WO2018235487A1 - Gas sensor - Google Patents

Gas sensor Download PDF

Info

Publication number
WO2018235487A1
WO2018235487A1 PCT/JP2018/019453 JP2018019453W WO2018235487A1 WO 2018235487 A1 WO2018235487 A1 WO 2018235487A1 JP 2018019453 W JP2018019453 W JP 2018019453W WO 2018235487 A1 WO2018235487 A1 WO 2018235487A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
casing
gas sensor
measured
sealing material
Prior art date
Application number
PCT/JP2018/019453
Other languages
French (fr)
Japanese (ja)
Inventor
雅 山崎
井上 剛
灘浪 紀彦
上木 正聡
Original Assignee
日本特殊陶業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本特殊陶業株式会社 filed Critical 日本特殊陶業株式会社
Publication of WO2018235487A1 publication Critical patent/WO2018235487A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems

Definitions

  • the present disclosure relates to a gas sensor including a conversion unit that converts a first gas component into a second gas component.
  • Patent Document 1 the atmosphere as the gas to be measured is always supplied in a constant amount into the chamber, and the catalyst in the chamber is subjected to pretreatment for burning and removing combustible gas such as CO and the like.
  • a gas sensor which detects NOx concentration by contacting the sensor element with the sensor element.
  • a catalyst is filled in the chamber so as to cross a flow path through which the measurement gas flows in the chamber, and the measurement gas having permeated through the catalyst is brought into contact with the sensor element.
  • the gap between the inner surface of the chamber and the outer surface of the catalyst is sealed with a sealing material, so that the gas to be measured does not leak from the gap and the inside of the catalyst is prioritized. Need to be transparent.
  • elastic bodies such as rubber generally used as a sealing material have low heat resistance. For this reason, the high temperature gas to be measured contacts the sealing material, and the temperature at which the catalyst is sufficiently activated is decreased, so that the performance of the sealing material blocking the flow of the measurement gas is reduced, and Gas may be generated to affect the gas detection accuracy.
  • the present disclosure aims to improve the gas detection accuracy of a gas sensor.
  • One aspect of the present disclosure includes a casing, a conversion unit, a detection unit, and a seal material, and the seal material contains catalyst particles capable of converting a first gas component into a second gas component. It is a gas sensor.
  • the casing has an internal space into which the gas to be measured can be introduced.
  • the conversion unit includes an introduction unit into which the measurement gas introduced into the internal space is introduced into the interior, and a discharge unit into which the measurement gas introduced into the interior is discharged to the outside. Then, the conversion unit is configured to convert the first gas component contained in the measurement gas into the second gas component by causing the measurement gas to flow inside itself between the introduction unit and the discharge unit. It is housed in the inner space.
  • the detection unit is configured to detect a second gas component contained in the measurement gas discharged from the conversion unit.
  • the sealing material is formed of inorganic fibers excluding metal fibers, and is disposed between at least a portion of the inner wall surface in the inner space of the casing and at least a portion of the outer surface of the conversion portion excluding the introducing portion and the discharging portion. .
  • the gas sensor of the present disclosure configured as described above, at least a part of the gap between the casing and the conversion unit can be closed by the sealing material, and therefore the gas to be measured passes through the gap between the casing and the conversion unit instead of the conversion unit. It is possible to suppress the occurrence of a situation. Thereby, the gas sensor of this indication can improve gas detection accuracy.
  • the sealing material is made of inorganic fibers other than metal fibers, and thus is flexible and easily deformed. Therefore, the sealing material easily closes the gap between the casing and the conversion unit, and it is possible to further suppress the occurrence of the measured gas passing through the gap between the casing and the conversion unit instead of the conversion unit. Further, in the gas sensor of the present disclosure, it is not necessary to apply a large load to deform the sealing material, unlike the sealing material formed of metal fibers, in order to close the gap between the casing and the conversion unit. For this reason, in the gas sensor of the present disclosure, it is possible to suppress the occurrence of a situation where the converter is damaged in order to close the gap between the casing and the converter.
  • the seal material contains catalyst particles capable of converting the first gas component into the second gas component. For this reason, the first gas component is converted to the second gas component in at least a part of the measured gas that has passed through the gap between the casing and the conversion unit. Thereby, the gas sensor of this indication can further improve gas detection accuracy.
  • the casing includes a first storage portion and a second storage portion, and the gas to be measured discharged from the first storage portion is introduced into the second storage portion.
  • transduce you may make it provide the distribution part comprised so that measurement gas could be distribute
  • the first accommodating portion is configured to accommodate the conversion portion.
  • the second storage unit is configured to receive the detection unit.
  • the gas sensor of the present disclosure may be provided with a single heater that is housed inside the casing and heats the conversion unit and the detection unit.
  • the gas sensor of this indication can simplify composition of a gas sensor, and can miniaturize a gas sensor.
  • the heater may be housed inside the second housing portion, and may be provided with a dividing member and an adhesive.
  • the dividing member is formed of a material capable of conducting heat, and is disposed between the first and second accommodating portions in order to separate the first and second accommodating portions.
  • the adhesive is formed of a material having a thermal conductivity higher than that of the sealing material, and is disposed between the dividing member and the converting portion to make the converting portion adhere to the dividing member.
  • the catalyst particles may be made of at least one of a noble metal and an oxide.
  • gas sensor 1 of a 1st embodiment It is an exploded perspective view of gas sensor 1 of a 1st embodiment. It is a sectional view of gas sensor 1 of a 1st embodiment. It is a 1st sectional view in gas sensor 2 of a 2nd embodiment. It is a 2nd sectional view in gas sensor 2 of a 2nd embodiment.
  • the gas sensor 1 of this embodiment is provided with the adjustment unit 2, the sensor unit 3, and the gas distribution pipe 4, as shown in FIG.
  • the adjustment unit 2 includes a casing 11, a packing 12, a base 13, and a seal member 14.
  • the casing 11 includes a rectangular lower surface plate 21 and four side plates 22, 23, 24, 25 vertically projecting from each of the four sides forming the rectangle of the lower surface plate 21, and an opening 26 is formed on the upper surface Made of metal.
  • the casing 11 also includes a flange 27.
  • the flange 27 extends outward from the end on the upper surface side of the four side plates 22, 23, 24, 25 perpendicularly to the side plates 22, 23, 24, 25 and extends along the periphery of the opening 26. It is formed in a substantially rectangular frame shape.
  • FIG. 2 is a cross-sectional view of the gas sensor 1 cut along the flow direction in which the gas flows in the flow path 13c described later.
  • two through holes 21 a and 21 b are formed in the lower surface plate 21 of the casing 11.
  • the casing 11 is provided with an inlet 28 and an outlet 29.
  • the inlet 28 is formed in a cylindrical shape so as to extend outward from the outer opening of the through hole 21 a perpendicularly to the bottom plate 21.
  • the gas can be introduced into the interior of the casing 11 from the outer opening of the inlet 28.
  • the outlet 29 is formed in a cylindrical shape, extending perpendicularly outward from the outer opening of the through hole 21 b to the lower surface plate 21. Thereby, the gas can be discharged from the inside of the casing 11 to the outer opening of the inlet 28.
  • the packing 12 is an elastic member formed in a rectangular frame shape substantially the same as the flange 27 in a plan view.
  • the packing 12 is adhered to the flange 27 via an adhesive (not shown).
  • the base 13 is a ceramic member formed in a rectangular parallelepiped shape.
  • a flow passage 13c is formed to pass between two surfaces 13a and 13b facing each other among the six surfaces constituting the rectangular parallelepiped.
  • the surface 13a is not shown in FIG. 1, but is shown in FIG.
  • four flow paths 13c are formed.
  • the first gas component NO in the present embodiment
  • the second gas component NO 2 in the present embodiment
  • the catalyst in the present embodiment, a Pt supported zeolite
  • the sealing material 14 is a member formed of inorganic fibers (in the present embodiment, alumina fibers) excluding metal fibers.
  • Catalyst particles Pt in the present embodiment
  • Examples of a method of adding catalyst particles to inorganic fibers include a method of immersing inorganic fibers in a solution containing catalyst particles and then drying and calcining. Also, instead of immersing the inorganic fibers in a solution containing catalyst particles, the inorganic fibers may be dipped in a slurry containing catalyst particles or zeolite containing ⁇ -alumina.
  • the sealing material 14 is disposed so as to be in contact with and cover four surfaces in which the flow path 13 c is not formed among the six surfaces forming the rectangular parallelepiped.
  • the sealing material 14 disposed on three surfaces not formed with the flow channel 13 c among the six surfaces constituting the rectangular parallelepiped respectively contacts the lower surface plate 21, the side surface plate 23 and the side surface plate 25.
  • the sealing material 14 disposed on one side of the housing 11 is disposed inside the casing 11 so that the sealing material 14 is exposed at the opening 26.
  • the base 13 is disposed between the through hole 21 a and the through hole 21 b inside the casing 11.
  • the gas to be measured introduced into the interior of the casing 11 through the through hole 21 a is discharged from the through hole 21 b to the outside of the casing 11 through the inside of the flow path 13 c of the substrate 13.
  • the to-be-measured gas passes through the inside of the flow path 13c of the base 13, the first gas component contained in the to-be-measured gas is converted to the second gas component.
  • the sensor unit 3 includes a casing 31, a packing 32, a detection unit 33, and a ceramic wiring board 34.
  • the casing 31 is a metal member having a rectangular upper surface plate 41 and four side plates vertically projected from each of the four sides forming the rectangle of the upper surface plate 41, and having an opening 42 formed on the lower surface. is there.
  • the opening 42 is not shown in FIG. 1, but is shown in FIG.
  • the casing 31 also includes a flange 43.
  • the flanges 43 extend outward from the lower side end of the four side plates perpendicularly to the four side plates, and are formed in a substantially rectangular frame along the periphery of the opening 42.
  • two through holes 41 a and 41 b are formed in the upper surface plate 41 of the casing 31.
  • the casing 31 is provided with an inlet 44 and an outlet 45.
  • the inlet 44 is formed in a cylindrical shape so as to extend outward from the outer opening of the through hole 41 a perpendicularly to the top plate 41.
  • the gas can be introduced into the interior of the casing 31 from the outer opening of the inlet 44.
  • the outlet 45 is formed in a cylindrical shape, extending perpendicularly outward from the outer opening of the through hole 41 b to the top plate 41. Thereby, the gas can be discharged from the inside of the casing 31 to the outer opening of the outlet 45.
  • the packing 32 is an elastic member formed in a rectangular frame shape substantially the same as the flange 43 in a plan view.
  • the packing 32 is adhered to the flange 43 via an adhesive (not shown).
  • the detection unit 33 includes a substrate 51, a sensor element 52, and a heater 53.
  • the substrate 51 is a member formed of an insulating material in a rectangular plate shape.
  • the sensor element 52 is a gas sensor including a solid electrolyte body and a pair of electrodes disposed on the solid electrolyte body.
  • the sensor element 52 outputs an electrical signal indicating the concentration of the second gas component based on the electrical characteristic that changes in accordance with the concentration of the second gas component contained in the measurement gas.
  • the sensor element 52 is disposed on the upper surface 51 a of the substrate 51.
  • the heater 53 includes, for example, a heating resistor formed of a material mainly composed of platinum, and heats the sensor element 52 by power supplied from a power supply (not shown).
  • the heater 53 is disposed on the lower surface 51 b of the substrate 51.
  • the ceramic wiring board 34 includes a main body portion 61 and a narrow portion 62.
  • the main body portion 61 is formed in a rectangular plate shape such that the shape of the outer periphery thereof substantially matches the shape of the outer periphery of the packing 12, 32.
  • the upper surface 61 a of the main body 61 is formed with a recess 61 b for installing the detection unit 33.
  • the narrow portion 62 extends outward from one of four sides of the main body 61 and is formed in a rectangular plate shape.
  • the narrow portion 62 has a length (i.e., width) along a direction perpendicular to the direction in which the narrow portion 62 extends outward is shorter than the length of the side (width) of the main portion 61. It is formed. Wirings electrically connected to the sensor element 52 and the heater 53 are formed on the narrow portion 62 with respect to the front and back surfaces.
  • the detection unit 33 is installed in the recess 61 b by bonding the lower surface 51 b of the substrate 51 to the bottom of the recess 61 b with the adhesive 35.
  • the lower surface 12a of the packing 12 and the upper surface 27a of the flange 27 are bonded by an adhesive
  • the upper surface 12b of the packing 12 and the outer peripheral portion of the lower surface 61c of the main body 61 of the ceramic wiring board 34 are bonded by an adhesive.
  • the opening 26 of the casing 11 is closed by the main body 61 of the ceramic wiring board 34.
  • the internal space of the casing 11 closed in this manner forms a chamber C1.
  • the lower surface 61c of the main body portion 61 of the ceramic wiring substrate 34 is in contact with the surface of the sealing material 14 covering the base material 13 which is not in contact with the lower surface plate 21, the side plates 23, 25 and the packing 12 Do.
  • the upper surface 32a of the packing 32 and the lower surface 43a of the flange 43 are bonded by an adhesive
  • the lower surface 32b of the packing 32 and the outer peripheral portion of the upper surface 61a of the main portion 61 of the ceramic wiring board 34 are bonded by an adhesive.
  • the opening 42 of the casing 31 is closed by the main body 61 of the ceramic wiring board 34.
  • the internal space of the casing 31 closed in this way forms a chamber C2.
  • the base material 13, the sealing material 14, the ceramic wiring substrate 34, the adhesive 35, the heater 53, the substrate 51, and the sensor element 52 are sequentially laminated. Therefore, as indicated by the arrow H1, the heat generated by the heater 53 is transmitted to the sensor element 52 through the substrate 51. Further, as indicated by the arrow H2, the heat generated by the heater 53 is transmitted to the base 13 through the adhesive 35, the ceramic wiring board 34 and the sealing material 14.
  • the gas flow pipe 4 is formed of resin or metal. Then, the outlet 29 is inserted into the opening at one end of the gas flow pipe 4, and the inlet 44 is inserted into the opening at the other end of the gas flow pipe 4. Thereby, the measurement gas exhausted from the chamber C1 flows into the chamber C2 through the gas flow pipe 4. And the detection part 33 installed in the chamber C2 detects the density
  • the gas sensor 1 configured in this manner includes the casings 11 and 31, the base material 13, the detection unit 33, and the seal member 14.
  • the seal member 14 converts the first gas component into the second gas component.
  • the casings 11 and 31 each have a chamber C1 into which a gas to be measured can be introduced.
  • the base 13 includes a surface 13a into which the gas to be measured introduced into the chamber C1 is introduced into the substrate 13 and a surface 13b into which the gas to be measured introduced into the chamber C1 is discharged to the outside of the substrate C1.
  • the substrate 13 is configured to convert the first gas component contained in the gas to be measured into the second gas component by circulating the gas to be measured inside between the surface 13 a and the surface 13 b. And housed in the chamber C1.
  • the detection unit 33 detects a second gas component contained in the measurement gas discharged from the substrate 13.
  • the sealing material 14 is formed of inorganic fibers excluding metal fibers, and is disposed between a part of the inner wall surface of the chamber C1 of the casing 11 and the outer surface of the base 13 excluding the surfaces 13a and 13b.
  • gas sensor 1 As described above, in the gas sensor 1, at least a part of the gap between the casing 11 and the base material 13 can be closed by the sealing material 14, the gas to be measured passes through the gap between the casing 11 and the base material 13 instead To prevent the occurrence of Thereby, gas sensor 1 can improve gas detection accuracy.
  • the sealing material 14 is formed of inorganic fibers excluding metal fibers, it is flexible and easily deformed. For this reason, the sealing material 14 is likely to close the gap between the casing 11 and the base material 13 and to further suppress the occurrence of the measured gas passing through the gap between the casing 11 and the base material 13 instead of the base material 13. Can. Further, in the gas sensor 1, in order to close the gap between the casing 11 and the base 13, unlike the sealing material formed of metal fibers, it is not necessary to apply a large load to deform the sealing material. For this reason, in the gas sensor 1, it is possible to suppress the occurrence of a situation where the base material 13 is broken in order to close the gap between the casing 11 and the base material 13.
  • the seal material 14 contains catalyst particles capable of converting the first gas component into the second gas component. Therefore, the first gas component is converted to the second gas component in at least a part of the measurement gas that has passed through the gap between the casing 11 and the base 13. Thereby, the gas sensor 1 can further improve the gas detection accuracy.
  • the gas sensor 1 includes a casing 11 and a casing 31, and in order to introduce the gas to be measured discharged from the casing 11 into the interior of the casing 31, the gas sensor 1 is placed between the casing 11 and the casing 31.
  • a gas flow pipe 4 configured to flow the measurement gas is provided.
  • the casing 11 is configured to receive the base material 13.
  • the casing 31 is configured to receive the detection unit 33.
  • the gas sensor 1 is provided with a single heater 53 which is accommodated inside the casing 31 and heats the base 13 and the detection unit 33.
  • the gas sensor 1 can simplify the configuration of the gas sensor 1 and can miniaturize the gas sensor 1.
  • the catalyst particles contained in the sealing material 14 are Pt. Thereby, the gas sensor 1 can remove the miscellaneous gases (for example, hydrogen and carbon monoxide etc.) contained in the measured gas by oxidation.
  • miscellaneous gases for example, hydrogen and carbon monoxide etc.
  • the chamber C1 corresponds to the internal space
  • the surface 13a corresponds to the introduction part
  • the surface 13b corresponds to the discharge part
  • the substrate 13 coated with the catalyst corresponds to the conversion part.
  • the casing 11 corresponds to a 1st accommodating part
  • the casing 31 corresponds to a 2nd accommodating part
  • the gas flow pipe 4 corresponds to a distribution
  • FIG. 3 is a cross-sectional view of the gas sensor 1 of the second embodiment cut along the direction perpendicular to the flow direction.
  • FIG. 4 is a cross-sectional view of the gas sensor 1 of the second embodiment taken along the above flow direction.
  • the gas sensor 1 of the second embodiment is different from the first embodiment in that the range in which the base material 13 is covered is changed by the sealing material 14 and that the adhesive 17 is provided as shown in FIGS. 3 and 4. .
  • the sealing material 14 is disposed so as to contact and cover three surfaces facing the lower surface plate 21 and the side surface plates 23 and 25 among the six surfaces forming the rectangular parallelepiped of the base material 13. Ru. Therefore, the sealing material 14 is not disposed on the surface of the base 13 exposed by the opening 26.
  • the adhesive 17 is formed of a material having a thermal conductivity higher than that of the sealing material 14 and has gas impermeability in a cured state.
  • the adhesive 17 is disposed between the surface of the base 13 exposed at the opening 26 and the lower surface 61 c of the main portion 61 of the ceramic wiring substrate 34. That is, the substrate 13 is bonded to the main portion 61 of the ceramic wiring substrate 34 via the adhesive 17.
  • the heater 53 is housed inside the casing 31, and includes the main body portion 61 of the ceramic wiring board 34 and the adhesive 17.
  • the main body portion 61 is formed of a material that can conduct heat, and is disposed between the casing 11 and the casing 31 in order to separate the casing 11 and the casing 31.
  • the adhesive 17 is formed of a material having a thermal conductivity higher than that of the sealing material 14, and is disposed between the main body 61 and the base 13 so that the base 13 is adhered to the main body 61. Thereby, the gas sensor 1 can heat the catalyst of the base material 13 more efficiently.
  • the main body 61 corresponds to a dividing member.
  • this indication is not limited to the said embodiment, It can deform
  • the catalyst particles contained in the sealing material 14 are in the form of Pt, but the catalyst particles may be made of at least one of a noble metal and an oxide.
  • the sealing material 14 is formed of alumina fibers, but it may be, for example, silica fibers or glass fibers.
  • the casing 11, the packing 12, the ceramic wiring board 34, the packing 32, and the casing 31 are fixed via the adhesive, respectively.
  • the members 11, 12, 34, 32, 31 are used.
  • the fixed structure of is not limited to this.
  • a pair of fixing plates having screw holes formed at the four corners are disposed without using an adhesive and located on the outer periphery of the casings 11 and 31 and on the flanges 27 and 43.
  • the members 11, 12, 34, 32, 31 are fixed so as not to be displaced.
  • the function possessed by one component in the above embodiment may be shared by a plurality of components, or the function possessed by a plurality of components may be exhibited by one component.
  • part of the configuration of the above embodiment may be omitted.
  • at least a part of the configuration of the above-described embodiment may be added to or replaced with the configuration of the other above-described embodiment.
  • all the aspects contained in the technical thought specified from the wording as described in a claim are an embodiment of this indication.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Molecular Biology (AREA)
  • Measuring Oxygen Concentration In Cells (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Abstract

According to the present invention, the gas detection accuracy of a gas sensor is improved. This gas sensor 1 is provided with casings 11, 31, a substrate 13, a detection unit 33, and a seal material 14, wherein the seal material 14 contains catalyst particles capable of converting a first gas component into a second gas component. The substrate 13 is provided with: a surface 13a through which a gas to be measured is introduced to the inside; and a surface 13b through which the gas to be measured is discharged to the outside. The substrate 13 is configured to convert the first gas component into the second gas component by circulating the gas to be measured inside a region between the surface 13a and the surface 13b. The detection unit 33 detects the second gas component contained in the gas to be measured which is discharged from the substrate 13. The seal material 14 is formed of an inorganic fiber other than a metal fiber, and is disposed between a portion of an inner wall surface of a chamber of the casing 11 and outer surfaces of the substrate 13 other than the surfaces 13a, 13b.

Description

ガスセンサGas sensor
本開示は、第1ガス成分を第2ガス成分に変換する変換部を備えるガスセンサに関する。 The present disclosure relates to a gas sensor including a conversion unit that converts a first gas component into a second gas component.
特許文献1には、チャンバ内に被測定ガスとしての大気が常に一定量供給されるよう構成され、チャンバ内の触媒によりCO等の可燃性ガスを燃焼除去する前処理を行った後に被測定ガスをセンサ素子に接触させてNOx濃度を検出するガスセンサが記載されている。 In Patent Document 1, the atmosphere as the gas to be measured is always supplied in a constant amount into the chamber, and the catalyst in the chamber is subjected to pretreatment for burning and removing combustible gas such as CO and the like. There is described a gas sensor which detects NOx concentration by contacting the sensor element with the sensor element.
特開平10-300702号公報Japanese Patent Application Laid-Open No. 10-300702
特許文献1に記載のガスセンサでは、チャンバ内で被測定ガスが流通する流路を横断するように触媒をチャンバ内に充填し、触媒を透過した被測定ガスをセンサ素子に接触させている。  In the gas sensor described in Patent Document 1, a catalyst is filled in the chamber so as to cross a flow path through which the measurement gas flows in the chamber, and the measurement gas having permeated through the catalyst is brought into contact with the sensor element.
このようにガス透過性の触媒をチャンバ内に配置する場合には、チャンバの内面と触媒の外面との隙間をシール材で塞ぐことにより、被測定ガスが隙間から漏れずに触媒内を優先的に透過するようにする必要がある。  As described above, when the gas-permeable catalyst is disposed in the chamber, the gap between the inner surface of the chamber and the outer surface of the catalyst is sealed with a sealing material, so that the gas to be measured does not leak from the gap and the inside of the catalyst is prioritized. Need to be transparent.
しかし、シール材として一般的に用いられるゴムなどの弾性体は耐熱性が低い。このため、高温の被測定ガスがシール材に接触したり、触媒を十分に活性化させる温度に加熱したが故にシール材が被測定ガスの流通を遮断する性能が低下したり、シール材から雑ガスが発生したりして、ガス検出精度に影響を及ぼす恐れがあった。  However, elastic bodies such as rubber generally used as a sealing material have low heat resistance. For this reason, the high temperature gas to be measured contacts the sealing material, and the temperature at which the catalyst is sufficiently activated is decreased, so that the performance of the sealing material blocking the flow of the measurement gas is reduced, and Gas may be generated to affect the gas detection accuracy.
本開示は、ガスセンサのガス検出精度を向上させることを目的とする。 The present disclosure aims to improve the gas detection accuracy of a gas sensor.
本開示の一態様は、ケーシングと、変換部と、検出部と、シール材とを備え、シール材は、第1ガス成分を第2ガス成分に変換することができる触媒粒子を含有しているガスセンサである。  One aspect of the present disclosure includes a casing, a conversion unit, a detection unit, and a seal material, and the seal material contains catalyst particles capable of converting a first gas component into a second gas component. It is a gas sensor.
ケーシングは、自身の内部に被測定ガスを導入可能な内部空間が形成されている。 変換部は、内部空間に導入された被測定ガスが自身の内部に導入される導入部と、自身の内部に導入された被測定ガスが自身の外部へ排出される排出部とを備える。そして変換部は、導入部と排出部との間で被測定ガスを自身の内部に流通させることにより、被測定ガスに含まれる第1ガス成分を第2ガス成分に変換するように構成され、内部空間に収容される。  The casing has an internal space into which the gas to be measured can be introduced. The conversion unit includes an introduction unit into which the measurement gas introduced into the internal space is introduced into the interior, and a discharge unit into which the measurement gas introduced into the interior is discharged to the outside. Then, the conversion unit is configured to convert the first gas component contained in the measurement gas into the second gas component by causing the measurement gas to flow inside itself between the introduction unit and the discharge unit. It is housed in the inner space.
検出部は、変換部から排出された被測定ガスに含まれる第2ガス成分を検出するように構成される。 シール材は、金属繊維を除く無機繊維で形成され、ケーシングの内部空間における内壁面の少なくとも一部分と、変換部の外面のうち導入部および排出部を除く外面の少なくとも一部分との間に配置される。  The detection unit is configured to detect a second gas component contained in the measurement gas discharged from the conversion unit. The sealing material is formed of inorganic fibers excluding metal fibers, and is disposed between at least a portion of the inner wall surface in the inner space of the casing and at least a portion of the outer surface of the conversion portion excluding the introducing portion and the discharging portion. .
このように構成された本開示のガスセンサでは、ケーシングと変換部との隙間の少なくとも一部分をシール材で塞ぐことができるため、被測定ガスが変換部ではなくケーシングと変換部との隙間を通過する事態の発生を抑制することができる。これにより、本開示のガスセンサは、ガス検出精度を向上させることができる。  In the gas sensor of the present disclosure configured as described above, at least a part of the gap between the casing and the conversion unit can be closed by the sealing material, and therefore the gas to be measured passes through the gap between the casing and the conversion unit instead of the conversion unit. It is possible to suppress the occurrence of a situation. Thereby, the gas sensor of this indication can improve gas detection accuracy.
本開示のガスセンサでは、シール材は、金属繊維を除く無機繊維で形成されているため柔軟で変形し易い。このため、シール材は、ケーシングと変換部との隙間を塞ぎ易く、被測定ガスが変換部ではなくケーシングと変換部との隙間を通過する事態の発生を更に抑制することができる。また、本開示のガスセンサでは、ケーシングと変換部との隙間を塞ぐために、金属繊維で形成されたシール材とは異なり、大きな荷重を掛けてシール材を変形させる必要がない。このため、本開示のガスセンサでは、ケーシングと変換部との隙間を塞ぐために変換部が破損してしまう事態の発生を抑制することができる。  In the gas sensor of the present disclosure, the sealing material is made of inorganic fibers other than metal fibers, and thus is flexible and easily deformed. Therefore, the sealing material easily closes the gap between the casing and the conversion unit, and it is possible to further suppress the occurrence of the measured gas passing through the gap between the casing and the conversion unit instead of the conversion unit. Further, in the gas sensor of the present disclosure, it is not necessary to apply a large load to deform the sealing material, unlike the sealing material formed of metal fibers, in order to close the gap between the casing and the conversion unit. For this reason, in the gas sensor of the present disclosure, it is possible to suppress the occurrence of a situation where the converter is damaged in order to close the gap between the casing and the converter.
さらに本開示のガスセンサでは、シール材は、第1ガス成分を第2ガス成分に変換することができる触媒粒子を含有している。このため、ケーシングと変換部との隙間を通過した被測定ガスの少なくとも一部分において第1ガス成分が第2ガス成分に変換される。これにより、本開示のガスセンサは、ガス検出精度を更に向上させることができる。  Furthermore, in the gas sensor of the present disclosure, the seal material contains catalyst particles capable of converting the first gas component into the second gas component. For this reason, the first gas component is converted to the second gas component in at least a part of the measured gas that has passed through the gap between the casing and the conversion unit. Thereby, the gas sensor of this indication can further improve gas detection accuracy.
また、本開示のガスセンサでは、具体的には、ケーシングは、第1収容部と、第2収容部とを備え、第1収容部から排出された被測定ガスを、第2収容部の内部へ導入させるために、第1収容部と第2収容部との間で被測定ガスを流通させるように構成された流通部を備えるようにしてもよい。第1収容部は、変換部を収容するように構成される。第2収容部は、検出部を収容するように構成される。  Further, in the gas sensor of the present disclosure, specifically, the casing includes a first storage portion and a second storage portion, and the gas to be measured discharged from the first storage portion is introduced into the second storage portion. In order to introduce | transduce, you may make it provide the distribution part comprised so that measurement gas could be distribute | circulated between a 1st accommodating part and a 2nd accommodating part. The first accommodating portion is configured to accommodate the conversion portion. The second storage unit is configured to receive the detection unit.
また、本開示のガスセンサでは、ケーシングの内部に収容され、変換部および検出部を加熱する単一のヒータを備えるようにしてもよい。これにより、本開示のガスセンサは、ガスセンサの構成を簡略化することができ、ガスセンサを小型化することができる。  Further, the gas sensor of the present disclosure may be provided with a single heater that is housed inside the casing and heats the conversion unit and the detection unit. Thereby, the gas sensor of this indication can simplify composition of a gas sensor, and can miniaturize a gas sensor.
また、本開示のガスセンサでは、ヒータは第2収容部の内部に収容され、分割部材と、接着剤とを備えるようにしてもよい。分割部材は、熱が伝導可能な材料で形成され、第1収容部と第2収容部とを区切るために第1収容部と第2収容部との間に配置される。接着剤は、シール材より熱伝導率が高い材料で形成され、分割部材と変換部との間に配置されることにより変換部が分割部材に接着された状態にする。これにより、本開示のガスセンサは、変換部を更に効率良く加熱することができる。  Further, in the gas sensor of the present disclosure, the heater may be housed inside the second housing portion, and may be provided with a dividing member and an adhesive. The dividing member is formed of a material capable of conducting heat, and is disposed between the first and second accommodating portions in order to separate the first and second accommodating portions. The adhesive is formed of a material having a thermal conductivity higher than that of the sealing material, and is disposed between the dividing member and the converting portion to make the converting portion adhere to the dividing member. Thereby, the gas sensor of this indication can heat a conversion part more efficiently.
また、本開示のガスセンサでは、具体的には、触媒粒子は、貴金属および酸化物の少なくとも一方で構成されているようにしてもよい。 In the gas sensor of the present disclosure, specifically, the catalyst particles may be made of at least one of a noble metal and an oxide.
第1実施形態のガスセンサ1の分解斜視図である。It is an exploded perspective view of gas sensor 1 of a 1st embodiment. 第1実施形態のガスセンサ1の断面図である。It is a sectional view of gas sensor 1 of a 1st embodiment. 第2実施形態のガスセンサ2における第1の断面図である。It is a 1st sectional view in gas sensor 2 of a 2nd embodiment. 第2実施形態のガスセンサ2における第2の断面図である。It is a 2nd sectional view in gas sensor 2 of a 2nd embodiment.
(第1実施形態) 以下に本開示の第1実施形態を図面とともに説明する。 本実施形態のガスセンサ1は、図1に示すように、調整ユニット2と、センサユニット3と、ガス流通管4とを備える。  First Embodiment Hereinafter, a first embodiment of the present disclosure will be described with reference to the drawings. The gas sensor 1 of this embodiment is provided with the adjustment unit 2, the sensor unit 3, and the gas distribution pipe 4, as shown in FIG.
調整ユニット2は、ケーシング11と、パッキン12と、基材13と、シール材14とを備える。 ケーシング11は、矩形状の下面板21と、下面板21の矩形を構成する四辺のそれぞれから垂直に突出した4つの側面板22,23,24,25とを備え、上面に開口部26が形成された金属製の部材である。  The adjustment unit 2 includes a casing 11, a packing 12, a base 13, and a seal member 14. The casing 11 includes a rectangular lower surface plate 21 and four side plates 22, 23, 24, 25 vertically projecting from each of the four sides forming the rectangle of the lower surface plate 21, and an opening 26 is formed on the upper surface Made of metal.
またケーシング11は、フランジ27を備える。フランジ27は、4つの側面板22,23,24,25における上面側の端部から側面板22,23,24,25に対して垂直に外側へ向かって延び、開口部26の周縁に沿って略矩形枠状に形成されている。  The casing 11 also includes a flange 27. The flange 27 extends outward from the end on the upper surface side of the four side plates 22, 23, 24, 25 perpendicularly to the side plates 22, 23, 24, 25 and extends along the periphery of the opening 26. It is formed in a substantially rectangular frame shape.
図2は、後述する流路13c内をガスが流通する流通方向に沿ってガスセンサ1を切断した断面図である。 図2に示すように、ケーシング11の下面板21には、2つの貫通孔21a,21bが形成されている。そしてケーシング11は、インレット28とアウトレット29とを備える。インレット28は、貫通孔21aにおける外側の開口部から下面板21に対して垂直に外側へ向かって延びて、円筒状に形成されている。これにより、インレット28における外側の開口部からケーシング11の内部にガスを導入することができる。同様に、アウトレット29は、貫通孔21bにおける外側の開口部から下面板21に対して垂直に外側へ向かって延びて、円筒状に形成されている。これにより、ケーシング11の内部からインレット28における外側の開口部へガスを排出することができる。  FIG. 2 is a cross-sectional view of the gas sensor 1 cut along the flow direction in which the gas flows in the flow path 13c described later. As shown in FIG. 2, two through holes 21 a and 21 b are formed in the lower surface plate 21 of the casing 11. The casing 11 is provided with an inlet 28 and an outlet 29. The inlet 28 is formed in a cylindrical shape so as to extend outward from the outer opening of the through hole 21 a perpendicularly to the bottom plate 21. Thus, the gas can be introduced into the interior of the casing 11 from the outer opening of the inlet 28. Similarly, the outlet 29 is formed in a cylindrical shape, extending perpendicularly outward from the outer opening of the through hole 21 b to the lower surface plate 21. Thereby, the gas can be discharged from the inside of the casing 11 to the outer opening of the inlet 28.
図1に示すように、パッキン12は、平面視でフランジ27と略同じ矩形枠状に形成された弾性部材である。パッキン12は、図示しない接着剤を介してフランジ27に接着される。  As shown in FIG. 1, the packing 12 is an elastic member formed in a rectangular frame shape substantially the same as the flange 27 in a plan view. The packing 12 is adhered to the flange 27 via an adhesive (not shown).
基材13は、直方体形状に形成されたセラミック製の部材である。基材13には、直方体を構成する6つの面のうち互いに対向する2つの面13a,13bの間で貫通する流路13cが形成される。なお、面13aは図1に示されておらず、図2に示されている。本実施形態では、4つの流路13cが形成されている。流路13cの内壁面には、所定の活性化温度において、被測定ガスに含まれる第1ガス成分(本実施形態ではNO)を第2ガス成分(本実施形態ではNO)に変換するための触媒(本実施形態では、Ptを担持させたゼオライト)が塗布されている。  The base 13 is a ceramic member formed in a rectangular parallelepiped shape. In the base material 13, a flow passage 13c is formed to pass between two surfaces 13a and 13b facing each other among the six surfaces constituting the rectangular parallelepiped. The surface 13a is not shown in FIG. 1, but is shown in FIG. In the present embodiment, four flow paths 13c are formed. In the inner wall surface of the flow path 13c, the first gas component (NO in the present embodiment) is converted to the second gas component (NO 2 in the present embodiment) at a predetermined activation temperature. The catalyst (in the present embodiment, a Pt supported zeolite) is applied.
シール材14は、金属繊維を除く無機繊維(本実施形態では、アルミナ繊維)で形成された部材である。シール材14を構成する無機繊維には、触媒粒子(本実施形態では、Pt)が添加されている。無機繊維に触媒粒子を添加する方法としては、例えば、触媒粒子を含む溶液に無機繊維を浸した後に乾燥焼成する方法が挙げられる。また、触媒粒子を含む溶液に無機繊維を浸す代わりに、触媒粒子を担持したゼオライトまたはγアルミナを含むスラリーに無機繊維を浸してもよい。シール材14は、直方体を構成する6つの面のうち流路13cが形成されていない4つの面に接触して覆うように配置される。  The sealing material 14 is a member formed of inorganic fibers (in the present embodiment, alumina fibers) excluding metal fibers. Catalyst particles (Pt in the present embodiment) are added to the inorganic fibers constituting the sealing material 14. Examples of a method of adding catalyst particles to inorganic fibers include a method of immersing inorganic fibers in a solution containing catalyst particles and then drying and calcining. Also, instead of immersing the inorganic fibers in a solution containing catalyst particles, the inorganic fibers may be dipped in a slurry containing catalyst particles or zeolite containing γ-alumina. The sealing material 14 is disposed so as to be in contact with and cover four surfaces in which the flow path 13 c is not formed among the six surfaces forming the rectangular parallelepiped.
基材13は、直方体を構成する6つの面のうち流路13cが形成されていない3つの面に配置されたシール材14がそれぞれ下面板21と側面板23と側面板25と接触し、残りの1つの面に配置されたシール材14が開口部26で露出するようにして、ケーシング11の内部に配置される。また基材13は、ケーシング11の内部において、貫通孔21aと貫通孔21bとの間に配置される。これにより、貫通孔21aを通ってケーシング11の内部に導入された被測定ガスは、基材13の流路13c内を通って、貫通孔21bからケーシング11の外部へ排出される。なお、被測定ガスが基材13の流路13c内を通過することにより、被測定ガスに含まれる第1ガス成分が第2ガス成分に変換される。  In the base material 13, the sealing material 14 disposed on three surfaces not formed with the flow channel 13 c among the six surfaces constituting the rectangular parallelepiped respectively contacts the lower surface plate 21, the side surface plate 23 and the side surface plate 25. The sealing material 14 disposed on one side of the housing 11 is disposed inside the casing 11 so that the sealing material 14 is exposed at the opening 26. The base 13 is disposed between the through hole 21 a and the through hole 21 b inside the casing 11. As a result, the gas to be measured introduced into the interior of the casing 11 through the through hole 21 a is discharged from the through hole 21 b to the outside of the casing 11 through the inside of the flow path 13 c of the substrate 13. In addition, when the to-be-measured gas passes through the inside of the flow path 13c of the base 13, the first gas component contained in the to-be-measured gas is converted to the second gas component.
センサユニット3は、ケーシング31と、パッキン32と、検出部33と、セラミック配線基板34とを備える。 ケーシング31は、矩形状の上面板41と、上面板41の矩形を構成する四辺のそれぞれから垂直に突出した4つの側面板とを備え、下面に開口部42が形成された金属製の部材である。なお、開口部42は図1に示されておらず、図2に示されている。  The sensor unit 3 includes a casing 31, a packing 32, a detection unit 33, and a ceramic wiring board 34. The casing 31 is a metal member having a rectangular upper surface plate 41 and four side plates vertically projected from each of the four sides forming the rectangle of the upper surface plate 41, and having an opening 42 formed on the lower surface. is there. The opening 42 is not shown in FIG. 1, but is shown in FIG.
またケーシング31は、フランジ43を備える。フランジ43は、4つの側面板における下面側の端部から4つの側面板に対して垂直に外側へ向かって延び、開口部42の周縁に沿って略矩形枠状に形成されている。  The casing 31 also includes a flange 43. The flanges 43 extend outward from the lower side end of the four side plates perpendicularly to the four side plates, and are formed in a substantially rectangular frame along the periphery of the opening 42.
またケーシング31の上面板41には、図2に示すように、2つの貫通孔41a,41bが形成されている。そしてケーシング31は、インレット44とアウトレット45とを備える。インレット44は、貫通孔41aにおける外側の開口部から上面板41に対して垂直に外側へ向かって延びて、円筒状に形成されている。これにより、インレット44における外側の開口部からケーシング31の内部にガスを導入することができる。同様に、アウトレット45は、貫通孔41bにおける外側の開口部から上面板41に対して垂直に外側へ向かって延びて、円筒状に形成されている。これにより、ケーシング31の内部からアウトレット45における外側の開口部へガスを排出することができる。  Further, as shown in FIG. 2, two through holes 41 a and 41 b are formed in the upper surface plate 41 of the casing 31. The casing 31 is provided with an inlet 44 and an outlet 45. The inlet 44 is formed in a cylindrical shape so as to extend outward from the outer opening of the through hole 41 a perpendicularly to the top plate 41. Thus, the gas can be introduced into the interior of the casing 31 from the outer opening of the inlet 44. Similarly, the outlet 45 is formed in a cylindrical shape, extending perpendicularly outward from the outer opening of the through hole 41 b to the top plate 41. Thereby, the gas can be discharged from the inside of the casing 31 to the outer opening of the outlet 45.
図1に示すように、パッキン32は、平面視でフランジ43と略同じ矩形枠状に形成された弾性部材である。パッキン32は、図示しない接着剤を介してフランジ43に接着される。  As shown in FIG. 1, the packing 32 is an elastic member formed in a rectangular frame shape substantially the same as the flange 43 in a plan view. The packing 32 is adhered to the flange 43 via an adhesive (not shown).
検出部33は、図2に示すように、基板51と、センサ素子52と、ヒータ53とを備える。基板51は、絶縁性材料で矩形板状に形成された部材である。センサ素子52は、詳細は図示していないが、固体電解質体と、固体電解質体上に配置された一対の電極とを備えるガスセンサである。センサ素子52は、被測定ガスに含まれる第2ガス成分の濃度に応じて変化する電気的特性に基づいて、第2ガス成分の濃度を示す電気信号を出力する。センサ素子52は、基板51の上面51aに設置される。  As shown in FIG. 2, the detection unit 33 includes a substrate 51, a sensor element 52, and a heater 53. The substrate 51 is a member formed of an insulating material in a rectangular plate shape. Although not shown in detail, the sensor element 52 is a gas sensor including a solid electrolyte body and a pair of electrodes disposed on the solid electrolyte body. The sensor element 52 outputs an electrical signal indicating the concentration of the second gas component based on the electrical characteristic that changes in accordance with the concentration of the second gas component contained in the measurement gas. The sensor element 52 is disposed on the upper surface 51 a of the substrate 51.
 ヒータ53は、例えば白金を主体とする材料にて形成された発熱抵抗体を備え、図示しない電源から供給される電力により、センサ素子52を加熱する。ヒータ53は、基板51の下面51bに設置される。  The heater 53 includes, for example, a heating resistor formed of a material mainly composed of platinum, and heats the sensor element 52 by power supplied from a power supply (not shown). The heater 53 is disposed on the lower surface 51 b of the substrate 51.
セラミック配線基板34は、図1に示すように、本体部61と狭幅部62とを備える。本体部61は、その外周の形状がパッキン12,32の外周の形状と略一致するように矩形板状に形成されている。本体部61の上面61aには、検出部33を設置するための凹部61bが形成されている。  As shown in FIG. 1, the ceramic wiring board 34 includes a main body portion 61 and a narrow portion 62. The main body portion 61 is formed in a rectangular plate shape such that the shape of the outer periphery thereof substantially matches the shape of the outer periphery of the packing 12, 32. The upper surface 61 a of the main body 61 is formed with a recess 61 b for installing the detection unit 33.
狭幅部62は、本体部61を構成する4つの辺のうちの1つの辺から外側へ向かって延びて、矩形板状に形成されている。狭幅部62は、狭幅部62が外側へ向かって延びる方向に対して垂直な方向に沿った長さ(すなわち、幅)が、本体部61の辺(幅)の長さより短くなるように形成されている。狭幅部62上には、センサ素子52およびヒータ53に電気的に接続される配線が表裏面に対して形成されている。  The narrow portion 62 extends outward from one of four sides of the main body 61 and is formed in a rectangular plate shape. The narrow portion 62 has a length (i.e., width) along a direction perpendicular to the direction in which the narrow portion 62 extends outward is shorter than the length of the side (width) of the main portion 61. It is formed. Wirings electrically connected to the sensor element 52 and the heater 53 are formed on the narrow portion 62 with respect to the front and back surfaces.
そして、図2に示すように、検出部33は、基板51の下面51bを接着剤35で凹部61bの底面に接着することにより凹部61b内に設置される。 また、パッキン12の下面12aとフランジ27の上面27aとが接着剤により接着され、パッキン12の上面12bとセラミック配線基板34の本体部61における下面61cの外周部分とが接着剤により接着される。これにより、ケーシング11の開口部26がセラミック配線基板34の本体部61により閉塞される。このように閉塞されたケーシング11の内部空間がチャンバC1を形成する。なお、セラミック配線基板34の本体部61における下面61cと、基材13を覆っているシール材14の表面のうち下面板21、側面板23,25およびパッキン12と接触していない部分とが接触する。  Then, as shown in FIG. 2, the detection unit 33 is installed in the recess 61 b by bonding the lower surface 51 b of the substrate 51 to the bottom of the recess 61 b with the adhesive 35. The lower surface 12a of the packing 12 and the upper surface 27a of the flange 27 are bonded by an adhesive, and the upper surface 12b of the packing 12 and the outer peripheral portion of the lower surface 61c of the main body 61 of the ceramic wiring board 34 are bonded by an adhesive. As a result, the opening 26 of the casing 11 is closed by the main body 61 of the ceramic wiring board 34. The internal space of the casing 11 closed in this manner forms a chamber C1. The lower surface 61c of the main body portion 61 of the ceramic wiring substrate 34 is in contact with the surface of the sealing material 14 covering the base material 13 which is not in contact with the lower surface plate 21, the side plates 23, 25 and the packing 12 Do.
また、パッキン32の上面32aとフランジ43の下面43aとが接着剤により接着され、パッキン32の下面32bとセラミック配線基板34の本体部61における上面61aの外周部分とが接着剤により接着される。これにより、ケーシング31の開口部42がセラミック配線基板34の本体部61により閉塞される。このように閉塞されたケーシング31の内部空間がチャンバC2を形成する。  Further, the upper surface 32a of the packing 32 and the lower surface 43a of the flange 43 are bonded by an adhesive, and the lower surface 32b of the packing 32 and the outer peripheral portion of the upper surface 61a of the main portion 61 of the ceramic wiring board 34 are bonded by an adhesive. As a result, the opening 42 of the casing 31 is closed by the main body 61 of the ceramic wiring board 34. The internal space of the casing 31 closed in this way forms a chamber C2.
これにより、基材13、シール材14、セラミック配線基板34、接着剤35、ヒータ53、基板51およびセンサ素子52が順次積層された状態となる。このため、矢印H1で示すように、ヒータ53で発生した熱は、基板51を介してセンサ素子52に伝わる。また、矢印H2で示すように、ヒータ53で発生した熱は、接着剤35、セラミック配線基板34およびシール材14を介して基材13に伝わる。  As a result, the base material 13, the sealing material 14, the ceramic wiring substrate 34, the adhesive 35, the heater 53, the substrate 51, and the sensor element 52 are sequentially laminated. Therefore, as indicated by the arrow H1, the heat generated by the heater 53 is transmitted to the sensor element 52 through the substrate 51. Further, as indicated by the arrow H2, the heat generated by the heater 53 is transmitted to the base 13 through the adhesive 35, the ceramic wiring board 34 and the sealing material 14.
ガス流通管4は、樹脂または金属で形成されている。そして、ガス流通管4の一端の開口部内にアウトレット29が差し込まれ、ガス流通管4の他端の開口部内にインレット44が差し込まれる。これにより、チャンバC1から排出された被測定ガスは、ガス流通管4を通ってチャンバC2に流入する。そして、チャンバC2内に設置されている検出部33が、チャンバC2内に流入した被測定ガスに含まれる第2ガス成分の濃度を検出する。チャンバC2内に流入した被測定ガスは、アウトレット45からガスセンサ1の外部へ排出される。  The gas flow pipe 4 is formed of resin or metal. Then, the outlet 29 is inserted into the opening at one end of the gas flow pipe 4, and the inlet 44 is inserted into the opening at the other end of the gas flow pipe 4. Thereby, the measurement gas exhausted from the chamber C1 flows into the chamber C2 through the gas flow pipe 4. And the detection part 33 installed in the chamber C2 detects the density | concentration of the 2nd gas component contained in the to-be-measured gas which flowed in in the chamber C2. The measured gas flowing into the chamber C2 is discharged from the outlet 45 to the outside of the gas sensor 1.
このように構成されたガスセンサ1は、ケーシング11,31と、基材13と、検出部33と、シール材14とを備え、シール材14は、第1ガス成分を第2ガス成分に変換することができる触媒粒子を含有している。  The gas sensor 1 configured in this manner includes the casings 11 and 31, the base material 13, the detection unit 33, and the seal member 14. The seal member 14 converts the first gas component into the second gas component. Can contain catalyst particles.
ケーシング11,31は、自身の内部に被測定ガスを導入可能なチャンバC1が形成されている。 基材13は、チャンバC1に導入された被測定ガスが自身の内部に導入される面13aと、自身の内部に導入された被測定ガスが自身の外部へ排出される面13bとを備える。そして、基材13は、面13aと面13bとの間で被測定ガスを自身の内部に流通させることにより、被測定ガスに含まれる第1ガス成分を第2ガス成分に変換するように構成され、チャンバC1に収容される。  The casings 11 and 31 each have a chamber C1 into which a gas to be measured can be introduced. The base 13 includes a surface 13a into which the gas to be measured introduced into the chamber C1 is introduced into the substrate 13 and a surface 13b into which the gas to be measured introduced into the chamber C1 is discharged to the outside of the substrate C1. The substrate 13 is configured to convert the first gas component contained in the gas to be measured into the second gas component by circulating the gas to be measured inside between the surface 13 a and the surface 13 b. And housed in the chamber C1.
検出部33は、基材13から排出された被測定ガスに含まれる第2ガス成分を検出する。シール材14は、金属繊維を除く無機繊維で形成され、ケーシング11のチャンバC1における内壁面の一部分と、基材13の外面のうち面13aおよび面13bを除く外面との間に配置される。  The detection unit 33 detects a second gas component contained in the measurement gas discharged from the substrate 13. The sealing material 14 is formed of inorganic fibers excluding metal fibers, and is disposed between a part of the inner wall surface of the chamber C1 of the casing 11 and the outer surface of the base 13 excluding the surfaces 13a and 13b.
このようにガスセンサ1では、ケーシング11と基材13との隙間の少なくとも一部分をシール材14で塞ぐことができるため、被測定ガスが基材13ではなくケーシング11と基材13との隙間を通過する事態の発生を抑制することができる。これにより、ガスセンサ1は、ガス検出精度を向上させることができる。  As described above, in the gas sensor 1, at least a part of the gap between the casing 11 and the base material 13 can be closed by the sealing material 14, the gas to be measured passes through the gap between the casing 11 and the base material 13 instead To prevent the occurrence of Thereby, gas sensor 1 can improve gas detection accuracy.
ガスセンサ1では、シール材14は、金属繊維を除く無機繊維で形成されているため柔軟で変形し易い。このため、シール材14は、ケーシング11と基材13との隙間を塞ぎ易く、被測定ガスが基材13ではなくケーシング11と基材13との隙間を通過する事態の発生を更に抑制することができる。またガスセンサ1では、ケーシング11と基材13との隙間を塞ぐために、金属繊維で形成されたシール材とは異なり、大きな荷重を掛けてシール材を変形させる必要がない。このため、ガスセンサ1では、ケーシング11と基材13との隙間を塞ぐために基材13が破損してしまう事態の発生を抑制することができる。  In the gas sensor 1, since the sealing material 14 is formed of inorganic fibers excluding metal fibers, it is flexible and easily deformed. For this reason, the sealing material 14 is likely to close the gap between the casing 11 and the base material 13 and to further suppress the occurrence of the measured gas passing through the gap between the casing 11 and the base material 13 instead of the base material 13. Can. Further, in the gas sensor 1, in order to close the gap between the casing 11 and the base 13, unlike the sealing material formed of metal fibers, it is not necessary to apply a large load to deform the sealing material. For this reason, in the gas sensor 1, it is possible to suppress the occurrence of a situation where the base material 13 is broken in order to close the gap between the casing 11 and the base material 13.
さらにガスセンサ1では、シール材14は、第1ガス成分を第2ガス成分に変換することができる触媒粒子を含有している。このため、ケーシング11と基材13との隙間を通過した被測定ガスの少なくとも一部分において第1ガス成分が第2ガス成分に変換される。これにより、ガスセンサ1は、ガス検出精度を更に向上させることができる。  Furthermore, in the gas sensor 1, the seal material 14 contains catalyst particles capable of converting the first gas component into the second gas component. Therefore, the first gas component is converted to the second gas component in at least a part of the measurement gas that has passed through the gap between the casing 11 and the base 13. Thereby, the gas sensor 1 can further improve the gas detection accuracy.
またガスセンサ1は、具体的には、ケーシング11とケーシング31とを備え、ケーシング11から排出された被測定ガスを、ケーシング31の内部へ導入させるために、ケーシング11とケーシング31との間で被測定ガスを流通させるように構成されたガス流通管4を備える。ケーシング11は、基材13を収容するように構成される。ケーシング31は、検出部33を収容するように構成される。  Further, specifically, the gas sensor 1 includes a casing 11 and a casing 31, and in order to introduce the gas to be measured discharged from the casing 11 into the interior of the casing 31, the gas sensor 1 is placed between the casing 11 and the casing 31. A gas flow pipe 4 configured to flow the measurement gas is provided. The casing 11 is configured to receive the base material 13. The casing 31 is configured to receive the detection unit 33.
またガスセンサ1では、ケーシング31の内部に収容され、基材13および検出部33を加熱する単一のヒータ53を備える。これにより、ガスセンサ1は、ガスセンサ1の構成を簡略化することができ、ガスセンサ1を小型化することができる。  Further, the gas sensor 1 is provided with a single heater 53 which is accommodated inside the casing 31 and heats the base 13 and the detection unit 33. Thus, the gas sensor 1 can simplify the configuration of the gas sensor 1 and can miniaturize the gas sensor 1.
またガスセンサ1では、シール材14が含有している触媒粒子はPtである。これにより、ガスセンサ1は、被測定ガスに含まれる雑ガス(例えば、水素および一酸化炭素等)を酸化することにより除去することができる。  In the gas sensor 1, the catalyst particles contained in the sealing material 14 are Pt. Thereby, the gas sensor 1 can remove the miscellaneous gases (for example, hydrogen and carbon monoxide etc.) contained in the measured gas by oxidation.
以上説明した実施形態において、チャンバC1は内部空間に相当し、面13aは導入部に相当し、面13bは排出部に相当し、触媒が塗布された基材13は変換部に相当する。  In the embodiment described above, the chamber C1 corresponds to the internal space, the surface 13a corresponds to the introduction part, the surface 13b corresponds to the discharge part, and the substrate 13 coated with the catalyst corresponds to the conversion part.
また、ケーシング11は第1収容部に相当し、ケーシング31は第2収容部に相当し、ガス流通管4は流通部に相当する。  (第2実施形態) 以下に本開示の第2実施形態を図面とともに説明する。なお第2実施形態では、第1実施形態と異なる部分を説明する。共通する構成については同一の符号を付す。  Moreover, the casing 11 corresponds to a 1st accommodating part, the casing 31 corresponds to a 2nd accommodating part, and the gas flow pipe 4 corresponds to a distribution | circulation part. Second Embodiment Hereinafter, a second embodiment of the present disclosure will be described with reference to the drawings. In the second embodiment, parts different from the first embodiment will be described. The same reference numerals are given to the common configurations.
図3は、上記の流通方向に対して垂直な方向に沿って第2実施形態のガスセンサ1を切断した断面図である。図4は、上記の流通方向に沿って第2実施形態のガスセンサ1を切断した断面図である。  FIG. 3 is a cross-sectional view of the gas sensor 1 of the second embodiment cut along the direction perpendicular to the flow direction. FIG. 4 is a cross-sectional view of the gas sensor 1 of the second embodiment taken along the above flow direction.
第2実施形態のガスセンサ1は、図3および図4に示すように、シール材14により基材13を覆う範囲が変更された点と、接着剤17を備える点とが第1実施形態と異なる。 シール材14は、図3に示すように、基材13の直方体を構成する6つの面のうち、下面板21および側面板23,25に対向する3つの面に接触して覆うように配置される。従って、基材13において開口部26で露出する面にはシール材14は配置されない。  The gas sensor 1 of the second embodiment is different from the first embodiment in that the range in which the base material 13 is covered is changed by the sealing material 14 and that the adhesive 17 is provided as shown in FIGS. 3 and 4. . As shown in FIG. 3, the sealing material 14 is disposed so as to contact and cover three surfaces facing the lower surface plate 21 and the side surface plates 23 and 25 among the six surfaces forming the rectangular parallelepiped of the base material 13. Ru. Therefore, the sealing material 14 is not disposed on the surface of the base 13 exposed by the opening 26.
接着剤17は、シール材14よりも熱伝導率が高い材料で形成されており、硬化された状態でガス不透過性を有している。接着剤17は、基材13において開口部26で露出する面と、セラミック配線基板34の本体部61の下面61cとの間に配置される。すなわち、基材13は、接着剤17を介してセラミック配線基板34の本体部61に接着される。  The adhesive 17 is formed of a material having a thermal conductivity higher than that of the sealing material 14 and has gas impermeability in a cured state. The adhesive 17 is disposed between the surface of the base 13 exposed at the opening 26 and the lower surface 61 c of the main portion 61 of the ceramic wiring substrate 34. That is, the substrate 13 is bonded to the main portion 61 of the ceramic wiring substrate 34 via the adhesive 17.
このように構成されたガスセンサ1では、ヒータ53はケーシング31の内部に収容され、セラミック配線基板34の本体部61と、接着剤17とを備える。本体部61は、熱が伝導可能な材料で形成され、ケーシング11とケーシング31とを区切るためにケーシング11とケーシング31との間に配置される。接着剤17は、シール材14より熱伝導率が高い材料で形成され、本体部61と基材13との間に配置されることにより基材13が本体部61に接着された状態にする。これにより、ガスセンサ1は、基材13の触媒を更に効率良く加熱することができる。  In the gas sensor 1 configured as described above, the heater 53 is housed inside the casing 31, and includes the main body portion 61 of the ceramic wiring board 34 and the adhesive 17. The main body portion 61 is formed of a material that can conduct heat, and is disposed between the casing 11 and the casing 31 in order to separate the casing 11 and the casing 31. The adhesive 17 is formed of a material having a thermal conductivity higher than that of the sealing material 14, and is disposed between the main body 61 and the base 13 so that the base 13 is adhered to the main body 61. Thereby, the gas sensor 1 can heat the catalyst of the base material 13 more efficiently.
以上説明した実施形態において、本体部61は分割部材に相当する。 以上、本開示の一実施形態について説明したが、本開示は上記実施形態に限定されるものではなく、種々変形して実施することができる。  In the embodiment described above, the main body 61 corresponds to a dividing member. As mentioned above, although one Embodiment of this indication was described, this indication is not limited to the said embodiment, It can deform | transform variously and can be implemented.
例えば上記実施形態では、シール材14が含有している触媒粒子はPtである形態を示したが、この触媒粒子は貴金属および酸化物の少なくとも一方で構成されているようにしてもよい。  For example, in the above embodiment, the catalyst particles contained in the sealing material 14 are in the form of Pt, but the catalyst particles may be made of at least one of a noble metal and an oxide.
上記実施形態では、シール材14がアルミナ繊維で形成された形態を示したが、例えば、シリカ繊維またはガラス繊維などであってもよい。 また、上記実施形態では、ケーシング11、パッキン12、セラミック配線基板34、パッキン32、ケーシング31を、それぞれ接着材を介して固定させる構成を採ったが、各部材11、12、34、32、31の固定構造はこれに限定されない。例えば、接着剤を用いず、ケーシング11、31の外周に位置すると共にフランジ27、43上に位置するように、ネジ孔が四隅に形成された一対の固定プレートを配置し、一対の固定部材のネジ孔にネジを挿通させ、各固定部材からセラミック配線基板34に向けての力(付勢力)を付与することによって、各部材11、12、34、32、31が位置ズレしないよう固定するようにしてもよい。 また、上記実施形態における1つの構成要素が有する機能を複数の構成要素に分担させたり、複数の構成要素が有する機能を1つの構成要素に発揮させたりしてもよい。また、上記実施形態の構成の一部を省略してもよい。また、上記実施形態の構成の少なくとも一部を、他の上記実施形態の構成に対して付加、置換等してもよい。なお、特許請求の範囲に記載の文言から特定される技術思想に含まれるあらゆる態様が本開示の実施形態である。 In the above embodiment, the sealing material 14 is formed of alumina fibers, but it may be, for example, silica fibers or glass fibers. In the above embodiment, the casing 11, the packing 12, the ceramic wiring board 34, the packing 32, and the casing 31 are fixed via the adhesive, respectively. However, the members 11, 12, 34, 32, 31 are used. The fixed structure of is not limited to this. For example, a pair of fixing plates having screw holes formed at the four corners are disposed without using an adhesive and located on the outer periphery of the casings 11 and 31 and on the flanges 27 and 43. By inserting a screw into the screw hole and applying a force (biasing force) from each fixing member to the ceramic wiring board 34, the members 11, 12, 34, 32, 31 are fixed so as not to be displaced. You may Further, the function possessed by one component in the above embodiment may be shared by a plurality of components, or the function possessed by a plurality of components may be exhibited by one component. In addition, part of the configuration of the above embodiment may be omitted. In addition, at least a part of the configuration of the above-described embodiment may be added to or replaced with the configuration of the other above-described embodiment. In addition, all the aspects contained in the technical thought specified from the wording as described in a claim are an embodiment of this indication.
1…ガスセンサ、11…ケーシング、13…基材、13a,13b…面、14…シール材、31…ケーシング、33…検出部、C1…チャンバ DESCRIPTION OF SYMBOLS 1 ... Gas sensor, 11 ... Casing, 13 ... Base material, 13a, 13b ... Surface, 14 ... Sealing material, 31 ... Casing, 33 ... Detection part, C1 ... Chamber

Claims (5)

  1. 自身の内部に被測定ガスを導入可能な内部空間が形成されたケーシングと、



     前記内部空間に導入された前記被測定ガスが自身の内部に導入される導入部と、自身の内部に導入された前記被測定ガスが自身の外部へ排出される排出部とを備え、前記導入部と前記排出部との間で前記被測定ガスを自身の内部に流通させることにより、前記被測定ガスに含まれる第1ガス成分を第2ガス成分に変換するように構成され、前記内部空間に収容される変換部と、



     前記変換部から排出された前記被測定ガスに含まれる前記第2ガス成分を検出するように構成された検出部と、



     金属繊維を除く無機繊維で形成され、前記ケーシングの内部空間における内壁面の少なくとも一部分と、前記変換部の外面のうち前記導入部および前記排出部を除く前記外面の少なくとも一部分との間に配置されるシール材とを備え、



     前記シール材は、前記第1ガス成分を前記第2ガス成分に変換することができる触媒粒子を含有しているガスセンサ。


    A casing in which an inner space into which a gas to be measured can be introduced is formed;



    The system includes an introduction unit into which the measurement gas introduced into the internal space is introduced into the interior, and a discharge unit into which the measurement gas introduced into the interior is discharged out of the interior. The first gas component contained in the gas to be measured is configured to be converted into a second gas component by circulating the gas to be measured inside between itself and the discharge part, and the internal space A converter housed in the



    A detection unit configured to detect the second gas component contained in the measurement gas discharged from the conversion unit;



    It is formed of inorganic fibers excluding metal fibers, and is disposed between at least a portion of the inner wall surface in the inner space of the casing and at least a portion of the outer surface of the conversion portion excluding the introduction portion and the discharge portion. Seal material, and



    The said sealing material is a gas sensor containing the catalyst particle which can convert said 1st gas component into said 2nd gas component.


  2. 請求項1に記載のガスセンサであって、



     前記ケーシングは、前記変換部を収容するように構成された第1収容部と、前記検出部を収容するように構成された第2収容部とを備え、



     前記第1収容部から排出された前記被測定ガスを、前記第2収容部の内部へ導入させるために、前記第1収容部と前記第2収容部との間で前記被測定ガスを流通させるように構成された流通部を備えるガスセンサ。


    The gas sensor according to claim 1, wherein



    The casing includes a first accommodating portion configured to accommodate the conversion portion, and a second accommodating portion configured to accommodate the detection portion.



    The measurement gas is caused to flow between the first storage portion and the second storage portion in order to introduce the measurement gas discharged from the first storage portion into the inside of the second storage portion. A gas sensor comprising a distribution unit configured as above.


  3. 請求項1または請求項2に記載のガスセンサであって、



     前記ケーシングの内部に収容され、前記変換部および前記検出部を加熱する単一のヒータを備えるガスセンサ。


    A gas sensor according to claim 1 or 2, wherein



    A gas sensor comprising a single heater housed inside the casing and heating the conversion unit and the detection unit.


  4. 請求項3に記載のガスセンサであって、



     前記ヒータは、前記第2収容部の内部に収容され、



     熱が伝導可能な材料で形成され、前記第1収容部と前記第2収容部とを区切るために前記第1収容部と前記第2収容部との間に配置される分割部材と、



     前記シール材より熱伝導率が高い材料で形成され、前記分割部材と前記変換部との間に配置されることにより前記変換部が前記分割部材に接着された状態にする接着剤とを備えるガスセンサ。


    The gas sensor according to claim 3, wherein



    The heater is housed inside the second housing portion,



    A dividing member formed of a material capable of conducting heat and disposed between the first housing and the second housing to separate the first housing and the second housing;



    A gas sensor comprising: an adhesive which is formed of a material having a thermal conductivity higher than that of the sealing material, and which is disposed between the dividing member and the converting part to make the converting part adhere to the dividing member. .


  5. 請求項1~請求項4の何れか1項に記載のガスセンサであって、



     前記触媒粒子は、貴金属および酸化物の少なくとも一方で構成されているガスセンサ。
    The gas sensor according to any one of claims 1 to 4, wherein



    The said catalyst particle is a gas sensor comprised with at least one of a noble metal and an oxide.
PCT/JP2018/019453 2017-06-23 2018-05-21 Gas sensor WO2018235487A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017123136A JP2019007817A (en) 2017-06-23 2017-06-23 Gas sensor
JP2017-123136 2017-06-23

Publications (1)

Publication Number Publication Date
WO2018235487A1 true WO2018235487A1 (en) 2018-12-27

Family

ID=64737125

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/019453 WO2018235487A1 (en) 2017-06-23 2018-05-21 Gas sensor

Country Status (2)

Country Link
JP (1) JP2019007817A (en)
WO (1) WO2018235487A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019146242A1 (en) * 2018-01-26 2019-08-01 日本特殊陶業株式会社 Gas sensor

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019138712A1 (en) * 2018-01-10 2019-07-18 日本特殊陶業株式会社 Gas sensor
JP2019120641A (en) * 2018-01-10 2019-07-22 日本特殊陶業株式会社 Gas sensor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10300704A (en) * 1997-04-28 1998-11-13 Ngk Insulators Ltd Chamber used for low-concentration nox measuring instrument
JP2001259438A (en) * 2000-03-22 2001-09-25 Ibiden Co Ltd Catalytic converter
JP2005074243A (en) * 2003-08-29 2005-03-24 Three M Innovative Properties Co Contamination controlling element-holding material and contamination controlling apparatus
JP2006233827A (en) * 2005-02-23 2006-09-07 Toyota Motor Corp Exhaust emission control device
JP2018084525A (en) * 2016-11-25 2018-05-31 日本特殊陶業株式会社 Gas sensor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10300704A (en) * 1997-04-28 1998-11-13 Ngk Insulators Ltd Chamber used for low-concentration nox measuring instrument
JP2001259438A (en) * 2000-03-22 2001-09-25 Ibiden Co Ltd Catalytic converter
JP2005074243A (en) * 2003-08-29 2005-03-24 Three M Innovative Properties Co Contamination controlling element-holding material and contamination controlling apparatus
JP2006233827A (en) * 2005-02-23 2006-09-07 Toyota Motor Corp Exhaust emission control device
JP2018084525A (en) * 2016-11-25 2018-05-31 日本特殊陶業株式会社 Gas sensor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019146242A1 (en) * 2018-01-26 2019-08-01 日本特殊陶業株式会社 Gas sensor

Also Published As

Publication number Publication date
JP2019007817A (en) 2019-01-17

Similar Documents

Publication Publication Date Title
WO2018235487A1 (en) Gas sensor
US7360395B2 (en) Gas sensor
US11143614B2 (en) Gas sensor
US20190227045A1 (en) Gas sensor
JPH07508100A (en) Sensor device for detecting gas components and/or gas concentration of gas mixture
US10859523B2 (en) Gas sensor
JP4606948B2 (en) Gas sensor
WO2018096892A1 (en) Gas sensor
US7416651B2 (en) Gas sensor
JP5166202B2 (en) Gas detector
US20190041353A1 (en) Gas sensor
JP4308107B2 (en) Gas sensor
US20180259478A1 (en) Gas sensor
JPH05103941A (en) Article storage and preservation device, electronic meter, integrating wattmeter and enclosed switch board
JP2004093473A (en) Contact combustion type combustible gas sensor
WO2019163232A1 (en) Gas sensor
JP2004093474A (en) Micro sensor made of silicon
US20180275116A1 (en) Gas sensor
JP2004093475A (en) Microsensor made of silicon
JP2004093472A (en) Combustible gas sensor
JP6347617B2 (en) Gas detector and gas detection system
JP2019174332A (en) Gas sensor
JP6875230B2 (en) Gas sensor
JP2018531382A (en) Sensor device for detecting at least one characteristic of a fluid medium
WO2019176506A1 (en) Gas sensor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18819646

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18819646

Country of ref document: EP

Kind code of ref document: A1