the molding speed is high (high productivity) and the cost in the molding process is low, and molding of a complicated shape is easy. .
 このような繊維強化樹脂組成物の構造体(成形体)に用いる繊維には、構造体(成形体)の高剛性、高強度及び耐衝撃性等の性能が要求されることから、ガラス繊維(GF)、炭素繊維(CF)等が幅広く適用されている。しかしながら、ガラス繊維、炭素繊維等の無機繊維は、製造時に多大なエネルギーを消費することに加えて、廃棄及びリサイクルシステムが未だ充分には確立されていない。 Fibers used for the structure (molded body) of such a fiber-reinforced resin composition are required to have performances such as high rigidity, high strength and impact resistance of the structure (molded body). GF), carbon fiber (CF), etc. are widely applied. However, inorganic fibers such as glass fibers, carbon fibers, etc., in addition to consuming a great deal of energy at the time of production, a disposal and recycling system has not yet been fully established.
 そこで、更に構造体の軽量化も考えて、これらの無機繊維よりも比重の小さな天然繊維を用いた天然繊維強化樹脂、無機繊維と天然繊維とを併用した繊維強化樹脂組成物等が提案されている。 Therefore, considering the weight reduction of the structure, a natural fiber reinforced resin using natural fibers having a smaller specific gravity than these inorganic fibers, a fiber reinforced resin composition using inorganic fibers and natural fibers in combination, etc. have been proposed. There is.
 特許文献1には、微細セルロース繊維又はガラス繊維を含有する樹脂組成物が開示されている。 Patent Document 1 discloses a resin composition containing fine cellulose fibers or glass fibers.
 特許文献2には、炭素繊維及び樹脂を含む複合樹脂組成物が開示され、更に木材繊維、木綿等の天然繊維を複合してもよいことが開示されている。 Patent Document 2 discloses a composite resin composition containing carbon fibers and a resin, and further discloses that natural fibers such as wood fibers and cotton may be combined.
 特許文献3には、ガラス繊維、セルロース及び熱可塑性樹脂からなる組成物が開示されている。 Patent Document 3 discloses a composition comprising glass fiber, cellulose and a thermoplastic resin.
 特許文献4には、熱可塑性樹脂と、ガラス繊維1~6重量%と、繊維長が0.3mm以下の植物繊維10~40重量%とを含有する樹脂成形体が開示されている。 Patent Document 4 discloses a resin molded article containing a thermoplastic resin, 1 to 6% by weight of glass fiber, and 10 to 40% by weight of vegetable fiber having a fiber length of 0.3 mm or less.
 特許文献5には、ポリオレフィン、及びガラス繊維に加えて、粒度が約2~500μmの木粉、セルロース繊維、金属粉、酸化物等の群から選択される充填剤を含む複合材料が開示されている。 Patent Document 5 discloses a composite material comprising, in addition to a polyolefin and glass fiber, a filler having a particle size selected from the group of wood powder, cellulose fiber, metal powder, oxide, etc. of about 2 to 500 μm. There is.
 特許文献6には、炭素繊維、ガラス繊維等の無機繊維、ケナフ、セルロース繊維等の植物系繊維、ポリビニルアルコール繊維、ポリイミド繊維等の合成繊維からなる群から選ばれる少なくとも1種の繊維(フィラー)と生分解性高分子とを混練してなる組成物が開示されている。 Patent Document 6 discloses at least one fiber (filler) selected from the group consisting of inorganic fibers such as carbon fibers and glass fibers, vegetable fibers such as kenaf and cellulose fibers, and synthetic fibers such as polyvinyl alcohol fibers and polyimide fibers. And a biodegradable polymer are disclosed.
 特許文献7には、炭素繊維、ケナフ、麻、セルロース系の植物繊維及びバイオマス樹脂を含む繊維強化樹脂成形体が開示され、使用される植物繊維の平均直径は5μm~30μmであることが開示されている。 Patent Document 7 discloses a fiber-reinforced resin molded article containing carbon fiber, kenaf, hemp, cellulose-based plant fiber and biomass resin, and discloses that the average diameter of plant fiber used is 5 μm to 30 μm. ing.
 特許文献8及び9には、ポリアミド11と、シリカ、ウォラストナイト、植物繊維、ガラスフレーク、ガラス繊維、及びタルクからなる群から選択された少なくとも1種類の添加物とからなる植物系樹脂含有組成物が開示されている。 Patent documents 8 and 9 have a plant-based resin-containing composition comprising polyamide 11, and at least one additive selected from the group consisting of silica, wollastonite, vegetable fibers, glass flakes, glass fibers, and talc. Objects are disclosed.
 上記特許文献1~9は、ガラス繊維、炭素繊維等の無機繊維とセルロース繊維(植物繊維)とを繊維強化樹脂組成物に使用できることを開示している。しかしながら、上記特許文献1~9では、ガラス繊維、炭素繊維等の無機繊維とフィブリル化されたセルロース繊維(フィブリル化された植物繊維)とを併用することについて具体的に記載されてもいなければ、その併用により奏される効果についても記載されていない。 The above Patent Documents 1 to 9 disclose that inorganic fibers such as glass fibers and carbon fibers and cellulose fibers (plant fibers) can be used in a fiber reinforced resin composition. However, in the above Patent Documents 1 to 9, if using in combination inorganic fibers such as glass fibers and carbon fibers and fibrillated cellulose fibers (fibrillated plant fibers) is not specifically described, No mention is also made of the effects exerted by the combined use.
 特許文献10には、20~79質量%の半芳香族ポリアミド、1~15質量%の少なくとも1つの耐衝撃性改良剤、20~60質量%の炭素繊維、及び0~5質量%の添加剤(ガラス繊維、鉱物粉末等)を含む、ポリアミド成形用組成物が開示されている。しかしながら、特許文献10の組成物は、セルロース系繊維を含有するものではない。 Patent document 10 describes 20 to 79% by weight of semiaromatic polyamide, 1 to 15% by weight of at least one impact modifier, 20 to 60% by weight of carbon fibers, and 0 to 5% by weight of additives. Disclosed is a polyamide molding composition containing (glass fiber, mineral powder, etc.). However, the composition of Patent Document 10 does not contain cellulosic fibers.
 特許文献11には、生物起源の強化材(植物繊維、動物繊維、生物起源のポリマー、生物起源の炭素繊維、生物起源のカーボンナノチューブ等)と芳香族ポリアミドとを含有する組成物が開示され、植物繊維としてセルロースミクロフィブリルを使用した実施例が記載されている。しかしながら、特許文献11には、無機繊維(炭素繊維又はガラス繊維等)とミクロフィブリル化セルロースとを併用した組成物は記載されておらず、また二種の繊維を併用した場合の効果についても記載されていない。 Patent Document 11 discloses a composition containing a biogenic reinforcing material (plant fiber, animal fiber, biogenic polymer, biogenic carbon fiber, biogenic carbon nanotube, etc.) and an aromatic polyamide, An example is described using cellulose microfibrils as plant fibers. However, Patent Document 11 does not describe a composition in which inorganic fibers (carbon fibers or glass fibers, etc.) and microfibrillated cellulose are used in combination, and also describes the effect of using two types of fibers in combination. It has not been.
 特許文献12及び13には、ガラス繊維、セルロース繊維、炭素繊維及びその組み合わせを含むエポキシ樹脂組成物が開示されている。しかしながら、特許文献12及び13に記載されている発明は、セルロース繊維として、ミクロフィブリル化セルロース又は化学修飾セルロースを使用する技術ではない。 Patent Documents 12 and 13 disclose epoxy resin compositions containing glass fibers, cellulose fibers, carbon fibers and combinations thereof. However, the inventions described in Patent Documents 12 and 13 do not use microfibrillated cellulose or chemically modified cellulose as cellulose fibers.
 特許文献14は、発明者の中に本発明者が含まれる特許である。特許文献14には、特定の置換度のカルボキシアルキル基で修飾された、ミクロフィブリル化セルロース繊維を含有する、繊維強化熱硬化樹脂が開示されている。 Patent Document 14 is a patent in which the inventor is included by the inventor. Patent Document 14 discloses a fiber-reinforced thermosetting resin containing microfibrillated cellulose fibers modified with a carboxyalkyl group having a specific degree of substitution.
 特許文献15は、発明者の中に本発明者が含まれる特許である。特許文献15には、アセチル基で修飾されたミクロフィブリル化セルロース繊維又はミクロフィブリル化リグノセルロース繊維を含有する、繊維強化熱可塑性樹脂が開示されている。 Patent Document 15 is a patent including the inventor of the present invention. Patent Document 15 discloses a fiber-reinforced thermoplastic resin containing microfibrillated cellulose fibers or microfibrillated lignocellulose fibers modified with an acetyl group.
 しかしながら、特許文献14及び15には、ガラス繊維又は炭素繊維を含む樹脂組成物について開示されていない。 However, Patent Documents 14 and 15 do not disclose a resin composition containing glass fiber or carbon fiber.
特開2013-181084号公報JP, 2013-181084, A 特開2014-101459号公報Unexamined-Japanese-Patent No. 2014-101459 特開2010-155970号公報JP, 2010-155970, A 特再公表2013-183440号公報Special republication 2013-183440 gazette 特開平11-323036号公報Japanese Patent Application Publication No. 11-323036 特開2005-138458号公報JP 2005-138458 A 特再公表2008-105225号公報Japanese Patent Publication No. 2008-105225 特開2011-236443号公報JP 2011-236443 A 特再公表2007-34905号公報Japanese Patent Publication No. 2007-34905 特表2016-538390号公報Japanese Patent Application Publication No. 2016-538390 特表2012-509381号公報Japanese Patent Application Publication No. 2012-509381 特表2014-517126号公報Japanese Patent Application Publication No. 2014-517126 特開2014-118576号公報JP, 2014-118576, A 特許第5622412号(特開2011-195738号公報)Patent No. 5622412 (Japanese Unexamined Patent Application Publication No. 2011-195738) 特許第6091589号(特開2016-176052号公報)Patent No. 6091589 (Unexamined-Japanese-Patent No. 2016-176052)
 上記の各文献には(1)化学修飾ミクロフィブリル化セルロース繊維又は化学修飾ミクロフィブリル化リグノセルロース繊維と(2)ガラス繊維、炭素繊維等の無機繊維とを含有する繊維強化樹脂組成物について開示されておらず、また、(1)化学修飾ミクロフィブリル化セルロース繊維又は化学修飾ミクロフィブリル化リグノセルロース繊維と(2)ガラス繊維、炭素繊維等の無機繊維とを、樹脂組成物の強化材として併用した場合の効果についての具体的な開示もない。 Each of the above documents discloses a fiber reinforced resin composition containing (1) chemically modified microfibrillated cellulose fibers or chemically modified microfibrillated lignocellulose fibers and (2) inorganic fibers such as glass fibers and carbon fibers. And (1) chemically modified microfibrillated cellulose fibers or chemically modified microfibrillated lignocellulose fibers and (2) inorganic fibers such as glass fibers and carbon fibers in combination as a reinforcing material for the resin composition There is no specific disclosure about the effects of the case.
 本発明は、軽量で、且つ強度特性に優れる、繊維強化樹脂組成物、その成形体及びその製造方法を提供することを目的とする。 An object of the present invention is to provide a fiber-reinforced resin composition, a molded article thereof, and a method of producing the same, which are light in weight and excellent in strength properties.
 本発明の目的は、(A)特定の化学修飾ミクロフィブリル化セルロース系繊維、(B)無機フィラー、及び(C)熱可塑性樹脂を含有することを特徴とする繊維強化樹脂組成物、並びにその成形体、並びにそれらの製造方法によって達成される。 An object of the present invention is a fiber-reinforced resin composition comprising (A) a specific chemically modified microfibrillated cellulose fiber, (B) an inorganic filler, and (C) a thermoplastic resin, and a molding thereof Achieved by the body, as well as their method of manufacture.
 本発明で使用される用語は夫々、次の意味を有する。 Each of the terms used in the present invention has the following meaning.
 「セルロース系高分子」は、セルロース、ホロセルロース及びリグノセルロースからなる群から選ばれる少なくとも1種類の高分子を意味し、一般式「(Lg)Cell-OH」で表示する。ここで、「(Lg)Cell-」は、セルロース、ホロセルロース及びリグノセルロースからなる高分子群から選ばれる少なくとも1種類の高分子を構成する多糖及びリグニンから水酸基を除いた残基を意味する。 The “cellulose-based polymer” means at least one polymer selected from the group consisting of cellulose, holocellulose and lignocellulose, and is represented by the general formula “(Lg) Cell-OH”. Here, “(Lg) Cell-” means a polysaccharide from which at least one polymer selected from the group of polymers consisting of cellulose, holocellulose and lignocellulose is removed, and residues obtained by removing hydroxyl groups from lignin.
 「セルロース系繊維」は、セルロース、ホロセルロース及びリグノセルロースからなる群から選ばれる少なくとも1種類の高分子で構成される繊維を意味する。即ち、本発明で言うセルロース系繊維とは、セルロース系高分子「(Lg)Cell-OH」からなる繊維を意味する。 "Cellulose-based fiber" means a fiber composed of at least one polymer selected from the group consisting of cellulose, holocellulose and lignocellulose. That is, the cellulose-based fiber referred to in the present invention means a fiber composed of a cellulose-based polymer "(Lg) Cell-OH".
 「ミクロフィブリル化セルロース系繊維」は、セルロース系繊維がミクロフィブリル化されたものを意味する。以下、「ミクロフィブリル化セルロース系繊維」を「MFC」と記載することもある。 The "microfibrillated cellulosic fiber" means that the cellulosic fiber is microfibrillated. Hereinafter, "microfibrillated cellulosic fibers" may be described as "MFC".
 「化学修飾セルロース系繊維」は、セルロース系繊維を構成する「(Lg)Cell-OH」中のセルロース、ホロセルロース及び/又はリグノセルロースを構成する多糖及びリグニン中の一部の水酸基の水素原子が官能基(R)により置換された高分子からなる繊維を意味する。本明細書では「化学修飾セルロース系繊維」を「(Lg)Cell-O-R」と表記する。 The “chemically modified cellulose-based fiber” is a cellulose in “(Lg) Cell-OH” constituting cellulose-based fiber, a polysaccharide constituting holocellulose and / or lignocellulose, and a hydrogen atom of a part of hydroxyl groups in lignin A fiber consisting of a polymer substituted by a functional group (R) is meant. In the present specification, “chemically modified cellulosic fiber” is described as “(Lg) Cell-O-R”.
 「化学修飾ミクロフィブリル化セルロース系繊維」は、化学修飾セルロース系繊維がミクロフィブリル化された状態の繊維を意味する。また、ミクロフィブリル化セルロース系繊維中のセルロース、ホロセルロース及び/又はリグノセルロースを構成する多糖及びリグニン中の一部の水酸基の水素原子が官能基(R)により置換された繊維でもある。以下、「化学修飾ミクロフィブリル化セルロース系繊維」を「化学修飾MFC」と記載することもある。 The "chemically modified microfibrillated cellulosic fiber" means a fiber in a state where the chemically modified cellulosic fiber is microfibrillated. In addition, it is also a cellulose in microfibrillated cellulose-based fibers, a polysaccharide constituting holocellulose and / or lignocellulose, and a fiber in which a hydrogen atom of a part of hydroxyl groups in lignin is substituted by a functional group (R). Hereinafter, "chemically modified microfibrillated cellulose fiber" may be described as "chemically modified MFC".
 「リグノセルロース」は、リグニン含有量の多少にかかわらず植物中に存在するリグニンとセルロースが結合した物質、及び/又は、リグニンとセルロースとの混合物を意味する。以下、「リグノセルロース」を「LC」と記載することもある。 "Lignocellulose" means a substance in which lignin and cellulose are present in plants regardless of the lignin content, and / or a mixture of lignin and cellulose. Hereinafter, "lignocellulose" may be described as "LC".
 「リグノパルプ」は、リグノセルロースを含有するパルプを意味する。以下、「リグノパルプ」を「LP」と記載することもある。 "Lignopulp" means a pulp containing lignocellulose. Hereinafter, "ligno pulp" may be described as "LP".
 「セルロース系パルプ」は、植物から分離した、セルロース系高分子からなる繊維を意味する。これには、リグニンを含まないパルプ(セルロースからなるパルプ、ホロセルロースからなるパルプ等)及びリグニンを含むパルプ(リグノパルプ)が包含される。以下、「セルロース系パルプ」を「CP」と記載することもある。 "Cellulose-based pulp" means fibers made of a cellulose-based polymer separated from plants. This includes lignin-free pulp (cellulose pulp, holocellulose pulp, etc.) and lignin pulp (ligno pulp). Hereinafter, "cellulose-based pulp" may be described as "CP".
 本発明は、下記の各項に記載の、化学修飾ミクロフィブリル化セルロース系繊維及び無機フィラーを含有する繊維強化樹脂組成物、その成形体及びその製造方法に関する。 The present invention relates to a fiber reinforced resin composition containing a chemically modified microfibrillated cellulose fiber and an inorganic filler according to the following items, a molded article thereof and a method of producing the same.
 繊維強化樹脂組成物
 項1. 繊維強化樹脂組成物であって、
 当該繊維強化樹脂組成物は、(A)化学修飾ミクロフィブリル化セルロース系繊維、(B)無機フィラー及び(C)熱可塑性樹脂を含有し、
 前記(A)化学修飾ミクロフィブリル化セルロース系繊維及び前記(B)無機フィラーが下記(a)及び(b)の要件を満たす繊維強化樹脂組成物:
 (a)(A)化学修飾ミクロフィブリル化セルロース系繊維が、
  下式(1):
  (Lg)Cell-O-R・・・・(1)
  〔式中、(Lg)Cell-は、セルロース系高分子中のセルロース、ホロセルロース及び/又はリグノセルロースを構成する多糖及びリグニンから水酸基を除いた残基を示す。
  式中、-O-Rは、セルロース系高分子中のセルロース、ホロセルロース及び/又はリグノセルロースを構成する多糖及びリグニン中の一部の水酸基の水素原子が置換基Rにより置換されていることを示す。
  式中、Rは、炭素数2~4のアシル基、-(CH2)n-1COOH、-CO(CH2)nCOOH、-COCH=CHCOOH、-(CH2)n-1COO-X+、-CO(CH2)nCOO-X+及び-COCH=CHCOO-X+からなる群から選ばれる1種又は2種以上を示し、nは2~4の整数を示す。前記COO-X+は、カルボキシ基が無機又は有機塩の状態になった基を示す。〕
 で表される化学修飾セルロース系高分子で構成される繊維のミクロフィブリル化繊維である。
 (b)(B)無機フィラーが、ガラス繊維、グラスウール、炭素繊維、ガラス微細粉、カーボンブラック、カーボンナノチューブ、グラフェン、カオリン及びナノクレイからなる群から選ばれる1種又は2種以上のフィラーである。
Fiber reinforced resin composition Item 1. A fiber reinforced resin composition,
The fiber reinforced resin composition contains (A) chemically modified microfibrillated cellulose fiber, (B) an inorganic filler and (C) a thermoplastic resin,
A fiber reinforced resin composition wherein the (A) chemically modified microfibrillated cellulose fiber and the (B) inorganic filler satisfy the following requirements (a) and (b):
( A ) (A) Chemically modified microfibrillated cellulosic fibers are
The following formula (1):
(Lg) Cell-OR (1)
[Wherein, (Lg) Cell- represents a residue of cellulose, holocellulose and / or polysaccharide constituting lignocellulose and lignin from which hydroxyl group has been removed, in a cellulose polymer.
In the formula, —OR indicates that a hydrogen atom of a part of hydroxyl groups in cellulose, holocellulose and / or polysaccharides constituting lignocellulose and lignin in the cellulose polymer is substituted by a substituent R.
In the formula, R represents an acyl group having 2 to 4 carbon atoms,-(CH 2 ) n-1 COOH, -CO (CH 2 ) n COOH, -COCH = CHCOOH,-(CH 2 ) n-1 COO - X This represents one or more selected from the group consisting of + , -CO (CH 2 ) n COO - X + and -COCH = CHCOO - X + , and n represents an integer of 2 to 4. The COO X + represents a group in which the carboxy group is in the form of an inorganic or organic salt. ]
It is a microfibrillated fiber of the fiber comprised from chemically modified cellulose polymer represented by these.
(B) (B) The inorganic filler is one or more fillers selected from the group consisting of glass fiber, glass wool, carbon fiber, glass fine powder, carbon black, carbon nanotube, graphene, kaolin and nanoclay.
 項2.
 前記(a)要件の式(1)におけるRが、アセチル基、プロピオニル基、カルボキシメチル基、カルボキシメチル基の塩、カルボキシエチル基、カルボキシエチル基の塩、カルボキシエチルカルボニル基、カルボキシエチルカルボニル基の塩、カルボキシビニルカルボニル基、又はカルボキシビニルカルボニル基の塩である、前記項1に記載の繊維強化樹脂組成物。
Item 2.
In the formula (1) of the requirement (a), R is an acetyl group, a propionyl group, a carboxymethyl group, a salt of a carboxymethyl group, a carboxyethyl group, a salt of a carboxyethyl group, a carboxyethyl carbonyl group or a carboxyethyl carbonyl group The fiber reinforced resin composition according to item 1, which is a salt, a carboxyvinylcarbonyl group, or a salt of a carboxyvinylcarbonyl group.
 項3.
 前記(a)要件の式(1)におけるRが、アセチル基である前記項1又は2に記載の繊維強化樹脂組成物。
Item 3.
The fiber reinforced resin composition according to Item 1 or 2, wherein R in Formula (1) of the requirement (a) is an acetyl group.
 項4.
 前記(b)要件の(B)無機フィラーが、ガラス繊維又は炭素繊維である、前記項1~3のいずれかに記載の繊維強化樹脂組成物。
Item 4.
The fiber reinforced resin composition according to any one of Items 1 to 3, wherein the inorganic filler (B) in the requirement (b) is glass fiber or carbon fiber.
 項5.
 前記(a)要件の式(1)における(Lg)Cell-が、リグノセルロースを構成する多糖及びリグニンから水酸基を除いた残基である、前記項1~4のいずれかに記載の繊維強化樹脂組成物。
Item 5.
The fiber-reinforced resin according to any one of the above items 1 to 4, wherein (Lg) Cell- in the formula (1) of the requirement (a) is a residue from which a hydroxyl group is removed from a polysaccharide and lignin constituting lignocellulose Composition.
 項6.
 前記(C)熱可塑性樹脂が、ポリアミド、ポリオレフィン、脂肪族ポリエステル、芳香族ポリエステル、ポリアセタール、ポリカーボネート、ポリスチレン、アクリロニトリル-ブタジエン-スチレン共重合体(ABS樹脂)、ポリカーボネート-ABSアロイ(PC-ABSアロイ)及び変性ポリフェニレンエーテル(m-PPE)からなる群から選ばれる少なくとも1種の樹脂である、前記項1~5のいずれかに記載の繊維強化樹脂組成物。
Item 6.
The (C) thermoplastic resin is polyamide, polyolefin, aliphatic polyester, aromatic polyester, polyacetal, polycarbonate, polystyrene, acrylonitrile-butadiene-styrene copolymer (ABS resin), polycarbonate-ABS alloy (PC-ABS alloy) 6. The fiber reinforced resin composition according to any one of items 1 to 5, which is at least one resin selected from the group consisting of modified polyphenylene ether (m-PPE).
 成形体
 項7.
 前記項1~6のいずれかに記載の繊維強化樹脂組成物からなる成形体。
Item 7. Molded Item
7. A molded article comprising the fiber reinforced resin composition according to any one of items 1 to 6.
 繊維強化樹脂組成物の製造方法
 項8.
 繊維強化樹脂組成物の製造方法であって、
 (i)下式(1):
  (Lg)Cell-O-R・・・・(1)
  〔式中、(Lg)Cell-は、セルロース系高分子中のセルロース、ホロセルロース及び/又はリグノセルロースを構成する多糖及びリグニンから水酸基を除いた残基を示す。
  式中、-O-Rは、セルロース系高分子中のセルロース、ホロセルロース及び/又はリグノセルロースを構成する多糖及びリグニン中の一部の水酸基の水素原子が置換基Rにより置換されていることを示す。
  式中、Rは、炭素数2~4のアシル基、-(CH2)n-1COOH、-CO(CH2)nCOOH、-COCH=CHCOOH、-(CH2)n-1COO-X+、-CO(CH2)nCOO-X+及び-COCH=CHCOO-X+からなる群から選ばれる1種又は2種以上を示し、nは2~4の整数を示す。前記COO-X+は、カルボキシ基が無機又は有機塩の状態になった基を示す。〕
 で表される化学修飾セルロース系高分子からなる化学修飾セルロース系パルプ、
 (ii)(B)無機フィラー、及び
 (iii)(C)熱可塑性樹脂
を溶融混練することで、(A)化学修飾ミクロフィブリル化セルロース系繊維、(B)無機フィラー及び(C)熱可塑性樹脂を含有する繊維強化樹脂組成物を製造する方法であり、 前記(A)化学修飾ミクロフィブリル化セルロース系繊維及び前記(B)無機フィラーが下記(a)及び(b)の要件を満たす繊維強化樹脂組成物の製造方法:
 (a)(A)化学修飾ミクロフィブリル化セルロース系繊維が、下式(1):
  (Lg)Cell-O-R・・・・(1)
  〔式中、(Lg)Cell-は、セルロース系高分子中のセルロース、ホロセルロース及び/又はリグノセルロースを構成する多糖及びリグニンから水酸基を除いた残基を示す。
  式中、-O-Rは、セルロース系高分子中のセルロース、ホロセルロース及び/又はリグノセルロースを構成する多糖及びリグニン中の一部の水酸基の水素原子が置換基Rにより置換されていることを示す。
  式中、Rは、炭素数2~4のアシル基、-(CH2)n-1COOH、-CO(CH2)nCOOH、-COCH=CHCOOH、-(CH2)n-1COO-X+、-CO(CH2)nCOO-X+及び-COCH=CHCOO-X+からなる群から選ばれる1種又は2種以上を示し、nは2~4の整数を示す。前記COO-X+は、カルボキシ基が無機又は有機塩の状態になった基を示す。〕
 で表される化学修飾セルロース系高分子で構成される繊維のミクロフィブリル化繊維である。
 (b)(B)無機フィラーが、ガラス繊維、グラスウール、炭素繊維、ガラス微細粉、カーボンブラック、カーボンナノチューブ、グラフェン、カオリン及びナノクレイからなる群から選ばれる1種又は2種以上のフィラーである。
Method for producing fiber reinforced resin composition
A method of producing a fiber reinforced resin composition, comprising
(I) The following equation (1):
(Lg) Cell-OR (1)
[Wherein, (Lg) Cell- represents a residue of cellulose, holocellulose and / or polysaccharide constituting lignocellulose and lignin from which hydroxyl group has been removed, in a cellulose polymer.
In the formula, —OR indicates that a hydrogen atom of a part of hydroxyl groups in cellulose, holocellulose and / or polysaccharides constituting lignocellulose and lignin in the cellulose polymer is substituted by a substituent R.
In the formula, R represents an acyl group having 2 to 4 carbon atoms,-(CH 2 ) n-1 COOH, -CO (CH 2 ) n COOH, -COCH = CHCOOH,-(CH 2 ) n-1 COO - X This represents one or more selected from the group consisting of + , -CO (CH 2 ) n COO - X + and -COCH = CHCOO - X + , and n represents an integer of 2 to 4. The COO X + represents a group in which the carboxy group is in the form of an inorganic or organic salt. ]
Chemically modified cellulosic pulp comprising a chemically modified cellulosic polymer represented by
By melt-kneading (ii) (B) inorganic filler and (iii) (C) thermoplastic resin, (A) chemically modified microfibrillated cellulose fiber, (B) inorganic filler and (C) thermoplastic resin A fiber-reinforced resin composition comprising: a) a chemically-modified microfibrillated cellulosic fiber according to the above (A), and a fiber-reinforced resin according to the above-mentioned (B): an inorganic filler satisfying the following requirements (a) and (b): Method of producing the composition:
( A ) (A) Chemically Modified Microfibrillated Cellulosic Fibers Containing the Following Formula (1):
(Lg) Cell-OR (1)
[Wherein, (Lg) Cell- represents a residue of cellulose, holocellulose and / or polysaccharide constituting lignocellulose and lignin from which hydroxyl group has been removed, in a cellulose polymer.
In the formula, —OR indicates that a hydrogen atom of a part of hydroxyl groups in cellulose, holocellulose and / or polysaccharides constituting lignocellulose and lignin in the cellulose polymer is substituted by a substituent R.
In the formula, R represents an acyl group having 2 to 4 carbon atoms,-(CH 2 ) n-1 COOH, -CO (CH 2 ) n COOH, -COCH = CHCOOH,-(CH 2 ) n-1 COO - X This represents one or more selected from the group consisting of + , -CO (CH 2 ) n COO - X + and -COCH = CHCOO - X + , and n represents an integer of 2 to 4. The COO X + represents a group in which the carboxy group is in the form of an inorganic or organic salt. ]
It is a microfibrillated fiber of the fiber comprised from chemically modified cellulose polymer represented by these.
(B) (B) The inorganic filler is one or more fillers selected from the group consisting of glass fiber, glass wool, carbon fiber, glass fine powder, carbon black, carbon nanotube, graphene, kaolin and nanoclay.
 項8(2).
 前記項1~6のいずれかに記載の繊維強化樹脂組成物の製造方法であって、
 (i)下式(1):
  (Lg)Cell-O-R・・・・(1)
  〔式中、(Lg)Cell-は、セルロース系高分子中のセルロース、ホロセルロース及び/又はリグノセルロースを構成する多糖及びリグニンから水酸基を除いた残基を示す。
  式中、-O-Rは、セルロース系高分子中のセルロース、ホロセルロース及び/又はリグノセルロースを構成する多糖及びリグニン中の一部の水酸基の水素原子が置換基Rにより置換されていることを示す。
  式中、Rは、炭素数2~4のアシル基、-(CH2)n-1COOH、-CO(CH2)nCOOH、-COCH=CHCOOH、-(CH2)n-1COO-X+、-CO(CH2)nCOO-X+及び-COCH=CHCOO-X+からなる群から選ばれる1種又は2種以上を示し、nは2~4の整数を示す。前記COO-X+は、カルボキシ基が無機又は有機塩の状態になった基を示す。〕
 で表される化学修飾セルロース系高分子からなる化学修飾セルロース系パルプ、
 (ii)(B)無機フィラー、及び
 (iii)(C)熱可塑性樹脂
を溶融混練することで、(A)化学修飾ミクロフィブリル化セルロース系繊維、(B)無機フィラー及び(C)熱可塑性樹脂を含有する繊維強化樹脂組成物を製造する方法であり、 前記(A)化学修飾ミクロフィブリル化セルロース系繊維及び前記(B)無機フィラーが前記(a)及び(b)の要件を満たす繊維強化樹脂組成物の製造方法。
Item 8 (2).
7. A method for producing a fiber reinforced resin composition according to any one of items 1 to 6 above,
(I) The following equation (1):
(Lg) Cell-OR (1)
[Wherein, (Lg) Cell- represents a residue of cellulose, holocellulose and / or polysaccharide constituting lignocellulose and lignin from which hydroxyl group has been removed, in a cellulose polymer.
In the formula, —OR indicates that a hydrogen atom of a part of hydroxyl groups in cellulose, holocellulose and / or polysaccharides constituting lignocellulose and lignin in the cellulose polymer is substituted by a substituent R.
In the formula, R represents an acyl group having 2 to 4 carbon atoms,-(CH 2 ) n-1 COOH, -CO (CH 2 ) n COOH, -COCH = CHCOOH,-(CH 2 ) n-1 COO - X This represents one or more selected from the group consisting of + , -CO (CH 2 ) n COO - X + and -COCH = CHCOO - X + , and n represents an integer of 2 to 4. The COO X + represents a group in which the carboxy group is in the form of an inorganic or organic salt. ]
Chemically modified cellulosic pulp comprising a chemically modified cellulosic polymer represented by
By melt-kneading (ii) (B) inorganic filler and (iii) (C) thermoplastic resin, (A) chemically modified microfibrillated cellulose fiber, (B) inorganic filler and (C) thermoplastic resin A fiber-reinforced resin composition containing the (A) chemically-modified microfibrillated cellulosic fiber and the (B) inorganic filler satisfying the requirements of the (a) and (b). Method of making the composition.
 項9.
 繊維強化樹脂組成物の製造方法であって、
 工程(1):
 下式(1):
  (Lg)Cell-O-R・・・・(1)
  〔式中、(Lg)Cell-は、セルロース系高分子中のセルロース、ホロセルロース及び/又はリグノセルロースを構成する多糖及びリグニンから水酸基を除いた残基を示す。
  式中、-O-Rは、セルロース系高分子中のセルロース、ホロセルロース及び/又はリグノセルロースを構成する多糖及びリグニン中の一部の水酸基の水素原子が置換基Rにより置換されていることを示す。
  式中、Rは、炭素数2~4のアシル基、-(CH2)n-1COOH、-CO(CH2)nCOOH、-COCH=CHCOOH、-(CH2)n-1COO-X+、-CO(CH2)nCOO-X+及び-COCH=CHCOO-X+からなる群から選ばれる1種又は2種以上を示し、nは2~4の整数を示す。前記COO-X+は、カルボキシ基が無機又は有機塩の状態になった基を示す。〕
 で表される化学修飾セルロース系高分子からなる化学修飾セルロース系パルプ、及び (C)熱可塑性樹脂を混練する工程、及び
 工程(2):
 前記工程(1)で得られた混練物と、(B)無機フィラーと熱可塑性樹脂とを含む樹脂組成物とを溶融混練する工程
を含む方法により、(A)化学修飾ミクロフィブリル化セルロース系繊維、(B)無機フィラー及び(C)熱可塑性樹脂を含有する繊維強化樹脂組成物を製造する方法であり、
 前記(A)化学修飾ミクロフィブリル化セルロース系繊維及び前記(B)無機フィラーが下記(a)及び(b)の要件を満たす繊維強化樹脂組成物の製造方法:
 (a)(A)化学修飾ミクロフィブリル化セルロース系繊維が、下式(1):
  (Lg)Cell-O-R・・・・(1)
  〔式中、(Lg)Cell-は、セルロース系高分子中のセルロース、ホロセルロース及び/又はリグノセルロースを構成する多糖及びリグニンから水酸基を除いた残基を示す。
  式中、-O-Rは、セルロース系高分子中のセルロース、ホロセルロース及び/又はリグノセルロースを構成する多糖及びリグニン中の一部の水酸基の水素原子が置換基Rにより置換されていることを示す。
  式中、Rは、炭素数2~4のアシル基、-(CH2)n-1COOH、-CO(CH2)nCOOH、-COCH=CHCOOH、-(CH2)n-1COO-X+、-CO(CH2)nCOO-X+及び-COCH=CHCOO-X+からなる群から選ばれる1種又は2種以上を示し、nは2~4の整数を示す。前記COO-X+は、カルボキシ基が無機又は有機塩の状態になった基を示す。〕
 で表される化学修飾セルロース系高分子で構成される繊維のミクロフィブリル化繊維である。
 (b)(B)無機フィラーが、ガラス繊維、グラスウール、炭素繊維、ガラス微細粉、カーボンブラック、カーボンナノチューブ、グラフェン、カオリン及びナノクレイからなる群から選ばれる1種又は2種以上のフィラーである。
Item 9.
A method of producing a fiber reinforced resin composition, comprising
Process (1):
The following formula (1):
(Lg) Cell-OR (1)
[Wherein, (Lg) Cell- represents a residue of cellulose, holocellulose and / or polysaccharide constituting lignocellulose and lignin from which hydroxyl group has been removed, in a cellulose polymer.
In the formula, —OR indicates that a hydrogen atom of a part of hydroxyl groups in cellulose, holocellulose and / or polysaccharides constituting lignocellulose and lignin in the cellulose polymer is substituted by a substituent R.
In the formula, R represents an acyl group having 2 to 4 carbon atoms,-(CH 2 ) n-1 COOH, -CO (CH 2 ) n COOH, -COCH = CHCOOH,-(CH 2 ) n-1 COO - X This represents one or more selected from the group consisting of + , -CO (CH 2 ) n COO - X + and -COCH = CHCOO - X + , and n represents an integer of 2 to 4. The COO X + represents a group in which the carboxy group is in the form of an inorganic or organic salt. ]
A step of kneading a chemically modified cellulose-based pulp composed of a chemically modified cellulose-based polymer represented by and (C) a thermoplastic resin, and a step (2):
(A) Chemically modified microfibrillated cellulose fiber by a method including the step of melt-kneading the kneaded product obtained in the step (1), and the resin composition containing (B) an inorganic filler and a thermoplastic resin A fiber reinforced resin composition containing (B) an inorganic filler and (C) a thermoplastic resin,
A method for producing a fiber reinforced resin composition, wherein the (A) chemically modified microfibrillated cellulose fiber and the (B) inorganic filler satisfy the following requirements (a) and (b):
( A ) (A) Chemically Modified Microfibrillated Cellulosic Fibers Containing the Following Formula (1):
(Lg) Cell-OR (1)
[Wherein, (Lg) Cell- represents a residue of cellulose, holocellulose and / or polysaccharide constituting lignocellulose and lignin from which hydroxyl group has been removed, in a cellulose polymer.
In the formula, —OR indicates that a hydrogen atom of a part of hydroxyl groups in cellulose, holocellulose and / or polysaccharides constituting lignocellulose and lignin in the cellulose polymer is substituted by a substituent R.
In the formula, R represents an acyl group having 2 to 4 carbon atoms,-(CH 2 ) n-1 COOH, -CO (CH 2 ) n COOH, -COCH = CHCOOH,-(CH 2 ) n-1 COO - X This represents one or more selected from the group consisting of + , -CO (CH 2 ) n COO - X + and -COCH = CHCOO - X + , and n represents an integer of 2 to 4. The COO X + represents a group in which the carboxy group is in the form of an inorganic or organic salt. ]
It is a microfibrillated fiber of the fiber comprised from chemically modified cellulose polymer represented by these.
(B) (B) The inorganic filler is one or more fillers selected from the group consisting of glass fiber, glass wool, carbon fiber, glass fine powder, carbon black, carbon nanotube, graphene, kaolin and nanoclay.
 項9(2).
 前記項1~6のいずれかに記載の繊維強化樹脂組成物の製造方法であって、
 工程(1):
 下式(1):
  (Lg)Cell-O-R・・・・(1)
  〔式中、(Lg)Cell-は、セルロース系高分子中のセルロース、ホロセルロース及び/又はリグノセルロースを構成する多糖及びリグニンから水酸基を除いた残基を示す。
  式中、-O-Rは、セルロース系高分子中のセルロース、ホロセルロース及び/又はリグノセルロースを構成する多糖及びリグニン中の一部の水酸基の水素原子が置換基Rにより置換されていることを示す。
  式中、Rは、炭素数2~4のアシル基、-(CH2)n-1COOH、-CO(CH2)nCOOH、-COCH=CHCOOH、-(CH2)n-1COO-X+、-CO(CH2)nCOO-X+及び-COCH=CHCOO-X+からなる群から選ばれる1種又は2種以上を示し、nは2~4の整数を示す。前記COO-X+は、カルボキシ基が無機又は有機塩の状態になった基を示す。〕
 で表される化学修飾セルロース系高分子からなる化学修飾セルロース系パルプ、及び (C)熱可塑性樹脂を混練する工程、及び
 工程(2):
 前記工程(1)で得られた混練物と、(B)無機フィラーと熱可塑性樹脂とを含む樹脂組成物とを溶融混練する工程
を含む方法により、(A)化学修飾ミクロフィブリル化セルロース系繊維、(B)無機フィラー及び(C)熱可塑性樹脂を含有する繊維強化樹脂組成物を製造する方法であり、
 前記(A)化学修飾ミクロフィブリル化セルロース系繊維及び前記(B)無機フィラーが前記(a)及び(b)の要件を満たす繊維強化樹脂組成物の製造方法。
Item 9 (2).
7. A method for producing a fiber reinforced resin composition according to any one of items 1 to 6 above,
Process (1):
The following formula (1):
(Lg) Cell-OR (1)
[Wherein, (Lg) Cell- represents a residue of cellulose, holocellulose and / or polysaccharide constituting lignocellulose and lignin from which hydroxyl group has been removed, in a cellulose polymer.
In the formula, —OR indicates that a hydrogen atom of a part of hydroxyl groups in cellulose, holocellulose and / or polysaccharides constituting lignocellulose and lignin in the cellulose polymer is substituted by a substituent R.
In the formula, R represents an acyl group having 2 to 4 carbon atoms,-(CH 2 ) n-1 COOH, -CO (CH 2 ) n COOH, -COCH = CHCOOH,-(CH 2 ) n-1 COO - X This represents one or more selected from the group consisting of + , -CO (CH 2 ) n COO - X + and -COCH = CHCOO - X + , and n represents an integer of 2 to 4. The COO X + represents a group in which the carboxy group is in the form of an inorganic or organic salt. ]
A step of kneading a chemically modified cellulose-based pulp composed of a chemically modified cellulose-based polymer represented by and (C) a thermoplastic resin, and a step (2):
(A) Chemically modified microfibrillated cellulose fiber by a method including the step of melt-kneading the kneaded product obtained in the step (1), and the resin composition containing (B) an inorganic filler and a thermoplastic resin A fiber reinforced resin composition containing (B) an inorganic filler and (C) a thermoplastic resin,
The manufacturing method of the fiber reinforced resin composition whose said (A) chemically modified microfibrillated cellulosic fiber and said (B) inorganic filler satisfy | fill the requirements of said (a) and (b).
 本発明の繊維強化樹脂組成物は、特定の化学修飾ミクロフィブリル化セルロース系繊維、及び、ガラス繊維、炭素繊維等の無機フィラーを含有する。 The fiber reinforced resin composition of the present invention contains a specific chemically modified microfibrillated cellulosic fiber and an inorganic filler such as glass fiber and carbon fiber.
 本発明の繊維強化樹脂組成物は、従来の無機フィラーのみを含有する繊維強化樹脂組成物に比べ、比重が低減し、その成形体の強度特性(弾性率及び強度)が高い。 The fiber reinforced resin composition of the present invention has a lower specific gravity than that of a fiber reinforced resin composition containing only a conventional inorganic filler, and has high strength characteristics (elastic modulus and strength) of the molded article.
 即ち、樹脂組成物に化学修飾フィブリル化セルロース系繊維と無機フィラーとの双方を含有させることによって、本発明の繊維強化樹脂組成物の成形体は、特に密度当たりの曲げ弾性率(曲げ弾性率/密度)の向上に相乗効果が認められる。 That is, by incorporating both the chemically modified fibrillated cellulose fiber and the inorganic filler in the resin composition, the molded article of the fiber-reinforced resin composition of the present invention is particularly excellent in flexural modulus per density (flexural modulus / A synergetic effect is observed in the improvement of density).
 例えば、従来のグラスファイバー(GF)20Wt%含有PA6組成物(従来品)からなる成形体の密度当たりの曲げ弾性率(MPa/組成物密度)を基準に比較したところ、本発明の組成物からなる成形体PA6-429(PA6/AcNBKP/GF = 85/5/10)、PA6-431(PA6/AcNBKP/GF = 85/10/5)、及びPA6-432(PA6/AcNBKP/GF = 80/10/10)の密度当たりの曲げ弾性率は、1.20~1.42倍である。 For example, when compared on the basis of the flexural modulus (MPa / composition density) per density of a molded article made of a conventional glass fiber (GF) 20 wt.% -Containing PA 6 composition (conventional product), the composition of the present invention , PA6-429 (PA6 / AcNBKP / GF = 85/5/10), PA6-431 (PA6 / AcNBKP / GF = 85/10/5), and PA6-432 (PA6 / AcNBKP / GF = 80 /). The flexural modulus per density of 10/10) is 1.20 to 1.42.
 更に、従来品に比べて、上記組成物からなる本発明の成形体の密度当たりの曲げ強度(MPa/組成物密度)も、1.07~1.16倍となる(後記表5参照)。 Furthermore, the bending strength (MPa / composition density) per density of the molded article of the present invention made of the above composition is 1.07 to 1.16 times as large as that of the conventional product (see Table 5 below).
 グラスウール(GW)を含む組成物についても、従来のGW20Wt%含有PA6組成物からなる成形体の密度当たりの曲げ弾性率(MPa/組成物密度)を基準に比較したところ、本発明品の組成物からなる成形体の密度当たりの曲げ弾性率(MPa/組成物密度)は1.31~1.78倍となり、密度当たりの曲げ強度(MPa/組成物密度)は1.35~1.48倍となった。 The composition containing the glass wool (GW) was also compared with the bending elastic modulus (MPa / composition density) per density of the molded article made of the conventional GW20 Wt% -containing PA6 composition, and the composition of the present invention The bending elastic modulus (MPa / composition density) per density of the formed body was 1.31 to 1.78 times, and the bending strength per density (MPa / composition density) was 1.35 to 1.48 times.
 (後記表9の試験番号参照:PA6-448 (PA6/AcNBKP/GW = 90/5/5)、PA6-449 (PA6/AcNBKP/GW = 85/5/10)、PA6-451 (PA6/AcNBKP/GW = 85/10/5)、及びPA6-452 (PA6/AcNBKP/GW = 80/10/10)。 (Refer to the test number in Table 9 below: PA6- 448 (PA6 / AcNBKP / GW = 90/5/5), PA6-449 (PA6 / AcNBKP / GW = 85/5/10), PA6-451 (PA6 / AcNBKP / GW = 85/10/5), and PA6-452 (PA6 / AcNBKP / GW = 80/10/10).
 また、本発明の繊維強化樹脂組成物は、射出成形方法により成形できるので、その成形体の生産性が高く、製造コストも安く製造することができる。 Moreover, since the fiber reinforced resin composition of this invention can be shape | molded by the injection molding method, productivity of the molded object is high and manufacturing cost can also be manufactured cheaply.
 そして、本発明の繊維強化樹脂組成物において、化学修飾フィブリル化セルロース系繊維と無機フィラーとを併用した場合には、複素粘度が低くなるので、成形加工性が良好である。 And, in the fiber reinforced resin composition of the present invention, when the chemically modified fibrillated cellulose fiber and the inorganic filler are used in combination, the complex viscosity becomes low, so the molding processability is good.
 また、本発明の繊維強化樹脂組成物は、その製造において化学修飾セルロース系繊維、無機フィラー及び樹脂を溶融混練する工程を採用することによって、溶融混練と化学修飾セルロース系繊維(化学修飾パルプ)のミクロフィブリル化とを同時に行うこともできるので、生産性も高い。 Further, the fiber reinforced resin composition of the present invention is produced by melt kneading and chemically modified cellulose fiber (chemically modified pulp) by adopting a process of melt-kneading chemically modified cellulose fiber, inorganic filler and resin in its production. Since microfibrillation can be performed simultaneously, productivity is also high.
アセチル化NBKP(AcNBKP、DS=0.69)とガラス繊維(GF)とを含有するPA6成形体の密度と曲げ弾性率との関係を示す図である。It is a figure which shows the relationship of the density of the PA6 molded object containing an acetylation NBKP (AcNBKP, DS = 0.69) and glass fiber (GF), and a bending elastic modulus. アセチル化NBKP(AcNBKP、DS=0.69)とガラス繊維(GF)とを含有するPA6成形体の密度と曲げ強度との関係を示す図である。It is a figure which shows the relationship of the density and bending strength of PA6 molded object containing acetylation NBKP (AcNBKP, DS = 0.69) and glass fiber (GF). アセチル化NBKP(AcNBKP、DS=0.67)とガラス繊維(GF)とを含有するPA6成形体の密度と曲げ弾性率との関係を示す図である。It is a figure which shows the relationship of the density of the PA6 molded object containing an acetylation NBKP (AcNBKP, DS = 0.67) and glass fiber (GF), and a bending elastic modulus. アセチル化NBKP(AcNBKP、DS=0.67)とガラス繊維(GF)とを含有するPA6成形体の密度と曲げ強度との関係を示す図である。It is a figure which shows the relationship of the density and bending strength of PA6 molded object containing acetylated NBKP (AcNBKP, DS = 0.67) and glass fiber (GF). アセチル化NBKP(AcNBKP、DS=0.67)とグラスウール(GW)とを含有するPA6成形体の密度と曲げ弾性率との関係を示す図である。It is a figure which shows the relationship of the density of the PA6 molded object containing an acetylation NBKP (AcNBKP, DS = 0.67) and glass wool (GW), and a bending elastic modulus. アセチル化NBKP(AcNBKP、DS=0.67)とグラスウール(GW)とを含有するPA6成形体の密度と曲げ強度との関係を示す図である。It is a figure which shows the relationship of the density and bending strength of PA6 molded object containing acetylation NBKP (AcNBKP, DS = 0.67) and glass wool (GW). アセチル化NBKP(AcNBKP、DS=0.67)とガラス繊維(GF)とを含有するPC-ABSアロイ成形体の密度と曲げ弾性率との関係を示す図である。It is a figure which shows the relationship of the density of the PC-ABS alloy molded object containing an acetylation NBKP (AcNBKP, DS = 0.67) and a glass fiber (GF), and a bending elastic modulus. アセチル化NBKP(AcNBKP、DS=0.67)とガラス繊維(GF)とを含有するPC-ABSアロイ成形体の密度と曲げ強度との関係を示す図である。It is a figure which shows the relationship of the density and bending strength of PC-ABS alloy molded object containing acetylation NBKP (AcNBKP, DS = 0.67) and glass fiber (GF). アセチル化NBKP(AcNBKP、DS=0.62)と炭素繊維(CF)とを含有するPA6成形体の密度と曲げ弾性率との関係を示す図である。It is a figure which shows the relationship of the density of the PA6 molded object containing an acetylation NBKP (AcNBKP, DS = 0.62) and a carbon fiber (CF), and a bending elastic modulus. アセチル化NBKP(AcNBKP、DS=0.62)と炭素繊維(CF)とを含有するPA6成形体の密度と曲げ強度との関係を示す図である。It is a figure which shows the relationship of the density of the PA6 molded object containing an acetylation NBKP (AcNBKP, DS = 0.62) and a carbon fiber (CF), and a bending strength. 試験番号PA6-430の成形体に使用したAcNBKP(PA6と溶融混練する前のAcNBKP)の電子顕微鏡観察像である。It is an electron microscope observation image of AcNBKP (AcNBKP before melt-kneading with PA6) used for the molded object of test number PA6-430. 試験番号PA6-430の成形体から調製した試料中の繊維の電子顕微鏡観察像である。It is an electron microscope observation image of the fiber in the sample prepared from the molded object of test number PA6-430. 試験番号PA6-431の成形体から調製した試料中の繊維の電子顕微鏡観察像である。It is an electron microscope observation image of the fiber in the sample prepared from the molded object of test number PA6-431. 試験番号PA6-451の成形体から調製した試料中の繊維の電子顕微鏡観察像である。It is an electron microscope observation image of the fiber in the sample prepared from the molded object of test number PA6-451.
 (1)繊維強化樹脂組成物
 本発明の繊維強化樹脂組成物は、(A)化学修飾ミクロフィブリル化セルロース系繊維、(B)無機フィラー、及び(C)熱可塑性樹脂を含有する。
(1) Fiber-Reinforced Resin Composition The fiber-reinforced resin composition of the present invention contains (A) chemically modified microfibrillated cellulose-based fiber, (B) an inorganic filler, and (C) a thermoplastic resin.
 本発明は、前記(A)化学修飾ミクロフィブリル化セルロース系繊維及び前記(B)無機フィラーが、下記(a)及び(b)の要件を満たす繊維強化樹脂組成物である。 The present invention is a fiber reinforced resin composition in which the (A) chemically modified microfibrillated cellulose fiber and the (B) inorganic filler satisfy the following requirements (a) and (b).
 要件(a)
 (A)化学修飾ミクロフィブリル化セルロース系繊維が、
  下式(1):
  (Lg)Cell-O-R・・・・(1)
  〔式中、(Lg)Cell-は、セルロース系高分子中のセルロース、ホロセルロース及び/又はリグノセルロースを構成する多糖及びリグニンから水酸基を除いた残基を示す。
  式中、-O-Rは、セルロース系高分子中のセルロース、ホロセルロース及び/又はリグノセルロースを構成する多糖及びリグニン中の一部の水酸基の水素原子が置換基Rにより置換されていることを示す。
  式中、Rは、炭素数2~4のアシル基、-(CH2)n-1COOH、-CO(CH2)nCOOH、-COCH=CHCOOH、-(CH2)n-1COO-X+、-CO(CH2)nCOO-X+及び-COCH=CHCOO-X+からなる群から選ばれる1種又は2種以上を示し、nは2~4の整数を示す。前記COO-X+は、カルボキシ基が無機又は有機塩の状態になった基を示す。〕
 で表される化学修飾セルロース系高分子で構成される繊維のミクロフィブリル化繊維である。
Requirement (a)
(A) Chemically modified microfibrillated cellulosic fibers are
The following formula (1):
(Lg) Cell-OR (1)
[Wherein, (Lg) Cell- represents a residue of cellulose, holocellulose and / or polysaccharide constituting lignocellulose and lignin from which hydroxyl group has been removed, in a cellulose polymer.
In the formula, —OR indicates that a hydrogen atom of a part of hydroxyl groups in cellulose, holocellulose and / or polysaccharides constituting lignocellulose and lignin in the cellulose polymer is substituted by a substituent R.
In the formula, R represents an acyl group having 2 to 4 carbon atoms,-(CH 2 ) n-1 COOH, -CO (CH 2 ) n COOH, -COCH = CHCOOH,-(CH 2 ) n-1 COO - X This represents one or more selected from the group consisting of + , -CO (CH 2 ) n COO - X + and -COCH = CHCOO - X + , and n represents an integer of 2 to 4. The COO X + represents a group in which the carboxy group is in the form of an inorganic or organic salt. ]
It is a microfibrillated fiber of the fiber comprised from chemically modified cellulose polymer represented by these.
 要件(b)
 (B)無機フィラーが、ガラス繊維、グラスウール、炭素繊維、ガラス微細粉、カーボンブラック、カーボンナノチューブ、グラフェン、カオリン及びナノクレイからなる群から選ばれる1種又は2種以上のフィラーである。
Requirement (b)
(B) The inorganic filler is one or more fillers selected from the group consisting of glass fiber, glass wool, carbon fiber, glass fine powder, carbon black, carbon nanotube, graphene, kaolin and nanoclay.
 (1-1)(A)化学修飾ミクロフィブリル化セルロース系繊維(化学修飾MFC)
 本発明では、セルロース、ホロセルロース及びリグノセルロースからなる群(高分子群)から選ばれる少なくとも1種の高分子を、セルロース系高分子と称し、一般式「(Lg)Cell-OH」と記載する。
(1-1) (A) Chemically modified microfibrillated cellulose fiber (chemically modified MFC)
In the present invention, at least one polymer selected from the group consisting of cellulose, holocellulose and lignocellulose (polymer group) is referred to as a cellulose-based polymer, and is described as a general formula "(Lg) Cell-OH". .
 ここで、「(Lg)Cell-」は、セルロース、ホロセルロース及びリグノセルロースからなる高分子群から選ばれる少なくとも1種類の高分子を構成する多糖及びリグニンから水酸基を除いた残基を意味する。 Here, “(Lg) Cell-” means a polysaccharide from which at least one polymer selected from the group of polymers consisting of cellulose, holocellulose and lignocellulose is removed, and residues obtained by removing hydroxyl groups from lignin.
 本発明に使用される化学修飾セルロース系繊維は、(Lg)Cell-OH中のセルロース、ホロセルロース及び/又はリグノセルロースを構成する多糖及びリグニン中の一部の水酸基の水素原子が官能基R(Rの詳細は後述する)により置換された高分子、即ち、下式(1):
  (Lg)Cell-O-R・・・・(1)
により表される化学修飾セルロース系高分子で構成される繊維である。
In the chemically modified cellulose fiber used in the present invention, the hydrogen atoms of some of the hydroxyl groups in the cellulose, holocellulose and / or polysaccharides constituting lignocellulose in (Lg) Cell-OH and lignin have functional groups R ( Details of R will be described later), that is, the following formula (1):
(Lg) Cell-OR (1)
Is a fiber composed of a chemically modified cellulose-based polymer represented by
 本発明に使用される化学修飾ミクロフィブリル化セルロース系繊維(化学修飾MFC)は、上記式(1)で表される化学修飾セルロース系繊維がミクロフィブリル化された繊維である。 The chemically modified microfibrillated cellulosic fiber (chemically modified MFC) used in the present invention is a fiber in which the chemically modified cellulosic fiber represented by the above-mentioned formula (1) is microfibrillated.
 また、本発明に使用される化学修飾MFCは、セルロース系高分子からなる繊維(セルロース系繊維)のミクロフィブリル化繊維(ミクロフィブリル化セルロース系繊維、MFC)を構成するセルロース、ホロセルロース及び/又はリグノセルロース中の多糖及びリグニンの一部の水酸基の水素原子が官能基Rにより置換された繊維でもあるということもできる。 Further, the chemically modified MFC used in the present invention is cellulose, holocellulose and / or cellulose constituting microfibrillated fibers (microfibrillated cellulose fibers, MFC) of fibers (cellulose fibers) made of a cellulose polymer It can also be said that the fibers in which some of the hydroxyl group hydrogen atoms of polysaccharides and lignin in lignocellulose are substituted by functional groups R.
 本発明に使用される化学修飾MFCは、セルロース系パルプ(CP)を化学修飾して化学修飾CPとした後に、これを解繊しミクロフィブリル化するか、又は、MFCを化学修飾することによって得ることができる(製造方法は後記を参照)。 The chemically modified MFC used in the present invention is obtained by chemically modifying cellulose pulp (CP) to form chemically modified CP and then disaggregating it and microfibrillating it, or by chemically modifying MFC. (See below for manufacturing method).
 置換基(R)
 前記の式(1)(Lg)Cell-O-R における置換基Rは、炭素数2~4のアシル基、-(CH2)n-1COOH(カルボキシアルキル基)、-CO(CH2)nCOOH(カルボキシアルキルカルボニル基)、-COCH=CHCOOH(3-カルボキシプロペノイル基)、-(CH2)n-1COO-X+(カルボキシアルキル基の塩)、-CO(CH2)nCOO-X+(カルボキシアルキルカルボニル基の塩)及び-COCH=CHCOO-X+(3-カルボキシプロペノイル基の塩)からなる群から選ばれる1種又は2種以上が好ましい。
Substituent (R)
The substituent R in the above formula (1) (Lg) Cell-OR is an acyl group having a carbon number of 2 to 4,-(CH 2 ) n-1 COOH (carboxyalkyl group), -CO (CH 2 ) n COOH (Carboxyalkyl carbonyl group), -COCH = CHCOOH (3-carboxypropenoyl group),-(CH 2 ) n-1 COO - X + (salt of carboxy alkyl group), -CO (CH 2 ) n COO - X + (salts of carboxyalkyl group), and -COCH = CHCOO - X + 1, two or more selected from the group consisting of (3-carboxy salts propenoyl group).
 前記nは2~4の整数である。 The n is an integer of 2 to 4.
 前記COO-X+は、カルボキシ基が無機又は有機塩の状態になった基を示す。 The COO X + represents a group in which the carboxy group is in the form of an inorganic or organic salt.
 置換基Rとして、炭素数2~3のアシル基(アセチル基、及びプロピオニル基)が更に好ましい。 As the substituent R, an acyl group having a carbon number of 2 to 3 (acetyl group and propionyl group) is more preferable.
 置換基Rとして、製造の容易さ及び製造コストの点からアセチル基が最も好ましい。 As the substituent R, an acetyl group is most preferable in terms of easiness of production and cost.
 カルボキシ基を有する置換基Rとして、-CH2COOH(カルボキシメチル基)、-(CH2)2COOH(カルボキシエチル基)、-CO(CH2)2COOH(3-カルボキシプロピオニル基、カルボキシエチルカルボニル基ともいう。)、-CO(CH2)3COOH(4-カルボキシブタノイル基、カルボキシプロピルカルボニル基ともいう。)、-COCH=CHCOOH(3-カルボキシプロペノイル基、カルボキシビニルカルボニル基ともいう。)、及びそれらの塩が更に好ましい。 As a substituent R having a carboxy group, -CH 2 COOH (carboxymethyl group),-(CH 2 ) 2 COOH (carboxyethyl group), -CO (CH 2 ) 2 COOH (3-carboxypropionyl group, carboxyethyl carbonyl It is also referred to as a group), -CO (CH 2 ) 3 COOH (also referred to as 4-carboxybutanoyl group or carboxypropylcarbonyl group), -COCH = CHCOOH (also referred to as 3-carboxypropenoyl group, carboxyvinylcarbonyl group). And their salts are more preferred.
 上記に記載のそれらの塩とは、カルボキシメチル基の塩、カルボキシエチル基の塩、カルボキシエチルカルボニル基の塩、カルボキシプロピルカルボニル基の塩、カルボキシビニルカルボニル基の塩等である。 The salts thereof described above include salts of carboxymethyl group, salts of carboxyethyl group, salts of carboxyethyl carbonyl group, salts of carboxypropyl carbonyl group, salts of carboxy vinyl carbonyl group and the like.
 カルボキシ基を有する置換基Rとして、-CH2COOH(カルボキシメチル基)、-CO(CH2)2COOH(3-カルボキシプロピオニル基、カルボキシエチルカルボニル基ともいう。)、-COCH=CHCOOH(3-カルボキシプロペノイル基、カルボキシビニルカルボニル基ともいう。)、及びそれらの塩が最も好ましい。 As a substituent R having a carboxy group, —CH 2 COOH (carboxymethyl group), —CO (CH 2 ) 2 COOH (also referred to as 3-carboxypropionyl group, carboxyethyl carbonyl group), —COCH = CHCOOH (3- Most preferred are carboxypropenoyl group and carboxyvinylcarbonyl group), and salts thereof.
 前記カルボキシ基を有する置換基Rのカルボキシ基が夫々無機又は有機塩の状態になった基(-COO-X+)である場合も好ましい。 It is also preferable that the carboxy group of the substituent R having a carboxy group is a group (-COO - X + ) in the form of an inorganic or organic salt, respectively.
 前記無機塩として、ナトリウム塩、リチウム塩、カリウム塩等のアルカリ金属塩;カルシウム塩、バリウム塩、亜鉛塩、銅塩等の2価の金属塩;アルミニウム塩等の3価の金属塩等が好ましい。 As the inorganic salt, alkali metal salts such as sodium salt, lithium salt and potassium salt; divalent metal salts such as calcium salt, barium salt, zinc salt and copper salt; trivalent metal salts such as aluminum salt and the like are preferable. .
 前記有機塩として、1~4級のアンモニウム塩、及びポリアミンとの塩も好ましい。 As the organic salt, primary to quaternary ammonium salts and salts with polyamines are also preferable.
 上記の各種の置換基を有する化学修飾MFCは、繊維強化樹脂組成物中での分散性が良好であることから好ましい。 Chemically modified MFCs having the above-mentioned various substituents are preferable because of their good dispersibility in the fiber reinforced resin composition.
 置換基Rが異なる2種の化学修飾MFCを組み合わせて(併用して)、本発明の繊維強化樹脂組成物に含有させることもできる。 Two types of chemically modified MFCs different in substituent R may be combined (in combination) and included in the fiber reinforced resin composition of the present invention.
 例えば、Rがアセチル基のミクロフィブリル化セルロース系繊維(アセチルMFC)と、Rがカルボキシメチル基のミクロフィブリル化セルロース系繊維(カルボキシメチルMFC)、3-カルボキシプロピオニル基のミクロフィブリル化セルロース系繊維(3-カルボキシプロピオニルMFC)又は3-カルボキシプロペノイル基のミクロフィブリル化セルロース系繊維(3-カルボキシプロペノイルMFC)とを併用することが好ましい。 For example, a microfibrillated cellulose fiber (acetyl MFC) in which R is an acetyl group, a microfibrillated cellulose fiber (carboxymethyl MFC) in which R is a carboxymethyl group, and a microfibrillated cellulose fiber (3-carboxypropionyl group) It is preferable to use in combination with 3-carboxypropionyl MFC) or 3-carboxypropenoyl group microfibrillated cellulosic fiber (3-carboxypropenoyl MFC).
 置換基Rが異なる2種の化学修飾MFCを併用することで、繊維強化樹脂組成物中において、これら化学修飾MFCを良好に分散させることができる。 By using two types of chemically modified MFCs having different substituents R in combination, these chemically modified MFCs can be well dispersed in the fiber reinforced resin composition.
 化学修飾MFCの原料
 本発明に使用する化学修飾MFCの原料として、木材、竹、麻、ジュート、ケナフ、綿、ビート、農産物残廃物、古紙又は編織布等の天然植物から得られるパルプが好ましく用いられる。
As chemically modified MFC of the raw materials used for chemical modification MFC ingredients present invention, wood, bamboo, hemp, jute, kenaf, cotton, beet, agricultural residue waste, pulp obtained from natural plants such as waste paper or textile preferred Be
 パルプとは、木材、竹、稲わら等の植物中に含まれる植物繊維を分離したものであって、セルロース、ヘミセルロース、ホロセルロース及び/又はリグノセルロースを含む。 Pulp refers to the separation of plant fibers contained in plants such as wood, bamboo, rice straw, etc., and includes cellulose, hemicellulose, holocellulose and / or lignocellulose.
 パルプ原料の木材には、例えば、シトカスプルース、マツ(トドマツ、アカマツ等)、スギ、ヒノキ、ユーカリ、アカシア等の針葉樹又は広葉樹由来の木材が好ましく用いられる。パルプ原料としての古紙としては、脱墨古紙、段ボール古紙、雑誌、コピー用紙等が好ましい。パルプ原料は、これらに限定されるものではない。パルプは1種単独でも用いてもよく、これらから選ばれた2種以上を用いてもよい。 As wood of pulp raw material, for example, wood derived from conifers or broad-leaved trees such as Sitka spruce, pine (Todomatsu, Japanese red pine etc.), cedar, cypress, eucalyptus, acacia etc. is preferably used. As waste paper as a pulp raw material, deinked waste paper, corrugated cardboard waste paper, magazines, copy paper and the like are preferable. Pulp materials are not limited to these. One type of pulp may be used alone, or two or more types selected from these may be used.
 本発明に使用される化学修飾MFCの原料であるパルプには、リグニンを含まないパルプ、及びリグニンを含むパルプ(即ち、リグノセルロースを含むパルプ)のいずれも使用することができる。 As the pulp which is a raw material of the chemically modified MFC used in the present invention, any of lignin-free pulp and lignin-containing pulp (i.e., lignocellulose-containing pulp) can be used.
 本発明に使用される化学修飾MFCの原料であるパルプには、リグニンを含むパルプ(即ち、リグノセルロースを含むパルプ)も使用することが好ましい。つまり、前記(a)要件の式(1)における(Lg)Cell-が、リグノセルロースを構成する多糖及びリグニンから水酸基を除いた残基であることが好ましい。 It is preferable to use a pulp containing lignin (i.e., a pulp containing lignocellulose) as a pulp which is a raw material of the chemically modified MFC used in the present invention. That is, it is preferable that (Lg) Cell- in the formula (1) of the requirement (a) is a polysaccharide which constitutes lignocellulose and a residue obtained by removing a hydroxyl group from lignin.
 リグノセルロースは、樹木細胞壁を構成する複合炭化水素高分子(天然高分子混合物)である。リグノセルロースは、主に多糖類のセルロース、ヘミセルロース及び芳香族高分子であるリグニンから構成されていることが知られている(下記の参照例1及び参照例2参照)。 Lignocellulose is a complex hydrocarbon polymer (natural polymer mixture) constituting tree cell walls. Lignocellulose is known to be composed mainly of polysaccharide cellulose, hemicellulose and lignin, which is an aromatic polymer (see Reference Example 1 and Reference Example 2 below).
 参照例1:
 Review Article Conversion of Lignocellulosic Biomass to Nanocellulose: Structure and Chemical Process H. V. Lee, S. B. A. Hamid, and S. K. Zain, Scientific World Journal Volume 2014,、Article ID 631013, 20 pages, http://dx.doi.org/10.1155/2014/631013
 参照例2:
 New lignocellulose pretreatments using cellulose solvents: A review, Noppadon Sathitsuksanoh, Anthe George and Y-H Percival Zhang, J Chem Technol Biotechnol 2013; 88: 169-180
Reference Example 1:
Review Article Conversion of Lignocellulosic Biomass to Nanocellulose: Structure and Chemical Process HV Lee, SBA Hamid, and SK Zain, Scientific World Journal Volume 2014 ,, Article ID 631013, 20 pages, http://dx.doi.org/10.155/2014 / 631013
Reference example 2:
New lignocellulose pretreatments using cellulose solvents: A review, Noppadon Sathitsuksanoh, Anthe George and YH Percival Zhang, J Chem Technol Biotechnol 2013; 88: 169-180
 本明細書で使用される「リグノセルロース」の用語は、植物中に天然に存在する化学構造のリグノセルロース、人工的に改変されたリグノセルロース、又はこれらの混合物を意味する。これは、植物、例えば木材を機械的及び/又は化学的に処理して得られる種々のパルプ中に含まれ、天然化学構造のリグノセルロース、化学的若しくは機械的に改変を受けたリグノセルロース、又はこれらの混合物である。 The term "lignocellulose" as used herein means lignocellulose of a chemical structure naturally occurring in plants, artificially modified lignocellulose, or a mixture thereof. This is contained in various pulps obtained by mechanical and / or chemical treatment of plants, for example, wood, and has natural chemical structure lignocellulose, chemically or mechanically modified lignocellulose, or It is a mixture of these.
 本発明で使用されるリグノセルロースからなる繊維は、天然に存在する化学構造のリグノセルロースからなる繊維に限定されるものではない。また、リグノセルロース中のリグニン含有量も限定されるものではない。本発明で使用されるリグノセルロース及びリグノパルプの用語は、リグニン成分の含量が微量であっても、夫々、リグノセルロース、及びリグノパルプとして解釈される。 The fibers comprising lignocellulose used in the present invention are not limited to fibers comprising lignocellulose having a naturally occurring chemical structure. Also, the lignin content in lignocellulose is not limited. The terms lignocellulose and ligno pulp used in the present invention are to be interpreted as lignocellulose and ligno pulp, respectively, even with a low content of lignin components.
 化学修飾MFCの原料としては、トカスプルース、松(トドマツ、アカマツ等)、スギ、ヒノキ、ユーカリ、アカシア等の針葉樹又は広葉由来の木材、竹、麻、ジュート、ケナフ、バガス、藁、ビート絞りかす等に含まれる植物性原料由来の原料を、機械パルプ化法、化学パルプ化法、又は機械パルプ化法と化学パルプ化法との組み合わせにより処理して得られるリグノパルプを使用することができる。 As raw materials for chemically modified MFC, wood derived from conifers or broad leaves such as Toka spruce, pine (Todomatsu, Japanese red pine, etc.), cedar, cypress, eucalyptus, acacia, bamboo, hemp, jute, kenaf, bagasse, rattan, beet milled Ligno pulp obtained by processing the raw material derived from the vegetal raw material contained in the like by the mechanical pulping method, the chemical pulping method, or the combination of the mechanical pulping method and the chemical pulping method can be used.
 このようなパルプとして、各種クラフトパルプ(針葉樹未漂白クラフトパルプ(NUKP)、針葉樹酸素漂白クラフトパルプ(NOKP)、及び針葉樹漂白クラフトパルプ(NBKP))が好ましい。また、砕木パルプ(GP)、リファイナーGP(RGP)、サーモメカニカルパルプ(TMP)、ケミサーモメカニカルパルプ(CTMP)等の機械パルプ(MP)も好ましい。 As such pulps, various kraft pulps (softwood unbleached kraft pulp (NUKP), softwood oxygen bleached kraft pulp (NOKP), and softwood bleached kraft pulp (NBKP)) are preferable. Also preferred are mechanical pulps (MP) such as ground pulp (GP), refiner GP (RGP), thermomechanical pulp (TMP), chemithermomechanical pulp (CTMP) and the like.
 クラフトパルプの中にはリグニンを含んでいないものもあるが、その含有量に拘わらず化学修飾MFCの原料として使用可能である。 Although some kraft pulps do not contain lignin, they can be used as raw materials for chemically modified MFC regardless of their content.
 この中でもリグニンを含むパルプ(リグノパルプ)は、リグニンを含まないセルロース繊維又はパルプに比べて、その製造工程数が少ないこと、その原料(例えば木材)からの収率が良好であること、その製造に要する化学薬剤が少ないこと、並びに少ないエネルギーで製造できることから、製造コストの点で有利である。よって、リグノパルプを、本発明に有利に使用することができる。 Among them, pulp containing lignin (ligno pulp) has fewer production steps compared to cellulose fiber or pulp containing no lignin, good yield from its raw material (for example, wood), and its production It is advantageous in terms of manufacturing cost because it requires less chemical agents and can be manufactured with less energy. Thus, ligno-pulp can be used advantageously in the present invention.
 更には、針葉樹のパルプの中でも、トドマツ、アカマツ、又はスギから得られるリグノパルプは、それを使用して作製した化学修飾リグノMFCを含有させることで強度特性に優れた繊維強化樹脂組成物が得られることから好ましい。 Furthermore, among softwood pulps, ligno pulp obtained from Todo-matsu, Japanese red pine, or cedar can obtain a fiber-reinforced resin composition having excellent strength characteristics by containing a chemically modified ligno-MFC prepared using it It is preferable from that.
 リグノセルロース及びリグノパルプのリグニン量は、クラーソン法で定量することができる。本発明では、リグニンを0.1~40質量%程度含むリグノパルプを使用することが好ましい。リグノパルプのリグニン含有量は、0.1~35質量%程度が更に好ましく、0.1~30質量%程度が特に好ましい。 The lignin content of lignocellulose and ligno pulp can be quantified by the Classon method. In the present invention, it is preferable to use ligno pulp containing about 0.1 to 40% by mass of lignin. The lignin content of ligno pulp is more preferably about 0.1 to 35% by mass, and particularly preferably about 0.1 to 30% by mass.
 化学修飾MFCの製造方法
 本発明に使用される化学修飾MFCは、セルロース系パルプ(CP)を化学修飾して化学修飾セルロース系パルプ(化学修飾CP)を得、これを解繊することで得られる。
Method for Producing Chemically Modified MFC The chemically modified MFC used in the present invention is obtained by chemically modifying cellulosic pulp (CP) to obtain a chemically modified cellulosic pulp (chemically modified CP) and disentangling this .
 本発明に使用される化学修飾MFCは、セルロース系パルプ(CP)を解繊してミクロフィブリル化植物繊維(MFC)を得、これを化学修飾することによっても得ることができる。 The chemically modified MFC used in the present invention can also be obtained by disintegrating cellulosic pulp (CP) to obtain microfibrillated plant fibers (MFC) and chemically modifying it.
 先ず、セルロース系パルプ(CP)を化学修飾して化学修飾セルロース系パルプ(化学修飾CP)を得る方法を説明する。セルロース系パルプ(CP)又は化学修飾CPの解繊方法は後述する。 First, a method of chemically modifying cellulosic pulp (CP) to obtain chemically modified cellulosic pulp (chemically modified CP) will be described. The disintegration method of cellulose pulp (CP) or chemically modified CP will be described later.
 化学修飾セルロース系パルプ(化学修飾CP)の製造方法
 アシル化セルロース系パルプ(アシル化CP)
 前記式:(Lg)Cell-O-R (1)で示される化学修飾セルロース系高分子からなる化学修飾パルプのうち、置換基Rがアシル基である化学修飾セルロース系高分子からなるパルプ(アシル化CP)は、原料のセルロース系パルプ(CP)の繊維表面又は非晶部分に存在する水酸基(セルロース、ヘミセルロース及びリグニンの水酸基等)をアシル化することによって得られる。
Method for producing chemically modified cellulose pulp (chemically modified CP) Acylated cellulose pulp (acylated CP)
Among chemically modified pulps composed of a chemically modified cellulose polymer represented by the above formula: (Lg) Cell-OR (1), a pulp composed of a chemically modified cellulose polymer in which the substituent R is an acyl group (acylated CP ) Is obtained by acylating hydroxyl groups (cellulose, hemicellulose and hydroxyl groups of lignin, etc.) present on the fiber surface or amorphous part of the raw material cellulose pulp (CP).
 このアシル化は、原料のCP中に元々存在するセルロース結晶構造を壊さないように、CPの繊維表面又は非晶部分に存在する水酸基、例えばセルロース、ヘミセルロース、及びリグニンの水酸基等をアシル化することが好ましい。 This acylation acylates hydroxyl groups present on the fiber surface or amorphous part of CP such as cellulose, hemicellulose, and hydroxyl groups of lignin so as not to destroy the cellulose crystal structure originally present in the raw material CP. Is preferred.
 アシル化反応は、原料のCPを膨潤させることのできる無水非プロトン性極性溶媒、例えばN-メチルピロリドン、N,N-ジメチルホルムアミド等の中に原料を懸濁し、対応するアシル基を有するカルボン酸無水物又は酸塩化物で、塩基の存在下に、従来の方法(特開2016-176052等に記載の方法)で行うことができる。 The acylation reaction is carried out by suspending the raw material in an anhydrous aprotic polar solvent capable of swelling the raw material CP, such as N-methylpyrrolidone, N, N-dimethylformamide and the like, and a carboxylic acid having a corresponding acyl group. The reaction can be carried out according to a conventional method (the method described in JP-A-2016-176052 etc.) in the presence of a base with an anhydride or an acid chloride.
 前記式(1)におけるRによる置換度(以下に詳しく説明する)の測定方法は、従来の方法(特開2016-176052等に記載の方法)に従うことができる。置換度は、上記アシル化におけるアシル化剤の量、反応温度、反応時間等を調節することにより調整することができる。 The method of measuring the degree of substitution by R in the formula (1) (described in detail below) can be according to the conventional method (the method described in JP-A-2016-176052 etc.). The degree of substitution can be adjusted by adjusting the amount of acylating agent in the above acylation, the reaction temperature, the reaction time, and the like.
 カルボキシアルキル化セルロース系パルプ(カルボキシアルキル化CP)
 前記式:(Lg)Cell-O-R (1)においてRがカルボキシアルキル基〔-(CH2)n-1COOH〕又はその塩〔-(CH2)n-1COO-X+〕である化学修飾セルロース系パルプ(カルボキシアルキル化CP)は、従来の方法(特開2011-195738等に記載の方法)に従い製造することができる。すなわち、原料のCPに、対応するハロゲン化アルキルを反応させ、原料繊維(CP)の繊維表面又は非晶部分に存在する水酸基(セルロース、ヘミセルロース及びリグニンの水酸基等)をカルボキシアルキル化することにより、カルボキシアルキル化CPを製造することができる。
Carboxyalkylated cellulosic pulp (Carboxyalkylated CP)
Chemical modification in which R is a carboxyalkyl group [-(CH 2 ) n-1 COOH] or a salt thereof [-(CH 2 ) n-1 COO - X + ] in the above-mentioned formula: (Lg) Cell-OR (1) The cellulose-based pulp (carboxyalkylated CP) can be produced according to a conventional method (the method described in JP-A-2011-195738 and the like). That is, by reacting the corresponding alkyl halide with the raw material CP, and carboxyalkylating the hydroxyl group (such as the hydroxyl group of cellulose, hemicellulose and lignin) present on the fiber surface or the amorphous part of the raw material fiber (CP), Carboxyalkylated CP can be produced.
 カルボキシアルキルカルボニル化セルロース系パルプ(カルボキシアルキルカルボニル化CP)
 前記式:(Lg)Cell-O-R (1)においてRがカルボキシアルキルカルボニル基〔-CO(CH2)nCOOH〕又はその塩〔-CO(CH2)nCOO-X+〕である化学修飾セルロース系パルプ(カルボキシアルキルカルボニル化CP)は、文献(Biomacromolecules 2017, 18, 242-248)に記載の方法に準じて製造することができる。すなわち、原料のCPに、対応する酸無水物(例えば、コハク酸無水物、グルタル酸無水物等)を反応させることにより、カルボキシアルキルカルボニル化CPを製造することができる。
Carboxyalkyl carbonylated cellulosic pulp (Carboxy alkyl carbonylated CP)
Chemically modified cellulose in which R is a carboxyalkyl carbonyl group [-CO (CH 2 ) n COOH] or a salt thereof [-CO (CH 2 ) n COO - X + ] in the above formula: (Lg) Cell-OR (1) The pulp (carboxyalkyl carbonylated CP) can be produced according to the method described in the literature (Biomacromolecules 2017, 18, 242-248). That is, carboxyalkylcarbonylated CP can be produced by reacting the starting material CP with the corresponding acid anhydride (eg, succinic anhydride, glutaric anhydride, etc.).
 3-カルボキシプロペノイル化セルロース系パルプ(3-カルボキシプロペノイル化CP,CPのマレイン酸モノエステル)
 前記式:(Lg)Cell-O-R (1)においてRが3-カルボキシプロペノイル基(-COCH=CHCOOH)又はその塩〔-COCH=CHCOO-X+〕である化学修飾セルロース系パルプ(3-カルボキシプロペノイル化CP)は、文献(ACS Macro Lett. 2015, 4, 80-83)に記載の方法に従い製造することができる。すなわち、無水マレイン酸を、原料のCPに反応させることにより、3-カルボキシプロペノイル化CPを製造することができる。
3-Carboxypropenoylated cellulose-based pulp (3-carboxypropenoylated CP, maleic acid monoester of CP)
Chemically modified cellulosic pulp (3-carboxy) wherein R in the formula (Lg) Cell-OR (1) is 3-carboxypropenoyl group (-COCH = CHCOOH) or a salt thereof [-COCH = CHCOO - X + ] Propenoylated CP) can be produced according to the method described in the literature (ACS Macro Lett. 2015, 4, 80-83). That is, 3-carboxypropenoylated CP can be produced by reacting maleic anhydride with CP as a raw material.
 なお、ミクロフィブリル化セルロース(MFC)を化学修飾して、化学修飾MFCを製造する場合は、セルロース系パルプ(CP)の代わりにMFCを使用して、上記と同様の方法で、MFCを化学修飾することにより化学修飾MFCを得ることができる。 When chemically modifying microfibrillated cellulose (MFC) to produce chemically modified MFC, MFC is used in place of cellulosic pulp (CP) to chemically modify MFC in the same manner as described above. Chemically modified MFC can be obtained by
 置換基Rによる修飾程度(置換度、DS)
 置換基Rによる化学修飾CP又は化学修飾MFCの修飾程度(置換度、「DS」ともいう)は、前記式(1)で表される化学修飾セルロース系高分子の残基〔(Lg)Cell-〕の1単位(繰り返し単位)に存在する水酸基の水素原子が置換基Rで置換された程度である。
Degree of modification with substituent R (degree of substitution, DS)
The degree of modification (the degree of substitution, also referred to as “DS”) of the chemically modified CP or the chemically modified MFC by the substituent R is determined by the residue of the chemically modified cellulose polymer represented by the formula (1) [(Lg) Cell- The hydrogen atom of the hydroxyl group which exists in 1 unit (repeating unit) of] is substituted by the substituent R.
 化学修飾セルロース系高分子が全てセルロースで構成されている場合(セルロースの場合)は、この繰り返し単位はグルコピラノース残基であり、この1単位にあたりの水酸基数は3であるので、置換度の上限は3である。 When the chemically modified cellulose-based polymer is entirely composed of cellulose (in the case of cellulose), this repeating unit is a glucopyranose residue, and the number of hydroxyl groups per unit is three, so the upper limit of the degree of substitution Is three.
 一方、セルロース系高分子がリグノセルロースの場合、リグノセルロースは、セルロースと共にヘミセルロースとリグニンとを含む。へミセルロースに含まれるキシランにおけるキシロース残基又はアラビノガラクタンにおけるガラクトース残基の水酸基数は2であり、また、標準的なリグニン残基の水酸基数も2である。よって、これらの水酸基数は3より小さい。 On the other hand, when the cellulose-based polymer is lignocellulose, lignocellulose contains hemicellulose and lignin together with cellulose. The number of hydroxyl groups of xylose residue in xylan contained in hemicellulose or galactose residue in arabinogalactan is 2, and the number of hydroxyl groups of standard lignin residues is also 2. Therefore, the number of these hydroxyl groups is less than 3.
 従って、リグノパルプにおける置換基Rによる置換度の上限は3より小さい。この置換度の上限は、リグノパルプが含有するヘミセルロース及びリグニンの含量に依存して、2.7~2.8程度である。 Therefore, the upper limit of the degree of substitution by substituent R in ligno pulp is less than 3. The upper limit of the degree of substitution is about 2.7 to 2.8, depending on the content of hemicellulose and lignin contained in ligno pulp.
 また、セルロース系高分子がホロセルロースの場合も、ホロセルロースはセルロースと共にヘミセルロースを含むので、この平均的な繰り返し単位中の水酸基数は3よりも小さい。よって、置換度の上限値は3より小さい。 Also, when the cellulose-based polymer is holocellulose, the holocellulose contains hemicellulose together with cellulose, so the average number of hydroxyl groups in the repeating unit is smaller than 3. Therefore, the upper limit value of the degree of substitution is smaller than 3.
 上記のようにセルロース系繊維中のヘミセルロース又はリグニンの含量に依存するものの、化学修飾セルロース系パルプ(化学修飾CP)、及び化学修飾ミクロフィブリル化セルロース系繊維(化学修飾MFC)の前記置換基Rによる置換度(DS)は、0.3~2.55程度が好ましい。置換度(DS)を0.3~2.55程度に設定することによって、適度の結晶化度及びSP(溶解度パラメーター)を有する化学修飾MFCを得ることができる。 As described above, depending on the content of hemicellulose or lignin in the cellulose fiber, the above-mentioned substituent R of the chemically modified cellulose pulp (chemically modified CP) and the chemically modified microfibrillated cellulose fiber (chemically modified MFC) The degree of substitution (DS) is preferably about 0.3 to 2.55. By setting the degree of substitution (DS) to about 0.3 to 2.55, a chemically modified MFC having appropriate degree of crystallinity and SP (solubility parameter) can be obtained.
 置換基Rがアシル基の場合、置換度(DS)は0.4~2.55程度がより好ましく、0.56~2.52が更に好ましい。置換基Rがアセチル基の場合、好ましいDSは0.56~2.52である。その範囲のDSであれば結晶化度を42.7%程度以上に保つことが可能である。 When the substituent R is an acyl group, the degree of substitution (DS) is more preferably about 0.4 to 2.55, and still more preferably 0.56 to 2.52. When the substituent R is an acetyl group, preferred DS is 0.56 to 2.52. With DS in that range, it is possible to maintain the degree of crystallinity at about 42.7% or more.
 置換基Rが、カルボキシアルキル基、カルボキシアルキルカルボニル基、3-カルボキシプロペノイル基、又はこれらカルボキシ基を有する置換基の塩の場合、置換度(DS)は、Rがアシル基である場合のDSよりも小さいほうが好ましい。置換基Rがカルボキシメチル基である場合のDSは、0.1~0.5が好ましい。 When the substituent R is a carboxyalkyl group, a carboxyalkylcarbonyl group, a 3-carboxypropenoyl group, or a salt of a substituent having one of these carboxy groups, the degree of substitution (DS) is DS when R is an acyl group The smaller one is preferable. When the substituent R is a carboxymethyl group, DS is preferably 0.1 to 0.5.
 置換度(DS)は、元素分析、中和滴定法、FT-IR、二次元NMR(1H及び13C-NMR)等の各種分析方法等により分析することができる。 The degree of substitution (DS) can be analyzed by various analysis methods such as elemental analysis, neutralization titration, FT-IR, two-dimensional NMR ( 1 H and 13 C-NMR), and the like.
 化学修飾CPの解繊方法
 化学修飾CPの解繊及びミクロフィブリル化は、例えば、化学修飾CPを懸濁液又はスラリーとし、リファイナー、高圧ホモジナイザー、グラインダー、一軸又は多軸混練機(好ましくは二軸混練機)、ビーズミル等による機械的な摩砕又は叩解等の公知手段を使用することにより行うことができる。
Method of disintegration of chemically modified CP The disintegration and microfibrillation of chemically modified CP are carried out, for example, by using chemically modified CP as a suspension or a slurry, and using a refiner, a high pressure homogenizer, a grinder, a uniaxial or multiaxial kneader (preferably biaxial) It can be carried out by using known means such as mechanical grinding or beating using a kneader, bead mill or the like.
 化学修飾CPを使用して本発明の繊維強化樹脂組成物を作製する時、化学修飾CPは熱可塑性樹脂と共に一軸又は多軸混練機(好ましくは多軸混練機)で、加熱下に溶融し混練することが好ましい。化学修飾CPは混練中のせん断力により解繊されてミクロフィブリル化し、熱可塑性樹脂中で化学修飾MFCとすることができる。このようにして化学修飾CPを熱可塑性樹脂と溶融混練して熱可塑樹脂中で解繊することが有利である。 When producing the fiber reinforced resin composition of the present invention using a chemically modified CP, the chemically modified CP is melted and kneaded under heating in a uniaxial or multiaxial kneader (preferably a multiaxial kneader) together with a thermoplastic resin. It is preferable to do. Chemically modified CP can be fibrillated and microfibrillated by shear force during kneading, and made into chemically modified MFC in a thermoplastic resin. In this way, it is advantageous to melt and knead the chemically modified CP with the thermoplastic resin and to break up in the thermoplastic resin.
 化学修飾MFCを使用して本発明の繊維強化樹脂組成物を作製する時は、先ずCPの繊維を解繊してミクロフィブリル化セルロース系繊維(MFC)を調製する。次いでこれを前記の方法で化学修飾し、樹脂と混練することにより、本発明の繊維強化樹脂組成物を調製することができる。 When producing the fiber reinforced resin composition of the present invention using a chemically modified MFC, first, fibers of CP are disintegrated to prepare microfibrillated cellulosic fibers (MFC). Then, the fiber-reinforced resin composition of the present invention can be prepared by chemically modifying it according to the above-mentioned method and kneading it with a resin.
 この際、CPの解繊は、CPを懸濁液又はスラリーとし、リファイナー、高圧ホモジナイザー、グラインダー、一軸又は多軸混練機(好ましくは二軸混練機)、ビーズミル等による機械的な摩砕又は叩解等の公知手段を使用することにより行うことができる。 In this case, CP disintegration uses CP as a suspension or slurry, and mechanical grinding or beating using a refiner, a high pressure homogenizer, a grinder, a single or multi-screw kneader (preferably a twin-screw kneader), a bead mill, etc. Etc. can be carried out by using known means.
 MFC及び化学修飾MFCの繊維径
 化学修飾MFCは、前記の化学修飾セルロース系パルプ(例えば、化学修飾リグノパルプ等)中の繊維をナノサイズレベルまで解きほぐした(解繊した)ものである。
Fiber diameter chemical modification of MFC MFC and chemical modification MFC, the chemically modified cellulosic pulps (e.g., chemically modified Rigunoparupu etc.) in which the fibers in the disentangling to nanosize level (the defibrated).
 繊維強化樹脂組成物に含有される化学修飾MFCの平均繊維径(繊維幅)は、4~200nm程度の範囲が好ましく、4~150nm程度がより好ましい。繊維長の平均値は5μm程度以上であることが好ましい。 The average fiber diameter (fiber width) of the chemically modified MFC contained in the fiber reinforced resin composition is preferably in the range of about 4 to 200 nm, and more preferably in the range of about 4 to 150 nm. The average value of the fiber length is preferably about 5 μm or more.
 前記範囲の平均繊維径を有する化学修飾MFCを、樹脂に含有させることにより、強度特性の優れた繊維強化樹脂組成物を製造することができる。 By incorporating a chemically modified MFC having an average fiber diameter in the above range into the resin, a fiber reinforced resin composition having excellent strength characteristics can be produced.
 なお、化学修飾CPを使用して本発明の繊維強化樹脂組成物を作製する時は、化学修飾CPを熱可塑性樹脂と溶融混練して、混練と同時に化学修飾CPを化学修飾MFCに解繊することができる。 In addition, when producing the fiber reinforced resin composition of this invention using chemically modified CP, the chemically modified CP is melt-kneaded with a thermoplastic resin, and it disaggregates chemically modified CP into chemically modified MFC simultaneously with kneading. be able to.
 この際、化学修飾CPの解繊が不十分で、解繊後の繊維径が上記の繊維径よりも大きな化学修飾MFCが樹脂組成物に含まれていたとしても、本発明の目的を達成する限り、そのような化学修飾MFC含有樹脂組成物は本発明に包含される。 At this time, the object of the present invention can be achieved even if the resin composition contains a chemically modified MFC in which the fibrillation of the chemically modified CP is insufficient and the fiber diameter after fibrillation is larger than the above fiber diameter. As long as such chemically modified MFC-containing resin compositions are included in the present invention.
 例えば、化学修飾MFC含有樹脂組成物の曲げ弾性率が、未修飾MFC含有樹脂組成物の曲げ弾性率に対し1.1倍以上の曲げ弾性率を示す限り、これは本発明の化学修飾MFC含有樹脂組成物である。 For example, as long as the flexural modulus of the chemically modified MFC-containing resin composition exhibits a flexural modulus of 1.1 or more times the flexural modulus of the unmodified MFC-containing resin composition, this corresponds to the chemically modified MFC-containing resin composition of the present invention It is a thing.
 MFCを使用して化学修飾MFCを調製する場合、このMFCの平均繊維径及び平均繊維長の夫々の好ましい範囲、更に好ましい範囲についても、上記の化学修飾MFCのそれらと同様である。 When preparing chemically modified MFC using MFC, the preferred range of each of the average fiber diameter and the average fiber length of this MFC, and the more preferred range are also the same as those of the above-mentioned chemically modified MFC.
 MFC及び化学修飾MFCの繊維径及び繊維長は、走査型電子顕微鏡(SEM)を用いて測定することができる。繊維径の平均値(平均繊維径)及び繊維長の平均値(平均繊維長)は、走査型電子顕微鏡の視野内のMFC又は化学修飾MFCの少なくとも50本以上について測定した時の平均値として求める。 The fiber diameter and fiber length of MFC and chemically modified MFC can be measured using a scanning electron microscope (SEM). The average value of the fiber diameter (average fiber diameter) and the average value of the fiber length (average fiber length) are determined as an average value when measured at least 50 or more of MFC or chemically modified MFC in the field of the scanning electron microscope .
 MFC及び化学修飾MFCの比表面積
 走査型電子顕微鏡(SEM)で繊維を観察することにより、繊維の解繊状態を観察することもできる。
The defibrated state of the fiber can also be observed by observing the fiber with a specific surface area scanning electron microscope (SEM) of MFC and chemically modified MFC .
 化学修飾MFCの比表面積は、70~300m2/g程度が好ましく、70~250m2/g程度がより好ましく、100~200m2/g程度が更に好ましい。化学修飾MFCの比表面積を大きくすることで、樹脂(マトリックス)と組み合わせて組成物とした場合に、接触面積を大きくすることができ、それにより樹脂成形材料の強度を向上させることができる。また、化学修飾MFCは樹脂組成物の樹脂中で凝集しないことから、樹脂成形材料の強度を向上させることができる。 The specific surface area of the chemical modification MFC is preferably about 70 ~ 300m 2 / g, more preferably about 70 ~ 250m 2 / g, more preferably about 100 ~ 200m 2 / g. When the specific surface area of the chemically modified MFC is increased, when the composition is combined with a resin (matrix), the contact area can be increased, whereby the strength of the resin molding material can be improved. In addition, since the chemically modified MFC does not aggregate in the resin of the resin composition, the strength of the resin molding material can be improved.
 化学修飾MFCの結晶化度
 本発明に使用する化学修飾MFCは、原料パルプ中に存在していたセルロースの結晶構造ができる限り保持された状態で、原料パルプ(CP)のセルロース及びヘミセルロースの水酸基(糖鎖水酸基)が、化学修飾されていることが好ましい。
Degree of Crystallization of Chemically Modified MFC The chemically modified MFC used in the present invention is a hydroxyl group of cellulose and hemicellulose of raw pulp (CP) in a state where the crystal structure of cellulose present in the raw pulp is retained as much as possible. It is preferable that the sugar chain hydroxyl group is chemically modified.
 本発明に使用する化学修飾MFCは、元来、原料パルプに存在するセルロース結晶構造が壊れないように原料繊維の表面に存在する水酸基、例えばセルロースの水酸基、ヘミセルロースの水酸基等が化学修飾されていることが好ましい。 In the chemically modified MFC used in the present invention, hydroxyl groups present on the surface of the raw material fiber, such as hydroxyl groups of cellulose and hydroxyl groups of hemicellulose, are chemically modified so that the cellulose crystal structure originally present in the raw material pulp is not broken. Is preferred.
 その化学修飾処理により、MFC本来の優れた力学的特性を有する化学修飾MFCを得ることができる。更に、樹脂中での化学修飾MFCの分散性が促進され、樹脂に対する化学修飾MFCの補強効果が向上する。 By the chemical modification treatment, chemically modified MFC having excellent mechanical properties inherent to MFC can be obtained. Furthermore, the dispersibility of the chemically modified MFC in the resin is promoted, and the reinforcing effect of the chemically modified MFC on the resin is improved.
 本発明の繊維強化樹脂組成物は、組成物中に含まれる化学修飾MFCの結晶化度が42.7%程度以上で、その結晶型はセルロースI型結晶を有することが好ましい。前記「結晶化度」とは、全セルロース中の結晶(主にセルロースI型結晶)の存在比である。化学修飾MFCの結晶化度(好ましくはセルロースI型の結晶)は、50%程度以上が好ましく、55%程度以上がより好ましく、55.6%程度以上が更に好ましく、60%程度以上がなお更に好ましく、69.5%程度以上が特に好ましい。 In the fiber-reinforced resin composition of the present invention, it is preferable that the degree of crystallinity of the chemically modified MFC contained in the composition is about 42.7% or more, and the crystal form has a cellulose I-type crystal. The "crystallization degree" is an abundance ratio of crystals (mainly cellulose type I crystals) in all the cellulose. The degree of crystallization (preferably cellulose I-type crystals) of the chemically modified MFC is preferably about 50% or more, more preferably about 55% or more, still more preferably about 55.6% or more, still more preferably about 60% or more, About 69.5% or more is particularly preferable.
 化学修飾MFCの結晶化度の上限は、80%程度である。化学修飾MFCは、セルロースI型の結晶構造を維持し、高強度、低熱膨張性等の性能を発現する。 The upper limit of the degree of crystallinity of the chemically modified MFC is about 80%. Chemically modified MFC maintains the crystalline structure of cellulose type I and exhibits performance such as high strength and low thermal expansion.
 セルロースI型結晶構造とは、例えば朝倉書店発行の「セルロースの辞典」新装版第一刷81~86頁、或いは93~99頁に記載の通りのものである。ほとんどの天然セルロースはセルロースI型結晶構造である。これに対して、セルロースI型結晶構造ではなく、例えばセルロースII、III、又はIV型構造のセルロース繊維は、セルロースI型結晶構造を有するセルロースから誘導されるものである。I型結晶構造は他の構造に比べて結晶弾性率が高い。 The cellulose type I crystal structure is, for example, as described in “The Dictionary of Cellulose” published by Asakura Shoten, pp. 81-86, or 93-99. Most natural cellulose is a cellulose type I crystal structure. On the other hand, cellulose fibers having a cellulose type I crystal structure, for example, a cellulose type II, III, or IV type structure are those derived from cellulose having a cellulose type I crystal structure. The I-type crystal structure has a higher crystal elastic modulus than other structures.
 化学修飾MFCがI型結晶構造であることは、その広角X線回折像測定により得られる回折プロファイルにおいて、2θ=14~17°付近及び2θ=22~23°付近の2つの位置に典型的なピークを有することから判定することができる。 The fact that the chemically modified MFC has a type I crystal structure is typical at two positions near 2θ = 14 to 17 ° and 2θ = 22 to 23 ° in the diffraction profile obtained by wide-angle X-ray diffraction image measurement. It can be determined from having a peak.
 セルロースは、β-1,4結合により直線的に伸びたセルロースが何本かの束になって、分子内或いは分子間の水素結合で固定され、伸びきり鎖となった結晶を形成している。 Cellulose is a bundle of several linearly stretched celluloses formed by β-1,4 bonds, fixed by intramolecular or intermolecular hydrogen bonds, and forms extended chains of crystals. .
 セルロースの結晶には、多くの結晶形が存在していることが、X線回折又は固体NMRによる解析で明らかになっている。天然セルロースの結晶形はI型のみである。 The existence of many crystal forms in cellulose crystals has been revealed by analysis by X-ray diffraction or solid-state NMR. The crystal form of natural cellulose is Form I only.
 X線回折等から、セルロースにおける結晶領域の比率は、木材パルプで約50~60%、バクテリアセルロースはこれより高く約70%程度と推測されている。セルロースは、伸びきり鎖結晶であることに起因して、弾性率が高いだけでなく、鋼鉄の5倍の強度、及びガラスの1/50以下の線熱膨張係数を示す。 From the X-ray diffraction and the like, the proportion of crystalline regions in cellulose is estimated to be about 50 to 60% for wood pulp and about 70% for bacterial cellulose. Cellulose not only has a high modulus of elasticity due to being an extended chain crystal, but also exhibits five times the strength of steel and a linear thermal expansion coefficient of 1/50 or less of glass.
 (1-2)(B)無機フィラー
 本発明の繊維強化樹脂組成物が含有する(B)無機フィラーは、ガラス繊維、グラスウール、炭素繊維、ガラス微細粉、カーボンブラック、カーボンナノチューブ、グラフェン、カオリン及びナノクレイからなる群から選ばれる1種又は2種以上の無機フィラーである。
(1-2) (B) Inorganic Filler The (B) inorganic filler contained in the fiber-reinforced resin composition of the present invention is glass fiber, glass wool, carbon fiber, glass fine powder, carbon black, carbon nanotube, graphene, kaolin and One or more inorganic fillers selected from the group consisting of nanoclays.
 無機フィラーは、ガラス繊維、グラスウール及び炭素繊維からなる群から選ばれる1種又は2種以上の繊維状の無機フィラーが好ましい。更に、ガラス繊維、及び炭素繊維からなる群から選ばれる1種又は2種の繊維状の無機フィラーが好ましい。 The inorganic filler is preferably one or more fibrous inorganic fillers selected from the group consisting of glass fibers, glass wool and carbon fibers. Furthermore, one or two fibrous inorganic fillers selected from the group consisting of glass fibers and carbon fibers are preferred.
 ガラス繊維及びグラスウールは、本発明の繊維強化樹脂組成物中の樹脂との親和性を持たせるため、表面が化学修飾されているものが好ましい。 Glass fiber and glass wool are preferably those whose surface is chemically modified in order to have affinity with the resin in the fiber-reinforced resin composition of the present invention.
 ガラス繊維として、市販されているものを使用することができる。ガラス繊維として、例えば、日東紡績(株)製のCSX3J、CSF3PE等を、好ましく用いることができる。 As glass fiber, what is marketed can be used. As glass fiber, CSX3J, CSF3PE etc. made from Nitto Boseki Co., Ltd. can be used preferably, for example.
 ガラス繊維の平均繊維径は、9~15μm程度が好ましく、11~13μm程度がより好ましい。ガラス繊維の平均繊維長は3~10mm程度が好ましい。 The average fiber diameter of the glass fibers is preferably about 9 to 15 μm, and more preferably about 11 to 13 μm. The average fiber length of the glass fiber is preferably about 3 to 10 mm.
 グラスウールとして、市販されているものを使用することができる。グラスウールとして、例えば、旭ファイバーガラス(株)製のホワイトウール等を、好ましく用いることができる。 As glass wool, those commercially available can be used. As glass wool, for example, white wool manufactured by Asahi Fiber Glass Co., Ltd. can be preferably used.
 グラスウールの平均繊維径は、5~10μm程度が好ましく、7~8μm程度がより好ましい。グラスウールの平均繊維長は20~100mm程度が好ましい。 The average fiber diameter of glass wool is preferably about 5 to 10 μm, and more preferably about 7 to 8 μm. The average fiber length of glass wool is preferably about 20 to 100 mm.
 炭素繊維は、本発明の繊維強化樹脂組成物中の樹脂との親和性を持たせるため、表面処理されているものが好ましい。 The carbon fiber is preferably surface-treated to have affinity with the resin in the fiber-reinforced resin composition of the present invention.
 炭素繊維として、市販されているものを使用することができる。炭素繊維として、例えば、東レ(株)製のトレカ(登録商標)、東邦テナックス(株)製のテナックス(登録商標)等を、好ましく用いることができる。 Commercially available carbon fibers can be used. As the carbon fiber, for example, Torayca (registered trademark) manufactured by Toray Industries, Inc., Tenax (registered trademark) manufactured by Toho Tenax Corporation, etc. can be preferably used.
 炭素繊維の平均繊維径は、5~18μm程度が好ましく、5~7μm程度がより好ましい。炭素繊維の平均繊維長は3~25mm程度が好ましい。 The average fiber diameter of the carbon fibers is preferably about 5 to 18 μm, and more preferably about 5 to 7 μm. The average fiber length of the carbon fiber is preferably about 3 to 25 mm.
 (1-3)(C)熱可塑性樹脂
 本発明の繊維強化樹脂組成物は、(A)化学修飾MFC、(B)無機フィラー及び(C)熱可塑性樹脂を含む。この繊維強化樹脂組成物を用いることで、強度に優れる成形体を作製することができる。
(1-3) (C) Thermoplastic Resin The fiber reinforced resin composition of the present invention comprises (A) a chemically modified MFC, (B) an inorganic filler and (C) a thermoplastic resin. By using this fiber-reinforced resin composition, a molded article excellent in strength can be produced.
 (C)熱可塑性樹脂として、力学的特性、耐熱性、表面平滑性及び外観に優れるという点から、ポリアミド、ポリオレフィン、脂肪族ポリエステル、芳香族ポリエステル、ポリアセタール、ポリカーボネート、ポリスチレン、アクリロニトリル-ブタジエン-スチレン共重合体(ABS樹脂)、ポリカーボネート-ABSアロイ(PC-ABSアロイ)、及び変性ポリフェニレンエーテル(m-PPE)からなる群から選ばれる少なくとも1種の樹脂を用いることが好ましい。 (C) As a thermoplastic resin, polyamides, polyolefins, aliphatic polyesters, aromatic polyesters, polyacetals, polycarbonates, polystyrenes, acrylonitrile-butadiene-styrene copolymers from the viewpoint of excellent mechanical properties, heat resistance, surface smoothness and appearance It is preferable to use at least one resin selected from the group consisting of a polymer (ABS resin), a polycarbonate-ABS alloy (PC-ABS alloy), and a modified polyphenylene ether (m-PPE).
 熱可塑性樹脂として、前記樹脂を単独で使用してもよく、2種以上の混合樹脂として用いてもよい。 The thermoplastic resin may be used alone or in combination of two or more.
 また、上記以外の樹脂、例えば、ポリ塩化ビニル、ポリ塩化ビニリデン、フッ素樹脂、(メタ)アクリル系樹脂、、(熱可塑性)ポリウレタン、ビニルエーテル樹脂、ポリスルホン系樹脂、セルロース系樹脂(例えばトリアセチル化セルロース、ジアセチル化セルロース等)等も好ましく使用することができる。 In addition, resins other than the above, such as polyvinyl chloride, polyvinylidene chloride, fluorine resin, (meth) acrylic resin, (thermoplastic) polyurethane, vinyl ether resin, polysulfone resin, cellulose resin (for example, triacetylated cellulose) And diacetylated cellulose etc. can also be preferably used.
 ポリアミド(PA)として、ポリアミド6(ナイロン6、PA6)、ポリアミド66(ナイロン66、PA66)、ポリアミド610(PA610)、ポリアミド612(PA612)、ポリアミド11(PA11)、ポリアミド12(PA12)、ポリアミド46、ポリアミドXD10(PAXD10)、ポリアミドMXD6(PAMXD6)等を好ましく用いることができる。 As polyamide (PA), polyamide 6 (nylon 6, PA 6), polyamide 66 (nylon 66, PA 66), polyamide 610 (PA 610), polyamide 612 (PA 612), polyamide 11 (PA 11), polyamide 12 (PA 12), polyamide 46 Polyamide XD10 (PAXD10), polyamide MXD6 (PAMXD6) and the like can be preferably used.
 ポリオレフィンとしては、ポリプロピレン(PP)、ポリエチレン(PE)とポリプロピレン(PP)との共重合体、無水マレイン酸変性ポリプロピレン(MAPP)、ポリエチレン(PE、特に高密度ポリエチレンHDPE)等を好ましく用いることができる。 As polyolefin, polypropylene (PP), copolymer of polyethylene (PE) and polypropylene (PP), maleic anhydride modified polypropylene (MAPP), polyethylene (PE, especially high density polyethylene HDPE) can be preferably used. .
 前記ポリプロピレン(PP)として、イソタクチックポリプロピレン(iPP)、シンジオタクチックポリプロピレン(sPP)等を好ましく用いることができる。 As the polypropylene (PP), isotactic polypropylene (iPP), syndiotactic polypropylene (sPP) or the like can be preferably used.
 脂肪族ポリエステルとして、ジオール類とコハク酸、吉草酸等の脂肪族ジカルボン酸との重合体又は共重合体(例えば、ポリブチレンサクシネート(PBS))、グリコール酸又は乳酸等のヒドロキシカルボン酸の単独重合体又は共重合体(例えばポリ乳酸、ポリε-カプロラクトン(PCL)等)、並びにジオール類、脂肪族ジカルボン酸及び前記ヒドロキシカルボン酸の共重合体等を好ましく使用することができる。 As an aliphatic polyester, a polymer or copolymer of a diol and an aliphatic dicarboxylic acid such as succinic acid or valeric acid (for example, polybutylene succinate (PBS)), or a hydroxycarboxylic acid such as glycolic acid or lactic acid alone Polymers or copolymers (eg, polylactic acid, poly ε-caprolactone (PCL), etc.), and diols, copolymers of aliphatic dicarboxylic acids and the above-mentioned hydroxycarboxylic acids, etc. can be preferably used.
 芳香族ポリエステルとして、エチレングリコール、プロピレングリコール、1,4-ブタンジオール等のジオール類とテレフタル酸等の芳香族ジカルボン酸との重合体等を好ましく使用することができる。具体的には、例えば、ポリエチレンテレフタレート(PET)、ポリプロピレンテレフタレート(PPT)、ポリブチレンテレフタラート(PBT)等を好ましく用いることができる。 As the aromatic polyester, polymers of diols such as ethylene glycol, propylene glycol, 1,4-butanediol and the like and aromatic dicarboxylic acids such as terephthalic acid can be preferably used. Specifically, for example, polyethylene terephthalate (PET), polypropylene terephthalate (PPT), polybutylene terephthalate (PBT) and the like can be preferably used.
 ポリアセタール(ポリオキシメチレンともいう、POM)としては、パラホルムアルデヒドの均一重合体に加えて、パラホルムアルデヒドとオキシエチレンとの共重合体も好ましく使用することができる。 As the polyacetal (also referred to as polyoxymethylene, POM), in addition to a homogeneous polymer of paraformaldehyde, a copolymer of paraformaldehyde and oxyethylene can also be preferably used.
 ポリカーボネート(PC)には、ビスフェノールA又はその誘導体であるビスフェノール類と、ホスゲン又はフェニルジカーボネートとの反応物を好ましく使用することができる。 For polycarbonate (PC), a reaction product of bisphenol A or a bisphenol which is a derivative thereof and phosgene or phenyl dicarbonate can be preferably used.
 ポリスチレン(PS)として、汎用PS(GPPS)に加えて、PSマトリックスにゴム成分を分散させて耐衝撃性を改良したPS(HIPS)を好適に使用することができる。ポリスチレン(PS)に加えて、スチレンの共重合体(アクリロニトリル-ブタジエン-スチレン共重合体、ABS樹脂)は、本発明の繊維強化樹脂組成物のマトリクスとして好ましい樹脂である。 As polystyrene (PS), in addition to general-purpose PS (GPPS), PS (HIPS) in which a rubber component is dispersed in a PS matrix to improve impact resistance can be suitably used. In addition to polystyrene (PS), a copolymer of styrene (acrylonitrile-butadiene-styrene copolymer, ABS resin) is a preferable resin as a matrix of the fiber reinforced resin composition of the present invention.
 ポリカーボネート(PC)とABSとのブレンド品(PC-ABSアロイ)は、耐衝撃性、耐候性及び成形加工性に優れているので、用いることが好ましい。 A blend of polycarbonate (PC) and ABS (PC-ABS alloy) is preferably used because it is excellent in impact resistance, weather resistance and moldability.
 PPEとPSとのブレンド品(PPE-PSブレンド品)は、ポリフェニレンエーテル(PPE)の変性品(m-PPE)の一種である。PPE-PSブレンド品は、耐熱性が高く、また軽量であることから、用いることが好ましい。 A blend of PPE and PS (PPE-PS blend) is a type of modified polyphenylene ether (PPE) (m-PPE). The PPE-PS blend is preferably used because of its high heat resistance and light weight.
 熱可塑性樹脂の中でも、力学的特性、耐熱性、表面平滑性及び外観に優れるという点から、PA、POM、PP、MAPP、PE、ポリ乳酸、乳酸共重合樹脂、PBS、PET、PPT、PBT、PS、ABS樹脂及びPC-ABSアロイからなる群から選ばれる少なくとも1種の樹脂を用いることが好ましい。 Among thermoplastic resins, PA, POM, PP, MAPP, PE, polylactic acid, lactic acid copolymer resin, PBS, PET, PPT, PBT, from the viewpoint of excellent mechanical properties, heat resistance, surface smoothness and appearance. It is preferable to use at least one resin selected from the group consisting of PS, ABS resin and PC-ABS alloy.
 (2)繊維強化樹脂組成物の配合組成
 本発明の繊維強化樹脂組成物は、(A)化学修飾MFC、(B)無機フィラー及び(C)熱可塑性樹脂を含む。
(2) Composition of Fiber Reinforced Resin Composition The fiber reinforced resin composition of the present invention comprises (A) a chemically modified MFC, (B) an inorganic filler and (C) a thermoplastic resin.
 本発明の繊維強化樹脂組成物中の(A)化学修飾MFCの含有割合は、(C)熱可塑性樹脂100質量部に対し、3~60質量部程度が好ましく、5~50質量部程度がより好ましく、5~40質量部程度が更に好ましい。繊維強化樹脂組成物中の(A)化学修飾MFCの含有割合は、5~30質量部程度であることが最も好ましい。 The content of the (A) chemically modified MFC in the fiber-reinforced resin composition of the present invention is preferably about 3 to 60 parts by mass, and more preferably 5 to 50 parts by mass with respect to 100 parts by mass of the (C) thermoplastic resin. Preferably, about 5 to 40 parts by mass is more preferable. The content ratio of the (A) chemically modified MFC in the fiber reinforced resin composition is most preferably about 5 to 30 parts by mass.
 (A)化学修飾MFCとしては、アセチル化MFCが好ましい。 (A) As chemically modified MFC, acetylated MFC is preferable.
 本発明の繊維強化樹脂組成物中の(B)無機フィラーの含有割合は、(C)熱可塑性樹脂100質量部に対し、3~60質量部程度が好ましく、5~50質量部程度がより好ましく、5~40質量部程度が更に好ましい。繊維強化樹脂組成物中の(B)無機フィラー(好ましくはガラス繊維又は炭素繊維)の含有割合は、5~30質量部程度であることが最も好ましい。 The content ratio of the (B) inorganic filler in the fiber reinforced resin composition of the present invention is preferably about 3 to 60 parts by mass, more preferably about 5 to 50 parts by mass with respect to 100 parts by mass of the (C) thermoplastic resin. And about 5 to 40 parts by mass is more preferable. The content of the (B) inorganic filler (preferably glass fiber or carbon fiber) in the fiber reinforced resin composition is most preferably about 5 to 30 parts by mass.
 (B)無機フィラーとしては、ガラス繊維及び/又は炭素繊維が好ましい。 (B) As an inorganic filler, glass fiber and / or carbon fiber are preferable.
 本発明の繊維強化樹脂組成物中の(B)無機フィラーに対する(A)化学修飾MFCの割合は、質量比で0.25~4、好ましくは0.3~3、更に好ましくは、0.5~2である。つまり、(A)化学修飾MFCの配合量/(B)無機フィラーの配合量が、質量比として、0.25~4、好ましくは0.3~3、更に好ましくは、0.5~2である。 The ratio of the (A) chemically modified MFC to the (B) inorganic filler in the fiber reinforced resin composition of the present invention is 0.25 to 4, preferably 0.3 to 3, and more preferably 0.5 to 2 in mass ratio. That is, the blending amount of (A) chemically modified MFC / (B) inorganic filler is, as a mass ratio, 0.25 to 4, preferably 0.3 to 3, and more preferably 0.5 to 2.
 (A)化学修飾MFCを(C)熱可塑性樹脂に配合することにより、力学的特性、耐熱性、表面平滑性及び外観に優れる繊維強化樹脂組成物を得ることができる。 By blending the (A) chemically modified MFC with the (C) thermoplastic resin, it is possible to obtain a fiber-reinforced resin composition excellent in mechanical properties, heat resistance, surface smoothness and appearance.
 (A)化学修飾MFCを(B)無機フィラーと共に(C)熱可塑性樹脂に配合することによって、(B)無機フィラーのみを配合する場合に比べて、軽量で力学的特性に優れた繊維強化樹脂組成物を得ることができる。 (A) A fiber-reinforced resin which is lightweight and has excellent mechanical properties as compared to the case where only (B) inorganic filler is blended by blending the chemically modified MFC with (B) inorganic filler in (C) thermoplastic resin A composition can be obtained.
 (A)化学修飾MFCは、植物繊維と同様に、軽量で優れた強度を有し、低線熱膨張係数を有する。 (A) Chemically modified MFC, like vegetable fibers, is lightweight, has excellent strength, and has a low linear thermal expansion coefficient.
 本発明の繊維強化樹脂組成物は、(A)化学修飾MFC及び(B)無機フィラーを含んでいても、汎用のプラスチックと同様に、加熱すると軟化して成形し易いことから、良好な成形加工性を発現することができる。 The fiber-reinforced resin composition of the present invention, even if it contains (A) a chemically modified MFC and (B) an inorganic filler, softens easily upon heating and is easy to form as in general-purpose plastics. Sex can be expressed.
 本発明の繊維強化樹脂組成物には、前記(A)化学修飾MFC、(B)無機フィラー及び(C)熱可塑性樹脂に加え、例えば、相溶化剤;界面活性剤;酸化防止剤;難燃剤;タンニン、ゼオライト、セラミックス、金属粉末等の無機化合物;着色剤;可塑剤;香料;顔料;流動調整剤;レベリング剤;導電剤;帯電防止剤;紫外線吸収剤;紫外線分散剤;消臭剤等の添加剤を任意に配合してもよい。 In the fiber reinforced resin composition of the present invention, in addition to the (A) chemically modified MFC, (B) inorganic filler and (C) thermoplastic resin, for example, a compatibilizer; surfactant; antioxidant; flame retardant Inorganic compounds such as tannins, zeolites, ceramics, metal powders, colorants, plasticizers, perfumes, pigments, flow control agents, leveling agents, conductive agents, antistatic agents, ultraviolet light absorbers, ultraviolet light dispersion agents, deodorant etc. The additives of the above may be optionally blended.
 前記添加剤の含有量は、本発明の効果が損なわれない範囲で適宜調整することができる。 The content of the additive can be appropriately adjusted within the range in which the effects of the present invention are not impaired.
 本発明の繊維強化樹脂組成物は、(A)化学修飾CMFを含むので、この繊維同士が水素結合によって自己凝集することを抑制することができる。よって、(A)化学修飾MFC、(B)無機フィラー及び(C)熱可塑性樹脂を混合しても、(A)化学修飾MFC同士の凝集が抑制され、(A)化学修飾MFCと(B)無機フィラーとが(C)熱可塑性樹脂中で良好な分散性を示す。その結果、本発明の繊維強化樹脂組成物は、力学的特性、耐熱性、表面平滑性及び外観に優れる。 Since the fiber reinforced resin composition of the present invention contains (A) chemically modified CMF, it is possible to suppress the self-aggregation of the fibers due to hydrogen bonding. Therefore, even when (A) chemically modified MFC, (B) inorganic filler and (C) thermoplastic resin are mixed, (A) aggregation of chemically modified MFCs is suppressed, (A) chemically modified MFC and (B) The inorganic filler and the (C) thermoplastic resin exhibit good dispersibility. As a result, the fiber reinforced resin composition of the present invention is excellent in mechanical properties, heat resistance, surface smoothness and appearance.
 本発明の繊維強化樹脂組成物において、(A)化学修飾MFCは、その溶解パラメータ(SP)が(C)熱可塑性樹脂のSPに近い方が好ましい。 In the fiber reinforced resin composition of the present invention, it is preferable that the (A) chemically modified MFC has a solubility parameter (SP) close to that of the (C) thermoplastic resin.
 (C)熱可塑性樹脂として極性の高い樹脂を用いて繊維強化樹脂組成物のマトリクスとする場合、置換基Rが例えばアセチル基の時は、その置換度(DS)が0.4~1.2程度で、その溶解度パラメータが12~15程度であるアセチル化MFCを樹脂中に含有させることが好ましい。 (C) When a resin of high polarity is used as a thermoplastic resin to form a matrix of a fiber reinforced resin composition, when the substituent R is, for example, an acetyl group, its degree of substitution (DS) is about 0.4 to 1.2, Preferably, acetylated MFC having a solubility parameter of about 12 to 15 is contained in the resin.
 極性の高い樹脂として、例えば、PA、POM、ポリ乳酸等が好ましい。 As resin with high polarity, PA, POM, polylactic acid etc. are preferable, for example.
 (C)熱可塑性樹脂として極性の小さい樹脂を用いて繊維強化樹脂組成物のマトリクスとする場合、置換度(DS)が1.2程度以上であり、溶解度パラメータが8~12程度である化学修飾MFCを樹脂中に含有させることが好ましい。 (C) When a resin of small polarity is used as a thermoplastic resin to form a matrix of a fiber reinforced resin composition, a chemically modified MFC having a degree of substitution (DS) of about 1.2 or more and a solubility parameter of about 8 to 12 is used. It is preferable to make it contain in resin.
 極性の小さい樹脂として、例えば、PP、PE等が好ましい。化学修飾MFCとしてはアセチル化MFCが好ましい。 As a resin of small polarity, for example, PP, PE, etc. are preferable. As chemically modified MFC, acetylated MFC is preferred.
 (3)繊維強化樹脂組成物の製造方法
 製法1
 本発明の繊維強化樹脂組成物は、(A)化学修飾MFC、(B)無機フィラー及び(C)熱可塑性樹脂(マトリックス材料)を、溶融混練し、(A)化学修飾MFCと(B)無機フィラーとを(C)熱可塑性樹脂中に分散させるすることにより製造することができる。
(3) the production method Preparation 1 of fiber-reinforced resin composition
The fiber reinforced resin composition of the present invention is prepared by melt-kneading (A) chemically modified MFC, (B) inorganic filler and (C) thermoplastic resin (matrix material), (A) chemically modified MFC and (B) inorganic It can manufacture by making a filler disperse | distribute in (C) thermoplastic resin.
 そして、その繊維強化樹脂組成物を成形することにより繊維強化樹脂組成物の成形体を作製することができる。 And the molded object of a fiber reinforced resin composition can be produced by shape | molding the fiber reinforced resin composition.
 製法2
 本発明の繊維強化樹脂組成物は、混練機等を用いて、化学修飾セルロース系パルプ(化学修飾CP)、(B)無機フィラー及び(C)熱可塑性樹脂を一括して混練し、それらを複合化することにより製造することが好ましい。つまり、製法2は、化学修飾セルロース系パルプ、無機フィラー及び熱可塑性樹脂の三者を同時に溶融混練する方法である。
Production method 2
In the fiber-reinforced resin composition of the present invention, chemically modified cellulose pulp (chemically modified CP), (B) inorganic filler and (C) thermoplastic resin are collectively kneaded using a kneader etc., and these are composited It is preferable to manufacture by That is, Production method 2 is a method of simultaneously melt-kneading three of the chemically modified cellulose pulp, the inorganic filler and the thermoplastic resin.
 製法2は、繊維強化樹脂組成物の製造方法であって、
 (i)下式(1):
  (Lg)Cell-O-R・・・・(1)
  〔式中、(Lg)Cell-は、セルロース系高分子中のセルロース、ホロセルロース及び/又はリグノセルロースを構成する多糖及びリグニンから水酸基を除いた残基を示す。
  式中、-O-Rは、セルロース系高分子中のセルロース、ホロセルロース及び/又はリグノセルロースを構成する多糖及びリグニン中の一部の水酸基の水素原子が置換基Rにより置換されていることを示す。
  式中、Rは、炭素数2~4のアシル基、-(CH2)n-1COOH、-CO(CH2)nCOOH、-COCH=CHCOOH、-(CH2)n-1COO-X+、-CO(CH2)nCOO-X+及び-COCH=CHCOO-X+からなる群から選ばれる1種又は2種以上を示し、nは2~4の整数を示す。前記COO-X+は、カルボキシ基が無機又は有機塩の状態になった基を示す。〕
 で表される化学修飾セルロース系高分子からなる化学修飾セルロース系パルプ、
 (ii)(B)無機フィラー、及び
 (iii)(C)熱可塑性樹脂
を溶融混練することで、(A)化学修飾ミクロフィブリル化セルロース系繊維、(B)無機フィラー及び(C)熱可塑性樹脂を含有する繊維強化樹脂組成物を製造する方法であり、 前記(A)化学修飾ミクロフィブリル化セルロース系繊維及び前記(B)無機フィラーが下記(a)及び(b)の要件を満たす繊維強化樹脂組成物の製造方法である。
 (a)(A)化学修飾ミクロフィブリル化セルロース系繊維が、下式(1):
  (Lg)Cell-O-R・・・・(1)
  〔式中、(Lg)Cell-は、セルロース系高分子中のセルロース、ホロセルロース及び/又はリグノセルロースを構成する多糖及びリグニンから水酸基を除いた残基を示す。
  式中、-O-Rは、セルロース系高分子中のセルロース、ホロセルロース及び/又はリグノセルロースを構成する多糖及びリグニン中の一部の水酸基の水素原子が置換基Rにより置換されていることを示す。
  式中、Rは、炭素数2~4のアシル基、-(CH2)n-1COOH、-CO(CH2)nCOOH、-COCH=CHCOOH、-(CH2)n-1COO-X+、-CO(CH2)nCOO-X+及び-COCH=CHCOO-X+からなる群から選ばれる1種又は2種以上を示し、nは2~4の整数を示す。前記COO-X+は、カルボキシ基が無機又は有機塩の状態になった基を示す。〕
 で表される化学修飾セルロース系高分子で構成される繊維のミクロフィブリル化繊維である。
 (b)(B)無機フィラーが、ガラス繊維、グラスウール、炭素繊維、ガラス微細粉、カーボンブラック、カーボンナノチューブ、グラフェン、カオリン及びナノクレイからなる群から選ばれる1種又は2種以上のフィラーである。
Production method 2 is a production method of a fiber reinforced resin composition, and
(I) The following equation (1):
(Lg) Cell-OR (1)
[Wherein, (Lg) Cell- represents a residue of cellulose, holocellulose and / or polysaccharide constituting lignocellulose and lignin from which hydroxyl group has been removed, in a cellulose polymer.
In the formula, —OR indicates that a hydrogen atom of a part of hydroxyl groups in cellulose, holocellulose and / or polysaccharides constituting lignocellulose and lignin in the cellulose polymer is substituted by a substituent R.
In the formula, R represents an acyl group having 2 to 4 carbon atoms,-(CH 2 ) n-1 COOH, -CO (CH 2 ) n COOH, -COCH = CHCOOH,-(CH 2 ) n-1 COO - X This represents one or more selected from the group consisting of + , -CO (CH 2 ) n COO - X + and -COCH = CHCOO - X + , and n represents an integer of 2 to 4. The COO X + represents a group in which the carboxy group is in the form of an inorganic or organic salt. ]
Chemically modified cellulosic pulp comprising a chemically modified cellulosic polymer represented by
By melt-kneading (ii) (B) inorganic filler and (iii) (C) thermoplastic resin, (A) chemically modified microfibrillated cellulose fiber, (B) inorganic filler and (C) thermoplastic resin A fiber-reinforced resin composition comprising: a) a chemically-modified microfibrillated cellulosic fiber according to the above (A), and a fiber-reinforced resin according to the above-mentioned (B): an inorganic filler satisfying the following requirements (a) and (b): It is a method of producing a composition.
( A ) (A) Chemically Modified Microfibrillated Cellulosic Fibers Containing the Following Formula (1):
(Lg) Cell-OR (1)
[Wherein, (Lg) Cell- represents a residue of cellulose, holocellulose and / or polysaccharide constituting lignocellulose and lignin from which hydroxyl group has been removed, in a cellulose polymer.
In the formula, —OR indicates that a hydrogen atom of a part of hydroxyl groups in cellulose, holocellulose and / or polysaccharides constituting lignocellulose and lignin in the cellulose polymer is substituted by a substituent R.
In the formula, R represents an acyl group having 2 to 4 carbon atoms,-(CH 2 ) n-1 COOH, -CO (CH 2 ) n COOH, -COCH = CHCOOH,-(CH 2 ) n-1 COO - X This represents one or more selected from the group consisting of + , -CO (CH 2 ) n COO - X + and -COCH = CHCOO - X + , and n represents an integer of 2 to 4. The COO X + represents a group in which the carboxy group is in the form of an inorganic or organic salt. ]
It is a microfibrillated fiber of the fiber comprised from chemically modified cellulose polymer represented by these.
(B) (B) The inorganic filler is one or more fillers selected from the group consisting of glass fiber, glass wool, carbon fiber, glass fine powder, carbon black, carbon nanotube, graphene, kaolin and nanoclay.
 製法2では、混練中のせん断応力により化学修飾CPのフィブリル化が良好に進行する。混練中に、化学修飾CPは樹脂中で(A)化学修飾MFCに良好に解繊される。製法2によれば、(A)化学修飾MFCと(B)無機フィラーとが(C)熱可塑性樹脂中に、良好に分散した繊維強化樹脂組成物を製造することができる。 In Production method 2, fibrillation of the chemically modified CP proceeds well due to shear stress during kneading. During kneading, the chemically modified CP is well disintegrated into (A) chemically modified MFC in the resin. According to production method 2, it is possible to produce a fiber reinforced resin composition in which (A) the chemically modified MFC and (B) the inorganic filler are well dispersed in (C) the thermoplastic resin.
 製法3
 本発明の繊維強化樹脂組成物は、化学修飾セルロース系パルプ(化学修飾CP)と(C)熱可塑性樹脂とを混練して混練物を得、次いで、得られた混練物と、(B)無機フィラーと熱可塑性樹脂とを含む樹脂組成物とを溶融混練する方法によって製造することが好ましい。製法3は、化学修飾セルロース系パルプ及び熱可塑性樹脂を溶融混練した後、無機フィラーを含有する樹脂組成物を加えて溶融混練する方法、すなわち二段階で混練する方法である。
Production method 3
In the fiber-reinforced resin composition of the present invention, a chemically modified cellulose pulp (chemically modified CP) and (C) a thermoplastic resin are kneaded to obtain a kneaded product, and then the obtained kneaded product, (B) inorganic It is preferable to manufacture by the method of melt-kneading the resin composition containing a filler and a thermoplastic resin. Production method 3 is a method in which a resin composition containing an inorganic filler is added and melt-kneaded after melt-kneading a chemically modified cellulose pulp and a thermoplastic resin, that is, a method in which kneading is performed in two steps.
 製法3は、繊維強化樹脂組成物の製造方法であって、
 工程(1):
 下式(1):
  (Lg)Cell-O-R・・・・(1)
  〔式中、(Lg)Cell-は、セルロース系高分子中のセルロース、ホロセルロース及び/又はリグノセルロースを構成する多糖及びリグニンから水酸基を除いた残基を示す。
  式中、-O-Rは、セルロース系高分子中のセルロース、ホロセルロース及び/又はリグノセルロースを構成する多糖及びリグニン中の一部の水酸基の水素原子が置換基Rにより置換されていることを示す。
  式中、Rは、炭素数2~4のアシル基、-(CH2)n-1COOH、-CO(CH2)nCOOH、-COCH=CHCOOH、-(CH2)n-1COO-X+、-CO(CH2)nCOO-X+及び-COCH=CHCOO-X+からなる群から選ばれる1種又は2種以上を示し、nは2~4の整数を示す。前記COO-X+は、カルボキシ基が無機又は有機塩の状態になった基を示す。〕
 で表される化学修飾セルロース系高分子からなる化学修飾セルロース系パルプ、及び (C)熱可塑性樹脂を混練する工程、及び
 工程(2):
 前記工程(1)で得られた混練物と、(B)無機フィラーと熱可塑性樹脂とを含む樹脂組成物とを溶融混練する工程
を含む方法により、(A)化学修飾ミクロフィブリル化セルロース系繊維、(B)無機フィラー及び(C)熱可塑性樹脂を含有する繊維強化樹脂組成物を製造する方法であり、
 前記(A)化学修飾ミクロフィブリル化セルロース系繊維及び前記(B)無機フィラーが下記(a)及び(b)の要件を満たす繊維強化樹脂組成物の製造方法である。
 (a)(A)化学修飾ミクロフィブリル化セルロース系繊維が、下式(1):
  (Lg)Cell-O-R・・・・(1)
  〔式中、(Lg)Cell-は、セルロース系高分子中のセルロース、ホロセルロース及び/又はリグノセルロースを構成する多糖及びリグニンから水酸基を除いた残基を示す。
  式中、-O-Rは、セルロース系高分子中のセルロース、ホロセルロース及び/又はリグノセルロースを構成する多糖及びリグニン中の一部の水酸基の水素原子が置換基Rにより置換されていることを示す。
  式中、Rは、炭素数2~4のアシル基、-(CH2)n-1COOH、-CO(CH2)nCOOH、-COCH=CHCOOH、-(CH2)n-1COO-X+、-CO(CH2)nCOO-X+及び-COCH=CHCOO-X+からなる群から選ばれる1種又は2種以上を示し、nは2~4の整数を示す。前記COO-X+は、カルボキシ基が無機又は有機塩の状態になった基を示す。〕
 で表される化学修飾セルロース系高分子で構成される繊維のミクロフィブリル化繊維である。
 (b)(B)無機フィラーが、ガラス繊維、グラスウール、炭素繊維、ガラス微細粉、カーボンブラック、カーボンナノチューブ、グラフェン、カオリン及びナノクレイからなる群から選ばれる1種又は2種以上のフィラーである。
Production method 3 is a production method of a fiber reinforced resin composition, and
Process (1):
The following formula (1):
(Lg) Cell-OR (1)
[Wherein, (Lg) Cell- represents a residue of cellulose, holocellulose and / or polysaccharide constituting lignocellulose and lignin from which hydroxyl group has been removed, in a cellulose polymer.
In the formula, —OR indicates that a hydrogen atom of a part of hydroxyl groups in cellulose, holocellulose and / or polysaccharides constituting lignocellulose and lignin in the cellulose polymer is substituted by a substituent R.
In the formula, R represents an acyl group having 2 to 4 carbon atoms,-(CH 2 ) n-1 COOH, -CO (CH 2 ) n COOH, -COCH = CHCOOH,-(CH 2 ) n-1 COO - X This represents one or more selected from the group consisting of + , -CO (CH 2 ) n COO - X + and -COCH = CHCOO - X + , and n represents an integer of 2 to 4. The COO X + represents a group in which the carboxy group is in the form of an inorganic or organic salt. ]
A step of kneading a chemically modified cellulose-based pulp composed of a chemically modified cellulose-based polymer represented by and (C) a thermoplastic resin, and a step (2):
(A) Chemically modified microfibrillated cellulose fiber by a method including the step of melt-kneading the kneaded product obtained in the step (1), and the resin composition containing (B) an inorganic filler and a thermoplastic resin A fiber reinforced resin composition containing (B) an inorganic filler and (C) a thermoplastic resin,
It is a manufacturing method of the fiber reinforced resin composition whose above-mentioned (A) chemical modification micro fibrillated cellulose type fiber and the above-mentioned (B) inorganic filler fulfill the requirements of the following (a) and (b).
( A ) (A) Chemically Modified Microfibrillated Cellulosic Fibers Containing the Following Formula (1):
(Lg) Cell-OR (1)
[Wherein, (Lg) Cell- represents a residue of cellulose, holocellulose and / or polysaccharide constituting lignocellulose and lignin from which hydroxyl group has been removed, in a cellulose polymer.
In the formula, —OR indicates that a hydrogen atom of a part of hydroxyl groups in cellulose, holocellulose and / or polysaccharides constituting lignocellulose and lignin in the cellulose polymer is substituted by a substituent R.
In the formula, R represents an acyl group having 2 to 4 carbon atoms,-(CH 2 ) n-1 COOH, -CO (CH 2 ) n COOH, -COCH = CHCOOH,-(CH 2 ) n-1 COO - X This represents one or more selected from the group consisting of + , -CO (CH 2 ) n COO - X + and -COCH = CHCOO - X + , and n represents an integer of 2 to 4. The COO X + represents a group in which the carboxy group is in the form of an inorganic or organic salt. ]
It is a microfibrillated fiber of the fiber comprised from chemically modified cellulose polymer represented by these.
(B) (B) The inorganic filler is one or more fillers selected from the group consisting of glass fiber, glass wool, carbon fiber, glass fine powder, carbon black, carbon nanotube, graphene, kaolin and nanoclay.
 製法3では、混練中のせん断応力により化学修飾CPのフィブリル化が良好に進行する。混練中に、化学修飾CPは樹脂中で(A)化学修飾MFCに良好に解繊される。製法3によれば、(A)化学修飾MFCと(B)無機フィラーとが(C)熱可塑性樹脂中に、良好に分散した繊維強化樹脂組成物を製造することができる。 In Production method 3, fibrillation of the chemically modified CP proceeds well due to shear stress during kneading. During kneading, the chemically modified CP is well disintegrated into (A) chemically modified MFC in the resin. According to production method 3, it is possible to produce a fiber reinforced resin composition in which (A) chemically modified MFC and (B) inorganic filler are well dispersed in (C) a thermoplastic resin.
 製法3に用いられる、無機フィラーと熱可塑性樹脂とを含む樹脂組成物として、(I)(イ)無機フィラーと(ロ)熱可塑性樹脂との溶融混合物(市販品を使用することもある)、及び(II)(イ)無機フィラーと(ロ)熱可塑性樹脂との粉末混合物のどちらも使用することができる。 As a resin composition containing an inorganic filler and a thermoplastic resin, which is used in Production method 3, a melt mixture of (I) (i) inorganic filler and (ii) thermoplastic resin (some commercially available products may be used), And (II) Both powder mixtures of (i) inorganic filler and (ii) thermoplastic resin can be used.
 各製法における溶融混練時の加熱設定温度は、本発明に使用する熱可塑性樹脂を供給する業者が推奨する、最低加工温度(A℃)から、この推奨加工温度より20℃高い温度(A+20℃)の範囲が好ましい。 The heating set temperature at the time of melt-kneading in each production method is a temperature (A + 20) higher by 20 ° C. higher than the recommended processing temperature from the minimum processing temperature (A ° C.) recommended by the supplier supplying the thermoplastic resin used in the present invention. The range of ° C.) is preferred.
 PA6を使用する場合、溶融混練時の加熱設定温度は225~240℃が好ましい。 When PA 6 is used, the heating setting temperature at the time of melt-kneading is preferably 225 to 240 ° C.
 POMを使用する場合、溶融混練時の加熱設定温度はは170~190℃が好ましい。 When POM is used, the heating set temperature at the time of melt-kneading is preferably 170 to 190.degree.
 PP及びMAPPを使用する場合、溶融混練時の加熱設定温度は160~180℃が好ましい。 When PP and MAPP are used, the heating set temperature at the time of melt-kneading is preferably 160 to 180 ° C.
 混合温度をこの温度範囲に設定することにより、(A)化学修飾MFC又は化学修飾パルプと(B)無機フィラーと(C)熱可塑性樹脂とを均一に混合することができる。 By setting the mixing temperature in this temperature range, it is possible to uniformly mix (A) the chemically modified MFC or chemically modified pulp, (B) the inorganic filler and (C) the thermoplastic resin.
 上記製造法のうち、製法2及び製法3では、未解繊の化学修飾CPを樹脂と混合しながら混練機の剪断応力で解繊を行うため、製造費用の低コスト化を図ることができる。また、製法2及び製法3によれば、化学修飾CPから、繊維のダメージが少ない化学修飾MFCを、熱可塑性樹脂中に分散した状態で調製することができる。 In the production methods 2 and 3 among the production methods described above, defibrillation is carried out by the shear stress of the kneader while mixing unchemically disintegrated chemically modified CP with the resin, so that the cost of production can be reduced. Further, according to production method 2 and production method 3, chemically modified MFC with less fiber damage can be prepared from chemically modified CP in a state of being dispersed in a thermoplastic resin.
 製法2及び製法3によれば、この化学修飾MFCが分散した高性能な繊維強化樹脂組成物を得ることが可能となる。 According to Production method 2 and Production method 3, it is possible to obtain a high-performance fiber reinforced resin composition in which the chemically modified MFC is dispersed.
 (4)繊維強化樹脂組成物の成形体
 本発明の成形体は繊維強化樹脂組成物からなる。
(4) Molded Product of Fiber-Reinforced Resin Composition The molded product of the present invention comprises a fiber-reinforced resin composition.
 本発明の繊維強化樹脂組成物を用いて、成形体を製造することができる。 A molded object can be manufactured using the fiber reinforced resin composition of this invention.
 本発明の繊維強化樹脂組成物を、必要に応じて、フィルム状、シート状、板状、ペレット状、粉末状等の形状に整えて、成形材料を調製し、この成形材料を成形体の製造に供することができる。 The fiber-reinforced resin composition of the present invention is optionally prepared in the form of film, sheet, plate, pellet, powder, etc. to prepare a molding material, and this molding material is manufactured. Can be
 本発明の繊維強化樹脂組成物(成形材料)を、金型成形、射出成形、押出成形、中空成形、発泡成形等の各種公知の成形方法で成形して、板状、棒状、立体構造等の各種形状の成形体を製造することができる。 The fiber reinforced resin composition (molding material) of the present invention is molded by various known molding methods such as mold molding, injection molding, extrusion molding, hollow molding, foam molding, etc. It is possible to produce molded articles of various shapes.
 本発明の成形体は、(A)化学修飾MFC、(B)無機フィラー及び(C)熱可塑性樹脂を含有する繊維強化樹脂組成物から成形されるので、ガラス繊維、炭素繊維等の無機繊維のみを含有する繊維強化樹脂組成物から成形される成形体と比べて、より軽量で、且つ強度特性に優れる。 The molded article of the present invention is molded from a fiber reinforced resin composition containing (A) a chemically modified MFC, (B) an inorganic filler and (C) a thermoplastic resin, so only inorganic fibers such as glass fibers and carbon fibers It is lighter than the molded object molded from the fiber reinforced resin composition containing C, and is excellent in the strength characteristic.
 本発明の成形体を、自動車、電車、船舶、飛行機等の輸送機の内装材、外装材、構造材等に使用することにより、輸送機のエネルギー効率の向上及び排ガスの低減を達成することができる。 By using the molded article of the present invention as an interior material, exterior material, structural material, etc. of a transport machine such as a car, a train, a ship, and an airplane, improvement of energy efficiency of the transport machine and reduction of exhaust gas can be achieved. it can.
 本発明の成形体を、パソコン、テレビ、電話等の電化製品等の筺体、構造材、内部部品等に使用することにより、それらの軽量化を図ることができる。軽量化によって、それら電化製品の輸送時のエネルギー消費を低減することができ、また、電化製品を快適に使用することができる。 By using the molded article of the present invention for a housing such as an electric appliance such as a personal computer, a television, a telephone, etc., a structural material, an internal part, etc., it is possible to achieve weight reduction of them. The reduction in weight can reduce the energy consumption during transportation of the electric appliances, and the electric appliances can be used comfortably.
 本発明の成形体を、建築材に使用することにより、建築物の耐震性を改善することが可能となる。 By using the molded body of the present invention for a building material, it is possible to improve the earthquake resistance of the building.
 以下、実施例及び比較例を挙げて本発明を更に詳細に説明する。 Hereinafter, the present invention will be described in more detail by way of examples and comparative examples.
 本発明はこれら実施例に限定されるものではない。 The present invention is not limited to these examples.
 実施例において、パルプ、化学修飾パルプ、化学修飾MFC、熱可塑性樹脂等における各種成分含量は、特に断りがない限り質量%で表示する。 In the examples, the contents of various components in pulp, chemically modified pulp, chemically modified MFC, thermoplastic resin and the like are represented by mass% unless otherwise noted.
 そして、本明細書において、組成物中のセルロース系繊維の含有割合は、組成物全質量中の繊維成分(セルロース+ヘミセルロース)の質量割合で表示する。したがって、組成物中の化学修飾セルロース系繊維の含有割合は、非化学修飾繊維に換算した質量の含有割合(含有%)で示される。 And in this specification, the content rate of the cellulosic fiber in a composition is represented by the mass ratio of the fiber component (cellulose + hemicellulose) in the composition total mass. Therefore, the content rate of the chemically modified cellulosic fiber in the composition is indicated by the content rate (content%) of the mass converted to the non-chemically modified fiber.
 I.試験方法
 実施例及び比較例等で使用した試験方法は以下の通りである。
I. Test Methods The test methods used in Examples and Comparative Examples are as follows.
 (1)リグニンの定量方法(クラーソン法)
 ガラスファイバーろ紙(GA55)を110℃オーブンで恒量になるまで乾燥させ、デシケータ内で放冷後、計量した。110℃で絶乾させた試料(約0.2g)を精秤し、50mL容チューブに入れた。
(1) Determination method of lignin (Krasson method)
The glass fiber filter paper (GA55) was dried to constant weight in a 110 ° C. oven, allowed to cool in a desiccator, and weighed. The sample (about 0.2 g) was thoroughly dried at 110 ° C. and placed in a 50 mL tube.
 72%濃硫酸3mL加え、内容物が均一になるようにガラス棒で適宜押しつぶしながら、30℃の温水にチューブを入れて1時間保温した。次いで、チューブ内容物と蒸留水84gとを三角フラスコに注ぎ込み混合した後、オートクレーブ中で、120℃で1時間反応させた。 3 mL of 72% concentrated sulfuric acid was added, and the tube was placed in warm water of 30 ° C. while keeping the contents crushed uniformly with a glass rod, and kept warm for 1 hour. Next, the contents of the tube and 84 g of distilled water were poured into an Erlenmeyer flask and mixed, and then reacted in an autoclave at 120 ° C. for 1 hour.
 放冷後、内容物をガラスファイバーろ紙で濾過し不溶物をろ取し、200mLの蒸留水で洗浄した。110℃オーブンで恒量になるまで乾燥させ計量した。 After allowing to cool, the contents were filtered through glass fiber filter paper, insolubles were filtered off, and washed with 200 mL of distilled water. It was dried and weighed to constant weight in a 110 ° C. oven.
 (2)セルロース及びへミセルロースの定量方法(糖分析)
 ガラスファイバーろ紙(GA55)を110℃オーブンで恒量になるまで乾燥させ、デシケータ内で放冷後、計量した。110℃で絶乾させた試料(約0.2g)を精秤し、50mL容チューブに入れた。
(2) Determination method of cellulose and hemicellulose (sugar analysis)
The glass fiber filter paper (GA55) was dried to constant weight in a 110 ° C. oven, allowed to cool in a desiccator, and weighed. The sample (about 0.2 g) was thoroughly dried at 110 ° C. and placed in a 50 mL tube.
 72%濃硫酸3mL加え、内容物が均一になるようにガラス棒で適宜押しつぶしながら、30℃の温水にチューブを入れて1時間保温した。次いで、チューブ内容物と蒸留水84gとを加え定量的に三角フラスコに注ぎ込み混合した後、混合物1.0mLを耐圧試験管に入れ、内部標準として0.2%イノシトール溶液100μL加えた。 3 mL of 72% concentrated sulfuric acid was added, and the tube was placed in warm water of 30 ° C. while keeping the contents crushed uniformly with a glass rod, and kept warm for 1 hour. Then, the contents of the tube and 84 g of distilled water were added and quantitatively poured into an Erlenmeyer flask and mixed, then 1.0 mL of the mixture was placed in a pressure tube and 100 μL of 0.2% inositol solution was added as an internal standard.
 メスピペットを用いて72%濃硫酸(7.5μL)を加え、オートクレーブ中で120℃で1時間反応させた。 Using a measuring pipette, 72% concentrated sulfuric acid (7.5 μL) was added and reacted in an autoclave at 120 ° C. for 1 hour.
 放冷後、反応液100μLを超純水で希釈し、サーモフィッシャーサイエンティフィック社製イオンクロマトグラフ分析に供し、試料に含まれていた糖成分を分析した。 After cooling, 100 μL of the reaction solution was diluted with ultrapure water, and subjected to ion chromatography analysis by Thermo Fisher Scientific Co., Ltd. to analyze sugar components contained in the sample.
 (3)セルロース又はヘミセルロース水酸基の化学修飾度(DS)の測定方法
 (3-1)逆滴定方法
 セルロース、ヘミセルロース及びリグノセルロースの水酸基がアシル化(エステル化)された試料のDS測定方法を、アセチル化された試料を例にとり以下に説明する。
(3) Measurement method of degree of chemical modification (DS) of cellulose or hemicellulose hydroxyl group (3-1) Reverse titration method A method of measuring DS of a sample in which hydroxyl group of cellulose, hemicellulose and lignocellulose is acylated (esterified) The following is a description of the case of the transformed sample as an example.
 他のアシル化の場合も同様である。 The same applies to other acylations.
 準備、秤量及び加水分解
 試料を乾燥し、0.5g(A)を正確に秤量した。そこにエタノール75mL、及び0.5NのNaOH 50mL(0.025mol)(B)を加え、3~4時間撹拌した。
Preparation, weighing and hydrolysis The sample was dried and accurately weighed 0.5 g (A). Thereto, 75 mL of ethanol and 50 mL (0.025 mol) of 0.5 N NaOH (B) were added, and stirred for 3 to 4 hours.
 これをろ過、水洗、乾燥し、ろ紙上の試料のFT-IR測定を行い、エステル結合のカルボニルに基づく吸収ピークが消失していること、つまりエステル結合が加水分解されていることを確認した。このろ液を下記の逆滴定に用いた。 This was filtered, washed with water and dried, and the FT-IR measurement of the sample on filter paper was performed to confirm that the absorption peak based on the carbonyl of the ester bond disappeared, that is, the ester bond was hydrolyzed. This filtrate was used for back titration as described below.
 逆滴定
 ろ液には加水分解の結果生じた酢酸ナトリウム塩及び過剰に加えられたNaOHが存在する。このNaOHの中和滴定を1NのHCl及びフェノールフタレインを用いて行った。
In the back titration filtrate is present the acetic acid sodium salt resulting from the hydrolysis and NaOH added in excess. The neutralization titration of this NaOH was performed using 1N HCl and phenolphthalein.
 ・0.025mol(B)‐(中和に使用したHClのモル数) = セルロース等の水酸基にエステル結合していたアセチル基のモル数(C)
 ・(セルロース繰り返しユニット分子量162×セルロース繰り返しユニットのモル数(未知(D)))+(アセチル基の分子量43×(C))=秤量した試料0.5g(A) によりセルロースの繰り返しユニットのモル数(D)が算出される。
-0.025 mol (B)-(number of moles of HCl used for neutralization) = number of moles of acetyl group esterified to hydroxyl groups of cellulose etc. (C)
· (Cellulose repeating unit molecular weight 162 × number of moles of cellulose repeating unit (unknown (D))) + (molecular weight of acetyl group 43 × (C)) = 0.5 g of the weighed sample (A) number of moles of cellulose repeating unit (D) is calculated.
 DSは、
 ・DS=(C)/(D) 
により算出される。
DS is
· DS = (C) / (D)
Calculated by
 (3-2)赤外線(IR)吸収スペクトルによるDSの測定方法
 エステル化セルロース/リグノセルロースのDSは、赤外線(IR)吸収スペクトルを測定することにより求めることもできる。
(3-2) Method of Measuring DS by Infrared (IR) Absorption Spectrum The DS of esterified cellulose / lignocellulose can also be determined by measuring an infrared (IR) absorption spectrum.
 セルロース/リグノセルロースがエステル化されると1733cm-1付近にエステルカルボニル(C=O)に由来する強い吸収帯が現れるので、この吸収帯の強度(面積)を横軸に、上記のが逆滴定法で求めたDSの値を横軸にプロットした検量線をまず作成する。 When cellulose / lignocellulose is esterified, a strong absorption band derived from ester carbonyl (C = O) appears in the vicinity of 1733 cm -1. First, a calibration curve is prepared by plotting the value of DS obtained by the method on the horizontal axis.
 そして、試料のDS値は、吸収帯の強度を測定し、この値及び検量線から求める。このようにしてDSを迅速かつ簡便に測定することができる。 Then, the DS value of the sample is determined from the value of the absorption band and the calibration curve. Thus, DS can be measured quickly and easily.
 (4)セルロース等の結晶化度の測定
 木質科学実験マニュアル4.微細構造(1)X線による構造解析(P.198-202)に記載された方法に準じた。機種Rigaku ultraX18HF((株)リガク製)を使用して、試料(リファイナー処理済みパルプ及びこの化学修飾物)の広角X線回折を測定し、試料の結晶化度を求める。
(4) Measurement of crystallinity of cellulose etc. Woody Science Experiment Manual 4. Microstructure (1) X-ray structural analysis (P. 198-202). Using a model Rigaku ultra X 18 HF (manufactured by Rigaku Corporation), the wide-angle X-ray diffraction of the sample (refiner-treated pulp and its chemically modified product) is measured to determine the crystallinity of the sample.
 X線はCuKα線、30kV/200mAの出力にて、2θ=5~40°を測定する。 The X-ray measures 2θ = 5 to 40 ° at an output of CuKα ray, 30 kV / 200 mA.
 (5)強度試験方法
 万能試験機(オートグラフAG5000E型,(株)島津製作所製)を用いて、3点曲げ試験を実施した。試験条件は曲げ速度10mm/min、支点間距離64mmとした。
(5) Strength Test Method A three-point bending test was performed using a universal testing machine (Autograph AG5000E, manufactured by Shimadzu Corporation). The test conditions were a bending speed of 10 mm / min and a distance between supporting points of 64 mm.
 (6)Izod衝撃試験
 Izod衝撃試験機((株)東洋精機製作所製)を用いてIzod衝撃試験を実施した。試験片中央部に深さ2mmの切り欠き(ノッチ)を挿入した。2.75J-N試験では2.75Jのハンマーを用いてノッチ側を打撃し、ノッチから亀裂を進展させ、その特に衝撃強度を算出した。5.5J-R試験では5.5Jのハンマーを用いてノッチと反対側を打撃し、ノッチのない成形品表面から亀裂を進展させ、その時の衝撃強度を算出した。
(6) Izod Impact Test The Izod impact test was conducted using the Izod impact tester (manufactured by Toyo Seiki Seisakusho Co., Ltd.). A 2 mm deep notch was inserted in the center of the test piece. In the 2.75 JN test, a 2.75 J hammer was used to strike the notch side to develop a crack from the notch, and in particular the impact strength was calculated. In the 5.5 JR test, a hammer of 5.5 J was used to hit the opposite side of the notch, and a crack was allowed to propagate from the surface of the molded article without the notch, and the impact strength at that time was calculated.
 (7)樹脂組成物の粘度測定方法
 組成物の粘度の測定には溶融粘弾性測定装置(ティーエーインスツルメント製)を用いた。測定条件は、温度250℃、周波数628rad/sec、ひずみ0.05%とした。
(7) Method of Measuring Viscosity of Resin Composition A melt visco-elasticity measuring apparatus (manufactured by Tea Instruments Instruments) was used to measure the viscosity of the composition. Measurement conditions were a temperature of 250 ° C., a frequency of 628 rad / sec, and a strain of 0.05%.
 (8)繊維の顕微鏡観察(繊維長及び繊維径の観察)
 電界放射型走査型電子顕微鏡(FE-SEM)、日本電子製JSM-7800Fにより繊維試料を観察した。測定条件は、加速電圧1.5kV、倍率200~5000倍とした。
 試料の調製方法は以下の通りである。
1)樹脂を複合する前の繊維試料の調製
1-1)サンプルを、エタノールの入ったガラスの小瓶に入れ、超音波攪拌を行ってエタノール中に繊維を懸濁させた。
1-2)繊維のエタノール懸濁液の少量を銅板上に垂らし、エタノールを室温で蒸発させた。
1-3)スパッタリング装置(JEOL SEC-3000FC オートファインコーター)を用いて、サンプルにプラチナコートした。
2)樹脂複合体中の繊維の顕微鏡観察
 セルロースナノファイバー(CNF)を含むナイロン6(PA6)組成物(PA6/CNF=90/10)の成形体中のCNFを例にとり、顕微鏡観察用試料の調製方法を説明する。
2-1)射出成形品から4x2x1.2mmの試験片を切り出した。
2-2)試験片をNMP400mlに加えて190℃で2~4時間浸漬し、PA6を溶出させた。
2-3)PA6溶出後の残渣(繊維)を、エタノールの入ったガラスの小瓶に入れ、超音波攪拌を行ってエタノール中に繊維を懸濁させた。その後は、上記1-2)及び1-3)に従い顕微鏡観察用試料を調製した。
(8) Microscopic observation of fibers (observation of fiber length and diameter)
The fiber sample was observed with a field emission scanning electron microscope (FE-SEM), JSM-7800F manufactured by JEOL. The measurement conditions were an acceleration voltage of 1.5 kV and a magnification of 200 to 5000 times.
The sample preparation method is as follows.
1) Preparation of fiber sample before compounding resin
1-1) The sample was placed in a glass vial containing ethanol, and ultrasonic agitation was performed to suspend the fiber in ethanol.
1-2) A small amount of ethanol suspension of fibers was dropped on a copper plate and ethanol was evaporated at room temperature.
1-3) The sample was platinum-coated using a sputtering apparatus (JEOL SEC-3000FC automatic fine coater).
2) Microscopic observation of the fibers in the resin complex Taking CNF in a molded product of nylon 6 (PA 6) composition (PA 6 / CNF = 90/10) containing cellulose nanofibers (CNF) as an example, a sample for microscopic observation The preparation method is described.
2-1) A 4x2x1.2 mm test piece was cut out from the injection molded article.
2-2) The test piece was added to 400 ml of NMP and immersed at 190 ° C. for 2 to 4 hours to elute PA6.
2-3) The residue (fiber) after elution of PA6 was placed in a glass vial containing ethanol, and ultrasonic agitation was performed to suspend the fiber in ethanol. Thereafter, a sample for microscopic observation was prepared according to the above 1-2) and 1-3).
 II.使用材料
 A.原料パルプ
 (1)針葉樹由来漂白クラフトパルプ(NBKP)
 針葉樹漂白クラフトパルプ(NBKP、入手先:王子ホールディングス(株))のスラリー(パルプスラリー濃度3質量%の水懸濁液)を、シングルディスクリファイナー(相川鉄工(株)製)に通液させ、カナディアンスタンダードフリーネス(CSF)値が50mLになるまで、繰返しリファイナー処理により解繊処理を行った。
II. Use material A. Raw material pulp (1) Softwood-derived bleached kraft pulp (NBKP)
Softwood bleached kraft pulp (NBKP, source: Oji Holdings Co., Ltd.) slurry (pulp slurry concentration 3% by mass aqueous suspension) is passed through a single disc refiner (Aikawa Tekko Co., Ltd.) and Canadian Standard The defibration treatment was performed by repeated refiner treatment until the freeness (CSF) value reached 50 mL.
 走査型電子顕微鏡(SEM)で繊維を観察した。直径がサブミクロンオーダーの繊維も見られるが、直径数10から数100μmの粗大な繊維径を有している繊維が散見された。 The fibers were observed with a scanning electron microscope (SEM). Although fibers of submicron order in diameter were also found, fibers having coarse fiber diameters of several tens to several hundreds of micrometers in diameter were scattered.
 糖分析の結果、その組成(質量%)は、以下の通りであった。 As a result of sugar analysis, the composition (% by mass) was as follows.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 B.化学修飾パルプ
 (1)アセチル化NBKP(AcNBKP)
 含水NBKP(リファイナー処理済)を濃縮し、N-メチルピロリドン(NMP)を加え、加熱下で減圧脱水した。NBKPのNMP懸濁液(固形分20%)に無水酢酸(0.58モル当量)、及びK2CO3(0.3モル当量)を加えて80℃で90分間加熱撹拌して反応させた。反応が終了した後、混合物を濃縮し、固形分を水で洗浄し、アセチル化NBKP(AcNBKP)のスラリーを得た。
B. Chemically modified pulp (1) Acetylated NBKP (AcNBKP)
The water-containing NBKP (refiner-treated) was concentrated, N-methyl pyrrolidone (NMP) was added, and the solution was dried under reduced pressure with heating. Acetic anhydride (0.58 molar equivalent) and K 2 CO 3 (0.3 molar equivalent) were added to an NMPP suspension in NMP (solid content 20%), and the mixture was reacted by heating and stirring at 80 ° C. for 90 minutes. After the reaction was completed, the mixture was concentrated and the solid was washed with water to obtain a slurry of acetylated NBKP (AcNBKP).
 アセチル化の置換度(DS)は、AcNBKPにアルカリを添加し、エステル結合を加水分解することにより発生した酢酸量を滴定(逆滴定法)することにより算出した。 The degree of substitution for acetylation (DS) was calculated by adding an alkali to AcNBKP and titrating (back titration) the amount of acetic acid generated by hydrolyzing the ester bond.
 3つのロット(夫々、DS:0.62、DS:0.67及びDS:0.69)のAcNBKPが得られ、これを以下の繊維強化樹脂組成物及び成形体の製造に使用した。 Three lots (DS: 0.62, DS: 0.67 and DS: 0.69, respectively) of AcNBKP were obtained, which were used for the preparation of the following fiber-reinforced resin compositions and moldings.
 C.無機フィラー
 (1)ガラス繊維(GF)として、日東紡製GF(CSX3J、繊維長3mm、繊維径11μm)を使用した。
C. Nittobo GF (CSX 3 J, fiber length 3 mm, fiber diameter 11 μm) was used as the inorganic filler (1) glass fiber (GF).
 (2)グラスウール(GW)として、旭ファイバーグラス株式会社製GW(ホワイトウール、繊維径7~8μm、繊維長(L)30~50mm)を使用した。 (2) GW (White Wool, fiber diameter 7 to 8 μm, fiber length (L) 30 to 50 mm) manufactured by Asahi Fiber Glass Co., Ltd. was used as glass wool (GW).
 D.樹脂
 (1)粉状ポリアミド6(「PA6粉」と記載することもある)として、ユニチカ株式会社製ポリアミド(パウダータイプ、グレードA1020LP)を使用した。
D. As a resin (1) powdery polyamide 6 (sometimes described as “PA 6 powder”), polyamide (powder type, grade A1020LP) manufactured by Unitika Co., Ltd. was used.
 (2)ペレット状ポリアミド6(「PA6ペレット」とも記載する)として、ユニチカ株式会社製のペレット状ポリアミド6(グレード:A1020BRL)を使用した。 (2) Pellet-like polyamide 6 (grade: A1020 BRL) manufactured by Unitika Co., Ltd. was used as pellet-like polyamide 6 (also described as “PA6 pellet”).
 (3)粉状ポリカーボネート(PC-ABSアロイ(「PC-ABSアロイ粉」と記載することもある)として、三菱エンジニアリングプラスチック株式会社製の粉状PC-ABSアロイ(グレード:MB8700)を使用した。 (3) A powdery PC-ABS alloy (grade: MB 8700) manufactured by Mitsubishi Engineering Plastics Co., Ltd. was used as a powdery polycarbonate (PC-ABS alloy (sometimes referred to as "PC-ABS alloy powder").
 (4)ペレット状ポリカーボネート(PC)-ABSアロイ(「PC-ABSアロイペレット」と記載することもある)として、三菱エンジニアリングプラスチック製のペレット状PC-ABSアロイ(グレード:MB8700)を使用した。 (4) Pellet-like PC-ABS alloy (grade: MB 8700) made by Mitsubishi Engineering Plastics Co., Ltd. was used as pellet-like polycarbonate (PC) -ABS alloy (sometimes referred to as "PC-ABS alloy pellet").
 E.無機フィラー含有マスターバッチ(MB)
 (1)ガラス繊維(GF)含有PA6ペレット(「GF強化PA6ペレット」と記載することもある)には、ユニチカ株式会社製のガラス繊維強化PA(グレード:A1030GFL、ガラス繊維30%強化)をマスターバッチとして使用した。
E. Inorganic filler containing masterbatch (MB)
(1) For glass fiber (GF) -containing PA6 pellets (sometimes referred to as "GF reinforced PA6 pellets"), master glass fiber reinforced PA (grade: A1030 GFL, reinforced glass fiber 30%) manufactured by Unitika Co., Ltd. Used as a batch.
 (2)グラスウール(GW)含有ペレット状PA6マスターバッチ(「GW30%PA6ペレットMB」(V)と記載することもある)を、以下の方法で製造した。上記のPA6粉及び上記グラスウール(GW)をPA6/GW = 70/30の割合で混合した後、二軸押し出し機に供給して溶融混練することにより、GWを30質量%含有するペレット状PA6組成物を得た。これを「GW30%PA6ペレットMB」と称する。 (2) Glass wool (GW) -containing pellet-like PA6 master batch (sometimes described as "GW30% PA6 pellet MB" (V)) was produced by the following method. Pellet PA6 composition containing 30% by mass of GW by mixing the above PA6 powder and the above glass wool (GW) in the ratio of PA6 / GW = 70/30 and supplying to a twin screw extruder for melt-kneading I got a thing. This is called "GW 30% PA 6 pellet MB".
 (3)炭素繊維(CF)含有PA6ペレットには、テラボウ株式会社製の炭素繊維強化PA6(PATR-120XCF30)をマスターバッチとして使用した(「CF30%PA6ペレット」と記載することもある)。 (3) For carbon fiber (CF) -containing PA6 pellets, carbon fiber-reinforced PA6 (PATR-120XCF30) manufactured by Terabo Industries, Ltd. was used as a masterbatch (sometimes described as "CF30% PA6 pellets").
 使用した押し出し機型式:KZW15-60MG-KIK((株)テクノベル製)
 運転条件:二軸シリンダー設定温度200~215℃
 スクリュー回転数:200rpm
Extruder type used: KZW15-60MG-KIK (manufactured by Technobel Co., Ltd.)
Operating conditions: Two-axis cylinder set temperature 200 to 215 ° C
Screw speed: 200 rpm
 (4)ガラス繊維(GF)30wt%強化ポリカーボネート(「GF30%PCペレット」とも記載する)として、三菱エンジニアリングプラスチックス製のペレット状GF-30wt%強化PC(グレードGSH2030M)を使用した。 (4) As a glass fiber (GF) 30 wt% reinforced polycarbonate (also described as "GF 30% PC pellet"), pelletized GF-30 wt% reinforced PC (grade GSH2030M) manufactured by Mitsubishi Engineering Plastics was used.
 F.AcNBKP含有マスターバッチ(MB)
 以下、「マスターバッチ」を「MB」と記載する。
F. AcNBKP-containing master batch (MB)
Hereinafter, "master batch" is described as "MB".
 (1)AcNBKPを含有する粉状PA6-MB
 上記PA6粉及びAcNBKPを使用し、以下の粉状PA6-MB(i)及び(ii)を作製した。
(1) Powdered PA6-MB containing AcNBKP
The following powdery PA6-MB (i) and (ii) were prepared using the above-mentioned PA6 powder and AcNBKP.
 AcNBKP15%含有PA6粉状MB(i)
 これは、NBKP換算で15質量%に相当するAcNBKPを含有するPA6組成物である。
AcNBKP 15% containing PA6 powdery MB (i)
This is a PA6 composition containing AcNBKP equivalent to 15% by mass in terms of NBKP.
 NBKP換算での含有量が15質量%の、AcNBKPとPA6とからなる粉状組成物を得るために、AcNBKPのスラリーと粉状PA6とをスラリーとして混合した。混合比は、DS=0.69のAcNBKPを用いているので、乾燥重量比でPA6:AcNBKP = 82.31:17.69である。 In order to obtain a powdery composition comprising AcNBKP and PA6 having a content of 15% by mass in terms of NBKP, a slurry of AcNBKP and powdery PA6 were mixed as a slurry. Since the mixing ratio is AcNBKP of DS = 0.69, it is PA6: AcNBKP = 82.31: 17.69 in dry weight ratio.
 スラリー混合物をろ過して、その後乾燥させることによって、PA6とAcNBKPとからなる粉状混合物を調製した。 The slurry mixture was filtered and then dried to prepare a powdery mixture consisting of PA6 and AcNBKP.
 化学修飾セルロース系繊維及びそれを含有する樹脂組成物(又は混合物)に関する、化学修飾繊維の種類とその含量(質量部)との組み合わせによる表示方法は、本明細書では、化学修飾繊維の種類を示す表示(略称)とその未修飾繊維としての含量比(質量部)との組み合わせで表示される。 In the present specification, a method of displaying chemically modified cellulosic fibers and resin compositions (or mixtures) containing the same by combining the type of chemically modified fibers and the content (parts by mass) thereof refers to the type of chemically modified fibers. It is displayed as a combination of the indication (abbreviation) shown and the content ratio (parts by mass) as its unmodified fiber.
 従って、上記のPA6と化学修飾NBKP(AcNBKP)との混合物について、その化学修飾NBKPの種類(AcNBKP)とその未修飾繊維としての含量とを使用して表示すると、この混合物の組成比の表示は、PA6/AcNBKP = 85/15(質量部)となる。 Therefore, when the mixture of PA6 and the chemically modified NBKP (AcNBKP) is expressed using the type of the chemically modified NBKP (AcNBKP) and the content as the unmodified fiber, the composition ratio of this mixture is represented by , PA6 / AcNBKP = 85/15 (parts by mass).
 AcNBKP30%含有PA6粉状MB(ii)
 これは、NBKP換算で30質量%に相当するAcNBKPを含有するPA6組成物である。
AcNBKP 30% PA6 powdery MB (ii)
This is a PA6 composition containing AcNBKP equivalent to 30% by mass in terms of NBKP.
 NBKP換算での含有量が30質量%の、AcNBKPとPA6とからなる粉状組成物を得るために、上記(i)と同様にPA6粉とAcNBKPスラリーとから、AcNBKPとPA6とからなる粉状スラリー混合物を調製した。DS=0.69のAcNBKPを用いているので、PA6とAcNBKPとの混合比は、乾燥重量比でPA6:AcNBKP = 64.62:35.38である。 In order to obtain a powdery composition consisting of AcNBKP and PA6 having a content of 30% by mass in terms of NBKP, powdery powder consisting of AcNBKP and PA6 from PA6 powder and AcNBKP slurry as in the above (i) A slurry mixture was prepared. Since AcNBKP of DS = 0.69 is used, the mixing ratio of PA6 and AcNBKP is PA6: AcNBKP = 64.62: 35.38 in dry weight ratio.
 組成比の表示は、PA6/AcNBKP = 70/30(質量部)である。 The indication of the composition ratio is PA6 / AcNBKP = 70/30 (parts by mass).
 (2)AcNBKP含有ペレット状PA6-MB
 上記のAcNBKP30%含有粉状PA6-MB(ii)(PA6/AcNBKP = 70/30)及び粉状PA6を、下表の割合で混合してから二軸押出機の供給口に供給して溶融混練し、下記のペレットMB(iii)及びペレットMB(iv)を作成した。
(2) AcNBKP-containing pellet PA-MB
The powdery PA6-MB (ii) containing above 30% of AcNBKP (PA6 / AcNBKP = 70/30) and powdery PA6 are mixed in the proportions in the table below and then supplied to the feed port of the twin screw extruder for melt kneading The following pellet MB (iii) and pellet MB (iv) were prepared.
 AcNBKP10%PA6ペレットMB(iii)
 NBKPとして10質量%を含有するペレット状のAcNBKPとPA6とからなる組成物を作製した。
AcNBKP 10% PA6 pellet MB (iii)
A composition consisting of AcNBKP in pellet form and PA6 containing 10% by mass as NBKP was prepared.
 AcNBKP15%PA6ペレットMB(iv)
 NBKPとして15質量%を含有するペレット状のAcNBKPとPA6とからなる組成物を作製した。
AcNBKP 15% PA6 pellet MB (iv)
A composition consisting of AcNBKP in pellet form and PA6 containing 15% by mass as NBKP was prepared.
 これらのペレット状PA6-MB中のAcNBKPは、PA6との溶融混練中にミクロフィブリル化する。 AcNBKP in these pelleted PA6-MB is microfibrillated during melt kneading with PA6.
 上記PA6-MBの調製に使用した二軸押出機の機種、及び運転条件は以下の通りである。 The model of the twin-screw extruder used for preparation of the above-mentioned PA6-MB and the operating conditions are as follows.
 押し出し機型式:KZW15-60MG-KIK((株)テクノベル製)
 押出機の運転条件:二軸シリンダー設定温度200~215℃
 スクリュー回転数:200rpm
Extruder model: KZW15-60MG-KIK (manufactured by Technobel Co., Ltd.)
Operating condition of extruder: Twin-cylinder setting temperature 200 to 215 ° C
Screw speed: 200 rpm
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 (3)AcNBKP30%含有PC-ABSアロイ粉状MB(vi)
 NBKP換算で30質量%に相当するAcNBKPを含有する粉状PC-ABSアロイ組成物を作製した。
(3) PC-ABS alloy powder-like MB (vi) containing 30% of AcNBKP
A powdery PC-ABS alloy composition containing AcNBKP equivalent to 30% by mass in terms of NBKP was prepared.
 NBKP換算での含有量が30質量%の、AcNBKPとABSアロイとからなる粉状組成物を得るために、AcNBKPのスラリーと前記の粉状ポリカーボネート-ABSアロイ(PC-ABSアロイ)とを混合した。混合比は、DS=0.67のAcNBKPを用いているので、乾燥重量比でPC-ABSアロイ:AcNBKP = 64.77:35.23である。 A slurry of AcNBKP was mixed with the above powdery polycarbonate-ABS alloy (PC-ABS alloy) in order to obtain a powdery composition consisting of AcNBKP and an ABS alloy having a content of 30% by mass in terms of NBKP. . The mixing ratio is PC-ABS alloy: AcNBKP = 64.77: 35.23 in dry weight ratio since AcNBKP of DS = 0.67 is used.
 スラリー混合物をろ過し、その後乾燥させることによって、PC-ABSアロイとAcNBKPとからなる粉状混合物が得られた。 The slurry mixture was filtered and then dried to obtain a powdery mixture consisting of PC-ABS alloy and AcNBKP.
 組成比の表示は、PC-ABSアロイ/AcNBKP = 70/30(質量部)である。 The indication of the composition ratio is PC-ABS alloy / AcNBKP = 70/30 (parts by mass).
 (4)AcNBKPを含有するペレット状PC-ABSアロイMB
 AcNBKPを含有するペレット状PC-ABSアロイMBを、AcNBKP含有ペレット状PC-ABSアロイMBと表記する。
(4) Pellet-like PC-ABS alloy MB containing AcNBKP
The pelleted PC-ABS alloy MB containing AcNBKP is referred to as AcNBKP-containing pelleted PC-ABS alloy MB.
 上記NBKP30%含有PC-ABSアロイ粉状MB(vi)(PC-ABSアロイ/AcNBKP = 70/30)及び前記のPC-ABSアロイペレットを、下表の割合で混合した。 The above NBKP 30% containing PC-ABS alloy powder MB (vi) (PC-ABS alloy / AcNBKP = 70/30) and the above PC-ABS alloy pellet were mixed in the proportions shown in the following table.
 NBKP30%含有PC-ABSアロイ粉状MB(vi)及び前記のPC-ABSアロイペレットの混合物を二軸押出機の供給口に供給し、二軸押出機により溶融混練し、下記のAcNBKP10% PC-ABSアロイペレットMB(vii)、及びAcNBKP15% PC-ABSアロイペレットMB(viii)を調製した。押し出し機の型式及びその運転条件は下記参照。 A mixture of PC-ABS alloy powder MB (vi) containing 30% NBKP and the above PC-ABS alloy pellets is supplied to the feed port of a twin-screw extruder, melt-kneaded using a twin-screw extruder, and the following AcNBKP 10% PC- ABS alloy pellets MB (vii) and AcNBKP 15% PC-ABS alloy pellets MB (viii) were prepared. See below for extruder types and their operating conditions.
 AcNBKP10% PC-ABSアロイペレットMB(vii)
 これは、NBKPとして10質量%を含有するペレット状のAcNBKPとPC-ABSアロイからなる組成物である。
AcNBKP 10% PC-ABS alloy pellet MB (vii)
This is a composition comprising AcNBKP in pellet form and PC-ABS alloy containing 10% by mass as NBKP.
 AcNBKP15% PC-ABSアロイペレットMB(viii)
 これは、NBKPとして15質量%を含有するペレット状のAcNBKPとPC-ABSアロイからなる組成物である。
AcNBKP 15% PC-ABS alloy pellet MB (viii)
This is a composition consisting of AcNBKP in pellet form and PC-ABS alloy containing 15% by mass as NBKP.
 これらのAcNBKPを含有するペレット状PC-ABSアロイMB中のAcNBKPは、PC-ABSアロイとNBKP30%含有PC-ABSアロイ粉状MBとの溶融混練中にミクロフィブリル化が進行する。押し出し機の型式及びその運転条件は以下の通りである。
 押し出し機型式:KZW15-60MG-KIK((株)テクノベル製)
 押出機の運転条件:二軸シリンダー設定温度210~220℃
 スクリュー回転数:200rpm
AcNBKP in the pellet-like PC-ABS alloy MB containing these AcNBKPs undergoes microfibrillation during melt kneading of the PC-ABS alloy and the PC-ABS alloy powder MB containing 30% NBKP. The type of extruder and its operating conditions are as follows.
Extruder model: KZW15-60MG-KIK (manufactured by Technobel Co., Ltd.)
Operating condition of extruder: Twin-cylinder setting temperature 210 to 220 ° C
Screw speed: 200 rpm
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 III.繊維強化樹脂組成物の製造及び評価結果
 (1)AcNBK及びGFを含有するPA6組成物、及びその成形体の製造
 (1-1)PA6、AcNBK及びGFを一括して供給し混練して組成物を製造する方法 組成物の製造
 AcNBKP15%粉MB(i)(PA6/AcNBKP = 85/15)、AcNBKP30%粉MB(ii)(PA6/AcNBKP = 70/30)、(1)PA6粉、(2)NBKP、及び(4)GFを、表4に示す混合割合で、夫々室温で混合した。
III. Production of fiber reinforced resin composition and evaluation results (1) PA6 composition containing AcNBK and GF, and production of molded article thereof (1-1) PA6, AcNBK and GF are collectively supplied and kneaded to be composition Method of producing a composition of preparation AcNBKP 15% powder MB (i) (PA6 / AcNBKP = 85/15), AcNBKP 30% powder MB (ii) (PA6 / AcNBKP = 70/30), (1) PA6 powder, (2 ) NBKP and (4) GF were mixed at the mixing ratio shown in Table 4 respectively at room temperature.
 得られた混合物を、夫々二軸押出機に供給して、これらの成分を一括で溶融混練することにより、試験番号が夫々PA6-433、PA6-15、PA6-430、PA6-428、PA6-429、PA6-431、及びPA6-432である複合化ペレットを作製した。 The obtained mixtures are respectively fed to a twin-screw extruder, and these components are melt-kneaded at one time to give test numbers PA6-433, PA6-15, PA6-430, PA6-428, PA6-, respectively. Composite pellets of 429, PA6-431, and PA6-432 were prepared.
 溶融混練条件
 シリンダー設定温度:200~215℃
 スクリュー回転数:200rpm
 製造された組成物中のAcNBKP成分は、混練中にミクロフィブリル化されている。
Melt kneading conditions Cylinder set temperature: 200 to 215 ° C
Screw speed: 200 rpm
The AcNBKP component in the composition produced is microfibrillated during kneading.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 成形体の製造
 得られた複合化ペレットを射出成形(使用した射出成形機NPX7(日精樹脂工業(株)製))し、幅×長さ×厚み=10×80×4mmの短冊型試験片(成形体)を得た。
Production of molded body The composite pellet obtained is injection-molded (injection molding machine NPX7 (made by Nissei Plastic Industry Co., Ltd.)), strip-shaped test piece of width × length × thickness = 10 × 80 × 4 mm A molded body was obtained.
 射出機のシリンダー設定温度を、210~230℃とした。 The cylinder set temperature of the injection machine was set to 210 to 230.degree.
 成形体の試験結果
 上記の成形体(試験片)について曲げ弾性率及び曲げ強度を測定した。
Test Results of Molded Body The flexural modulus and the flexural strength were measured for the above-mentioned molded body (test piece).
 測定結果を表5に示す。また、成形体の密度と曲げ弾性率との関係、及び、成形体の密度と曲げ強度との関係を夫々、図1及び図2に示した。 The measurement results are shown in Table 5. Further, the relationship between the density of the molded product and the flexural modulus, and the relationship between the density of the molded product and the flexural strength are shown in FIGS. 1 and 2, respectively.
 なお、成形体の密度は、それを構成する各組成の密度と質量比率とから計算することができる。 In addition, the density of a molded object can be calculated from the density and mass ratio of each composition which comprises it.
 動的粘弾性試験結果
 また、本発明の組成物の成形性を評価するために、その動的粘弾性試験を行い、628rad/secにおける複素粘度を表5に示した。
Dynamic Viscoelasticity Test Results Also, in order to evaluate the moldability of the composition of the present invention, its dynamic viscoelasticity test was conducted, and the complex viscosity at 628 rad / sec is shown in Table 5.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 図1は、アセチル化NBKP(AcNBKP、DS=0.69)とガラス繊維(GF)とを含有するPA6成形体の密度と曲げ弾性率との関係を示す図である。 FIG. 1 is a view showing the relationship between the density and flexural modulus of a PA6 compact containing acetylated NBKP (AcNBKP, DS = 0.69) and glass fibers (GF).
 図2は、アセチル化NBKP(AcNBKP、DS=0.69)とガラス繊維(GF)とを含有するPA6成形体の密度と曲げ強度との関係を示す図である。 FIG. 2 is a graph showing the relationship between density and flexural strength of PA6 compacts containing acetylated NBKP (AcNBKP, DS = 0.69) and glass fibers (GF).
 図1及び2では、PA6成形体は、PA6、AcNBKP及びGFを一括して混練機に供給し溶融混練し、これを射出成形して製造した。 In FIGS. 1 and 2, the PA6 molded body was manufactured by injection-molding PA6, AcNBKP and GF all at once into a kneader and melt-kneading.
 いずれの図においても、PA6/AcNBKP/GF複合材の曲げ弾性率又は曲げ強度を密度に対してプロットした点(赤色◆印)は、非強化PA6とPA6/GF = 80/20とを結んだ直線上の数値よりも同一密度において高い数値を示した。このことからPA6/AcNBKP/GF複合材では、その同じ密度において、GF単独での補強効果よりもAcNBKPとGFとによる補強効果が高いことがわかる。 In any of the figures, the point at which the flexural modulus or the flexural strength of the PA6 / AcNBKP / GF composite is plotted against the density (red ◆ mark) connects the non-reinforced PA6 and PA6 / GF = 80/20. It showed higher values at the same density than the values on the straight line. From this, it is understood that the reinforcement effect of AcNBKP and GF is higher than that of GF alone in the PA6 / AcNBKP / GF composite material at the same density.
 更に、グラスファイバー(GF)20Wt%含有PA6組成物(試験番号PA6-433)の密度当たりの曲げ弾性率(MPa/組成物密度)を基準に、各試料の密度当たりの曲げ弾性率及び密度当たりの曲げ強度を比較した。 Furthermore, based on the flexural modulus per density (MPa / composition density) of a glass fiber (GF) 20 Wt% -containing PA6 composition (Test No. PA6-433), the flexural modulus per density and per density of each sample are based The bending strengths of the two were compared.
 表5に示すように、試験No.PA6-428(PA6/AcNBKP/GF = 90/5/5)、PA6-429(PA6/AcNBKP/GF = 85/5/10)、PA6-431(PA6/AcNBKP/GF = 85/10/5)及びPA6-432(PA6/AcNBKP/GF = 80/10/10)の密度当たり弾性率比は、基準値(GF20Wt%含有PA6組成物の密度当たり弾性率)に比べて、1.05~1.42倍であった。 As shown in Table 5, Test No. PA6-428 (PA6 / AcNBKP / GF = 90/5/5), PA6-429 (PA6 / AcNBKP / GF = 85/5/10), PA6-431 (PA6 / PA6) The ratio of elastic modulus per density of AcNBKP / GF = 85/10/5 and PA6-432 (PA6 / AcNBKP / GF = 80/10/10) is the reference value (elastic modulus per density of PA6 composition containing GF 20 Wt%) The ratio was 1.05 to 1.42 times as large as.
 試験番号PA6-429~PA6-432の組成物の密度当たりの曲げ強度(密度当たり強度比)は、基準値に比べて1.07~1.16倍となった。 The flexural strength (density ratio per density) of the compositions of Test Nos. PA6-429 to PA6-432 was 1.07 to 1.16 times as large as the reference value.
 つまりGF強化PA6に比べて、PA6/AcNBKP材料及びPA6/AcNBKP/GF材料は軽量であり、高強度及び高弾性率の材料である。 That is, compared to GF reinforced PA6, PA6 / AcNBKP material and PA6 / AcNBKP / GF material are lightweight, high strength and high modulus materials.
 PA6-430(PA6/AcNBKP=90/10)の密度当たり弾性率比は、基準(PA6/GF=80/20)のそれに比べて、1.10である。 The elastic modulus ratio per density of PA6-430 (PA6 / AcNBKP = 90/10) is 1.10 compared to that of the standard (PA6 / GF = 80/20).
 一方、PA6-429、PA6-431及びPA6-432の密度当たり弾性率比は、基準(PA6/GF=80/20)のそれに比べて夫々1.20,1.24及び1.42倍である。このことから、AcNBKPだけを含むPA6-430に比べても、AcNBKPとGFとのハイブリッド化により、軽量で、高弾性率化が達成できたといえる。 On the other hand, the elastic modulus ratio per density of PA6-429, PA6-431 and PA6-432 is 1.20, 1.24 and 1.42, respectively, as compared with that of the standard (PA6 / GF = 80/20). From this, it can be said that, even when compared to PA6-430 containing only AcNBKP, it is possible to achieve weight reduction and high elastic modulus by hybridizing AcNBKP and GF.
 PA6-430の密度当たり強度比は、基準(PA6/GF=80/20)のそれに比べて1.09である。 The intensity ratio per density of PA6-430 is 1.09 compared to that of the standard (PA6 / GF = 80/20).
 これに比べて、PA6-431及びPA6-432の密度当たり強度比は高い値である(夫々1.12及び1.16)。このことから、AcNBKPだけを含むPA6-430に比べてもAcNBKPとCNFとのハイブリッド化により、軽量で高強度化が達成できたといえる。 In comparison, PA6-431 and PA6-432 have high intensity ratio per density (1.12 and 1.16 respectively). From this, it can be said that the hybridization between AcNBKP and CNF has made it possible to achieve lightweight and high strength as compared to PA6-430 containing only AcNBKP.
 本発明の組成物の成形加工性を動的粘弾性の観点から比較すると、本発明の組成物(PA6-429及びPA6-431)は、対照(PA6-430)に比べて複素粘度が低く、成形加工性が良好であるといえる。 When the molding processability of the composition of the present invention is compared from the viewpoint of dynamic viscoelasticity, the compositions of the present invention (PA6-429 and PA6-431) have lower complex viscosity than the control (PA6-430), It can be said that moldability is good.
 (1-2)AcNBKP/PA6ペレットとGF/PA6ペレットとを射出機で溶融混合して射出成形する方法
 AcNBKP10wt%ペレットMB(iii)(PA6/AcNBKP = 90/10)、AcNBKP15wt%ペレットMB(iv)(PA6/AcNBKP = 85/15)、(4)PA6-GF30wt%ペレット、及び(5)PA6ペレットを、表6の混合割合で夫々混合した。
(1-2) Method of melt-mixing AcNBKP / PA6 pellets and GF / PA6 pellets by injection machine and injection molding AcNBKP 10wt% pellet MB (iii) (PA6 / AcNBKP = 90/10), AcNBKP 15wt% pellet MB (iv (PA6 / AcNBKP = 85/15), (4) PA6-GF 30 wt% pellet, and (5) PA6 pellet were mixed in the mixing ratio of Table 6, respectively.
 得られた混合物を、夫々射出成形機に供給し、これらを溶融して射出成形することにより、幅×長さ×厚み=10×80×4mmの短冊型試験片(PA6-437、438、439、440、441及び442)を得た。なお、射出機の型番は、NPX7(日精樹脂工業(株)製)である。 The obtained mixture is supplied to an injection molding machine, and these are melted and injection molded to obtain strip test pieces (PA 6-437, 438, 439) of width × length × thickness = 10 × 80 × 4 mm. , 440, 441 and 442). The model number of the injection machine is NPX7 (manufactured by Nissei Resin Industry Co., Ltd.).
 射出機のシリンダー設定温度を、210~230℃とした。 The cylinder set temperature of the injection machine was set to 210 to 230.degree.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 成形体の試験結果
 上記の成形体(試験片)について曲げ弾性率及び曲げ強度を測定した。
Test Results of Molded Body The flexural modulus and the flexural strength were measured for the above-mentioned molded body (test piece).
 測定結果を表7に示す。また、成形体の密度と曲げ弾性率との関係、及び、成形体の密度と曲げ強度との関係を夫々、図3及び図4に示した。 The measurement results are shown in Table 7. Further, the relationship between the density of the molded product and the flexural modulus, and the relationship between the density of the molded product and the flexural strength are shown in FIGS. 3 and 4 respectively.
 また、本発明の組成物の成形性を評価するために、その動的粘弾性試験を行い、628rad/secにおける複素粘度を表7に示した。 Moreover, in order to evaluate the moldability of the composition of the present invention, its dynamic viscoelasticity test was conducted, and the complex viscosity at 628 rad / sec is shown in Table 7.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 図3は、アセチル化NBKP(AcNBKP、DS=0.67)とガラス繊維(GF)とを含有するPA6成形体の密度と曲げ弾性率との関係を示す図である。 FIG. 3 is a view showing the relationship between the density and flexural modulus of a PA6 compact containing acetylated NBKP (AcNBKP, DS = 0.67) and glass fibers (GF).
 図4は、アセチル化NBKP(AcNBKP、DS=0.67)とガラス繊維(GF)とを含有するPA6成形体の密度と曲げ強度との関係を示す図である。 FIG. 4 is a graph showing the relationship between density and flexural strength of PA6 compacts containing acetylated NBKP (AcNBKP, DS = 0.67) and glass fibers (GF).
 図3及び4のアセチル化NBKPとガラス繊維(GF)とを含有するPA6成形体は、AcNBKP含有PA6ペレット及びGF含有PA6ペレットの混合物を射出成形機に供給して溶融混合し、これを射出成形して製造した。 A PA6 compact containing acetylated NBKP and glass fiber (GF) shown in FIGS. 3 and 4 is supplied to an injection molding machine for melt mixing of a mixture of AcNBKP-containing PA6 pellets and GF-containing PA6 pellets, and this is injection molded Manufactured.
 図3の曲げ弾性率については、非強化PA6とPA6/GF = 80/20とを結んだ直線上の値に比べて、それと同一密度のPA6/AcNBKP/GF複合材の曲げ弾性率は高かった。このことからPA6/AcNBKP/GF複合材は、同じ密度において、GFによる補強効果よりも、AcNBKPとGFとによる補強効果が高いことがわかる。 The flexural modulus of the PA6 / AcNBKP / GF composite of the same density was higher for the flexural modulus in FIG. 3 compared to the value on the straight line connecting non-reinforced PA6 and PA6 / GF = 80/20. . From this, it can be seen that the PA6 / AcNBKP / GF composite has a higher reinforcing effect by AcNBKP and GF than the reinforcing effect by GF at the same density.
 図4の密度と曲げ強度との関係図において、非強化PA6とPA6/GF = 80/20とを結んだ直線上の値に比べて、それと同密度のPA6/AcNBKP/GF複合材の曲げ強度が大きいことから、GFによる補強効果よりもAcNBKPとGFとによる補強効果が高いことがわかる。 The bending strength of the same density PA6 / AcNBKP / GF composite as compared to the value on the straight line connecting non-reinforced PA6 and PA6 / GF = 80/20 in the relationship between density and bending strength in FIG. It can be seen that the reinforcement effect by AcNBKP and GF is higher than that by GF.
 更に、グラスファイバー(GF)20Wt%含有PA6組成物(試験番号PA6-442)の密度当たりの曲げ弾性率(密度当たり弾性率比)を基準に、各試料の密度当たり弾性率比を比較した。 Furthermore, the elastic modulus ratio per density of each sample was compared based on the flexural modulus per density (elastic modulus ratio per density) of a glass fiber (GF) 20 Wt% -containing PA6 composition (Test No. PA6-442).
 表7に示すように、試験No.PA6-438(PA6/AcNBKP/GF = 85/5/10)、PA6-440(PA6/AcNBKP/GF = 85/10/5)及びPA6-441(PA6/AcNBKP/GF = 80/10/10)の密度当たり弾性率比は、基準値に比べて、1.03~1.21倍であった。 As shown in Table 7, Test Nos. PA6-438 (PA6 / AcNBKP / GF = 85/5/10), PA6-440 (PA6 / AcNBKP / GF = 85/10/5) and PA6-441 (PA6 / PA6 / PAN). The ratio of elastic modulus per density of AcNBKP / GF = 80/10/10 was 1.03 to 1.21 times the standard value.
 GF強化PA6に比べて、PA6/AcNBKP/GF材料は軽量であり、高弾性率の材料である。 Compared to GF reinforced PA6, PA6 / AcNBKP / GF materials are lightweight and high modulus materials.
 AcNBKPのみを含有するPPA6-439(PA6/AcNBKP=90/10)の密度当たり弾性率比は、基準に対して0.96である。 The elastic modulus ratio per density of PPA6-439 (PA6 / AcNBKP = 90/10) containing only AcNBKP is 0.96 relative to the reference.
 一方、試験番号PA6-438(PA6/AcNBKP/GF = 85/5/10)、PA6-440(PA6/AcNBKP/GF = 85/10/5)及びPA6-441(PA6/AcNBKP/GF = 80/10/10)の密度当たり曲げ弾性率比は、1.03~1.21であって、AcNBKPのみを含有するPA6-439(PA6/AcNBKP=90/10)のそれ(0.96)に比べて大きい。このように、AcNBKPのみを含有する成形体と比較してもAcNBKPとGFとのハイブリッド化により、軽量で高弾性率化を達成できた。 On the other hand, test numbers PA6-438 (PA6 / AcNBKP / GF = 85/5/10), PA6-440 (PA6 / AcNBKP / GF = 85/10/5) and PA6-441 (PA6 / AcNBKP / GF = 80 / The ratio of flexural modulus per density of 10/10 is 1.03 to 1.21, which is larger than that (0.96) of PA6-439 (PA6 / AcNBKP = 90/10) containing only AcNBKP. Thus, even when compared with a molded body containing only AcNBKP, it was possible to achieve lightening and high modulus by hybridizing AcNBKP and GF.
 成形加工性については、本発明の組成物(PA6-438、PA6-440、及びPA6-441)は、対照(PA6-439)に比べて複素粘度が低いので、成形加工性が良好であるといえる。 With regard to molding processability, the compositions of the present invention (PA6-438, PA6-440, and PA6-441) have a low complex viscosity compared to the control (PA6-439), and thus have good molding processability. It can be said.
 (2)AcNBK及びGWを含有するPA6組成物及びその成形体の製造
 AcNBKP10wt%ペレットMB(iii)、AcNBKP15wt%ペレットMB(iv)、GW30wt%ペレットMB(v)、及び(5)PA6ペレットを、表8の組成割合で夫々混合した。
(2) Production of PA6 composition containing AcNBK and GW and its molded article AcNBKP 10 wt% pellet MB (iii), AcNBKP 15 wt% pellet MB (iv), GW 30 wt% pellet MB (v), and (5) PA6 pellet The composition ratios in Table 8 were mixed respectively.
 得られた混合物を、夫々射出機に供給して溶融し、AcNBKP、及びGWを含むPA6組成物を作製した。これを射出成形(NPX7(日精樹脂工業(株)製))することにより、幅×長さ×厚み=10×80×4mmの短冊型成形体(試験片の試験番号、PA6-448、449、450、451、452及び453)を作製した。 The resulting mixture was each fed to an injection machine and melted to produce a PA6 composition comprising AcNBKP and GW. A rectangular molded product of width × length × thickness = 10 × 80 × 4 mm (test number of test piece, PA 6-448, 449) by injection molding (NPX7 (manufactured by Nissei Resin Industry Co., Ltd.)). 450, 451, 452 and 453) were produced.
 使用した射出機の型番は、NPX7(日精樹脂工業(株)製)である。射出機のシリンダー設定温度を、210~230℃とした。 The model number of the used injection machine is NPX7 (manufactured by Nissei Resin Industry Co., Ltd.). The cylinder set temperature of the injection machine was set to 210 to 230.degree.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 成形体の試験結果
 上記の成形体(試験片)について曲げ弾性率及び曲げ強度を測定した。
Test Results of Molded Body The flexural modulus and the flexural strength were measured for the above-mentioned molded body (test piece).
 測定結果を表9に示す。また、成形体の密度と曲げ弾性率との関係、及び、成形体の密度と曲げ強度との関係を夫々、図5及び図6に示した。 The measurement results are shown in Table 9. Further, the relationship between the density of the molded product and the flexural modulus, and the relationship between the density of the molded product and the flexural strength are shown in FIGS. 5 and 6, respectively.
 また、本発明の組成物の成形性を評価するために、その動的粘弾性試験を行い、628rad/secにおける複素粘度を表9に示した。 Moreover, in order to evaluate the moldability of the composition of the present invention, its dynamic viscoelasticity test was conducted, and the complex viscosity at 628 rad / sec is shown in Table 9.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 図5は、アセチル化NBKP(AcNBKP、DS=0.67)とグラスウール(GW)とを含有するPA6成形体の密度と曲げ弾性率との関係を示す図である。 FIG. 5 is a view showing the relationship between the density and flexural modulus of a PA6 compact containing acetylated NBKP (AcNBKP, DS = 0.67) and glass wool (GW).
 図6は、アセチル化NBKP(AcNBKP、DS=0.67)とグラスウール(GW)とを含有するPA6成形体の密度と曲げ強度との関係を示す図である。 FIG. 6 is a view showing the relationship between the density and the flexural strength of a PA6 compact containing acetylated NBKP (AcNBKP, DS = 0.67) and glass wool (GW).
 図5及び6では、AcNBKPとGWとを含有するPA6成形体は、AcNBKP含有PA6ペレット及びGW含有PA6ペレットの混合物を射出成形機に供給して溶融混合し、これを射出成形して製造した。 In FIGS. 5 and 6, a PA6 molded body containing AcNBKP and GW was prepared by melt-mixing a mixture of AcNBKP-containing PA6 pellets and GW-containing PA6 pellets into an injection molding machine and injection molding it.
 いずれの図においても、非強化PA6とPA6/GW = 80/20とを結んだ直線上の値に比べて、それと同一密度のPA6/AcNBKP/GW複合材の物性値が高かったことから、複合材の同じ密度において、GWによる補強効果よりも、AcNBKPとGWとによる補強効果が高いことがわかる。 In both figures, the physical property value of the same density PA6 / AcNBKP / GW composite is higher than the value on the straight line connecting the non-reinforced PA6 and PA6 / GW = 80/20. It can be seen that at the same density of material, the reinforcement effect by AcNBKP and GW is higher than the reinforcement effect by GW.
 GW20Wt%含有PA6成形体(試験番号PA6-453)の密度当たりの曲げ弾性率(密度当たり曲げ弾性率(MPa/組成物密度))及び密度当たりの曲げ強度(密度当たり曲げ強度)を基準に、AcNBK及びGWを含有するPA6組成物の成形体の密度当たり曲げ弾性率及び密度当たり曲げ強度を比較した。 Based on the flexural modulus per density (bending modulus per density (MPa / composition density)) and the flexural strength per density (bending strength per density) of the GW20 Wt% -containing PA6 compact (Test No. PA6-453), The flexural modulus per density and flexural strength per density of compacts of PA6 compositions containing AcNBK and GW were compared.
 表9に示されるように、AcNBK及びGWを含有するPA6組成物の成形体である、試験番号PA6-448(PA6/AcNBKP/GW = 90/5/5)、PA6-449(PA6/AcNBKP/GW = 85/5/10)、PA6-451(PA6/AcNBKP/GW = 85/10/5)、及びPA6-452(PA6/AcNBKP/GW = 80/10/10)の密度当たり弾性率比は、上記基準値に対し1.31~1.78倍となり、密度当たり強度比は上記基準値に対し1.35~1.48倍となった。 As shown in Table 9, Test No. PA 6-448 (PA6 / AcNBKP / GW = 90/5/5), which is a molded body of a PA6 composition containing AcNBK and GW, PA6-449 (PA6 / AcNBKP / The elastic modulus ratio per density of GW = 85/5/10, PA6-451 (PA6 / AcNBKP / GW = 85/10/5), and PA6-452 (PA6 / AcNBKP / GW = 80/10/10) is The intensity ratio per density was 1.35 to 1.48 times the above standard value.
 このように、GW強化PA6に比べて、PA6/AcNBKP材料及びPA6/AcNBKP/GW材料は、軽量であり、高強度及び高弾性率の材料である。 Thus, compared to GW-reinforced PA6, PA6 / AcNBKP and PA6 / AcNBKP / GW materials are lightweight, high strength and high modulus materials.
 PA6-450の密度当たり曲げ弾性率比は1.55である。 The flexural modulus ratio per density of PA6-450 is 1.55.
 一方、PA6-451及びPA6-452のそれは各々1.69及び1.78である。このようにAcNBKPだけのPA6-450に比べても、AcNBKPとGWとのハイブリッド化により、軽量かつ高弾性率化を達成することができた。 On the other hand, those of PA6-451 and PA6-452 are 1.69 and 1.78, respectively. As described above, it was possible to achieve lightweight and high elastic modulus by hybridization between AcNBKP and GW, as compared to PA6-450 only with AcNBKP.
 本発明の繊維強化組成物の成形加工性については、本発明の組成物(PA6-451)は、対照(PA6-450)に比べて複素粘度が低く、成形加工性が良好であるといえる。 With regard to the molding processability of the fiber-reinforced composition of the present invention, it can be said that the composition (PA6-451) of the present invention has a lower complex viscosity and better molding processability than the control (PA6-450).
 (3)AcNBK、GF及びPC-ABSアロイを含有する組成物及びその成形体の製造 CNF10wt%ペレットMB(vii)、CNF15wt%ペレットMB(viii)、GF30wt%強化PCペレット、及び(11)PC-ABSアロイペレットを夫々表10に示す組成割合で混合した。 (3) Preparation of a composition containing AcNBK, GF and PC-ABS alloy and molded product thereof CNF 10 wt% pellet MB (vii), CNF 15 wt% pellet MB (viii), GF 30 wt% reinforced PC pellet, and (11) PC- Each of the ABS alloy pellets was mixed at the composition ratio shown in Table 10.
 得られた混合物を射出機に供給して溶融し、これを射出成形することにより、幅×長さ×厚み=10×80×4mmの短冊型の本発明の成形体及び対照成形体(試験片)を作製した。 The obtained mixture is supplied to an injection machine, melted, and injection molded to obtain a strip-shaped molded article of the present invention of width x length x thickness = 10 x 80 x 4 mm and a control molded article (test piece ) Was produced.
 試験片の試験番号は夫々PC-19、20、21、22、23及び24とした。 The test numbers of the test pieces were PC-19, 20, 21, 22, 23 and 24, respectively.
 射出機のシリンダー設定温度を210~250℃とした。 The cylinder set temperature of the injection machine was set to 210 to 250.degree.
 AcNBK、GF及びPC-ABSアロイを含有する組成物、及びその成形体中のAcNBKPは、ナノフィブリル化されている。 The composition containing AcNBK, GF and PC-ABS alloy, and AcNBKP in the molded article is nanofibrillated.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
 成形体の試験結果
 上記の成形体(試験片)について曲げ弾性率及び曲げ強度を測定した。
Test Results of Molded Body The flexural modulus and the flexural strength were measured for the above-mentioned molded body (test piece).
 測定結果を表11に示す。また、成形体の密度と曲げ弾性率との関係、及び、成形体の密度と曲げ強度との関係を夫々、図7及び図8に示した。 The measurement results are shown in Table 11. Further, the relationship between the density of the molded product and the flexural modulus, and the relationship between the density of the molded product and the flexural strength are shown in FIGS. 7 and 8, respectively.
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
 図7は、アセチル化NBKP(AcNBKP、DS=0.67)とガラス繊維(GF)とを含有するPC-ABSアロイ成形体の密度と曲げ弾性率との関係を示す図である。 FIG. 7 is a view showing the relationship between the density and flexural modulus of a PC-ABS alloy molded product containing acetylated NBKP (AcNBKP, DS = 0.67) and glass fibers (GF).
 図8は、アセチル化NBKP(AcNBKP、DS=0.67)とガラス繊維(GF)とを含有するPC-ABSアロイ成形体の密度と曲げ強度との関係を示す図である。 FIG. 8 is a graph showing the relationship between the density and the bending strength of a PC-ABS alloy molded product containing acetylated NBKP (AcNBKP, DS = 0.67) and glass fibers (GF).
 図7及び8では、PC-ABSアロイ成形体は、AcNBKP含有PC-ABSアロイペレット及びGF含有PCペレットの混合物を射出成形機に供給して溶融混合し、これを射出成形して製造した。 In FIGS. 7 and 8, the PC-ABS alloy molded body was manufactured by injection-molding a mixture of an AcNBKP-containing PC-ABS alloy pellet and a GF-containing PC pellet by supplying it to an injection molding machine and melt-mixing it.
 いずれの図においても、非強化PC-ABSアロイとPC-ABSアロイ/GF = 80/20とを結んだ直線上の数値に比べて、PC-ABSアロイ/AcNBKP/GF複合材の曲げ弾性率又は曲げ強度値を密度に対してプロットした値(赤色◆印)は、同一密度において、高い値を示した。このことから、PC-ABSアロイ/AcNBKP/GF複合材は、同じ密度において、GFによる補強効果よりもAcNBKPとGFとによる補強効果が高いことがわかる。 In any of the figures, the flexural modulus of the PC-ABS alloy / AcNBKP / GF composite or the bending modulus of the PC-ABS alloy / AcNBKP / GF composite, as compared with the value on the straight line connecting the unreinforced PC-ABS alloy and PC-ABS alloy / GF = 80/20. The values obtained by plotting the bending strength values against the density (red ◆ marks) showed high values at the same density. From this, it can be seen that the PC-ABS alloy / AcNBKP / GF composite material has higher reinforcement effect by AcNBKP and GF than reinforcement effect by GF at the same density.
 更に、表11のデータをもとに、グラスファイバー(GF)20Wt%含有PC-ABSアロイ組成物(試験番号PC-24)の密度当たりの曲げ弾性率(密度当たり曲げ弾性率)を基準に比較した。 Furthermore, based on the data in Table 11, a comparison was made on the basis of the flexural modulus per density (bending modulus per density) of a glass fiber (GF) 20 wt% PC-ABS alloy composition (Test No. PC-24). did.
 その基準値(密度当たり弾性率比1.00)に比べて、試験番号PC-20(アロイ/AcNBKP/GF = 85/5/10)、PC-22(アロイ/AcNBKP/GF = 85/10/5)及びPC-23(アロイ/AcNBKP/GF = 80/10/10)の密度当たり弾性率比は、1.04~1.21である。これより、GF強化PC-ABSアロイに比べて、アロイ/AcNBKP/GF複合材料が軽量であり、高弾性率の材料であることがわかる。 Test No. PC-20 (Alloy / AcNBKP / GF = 85/5/10), PC-22 (Alloy / AcNBKP / GF = 85/10 /) in comparison to its reference value (elastic modulus ratio per density 1.00) The elastic modulus ratio per density of 5) and PC-23 (alloy / AcNBKP / GF = 80/10/10) is 1.04 to 1.21. From this, it can be seen that the alloy / AcNBKP / GF composite material is lightweight and has a high elastic modulus as compared to the GF reinforced PC-ABS alloy.
 成形体の密度当たりの曲げ強度(密度当たり強度比)では、試験番号PC-20(アロイ/AcNBKP/GF = 85/5/10)が、PC-24(アロイ/GF=80/20)と同等である。 Test No. PC-20 (alloy / AcNBKP / GF = 85/5/10) is equivalent to PC-24 (alloy / GF = 80/20) in bending strength (density ratio per density) per density of the molded body It is.
 PC-6(アロイ/AcNBKP=90/10)の密度当たり弾性率比は0.98である。 The elastic modulus ratio per density of PC-6 (alloy / AcNBKP = 90/10) is 0.98.
 これに対して、PC-20、PC-22及びPC-23の密度当たり弾性率比は各々1.04、1.11及び1.21であった。よって、AcNBKPだけの複合化PC-6(アロイ/AcNBKP=90/10)に比べて、AcNBKPとGFとのハイブリッド化により、軽量で高弾性率化を達成できた。 In contrast, the elastic modulus ratio per density of PC-20, PC-22 and PC-23 was 1.04, 1.11 and 1.21, respectively. Therefore, as compared with the complexed PC-6 with only AcNBKP (alloy / AcNBKP = 90/10), it was possible to achieve lighter weight and higher elastic modulus by hybridizing AcNBKP and GF.
 PC-6の密度当たり強度比は0.84である。 The strength ratio per density of PC-6 is 0.84.
 これに対し、PC-19、PC-20、PC22及びPC-23の密度当たり強度比は、各々0.91、1.01、0.87及び0.93であった。よって、AcNBKPだけのPC-6(アロイ/AcNBKP=90/10)に比べて、AcNBKPとGFのハイブリッド化により、軽量化及び高強度化が達成できた。 On the other hand, the intensity ratio per density of PC-19, PC-20, PC22 and PC-23 was 0.91, 1.01, 0.87 and 0.93, respectively. Therefore, weight reduction and high strength could be achieved by hybridization between AcNBKP and GF, as compared to PC-6 with only AcNBKP (alloy / AcNBKP = 90/10).
 (4)AcNBKP/ PA6ペレットとCF/P6ペレットとを射出成形機で溶融混合して射出成形する方法
 PA6-GF30%ペレットの代わりにCF30%PA6ペレットを用いて、前記「(1-2)AcNBKP/PA6ペレットとGF/PA6ペレットとを射出機で溶融混合して射出成形する方法)」で記載した方法に準じて、AcNBKP10wt%ペレット(PA6/AcNBKP = 90/10)、AcNBKP15wt%ペレット(PA6/AcNBKP = 85/15)、CF30%PA6ペレット及びPA6ペレットを表6の混合割合に準じて夫々混合し、夫々射出成形機に供給してこれらを溶融し、射出成形することによって、幅×長さ×厚み=10×80×4mmの短冊型試験片(PA6-571~576及び585)を得た。
(4) Method of melt-mixing AcNBKP / PA6 pellets and CF / P6 pellets in an injection molding machine and injection molding PA6-GF 30% pellets instead of CF30% PA6 pellets, the above (1-2) AcNBKP AcNBKP 10wt% pellet (PA6 / AcNBKP = 90/10), AcNBKP 15wt% pellet (PA6 / PA6 pellet and GF / PA6 pellet by injection molding machine) AcNBKP = 85/15), CF30% PA6 pellets and PA6 pellets are mixed according to the mixing proportions in Table 6, respectively, supplied to the injection molding machine to melt them, and injection molding, width x length × A strip-shaped test piece (PA 6-571 to 576 and 585) having a thickness of 10 × 80 × 4 mm was obtained.
 射出機の型番は、NPX7(日精樹脂工業(株)製)である。射出機のシリンダー設定温度は、210~230℃とした。 The model number of the injection machine is NPX7 (manufactured by Nissei Resin Industry Co., Ltd.). The cylinder set temperature of the injection machine was set to 210 to 230.degree.
 成形体の試験結果
 上記の成形体(試験片)について、曲げ弾性率及び曲げ強度を測定した。
Test Results of Molded Body The flexural modulus and the flexural strength were measured for the above-mentioned molded body (test piece).
 測定結果を表12に示す。また、成形体の密度と曲げ弾性率との関係、及び、成形体の密度と曲げ強度との関係を夫々、図9及び図10に示した。 The measurement results are shown in Table 12. Further, the relationship between the density of the molded product and the flexural modulus, and the relationship between the density of the molded product and the flexural strength are shown in FIGS. 9 and 10, respectively.
 また、本発明の組成物の成形性を評価するためにその動的粘弾性試験を行い、628rad/secにおける複素粘度を表12に示した。 In addition, in order to evaluate the moldability of the composition of the present invention, its dynamic viscoelasticity test was conducted, and the complex viscosity at 628 rad / sec is shown in Table 12.
 表12からわかるように、PA6に炭素繊維を複合化すると、曲げ弾性率も曲げ強度も大きく上昇する。例えば、CFを10%含有するPA6組成物(PA6-585=PA6/CF=90/10) の曲げ弾性率は7460MPaであり、曲げ強度は162MPaであって、AcNBKPを10%含有するPA6組成物(PA6-573=PA6/AcNBKP=90/10) のそれら(曲げ弾性率4910MPa、及び曲げ強度129MPa)よりも大きい。 As can be seen from Table 12, when carbon fiber is compounded to PA6, both the bending elastic modulus and the bending strength increase greatly. For example, a PA6 composition containing 10% of CF (PA6-585 = PA6 / CF = 90/10) has a flexural modulus of 7460 MPa, a flexural strength of 162 MPa, and a PA6 composition containing 10% of AcNBKP. It is larger than those of (PA6-573 = PA6 / AcNBKP = 90/10) (flexural modulus 4910 MPa and flexural strength 129 MPa).
 そして、これらの密度当たりの曲げ弾性率及び密度当たりの曲げ強度を比較しても、前者の密度当たりの曲げ弾性率は、後者の1.5倍であり、前者の密度当たりの曲げ強度は、後者の1.25倍である。 And even if the flexural modulus per density and the flexural strength per density are compared, the flexural modulus per density of the former is 1.5 times that of the latter, and the flexural strength per density of the former is the latter It is 1.25 times.
 このデータから見ると、一見、炭素繊維と化学修飾ミクロフィブリル化セルロース系繊維(AcNBKP)とを繊維強化組成物に併用する効果が不明である。 From this data, it is unclear at first glance the effect of combining carbon fiber and chemically modified microfibrillated cellulosic fiber (AcNBKP) in a fiber reinforced composition.
 しかしながら、PA6、PA6-585(PA6/CF-90/10)及びPA6-576(PA6/CF-90/20)のそれぞれの密度と曲げ弾性率との関係から求めた回帰直線の上の値は、AcNBKPとCFとを含有するPA6組成物の密度当たり曲げ弾性率に極めて近似していることから(図9参照)、AcNBKPとCFとを含有するPA6組成物は、密度当たり曲げ弾性率において、CF含有組成物並みの性能を発揮しているといえる。 However, the values on the regression line determined from the relationship between the density and flexural modulus of each of PA6, PA6-585 (PA6 / CF-90 / 10) and PA6-576 (PA6 / CF-90 / 20) are The PA6 composition containing AcNBKP and CF has a bending elastic modulus per density that is very similar to the flexural modulus per density of a PA6 composition containing AcNBKP and CF (see FIG. 9). It can be said that the same performance as the CF-containing composition is exhibited.
 また、AcNBKPとCFとを含有するPA6組成物の密度当たりの曲げ強度についても、CF含有組成物並みの性能を発揮しているといえる(図10参照)。このことは、製造に高いエネルギー及びコストを要する炭素繊維を使用する代わりに、化学修飾ミクロフィブリル化セルロース系繊維と炭素繊維とを併用することによって、省エネルギー化及び低コスト化が図れる可能性があるといえる。 The flexural strength per density of a PA6 composition containing AcNBKP and CF can also be said to exhibit the same performance as a CF-containing composition (see FIG. 10). This means that energy saving and cost reduction may be achieved by using chemically modified microfibrillated cellulosic fibers and carbon fibers in combination instead of using carbon fibers that require high energy and cost for production. It can be said.
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
 (5)樹脂と複合(溶融混練)する前のAcNBKP、及び樹脂複合体中のAcNBKPそれぞれの繊維長及び繊維径の測定結果
 100~1000倍までの低倍率及び5000倍の高倍率で、繊維の顕微鏡観察を行った。
(5) AcNBKP before compounding with resin (melt-kneading) and AcNBKP in the resin complex The measurement results of the fiber length and the fiber diameter of each of the fibers are as low as 100 to 1000 times and as high as 5000 times Microscopic observation was performed.
 低倍率での観察では、いくつかの倍率及び視野において観察を行うことにより、多くの粗大な繊維を見出し、その繊維径及び繊維長の計測を行った。 In low magnification observation, many coarse fibers were found by performing observation at several magnifications and fields of view, and their fiber diameter and fiber length were measured.
 高倍率での観察では、解繊が進んでいる繊維を観察し、その繊維径及び繊維長の計測を行った。このような観察方法により、試料に含まれる解繊した繊維から未解繊の繊維までの繊維径及び繊維長を網羅して観察することができた。 In the observation at a high magnification, the fiber in which defibration was in progress was observed, and the fiber diameter and the fiber length were measured. By such an observation method, it was possible to cover and observe the fiber diameter and fiber length from the defibrated fibers contained in the sample to the unfibrillated fibers.
 試験番号PA6-430の成形体に使用したAcNBKP(PA6と溶融混練する前のAcNBKP)の電子顕微鏡観察像を図11に示す。また、試験番号PA6-430の成形体から調製した試料中の繊維の電子顕微鏡観察像を図12に示し、試験番号PA6-431の成形体から調製した試料中の繊維の電子顕微鏡観察像を図13に示し、試験番号PA6-451の成形体から調製した試料中の繊維の電子顕微鏡観察像を図14に示す。 An electron microscopic image of AcNBKP (AcNBKP before melt-kneading with PA6) used for the compact of Test No. PA6-430 is shown in FIG. In addition, an electron microscopic image of fibers in a sample prepared from the compact of Test No. PA6-430 is shown in FIG. 12, and an electron microscopic image of fibers in a sample prepared from the compact of Test No. PA6-431 is shown. An electron microscopic image of the fibers in the sample shown in No. 13 and prepared from the compact of Test No. PA6-451 is shown in FIG.
 このようにして観察したところ、樹脂と溶融混練する前のAcNBKPの直径は、細いもので数十nm~5μm程度、太いものでは20~50μmであった(図11の樹脂混練前のAcNBKPの顕微鏡観察像参照)。 When observed in this manner, the diameter of AcNBKP before being melt-kneaded with the resin was about several tens of nm to about 5 μm for thin ones and 20 to 50 μm for thick ones (microscope of AcNBKP before resin kneading of FIG. 11) See the observation image).
 前記の成形体(夫々、PA6-430、PA6-431及びPA6-451)からPA6を溶出し、除去した残渣の繊維について、上記のような低倍率観察及び高倍率観察を行ったところ、その直径は細いもので数十nm~1μm程度、太いものでは10~30μmであった(図12~14参照)。 When PA6 was eluted from the molded product (PA6-430, PA6-431 and PA6-451, respectively) and fibers of the residue removed were subjected to the above-mentioned low magnification observation and high magnification observation, the diameter thereof Were thin, about several tens of nm to 1 μm, and thick, 10 to 30 μm (see FIGS. 12 to 14).
 以上のことから、化学修飾セルロース系繊維は、樹脂との溶融混練時に解繊が進み、フィブリル化することがわかる。 From the above, it can be seen that the chemically modified cellulose fiber is disintegrated by melting and kneading with the resin and fibrillated.
 上記の通り、本発明により、軽量で、且つ強度特性に優れる、繊維強化樹脂組成物、及びその成形体を提供することができた。
 
As described above, according to the present invention, it is possible to provide a fiber-reinforced resin composition that is lightweight and has excellent strength characteristics, and a molded article thereof.

Claims (9)

  1.  繊維強化樹脂組成物であって、
     当該繊維強化樹脂組成物は、(A)化学修飾ミクロフィブリル化セルロース系繊維、(B)無機フィラー及び(C)熱可塑性樹脂を含有し、
     前記(A)化学修飾ミクロフィブリル化セルロース系繊維及び前記(B)無機フィラーが下記(a)及び(b)の要件を満たす繊維強化樹脂組成物:
     (a)(A)化学修飾ミクロフィブリル化セルロース系繊維が、
      下式(1):
      (Lg)Cell-O-R・・・・(1)
      〔式中、(Lg)Cell-は、セルロース系高分子中のセルロース、ホロセルロース及び/又はリグノセルロースを構成する多糖及びリグニンから水酸基を除いた残基を示す。
      式中、-O-Rは、セルロース系高分子中のセルロース、ホロセルロース及び/又はリグノセルロースを構成する多糖及びリグニン中の一部の水酸基の水素原子が置換基Rにより置換されていることを示す。
      式中、Rは、炭素数2~4のアシル基、-(CH2)n-1COOH、-CO(CH2)nCOOH、-COCH=CHCOOH、-(CH2)n-1COO-X+、-CO(CH2)nCOO-X+及び-COCH=CHCOO-X+からなる群から選ばれる1種又は2種以上を示し、nは2~4の整数を示す。前記COO-X+は、カルボキシ基が無機又は有機塩の状態になった基を示す。〕
     で表される化学修飾セルロース系高分子で構成される繊維のミクロフィブリル化繊維である。
     (b)(B)無機フィラーが、ガラス繊維、グラスウール、炭素繊維、ガラス微細粉、カーボンブラック、カーボンナノチューブ、グラフェン、カオリン及びナノクレイからなる群から選ばれる1種又は2種以上のフィラーである。
    A fiber reinforced resin composition,
    The fiber reinforced resin composition contains (A) chemically modified microfibrillated cellulose fiber, (B) an inorganic filler and (C) a thermoplastic resin,
    A fiber reinforced resin composition wherein the (A) chemically modified microfibrillated cellulose fiber and the (B) inorganic filler satisfy the following requirements (a) and (b):
    ( A ) (A) Chemically modified microfibrillated cellulosic fibers are
    The following formula (1):
    (Lg) Cell-OR (1)
    [Wherein, (Lg) Cell- represents a residue of cellulose, holocellulose and / or polysaccharide constituting lignocellulose and lignin from which hydroxyl group has been removed, in a cellulose polymer.
    In the formula, —OR indicates that a hydrogen atom of a part of hydroxyl groups in cellulose, holocellulose and / or polysaccharides constituting lignocellulose and lignin in the cellulose polymer is substituted by a substituent R.
    In the formula, R represents an acyl group having 2 to 4 carbon atoms,-(CH 2 ) n-1 COOH, -CO (CH 2 ) n COOH, -COCH = CHCOOH,-(CH 2 ) n-1 COO - X This represents one or more selected from the group consisting of + , -CO (CH 2 ) n COO - X + and -COCH = CHCOO - X + , and n represents an integer of 2 to 4. The COO X + represents a group in which the carboxy group is in the form of an inorganic or organic salt. ]
    It is a microfibrillated fiber of the fiber comprised from chemically modified cellulose polymer represented by these.
    (B) (B) The inorganic filler is one or more fillers selected from the group consisting of glass fiber, glass wool, carbon fiber, glass fine powder, carbon black, carbon nanotube, graphene, kaolin and nanoclay.
  2.  前記(a)要件の式(1)におけるRが、アセチル基、プロピオニル基、カルボキシメチル基、カルボキシメチル基の塩、カルボキシエチル基、カルボキシエチル基の塩、カルボキシエチルカルボニル基、カルボキシエチルカルボニル基の塩、カルボキシビニルカルボニル基、又はカルボキシビニルカルボニル基の塩である、請求項1に記載の繊維強化樹脂組成物。 In the formula (1) of the requirement (a), R is an acetyl group, a propionyl group, a carboxymethyl group, a salt of a carboxymethyl group, a carboxyethyl group, a salt of a carboxyethyl group, a carboxyethyl carbonyl group or a carboxyethyl carbonyl group The fiber reinforced resin composition according to claim 1, which is a salt, a carboxyvinylcarbonyl group, or a salt of a carboxyvinylcarbonyl group.
  3.  前記(a)要件の式(1)におけるRが、アセチル基である請求項1又は2に記載の繊維強化樹脂組成物。 The fiber reinforced resin composition according to claim 1 or 2, wherein R in the formula (1) of the requirement (a) is an acetyl group.
  4.  前記(b)要件の(B)無機フィラーが、ガラス繊維又は炭素繊維である、請求項1~3のいずれかに記載の繊維強化樹脂組成物。 The fiber-reinforced resin composition according to any one of claims 1 to 3, wherein the (B) inorganic filler of the (b) requirement is glass fiber or carbon fiber.
  5.  前記(a)要件の式(1)における(Lg)Cell-が、リグノセルロースを構成する多糖及びリグニンから水酸基を除いた残基である、請求項1~4のいずれかに記載の繊維強化樹脂組成物。 The fiber-reinforced resin according to any one of claims 1 to 4, wherein (Lg) Cell- in the formula (1) of the requirement (a) is a polysaccharide which constitutes lignocellulose and a residue obtained by removing a hydroxyl group from lignin. Composition.
  6.  前記(C)熱可塑性樹脂が、ポリアミド、ポリオレフィン、脂肪族ポリエステル、芳香族ポリエステル、ポリアセタール、ポリカーボネート、ポリスチレン、アクリロニトリル-ブタジエン-スチレン共重合体(ABS樹脂)、ポリカーボネート-ABSアロイ(PC-ABSアロイ)及び変性ポリフェニレンエーテル(m-PPE)からなる群から選ばれる少なくとも1種の樹脂である、請求項1~5のいずれかに記載の繊維強化樹脂組成物。 The (C) thermoplastic resin is polyamide, polyolefin, aliphatic polyester, aromatic polyester, polyacetal, polycarbonate, polystyrene, acrylonitrile-butadiene-styrene copolymer (ABS resin), polycarbonate-ABS alloy (PC-ABS alloy) The fiber reinforced resin composition according to any one of claims 1 to 5, which is at least one resin selected from the group consisting of and polyphenylene ether (m-PPE).
  7.  請求項1~6のいずれかに記載の繊維強化樹脂組成物からなる成形体。 A molded article comprising the fiber reinforced resin composition according to any one of claims 1 to 6.
  8.  請求項1~6のいずれかに記載の繊維強化樹脂組成物の製造方法であって、
     (i)下式(1):
      (Lg)Cell-O-R・・・・(1)
      〔式中、(Lg)Cell-は、セルロース系高分子中のセルロース、ホロセルロース及び/又はリグノセルロースを構成する多糖及びリグニンから水酸基を除いた残基を示す。
      式中、-O-Rは、セルロース系高分子中のセルロース、ホロセルロース及び/又はリグノセルロースを構成する多糖及びリグニン中の一部の水酸基の水素原子が置換基Rにより置換されていることを示す。
      式中、Rは、炭素数2~4のアシル基、-(CH2)n-1COOH、-CO(CH2)nCOOH、-COCH=CHCOOH、-(CH2)n-1COO-X+、-CO(CH2)nCOO-X+及び-COCH=CHCOO-X+からなる群から選ばれる1種又は2種以上を示し、nは2~4の整数を示す。前記COO-X+は、カルボキシ基が無機又は有機塩の状態になった基を示す。〕
     で表される化学修飾セルロース系高分子からなる化学修飾セルロース系パルプ、
     (ii)(B)無機フィラー、及び
     (iii)(C)熱可塑性樹脂
    を溶融混練することで、(A)化学修飾ミクロフィブリル化セルロース系繊維、(B)無機フィラー及び(C)熱可塑性樹脂を含有する繊維強化樹脂組成物を製造する方法であり、 前記(A)化学修飾ミクロフィブリル化セルロース系繊維及び前記(B)無機フィラーが前記(a)及び(b)の要件を満たす繊維強化樹脂組成物の製造方法。
    A method of producing the fiber reinforced resin composition according to any one of claims 1 to 6,
    (I) The following equation (1):
    (Lg) Cell-OR (1)
    [Wherein, (Lg) Cell- represents a residue of cellulose, holocellulose and / or polysaccharide constituting lignocellulose and lignin from which hydroxyl group has been removed, in a cellulose polymer.
    In the formula, —OR indicates that a hydrogen atom of a part of hydroxyl groups in cellulose, holocellulose and / or polysaccharides constituting lignocellulose and lignin in the cellulose polymer is substituted by a substituent R.
    In the formula, R represents an acyl group having 2 to 4 carbon atoms,-(CH 2 ) n-1 COOH, -CO (CH 2 ) n COOH, -COCH = CHCOOH,-(CH 2 ) n-1 COO - X This represents one or more selected from the group consisting of + , -CO (CH 2 ) n COO - X + and -COCH = CHCOO - X + , and n represents an integer of 2 to 4. The COO X + represents a group in which the carboxy group is in the form of an inorganic or organic salt. ]
    Chemically modified cellulosic pulp comprising a chemically modified cellulosic polymer represented by
    By melt-kneading (ii) (B) inorganic filler and (iii) (C) thermoplastic resin, (A) chemically modified microfibrillated cellulose fiber, (B) inorganic filler and (C) thermoplastic resin A fiber-reinforced resin composition containing the (A) chemically-modified microfibrillated cellulosic fiber and the (B) inorganic filler satisfying the requirements of the (a) and (b). Method of making the composition.
  9.  請求項1~6のいずれかに記載の繊維強化樹脂組成物の製造方法であって、
     工程(1):
     下式(1):
      (Lg)Cell-O-R・・・・(1)
      〔式中、(Lg)Cell-は、セルロース系高分子中のセルロース、ホロセルロース及び/又はリグノセルロースを構成する多糖及びリグニンから水酸基を除いた残基を示す。
      式中、-O-Rは、セルロース系高分子中のセルロース、ホロセルロース及び/又はリグノセルロースを構成する多糖及びリグニン中の一部の水酸基の水素原子が置換基Rにより置換されていることを示す。
      式中、Rは、炭素数2~4のアシル基、-(CH2)n-1COOH、-CO(CH2)nCOOH、-COCH=CHCOOH、-(CH2)n-1COO-X+、-CO(CH2)nCOO-X+及び-COCH=CHCOO-X+からなる群から選ばれる1種又は2種以上を示し、nは2~4の整数を示す。前記COO-X+は、カルボキシ基が無機又は有機塩の状態になった基を示す。〕
     で表される化学修飾セルロース系高分子からなる化学修飾セルロース系パルプ、及び (C)熱可塑性樹脂を混練する工程、及び
     工程(2):
     前記工程(1)で得られた混練物と、(B)無機フィラーと熱可塑性樹脂とを含む樹脂組成物とを溶融混練する工程
    を含む方法により、(A)化学修飾ミクロフィブリル化セルロース系繊維、(B)無機フィラー及び(C)熱可塑性樹脂を含有する繊維強化樹脂組成物を製造する方法であり、
     前記(A)化学修飾ミクロフィブリル化セルロース系繊維及び前記(B)無機フィラーが前記(a)及び(b)の要件を満たす繊維強化樹脂組成物の製造方法。
     
    A method of producing the fiber reinforced resin composition according to any one of claims 1 to 6,
    Process (1):
    The following formula (1):
    (Lg) Cell-OR (1)
    [Wherein, (Lg) Cell- represents a residue of cellulose, holocellulose and / or polysaccharide constituting lignocellulose and lignin from which hydroxyl group has been removed, in a cellulose polymer.
    In the formula, —OR indicates that a hydrogen atom of a part of hydroxyl groups in cellulose, holocellulose and / or polysaccharides constituting lignocellulose and lignin in the cellulose polymer is substituted by a substituent R.
    In the formula, R represents an acyl group having 2 to 4 carbon atoms,-(CH 2 ) n-1 COOH, -CO (CH 2 ) n COOH, -COCH = CHCOOH,-(CH 2 ) n-1 COO - X This represents one or more selected from the group consisting of + , -CO (CH 2 ) n COO - X + and -COCH = CHCOO - X + , and n represents an integer of 2 to 4. The COO X + represents a group in which the carboxy group is in the form of an inorganic or organic salt. ]
    A step of kneading a chemically modified cellulose-based pulp composed of a chemically modified cellulose-based polymer represented by and (C) a thermoplastic resin, and a step (2):
    (A) Chemically modified microfibrillated cellulose fiber by a method including the step of melt-kneading the kneaded product obtained in the step (1), and the resin composition containing (B) an inorganic filler and a thermoplastic resin A fiber reinforced resin composition containing (B) an inorganic filler and (C) a thermoplastic resin,
    The manufacturing method of the fiber reinforced resin composition whose said (A) chemically modified microfibrillated cellulosic fiber and said (B) inorganic filler satisfy | fill the requirements of said (a) and (b).
PCT/JP2018/023653 2017-06-22 2018-06-21 Fiber-reinforced resin composition, fiber-reinforced molded body and method for producing same WO2018235905A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-122452 2017-06-22
JP2017122452 2017-06-22

Publications (1)

Publication Number Publication Date
WO2018235905A1 true WO2018235905A1 (en) 2018-12-27

Family

ID=64735968

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/023653 WO2018235905A1 (en) 2017-06-22 2018-06-21 Fiber-reinforced resin composition, fiber-reinforced molded body and method for producing same

Country Status (2)

Country Link
JP (1) JP7185215B2 (en)
WO (1) WO2018235905A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019163873A1 (en) * 2018-02-21 2019-08-29 国立大学法人京都大学 Fibrillation aid for hydrophobized cellulose-based fibers, manufacturing method for resin composition using same, and molded article
CN111334031A (en) * 2019-12-19 2020-06-26 合肥圆融新材料有限公司 Modified microfibrillated cellulose reinforced PA6 composite material and preparation method thereof
CN112409781A (en) * 2020-04-15 2021-02-26 张文俊 Anti-aging nylon modified elastomer and preparation method thereof
CN113501982A (en) * 2021-08-02 2021-10-15 中国科学院长春应用化学研究所 Carbon fiber reinforced PEEK composite material and preparation method and application thereof
EP4067031A1 (en) 2021-03-31 2022-10-05 SHPP Global Technologies B.V. Improved performance of carbon nanotube based polymeric materials
WO2024106173A1 (en) * 2022-11-15 2024-05-23 日本製紙株式会社 Resin composite

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7278878B2 (en) * 2018-06-14 2023-05-22 花王株式会社 carbon fiber reinforced composite
JP2020136740A (en) * 2019-02-13 2020-08-31 オンキヨー株式会社 Speaker member
JP7113432B2 (en) * 2019-03-20 2022-08-05 株式会社三五 Method for producing intermediate base material and molded article made of composite material containing thermoplastic resin and reinforcing fiber, and said intermediate base material and said molded article
JP6752935B1 (en) 2019-05-28 2020-09-09 旭化成株式会社 Manufacturing method of resin molded product
JP7422985B2 (en) * 2019-08-21 2024-01-29 Ube株式会社 Fiber reinforced polyamide resin composition
JP7411378B2 (en) * 2019-10-21 2024-01-11 旭化成株式会社 Cellulose resin composition
JP2020193345A (en) * 2020-08-19 2020-12-03 旭化成株式会社 Resin molded body production method
KR102588713B1 (en) * 2021-03-03 2023-10-16 경북대학교 산학협력단 Method of lignin-microfibrillated cellulose masterbatch and lignin-microfibrillated cellulose masterbatch therefrom
JP7533318B2 (en) 2021-03-31 2024-08-14 豊田合成株式会社 Cellulose fiber reinforced polyolefin resin composition and resin molded article
KR102367007B1 (en) * 2021-04-19 2022-02-24 주식회사 셀루펩 A Method of Manufacturing of Functional Composites Additives for life quarantine prevention Using Non-Wood Nanocellulose fibrils
JP7480743B2 (en) 2021-04-30 2024-05-10 王子ホールディングス株式会社 Carbon fiber pre-sheet
JP7499982B2 (en) 2022-02-28 2024-06-14 大王製紙株式会社 Fibrous cellulose, fibrous cellulose composite resin, and method for producing fibrous cellulose

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010024413A (en) * 2008-07-24 2010-02-04 Doshisha Fiber-reinforced composite material and method for producing the same
JP2011127075A (en) * 2009-12-21 2011-06-30 Sumitomo Bakelite Co Ltd Composition and composite
WO2013122209A1 (en) * 2012-02-17 2013-08-22 Dic株式会社 Fiber-reinforced resin composite body, and reinforced matrix resin for fiber-reinforced resin
JP2015048375A (en) * 2013-08-30 2015-03-16 Dic株式会社 Resin composition, fiber-reinforced composite material and molded part

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2623545B1 (en) * 2010-09-29 2017-11-08 DIC Corporation Method for pulverizing cellulose, cellulose nanofiber, masterbatch and resin composition
JP2012201767A (en) * 2011-03-24 2012-10-22 Nissan Motor Co Ltd Resin composition
JP5496435B2 (en) * 2012-03-09 2014-05-21 国立大学法人京都大学 Method for producing resin composition containing modified microfibrillated plant fiber, and resin composition thereof
TWI557282B (en) * 2012-03-29 2016-11-11 迪愛生股份有限公司 Method for manufacturing modified cellulose nanofiber, modified cellulose nanofiber, resin composition and molded article thereof
JP6091589B2 (en) * 2015-03-19 2017-03-08 国立大学法人京都大学 Fiber reinforced resin composition containing chemically modified cellulose nanofiber and thermoplastic resin

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010024413A (en) * 2008-07-24 2010-02-04 Doshisha Fiber-reinforced composite material and method for producing the same
JP2011127075A (en) * 2009-12-21 2011-06-30 Sumitomo Bakelite Co Ltd Composition and composite
WO2013122209A1 (en) * 2012-02-17 2013-08-22 Dic株式会社 Fiber-reinforced resin composite body, and reinforced matrix resin for fiber-reinforced resin
JP2015048375A (en) * 2013-08-30 2015-03-16 Dic株式会社 Resin composition, fiber-reinforced composite material and molded part

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019163873A1 (en) * 2018-02-21 2019-08-29 国立大学法人京都大学 Fibrillation aid for hydrophobized cellulose-based fibers, manufacturing method for resin composition using same, and molded article
CN111334031A (en) * 2019-12-19 2020-06-26 合肥圆融新材料有限公司 Modified microfibrillated cellulose reinforced PA6 composite material and preparation method thereof
CN112409781A (en) * 2020-04-15 2021-02-26 张文俊 Anti-aging nylon modified elastomer and preparation method thereof
EP4067031A1 (en) 2021-03-31 2022-10-05 SHPP Global Technologies B.V. Improved performance of carbon nanotube based polymeric materials
WO2022208436A1 (en) 2021-03-31 2022-10-06 Shpp Global Technologies B.V. Improved performance of carbon nanotube based polymeric materials
CN113501982A (en) * 2021-08-02 2021-10-15 中国科学院长春应用化学研究所 Carbon fiber reinforced PEEK composite material and preparation method and application thereof
CN113501982B (en) * 2021-08-02 2022-05-06 中国科学院长春应用化学研究所 Carbon fiber reinforced PEEK composite material and preparation method and application thereof
WO2024106173A1 (en) * 2022-11-15 2024-05-23 日本製紙株式会社 Resin composite

Also Published As

Publication number Publication date
JP2019006997A (en) 2019-01-17
JP7185215B2 (en) 2022-12-07

Similar Documents

Publication Publication Date Title
JP7185215B2 (en) Fiber-reinforced resin composition, fiber-reinforced molded article, and method for producing the same
Liu et al. Three‐dimensional printing of poly (lactic acid) bio‐based composites with sugarcane bagasse fiber: Effect of printing orientation on tensile performance
JP6091589B2 (en) Fiber reinforced resin composition containing chemically modified cellulose nanofiber and thermoplastic resin
US10858485B2 (en) Master batch containing acylation-modified microfibrillated plant fibers
Paul et al. Effect of green plasticizer on the performance of microcrystalline cellulose/polylactic acid biocomposites
JP5496435B2 (en) Method for producing resin composition containing modified microfibrillated plant fiber, and resin composition thereof
KR101921130B1 (en) Method for pulverizing cellulose, cellulose nanofiber, masterbatch and resin composition
WO2016148233A1 (en) Fiber-reinforced resin composition comprising chemically modified cellulose nanofibers and thermoplastic resin
JP6775160B2 (en) Defibering aid for hydrophobized cellulosic fibers, manufacturing method of resin composition using it, and molded article
JP7385625B2 (en) Composite particles and resin compositions
JP6678698B2 (en) Fine cellulose-containing resin composition
Oguz et al. High-performance green composites of poly (lactic acid) and waste cellulose fibers prepared by high-shear thermokinetic mixing
JP6792265B2 (en) Acetylated pulp composition containing an ethylene glycol derivative, a resin composition containing a microfibrillated acetylated pulp, and a method for producing them.
JP7333510B2 (en) Fiber-reinforced resin composition, method for producing the same, and molded article
WO2021172407A1 (en) Fiber-reinforced resin composition having an improved fibrillation property and method for producing the same, and molded body and fibrillation agent
JP2021084999A (en) Fiber-reinforced polyamide resin composition
JP7024953B2 (en) Thermal pressure molded product of chemically modified lignocellulosic and its manufacturing method
JP6915107B2 (en) Fine cellulose-containing resin composition
Çavdar et al. 2 Hybrid thermoplastic composite reinforced natural fiber and inorganic filler
JP2019026658A (en) Method for producing thermoplastic resin composition
JP2019119756A (en) Transparent molten mixed composition and manufacturing method therefor, and molded body
JP2021169623A (en) Fine cellulose-containing resin composition
Wibowo Sustainable composite materials from renewable resources for automotive applications

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18820502

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18820502

Country of ref document: EP

Kind code of ref document: A1