WO2018235809A1 - Actuator and actuator unit - Google Patents

Actuator and actuator unit Download PDF

Info

Publication number
WO2018235809A1
WO2018235809A1 PCT/JP2018/023267 JP2018023267W WO2018235809A1 WO 2018235809 A1 WO2018235809 A1 WO 2018235809A1 JP 2018023267 W JP2018023267 W JP 2018023267W WO 2018235809 A1 WO2018235809 A1 WO 2018235809A1
Authority
WO
WIPO (PCT)
Prior art keywords
shaft
housing
actuator
hole
axial direction
Prior art date
Application number
PCT/JP2018/023267
Other languages
French (fr)
Japanese (ja)
Inventor
克也 福島
弘樹 丹羽
正志 石井
Original Assignee
Thk株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thk株式会社 filed Critical Thk株式会社
Publication of WO2018235809A1 publication Critical patent/WO2018235809A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q11/00Accessories fitted to machine tools for keeping tools or parts of the machine in good working condition or for cooling work; Safety devices specially combined with or arranged in, or specially adapted for use in connection with, machine tools
    • B23Q11/10Arrangements for cooling or lubricating tools or work
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J15/00Gripping heads and other end effectors
    • B25J15/06Gripping heads and other end effectors with vacuum or magnetic holding means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K41/00Propulsion systems in which a rigid body is moved along a path due to dynamo-electric interaction between the body and a magnetic field travelling along the path
    • H02K41/02Linear motors; Sectional motors

Definitions

  • the present invention relates to an actuator and an actuator unit.
  • Priority is claimed on Japanese Patent Application No. 2017-123427, filed June 23, 2017, the content of which is incorporated herein by reference.
  • Patent Document 1 discloses a spindle device configured to supply a coolant to a tool holder at the tip of a spindle as one of the actuators.
  • This spindle device is a spindle device of a shaft core refueling system.
  • a tool holder is attached to the tip of a spindle rotatably provided on the spindle head.
  • a drawbar is provided on the spindle for clamping and unclamping the tool holder by axial movement.
  • a coolant supply hole capable of supplying coolant to the tool holder is provided in the draw bar.
  • a rotary joint capable of circulating the coolant from the coolant supply device to the coolant supply hole is connected to the rear end of the draw bar.
  • a coolant supply device is connected to the rotary joint via a hose.
  • the present invention provides an actuator and an actuator unit that can connect a shaft and a fluid flow path without using a rotary joint and has less influence on thrust / torque and operation.
  • the actuator has a shaft having a hollow hole at its tip and a housing in which the shaft is slidably inserted.
  • the housing is provided with a fluid channel connection hole and an internal space which is in communication with the fluid channel connection hole and which encloses the outer peripheral surface of the shaft.
  • a communication hole communicating with the hollow hole is provided on the outer peripheral surface of the shaft surrounded by the internal space.
  • a power transmission unit for sliding the shaft relative to the housing may be provided on the axis of the shaft.
  • the housing may be disposed closer to the tip of the shaft than the power transmission unit on the axis of the shaft.
  • the actuator may further include a linear motion motor for sliding the shaft relative to the housing along the axial direction of the shaft.
  • the internal space may have a length greater than or equal to the stroke of the shaft by the linear motion motor in the axial direction of the shaft.
  • the housing includes a cylindrical housing main body in which the fluid flow path connection holes are provided in the radial direction, and a pair of lids closing the both end openings of the housing main body.
  • a seal body interposed between the housing body and the pair of lids, and a sliding ring provided on the seal body and slidably supporting the shaft may be included.
  • a plurality of the actuators according to any one of the first to fourth aspects of the present invention are stacked in the direction orthogonal to the axial direction of the shaft
  • a flow path connection hole is provided in a direction perpendicular to the axial direction of the shaft and the stacking direction of the actuator.
  • the shaft and the fluid flow path can be connected without using a rotary joint, and the impact on thrust and torque and operation can be reduced.
  • FIG. 1 It is an appearance perspective view of an actuator unit in an embodiment of the present invention. It is an internal block diagram of the actuator with which the actuator unit shown in FIG. 1 is provided. It is an appearance perspective view of a shaft housing in an embodiment of the present invention. It is a disassembled perspective view of the shaft housing in the embodiment of the present invention. It is a sectional view along an axial direction of a shaft housing in an embodiment of the present invention.
  • FIG. 1 is an external perspective view of an actuator unit 100 according to an embodiment of the present invention.
  • FIG. 2 is an internal configuration diagram of the actuator 1 provided in the actuator unit 100 shown in FIG.
  • the actuator unit 100 is configured by laminating a plurality of actuators 1.
  • the actuator 1 has an actuator body 2 for moving the shaft 10, and a cartridge unit 3 for supplying air (fluid) to the shaft 10.
  • an XYZ orthogonal coordinate system may be set, and the positional relationship of each member may be described with reference to this XYZ orthogonal coordinate system.
  • the axial direction in which the shaft 10 extends is taken as the Z-axis direction.
  • the stacking direction of the actuator 1 orthogonal to the axial direction of the shaft 10 is taken as a Y-axis direction.
  • a direction orthogonal to the axial direction of the shaft 10 and the stacking direction of the actuator 1 is taken as an X-axis direction.
  • the actuator body 2 is, as shown in FIG. 2, a shaft 10, a rotary motor 20 (power transmission unit) for rotating the shaft 10 about its axis O, and an axial direction along the axis O (X axis direction Connected to the lower end surface of the drive unit housing 40 in the Z-axis direction, and the shaft 10 is connected to the linear motor 30 for linear movement, the drive unit housing 40 for accommodating the drive units such as the rotary motor 20 and the linear motor 30 etc. And a shaft housing 50 (housing) slidably inserted.
  • the shaft 10 extends in the vertical direction (Z-axis direction).
  • the shaft 10 is linearly moved in the vertical direction by the rotary motor 20 and the linear motion motor 30, and is rotated about an axis O extending in the vertical direction.
  • a hollow hole 11 is provided at the tip 10A of the shaft 10.
  • An application device such as a tool or a suction pad is attached to the tip end portion 10A of the shaft 10.
  • a suction pad (not shown) is attached to the distal end portion 10A of the shaft 10, and a so-called pick and place operation of picking up the work W and placing it at a predetermined place is performed.
  • the proximal end 10 B side opposite to the distal end 10 A of the shaft 10 is accommodated in the drive unit housing 40.
  • a spline groove (not shown) extending in the axial direction is provided on the proximal end portion 10B side of the shaft 10 accommodated in the drive unit housing 40.
  • the rotary motor 20 has a spline nut (rotor) (not shown) engaged with the spline groove, and a stator for rotating the spline nut.
  • the stator of the rotary motor 20 is fixed to the drive housing 40.
  • the linear motion motor 30 has a stator 31 fixed to the drive unit housing 40 and a mover 32 moved by the stator 31 in the vertical direction (Z-axis direction).
  • the stator 31 is provided with a plurality of coils (not shown)
  • the mover 32 is provided with a plurality of permanent magnets (not shown).
  • the coils are arranged at a predetermined pitch along the vertical direction, and a plurality of sets of three coils of U, V, and W phases are provided.
  • a three-phase armature current is supplied to these U, V, and W phase coils to generate a moving field that moves linearly, and the mover 32 moves linearly with respect to the stator 31.
  • the linear motion motor 30 and the shaft 10 are connected via a linear motion table 33.
  • the linear movement table 33 is guided in the vertical direction (Z-axis direction) by a plurality of linear movement guiding devices 34.
  • the linear motion guide device 34 has a track rail 34 a fixed to the drive housing 40 and a slider block 34 b assembled to the track rail 34 a.
  • the track rail 34a extends in the vertical direction.
  • the slider block 34b is vertically movable along the track rail 34a.
  • the linear movement table 33 is fixed to the slider block 34 b and is movable in the vertical direction together with the slider block 34 b.
  • the linear movement table 33 is coupled to the mover 32 of the linear movement motor 30 via a coupling arm 35.
  • the linear motion table 33 is coupled to the shaft 10 via the coupling arm 36 (power transmission unit).
  • the connection arm 36 is provided with a bearing (not shown) for rotatably supporting the shaft 10.
  • the base end portion 10B of the shaft 10 is provided with a stopper 37 for preventing the shaft 10 from falling.
  • the drive unit housing 40 has a plate-like rectangular parallelepiped shape extending in the vertical direction. Specifically, in the drive unit housing 40, the dimension in the Z-axis direction is longer than the dimension in the X-axis direction, and the dimension in the X-axis direction is longer than the dimension in the Y-axis direction. That is, the dimension of the drive unit housing 40 in the stacking direction (Y-axis direction) of the actuator 1 is the smallest.
  • a connector 41 including a power supply for driving the rotary motor 20 and the linear motion motor 30, a signal line, and the like is connected to the upper end surface of the drive unit housing 40 in the Z-axis direction. Further, the cartridge housing 60 of the cartridge unit 3 is detachably fixed to the side end surface of the drive unit housing 40 in the X-axis direction.
  • the cartridge housing 60 has a plate-like rectangular parallelepiped shape extending in the vertical direction.
  • the dimension of the cartridge housing 60 in the Z-axis direction is shorter than the dimension of the drive unit housing 40 in the Z-axis direction
  • the dimension in the Z-axis direction is longer than the dimension in the X-axis direction.
  • the axial dimension is longer than the Y-axis dimension. That is, the dimension of the cartridge housing 60 in the stacking direction (Y-axis direction) of the actuator 1 is the smallest.
  • the dimension of the cartridge housing 60 in the Y-axis direction is equal to or less than the dimension of the drive unit housing 40 in the Y-axis direction.
  • the air control mechanism 61 has a plurality of solenoid valves (not shown).
  • the air control mechanism 61 controls suction of air from the tip end portion 10A of the shaft 10 through the hollow hole 11, discharge of air for desorption of the work W, vacuum destruction, and the like.
  • the air control mechanism 61 is connected to the air connector 62 provided on the upper end surface of the cartridge housing 60 in the Z-axis direction, and connected to the air tube connector 63 provided on the lower end surface of the cartridge housing 60 in the Z-axis direction. It is done.
  • the air connector 62 is connected to a pump (not shown) for drawing air.
  • the air tube connector 63 is connected to an air tube connection hole 51 (fluid flow path connection hole) provided in the shaft housing 50 via an air tube 64 (fluid flow path).
  • FIG. 3 is an external perspective view of the shaft housing 50 in the embodiment of the present invention.
  • FIG. 4 is an exploded perspective view of the shaft housing 50 in the embodiment of the present invention.
  • FIG. 5 is an axial sectional view of a shaft housing 50 in an embodiment of the present invention. As shown in FIGS. 3 and 5, the shaft 10 is slidably inserted in the shaft housing 50.
  • the shaft housing 50 is provided with an air tube connection hole 51 and an internal space 52 communicating with the air tube connection hole 51 and surrounding the outer peripheral surface 10 a of the shaft 10.
  • the shaft housing 50 has a housing main body 53, a pair of lids 54, a seal 55, and a sliding ring 56, as shown in FIGS. 4 and 5.
  • the housing main body 53 is a cylindrical body provided with the through hole 53a.
  • An air tube connection hole 51 communicates with the through hole 53a in the radial direction.
  • the air tube connection hole 51 is provided at a central portion in the longitudinal direction (Z-axis direction) of the housing main body 53.
  • the air tube connection hole 51 communicates the inside and the outside of the housing main body 53.
  • the pair of lids 54 closes the openings at both ends of the housing body 53 to form an internal space 52.
  • An annular stepped groove 53 b having a diameter larger than that of the through hole 53 a is provided at both end openings of the housing main body 53.
  • the lid 54 is provided with an annular fitting protrusion 54b that fits in the stepped groove 53b.
  • a through hole 54a through which the shaft 10 is inserted is provided at a central portion of the lid 54 so as to penetrate the fitting protrusion 54b.
  • the pair of lids 54 is fitted to the openings at both ends of the housing main body 53 by the fitting projections 54 b and is fixed to the housing main body 53 by bolts or the like (not shown).
  • the seal body 55 is interposed between the housing body 53 and the pair of lids 54, and seals the gap between the two in an airtight manner.
  • the seal body 55 of the present embodiment is an annular O-ring.
  • the seal body 55 is disposed in the stepped groove 53 b of the housing main body 53, and is squeezed in the axial direction (Z-axis direction) by the fitting projection 54 b of the lid 54.
  • a sliding ring 56 is provided on the inner diameter side of the seal body 55.
  • the sliding ring 56 slidably supports the shaft 10.
  • the sliding ring 56 is pressed against the outer peripheral surface 10 a of the shaft 10 by the seal body 55 being crushed in the axial direction.
  • air leakage from the gap between the outer peripheral surface 10 a of the shaft 10 and the sliding ring 56 is suppressed.
  • a communication hole 12 communicating with the hollow hole 11 is provided on the outer peripheral surface 10 a of the shaft 10 surrounded by the internal space 52 of the shaft housing 50.
  • the communication holes 12 of the present embodiment pass through the shaft 10 in the cross direction in the radial direction, and four open in the outer peripheral surface 10 a of the shaft 10.
  • the number of the communication holes 12 may be one.
  • the hollow hole 11 does not penetrate the shaft 10 in the axial direction, but extends in the axial direction from the tip end portion 10A of the shaft 10 to a position where the communication hole 12 is provided.
  • the hollow hole 11 communicates with the internal space 52 through the communication hole 12 and further communicates with the air tube connection hole 51 through the internal space 52.
  • the internal space 52 of the shaft housing 50 is a cylindrical space one size larger than the outer diameter of the shaft 10. That is, in the internal space 52 of the housing main body 53, a gap is formed between the through hole 53 a of the housing main body 53 and the outer peripheral surface 10 a of the shaft 10.
  • the internal space 52 has a length L equal to or greater than the stroke S of the shaft 10 by the linear motion motor 30 (see FIG. 2) in the axial direction of the shaft 10. That is, in the entire range of the stroke S of the shaft 10, the communication hole 12 and the internal space 52 communicate with each other.
  • the stroke S of the shaft 10 can be set by a stopper (not shown) provided inside the drive unit housing 40.
  • the shaft housing 50 having the above configuration is disposed closer to the tip end portion 10A of the shaft 10 (closer to the work W) than the drive transmission portion provided on the axis O of the shaft 10.
  • the drive transmission portion transmits a force to slide the shaft 10 relative to the shaft housing 50 to the shaft 10.
  • the rotary motor 20 and the connection arm 36 correspond to a drive transmission unit.
  • the shaft housing 50 is attached to the drive housing 40 such that the air tube connection hole 51 extends in the X-axis direction orthogonal to the axial direction of the shaft 10 and the stacking direction of the actuators.
  • the air tube connection hole 51 is opened in the same direction as the mounting and demounting direction of the cartridge portion 3 and is arranged in the direction that does not interfere with the stacking direction of the actuator 1 shown in FIG. Thereby, the connection between the air tube 64 and the air tube connection hole 51 is facilitated.
  • the air control mechanism 61 opens a solenoid valve in communication with the pump and pulls the air in the internal space 52 of the shaft housing 50 through the air tube 64 to generate a negative pressure in the hollow hole 11 provided in the shaft 10 .
  • the shaft housing 50 is provided with an air tube connection hole 51 to which the air tube 64 is connected, and an internal space 52 which communicates with the air tube connection hole 51 and surrounds the outer peripheral surface 10 a of the shaft 10.
  • a communication hole 12 communicating with the hollow hole 11 is provided on the outer peripheral surface 10 a of the shaft 10 surrounded by the internal space 52.
  • the air tube 64 can be connected to the rotating shaft 10 to generate a negative pressure without using a rotary joint. This eliminates the need to select the rotary motor 20 having a large torque in order to move the rotary joint. Further, since it is not necessary to use a rotary joint having a large number of parts, the frequency of maintenance of the actuator 1 can be reduced.
  • the internal space 52 of the shaft housing 50 has a length L equal to or greater than the stroke S of the shaft 10 by the linear motor 30 (see FIG. 2) in the axial direction of the shaft 10. have.
  • the communication between the internal space 52 and the communication hole 12 is maintained.
  • negative pressure can be generated in the hollow hole 11 provided at the tip end portion 10A of the shaft 10.
  • the shaft housing 50 is fixed to the drive housing 40, the connection state with the air tube 64 does not change. For this reason, for example, even if the air is discharged or vacuum destroyed from the hollow hole 11 in order to desorb the picked-up work W, the influence can be prevented from being transmitted to the shaft 10.
  • the hardness of the air tube 64 changes due to the air supply and discharge of air.
  • the hardness of the air tube 64 is the resistance in the axial direction of the shaft 10. Therefore, when the linear motion motor 30 with a small thrust is used, the hardness of the air tube 64 may make it impossible for the mover 32 to return to the origin.
  • the hardness of the air tube 64 may make it impossible for the mover 32 to return to the origin.
  • the hardness of the air tube 64 even if the hardness of the air tube 64 changes, the influence is not transmitted to the shaft 10. For this reason, it is not necessary to select the linear motion motor 30 having a large thrust, and it becomes possible to transport the small and lightweight work W at high speed.
  • the shaft housing 50 is disposed closer to the tip 10 A of the shaft 10 than the power transmission unit (the rotary motor 20 and the connection arm 36) on the axis O of the shaft 10.
  • the tact time for picking and placing the work W can be shortened. That is, as described above, in the configuration in which the hollow hole 11 is provided to penetrate the shaft 10 in the axial direction and the air tube 64 is connected to the base end 10B, it is necessary to draw air over the entire length of the shaft 10
  • air may be drawn from the tip end portion 10A of the shaft 10 to the communication hole 12, and the distance to the air control mechanism 61 is also shortened, so that negative pressure can be generated quickly. .
  • the shaft housing 50 is configured of a cylindrical housing main body 53, a pair of two bodies 54, and a seal body 55.
  • the pair of lids 54 is attached so as to close the openings at both ends of the housing body 53.
  • the seal body 55 is sandwiched between the housing body 53 and the pair of lids 54.
  • the sealing body 55 is provided with a sliding ring 56.
  • the sliding ring 56 slidably supports the shaft 10. As described above, by sandwiching the seal body 55 between the housing main body 53 and the pair of lids 54, assembly becomes easy. Further, for example, it is not necessary to process an annular groove for disposing the seal body 55 in the through hole 53 a of the housing main body 53.
  • the stepped groove 53b is processed in the opening at both ends of the housing main body 53, and the groove for arranging the seal body 55 is formed using the lid 54. Therefore, the processing is easy and accurate. Allows dimensional control. As a result, the management of the crush margin of the seal body 55 is facilitated, and the management of the sliding resistance to the shaft 10 by the sliding ring 56 is facilitated.
  • the actuator 1 has the shaft 10 provided with the hollow hole 11 at the tip end portion 10A, and the shaft housing 50 in which the shaft 10 is slidably inserted.
  • the shaft housing 50 is provided with an air tube connection hole 51 and an internal space 52 communicating with the air tube connection hole 51 and surrounding the outer peripheral surface 10 a of the shaft 10.
  • a communication hole 12 communicating with the hollow hole 11 is provided on the outer peripheral surface 10 a of the shaft 10 surrounded by the internal space 52.
  • the actuator 1 may be configured to include only the rotary motor 20. It may be the composition which has only.
  • the actuator 1 when the actuator 1 is configured to have only the rotary motor 20, the length L of the internal space 52 shown in FIG. 5 may be shortened to a length (area) that can face the communication hole 12.
  • the rotation motor 20 may be configured to rotate the shaft 10 via the belt and the pulley.
  • a pulley fixed to the shaft 10 is a power transmission unit.
  • the present invention is applied to the actuator 1 that picks and places the work W.
  • the actuator 1 that picks and places the work W.
  • the present invention can be applied to the like.
  • the shaft and the fluid flow path can be connected without using a rotary joint, and the impact on thrust and torque and operation can be reduced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • Robotics (AREA)
  • Manipulator (AREA)
  • Linear Motors (AREA)
  • Auxiliary Devices For Machine Tools (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)

Abstract

This actuator includes a shaft (10) having a distal end portion (10A) with a hollow hole (11) provided therein, and a shaft housing (50) through which the shaft (10) is slidably inserted. An air tube connecting hole (51) and an internal space (52) which communicates with the air tube connecting hole (51) and surrounds an outer circumferential surface (10a) of the shaft (10) are provided in the shaft housing (50). A through-hole (12) which communicates with the hollow hole (11) is provided in the outer circumferential surface (10a) of the shaft (10) surrounded by the internal space (52).

Description

アクチュエータ及びアクチュエータユニットActuator and actuator unit
 本発明は、アクチュエータ及びアクチュエータユニットに関するものである。
 本願は、2017年6月23日に、日本に出願された特願2017-123427号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to an actuator and an actuator unit.
Priority is claimed on Japanese Patent Application No. 2017-123427, filed June 23, 2017, the content of which is incorporated herein by reference.
 下記特許文献1には、アクチュエータの一つとして、主軸先端の工具ホルダにクーラントを供給するように構成した主軸装置が開示されている。この主軸装置は、軸芯給油方式の主軸装置である。この主軸装置では、主軸ヘッドに回転可能に設けられた主軸の先端に工具ホルダが装着される。軸方向移動により工具ホルダをクランプ、アンクランプするドローバーが主軸に設けられる。工具ホルダにクーラントを供給可能なクーラント供給孔がドローバーに設けられる。クーラント供給孔にクーラント供給装置からのクーラントを流通可能なロータリージョイントが、ドローバー後端に接続される。ロータリージョイントにホースを介してクーラント供給装置が接続される。 Patent Document 1 below discloses a spindle device configured to supply a coolant to a tool holder at the tip of a spindle as one of the actuators. This spindle device is a spindle device of a shaft core refueling system. In this spindle device, a tool holder is attached to the tip of a spindle rotatably provided on the spindle head. A drawbar is provided on the spindle for clamping and unclamping the tool holder by axial movement. A coolant supply hole capable of supplying coolant to the tool holder is provided in the draw bar. A rotary joint capable of circulating the coolant from the coolant supply device to the coolant supply hole is connected to the rear end of the draw bar. A coolant supply device is connected to the rotary joint via a hose.
特開2011-45980号公報JP, 2011-45980, A
 上記従来技術のように、回転するシャフト(主軸)に対してホース(流体流路)を接続する場合には、ロータリージョイントを取り付ける必要がある。しかしながら、ロータリージョイントを取り付けると、シャフトだけでなくロータリージョイントを動かすために、推力・トルクが大きいモータが必要になる。また、ロータリージョイントに接続されたホースに流体が供給され、ホースが硬くなると、シャフトに衝撃や抵抗が加わり、アクチュエータの動作に影響が出る可能性がある。更に、ロータリージョイントは部品数が多く壊れやすいため、メンテナンスの頻度が高くなる可能性がある。 When connecting a hose (fluid flow path) to a rotating shaft (spindle) as in the prior art, it is necessary to attach a rotary joint. However, when the rotary joint is attached, a motor with high thrust and torque is required to move the rotary joint as well as the shaft. Also, if the hose connected to the rotary joint is supplied with fluid and the hose becomes hard, shock and resistance may be applied to the shaft, which may affect the operation of the actuator. Furthermore, since the rotary joint has a large number of parts and is fragile, the frequency of maintenance may be high.
 本発明は、ロータリージョイントを使用せずにシャフトと流体流路とを接続でき、推力・トルク及び動作に対する影響が少ないアクチュエータ及びアクチュエータユニットを提供する。 The present invention provides an actuator and an actuator unit that can connect a shaft and a fluid flow path without using a rotary joint and has less influence on thrust / torque and operation.
 本発明の第一の態様によれば、アクチュエータは、先端部に中空孔が設けられたシャフトと、前記シャフトが摺動可能に挿通されたハウジングと、を有する。前記ハウジングには、流体流路接続孔と、前記流体流路接続孔と連通して前記シャフトの外周面を囲う内部空間と、が設けられる。前記内部空間に囲まれた前記シャフトの外周面には、前記中空孔と連通する連通孔が設けられている。 According to the first aspect of the present invention, the actuator has a shaft having a hollow hole at its tip and a housing in which the shaft is slidably inserted. The housing is provided with a fluid channel connection hole and an internal space which is in communication with the fluid channel connection hole and which encloses the outer peripheral surface of the shaft. A communication hole communicating with the hollow hole is provided on the outer peripheral surface of the shaft surrounded by the internal space.
 本発明の第二の態様によれば、前記シャフトの軸線上には、前記ハウジングに対し前記シャフトを摺動させる動力伝達部が設けられていてもよい。前記ハウジングは、前記シャフトの軸線上において、前記動力伝達部よりも前記シャフトの先端部近くに配置されていてもよい。 According to the second aspect of the present invention, a power transmission unit for sliding the shaft relative to the housing may be provided on the axis of the shaft. The housing may be disposed closer to the tip of the shaft than the power transmission unit on the axis of the shaft.
 本発明の第三の態様によれば、アクチュエータは、前記シャフトの軸方向に沿って、前記ハウジングに対し前記シャフトを摺動させる直動モータを更に有していてもよい。前記内部空間は、前記シャフトの軸方向において、前記直動モータによる前記シャフトのストローク以上の長さを有していてもよい。 According to the third aspect of the present invention, the actuator may further include a linear motion motor for sliding the shaft relative to the housing along the axial direction of the shaft. The internal space may have a length greater than or equal to the stroke of the shaft by the linear motion motor in the axial direction of the shaft.
 本発明の第四の態様によれば、前記ハウジングは、前記流体流路接続孔が径方向に設けられた筒状のハウジング本体と、前記ハウジング本体の両端開口部を閉塞する一対の蓋体と、前記ハウジング本体と一対の蓋体との間に介在するシール体と、前記シール体に設けられ、前記シャフトを摺動可能に支持する摺動リングと、を有していてもよい。 According to the fourth aspect of the present invention, the housing includes a cylindrical housing main body in which the fluid flow path connection holes are provided in the radial direction, and a pair of lids closing the both end openings of the housing main body. A seal body interposed between the housing body and the pair of lids, and a sliding ring provided on the seal body and slidably supporting the shaft may be included.
 本発明の第五の態様によれば、アクチュエータユニットは、本発明の第一から第四の態様のいずれかに記載のアクチュエータが、前記シャフトの軸方向と直交する方向に複数積層され、前記流体流路接続孔が、前記シャフトの軸方向及び前記アクチュエータの積層方向と直交する方向に設けられている。 According to a fifth aspect of the present invention, in the actuator unit, a plurality of the actuators according to any one of the first to fourth aspects of the present invention are stacked in the direction orthogonal to the axial direction of the shaft A flow path connection hole is provided in a direction perpendicular to the axial direction of the shaft and the stacking direction of the actuator.
 上記したアクチュエータ及びアクチュエータユニットによれば、ロータリージョイントを使用せずにシャフトと流体流路とを接続でき、推力・トルク及び動作に対する影響が少なくなる。 According to the above-described actuator and actuator unit, the shaft and the fluid flow path can be connected without using a rotary joint, and the impact on thrust and torque and operation can be reduced.
本発明の実施形態におけるアクチュエータユニットの外観斜視図である。It is an appearance perspective view of an actuator unit in an embodiment of the present invention. 図1に示すアクチュエータユニットが備えるアクチュエータの内部構成図である。It is an internal block diagram of the actuator with which the actuator unit shown in FIG. 1 is provided. 本発明の実施形態におけるシャフトハウジングの外観斜視図である。It is an appearance perspective view of a shaft housing in an embodiment of the present invention. 本発明の実施形態におけるシャフトハウジングの分解斜視図である。It is a disassembled perspective view of the shaft housing in the embodiment of the present invention. 本発明の実施形態におけるシャフトハウジングの軸方向に沿った断面図である。It is a sectional view along an axial direction of a shaft housing in an embodiment of the present invention.
 以下、本発明の実施形態について図面を参照して説明する。以下に示す実施形態は、発明の趣旨をより良く理解させるために、例を挙げて説明するものであり、特に指定のない限り、本発明を限定するものではない。また、以下の説明に用いる図面は、本発明の特徴を分かりやすくするために、便宜上、要部となる部分を拡大している場合があり、各構成要素の寸法比率などが実際と同じであるとは限らない。また、本発明の特徴を分かりやすくするために、便宜上、省略した部分がある。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. The embodiments shown below are described by way of example in order to better understand the spirit of the invention, and do not limit the present invention unless otherwise specified. Further, in the drawings used for the following description, for the sake of easy understanding of the features of the present invention, the main parts may be enlarged for convenience, and the dimensional ratio of each component is the same as the actual Not necessarily. Moreover, in order to make the feature of the present invention intelligible, some parts are omitted for convenience.
 図1は、本発明の実施形態におけるアクチュエータユニット100の外観斜視図である。図2は、図1に示すアクチュエータユニット100が備えるアクチュエータ1の内部構成図である。
 図1に示すように、アクチュエータユニット100は、複数のアクチュエータ1が積層されて構成されている。アクチュエータ1は、シャフト10を移動させるアクチュエータ本体2と、シャフト10にエア(流体)を供給するカートリッジ部3と、を有する。
FIG. 1 is an external perspective view of an actuator unit 100 according to an embodiment of the present invention. FIG. 2 is an internal configuration diagram of the actuator 1 provided in the actuator unit 100 shown in FIG.
As shown in FIG. 1, the actuator unit 100 is configured by laminating a plurality of actuators 1. The actuator 1 has an actuator body 2 for moving the shaft 10, and a cartridge unit 3 for supplying air (fluid) to the shaft 10.
 なお、以下の説明においては、XYZ直交座標系を設定し、このXYZ直交座標系を参照しつつ各部材の位置関係について説明することがある。シャフト10が延びる軸方向をZ軸方向とする。シャフト10の軸方向と直交したアクチュエータ1の積層方向をY軸方向とする。シャフト10の軸方向及びアクチュエータ1の積層方向とそれぞれ直交する方向をX軸方向とする。 In the following description, an XYZ orthogonal coordinate system may be set, and the positional relationship of each member may be described with reference to this XYZ orthogonal coordinate system. The axial direction in which the shaft 10 extends is taken as the Z-axis direction. The stacking direction of the actuator 1 orthogonal to the axial direction of the shaft 10 is taken as a Y-axis direction. A direction orthogonal to the axial direction of the shaft 10 and the stacking direction of the actuator 1 is taken as an X-axis direction.
 アクチュエータ本体2は、図2に示すように、シャフト10と、シャフト10をその軸線O回りに回転させる回転モータ20(動力伝達部)と、シャフト10を軸線Oに沿った軸方向(X軸方向)に直動させる直動モータ30と、回転モータ20及び直動モータ30等の駆動部を収容する駆動部ハウジング40と、駆動部ハウジング40のZ軸方向の下端面に接続され、シャフト10が摺動可能に挿通されたシャフトハウジング50(ハウジング)と、を有する。 The actuator body 2 is, as shown in FIG. 2, a shaft 10, a rotary motor 20 (power transmission unit) for rotating the shaft 10 about its axis O, and an axial direction along the axis O (X axis direction Connected to the lower end surface of the drive unit housing 40 in the Z-axis direction, and the shaft 10 is connected to the linear motor 30 for linear movement, the drive unit housing 40 for accommodating the drive units such as the rotary motor 20 and the linear motor 30 etc. And a shaft housing 50 (housing) slidably inserted.
 シャフト10は、鉛直方向(Z軸方向)に延びている。シャフト10は、回転モータ20及び直動モータ30によって、鉛直方向に直動すると共に、鉛直方向に延びる軸線O回りに回転する。シャフト10の先端部10Aには、中空孔11が設けられている。このシャフト10の先端部10Aには、工具や吸着パッド等の図示しないアプリケーション装置が取り付けられる。本実施形態では、シャフト10の先端部10Aに図示しない吸着パッドが取り付けられ、ワークWをピックアップし、所定の場所に載置する、所謂ピック&プレイス動作を行うように構成されている。 The shaft 10 extends in the vertical direction (Z-axis direction). The shaft 10 is linearly moved in the vertical direction by the rotary motor 20 and the linear motion motor 30, and is rotated about an axis O extending in the vertical direction. A hollow hole 11 is provided at the tip 10A of the shaft 10. An application device (not shown) such as a tool or a suction pad is attached to the tip end portion 10A of the shaft 10. In the present embodiment, a suction pad (not shown) is attached to the distal end portion 10A of the shaft 10, and a so-called pick and place operation of picking up the work W and placing it at a predetermined place is performed.
 シャフト10の先端部10Aと反対の基端部10B側は、駆動部ハウジング40に収容されている。駆動部ハウジング40に収容されたシャフト10の基端部10B側には、例えば、軸方向に延びる図示しないスプライン溝が設けられている。回転モータ20は、当該スプライン溝に係合する図示しないスプラインナット(回転子)と、当該スプラインナットを回転させる固定子とを有する。回転モータ20の固定子は、駆動部ハウジング40に固定される。シャフト10のスプライン軸に係合したスプラインナット(回転子)を回転させることで、シャフト10の軸方向の移動を許容しつつ、シャフト10を軸線O回りに回転させることができる。 The proximal end 10 B side opposite to the distal end 10 A of the shaft 10 is accommodated in the drive unit housing 40. On the proximal end portion 10B side of the shaft 10 accommodated in the drive unit housing 40, for example, a spline groove (not shown) extending in the axial direction is provided. The rotary motor 20 has a spline nut (rotor) (not shown) engaged with the spline groove, and a stator for rotating the spline nut. The stator of the rotary motor 20 is fixed to the drive housing 40. By rotating the spline nut (rotor) engaged with the spline shaft of the shaft 10, the shaft 10 can be rotated about the axis O while allowing axial movement of the shaft 10.
 直動モータ30は、駆動部ハウジング40に固定された固定子31と、固定子31によって鉛直方向(Z軸方向)に移動する可動子32と、を有する。例えば、固定子31には図示しない複数のコイルが設けられ、可動子32には図示しない複数の永久磁石が設けられている。コイルは、鉛直方向に沿って所定ピッチで配置され、且つ、U、V、W相の3つのコイルを一組として複数組設けられている。本実施形態では、これらU、V、W相のコイルに三相電機子電流を流すことによって直線的に移動する移動界磁を発生させ、固定子31に対して可動子32を直線的に移動させる。 The linear motion motor 30 has a stator 31 fixed to the drive unit housing 40 and a mover 32 moved by the stator 31 in the vertical direction (Z-axis direction). For example, the stator 31 is provided with a plurality of coils (not shown), and the mover 32 is provided with a plurality of permanent magnets (not shown). The coils are arranged at a predetermined pitch along the vertical direction, and a plurality of sets of three coils of U, V, and W phases are provided. In this embodiment, a three-phase armature current is supplied to these U, V, and W phase coils to generate a moving field that moves linearly, and the mover 32 moves linearly with respect to the stator 31. Let
 直動モータ30とシャフト10は、直動テーブル33を介して連結されている。直動テーブル33は、複数の直動案内装置34によって鉛直方向(Z軸方向)に案内されている。直動案内装置34は、駆動部ハウジング40に固定された軌道レール34aと、軌道レール34aに組み付けられたスライダブロック34bと、を有する。軌道レール34aは、鉛直方向に延びている。スライダブロック34bは、軌道レール34aに沿って鉛直方向に移動可能である。 The linear motion motor 30 and the shaft 10 are connected via a linear motion table 33. The linear movement table 33 is guided in the vertical direction (Z-axis direction) by a plurality of linear movement guiding devices 34. The linear motion guide device 34 has a track rail 34 a fixed to the drive housing 40 and a slider block 34 b assembled to the track rail 34 a. The track rail 34a extends in the vertical direction. The slider block 34b is vertically movable along the track rail 34a.
 直動テーブル33は、スライダブロック34bに固定され、スライダブロック34bと共に鉛直方向に移動可能である。この直動テーブル33は、直動モータ30の可動子32と連結アーム35を介して連結されている。また、直動テーブル33は、シャフト10と連結アーム36(動力伝達部)を介して連結されている。なお、連結アーム36には、シャフト10を回転可能に支持する図示しない軸受が設けられている。シャフト10の基端部10Bには、シャフト10の落下を防止する抜け止め37が設けられている。 The linear movement table 33 is fixed to the slider block 34 b and is movable in the vertical direction together with the slider block 34 b. The linear movement table 33 is coupled to the mover 32 of the linear movement motor 30 via a coupling arm 35. In addition, the linear motion table 33 is coupled to the shaft 10 via the coupling arm 36 (power transmission unit). The connection arm 36 is provided with a bearing (not shown) for rotatably supporting the shaft 10. The base end portion 10B of the shaft 10 is provided with a stopper 37 for preventing the shaft 10 from falling.
 駆動部ハウジング40は、図1に示すように、鉛直方向に延びる板状の直方体形状を有する。具体的に、駆動部ハウジング40は、Z軸方向の寸法がX軸方向の寸法よりも長く、X軸方向の寸法がY軸方向の寸法よりも長い。すなわち、駆動部ハウジング40は、アクチュエータ1の積層方向(Y軸方向)における寸法が最も小さくなっている。この駆動部ハウジング40のZ軸方向の上端面には、回転モータ20や直動モータ30を駆動させる電源や信号線等を含んだコネクタ41が接続されている。また、この駆動部ハウジング40のX軸方向の側端面には、カートリッジ部3のカートリッジハウジング60が着脱可能に固定されている。 As shown in FIG. 1, the drive unit housing 40 has a plate-like rectangular parallelepiped shape extending in the vertical direction. Specifically, in the drive unit housing 40, the dimension in the Z-axis direction is longer than the dimension in the X-axis direction, and the dimension in the X-axis direction is longer than the dimension in the Y-axis direction. That is, the dimension of the drive unit housing 40 in the stacking direction (Y-axis direction) of the actuator 1 is the smallest. A connector 41 including a power supply for driving the rotary motor 20 and the linear motion motor 30, a signal line, and the like is connected to the upper end surface of the drive unit housing 40 in the Z-axis direction. Further, the cartridge housing 60 of the cartridge unit 3 is detachably fixed to the side end surface of the drive unit housing 40 in the X-axis direction.
 カートリッジハウジング60は、駆動部ハウジング40と同様に、鉛直方向に延びる板状の直方体形状を有する。カートリッジハウジング60は、Z軸方向の寸法が駆動部ハウジング40のZ軸方向の寸法よりも短いが、駆動部ハウジング40と同様に、Z軸方向の寸法がX軸方向の寸法よりも長く、X軸方向の寸法がY軸方向の寸法よりも長い。すなわち、カートリッジハウジング60は、アクチュエータ1の積層方向(Y軸方向)における寸法が最も小さくなっている。このカートリッジハウジング60のY軸方向の寸法は、駆動部ハウジング40のY軸方向の寸法以下とされている。 Similar to the drive unit housing 40, the cartridge housing 60 has a plate-like rectangular parallelepiped shape extending in the vertical direction. Although the dimension of the cartridge housing 60 in the Z-axis direction is shorter than the dimension of the drive unit housing 40 in the Z-axis direction, the dimension in the Z-axis direction is longer than the dimension in the X-axis direction. The axial dimension is longer than the Y-axis dimension. That is, the dimension of the cartridge housing 60 in the stacking direction (Y-axis direction) of the actuator 1 is the smallest. The dimension of the cartridge housing 60 in the Y-axis direction is equal to or less than the dimension of the drive unit housing 40 in the Y-axis direction.
 カートリッジハウジング60の内部には、図2に示すように、エア制御機構61が収容されている。エア制御機構61は、図示しない複数の電磁弁を有する。エア制御機構61は、シャフト10の先端部10Aからの中空孔11を介したエアの吸引、また、ワークWの脱着のためのエアの吐出または真空破壊等を制御する。エア制御機構61は、カートリッジハウジング60のZ軸方向の上端面に設けられたエア用コネクタ62と接続されると共に、カートリッジハウジング60のZ軸方向の下端面に設けられたエアチューブコネクタ63と接続されている。エア用コネクタ62は、エアを吸引する図示しないポンプと接続されている。エアチューブコネクタ63は、エアチューブ64(流体流路)を介してシャフトハウジング50に設けられたエアチューブ接続孔51(流体流路接続孔)と接続されている。 Inside the cartridge housing 60, as shown in FIG. 2, an air control mechanism 61 is accommodated. The air control mechanism 61 has a plurality of solenoid valves (not shown). The air control mechanism 61 controls suction of air from the tip end portion 10A of the shaft 10 through the hollow hole 11, discharge of air for desorption of the work W, vacuum destruction, and the like. The air control mechanism 61 is connected to the air connector 62 provided on the upper end surface of the cartridge housing 60 in the Z-axis direction, and connected to the air tube connector 63 provided on the lower end surface of the cartridge housing 60 in the Z-axis direction. It is done. The air connector 62 is connected to a pump (not shown) for drawing air. The air tube connector 63 is connected to an air tube connection hole 51 (fluid flow path connection hole) provided in the shaft housing 50 via an air tube 64 (fluid flow path).
 図3は、本発明の実施形態におけるシャフトハウジング50の外観斜視図である。図4は、本発明の実施形態におけるシャフトハウジング50の分解斜視図である。図5は、本発明の実施形態におけるシャフトハウジング50の軸方向に沿った断面図である。
 図3及び図5に示すように、シャフトハウジング50には、シャフト10が摺動可能に挿通されている。このシャフトハウジング50には、エアチューブ接続孔51と、エアチューブ接続孔51と連通してシャフト10の外周面10aを囲う内部空間52と、が設けられている。
FIG. 3 is an external perspective view of the shaft housing 50 in the embodiment of the present invention. FIG. 4 is an exploded perspective view of the shaft housing 50 in the embodiment of the present invention. FIG. 5 is an axial sectional view of a shaft housing 50 in an embodiment of the present invention.
As shown in FIGS. 3 and 5, the shaft 10 is slidably inserted in the shaft housing 50. The shaft housing 50 is provided with an air tube connection hole 51 and an internal space 52 communicating with the air tube connection hole 51 and surrounding the outer peripheral surface 10 a of the shaft 10.
 シャフトハウジング50は、図4及び図5に示すように、ハウジング本体53と、一対の蓋体54と、シール体55と、摺動リング56と、を有する。ハウジング本体53は、貫通孔53aが設けられた筒状体である。この貫通孔53aには、その径方向においてエアチューブ接続孔51が連通している。エアチューブ接続孔51は、ハウジング本体53の長手方向(Z軸方向)における中央部に設けられている。エアチューブ接続孔51は、ハウジング本体53の内外を連通させている。 The shaft housing 50 has a housing main body 53, a pair of lids 54, a seal 55, and a sliding ring 56, as shown in FIGS. 4 and 5. The housing main body 53 is a cylindrical body provided with the through hole 53a. An air tube connection hole 51 communicates with the through hole 53a in the radial direction. The air tube connection hole 51 is provided at a central portion in the longitudinal direction (Z-axis direction) of the housing main body 53. The air tube connection hole 51 communicates the inside and the outside of the housing main body 53.
 一対の蓋体54は、ハウジング本体53の両端開口部を閉塞し、内部空間52を形成する。ハウジング本体53の両端開口部には、貫通孔53aよりも径が大きい円環状の段付き溝53bが設けられている。一方、蓋体54には、段付き溝53bに嵌合する円環状の嵌合突起54bが設けられている。この蓋体54の中央部には、シャフト10が挿通される貫通孔54aが、嵌合突起54bを貫通して設けられている。一対の蓋体54は、嵌合突起54bによってハウジング本体53の両端開口部に嵌合し、また、図示しないボルト等によってハウジング本体53に対し固定されている。 The pair of lids 54 closes the openings at both ends of the housing body 53 to form an internal space 52. An annular stepped groove 53 b having a diameter larger than that of the through hole 53 a is provided at both end openings of the housing main body 53. On the other hand, the lid 54 is provided with an annular fitting protrusion 54b that fits in the stepped groove 53b. A through hole 54a through which the shaft 10 is inserted is provided at a central portion of the lid 54 so as to penetrate the fitting protrusion 54b. The pair of lids 54 is fitted to the openings at both ends of the housing main body 53 by the fitting projections 54 b and is fixed to the housing main body 53 by bolts or the like (not shown).
 シール体55は、ハウジング本体53と一対の蓋体54との間に介在し、両者の隙間を気密にシールする。本実施形態のシール体55は、円環状のOリングである。シール体55、ハウジング本体53の段付き溝53bに配置され、蓋体54の嵌合突起54bによって軸方向(Z軸方向)に押しつぶされる。このシール体55の内径側には、摺動リング56が設けられている。摺動リング56は、シャフト10を摺動可能に支持する。摺動リング56は、シール体55が軸方向に押しつぶされることによって、シャフト10の外周面10aに押圧される。これによって、シャフト10の外周面10aと摺動リング56との隙間からの空気漏れが抑制される。 The seal body 55 is interposed between the housing body 53 and the pair of lids 54, and seals the gap between the two in an airtight manner. The seal body 55 of the present embodiment is an annular O-ring. The seal body 55 is disposed in the stepped groove 53 b of the housing main body 53, and is squeezed in the axial direction (Z-axis direction) by the fitting projection 54 b of the lid 54. A sliding ring 56 is provided on the inner diameter side of the seal body 55. The sliding ring 56 slidably supports the shaft 10. The sliding ring 56 is pressed against the outer peripheral surface 10 a of the shaft 10 by the seal body 55 being crushed in the axial direction. Thus, air leakage from the gap between the outer peripheral surface 10 a of the shaft 10 and the sliding ring 56 is suppressed.
 図5に示すように、シャフトハウジング50の内部空間52に囲まれたシャフト10の外周面10aには、中空孔11と連通する連通孔12が設けられている。本実施形態の連通孔12は、シャフト10を径方向に十字に貫通しており、シャフト10の外周面10aに4つ開口している。なお、連通孔12は、1つであってもよい。中空孔11は、シャフト10を軸方向に貫通しておらず、シャフト10の先端部10Aから連通孔12が設けられた位置まで軸方向に延在している。これによって、中空孔11が連通孔12を介して内部空間52に連通し、さらに内部空間52を介してエアチューブ接続孔51と連通する。 As shown in FIG. 5, a communication hole 12 communicating with the hollow hole 11 is provided on the outer peripheral surface 10 a of the shaft 10 surrounded by the internal space 52 of the shaft housing 50. The communication holes 12 of the present embodiment pass through the shaft 10 in the cross direction in the radial direction, and four open in the outer peripheral surface 10 a of the shaft 10. The number of the communication holes 12 may be one. The hollow hole 11 does not penetrate the shaft 10 in the axial direction, but extends in the axial direction from the tip end portion 10A of the shaft 10 to a position where the communication hole 12 is provided. Thus, the hollow hole 11 communicates with the internal space 52 through the communication hole 12 and further communicates with the air tube connection hole 51 through the internal space 52.
 シャフトハウジング50の内部空間52は、シャフト10の外径よりも一回り大きな円筒状の空間である。すなわち、ハウジング本体53の内部空間52において、ハウジング本体53の貫通孔53aとシャフト10の外周面10aとの間には、隙間が形成されている。この内部空間52は、シャフト10の軸方向において、直動モータ30(図2参照)によるシャフト10のストロークS以上の長さLを有する。すなわち、シャフト10のストロークSの全範囲において、連通孔12と内部空間52とが連通する。なお、シャフト10のストロークSは、駆動部ハウジング40の内部に設けられた図示しないストッパーによって設定することができる。 The internal space 52 of the shaft housing 50 is a cylindrical space one size larger than the outer diameter of the shaft 10. That is, in the internal space 52 of the housing main body 53, a gap is formed between the through hole 53 a of the housing main body 53 and the outer peripheral surface 10 a of the shaft 10. The internal space 52 has a length L equal to or greater than the stroke S of the shaft 10 by the linear motion motor 30 (see FIG. 2) in the axial direction of the shaft 10. That is, in the entire range of the stroke S of the shaft 10, the communication hole 12 and the internal space 52 communicate with each other. The stroke S of the shaft 10 can be set by a stopper (not shown) provided inside the drive unit housing 40.
 上記構成のシャフトハウジング50は、図2に示すように、シャフト10の軸線O上に設けられた駆動伝達部よりもシャフト10の先端部10A近く(ワークWの近く)に配置されている。駆動伝達部は、シャフトハウジング50に対しシャフト10を摺動させる力をシャフト10に伝達させる。本実施形態では、回転モータ20及び連結アーム36が駆動伝達部に該当する。シャフトハウジング50は、エアチューブ接続孔51が、シャフト10の軸方向及びアクチュエータの積層方向と直交するX軸方向に延びるように、駆動部ハウジング40に取り付けられている。すなわち、エアチューブ接続孔51は、カートリッジ部3の着脱方向と同じ方向に開口しており、図1に示すアクチュエータ1の積層方向と干渉しない方向に配置されている。これにより、エアチューブ64とエアチューブ接続孔51との接続が容易になる。 As shown in FIG. 2, the shaft housing 50 having the above configuration is disposed closer to the tip end portion 10A of the shaft 10 (closer to the work W) than the drive transmission portion provided on the axis O of the shaft 10. The drive transmission portion transmits a force to slide the shaft 10 relative to the shaft housing 50 to the shaft 10. In the present embodiment, the rotary motor 20 and the connection arm 36 correspond to a drive transmission unit. The shaft housing 50 is attached to the drive housing 40 such that the air tube connection hole 51 extends in the X-axis direction orthogonal to the axial direction of the shaft 10 and the stacking direction of the actuators. That is, the air tube connection hole 51 is opened in the same direction as the mounting and demounting direction of the cartridge portion 3 and is arranged in the direction that does not interfere with the stacking direction of the actuator 1 shown in FIG. Thereby, the connection between the air tube 64 and the air tube connection hole 51 is facilitated.
 上記構成のアクチュエータ1において、図2に示すワークWをピックアップする場合、エア制御機構61を駆動させる。エア制御機構61は、ポンプに連通する電磁弁を開き、エアチューブ64を介してシャフトハウジング50の内部空間52のエアを引くことで、シャフト10に設けられた中空孔11に負圧を発生させる。ここで、シャフトハウジング50には、エアチューブ64が接続されたエアチューブ接続孔51と、エアチューブ接続孔51と連通してシャフト10の外周面10aを囲う内部空間52と、が設けられている。そして、内部空間52に囲まれたシャフト10の外周面10aには、中空孔11と連通する連通孔12が設けられている。 In the actuator 1 configured as described above, when the work W shown in FIG. 2 is picked up, the air control mechanism 61 is driven. The air control mechanism 61 opens a solenoid valve in communication with the pump and pulls the air in the internal space 52 of the shaft housing 50 through the air tube 64 to generate a negative pressure in the hollow hole 11 provided in the shaft 10 . Here, the shaft housing 50 is provided with an air tube connection hole 51 to which the air tube 64 is connected, and an internal space 52 which communicates with the air tube connection hole 51 and surrounds the outer peripheral surface 10 a of the shaft 10. . A communication hole 12 communicating with the hollow hole 11 is provided on the outer peripheral surface 10 a of the shaft 10 surrounded by the internal space 52.
 この構成によれば、図2に示すように、シャフト10が軸線O回りに回転したとしても、内部空間52と連通孔12との連通状態が維持される。このため、シャフト10の先端部10Aに設けられた中空孔11に負圧を発生させ、ワークWをピックアップすることができる。このように、本実施形態によれば、ロータリージョイントを使用せずに、回転するシャフト10にエアチューブ64を接続し、負圧を発生させることができる。これにより、ロータリージョイントを動かすために、トルクが大きい回転モータ20を選択する必要がなくなる。また、部品数の多いロータリージョイントを使用しなくてよくなるため、アクチュエータ1のメンテナンスの頻度を低減させることができる。 According to this configuration, as shown in FIG. 2, even when the shaft 10 rotates around the axis O, the communication between the internal space 52 and the communication hole 12 is maintained. For this reason, negative pressure can be generated in the hollow hole 11 provided at the tip end portion 10A of the shaft 10, and the workpiece W can be picked up. As described above, according to the present embodiment, the air tube 64 can be connected to the rotating shaft 10 to generate a negative pressure without using a rotary joint. This eliminates the need to select the rotary motor 20 having a large torque in order to move the rotary joint. Further, since it is not necessary to use a rotary joint having a large number of parts, the frequency of maintenance of the actuator 1 can be reduced.
 また、本実施形態では、図5に示すように、シャフトハウジング50の内部空間52が、シャフト10の軸方向において、直動モータ30(図2参照)によるシャフト10のストロークS以上の長さLを有している。この構成によれば、図2に示すように、シャフト10が軸方向に移動したとしても、内部空間52と連通孔12との連通状態が維持される。これにより、シャフト10の先端部10Aに設けられた中空孔11に負圧を発生させることができる。また、シャフトハウジング50は、駆動部ハウジング40に固定されているため、エアチューブ64との接続状態は変わらない。このため、例えば、ピックアップしたワークWを脱着するために、中空孔11からエアを吐出または真空破壊したとしても、その影響をシャフト10に伝えないようにすることができる。 Further, in the present embodiment, as shown in FIG. 5, the internal space 52 of the shaft housing 50 has a length L equal to or greater than the stroke S of the shaft 10 by the linear motor 30 (see FIG. 2) in the axial direction of the shaft 10. have. According to this configuration, as shown in FIG. 2, even when the shaft 10 moves in the axial direction, the communication between the internal space 52 and the communication hole 12 is maintained. Thereby, negative pressure can be generated in the hollow hole 11 provided at the tip end portion 10A of the shaft 10. Further, since the shaft housing 50 is fixed to the drive housing 40, the connection state with the air tube 64 does not change. For this reason, for example, even if the air is discharged or vacuum destroyed from the hollow hole 11 in order to desorb the picked-up work W, the influence can be prevented from being transmitted to the shaft 10.
 仮に、中空孔11がシャフト10を軸方向に貫通して設けられ、基端部10Bにエアチューブ64が接続される形態を考えた場合、エアの給排気によってエアチューブ64の硬さが変動すると、そのエアチューブ64の硬さがシャフト10の軸方向における抵抗となる。したがって、推力が小さい直動モータ30を使用した場合には、エアチューブ64の硬さによって可動子32が原点復帰できなくなる可能性がある。一方、本実施形態によれば、エアチューブ64の硬さが変動したとしても、その影響がシャフト10に伝わらない。このため、推力が大きい直動モータ30を選択する必要がなく、小型で軽量のワークWを高速で搬送することが可能となる。 Assuming that the hollow hole 11 is provided to penetrate the shaft 10 in the axial direction and the air tube 64 is connected to the base end portion 10B, if the hardness of the air tube 64 changes due to the air supply and discharge of air. The hardness of the air tube 64 is the resistance in the axial direction of the shaft 10. Therefore, when the linear motion motor 30 with a small thrust is used, the hardness of the air tube 64 may make it impossible for the mover 32 to return to the origin. On the other hand, according to the present embodiment, even if the hardness of the air tube 64 changes, the influence is not transmitted to the shaft 10. For this reason, it is not necessary to select the linear motion motor 30 having a large thrust, and it becomes possible to transport the small and lightweight work W at high speed.
 また、シャフトハウジング50は、図2に示すように、シャフト10の軸線O上において、動力伝達部(回転モータ20及び連結アーム36)よりもシャフト10の先端部10A近くに配置されている。この構成によれば、ワークWをピック&プレイスするタクトタイムを短くすることができる。すなわち、上述したように、中空孔11がシャフト10を軸方向に貫通して設けられ、基端部10Bにエアチューブ64が接続される形態では、シャフト10の全長に亘ってエアを引く必要があるが、本実施形態によれば、シャフト10の先端部10Aから連通孔12までエアを引けばよく、また、エア制御機構61までの距離も短くなるため、素早く負圧を発生させることができる。 Further, as shown in FIG. 2, the shaft housing 50 is disposed closer to the tip 10 A of the shaft 10 than the power transmission unit (the rotary motor 20 and the connection arm 36) on the axis O of the shaft 10. According to this configuration, the tact time for picking and placing the work W can be shortened. That is, as described above, in the configuration in which the hollow hole 11 is provided to penetrate the shaft 10 in the axial direction and the air tube 64 is connected to the base end 10B, it is necessary to draw air over the entire length of the shaft 10 Although, according to the present embodiment, air may be drawn from the tip end portion 10A of the shaft 10 to the communication hole 12, and the distance to the air control mechanism 61 is also shortened, so that negative pressure can be generated quickly. .
 また、シャフトハウジング50は、図4に示すように、筒状のハウジング本体53と、一対の二体54と、シール体55と、から構成される。一対の蓋体54は、ハウジング本体53の両端開口部を閉塞するように取り付けられる。シール体55は、ハウジング本体53と一対の蓋体54との間に挟み込まれる。シール体55には、摺動リング56が設けられている。摺動リング56によって、シャフト10を摺動可能に支持する。
 このように、ハウジング本体53と一対の蓋体54との間に、シール体55を挟み込むことにより組み立てが容易になる。また、例えば、ハウジング本体53の貫通孔53aに、シール体55を配置するための円環状の溝を加工する必要がなくなる。ハウジング本体53の貫通孔53aに円環状の溝を加工する場合、加工がし難く、寸法管理が困難になる。一方、本実施形態によれば、ハウジング本体53の両端開口部に段付き溝53bを加工し、蓋体54を用いてシール体55を配置する溝を形成するため、加工が容易で高精度な寸法管理が可能になる。これにより、シール体55のつぶし代の管理が容易になるため、摺動リング56によるシャフト10に対する摺動抵抗の管理が容易になる。
Further, as shown in FIG. 4, the shaft housing 50 is configured of a cylindrical housing main body 53, a pair of two bodies 54, and a seal body 55. The pair of lids 54 is attached so as to close the openings at both ends of the housing body 53. The seal body 55 is sandwiched between the housing body 53 and the pair of lids 54. The sealing body 55 is provided with a sliding ring 56. The sliding ring 56 slidably supports the shaft 10.
As described above, by sandwiching the seal body 55 between the housing main body 53 and the pair of lids 54, assembly becomes easy. Further, for example, it is not necessary to process an annular groove for disposing the seal body 55 in the through hole 53 a of the housing main body 53. When an annular groove is machined in the through hole 53a of the housing main body 53, machining is difficult and dimensional control becomes difficult. On the other hand, according to the present embodiment, the stepped groove 53b is processed in the opening at both ends of the housing main body 53, and the groove for arranging the seal body 55 is formed using the lid 54. Therefore, the processing is easy and accurate. Allows dimensional control. As a result, the management of the crush margin of the seal body 55 is facilitated, and the management of the sliding resistance to the shaft 10 by the sliding ring 56 is facilitated.
 このように、上述の本実施形態によれば、アクチュエータ1は、先端部10Aに中空孔11が設けられたシャフト10と、シャフト10が摺動可能に挿通されたシャフトハウジング50と、を有する。シャフトハウジング50には、エアチューブ接続孔51と、エアチューブ接続孔51と連通してシャフト10の外周面10aを囲う内部空間52と、が設けられる。内部空間52に囲まれたシャフト10の外周面10aには、中空孔11と連通する連通孔12が設けられている。この構成を採用することによって、ロータリージョイントを使用せずにシャフト10にエアチューブ64を接続でき、推力・トルク及び動作に対する影響が少ないアクチュエータ1及びアクチュエータユニット100が得られる。 Thus, according to the above-described embodiment, the actuator 1 has the shaft 10 provided with the hollow hole 11 at the tip end portion 10A, and the shaft housing 50 in which the shaft 10 is slidably inserted. The shaft housing 50 is provided with an air tube connection hole 51 and an internal space 52 communicating with the air tube connection hole 51 and surrounding the outer peripheral surface 10 a of the shaft 10. A communication hole 12 communicating with the hollow hole 11 is provided on the outer peripheral surface 10 a of the shaft 10 surrounded by the internal space 52. By adopting this configuration, the air tube 64 can be connected to the shaft 10 without using a rotary joint, and the actuator 1 and the actuator unit 100 with less influence on the thrust / torque and operation can be obtained.
 以上、図面を参照しながら本発明の好適な実施形態について説明したが、本発明は上記実施形態に限定されるものではない。上述した実施形態において示した各構成部材の諸形状や組み合わせ等は一例であって、本発明の主旨から逸脱しない範囲において設計要求等に基づき種々変更可能である。 As mentioned above, although the suitable embodiment of the present invention was described referring to drawings, the present invention is not limited to the above-mentioned embodiment. The shapes, combinations, and the like of the constituent members shown in the above-described embodiment are merely examples, and various changes can be made based on design requirements and the like without departing from the spirit of the present invention.
 例えば、上記実施形態では、アクチュエータ1が回転モータ20及び直動モータ30を有する構成について例示したが、アクチュエータ1が回転モータ20のみを有する構成であってもよいし、アクチュエータ1が直動モータ30のみを有する構成であってもよい。
 例えば、アクチュエータ1が回転モータ20のみを有する構成である場合、図5に示す内部空間52の長さLを、連通孔12と対向可能な長さ(領域)まで短くしてもよい。
For example, in the above embodiment, the configuration in which the actuator 1 includes the rotary motor 20 and the linear motion motor 30 is exemplified. However, the actuator 1 may be configured to include only the rotary motor 20. It may be the composition which has only.
For example, when the actuator 1 is configured to have only the rotary motor 20, the length L of the internal space 52 shown in FIG. 5 may be shortened to a length (area) that can face the communication hole 12.
 また、上記実施形態では、回転モータ20がスプラインナットを介してシャフト10を回転させる構成を例示したが、例えば、回転モータ20がベルト及びプーリーを介してシャフト10を回転させる構成であってもよい。この場合、シャフト10に固定されたプーリーが動力伝達部となる。 In the above embodiment, although the configuration in which the rotation motor 20 rotates the shaft 10 via the spline nut is illustrated, for example, the rotation motor 20 may be configured to rotate the shaft 10 via the belt and the pulley. . In this case, a pulley fixed to the shaft 10 is a power transmission unit.
 また、例えば、上記実施形態では、ワークWをピック&プレイスするアクチュエータ1に本発明を適用したが、例えば、他の空圧のアクチュエータや、上記従来技術のように流体として液体を供給する主軸装置等にも本発明を適用することができる。 Further, for example, in the above embodiment, the present invention is applied to the actuator 1 that picks and places the work W. For example, other pneumatic actuators or a spindle device that supplies liquid as a fluid as in the prior art The present invention can be applied to the like.
 上記したアクチュエータ及びアクチュエータユニットによれば、ロータリージョイントを使用せずにシャフトと流体流路とを接続でき、推力・トルク及び動作に対する影響が少なくなる。 According to the above-described actuator and actuator unit, the shaft and the fluid flow path can be connected without using a rotary joint, and the impact on thrust and torque and operation can be reduced.
 1  アクチュエータ
 10  シャフト
 10a  外周面
 10A  先端部
 10B  基端部
 11  中空孔
 12  連通孔
 20  回転モータ
 30  直動モータ
 36  連結アーム(動力伝達部)
 50  シャフトハウジング(ハウジング)
 51  エアチューブ接続孔(流体流路接続孔)
 52  内部空間
 53  ハウジング本体
 54  蓋体
 55  シール体
 56  摺動リング
 64  エアチューブ(流体流路)
 100  アクチュエータユニット
 L  長さ
 O  軸線
 S  ストローク
 W  ワーク
DESCRIPTION OF SYMBOLS 1 actuator 10 shaft 10a outer peripheral surface 10A front-end | tip part 10B base end part 11 hollow hole 12 communicating hole 20 rotation motor 30 direct-acting motor 36 connection arm (power transmission part)
50 shaft housing (housing)
51 Air tube connection hole (fluid flow path connection hole)
52 Internal space 53 Housing body 54 Lid 55 Seal body 56 Sliding ring 64 Air tube (fluid flow path)
100 Actuator unit L Length O Axis line S Stroke W Work

Claims (5)

  1.  先端部に中空孔が設けられたシャフトと、
     前記シャフトが摺動可能に挿通されたハウジングと、を有し、
     前記ハウジングには、流体流路接続孔と、前記流体流路接続孔と連通して前記シャフトの外周面を囲う内部空間と、が設けられ、
     前記内部空間に囲まれた前記シャフトの外周面には、前記中空孔と連通する連通孔が設けられている
     アクチュエータ。
    A shaft provided with a hollow at the tip,
    And a housing in which the shaft is slidably inserted.
    The housing is provided with a fluid flow passage connection hole, and an internal space in communication with the fluid flow passage connection hole and surrounding an outer peripheral surface of the shaft.
    A communication hole communicating with the hollow hole is provided on an outer peripheral surface of the shaft surrounded by the internal space.
  2.  前記シャフトの軸線上には、前記ハウジングに対し前記シャフトを摺動させる動力伝達部が設けられており、
     前記ハウジングは、前記シャフトの軸線上において、前記動力伝達部よりも前記シャフトの先端部近くに配置されている
     請求項1に記載のアクチュエータ。
    A power transmission unit for sliding the shaft relative to the housing is provided on an axis of the shaft,
    The actuator according to claim 1, wherein the housing is disposed closer to a tip of the shaft than the power transmission unit on an axis of the shaft.
  3.  前記シャフトの軸方向に沿って、前記ハウジングに対し前記シャフトを摺動させる直動モータを有し、
     前記内部空間は、前記シャフトの軸方向において、前記直動モータによる前記シャフトのストローク以上の長さを有する
     請求項1または2に記載のアクチュエータ。
    A linear motion motor for sliding the shaft relative to the housing along the axial direction of the shaft;
    The actuator according to claim 1, wherein the inner space has a length equal to or greater than a stroke of the shaft by the linear motion motor in an axial direction of the shaft.
  4.  前記ハウジングは、
     前記流体流路接続孔が径方向に設けられた筒状のハウジング本体と、
     前記ハウジング本体の両端開口部を閉塞する一対の蓋体と、
     前記ハウジング本体と一対の蓋体との間に介在するシール体と、
     前記シール体に設けられ、前記シャフトを摺動可能に支持する摺動リングと、を有する
     請求項1~3のいずれか一項に記載のアクチュエータ。
    The housing is
    A cylindrical housing body in which the fluid channel connection holes are provided in the radial direction;
    A pair of lids closing the openings at both ends of the housing body;
    A sealing body interposed between the housing body and the pair of lids;
    The actuator according to any one of claims 1 to 3, further comprising: a sliding ring provided on the seal body and slidably supporting the shaft.
  5.  請求項1~4のいずれか一項に記載のアクチュエータが、前記シャフトの軸方向と直交する方向に複数積層され、
     前記流体流路接続孔が、前記シャフトの軸方向及び前記アクチュエータの積層方向と直交する方向に設けられている
     アクチュエータユニット。
    A plurality of actuators according to any one of claims 1 to 4 are stacked in a direction orthogonal to the axial direction of the shaft,
    An actuator unit, wherein the fluid channel connection hole is provided in a direction orthogonal to the axial direction of the shaft and the stacking direction of the actuators.
PCT/JP2018/023267 2017-06-23 2018-06-19 Actuator and actuator unit WO2018235809A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-123427 2017-06-23
JP2017123427A JP6918598B2 (en) 2017-06-23 2017-06-23 Actuator and actuator unit

Publications (1)

Publication Number Publication Date
WO2018235809A1 true WO2018235809A1 (en) 2018-12-27

Family

ID=64736985

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/023267 WO2018235809A1 (en) 2017-06-23 2018-06-19 Actuator and actuator unit

Country Status (3)

Country Link
JP (1) JP6918598B2 (en)
TW (1) TW201905346A (en)
WO (1) WO2018235809A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2435188A1 (en) * 1974-07-22 1976-02-05 Fahrion Fa Eugen Position socket for quick change chuck coupling - has tubular piece in drive, with feed and stops
JPS58125539A (en) * 1982-01-18 1983-07-26 Mitsubishi Heavy Ind Ltd Sucton device
JPH07100788A (en) * 1993-09-30 1995-04-18 Toshiba Corp Robot and vacuum suction hand
JPH11330792A (en) * 1998-05-21 1999-11-30 Juki Corp Part suction device of electronic part mounting equipment
JP2002052487A (en) * 2000-08-10 2002-02-19 Jt Engineering Inc Fruit/vegetable retainer and transfer device
JP2002307360A (en) * 2001-04-13 2002-10-23 Juki Corp Mounting head of electronic part mounting device
JP2002543995A (en) * 1999-05-12 2002-12-24 エービービー エービー swivel

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2435188A1 (en) * 1974-07-22 1976-02-05 Fahrion Fa Eugen Position socket for quick change chuck coupling - has tubular piece in drive, with feed and stops
JPS58125539A (en) * 1982-01-18 1983-07-26 Mitsubishi Heavy Ind Ltd Sucton device
JPH07100788A (en) * 1993-09-30 1995-04-18 Toshiba Corp Robot and vacuum suction hand
JPH11330792A (en) * 1998-05-21 1999-11-30 Juki Corp Part suction device of electronic part mounting equipment
JP2002543995A (en) * 1999-05-12 2002-12-24 エービービー エービー swivel
JP2002052487A (en) * 2000-08-10 2002-02-19 Jt Engineering Inc Fruit/vegetable retainer and transfer device
JP2002307360A (en) * 2001-04-13 2002-10-23 Juki Corp Mounting head of electronic part mounting device

Also Published As

Publication number Publication date
JP2019005844A (en) 2019-01-17
TW201905346A (en) 2019-02-01
JP6918598B2 (en) 2021-08-11

Similar Documents

Publication Publication Date Title
JP5417588B2 (en) Actuator
US8196484B2 (en) Electric actuator
US7150085B2 (en) Turret for machine tool
US11754157B2 (en) Integrated motor linear actuator
US20040042890A1 (en) Component-placing apparatus
JP4587105B2 (en) Linear actuator and processing method thereof
JP5383135B2 (en) Directly driven tool changer with actuator for reciprocating and swiveling motion
US12011727B2 (en) Switching apparatus for high pressure tools and cleaning apparatus having such a switching apparatus
JPH07217607A (en) Positioning device for load
JP2007083354A (en) Work sucking and retaining device
JP2009090457A6 (en) Directly driven tool changer with actuator for reciprocating and swiveling motion
US8584560B2 (en) Main spindle device
KR101452304B1 (en) Apparatus for Electrically Driving a Shaft
US20130147131A1 (en) Rotary Stage With Integrated Collet Closer Assembly
WO2018235809A1 (en) Actuator and actuator unit
CN111660320B (en) Adsorption buffer device
WO2010073501A1 (en) Tool fixing device for machine tool main spindle
JP6280149B2 (en) Machine tool spindle equipment
JP6923372B2 (en) Actuator and actuator unit
JP4472042B2 (en) Clamping device
JP2007127160A (en) Rotary actuator
WO2021177399A1 (en) Spindle device
CN218225720U (en) Carousel mechanism and carousel formula multistation processing equipment
CN112166257B (en) Rotary driving device
CN218964701U (en) Vacuum cavity inner clamp

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18820646

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18820646

Country of ref document: EP

Kind code of ref document: A1