WO2018235477A1 - 測定装置 - Google Patents

測定装置 Download PDF

Info

Publication number
WO2018235477A1
WO2018235477A1 PCT/JP2018/019237 JP2018019237W WO2018235477A1 WO 2018235477 A1 WO2018235477 A1 WO 2018235477A1 JP 2018019237 W JP2018019237 W JP 2018019237W WO 2018235477 A1 WO2018235477 A1 WO 2018235477A1
Authority
WO
WIPO (PCT)
Prior art keywords
cells
cell
illumination light
light
measuring device
Prior art date
Application number
PCT/JP2018/019237
Other languages
English (en)
French (fr)
Inventor
寛和 辰田
威 國弘
和博 中川
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Priority to US16/621,793 priority Critical patent/US11549093B2/en
Publication of WO2018235477A1 publication Critical patent/WO2018235477A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/06Investigating concentration of particle suspensions
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/06Means for regulation, monitoring, measurement or control, e.g. flow regulation of illumination
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M31/00Means for providing, directing, scattering or concentrating light
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M31/00Means for providing, directing, scattering or concentrating light
    • C12M31/08Means for providing, directing, scattering or concentrating light by conducting or reflecting elements located inside the reactor or in its structure
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/30Means for regulation, monitoring, measurement or control, e.g. flow regulation of concentration
    • C12M41/36Means for regulation, monitoring, measurement or control, e.g. flow regulation of concentration of biomass, e.g. colony counters or by turbidity measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Electro-optical investigation, e.g. flow cytometers
    • G01N15/1434Electro-optical investigation, e.g. flow cytometers using an analyser being characterised by its optical arrangement
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Electro-optical investigation, e.g. flow cytometers
    • G01N15/1434Electro-optical investigation, e.g. flow cytometers using an analyser being characterised by its optical arrangement
    • G01N15/1436Electro-optical investigation, e.g. flow cytometers using an analyser being characterised by its optical arrangement the optical arrangement forming an integrated apparatus with the sample container, e.g. a flow cell
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Electro-optical investigation, e.g. flow cytometers
    • G01N15/1468Electro-optical investigation, e.g. flow cytometers with spatial resolution of the texture or inner structure of the particle
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N15/01
    • G01N15/075
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Electro-optical investigation, e.g. flow cytometers
    • G01N15/1434Electro-optical investigation, e.g. flow cytometers using an analyser being characterised by its optical arrangement
    • G01N2015/144Imaging characterised by its optical setup
    • G01N2015/1445Three-dimensional imaging, imaging in different image planes, e.g. under different angles or at different depths, e.g. by a relative motion of sample and detector, for instance by tomography
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Electro-optical investigation, e.g. flow cytometers
    • G01N15/1434Electro-optical investigation, e.g. flow cytometers using an analyser being characterised by its optical arrangement
    • G01N2015/1452Adjustment of focus; Alignment
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Electro-optical investigation, e.g. flow cytometers
    • G01N15/1434Electro-optical investigation, e.g. flow cytometers using an analyser being characterised by its optical arrangement
    • G01N2015/1454Electro-optical investigation, e.g. flow cytometers using an analyser being characterised by its optical arrangement using phase shift or interference, e.g. for improving contrast
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Electro-optical investigation, e.g. flow cytometers
    • G01N2015/1486Counting the particles

Definitions

  • the present technology relates to a measuring device used for sensing of cells.
  • Patent Document 1 describes a microscope for observing cells cultured in a culture vessel.
  • a culture vessel such as a dish is placed on a stage.
  • the vertical direction of the stage is moved based on the information such as the type of culture vessel and the amount of culture medium designated by the user, and focusing is performed on the cell adhesion surface, the surface of the culture medium, and the like.
  • the image of each surface is taken by a microscope, and by comparing and examining the images of each surface, it is possible to automatically acquire information on the growth state of the cell as a sample.
  • an object of the present technology is to provide a measuring device capable of easily sensing in real time the state of a cell or the like.
  • the light source unit emits illumination light.
  • the filling part is provided on the light path of the illumination light and has a first surface part and a second surface part facing each other, and the gap between the first and the second surface parts is filled with a liquid containing cells. It is possible.
  • the detection unit detects interference fringes of a liquid containing the cells of the illumination light that has passed through the gap.
  • a gap sandwiched between the first and second surface portions facing each other is provided on the optical path of the illumination light emitted from the light source, and the gap is filled with a liquid containing cells. Then, the interference fringes of the illumination light by the liquid containing the cells filled in the gap are detected. Thus it is possible to easily sensing in real time a state of a cell or the like based on the interference fringes.
  • a width from the first surface to the second surface of the gap may be set according to a parameter related to the cell.
  • the parameters relating to the cells may include at least one of the size of the cells and the concentration of the cells in the liquid.
  • the width of the gap can be determined based on the size of the cells and the concentration of cells contained in the liquid. This makes it possible to sense the state of a cell or the like with high accuracy.
  • the detection unit may have a detection surface substantially perpendicular to the light path of the illumination light.
  • the filling unit may have a detection space corresponding to the detection surface.
  • the illumination light passes through a detection space filled with, for example, a liquid containing cells and is incident on the detection surface. This makes it possible to easily sense the state of a cell or the like.
  • the width of the gap may be set such that the sum of the cross-sectional areas of the cells included in the detection space is smaller than that of the detection surface. This makes it possible to accurately detect, for example, the illumination light diffracted by each cell in the liquid. As a result, it becomes possible to sense the state of cells etc. with sufficiently high accuracy.
  • the width of the gap may be set such that the area of the region to be filled with the cells when the cells contained in the detection space are two-dimensionally closely packed is smaller than the detection surface. . This makes it possible to accurately detect, for example, the illumination light diffracted by each cell in the liquid. As a result, it becomes possible to sense the state of cells etc. with sufficiently high accuracy.
  • the width of the gap may be less than 11.8 mm. This makes it possible to sense the state of cells or the like at a desired concentration.
  • the illumination light may be substantially coherent light or partially coherent light.
  • the coherence of the illumination light is improved, and interference fringes by cells can be detected with high accuracy.
  • the first surface portion may have a first optical window on which the illumination light emitted from the light source is incident.
  • the second surface portion may have a second optical window disposed substantially parallel to the first optical window and from which the illumination light passing through the filling portion is emitted.
  • the first optical window may be an optical filter that passes part of wavelength components of the illumination light.
  • the coherence of the illumination light can be improved by narrowing the wavelength band of the illumination light by an optical filter. This makes it possible to improve the sensing accuracy.
  • the measurement apparatus may further include a collimating unit disposed between the light source and the filling unit to collimate the illumination light. This makes it possible to convert the illumination light into a substantially parallel luminous flux and to irradiate the liquid containing the cells, and to sense the state of the cells and the like with high accuracy.
  • the detection unit may generate image data in which interference fringes of the illumination light are recorded. This makes it possible to easily analyze the state of a cell or the like based on image data.
  • the light source may switch and emit light of different wavelengths as the illumination light.
  • the detection unit may generate a plurality of image data corresponding to each of the lights having different wavelengths. This makes it possible to sense, for example, the color of the liquid containing cells.
  • the measurement apparatus may further include a color information calculation unit that calculates color information of the liquid containing the cells based on the plurality of image data. For example, it is possible to analyze, for example, the state of liquid containing cells, based on color information.
  • the cells may be immune cells. This makes it possible to easily sense the status of immune cells in real time.
  • the liquid containing cells may be a liquid medium to which a pH indicator is added.
  • a pH indicator for example, it is possible to calculate the pH or the like of the liquid culture medium based on color information of the liquid culture medium. This makes it possible to easily sense the state of the culture environment and the like.
  • the measurement device may be placed in a liquid containing the cells.
  • the measuring device can operate in a state of being immersed in liquid medium or the like. As a result, it becomes possible to easily sense the state of a cell or the like in real time.
  • the effect described here is not necessarily limited, and may be any effect described in the present disclosure.
  • FIG. 1 is a block diagram showing an exemplary configuration of a measurement system according to the present technology.
  • the measurement system 100 includes a measurement device 10, a processing device 20, and a display device 30.
  • FIG. 2 is a schematic view for explaining the outline of the measurement system 100.
  • the measurement system 100 the sensing cells 2 are performed floating medium culture 1.
  • the cells 2 suspended inside the culture solution 1 are schematically illustrated by black dots, and the pack 3 filled with the culture solution 1 containing the cells 2 is schematically illustrated by dotted lines.
  • the cell 2 is an immune cell.
  • the present technology is not limited to this, and for example, the present technology is applicable to any cell suspended in a liquid.
  • "cell” (in the singular) at least conceptually comprises a single cell and a collection of cells.
  • the culture solution 1 is a liquid medium to which a pH indicator has been added.
  • the culture solution 1 is configured to contain, for example, nutrients necessary for the growth and proliferation of immune cells.
  • a pH indicator phenol red etc. are used, for example.
  • the specific configuration of the culture solution 1, the type of pH indicator and the like are not limited.
  • the culture solution 1 corresponds to a liquid containing cells.
  • Pack 3 is a culture vessel for culturing cells 2.
  • suspension culture of the cells 2 (immune cells) suspended in the culture solution 1 is performed using the culture solution 1 as a medium.
  • pack 3 it is not limited when using pack 3 as a cultivation container, for example, this art is applicable also when other cultivation containers, such as a cultivation tank, are used.
  • the measuring device 10 is installed inside the pack 3. That is, the measuring device 10 is placed in the culture solution 1 containing the cells 2. For example, the state of the cells 2 and the culture solution 1 is measured by the measuring device 10, and the measurement result is output to the processing device 20 disposed outside the pack 3. Processing on the measurement result is executed by the processing device 20, and the processing result is displayed on the display device 30. This makes it possible to monitor the state of cells in culture and the like.
  • the processing unit 20, by the acquisition unit 21, calculation unit 22, and the display control unit 23 cooperate, cell information about the cell 2 based on the image data is calculated, the monitoring showing temporal changes of cell information The display of the image 50 is controlled. Then, the monitoring image 50 is displayed on the display device 30.
  • the processing unit 20, by the acquisition unit 21, calculation unit 22, and the display control unit 23 cooperate, cell information about the cell 2 based on the image data is calculated, the monitoring showing temporal changes of cell information The display of the image 50 is controlled. Then, the monitoring image 50 is displayed on the display device 30.
  • FIG. 3 is a schematic view showing a configuration example of the measuring apparatus 10.
  • FIG. 4 is a perspective view showing an example of the appearance of the measuring apparatus 10.
  • the measuring apparatus 10 includes a housing 11, a light source 12, a collimator lens 13, an image sensor 14, and a control unit 15.
  • the housing 11 has a base 40, and first and second protrusions 41 and 42 protruding from the base 40.
  • the first and second protrusions 41 and 42 protrude from the base 40 along the same direction so as to face each other at a predetermined distance t.
  • a gap 43 having a width equal to the predetermined distance t (denoted by the same symbol as the width t) is formed.
  • first and second protrusions 41 and 42 a first surface 44 and a second surface 45 which face each other with the gap 43 interposed therebetween are respectively formed.
  • the filling unit by the first and second protrusions 41 and 42 is achieved, the gap 43 between the first and second surfaces 44 and 45, the culture liquid 1 is filled.
  • first face 44 and second face 45 correspond respectively to a first face portion and a second surface portion.
  • the first surface 44 has a first optical window 46.
  • the illumination light 4 emitted from the light source 12 described later is incident on the first optical window 46.
  • the first optical window 46 is disposed, for example, substantially perpendicular to the light path direction of the illumination light 4.
  • the first optical window 46 functions as an optical filter that passes part of the wavelength components of the illumination light 4.
  • the first optical window 46 for example, a band pass filter having a dielectric multilayer film or the like is used.
  • the pass band of the filter is appropriately set to narrow the wavelength band of the illumination light 4.
  • the wavelength band of the illumination light 4 can be sharpened, and the coherence of the illumination light 4 can be improved.
  • the second surface 45 has a second optical window 47.
  • the second optical window 47 is disposed substantially in parallel with the first optical window 46.
  • the illumination light 4 passing through the gap 43 is emitted from the second optical window 47.
  • a transparent plate such as glass or quartz is appropriately used.
  • the housing 11 functions as an exterior of the measuring device 10 and is configured such that liquid or the like does not intrude inside.
  • the outer surface of the housing 11 is coated with a material harmless to the cells 2 and the like.
  • the housing 11 has a portion having a streamlined shape.
  • the surface of the base 40 opposite to the portion connected to the first and second protrusions 41 and 42 is formed of a curved surface.
  • the housing 11 By configuring the housing 11 in this manner, it is possible to sufficiently reduce the influence of the measuring apparatus 10 on the cells 2 in culture and the culture environment. This makes it possible to properly sense the state of cells or the like without, for example, inhibiting the flow of the liquid such as the culture solution 1 or the like.
  • the specific configuration and the like of the case 11 are not limited, and may be appropriately configured according to the environment and the like to be used.
  • the light source 12 is disposed inside the first protrusion 41 toward the second protrusion 42.
  • the light source 12 emits the illumination light 4 along the optical axis O toward the second protrusion 42.
  • the optical axis O of the light source 12 is illustrated by a dotted line.
  • a direction parallel to the optical axis O will be referred to as a Z-axis direction.
  • the direction parallel to the optical axis O that is, the Z-axis direction corresponds to the optical path direction of the illumination light.
  • the illumination light 4 emitted from the light source 12 is partially coherent light.
  • the light source 12 for example, an LED (Light Emitting Diode) light source capable of emitting monochromatic light having a predetermined wavelength spectrum is used.
  • the specific configuration of the light source 12 is not limited, and any light source capable of emitting partially coherent light may be used, for example.
  • the light source 12 can switch and emit light having different wavelengths as the illumination light 4.
  • the light source 12 is configured to include, for example, a plurality of LED light sources each capable of emitting light of different wavelengths. Thereby, it is possible to appropriately switch the wavelength of the light emitted as the illumination light 4. Besides this, any configuration capable of switching and emitting light of different wavelengths may be used.
  • the light source 12 can switch between and emit three types of light corresponding to the wavelengths of the red light R, the green light G, and the blue light B.
  • the central wavelength and bandwidth of each color light are not limited.
  • the light source 12 corresponds to a light source unit that emits illumination light.
  • the collimator lens 13 is disposed inside the first protrusion 41 between the light source 12 and the gap 43.
  • the collimator lens 13 is disposed on the optical axis O and collimates the illumination light 4 emitted from the light source 12.
  • the illumination light 4 that has passed through the collimator lens 13 is emitted as a substantially parallel beam.
  • the collimator lens 13 corresponds to a collimator unit.
  • the illumination light 4 that has become approximately parallel light flux has a first surface 44 (first optical window 46), a gap 43, and a second surface provided on the optical path of the illumination light 4. 45 passes through the (second optical window 47) in this order, enters the second protrusion 42.
  • the image sensor 14 has a detection surface 16 substantially perpendicular to the optical axis O of the illumination light 4.
  • the image sensor 14 is disposed inside the second protrusion 42 so that the detection surface 16 faces the second optical window 47. Therefore, the illumination light 4 having passed through the culture solution 1 containing the cells 2 filled in the gap 43 is incident on the detection surface 16.
  • the image sensor 14 receives the illumination light 4 incident on the detection surface 16 and detects interference fringes due to the culture solution 1 containing the cells 2 of the illumination light 4 that has passed through the gap 43.
  • the image sensor 14 also generates image data in which interference fringes of the illumination light 4 are recorded.
  • the image sensor 14 functions as a monochrome image sensor having a light receiving surface.
  • the monochrome image sensor for example, the intensity (brightness) of the illumination light 4 at each position on the light receiving surface is detected.
  • the light receiving surface of the image sensor 14 corresponds to the detection surface 16.
  • a charge coupled device (CCD) sensor or a complementary metal-oxide semiconductor (CMOS) sensor is used as the image sensor 14.
  • CCD charge coupled device
  • CMOS complementary metal-oxide semiconductor
  • the control unit 15 controls the operation of each part of the measuring device 10. For example, the control unit 15 controls the switching of the wavelength of the illumination light 4 emitted from the light source 12, the timing of the operation of the image sensor 14, and the like.
  • the control unit 15 has a communication function for performing communication with an external measuring device 10, to perform the transmission and reception of control signals for controlling the respective units of the image data and measurement device with the processing unit 20 Is possible.
  • Specific configuration of the control unit 15 is not limited, for example, FPGA (Field Programmable Gate Array), or ASIC may be (Application Specific Integrated Circuit), such devices are used.
  • FIG. 5 is a schematic view showing the positional relationship between the detection surface 16 and the cells 2 as viewed from the direction of the light path of the illumination light 4.
  • Figure 5 is a second optical window 47 circular, and the detection surface 16 rectangular disposed inside the second optical window 47 is illustrated schematically.
  • the cells C1 to C5 correspond to the cells C1 to C5 suspended in the gap 43 of the measuring device 10 described with reference to FIG.
  • the illumination light 4 enters the gap 43 from the first optical window 46.
  • a part of the illumination light 4 incident on the gap 43 is diffracted by the cells 2 contained in the culture fluid 1 filled in the gap 43.
  • the other part of the illumination light 4 goes straight in the culture solution 1 without being diffracted by the cells 2.
  • light interference occurs due to the illumination light 4 diffracted by the cells 2 and the illumination light 4 going straight in the culture solution 1.
  • the image sensor 14 detects interference fringes generated on the detection surface 16 (light receiving surface) due to the interference of the light.
  • interference fringes of the illumination light 4 are created by the cells 2 floating on the optical path of the illumination light 4 incident on the detection surface 16.
  • the interference fringes detected by the image sensor 14 are interference fringes generated by the diffraction of the illumination light 4 in the cells C1 to C5.
  • the space in the gap 43 through which the illumination light 4 incident on the detection surface 16 passes is referred to as a detection space 48.
  • the detection space 48 is, for example, a columnar space having a bottom having the same shape as the detection surface 16 and having a width t of the gap as a height.
  • the illumination light 4 passing through the detection space 48 travels in the culture solution 1 by a distance substantially equal to the width t of the gap. Therefore, for example, as the width t of the gap is longer, the number of cells 2 floating on the light path of the illumination light 4 increases, and the frequency of the illumination light 4 being diffracted by the cells 2 increases.
  • the width t from the first surface 44 to the second surface 45 of the gap 43 is set according to the parameter related to the cell 2. That is, it can be said that the size in the Z-axis direction of the detection space 48 is set according to the parameter related to the cell 2.
  • the size of cell 2 and the concentration of cell 2 in culture solution 1 are used.
  • the cross section of the cell 2 (black circle area) is regarded as a region where diffraction of the illumination light 4 occurs. be able to. Therefore, if the size of the cell 2 (diameter of the black circle) is large, the area where diffraction occurs will be large. Even when the concentration of the cells 2 high, since the number of cells 2 is increased, the area where diffraction occurs increases.
  • the width t of the gap 43 is set such that the sum of the cross-sectional areas of the cells 2 included in the detection space 48 is smaller than that of the detection surface.
  • the total sum ⁇ of the cross-sectional areas of the cells 2 included in the detection space 48 is, for example, the volume of the detection space 48 (area S of detection surface 16 ⁇ width t of gap 43), size of cells 2 (cross-sectional area A of cells 2)
  • the width t of the gap 43 is t ⁇ 1 / (N ⁇ A) using the cross-sectional area A and concentration N of cells It is expressed as Thus, the width t of the gap 43, the greater the concentration N and the cross-sectional area A, is set to a small value. On the other hand, when the concentration N and the cross sectional area A are small, the width t of the gap 43 can be set thick.
  • the sum of the cross-sectional areas ⁇ corresponds to the area of the region generated diffraction in the optical path of the illumination light 4. Therefore, by the sum of the cross-sectional area ⁇ is appropriately setting the width t of the gap 43 so as to be smaller than the area S of the detection surface 16, it is possible to lower than the detection surface 16 of the region resulting in diffraction.
  • the illumination light 4 passes through the detection space 48, it is possible to sufficiently suppress a state in which the interference of the illumination light 4 is deteriorated by receiving a plurality of diffractions by the cell 2.
  • a situation in which the interference fringes generated on the detection surface 16 are blurred can be avoided, and the cells 2 can be sensed with high accuracy.
  • Car-T cells used for immunotherapy such as lymphocytic leukemia are dosed to a patient at a concentration of about 30 cells / mm 3 .
  • the average diameter of Car-T cells is 6 ⁇ m, and a fluid containing 100 times the dose concentration (3000 cells / mm 3 ) of Car-T cells is sensed.
  • the width t ⁇ 11.8 mm of the gap 43 may be set.
  • passage is generally performed when the concentration of cells becomes too high. Passaging is, for example, an operation to dilute the concentration of cells.
  • the concentration of cells serving as a measure for this passage is approximately 1000 cells / mm 3 .
  • the average diameter of cells is 6 ⁇ m, and a culture solution containing cells at a concentration 10 times the concentration of passage (10000 cells / mm 3 ) is sensed.
  • the width t of the gap 43 it is possible to properly execute sensing at the concentration of passage and the like.
  • the method of setting the width t of the gap 43 is not limited to the method described above. As described later, in the present embodiment, the information on the color of the culture solution 1 is sensed by utilizing the phenomenon that the illumination light 4 is absorbed by the culture solution 1. In this case, the absorption amount of the illumination light 4 is larger as the light path of the illumination light in the culture solution 1 is longer, and detection with high accuracy is possible. Therefore, the width t of the gap 43 may be determined according to, for example, the characteristic of the absorption amount of the illumination light 4 or the like. Of course, the width t of the gap 43 may be determined based on both the coherence and the amount of absorption of the illumination light 4 in the gap 43.
  • FIG. 6 is a diagram for explaining an example of the connection form of the measuring apparatus.
  • FIG. 6A is a perspective view of the measuring device 210 and the power supply / receiver 220 disposed in the pack 3.
  • FIG. 6B is a cross-sectional view of the measurement device 210 disposed in the pack 3 and the power supply / receiver 220.
  • wireless communication and wireless power supply with the outside of the pack 3 are performed by the measuring device 210.
  • the measuring device 210 is used in combination with the power supply / receiver 220 installed outside the pack 3.
  • the measurement device 210 includes a wireless communication unit 211, a wireless power receiver 212, and a fixed magnet 213.
  • the measuring device 210 is disposed adjacent to the power supply / receiver 220 across the pack 3.
  • the wireless communication unit 211 is a module for executing near field wireless communication with the power supply / receiver 220, and for example, a wireless LAN (Local Area Network) module such as WiFi or a communication module such as Bluetooth (registered trademark). Is used.
  • Wireless power receiver 212 is a device for receiving the power transmitted in non-contact.
  • the fixed magnet 213 is a magnet for fixing the measuring device 210 at a predetermined position of the power supply / receiver 220.
  • the power supply / reception device 220 includes a wireless communication unit 221, a wireless power supply transmitter 222, a fixed magnet 223, and a power supply / communication cable 224.
  • the wireless communication unit 221 performs wireless communication and the like with the measuring device 210.
  • the wireless power supply transmitter 222 supplies the power transmitted contactlessly to the measurement device 210.
  • the fixed magnet 223 fixes the measurement device 210 together with the fixed magnet 213 of the measurement device 210.
  • the power supply / communication cable 224 supplies power for wireless power supply and transmits / receives data signals for wireless communication.
  • image data and the like acquired by an image sensor are transmitted by a wireless signal.
  • the wireless communication unit 221 of the power supply / receiver 220 receives a wireless signal, and appropriately transmits image data and the like to the processing device 20 or the like through the power supply / communication cable 224.
  • sensing the state of the cell 2 without exposing the cell 2 in the pack 3 or the culture solution 1 to the open air by configuring the measuring device 210 to enable wireless communication and wireless power feeding Is possible. Accordingly, and when performing culture completely sealed in the pack 3, even or when the wiring is difficult, it becomes possible to easily monitor the cell 2 culture step.
  • FIG. 7 is a perspective view for explaining another example of the connection form of the measuring apparatus.
  • the measuring device 310 has a power supply / communication cable 311 and is connected to the outside of the pack 3 by wire.
  • the measuring device 310 having a power supply / communication cable 311.
  • the number of parts of the device can be reduced, and a small and inexpensive device can be provided.
  • the processing device 20 has hardware necessary for the configuration of a computer such as a central processing unit (CPU), a read only memory (ROM), a random access memory (RAM), and a hard disk drive (HDD).
  • a computer such as a central processing unit (CPU), a read only memory (ROM), a random access memory (RAM), and a hard disk drive (HDD).
  • CPU central processing unit
  • ROM read only memory
  • RAM random access memory
  • HDD hard disk drive
  • PC Personal Computer
  • any other computer may be used.
  • the CPU executes loads a program according to the present disclosure which is stored in the ROM or HDD to RAM, acquisition unit 21 is a functional block shown in FIG. 1, the calculating unit 22, and the display control unit 23 is realized Ru. And the information processing method concerning this art is performed by these functional blocks. Dedicated hardware may be used as appropriate to realize each functional block.
  • the processing device 20 corresponds to an information processing device.
  • the program is installed in the processing device 20 via, for example, various recording media. Alternatively, the program may be installed via the Internet or the like.
  • the acquisition unit 21 acquires image data in which interference fringes of the illumination light 4 having passed through the liquid containing the cells 2 are recorded.
  • the acquisition unit 21 acquires, for example, image data generated by the image sensor 14 via the control unit 15 of the measurement apparatus 10.
  • the acquired image data is output to the calculation unit 22.
  • the calculation unit 22 calculates cell information on the cell 2 by executing propagation calculation for the illumination light 4 based on the image data.
  • the calculation unit 22 also calculates culture solution information on the culture solution 1 based on the image data. The operation of the calculation unit 22 will be described in detail later.
  • the culture solution information corresponds to liquid information.
  • the display control unit 23 controls the display of the monitoring image 50 indicating the time change of the cell information.
  • the display control unit 23, for example, calculation unit obtains the calculated cell information and culture information by 22, on the basis of these information, it is possible to control the content or the like to be displayed on the monitoring image 50.
  • the monitoring image 50 is output to the display device 30 via an output interface (not shown).
  • the display device 30 is a display device using, for example, liquid crystal, EL (Electro-Luminescence), or the like.
  • the monitoring image 50 etc. output from the processing device 20 are displayed.
  • the user can easily sense in real time the state or the like of the cell 2 in culture by referring to, for example, the monitoring image 50 or the like displayed on the display device 30.
  • FIG. 8 is a diagram for explaining a basic operation example of the measurement system 100.
  • the measuring apparatus 10 captures a hologram of the cell 2 suspended in the culture solution 1.
  • the hologram of the cell 2 is an interference pattern (interference pattern) of the illumination light 4 on the detection surface 16 which is generated when the illumination light 4 is diffracted by the cell 2. Therefore, photographing a cell hologram is included in the detection of interference fringes by the image sensor 14.
  • the illumination light 4 of a predetermined wavelength is used for imaging
  • any one of red light R, green light G, and blue light B that can be emitted by the light source 12 is used as the illumination light 4.
  • the present invention is not limited to this, and the wavelength used for photographing the hologram may be appropriately set according to, for example, the resolution of the image sensor 14 or the size of the target cell 2.
  • the photographed hologram is output to the processing device 20 as image data.
  • the calculation unit 22 calculates cell information on the cell 2 based on the image data (the hologram of the cell 2).
  • the calculation unit 22 executes count counting of the cells 2 and extraction of the form, and calculates the number, density, size, and shape of the cells 2 as cell information.
  • the image sensor 14 in the measuring device 10, the image sensor 14 generates a plurality of image data corresponding to each of the lights having different wavelengths. Specifically, the image sensor 14, the red light R, green light G, and red image data corresponding to each of the blue light B, and generates the green image data, and blue image data, respectively.
  • a plurality of image data corresponding to each color light of RGB may be collectively described as RGB data.
  • the acquisition unit 21 a plurality of image data corresponding to each of a plurality of light having different wavelengths from each other which is emitted as the illumination light 4 (RGB data) is acquired by the light source 12 of the measuring device 10. Then, based on the plurality of image data, color information of the culture solution 1 including the cell 2 is calculated by the calculation unit 22 as the culture solution information. That is, the calculation unit 22 calculates the color of the culture solution.
  • the calculating unit 22 functions as a color information calculating unit.
  • the display control unit 23 controls the display content and the like of the monitoring image 50 based on the cell information and the color information (culture fluid information) of the culture fluid 1.
  • the monitoring image 50 is then presented by the display device 30 as a sensing result.
  • the timing for controlling the display of the monitoring image 50 is not limited, for example, depending on the timing and the like of the hologram or RGB data is obtained, it may update or the like of appropriate monitoring image 50 is performed.
  • the process for calculating cell information and the process for calculating the color of the culture solution are performed. Each process will be specifically described below.
  • FIG. 9 is a flowchart showing an example of processing for calculating cell information.
  • the hologram of the cell 2 is photographed and acquired as image data by the acquisition unit (step 101)
  • the calculator 22 executes propagation calculation for the illumination light 4 based on the acquired image data (step 102).
  • the propagation calculation for the illumination light As the propagation calculation for the illumination light 4, Rayleigh Sommerfeld's diffraction integration (angular spectrum method) is performed.
  • methods and the like used in the propagation calculation of the light is not limited, for example, Fresnel approximation or Fraunhofer approximation propagation calculation using the formula of such approximation may be performed. Besides this, any method capable of performing propagation calculation may be used.
  • FIG. 10 is a schematic view showing an arrangement relationship between the detection surface 16 and the gap 43 in propagation calculation.
  • the light source 12, the gap 43, and the detection surface 16 are schematically illustrated.
  • illustration of the collimator lens 13, the first optical window 46, and the second optical window 47 described in FIG. 3 is omitted.
  • the point P where the optical axis O intersects the detection surface 16 is taken as the origin in the Z-axis direction, and the direction from the detection surface 16 toward the gap 43 is taken as the positive direction in the Z-axis direction.
  • directions perpendicular to the Z-axis direction and orthogonal to each other are taken as an X-axis direction and a Y-axis direction.
  • the X-axis direction and the Y-axis direction correspond to, for example, the longitudinal direction and the lateral direction of the detection surface 16.
  • the direction in which the first and second protrusions 41 and 42 protrude from the base portion 40 is set to the positive direction of the X-axis direction.
  • Calculation unit 22 the propagation calculation with respect to the illumination light 4, calculates a plurality of focused image data corresponding to each of a plurality of focal plane 17 of the illumination light 4 passes in culture 1 containing cells 2.
  • the focus plane 17 is set, for example, inside the gap 43 so as to be orthogonal to the optical path direction (Z-axis direction) of the illumination light 4.
  • the distance from the detection surface 16 to the second surface 45 is set to L. Therefore, the position z in the Z-axis direction of the focus plane 17 is set to L ⁇ z ⁇ L + t.
  • the number, the position, and the like of the focus surface 17 are not limited, and may be appropriately set so that, for example, cell information can be calculated with desired accuracy.
  • the propagation calculation of the focal plane 17 by performing, based on the intensity distribution of the detection surface 16 the illumination light 4 generated (interference fringes), the intensity distribution of the illumination light 4 when passing through the focal plane 17 It is possible to calculate. This makes it possible to sense in detail the state of the cells 2 present on the focus plane 17 and the like.
  • the calculation unit 22 executes propagation calculation to each focus plane 17 based on the image data, and calculates the calculation result of the propagation calculation as focus image data. That is, the calculation unit 22 can calculate focus image data on a plurality of focus planes 17 having different depths in the Z-axis direction based on one image data. This makes it possible to perform sensing on substantially all the cells 2 included in the gap 43 (detection space 48) in one imaging.
  • focus image data generated on the focus plane 17 at the position z will be described as a (x, y, z).
  • a (x, y, 0) represents a data image (hologram) detected by the image sensor 14.
  • the focus plane 17 corresponds to an intermediate plane
  • the focus image data corresponds to intermediate image data.
  • FIG. 11 is a diagram showing image data used for propagation calculation and calculation results of the propagation calculation.
  • FIG. 11A is an image 60 composed of image data.
  • FIG. 11B is an image 61 composed of focus image data calculated based on the image data shown in FIG. 11A.
  • interference fringes of the illumination light 4 diffracted by the cells 2 are recorded in the image data.
  • the hologram obtained from the particulate cell 2 consists of concentric light and dark lines. For example, for one cell 2, concentric light and dark lines (interference fringes) relative to the position of the cell are detected. When the concentric light and dark lines form one group, the number of groups corresponds to the number of cells 2 suspended in the culture solution 1.
  • the focus image data includes information such as the position, size, and shape (outline) of each cell 2 on the focus plane 17.
  • each cell on the focus plane 17 can be sensed in detail by analyzing the focus image data.
  • ring-like artifacts and the like accompanying the propagation calculation appear around each cell 2. Therefore, the image 61 configured by the focused image data is a ringing image in which the periphery of the object (cell 2) is surrounded by a bright and dark pattern.
  • FIG. 12 is a diagram for explaining an example of the process of calculating the XY coordinates of the cell 2. The process of calculating the XY coordinates of the cell 2 will be described below with reference to FIGS. 9 and 12.
  • preprocessing is performed on each of a plurality of focus image data (step 103).
  • high-frequency spatial frequency components included in each focused image data are filtered by the image filter to remove fine noise components and the like.
  • the edge of the cell 2, the ring around the cell 2 and the like are detected by the edge detection process.
  • the detected site (cell 2, ring, etc.) is binarized from gray scale to black and white data.
  • step 103 image data a ′ (x, y, z) after preprocessing is calculated for each piece of focused image data.
  • FIG. 12 shows an example of the image 62 obtained by the pre-processing. Note that the processing content of the pre-processing is not limited, and various types of processing such as dark level correction, inverse gamma correction, up-sampling, and edge processing may be appropriately executed.
  • the Hough transform is performed on the preprocessed image data a ′ (x, y, z) (step 104).
  • the Hough transform is a transform process for detecting a predetermined shape in an image.
  • a Hough transform is performed to detect a circle passing through a point on an edge detected by preprocessing.
  • a parameter r related to the radius of the circle is used.
  • a '(x, y, z) is converted to the Hough transform image A' (x, y, z, r).
  • the Hough transform image A ′ (x, y, z, r) is an image used to detect a circle of radius r.
  • FIG. 12 shows an example of the Hough transform image 63 generated by the Hough transform.
  • candidates for central coordinates of a circle of radius r in a ′ (x, y, z) are represented by the values (bright and dark) of each position. That is, the bright part of the Hough transform image 63 becomes a powerful part as a candidate of the center coordinates.
  • the calculation unit 22 calculates a plurality of Hough transform images 63 within a search range of a radius r set in advance.
  • the search range is expressed as r min ⁇ r ⁇ r max using, for example, the minimum radius r min and the maximum radius r max of the radius r.
  • a plurality of Hough transforms corresponding to each of the plurality of radii r included in the search range is performed. Therefore, a ′ (x, y, z) is converted into three-dimensional data (data in Hough space), as shown in FIG.
  • the Hough transform process is performed on each of a ′ (x, y, z) corresponding to each focus plane 17.
  • the minimum radius r min of the search range is set, for example, in accordance with the size (3 ⁇ m to 10 ⁇ m) of the cell 2 in the culture solution 1. Further, the maximum radius r max of the search range is set, for example, according to the diameter ( ⁇ 50 ⁇ m) of the ring around the cell in the focused image data.
  • the search range of the radius r is not limited, and may be appropriately set according to, for example, the time required for calculation, the calculation accuracy, and the like.
  • Integration processing is performed on the calculated plurality of Hough transform images 63 (step 105). In the present embodiment, the following calculation is performed as integration processing.
  • the search range of values radius r of each position (x, y) of the Hough transform image A '(x, y, z, r), and the depth of each focal plane Is integrated with respect to z.
  • the integrated value becomes a high value compared to the other positions.
  • an image 64 representing the integrated value is shown.
  • the XY coordinates of the object are determined (step 106). For example, the calculation unit calculates a position (x, y) where the integrated value is larger than a predetermined threshold as the center coordinates of the circle in the focus image data. This makes it possible to determine the XY coordinates of the cell 2 located at the center of the circle. Of course, if there are a plurality of positions larger than the threshold, the XY coordinates of each of the plurality of cells 2 will be determined.
  • the calculation unit 22 calculates the position of the cell 2 in the XY plane direction which is a surface direction perpendicular to the light path direction of the illumination light 4 based on the plurality of focus image data. This makes it possible to analyze, for example, individual cells 2 contained in the culture solution 1 respectively. As a result, it becomes possible to sense in detail the state of the cells 2 etc. contained in the culture solution 1.
  • the calculation unit 22 calculates the number of cells 2 based on the XY coordinates of the cells 2. For example, the number of cells 2 included in the gap 43 is calculated by counting the total number of XY coordinates of the cells 2. Further, based on the calculated number of cells 2 and the volume of the gap 43, it is possible to calculate the concentration or the like of the cells 2 in the culture solution 1. The information such as the calculated cell number and concentration is output to the display control unit.
  • the present invention is not limited to the case of determining the XY coordinates of the cell 2 using the Hough transform, and any method capable of determining the XY coordinates may be used.
  • the XY coordinates of the cell 2 may be determined using an image recognition process using machine learning or the like. Besides this, any image detection processing or the like may be used.
  • m ⁇ m pixel image data b (x, y, z) centered on the XY coordinates of each cell 2 are cut out from the focus image data a (x, y, z) on each focus plane 17 (Step 107).
  • the area where the cells are present (b (x, y, z)) image of the extracted is appropriately set according to, for example, the assumed size of the cell 2 or the like.
  • Calculation unit 22 for example, based on the XY coordinates of the target cell 2, from each of the focused image data depth (z-axis direction position) are different cuts out image data b (x, y, z) a. Therefore, a plurality of image data b (x, y, z) are cut out for one cell 2. A similar treatment is performed for the other cells 2 as well.
  • a difference in luminance between the extracted image data is calculated (step 108).
  • the difference f in luminance between image data is given, for example, by the following equation.
  • ⁇ z is the distance between adjacent focus planes 17.
  • Equation 2 the sum over the entire image is calculated for the luminance difference at each point between adjacent b (x, y, z) and b (x, y, z + ⁇ z).
  • the calculation unit 22 executes differential calculation in the z-axis direction with respect to the luminance difference f.
  • FIG. 13 is a graph showing a change in luminance along the light path direction of the area including the cell 2.
  • 13A to 13B show graphs showing differences in luminance f (z) and their differential values f '(z) in different areas 65a to 65c. Also, in FIG. 13A to FIG. 13B, the difference in luminance f0 (z) when there is no cell 2 is shown.
  • the image data b (x, y, z) is described as b (z) using the position z in the z-axis direction.
  • FIG. 13A the change of the luminance in the area 65a including the cell C6 is shown.
  • the luminance difference f (z) has two peaks P1 and P2.
  • the positions in the Z-axis direction of each peak P1 and P2 are 754 ⁇ m and 1010 ⁇ m, respectively.
  • a peak P3 of the derivative f '(z) of f (z) appears between the two peaks P1 and P2.
  • the position of P3 in the Z-axis direction is 928 ⁇ m. In f0 (z), no clear peak is detected.
  • the image data b (928) at the peak P3 is the image with the most focus.
  • FIG. 13B shows the change in luminance in the area 65b including the cell C7.
  • the luminance difference f (z) has two peaks P4 and P5.
  • FIG. 13C shows a change in luminance in an area 65c including a plurality of cells C8.
  • the calculation unit 22 calculates a peak point in the differential value f ′ (z) of the luminance difference f (z), and determines the calculated peak point as the Z coordinate of the cell 2 (step 109). That is, the position at which the cell 2 of interest is in focus is determined at the position of the cell 2 in the Z-axis direction.
  • the calculation unit 22 calculates the brightness difference f (z) for each of the plurality of focused image data, and the light path of the cell 2 based on the differential value f ′ (z) of the brightness difference f (z). Calculate the position of the direction. Thereby, the position (x, y, z) of the cell in the culture solution 1 is determined, and it becomes possible to sense individual cells in detail.
  • the brightness difference f (z) corresponds to the brightness information
  • the differential value f ′ (z) corresponds to the change in the light path direction of the brightness information.
  • the method of calculating the Z coordinate of each cell 2 is not limited to the method described in steps 107 to 109, and any other method may be used.
  • the Z coordinate may be determined from the sum of differences (difference in luminance f (z)) between pixels of focused image data.
  • a focus detection technique using machine learning may be used.
  • Calculator 22 calculates the contour parameters of cells Z coordinates are calculated (step 110). Calculation unit, for example on the basis of the image data b corresponding to the Z-coordinate of the target cell 2 (x, y, z) (see FIG. 13), calculates the outer parameters of the size and shape of the cells 2 or the like.
  • the outer shape parameter for example, a process of extracting an outline using machine learning or the like is performed. As a result, information on the size of the cell 2 such as the diameter, and information on the shape such as the degree of circularity or ellipticity are calculated as external parameters.
  • the type of outer shape parameter is not limited. For example, either one of the size and the shape may be calculated, and other parameters may be calculated.
  • the resolution of the image may be reduced and the image of the cell 2 may be blurred.
  • a process of appropriately correcting the calculated outer shape parameter may be performed in consideration of blurring of the edge of the image (the contour of the cell 2) or the like. This makes it possible to properly detect the outer shape of the cell 2.
  • FIG. 14 is a chromaticity diagram of the XYZ color system.
  • the color of the culture solution 1 is expressed using an XYZ color system, which is a CIE standard color system.
  • XYZ color system By using the XYZ color system, for example, it is possible to calculate the color (chromaticity) of the culture solution 1 based on the luminance of each image data generated by emitting each color light of RGB.
  • red light R is expressed as [X R0 , Y R0 , Z R0 ]
  • red light G is expressed as [X G0 , Y G0 , Z G0 ]
  • blue light B is expressed as [X B0 , Y B0 , Z B0] ] is expressed as.
  • the tristimulus value of each color light is calculated as follows.
  • Equation 4 is a wavelength spectrum (a function of wavelength ⁇ ) of each color light of RGB.
  • X, Y and Z are color matching functions (functions of wavelength ⁇ ) defined in the XYZ color system. Therefore, for example, it is possible to calculate the tristimulus value of each color light shown in (Equation 3) by acquiring in advance the wavelength spectrum of each of red light R, green light G and blue light B emitted from light source 12 It is.
  • the chromaticity x 0 and y 0 of white light is expressed as follows using X 0, Y 0 and Z 0.
  • each color light of RGB is adjusted using the chromaticity x 0 and y 0 of white light shown in (Equation 6). Adjustment of each color light of RGB is performed, for example, in a state where the culture solution 1 or the like is not filled in the gap 43 of the measuring device 10.
  • the emission intensities of the RGB color lights are adjusted so that the chromaticity x 0 and y 0 become white (0.333, 0.333). That is, it can be said that the intensities of the respective color lights emitted from the light source 12 are calibrated with reference to white.
  • detection values I R0 , I G0 , and I B0 of the image sensor 14 in a state where the chromaticity of white light is adjusted to show white are recorded in advance.
  • I R0 is an average value of luminance values of image data generated by outputting only red light in a state where the light emission intensity is adjusted.
  • IG0 and IB0 are average values of luminance values corresponding to adjusted green light and blue light. As described above, it is possible to sense the color or the like of the culture solution 1 with high accuracy by using the detection values I R0 , I G0 and I B0 of the calibrated light source 12.
  • FIG. 15 is a flow chart showing an example of processing for calculating culture fluid information.
  • the processing shown in FIG. 15 is performed in a state where the measuring device 10 is installed in the culture solution 1.
  • the red light R is emitted (turned on) by the light source 12 and red image data is generated by the image sensor 14 (step 201). For example, part of the red light R incident on the culture solution 1 receives light absorption according to the characteristics of the culture solution 1. The other part permeates the culture solution 1.
  • the amount of light absorbed by the culture solution 1 is, for example, an amount according to the optical path length in the culture solution 1.
  • a difference occurs in the optical path length passing through the culture solution 1 between light incident perpendicularly to the gap 43 and light incident obliquely. In such a case, a difference may occur in the intensity of the detected light.
  • the red light R emitted from the light source 12 passes through the gap 43 in a substantially parallel light beam state via the collimator lens 13 (see FIG. 3). Therefore, the optical path length when the red light R incident on the detection surface 16 of the image sensor 14 passes through the inside of the culture solution 1 becomes substantially the same length (width t of the gap 43) regardless of the position in the detection surface 16 . Therefore, at each position of the detection surface 16, it is possible to detect the transmission amount (absorption amount) of the red light R passing through the culture solution 1 of thickness t with high accuracy.
  • the calculating unit 22 the average value I R of the luminance values of the red image data is calculated (step 202). This makes it possible to obtain the intensity of the red light R transmitted through the culture solution 1 with high accuracy.
  • the illumination light is switched from the red light R to the green light G by the light source 12 to generate green image data (step 203). From the generated green image data, the average value I G of the luminance values is calculated (step 204). Thereafter, the illumination light is switched from green light G to blue light B, and blue image data is generated (step 205). From the generated blue image data, the average value I G of the luminance values is calculated (step 206).
  • each color light of RGB is sequentially switched and emitted, and the average of the luminance value of each color light of RGB transmitted through the culture solution 1 is calculated from the image data corresponding to each color light.
  • the order of the color light to be emitted is not limited.
  • the average value (I R , I G , I B ) of the luminance value of each color light transmitted through the culture solution 1 is referred to as the measured intensity, and the average value (I R0 , I G0 , I I B0 ) may be described as initial strength.
  • Tristimulus values (X RGB , Y RGB , Z RGB ) are calculated (step 207).
  • (X RGB , Y RGB , Z RGB ) is, for example, a tristimulus representing the transmitted light of the culture solution 1 when the color light of RGB is mixed with the culture solution 1 and emitted, that is, when white light is emitted. is the value.
  • the calculation unit 22 is, for example, a tristimulus representing the transmitted light of the culture solution 1 when the color light of RGB is mixed with the culture solution 1 and emitted, that is, when white light is emitted.
  • Equation (7) for each color light of RGB, calculation is performed by multiplying the ratio of the measured intensity to the initial intensity to the tristimulus value of the color light. As shown in (Equation 7), for example, for red light R, the product of (X R0 , Y R0 , Z R0 ) and I R / I R0 is calculated. The same calculation is performed for green light G and blue light B.
  • the intensity of light absorbed by the culture solution 1 is different for each wavelength (absorption spectrum).
  • the spectrum of each color light is sharpened by the first optical window 46 and the like.
  • the half-width of the sharpened color light spectrum is, for example, about 10 nm. Therefore, each color light can be regarded as light of a substantially single wavelength, and there is almost no need to consider the difference in the amount of absorption due to the difference in wavelength. For this reason, in (Equation 7), the ratio of the measured intensity to the initial intensity (I R / I R0 , I G / I G0 , I B / I B0 ) It is possible to express strength.
  • the chromaticity (x, y) of the light absorbed by the culture solution 1 is calculated (step 208). For example, (X RGB , Y RGB , Z RGB ) are summed up, and the chromaticity x and y are calculated as follows, similarly to the calculation in (Equation 5).
  • the chromaticity x and y calculated by (Equation 8) are used as measurement values of the color of the culture solution 1.
  • an example of the chromaticity (x, y) calculated as the measurement value is schematically illustrated by a black circle 66.
  • the calculated chromaticity (x, y) is output to, for example, the display control unit 23 or the like.
  • the chromaticity (x, y) of the culture solution 1 is included in the color information of the liquid containing cells.
  • the calculation unit 22 calculates the pH value of the culture solution 1 containing the cells 2 based on the chromaticity (x, y) of the culture solution 1 (step 209).
  • the culture solution 1 is added with a pH indicator such as phenol red.
  • conversion data etc. in which the chromaticity of the culture solution 1 and the pH value of the culture solution 1 are linked are recorded in advance. Thereby, for example, by referring to conversion data, it is possible to easily calculate the pH value of the culture solution 1 based on the chromaticity of the culture solution 1. Besides this, the method of calculating the pH value based on the chromaticity is not limited.
  • the pH value of the culture solution 1 is culture solution information on the culture solution 1. In the present embodiment, the pH value of the culture solution 1 is included in the liquid information.
  • the calculation unit 22 calculates a display color for displaying the color of the culture solution 1 containing the cells 2 as color information (step 210).
  • the display color is calculated based on the chromaticity (x, y) of the culture solution 1.
  • the display color is converted into RGB values used in the display device 30 and the like. That is, the display color of the XYZ color system is converted to the numerical value of the RGB color system.
  • the width t of the gap 43 is narrow (for example, several mm)
  • the amount of light absorbed by the culture solution 1 may be small, and the color designated by the chromaticity (x, y) may be light.
  • the measured value black circle 66
  • the xy chromaticity coordinates to calculate a display color (white circle 67) in which the color of the culture solution 1 is emphasized.
  • black circle Move 66 by a predetermined distance.
  • the moved point (white circle 67) is converted into an RGB value as a point representing a display color.
  • RGB value As described above, in the chromaticity diagram, it is possible to express a darker color by moving a point on the xy chromaticity coordinate away from white. This makes it possible to emphasize the color of the culture solution 1.
  • the method etc. which calculate a display color based on chromaticity (x, y) are not limited.
  • the display color may be calculated using any method of emphasizing the measurement value.
  • the chromaticity (x, y) which is a measurement value may be calculated as the display color as it is.
  • the display color corresponds to display color information. Further, display color information is included in the color information.
  • the cell information on the cell 2 and the culture solution information on the culture solution 1 are acquired by the measurement apparatus 10 and the processing apparatus 20 cooperating with each other. These pieces of information are acquired, for example, at predetermined intervals, and are used for display control of the monitoring image 50 by the display control unit 23 or the like.
  • the acquired information may be recorded in an HDD or the like to be referred to as data recording the culture process.
  • FIG. 16 is a schematic view showing a configuration example of the monitoring image 50. As shown in FIG. As described above, the display of the monitoring image 50 is controlled by the display control unit 23. In the example illustrated in FIG. 16, the monitoring image 50 includes a monitoring area 51 and a numerical value display area 52.
  • the monitoring area 51 is a rectangular area, and has a horizontal axis 53, a first vertical axis 54, and a second vertical axis 55.
  • the horizontal axis 53 is set to the lower side of the monitoring area 51.
  • the first and second vertical axes 54 and 55 are set to the left and right sides of the monitoring area 51, respectively.
  • the monitoring area 51 can display the color map 56 using the entire surface in the area.
  • a color bar (not shown) or the like in which the color of the color map 56 is associated with the numerical value may be able to be displayed.
  • the monitoring image 50 includes a graph showing temporal changes in cell information.
  • a horizontal axis 53 of the monitoring area 51 is taken as a culture time, and a graph showing temporal changes in cell information is illustrated, with the first vertical axis 54 as cell information.
  • the first vertical axis 54 represents the number of cells, which makes it possible to easily monitor the number (concentration) of cells 2 proliferating with the culture time. Also, as the cell information, for example, the average of the diameter of the cells 2 may be displayed. In this case, the first vertical axis 54 represents the average cell diameter, and can easily monitor how the size of the cell 2 has changed as the culture proceeds.
  • the type of cell information etc. to be graphed is not limited, and any information contained in cell information may be used. Moreover, it may be possible to switch and graph the type of cell information to be displayed.
  • the display control unit 23 may be capable of switching the type of cell information to be graphed based on an instruction or the like by the user.
  • the monitoring image 50 also includes a graph showing temporal changes in the pH value of the culture solution 1.
  • the graph which shows the time change of pH value is illustrated by making the 2nd vertical axis
  • the monitoring image 50 shows temporal changes in culture medium information.
  • the monitoring image 50 includes a map indicating temporal change of color information which is culture solution information.
  • the calculation unit 22 calculates a display color for displaying the color of the culture solution 1 as an RGB value from the chromaticity (x, y) indicating the color of the culture solution 1 .
  • a color map 56 indicating temporal change in display color is displayed using the calculated RGB values.
  • the color map 56 is configured to display the time change of the color (display color) of the culture solution 1 along the horizontal axis 53 (culture time). For example, in the monitoring area 51, the color of the culture solution 1 with time is displayed as a gradation whose color changes in the lateral direction. This makes it possible, for example, to easily monitor how the color of the culture solution 1 has changed during culture.
  • the specific configuration of the color map 56 is not limited. For example, the color map 56 may be displayed using a partial area of the monitoring area 51.
  • a graph representing a temporal change of cell information is displayed superimposed on the color map 56.
  • the display control unit 23 superimposes and displays the graph indicating the temporal change of the cell information and the map indicating the temporal change of the culture solution information. This makes it possible to simultaneously indicate the state of the cell 2 and the state of the culture solution 1, and, for example, enables easy monitoring of the step of culturing the cell 2 and the like.
  • the numerical value display area 52 is disposed, for example, in the vicinity of the monitoring area 51.
  • a numerical value display area 52 disposed at the upper right of the monitoring area 51 is shown in FIG.
  • cell information and culture fluid information are displayed in numerical values.
  • the chromaticity (x, y) of the current culture solution 1 the pH value converted from the chromaticity (x, y), etc. Is displayed.
  • the type of numerical value displayed in the numerical value display area 52 is not limited.
  • the current concentration of cells 2 and the average size of cells 2 may be displayed by numerical values.
  • values (the concentration of the cells 2 and the chromaticity of the culture solution 1 and the like) at each point on the graph or map designated by the user may be displayed in the numerical value display area 52.
  • FIG. 17 and FIG. 18 are schematic views showing another configuration example of the monitoring image 50.
  • temporal changes in the number of cells for each size are shown for cells 2 of different sizes A to C.
  • Graph 57 c shows the number of cells 2 of size C.
  • Graph 57b shows the number of cells 2 of size C and size B.
  • Graph 57a shows the total number of cells 2 (sum of cells of size A, size B, and size C).
  • the number of cells is set as the horizontal axis 53 of the monitoring area 51. Further, as the first vertical axis 54, a pH value is set. In the monitoring area 51, a color map 56 indicating the color of the culture solution 1 is displayed as a gradation that changes along the first vertical axis 54. In this case, the color of the color map 56 is set corresponding to the pH set on the first vertical axis 54.
  • the display control unit 23 plots each data point acquired during the culture time, with the cell number as the horizontal axis and the pH value as the vertical axis.
  • the data point t 1 in Figure 18 shows cell number and pH value in the first acquired data.
  • the data point tlatest indicates the latest cell number and pH value.
  • the display control unit 23 displays the normal range 58 in which the temporal change of the cell information is in the normal state in the monitoring image 50.
  • the normal range 58 is schematically illustrated by a dotted line.
  • the normal range 58 is calculated, for example, using data of cell cultures performed in the past.
  • the cell 2 is growing normally.
  • the growth state of the cell 2 is deviated from the normal state.
  • the gap 43 sandwiched between the first and second surfaces 44 and 45 facing each other is provided on the optical path of the illumination light 4 emitted from the light source 12.
  • the gap 43 is filled with the culture solution 1 containing cells 2.
  • the interference fringes of the illumination light 4 by the culture solution 1 containing the cells 2 filled in the gap 43 are detected. This makes it possible to easily sense the state of the cell 2 or the like in real time based on the interference fringes.
  • a method using an optical microscope or the like can be considered as a method of sensing the state of cells, culture media and the like.
  • an optical microscope it is generally necessary to mechanically change the focus and perform imaging in a plurality of times in order to image an object outside the depth of field.
  • the medium is agitated and particles (cells or the like) to be imaged are constantly moving. For this reason, it is difficult to capture all particles different in position in the depth direction (Z coordinate), and there is a possibility that appropriate sensing can not be performed.
  • cells contained in a liquid medium may be placed on a flat surface such as a cell counting board to perform sensing of cells and the like. In this case, an operation or the like for extracting the liquid culture medium is required. Further, in the case of directly observing the cells floating in the liquid medium, it is necessary to design a dedicated culture vessel and flow channel, which may increase the cost.
  • the gap 43 capable of being filled with the culture solution 1 is provided. Then, a hologram (interference fringe) by the culture solution 1 including the cells 2 of the illumination light 4 which has passed through the gap 43 is detected by the image sensor 14. It is possible to sense each cell 2 contained in the gap 43 based on this hologram.
  • the measuring device 10 is configured to be able to be installed inside the culture solution 1. Therefore, it is possible to sense the number of cells etc. in real time without taking out the culture solution 1. Moreover, the measuring device 10 can be used in various culture containers including the pack 3 for culture. Therefore, by using the measuring device 10, it is possible to sufficiently suppress the cost required for sensing the cells 2 and the like.
  • the measuring device 10 can automatically acquire information on cells 2 and the like, and can easily monitor the state of the cells 2 and the like.
  • interference fringes due to the culture solution 1 containing the cells 2 of the illumination light 4 are acquired as image data. Calculation of propagation of the illumination light 4 is performed based on the acquired image data to calculate cell information. And display of the monitoring image 50 which shows the time change of cell information is controlled. By referring to the monitoring image 50, it is possible to easily sense the state of the cell 2 or the like in real time.
  • Interference fringes (holograms) by particles (cells) include concentric diffraction images.
  • a method of counting the number of particles a method of performing image processing on a detected hologram and counting central coordinates of a diffraction image can be considered. In this method, for example, when particles are close to each other and diffraction images overlap with each other, there is a possibility that it is difficult to properly count the number of particles.
  • the acquisition unit 21 acquires image data in which interference fringes of the illumination light 4 from the culture solution 1 containing the cells 2 are recorded.
  • the calculator 22 performs propagation calculation of the illumination light 4 based on the image data, and generates focused image data on each of the focus planes 17 aligned on the optical path.
  • focused image data in-line hologram
  • each cell 2 For example, by using a plurality of focus image data, it is possible to calculate the position of each cell 2 with high accuracy. This makes it possible to count the number of cells 2 contained in the gap 43 with high accuracy. Also, for example, by using focused image data focused on each cell 2, the size, shape, and the like of each cell 2 can be detected with high accuracy. By using such a digital focus, sensing of the cell 2 etc. can be realized with sufficiently high accuracy.
  • the display control unit 23 controls the display of a monitoring image showing temporal change of cell information.
  • temporal changes in cell information can be easily monitored in real time, and a high level of manufacturing control can be realized.
  • a method has been studied in which cells 2 are subjected to spheroidization to combine cells 2 in three dimensions and returned to the body.
  • the present measurement system 100 it is possible to monitor the growth of spheroids in real time, for example, in the case of manufacturing spheroids in large amounts by, for example, rotational suspension culture.
  • the monitoring image 50 displays information capable of simultaneously confirming the pH of the culture solution 1 and the cell density. This makes it easier for the operator to notice an abnormality. In addition, it becomes possible to provide parameters (such as the pH value of the culture solution 1 and the concentration of the cells 2) that are important in managing homeostasis of the production state of the cells 2 using a computer or the like. This makes it possible to carry out a very high degree of manufacturing control.
  • the measuring device was placed in the culture solution.
  • the present technology is not limited to this, and for example, even when the measurement device is disposed outside the culture solution, the present technology is applicable.
  • FIG. 19 is a diagram for explaining an example of the arrangement of the measuring apparatus.
  • FIG. 19A is a perspective view showing the arrangement of the measuring device 410 and the culture pack 403.
  • FIG. 19B is a cross-sectional view taken along line BB in FIG. 19A.
  • the measuring device 410 has, for example, substantially the same configuration as the measuring device 210 shown in FIG. In FIG. 19, the illustration of the power supply / receiver and the like is omitted. Of course, a measuring device 410 having substantially the same configuration as the measuring device 310 shown in FIG. 7 may be used.
  • the pack 403 has an observation window 404 for observing the culture solution 1 containing cells 2.
  • the observation window 404 has an entrance window 405 and an exit window 406 which are disposed at predetermined intervals so as to be substantially parallel to each other.
  • the entrance window 405 and the exit window 406 are made of, for example, a material such as transparent vinyl or acrylic. Also, the entrance window 405 and the exit window 406 are disposed at intervals that can be inserted into the gap 443 of the measuring device 410.
  • the measuring device 410 is disposed outside the pack 403 so as to sandwich the observation window 404 (the entrance window 405 and the exit window 406) provided in the pack 403 with the gap 443.
  • the illumination light 4 emitted from the light source 412 passes through the collimator lens 413 and the first optical window 446 and enters the puck 403 from the entrance window 405.
  • the illumination light 4 that has entered the pack 403 passes through the culture solution 1 containing the cells 2 and exits from the exit window 406, and enters the image sensor 414 through the second optical window 447.
  • the measuring device 410 can detect the interference fringes of the illumination light 4 by the cells 2 floating inside the puck 403 in a state of being disposed outside the puck 403. This makes it possible to easily sense the state of the cells 2 etc. cultured in the pack 403 from the outside of the pack 403.
  • observation window 404 it is not limited when using the pack 403 for culture
  • arbitrary culture containers etc. in which the observation window was provided may be used.
  • an observation window may be provided in a channel or the like filled with a culture solution containing cells. Besides this, any configuration having a viewing window may be used.
  • the width t of the gap of the measuring device is set such that the sum of the cross sectional areas of the cells contained in the detection space is smaller than that of the detection surface.
  • the method of setting the width t of the gap is not limited.
  • the width t of the gap may be set such that the area of the area to be filled with cells when the cells contained in the detection space are two-dimensionally closely packed is smaller than the detection surface.
  • FIG. 20 is a schematic view showing an example of two-dimensional closest packing of cell cross sections.
  • a circle is used as a cross section (cell cross section 70) of the cell 2.
  • FIG. 20A is an example of close packing in which centers 71 of adjacent cells 2 are arranged in a square lattice.
  • FIG. 20B is an example of close packing in which centers 71 of adjacent cells 2 are arranged in a triangular lattice.
  • the ratio of the cell cross section 70 in the square lattice 72 is the filling factor in the two-dimensional plane. Assuming that the radius of the cell cross section 70 is r, the area of the square lattice 72 is 4r 2 . Also, the sum of the cell cross sections 70 in the square lattice 72 is ⁇ r 2 . Accordingly, the filling rate is calculated to ⁇ r 2 / 4r 2 ⁇ 0.785.
  • the width t of the gap is set such that the sum of the cross-sectional areas (cell cross sections 70) of the cells 2 contained in the detection space is smaller than 78.5% of the detection surface. That is, the width t of the gap is set such that the total number of cells contained in the detection space is smaller than the total number of cells when the cells 2 are filled in a square lattice on the detection surface.
  • the ratio of the cell cross section 70 in the triangular lattice 73 is the filling factor in the two-dimensional plane. Assuming that the radius of the cell cross section 70 is r, the area of the triangular lattice 73 is 3 1/2 r 2 . The total cell section 70 in a triangular lattice 73 is ⁇ r 2/2. Accordingly, the filling rate is calculated as ( ⁇ r 2/2) / 3 1/2 r 2 ⁇ 0.906.
  • the width t of the gap is set such that the sum of the cross-sectional areas (cell cross sections 70) of the cells 2 included in the detection space is smaller than 90.6% of the detection surface. That is, the width t of the gap is set such that the total number of cells contained in the detection space is smaller than the total number of cells when cells 2 are filled in a triangular lattice on the detection surface.
  • the width t of the gap on the basis of the case where the cells 2 are two-dimensionally filled, it is possible to keep the coherence of the illumination light 4 passing through the gap sufficiently high. This makes it possible to accurately detect, for example, the illumination light diffracted by each cell in the liquid. As a result, it becomes possible to sense the state of cells etc. with sufficiently high accuracy.
  • partially coherent light is used as the illumination light 4 emitted from the light source 12.
  • substantially coherent light may be used as illumination light.
  • a solid light source such as a laser diode (LD) capable of emitting laser light of a predetermined wavelength
  • LD laser diode
  • laser light which is substantially coherent light is emitted from the light source as illumination light.
  • the wavelength band of laser light is narrow, and high coherence can be exhibited. This makes it possible to sense the state of a cell or the like with high accuracy. Further, since the wavelength band is sharpened, it is not necessary to configure, for example, the first optical window or the like as an optical filter, and the cost of the apparatus can be suppressed.
  • the light source 12 is configured to be able to switch and emit light having different wavelengths.
  • the light source may be configured to be able to emit light of a single wavelength.
  • cell information the number, density, size, shape, etc. of cells
  • the processing device may control display of the monitoring image based on the information such as the culture fluid obtained using another device or the like.
  • the processing apparatus may separately acquire information such as the color of the culture solution, pH value, temperature and the like, and display the time change of the acquired information on the monitoring image. Even in such a case, it becomes possible to easily monitor the state of cells and culture solution, etc., and to realize high-level manufacturing control.
  • the processing device executes the information processing method according to the present technology including calculation of cell information on cells and control of display of monitoring images indicating temporal change of cell information.
  • the information processing method according to the present technology may be executed by a cloud server without being limited to this. That is, the function of the information processing apparatus may be installed in the cloud server. In this case, the cloud server operates as an information processing apparatus according to the present technology.
  • a measurement system may be constructed in conjunction with a computer that acquires image data in which light interference fringes are recorded and another computer that can communicate via a network or the like.
  • a system means a set of a plurality of components (apparatus, modules (parts), etc.), and it does not matter whether all the components are in the same housing. Therefore, a plurality of devices housed in separate housings and connected via a network and one device in which a plurality of modules are housed in one housing are all systems.
  • the information processing method according to the present technology by the computer system and the execution of the program may be performed, for example, by calculation processing of cell information on cells and control processing of display of monitoring images indicating temporal change of cell information by a single computer. And both cases where each process is performed by a different computer. Also, execution of each process by a predetermined computer includes performing a part or all of the process on another computer and acquiring the result.
  • the information processing method and program according to the present technology can be applied to the configuration of cloud computing in which one function is shared and processed by a plurality of devices via a network.
  • the measuring device may also be provided with all or part of the functionality of the processing device. That is, the measurement device may be equipped with a function to calculate cell information on cells. Also, for example, the measuring device and the processing device may be integrally configured. Of course, the display device may be configured integrally with the measuring device or the processing device.
  • the present technology can also adopt the following configuration.
  • a light source unit that emits illumination light;
  • a filling portion provided on an optical path of the illumination light and having a first surface portion and a second surface portion facing each other, wherein a gap between the first and the second surface portions can be filled with a liquid containing cells ,
  • a detection unit that detects an interference pattern of the liquid containing the cells of the illumination light that has passed through the gap.
  • the parameter regarding the cell includes at least one of the size of the cell and the concentration of the cell in the liquid.
  • the measuring apparatus according to any one of (1) to (3), wherein The detection unit has a detection surface substantially perpendicular to the light path of the illumination light, The said filling part has a detection space according to the said detection surface. Measurement apparatus. (5) The measuring device according to (4), wherein The width of the gap is set such that the sum of the cross-sectional areas of the cells included in the detection space is smaller than that of the detection surface. (6) The measuring apparatus according to (4), wherein The width of the gap is set such that the area of the area in which the cells are packed when the cells contained in the detection space are closest packed in two dimensions is smaller than the detection surface. . (7) The measuring apparatus according to any one of (2) to (6), wherein The width of the gap is less than 11.8 mm.
  • the measuring apparatus according to any one of (1) to (7), wherein The illumination light is substantially coherent light or partially coherent light.
  • a measurement apparatus comprising: a collimating unit disposed between the light source and the filling unit to collimate the illumination light.
  • the measuring apparatus according to any one of (1) to (11), wherein The measurement unit generates image data in which interference fringes of the illumination light are recorded. (13) The measuring apparatus according to (12), wherein The light source can switch and emit light with different wavelengths as the illumination light, The detection unit generates a plurality of image data corresponding to each of the lights having different wavelengths. (14) The measuring apparatus according to (13), further comprising A measurement apparatus comprising a color information calculation unit that calculates color information of a liquid containing the cells based on the plurality of image data. (15) The measuring apparatus according to any one of (1) to (14), The cell is an immune cell measurement device.
  • the measuring apparatus according to any one of (1) to (15),
  • the liquid containing cells is a liquid medium to which a pH indicator has been added.
  • the measuring apparatus according to any one of (11) to (16), wherein A measuring device placed in a liquid containing the cells.
  • An information processing apparatus comprising: a display control unit configured to control display of a monitoring image indicating temporal change of the cell information.
  • the information processing apparatus (19) The information processing apparatus according to (18), An information processing apparatus, wherein the calculation unit calculates at least one of the number, density, size, and shape of the cells as the cell information. (20) The information processing apparatus according to (18) or (19), wherein The monitoring image includes a graph indicating temporal changes in the cell information. (21) The information processing apparatus according to any one of (18) to (20), wherein The calculation unit calculates liquid information on the liquid containing the cells, based on the image data. An information processing apparatus, wherein the monitoring image indicates temporal change of the liquid information.
  • the information processing apparatus according to (21), The acquisition unit acquires a plurality of image data corresponding to each of a plurality of lights having different wavelengths emitted as the illumination light, An information processing apparatus, wherein the calculation unit calculates color information of a liquid containing the cells as the liquid information, based on the plurality of image data. (23) The information processing apparatus according to (22), wherein The monitoring image includes a map indicating temporal change of the color information. (24) The information processing apparatus according to (22) or (23), wherein The calculation unit calculates, as the color information, display color information for displaying the color of the liquid containing the cells, The monitoring image includes a map indicating temporal change of the display color information.
  • the information processing apparatus according to (23) or (24), wherein The display control unit superimposes and displays a graph indicating temporal changes of the cell information and a map indicating temporal changes of the liquid information.
  • the calculation unit calculates the pH value of the liquid containing the cells based on the color information,
  • the monitoring image includes a graph indicating temporal change of the pH value.
  • the information processing apparatus according to any one of (18) to (27), wherein The display control unit displays, on the monitoring image, a range in which a temporal change of the cell information is in a normal state.
  • the information processing apparatus according to any one of (18) to (28), wherein An information processing apparatus, wherein the calculation unit calculates a plurality of intermediate image data corresponding to each of a plurality of intermediate planes through which the illumination light passes in the liquid containing the cells by propagation calculation for the illumination light.
  • the calculation unit calculates the position of the cell in a plane direction perpendicular to the light path direction of the illumination light based on the plurality of pieces of intermediate image data.
  • the information processing apparatus calculates the number of cells based on the position of the cells.
  • the information processing apparatus calculates luminance information for each of the plurality of intermediate image data, and calculates a position of the cell in the optical path direction based on a change in the optical path direction of the luminance information.
  • the information processing apparatus according to (32), An information processing apparatus, wherein the calculation unit calculates at least one of the size and the shape of the cell for which the position in the optical path direction is calculated.
  • the measuring apparatus according to any one of (18) to (33), wherein The cell is an immune cell.
  • the measuring apparatus according to any one of (18) to (34), wherein The liquid containing cells is a liquid medium to which a pH indicator is added.
  • Information processing apparatus (36) Acquire image data in which interference fringes of illumination light having passed through a liquid containing cells are recorded, Calculating cell information about the cell by performing propagation calculation for the illumination light based on the image data; An information processing method in which a computer system executes controlling display of a monitoring image indicating temporal change of the cell information. (37) acquiring image data in which interference fringes of illumination light having passed through a liquid containing cells are recorded; Calculating cell information about the cell by executing propagation calculation for the illumination light based on the image data; Controlling the display of a monitoring image showing temporal change of the cell information.
  • optical axis 1 culture solution 2
  • C1 to C8 cell 3
  • 403 pack 4: illumination light 10
  • 210, 310, 410 measuring device 11: housing 12, 412: light source 13, 413: collimator lens 14
  • 414 image sensor 16: detection surface 17: focus surface 20: processing device 21: acquisition unit 22: calculation unit 23: display control unit 43, 443: gap 44: first surface 45: second surface 46, 446 First optical window 47, 447 Second optical window 48 Detection space 50
  • Monitoring image 56

Abstract

本技術の一形態に係る測定装置は、光源部と、充填部と、検出部とを具備する。前記光源部は、照明光を出射する。前記充填部は、前記照明光の光路上に設けられ互いに対向する第1の面部及び第2の面部を有し、前記第1及び前記第2の面部の間の間隙に細胞を含む液体を充填可能である。前記検出部は、前記間隙を通過した前記照明光の前記細胞を含む液体による干渉縞を検出する。

Description

測定装置
 本技術は、細胞のセンシングに用いられる測定装置に関する。
 従来、細胞をセンシングする技術が知られている。例えば特許文献1には、培養容器内で培養される細胞を観察する顕微鏡が記載されている。特許文献1では、ディッシュ等の培養容器がステージ上に静置される。ユーザにより指定された培養容器の種類や培地の量等の情報に基づいて、ステージの上下方向が移動され、細胞接着面や培地の表面等に対して焦点調節が行なわれる。顕微鏡により各面の画像が撮像され、各面の画像を比較検討することで、試料である細胞の生育状態に関する情報を自動で取得することが可能となっている。(特許文献1の明細書段落[0011][0013][0028][0029]図1、図4等)。
特開2007-6852号公報
 細胞培養等の細胞を製造する工程では、細胞や培地等の状態をセンシングして、その状態を管理することが重要となる。このため、細胞等の状態を容易にリアルタイムでセンシングすることが可能となる技術が求められている。
 以上のような事情に鑑み、本技術の目的は、細胞等の状態を容易にリアルタイムでセンシングすることが可能な測定装置を提供することにある。
 上記目的を達成するため、本技術の一形態に係る測定装置は、光源部と、充填部と、検出部とを具備する。
 前記光源部は、照明光を出射する。
 前記充填部は、前記照明光の光路上に設けられ互いに対向する第1の面部及び第2の面部を有し、前記第1及び前記第2の面部の間の間隙に細胞を含む液体を充填可能である。
 前記検出部は、前記間隙を通過した前記照明光の前記細胞を含む液体による干渉縞を検出する。
 この測定装置では、光源から出射された照明光の光路上に、互いに対向する第1及び第2の面部に挟まれた間隙が設けられ、この間隙には細胞を含む液体が充填される。そして間隙に充填された細胞を含む液体による照明光の干渉縞が検出される。これにより干渉縞に基づいて細胞等の状態を容易にリアルタイムでセンシングすることが可能となる。
 前記充填部は、前記間隙の前記第1の面部から前記第2の面部までの幅が、前記細胞に関するパラメータに応じて設定されてもよい。
 これにより、細胞の特性等に合わせて細胞を含む液体が充填される間隙の幅を適正に定めることが可能となり、細胞等の状態を高精度にセンシングすることが可能となる。
 前記細胞に関するパラメータは、前記細胞のサイズと、前記液体における前記細胞の濃度との少なくとも一方を含んでもよい。
 例えば、細胞のサイズや液体に含まれる細胞の濃度に基づいて間隙の幅を定めることが可能となる。これにより、細胞等の状態を高精度にセンシングすることが可能となる。
 前記検出部は、前記照明光の光路に略垂直な検出面を有してもよい。この場合、前記充填部は、前記検出面に応じた検出空間を有してもよい。
 照明光は、例えば細胞を含む液体で満たされた検出空間を通過して検出面に入射される。これにより、細胞等の状態を容易にセンシングすることが可能となる。
 前記間隙の幅は、前記検出空間に含まれる前記細胞の断面積の総和が、前記検出面よりも小さくなるように設定されてもよい。
 これにより、例えば液体内の各細胞により回折された照明光を精度よく検出することが可能となる。この結果、細胞等の状態を十分高精度にセンシングすることが可能となる。
 前記間隙の幅は、前記検出空間に含まれる前記細胞が2次元に最密充填された場合の前記細胞が充填される領域の面積が、前記検出面よりも小さくなるように設定されてもよい。
 これにより、例えば液体内の各細胞により回折された照明光を精度よく検出することが可能となる。この結果、細胞等の状態を十分高精度にセンシングすることが可能となる。
 前記間隙の幅は、11.8mm未満であってもよい。
 これにより、所望の濃度での細胞等の状態をセンシングすることが可能となる。
 前記照明光は、略コヒーレントな光または部分コヒーレントな光であってもよい。
 これにより、例えば照明光の干渉性が向上し、細胞による干渉縞を高精度に検出することが可能となる。この結果、細胞等の状態を高精度にセンシングすることが可能となる。
 前記第1の面部は、前記光源から出射された前記照明光が入射する第1の光学窓を有してもよい。この場合、前記第2の面部は、前記第1の光学窓と略平行に配置され前記充填部を通過する前記照明光が出射される第2の光学窓を有してもよい。
 第1及び第2の光学窓を用いることで、例えば照明光の干渉縞を精度よく検出することが可能となる。これにより、センシングの精度を向上することが可能となる。
 前記第1の光学窓は、前記照明光の一部の波長成分を通過する光学フィルタであってもよい。
 例えば光学フィルタにより照明光の波長帯域を狭めることで、照明光の干渉性を向上することが可能となる。これにより、センシングの精度を向上することが可能となる。
 前記測定装置は、さらに、前記光源と前記充填部との間に配置され、前記照明光をコリメートするコリメート部を具備してもよい。
 これにより、照明光を略平行光束にして細胞を含む液体に照射することが可能となり、細胞等の状態を高精度にセンシングすることが可能となる。
 前記検出部は、前記照明光の干渉縞が記録された画像データを生成してもよい。
 これにより、画像データに基づいて細胞等の状態を容易に解析することが可能となる。
 前記光源は、前記照明光として、互いに波長の異なる光を切替えて出射可能であってもよい。この場合、前記検出部は、前記互いに波長の異なる光の各々に対応する複数の画像データを生成してもよい。
 これにより、例えば細胞を含む液体の色等をセンシングすることが可能となる。
 前記測定装置は、さらに、前記複数の画像データに基づいて、前記細胞を含む液体の色情報を算出する色情報算出部を具備してもよい。
 色情報に基づいて、例えば細胞を含む液体の状態等を解析することが可能となる。
 前記細胞は、免疫細胞であってもよい。
 これにより、免疫細胞の状態を容易にリアルタイムでセンシングすることが可能となる。
 前記細胞を含む液体は、pH指示薬が添加された液体培地であってもよい。
 例えば液体培地の色情報に基づいて、液体培地のpH等を算出することが可能である。これにより、培養環境の状態等を容易にセンシングすることが可能となる。
 前記測定装置は、前記細胞を含む液体中に設置されてもよい。
 例えば測定装置は、液体培地等に浸かった状態で動作することが可能となる。この結果、細胞等の状態を容易にリアルタイムでセンシングすることが可能となる。
 以上のように、本技術によれば、細胞等の状態を容易にリアルタイムでセンシングすることが可能となる。なお、ここに記載された効果は必ずしも限定されるものではなく、本開示中に記載されたいずれかの効果であってもよい。
本技術に係る測定システムの構成例を示すブロック図である。 測定システムの概要を説明するための模式図である。 測定装置の構成例を示す模式図である。 測定装置の外観の一例を示す斜視図である。 照明光の光路方向から見た検出面と細胞との位置関係を示す模式図である。 測定装置の接続形態の一例を説明するための図である。 測定装置の接続形態の他の例を説明するための斜視図である。 測定システムの基本的な動作例を説明するための図である。 細胞情報を算出するための処理の一例を示すフローチャートである。 伝播計算における検出面と間隙との配置関係を示す模式図である。 伝播計算に用いられる画像データと伝播計算の計算結果とを示す図である。 細胞のXY座標を算出する処理の一例を説明するための図である。 細胞を含むエリアの光路方向に沿った輝度の変化を示すグラフである。 XYZ表色系の色度図である。 培養液情報を算出するための処理の一例を示すフローチャートである。 モニタリング画像の構成例を示す模式図である。 モニタリング画像の他の構成例を示す模式図である。 モニタリング画像の他の構成例を示す模式図である。 測定装置の配置の一例を説明するための図である。 細胞断面の2次元の最密充填の例を示す模式図である。
 以下、本技術に係る実施形態を、図面を参照しながら説明する。
 [測定システムの構成]
 図1は、本技術に係る測定システムの構成例を示すブロック図である。測定システム100は、測定装置10と、処理装置20と、表示装置30とを有する。
 図2は、測定システム100の概要を説明するための模式図である。本実施形態では、測定システム100により、培養液1中を浮遊する細胞2のセンシングが実行される。なお図2では、培養液1の内部で浮遊する細胞2が黒丸により模式的に図示されており、細胞2を含む培養液1で満たされたパック3が点線で模式的に図示されている。
 本実施形態では、細胞2は免疫細胞である。もちろんこれに限定されず、例えば液体中を浮遊する任意の細胞に対して、本技術は適用可能である。本明細書において、「細胞」(単数形)は、単一の細胞と、複数の細胞の集合体とを少なくとも概念的に含む。
 培養液1は、pH指示薬が添加された液体培地である。培養液1は、例えば免疫細胞が成長・増殖するために必要な栄養素等を含むように構成される。pH指示薬としては、例えばフェノールレッド等が用いられる。培養液1の具体的な構成やpH指示薬の種類等は限定されない。本実施形態では、培養液1は、細胞を含む液体に相当する。
 パック3は、細胞2を培養するための培養容器である。パック3の内部では、培養液1を培地として、培養液1中を浮遊する細胞2(免疫細胞)の浮遊培養が行なわれる。なお、培養容器としてパック3を用いる場合に限定されず、例えば培養槽等の他の培養容器が用いられる場合にも本技術は適用可能である。
 図2に示すように、測定システム100では、測定装置10がパック3の内部に設置される。すなわち、測定装置10は細胞2を含む培養液1中に設置される。例えば測定装置10により、細胞2や培養液1の状態等が測定され、測定結果はパック3の外に配置された処理装置20に出力される。処理装置20により、測定結果についての処理が実行され、処理結果が表示装置30に表示される。これにより、培養中の細胞の状態等をモニタリングすることが可能となる。
 具体的には、図1に示す測定装置10の光源12、イメージセンサ14、及び制御ユニット15が協働することにより、照明光の細胞2を含む培養液1による干渉縞が検出され、干渉縞が記録された画像データが生成される。
 また処理装置20では、取得部21、算出部22、及び表示制御部23が協働することにより、画像データに基づいて細胞2に関する細胞情報が算出され、細胞情報の時間的な変化を示すモニタリング画像50の表示が制御される。そして表示装置30には、モニタリング画像50が表示される。以下、測定システム100の各部について説明する。
 図3は、測定装置10の構成例を示す模式図である。図4は、測定装置10の外観の一例を示す斜視図である。測定装置10は、筐体11と、光源12と、コリメータレンズ13と、イメージセンサ14と、制御ユニット15とを有する。
 筐体11は、基体部40と、基体部40から突起する第1の突起部41及び第2の突起部42とを有する。第1及び第2の突起部41及び42は、所定の距離tを空けて互いに対向するように、同一方向に沿って基体部40から突起している。第1及び第2の突起部41及び42の間には、所定の距離tに等しい幅(同じ符号を用いて幅tと記載する)を有する間隙43が形成される。
 第1及び第2の突起部41及び42には、間隙43を間に挟んで互いに対向する第1の面44及び第2の面45がそれぞれ形成される。本実施形態では、第1及び第2の突起部41及び42により充填部が実現され、第1及び第2の面44及び45の間の間隙43に、培養液1が充填される。なお第1の面44及び第2の面45は、第1の面部及び第2の面部にそれぞれ相当する。
 第1の面44は、第1の光学窓46を有する。第1の光学窓46には、後述する光源12から出射された照明光4が入射する。第1の光学窓46は、例えば照明光4の光路方向に略垂直に配置される。
 本実施形態では、第1の光学窓46は、照明光4の一部の波長成分を通過する光学フィルタとして機能する。第1の光学窓46としては、例えば誘電体多層膜等を有するバンドパスフィルタが用いられる。この場合、フィルタの通過帯域は、照明光4の波長帯域を狭めるように適宜設定される。これにより、照明光4の波長帯域を先鋭化することが可能となり、照明光4の干渉性を向上することが可能である。
 第2の面45は、第2の光学窓47を有する。第2の光学窓47は、第1の光学窓46と略平行に配置される。第2の光学窓47からは、間隙43を通過する照明光4が出射される。第2の光学窓47としては、例えばガラスや水晶等の透明な板が適宜用いられる。
 筐体11は、測定装置10の外装として機能し、内部に液体等が侵入しないように構成される。筐体11の外表面は、細胞2等に対して無害な素材でコーティングされる。また筐体11は、流線型の形状となる部分を有する。本実施形態では、基体部40の第1及び第2の突起部41及び42に接続される部分とは反対側の面が、曲面により構成される。
 このように筐体11を構成することで、測定装置10が培養中の細胞2や培養環境等に与える影響を十分に小さくすることが可能となる。これにより、例えば培養液1等の液体の流れを阻害することなく、細胞等の状態を適正にセンシングすることが可能となる。なお、筐体11の具体的な構成等は限定されず、使用される環境等に応じて適宜構成されてよい。
 光源12は、第1の突起部41の内部に第2の突起部42に向けて配置される。光源12は、第2の突起部42に向けて光軸Oに沿って照明光4を出射する。なお図3では、光源12の光軸Oが点線で図示されている。以下では、光軸Oと平行な方向をZ軸方向と記載する。本実施形態では、光軸Oと平行な方向、すなわちZ軸方向は、照明光の光路方向に相当する。
 本実施形態では、光源12から出射される照明光4は、部分コヒーレントな光である。光源12としては、例えば、所定の波長スペクトルを有する単色光を出射可能なLED(Light Emitting Diode)光源等が用いられる。光源12の具体的な構成は限定されず、例えば部分コヒーレントな光を出射可能な任意の光源が用いられてよい。
 また光源12は、照明光4として、互いに波長の異なる光を切替えて出射可能である。光源12は、例えば各々が互いに異なる波長の光を出射可能な複数のLED光源等を含むように構成される。これにより、照明光4として出射される光の波長を適宜切替えることが可能となる。この他、互いに波長の異なる光を切替えて出射可能な任意の構成が用いられてよい。
 本実施形態では、光源12は、赤色光R、緑色光G、及び青色光Bの波長に対応する3種類の光をそれぞれ切替えて出射可能である。なお各色光の中心波長や帯域幅等は限定されない。本実施形態では、光源12は、照明光を出射する光源部に相当する。
 コリメータレンズ13は、第1の突起部41の内部に、光源12と間隙43との間に配置される。コリメータレンズ13は、光軸O上に配置され、光源12から出射された照明光4をコリメートする。コリメータレンズ13を通過した照明光4は、略平行光束として出射される。本実施形態では、コリメータレンズ13は、コリメート部に相当する。
 略平行光束となった照明光4は、図3に示すように、照明光4の光路上に設けられた第1の面44(第1の光学窓46)、間隙43、及び第2の面45(第2の光学窓47)をこの順番に通過して、第2の突起部42に入射する。
 イメージセンサ14は、照明光4の光軸Oに略垂直な検出面16を有する。イメージセンサ14は、検出面16が第2の光学窓47に向くように第2の突起部42の内部に配置される。従って、検出面16には、間隙43に充填された細胞2を含む培養液1を通過した照明光4が入射する。
 イメージセンサ14は、検出面16に入射する照明光4を受光して、間隙43を通過した照明光4の細胞2を含む培養液1による干渉縞を検出する。またイメージセンサ14は、照明光4の干渉縞が記録された画像データを生成する。
 イメージセンサ14は、受光面を備えたモノクロイメージセンサとして機能する。モノクロイメージセンサでは、例えば受光面上の各位置での照明光4の強度(輝度)が検出される。なお図3に示す例では、イメージセンサ14の受光面が検出面16に相当する。イメージセンサ14としては、例えばCCD(Charge Coupled Device)センサやCMOS(Complementary Metal-Oxide Semiconductor)センサ等が用いられる。もちろん他の種類のセンサ等が用いられてもよい。
 制御ユニット15は、測定装置10の各部の動作を制御する。例えば制御ユニット15により、光源12から出射される照明光4の波長の切替えや、イメージセンサ14の動作のタイミング等が制御される。
 また制御ユニット15は、測定装置10の外部との通信を行なうための通信機能を備え、処理装置20との間で画像データや測定装置の各部を制御するための制御信号等の送受信を行なうことが可能である。制御ユニット15の具体的な構成等は限定されず、例えばFPGA(Field Programmable Gate Array)、やASIC(Application Specific Integrated Circuit)等のデバイスが用いられてもよい。
 図5は、照明光4の光路方向から見た検出面16と細胞2との位置関係を示す模式図である。図5には、円形状の第2の光学窓47と、第2の光学窓47の内側に配置された矩形状の検出面16とが模式的に図示されている。なお細胞C1~C5は、図3で説明した測定装置10の間隙43に浮遊する細胞C1~C5にそれぞれ対応する。
 上記したように、照明光4は第1の光学窓46から間隙43に入射する。例えば、間隙43に入射した照明光4の一部は、間隙43に充填された培養液1に含まれる細胞2により回折される。また照明光4の他の一部は、細胞2による回折を受けることなく培養液1中を直進する。この結果、細胞2により回折された照明光4と、培養液1中を直進する照明光4とにより光の干渉が生じる。イメージセンサ14は、この光の干渉により検出面16(受光面)に発生する干渉縞を検出することになる。
 このように、検出面16に入射する照明光4の光路上に浮遊する細胞2により、照明光4の干渉縞が作られる。例えば図3及び図5では、イメージセンサ14により検出される干渉縞は、細胞C1~C5での照明光4の回折により生じた干渉縞となる。以下では、検出面16に入射する照明光4が通過する間隙43内の空間を、検出空間48と記載する。
 検出空間48は、例えば検出面16と同じ形状の底面を有し間隙の幅tを高さとする柱状の空間となる。検出空間48を通過する照明光4は、間隙の幅tと同程度の距離だけ培養液1中を進行する。従って、例えば間隙の幅tが長いほど、照明光4の光路上に浮遊する細胞2の数が増加し、照明光4が細胞2による回折を受ける頻度が多くなる。
 本実施形態では、間隙43の第1の面44から第2の面45までの幅tが、細胞2に関するパラメータに応じて設定される。すなわち、検出空間48のZ軸方向のサイズが細胞2に関するパラメータに応じて設定されるとも言える。細胞に関するパラメータとしては、細胞2のサイズ、及び培養液1における細胞2の濃度が用いられる。
 例えば図5に示すように、照明光4の光路方向に沿って第2の光学窓47を見た場合、細胞2の断面(黒丸の領域)を照明光4の回折が生じる領域として見做すことができる。従って、細胞2のサイズ(黒丸の直径)が大きい場合、回折が生じる領域は大きくなる。また細胞2の濃度が高い場合にも、細胞2の数が増えるため、回折が生じる領域は大きくなる。
 本実施形態では、間隙43の幅tは、検出空間48に含まれる細胞2の断面積の総和が、検出面よりも小さくなるように設定される。検出空間48に含まれる細胞2の断面積の総和Σは、例えば、検出空間48の体積(検出面16の面積S×間隙43の幅t)、細胞2のサイズ(細胞2の断面積A)、及び培養液1における細胞2の濃度Nを用いて以下の式で表される。
 Σ=S×t×N×A
 断面積の総和Σが、検出面16の面積Sよりも小さい場合(Σ<S)、間隙43の幅tは、細胞の断面積A及び濃度Nを用いてt<1/(N×A)と表される。このように、間隙43の幅tは、濃度Nや断面積Aが大きいほど、小さい値に設定される。一方で、濃度Nや断面積Aが小さい場合には、間隙43の幅tを厚く設定することが可能である。
 断面積の総和Σは、照明光4の光路において回折を生じる領域の面積に相当する。従って、断面積の総和Σが検出面16の面積Sよりも小さくなるように間隙43の幅tを適宜設定することで、回折を生じる領域を検出面16よりも小さくすることが可能である。
 これにより、例えば照明光4が検出空間48を通過する際に、細胞2により複数回の回折を受けて、照明光4の干渉性が低下するといった状態を十分に抑制することが可能となる。この結果、例えば検出面16に生じる干渉縞がぼやけるといった事態が回避され、細胞2を高精度にセンシングすることが可能となる。
 例えばリンパ性白血病等の免疫療法に用いられるCar-T細胞は、30cell/mm3程度の濃度で患者にドーズされる。例えば、Car-T細胞の平均的な直径を6μmとし、ドーズ濃度の100倍の濃度(3000cell/mm3)のCar-T細胞を含む液体をセンシングするとする。この場合、間隙43の幅t<11.8mmの範囲で設定すればよい。
 また例えば、浮遊培養の工程においては、一般的に細胞の濃度が高く成りすぎた場合、継代を行なう。継代とは、例えば細胞の濃度を薄めるための操作である。この継代の目安となる細胞の濃度は、およそ1000cell/mm3である。例えば、細胞の平均的な直径を6μmとし、継代の濃度の10倍の濃度(10000cell/mm3)の細胞を含む培養液をセンシングするとする。この場合、間隙43の幅tを3.5mmとすることで、継代の濃度等でのセンシングを適正に実行することが可能である。
 なお、間隙43の幅tを設定する方法は、上記した方法に限定されない。後述するように、本実施形態では、照明光4が培養液1により吸収される現象を利用して、培養液1の色に関する情報がセンシングされる。この場合、照明光4の吸収量は、照明光の培養液1での光路が長いほど大きく、精度の高い検出が可能となる。従って、例えば照明光4の吸収量の特性等に応じて、間隙43の幅tが定められてもよい。もちろん、間隙43における照明光4の干渉性と吸収量との両方に基づいて、間隙43の幅tが定められてもよい。
 図6は、測定装置の接続形態の一例を説明するための図である。図6Aは、パック3内に配置される測定装置210、及び給電・受像機220の斜視図である。図6Bは、パック3内に配置される測定装置210、及び給電・受像機220の断面図である。
 図6に示す例では、測定装置210により、パック3の外部とのワイヤレス通信及びワイヤレス給電が行なわれる。そのために測定装置210は、パック3の外部に設置された給電・受像機220と併用して用いられる。
 図6Bに示すように、測定装置210は、ワイヤレス通信ユニット211と、ワイヤレス給電レシーバ212と、固定マグネット213とを有する。測定装置210は、パック3を挟んで、給電・受像機220と隣接するように配置される。
 ワイヤレス通信ユニット211は、給電・受像機220との近距離無線通信等を実行するためのモジュールであり、例えばWiFi等の無線LAN(Local Area Network)モジュールや、Bluetooth(登録商標)等の通信モジュールが用いられる。ワイヤレス給電レシーバ212は、非接触で伝送される電力を受け取るための素子である。固定マグネット213は、測定装置210を給電・受像機220の所定の位置に固定するためのマグネットである。
 給電・受像機220は、ワイヤレス通信ユニット221と、ワイヤレス給電トランスミッタ222と、固定マグネット223と、給電・通信ケーブル224とを有する。
 ワイヤレス通信ユニット221は、測定装置210との無線通信等を実行する。ワイヤレス給電トランスミッタ222は、非接触で伝送される電力を測定装置210に供給する。固定マグネット223は、測定装置210の固定マグネット213とともに、測定装置210を固定する。給電・通信ケーブル224は、ワイヤレス給電用の電力の供給や、ワイヤレス通信用のデータ信号等の送受信を行なう。
 例えば測定装置210のワイヤレス通信ユニット211からは、イメージセンサにより取得された画像データ等が無線信号により送信される。給電・受像機220のワイヤレス通信ユニット221は、無線信号を受信し、画像データ等を給電・通信ケーブル224を介して処理装置20等に適宜送信する。
 このように、ワイヤレス通信及びワイヤレス給電が可能なように測定装置210を構成することで、パック3内の細胞2や培養液1等を外気にさらすことなく、細胞2の状態等をセンシングすることが可能となる。これにより、パック3内を完全に密閉して培養を行なう場合や、配線が難しい場合等であっても、容易に細胞2の培養工程等をモニタリングすることが可能となる。
 図7は、測定装置の接続形態の他の例を説明するための斜視図である。図7では、測定装置310は、給電・通信ケーブル311を有し、パック3の外部と有線で接続される。例えば培養装置等への配線の導入等が可能な場合には、給電・通信ケーブル311を有する測定装置310を用いることが可能である。これにより、例えば装置の部品点数を抑えることが可能となり、小型で安価な装置を提供することが可能となる。
 図1に戻り、処理装置20は、CPU(Central Processing Unit)、ROM(Read Only Memory)、RAM(Random Access Memory)、HDD(Hard Disk Drive)等のコンピュータの構成に必要なハードウェアを有する。処理装置20として、例えばPC(Personal Computer)が用いられるが、他の任意のコンピュータが用いられてもよい。
 CPUが、ROMやHDDに格納された本技術に係るプログラムをRAMにロードして実行することにより、図1に示す機能ブロックである取得部21、算出部22、及び表示制御部23が実現される。そしてこれらの機能ブロックにより、本技術に係る情報処理方法が実行される。なお各機能ブロックを実現するために専用のハードウェアが適宜用いられてもよい。本実施形態では、処理装置20は、情報処理装置に相当する。
 プログラムは、例えば種々の記録媒体を介して処理装置20にインストールされる。又はインターネット等を介してプログラムのインストールが実行されてもよい。
 取得部21は、細胞2を含む液体を通過した照明光4の干渉縞が記録された画像データを取得する。取得部21は、例えば測定装置10の制御ユニット15を介してイメージセンサ14により生成された画像データを取得する。取得された画像データは算出部22に出力される。
 算出部22は、画像データに基づいて照明光4に対する伝播計算を実行することにより、細胞2に関する細胞情報を算出する。また算出部22は、画像データに基づいて、培養液1に関する培養液情報を算出する。算出部22の動作については後に詳しく説明する。本実施形態では、培養液情報は、液体情報に相当する。
 表示制御部23は、細胞情報の時間的な変化を示すモニタリング画像50の表示を制御する。表示制御部23は、例えば算出部22により算出された細胞情報や培養液情報を取得し、これらの情報に基づいて、モニタリング画像50に表示される内容等を制御することが可能である。モニタリング画像50は、図示しない出力インターフェースを介して表示装置30に出力される。
 表示装置30は、例えば液晶、EL(Electro-Luminescence)等を用いた表示デバイスである。表示装置30には、処理装置20から出力されたモニタリング画像50等が表示される。ユーザは、例えば表示装置30に表示されたモニタリング画像50等を参照することにより、培養中の細胞2の状態等をリアルタイムで容易にセンシングすることが可能となる。
 図8は、測定システム100の基本的な動作例を説明するための図である。図8に示すように、測定装置10は、培養液1中に浮遊する細胞2のホログラムを撮影する。細胞2のホログラムとは、照明光4が細胞2による回折を受けることで生じる、検出面16での照明光4の干渉パターン(干渉縞)である。従って細胞のホログラムを撮影することは、イメージセンサ14により干渉縞を検出することに含まれる。
 なお、ホログラムの撮影には、所定の波長の照明光4が用いられる。例えば光源12により出射可能な赤色光R、緑色光G、及び青色光Bのうちいずれか1つが照明光4として用いられる。もちろんこれに限定されず、例えばイメージセンサ14の解像度や対象となる細胞2のサイズ等に応じて、ホログラムの撮影に用いられる波長が適宜設定されてよい。
 撮影されたホログラムは、画像データとして処理装置20に出力される。処理装置20では、算出部22により、画像データ(細胞2のホログラム)に基づいて細胞2に関する細胞情報が算出される。算出部22は、細胞2の数量カウントや形態の抽出を実行し、細胞情報として、細胞2の数、密度、サイズ、及び形状を算出する。
 また図8に示すように、測定装置10では、イメージセンサ14により、互いに波長の異なる光の各々に対応する複数の画像データが生成される。具体的には、イメージセンサ14は、赤色光R、緑色光G、及び青色光Bの各々に対応する赤色画像データ、緑色画像データ、及び青色画像データをそれぞれ生成する。以下ではRGBの各色光に対応する複数の画像データをまとめてRGBデータと記載する場合がある。
 処理装置20では、取得部21により、測定装置10の光源12により照明光4として出射された互いに波長の異なる複数の光の各々に対応する複数の画像データ(RGBデータ)が取得される。そして算出部22により、複数の画像データに基づいて、培養液情報として細胞2を含む培養液1の色情報が算出される。すなわち算出部22は、培養液の色を計算する。本実施形態では、算出部22は、色情報算出部として機能する。
 処理装置20では、表示制御部23により、細胞情報と、培養液1の色情報(培養液情報)とに基づいて、モニタリング画像50の表示内容等が制御される。そしてモニタリング画像50は、表示装置30によりセンシング結果として提示される。なお、モニタリング画像50の表示を制御するタイミング等は限定されず、例えばホログラムやRGBデータが取得されるタイミング等に応じて、適宜モニタリング画像50の更新等が行なわれてよい。
 このように、測定システム100では、細胞情報を算出するための処理と、培養液の色を算出するための処理とが実行される。以下、各処理について具体的に説明する。
 [細胞情報の算出処理]
 図9は、細胞情報を算出するための処理の一例を示すフローチャートである。まず細胞2のホログラムが撮影され、取得部により画像データとして取得される(ステップ101)
 算出部22により、取得された画像データに基づいて、照明光4に対する伝播計算が実行される(ステップ102)。本実施形態では、照明光4に対する伝播計算として、レイリーゾンマーフェルトの回折積分(角スペクトル法)が実行される。なお、光の伝播計算に用いられる手法等は限定されず、例えばフレネル近似やフラウンフォーファ近似等の近似公式を用いて伝播計算が実行されてもよい。この他、伝播計算を実行することが可能な任意の手法が用いられてよい。
 図10は、伝播計算における検出面16と間隙43との配置関係を示す模式図である。図10では、光源12、間隙43、及び検出面16が模式的に図示されている。なお図10では、図3で説明したコリメータレンズ13、第1の光学窓46、及び第2の光学窓47の図示が省略されている。
 以下では、光軸Oと検出面16とが交差する点PをZ軸方向の原点とし、検出面16から間隙43に向かう方向をZ軸方向の正の方向として説明を行う。またZ軸方向と垂直で互いに直交する方向をX軸方向及びY軸方向とする。X軸方向及びY軸方向は、例えば検出面16の縦方向及び横方向に対応する。図10では基体部40から第1及び第2の突出部41及び42が突出する方向(図3参照)が、X軸方向の正の方向に設定される。
 算出部22は、照明光4に対する伝播計算により、細胞2を含む培養液1内において照明光4が通過する複数のフォーカス面17の各々に対応する複数のフォーカス画像データを算出する。図10に示すように、フォーカス面17は、例えば間隙43の内部に照明光4の光路方向(Z軸方向)に直交するように設定される。
 図10では、検出面16から第2の面45までの距離がLに設定される。従って、フォーカス面17のZ軸方向の位置zは、L<z<L+tに設定される。なおフォーカス面17の数や位置等は限定されず、例えば所望の精度で細胞情報を算出可能なように適宜設定されてよい。
 例えばフォーカス面17への伝播計算を、検出面16に生成された照明光4の強度分布(干渉縞)に基づいて実行することで、フォーカス面17を通過した際の照明光4の強度分布を算出することが可能である。これにより、フォーカス面17に存在する細胞2の状態等を詳細にセンシングすることが可能となる。
 算出部22は、画像データに基づいて、各フォーカス面17への伝播計算を実行し、伝播計算の計算結果をフォーカス画像データとしてそれぞれ算出する。すなわち算出部22は、1つの画像データに基づいて、Z軸方向の深さが異なる複数のフォーカス面17でのフォーカス画像データを算出することが可能である。これにより、1度の撮影で間隙43(検出空間48)に含まれる略全ての細胞2についてのセンシングを行なうことが可能となる。
 以下では、位置zのフォーカス面17で生成されたフォーカス画像データをa(x,y,z)と記載する。なお、a(x,y,0)はイメージセンサ14により検出されるデータ画像(ホログラム)を表す。本実施形態では、フォーカス面17は、中間面に相当し、フォーカス画像データは、中間画像データに相当する。
 図11は、伝播計算に用いられる画像データと伝播計算の計算結果とを示す図である。図11Aは、画像データにより構成される画像60である。図11Bは、図11Aに示す画像データに基づいて算出されたフォーカス画像データにより構成される画像61である。
 図11Aに示すように、画像データには、細胞2により回折された照明光4の干渉縞(ホログラム)が記録される。粒子状の細胞2から得られるホログラムは、同心円状の明暗の線からなる。例えば1つの細胞2に対しては、その細胞の位置を基準とした同心円状の明暗の線(干渉縞)が検出される。この同心円状の明暗の線を1つのグループとした場合、このグループの数が、培養液1中に浮遊する細胞2の数に相当する。
 図11Bに示すように、フォーカス画像データには、フォーカス面17での個々の細胞2の位置、サイズ、及び形状(輪郭)等の情報が含まれる。例えば、フォーカス画像データを解析することで、フォーカス面17上の各細胞を詳細にセンシングすることが可能となる。なお各細胞2の周りには伝播計算に伴うリング状のアーティファクト等が現れる。従ってフォーカス画像データにより構成される画像61は、物体(細胞2)の周囲が明暗のパターンに囲まれたリンギング画像となる。
 図9に戻り、各フォーカス面17でのフォーカス画像データが算出されると、細胞2のXY座標を算出する処理(ステップ103~ステップ106)が開始される。図12は、細胞2のXY座標を算出する処理の一例を説明するための図である。以下図9及び図12を参照して細胞2のXY座標を算出する処理について説明する。
 まず、複数のフォーカス画像データの各々に対して前処理が実行される(ステップ103)。前処理では、画像フィルタにより、各フォーカス画像データに含まれる高周波の空間周波数成分がフィルタリングされ、細かいノイズ成分等が除去される。またエッジ検出処理により、細胞2の輪郭や周囲のリング等が検出される。検出された部位(細胞2やリング等)はグレースケールから白黒のデータに2値化される。
 ステップ103では各フォーカス画像データについて、前処理後の画像データa'(x,y,z)が算出される。図12では、前処理により得られた画像62の一例が示されている。なお、前処理の処理内容は限定されず、例えばダークレベル補正、逆ガンマ補正、アップサンプリング、端部処理等の各種の処理が適宜実行されてよい。
 前処理後の画像データa'(x,y,z)に対してハフ変換が実行される(ステップ104)。ハフ変換は、画像内の所定の形状を検出するための変換処理である。本実施形態では、前処理により検出されたエッジ上の点を通る円を検出するためのハフ変換が実行される。円を検出するためのハフ変換では、円の半径に関するパラメータrが用いられる。
 ハフ変換によりa'(x,y,z)は、ハフ変換画像A'(x,y,z,r)に変換される。ハフ変換画像A'(x,y,z,r)は、半径rの円の検出に用いられる画像である。図12には、ハフ変換により生成されたハフ変換画像63の一例が示されている。例えばハフ変換画像63では、各位置の値(明暗)により、a'(x,y,z)内における半径rの円の中心座標の候補が表される。すなわちハフ変換画像63の明るい部分は、中心座標の候補として有力な部分となる。
 算出部22は、予め設定された半径rの探索範囲内で複数のハフ変換画像63を算出する。探索範囲は、例えば半径rの最小半径rmin及び最大半径rmaxを用いて、rmin≦r≦rmaxと表される。この探索範囲内に含まれる複数の半径rの各々に対応する複数のハフ変換が実行される。従ってa'(x,y,z)は、図12に示すように、3次元的なデータ(ハフ空間のデータ)に変換されることになる。なおハフ変換処理は、各フォーカス面17に対応するa'(x,y,z)の各々に対して実行される。
 探索範囲の最小半径rminは、例えば培養液1内の細胞2のサイズ(3μm~10μm)に合わせて設定される。また探索範囲の最大半径rmaxは、例えばフォーカス画像データでの細胞の周りのリングの直径(~50μm)に応じて設定される。なお半径rの探索範囲は限定されず、例えば計算要する時間や計算精度等に応じて適宜設定されてよい。
 算出された複数のハフ変換画像63についての積算処理(ハフ空間における積分)が実行される(ステップ105)。本実施形態では、積算処理として、以下の計算が実行される。
Figure JPOXMLDOC01-appb-M000001
 積算処理では、(数1)に示すように、ハフ変換画像A'(x,y,z,r)の各位置(x,y)の値が半径rの探索範囲、及び各フォーカス面の深さzについて積算される。この結果、各フォーカス面に現れる円(リング)の中心座標に対応する位置(x、y)では、他の位置と比べて積算値が高い値となる。図12には、積算値を表す画像64が示されている。
 ハフ空間から物体(細胞2)のXY座標が決定される(ステップ106)。例えば算出部は、積算値が所定の閾値よりも大きい位置(x、y)をフォーカス画像データにおける円の中心座標として算出する。これにより円の中心に位置する細胞2のXY座標を決定することが可能である。もちろん、閾値よりも大きい位置が複数存在する場合には、複数の細胞2の各々のXY座標が決定されることになる。
 このように、算出部22は、複数のフォーカス画像データに基づいて、照明光4の光路方向に垂直な面方向であるXY平面方向での細胞2の位置を算出する。これにより、例えば培養液1に含まれる個々の細胞2をそれぞれ解析することが可能となる。この結果、培養液1に含まれる細胞2等の状態を詳細にセンシングすることが可能となる。
 また算出部22は、細胞2のXY座標に基づいて、細胞2の数を算出する。例えば、細胞2のXY座標の総数をカウントすることで、間隙43に含まれる細胞2の数が算出される。また算出された細胞2の数と間隙43の体積とに基づいて、培養液1における細胞2の濃度等を算出することが可能である。算出された細胞数や濃度等の情報は、表示制御部に出力される。
 なお、ハフ変換を用いて細胞2のXY座標を決定する場合に限定されず、XY座標を決定可能な任意の方法が用いられてよい。例えば、機械学習等を用いた画像認識処理を用いて、細胞2のXY座標が決定されてもよい。この他、任意の画像検出処理等が用いられてよい。
 図9に戻り、細胞2のXY座標が算出されると、細胞2のZ座標を算出する処理(ステップ107~ステップ109)が開始される。
 まず、各フォーカス面17でのフォーカス画像データa(x,y,z)から、各細胞2のXY座標を中心とするm×mピクセルの画像データb(x,y,z)がそれぞれ切り出される(ステップ107)。これにより各細胞が存在するエリア(b(x,y,z))の画像が抽出される。切り出される画像データのサイズ(m×mピクセル)は、例えば想定される細胞2のサイズ等に応じて適宜設定される。
 算出部22は、例えば対象となる細胞2のXY座標に基づいて、深さ(z軸方向の位置)が異なる各フォーカス画像データの各々から、画像データb(x,y,z)を切り出す。従って1つの細胞2に対して複数の画像データb(x,y,z)が切り出される。同様の処理が他の細胞2についても実行される。
 各細胞2について、切り出した画像データ間の輝度の差分が算出される(ステップ108)。画像データ間の輝度の差分fは、例えば以下の式により与えられる。
Figure JPOXMLDOC01-appb-M000002
 ここでΔzは、隣接するフォーカス面17の間の距離である。(数2)に示すように、隣接するb(x,y,z)及びb(x,y,z+Δz)間で、各点での輝度差について画像全体での総和が算出される。これにより細胞2を含むエリアの輝度が、光路方向に沿ってどのように変化したかを表す出力カーブを算出することが可能である。また算出部22は、輝度の差分fに対して、z軸方向での微分計算を実行する。
 図13は、細胞2を含むエリアの光路方向に沿った輝度の変化を示すグラフである。図13A~図13Bには、互いに異なるエリア65a~65cでの輝度の差分f(z)とその微分値f'(z)を示すグラフが示されている。また図13A~図13Bでは、細胞2がない場合の輝度の差分f0(z)が示されている。なお図13では、画像データb(x,y,z)を、z軸方向の位置zを用いてb(z)と記載する。
 図13Aでは、細胞C6を含むエリア65aでの輝度の変化が示されている。図13Aに示すように、細胞C6を含むエリア65aでは、輝度の差分f(z)は2つのピークP1及びP2を有する。各ピークP1及びP2のZ軸方向の位置は、それぞれ754μm及び1010μmである。また2つのピークP1及びP2の間にはf(z)の微分値f'(z)のピークP3が現れる。P3のZ軸方向の位置は、928μmである。なおf0(z)では、明確なピークは検出されない。
 また図13Aには、ピークP1及びP2での細胞2の画像データb(754)及びb(1010)と、ピークP3での細胞の画像データb(928)とが示されている。図13Aに示すように、3つの画像のうち、ピークP3での画像データb(928)が最も焦点のあった画像となる。
 図13Bには、細胞C7を含むエリア65bでの輝度の変化が示されている。図13Bに示すように、細胞C7についても、輝度の差分f(z)は2つのピークP4及びP5を有する。また2つのピークP4及びP5の間には、微分値f'(z)のピークP6(z=935.5μm)が現れる。これにより細胞C8に焦点の合った画像データb(935.5)が抽出可能となる。
 図13Cには、複数の細胞C8を含むエリア65cでの輝度の変化が示されている。図13Bに示すように、複数の細胞が固まって存在している場合にも、f(z)及びf'(z)の各グラフは、図13A及び図13Bと同様の傾向を示す。すなわちf'(z)のピークP7(z=924.5)から、複数の細胞C8に焦点の合った画像データb(924.5)が抽出することが可能である。
 算出部22は、輝度の差分f(z)の微分値f'(z)におけるピーク点を算出し、算出されたピーク点を細胞2のZ座標として決定する(ステップ109)。すなわち、対象とする細胞2に焦点が合う位置が、その細胞2のZ軸方向の位置に決定される。
 このように、算出部22は、複数のフォーカス画像データの各々について輝度の差分f(z)を算出し、輝度の差分f(z)の微分値f'(z)に基づいて細胞2の光路方向の位置を算出する。これにより、培養液1内での細胞の位置(x、y、z)が定まり、個々の細胞を詳細にセンシングすることが可能となる。本実施形態では、輝度の差分f(z)は輝度情報に相当し、微分値f'(z)は、輝度情報の光路方向の変化に相当する。
 なお、各細胞2のZ座標を算出する方法は、ステップ107~109で説明した方法に限定されず、他の任意の方法が用いられてよい。例えば、フォーカス画像データの各ピクセル間の差分和(輝度の差分f(z))からZ座標を決定してもよい。また例えば、機械学習を用いたフォーカス検出技術が用いられてもよい。
 算出部22は、Z座標が算出された細胞の外形パラメータを算出する(ステップ110)。算出部は、例えば対象となる細胞2のZ座標に対応する画像データb(x,y,z)(図13参照)に基づいて、細胞2のサイズ及び形状等の外形パラメータを算出する。
 外形パラメータの算出としては、例えば機械学習を用いた輪郭の抽出処理等が実行される。これにより細胞2の直径等のサイズに関する情報や、真円度や楕円率等の形状に関する情報が外形パラメータとして算出される。外形パラメータの種類等は限定されない。例えばサイズ及び形状のどちらか一方が算出されてもよいし、他のパラメータが算出されてもよい。
 なおフォーカス画像データでは、検出面16からの距離が離れるほど、すなわちZ軸方向の位置が光源12に近いほど、画像の分解能が低下して細胞2の像等がぼやける場合があり得る。この場合、例えば画像のエッジ(細胞2の輪郭)等がぼやけることを踏まえて、算出される外形パラメータを適宜補正するといった処理が実行されてもよい。これにより、細胞2の外形を適正に検出することが可能となる。
 [培養液情報の算出処理]
 図14は、XYZ表色系の色度図である。本実施形態では、培養液1の色が、CIE標準表色系であるXYZ表色系を用いて表される。XYZ表色系を用いることで、例えばRGBの各色光を出射して生成される各画像データの輝度に基づいて、培養液1の色(色度)を算出することが可能である。
 XYZ表色系では、光源12から出射されるRGBの各色光を三刺激値と呼ばれる量で表すことが可能である。例えば赤色光Rは[XR0,YR0,ZR0]と表され、赤色光Gは[XG0,YG0,ZG0]と表され、青色光Bは[XB0,YB0,ZB0]と表される。各色光の三刺激値は、具体的には以下のように計算される。
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000004
 (数4)はRGBの各色光の波長スペクトル(波長λの関数)である。またX,Y,Zは、XYZ表色系で定められた等色関数(波長λの関数)である。従って例えば光源12から出射される赤色光R、緑色光G、及び青色光Bの各々の波長スペクトルを予め取得することで、(数3)に示す各色光の三刺激値を算出することが可能である。
 (数3)に示す各色光の3刺激値を合計する。これにより、RGBの各色光を混ぜた場合の白色光を表す三刺激値が算出される。
Figure JPOXMLDOC01-appb-M000005
 白色光の色度x0及びy0は、X0、Y0、及びZ0を用いて以下のように表される。
Figure JPOXMLDOC01-appb-M000006
 XYZ表示系では、このように色度を算出することにより、色を表すことが可能となっている。この色度により表される色は、例えば図14に示す色度図と対応している。なお(数6)では、白色光の色度が算出されたが、RGBの各色光の各々について色度を算出することも可能である。図14には、RGBの各色光に対応する点がそれぞれ図示されている。
 本実施形態では、(数6)に示す白色光の色度x0及びy0を用いて、RGBの各色光が調整される。RGBの各色光の調整は、例えば測定装置10の間隙43に、培養液1等が充填されていない状態で行なわれる。例えば、色度x0及びy0が図14に示す色度図において、白色(0.333、0.333)となるように、RGBの各色光の発光強度が調整される。すなわち、光源12から出射される各色光の強度が、白色を基準に校正されるとも言える。
 測定システム100では、白色光の色度が白色を示すように調整された状態での、イメージセンサ14の検出値IR0,IG0,IB0が予め記録される。例えばIR0は、発光強度が調整された状態で赤色光のみを出力して生成された画像データの輝度値の平均値である。同様にIG0及びIB0は、調整された緑色光及び青色光に対応する輝度値の平均値である。このように、校正された光源12での検出値IR0,IG0,IB0を用いることで、培養液1の色等を高精度にセンシングすることが可能となる。
 図15は、培養液情報を算出するための処理の一例を示すフローチャートである。本実施形態では、測定装置10を培養液1中に設置した状態で、図15に示す処理が実行される。
 光源12により赤色光Rが出射(点灯)され、イメージセンサ14により赤色画像データが生成される(ステップ201)。例えば培養液1に入射した赤色光Rの一部は、培養液1の特性に応じた光の吸収を受ける。また他の一部は、培養液1を透過する。
 一般に培養液1により吸収される光の量は、例えば培養液1における光路長に応じた量となる。例えば間隙43に対して垂直に入射した光と、斜めに入射した光とでは、培養液1内を通過する光路長に差が生じることになる。このような場合、検出される光の強度に差が生じる可能性がある。
 本実施形態では、光源12から出射された赤色光Rは、コリメータレンズ13を介して略平行光束の状態で間隙43を通過する(図3参照)。従ってイメージセンサ14の検出面16に入射する赤色光Rが培養液1内を通過する際の光路長は、検出面16内の位置に係らず略同じ長さ(間隙43の幅t)となる。従って検出面16の各位置では、厚さtの培養液1を通過する赤色光Rの透過量(吸収量)を高い精度で検出することが可能となる。
 算出部22により、赤色画像データの輝度値の平均値IRが算出される(ステップ202)。
これにより、培養液1を透過した赤色光Rの強度を高精度に取得することが可能となる。
 光源12により、赤色光Rから緑色光Gに照明光が切替えられ、緑色画像データが生成される(ステップ203)。生成された緑色画像データから、輝度値の平均値IGが算出される(ステップ204)。その後、緑色光Gから青色光Bに照明光が切替えられ、青色画像データが生成される(ステップ205)。生成された青色画像データから、輝度値の平均値IGが算出される(ステップ206)。
 このように、RGBの各色光が順次切替えられて出射され、各色光に対応する画像データから培養液1を透過したRGBの各色光の輝度値の平均が算出される。もちろん出射される色光の順序等は限定されない。以下では、培養液1を透過した各色光の輝度値の平均値(IR,IG,IB)を測定強度と記載し、光源12の輝度値の平均値(IR0,IG0,IB0)を初期強度と記載する場合がある。
 測定強度(IR,IG,IB)、初期強度(IR0,IG0,IB0)、及びRGBの各色光の三刺激値(数3)に基づいて、培養液1を透過した光についての三刺激値(XRGB,YRGB,ZRGB)が算出される(ステップ207)。ここで、(XRGB,YRGB,ZRGB)は、例えば培養液1にRGBの各色光を混ぜて出射した場合、すなわち白色光を出射した場合の、培養液1の透過光を表す三刺激値である。具体的には、算出部22により以下の計算が実行される。
Figure JPOXMLDOC01-appb-M000007
 (数7)では、RGBの各色光について、色光の三刺激値に対して測定強度と初期強度の比を乗じる計算が実行される。(数7)に示すように、例えば赤色光Rについては、(XR0,YR0,ZR0)とIR/IR0との積が計算される。また緑色光G、青色光Bについても同様の計算が行なわれる。
 一般に培養液1により吸収される光の強度は、波長ごとに異なる強度(吸収スペクトル)となる。上記したように、本実施形態では、第1の光学窓46等により各色光のスペクトルが先鋭化される。先鋭化された各色光のスペクトルの半値幅は、例えば10nm程度である。従って各色光は、略単一の波長の光と見做すことが可能であり、波長の違いに伴う吸収量の差等をほとんど考慮する必要がない。このため(数7)では、測定強度と初期強度との比(IR/IR0、IG/IG0、IB/IB0)を用いることで、培養液1による吸収を受けた光の強度を表すことが可能となっている。
 (XRGB,YRGB,ZRGB)に基づいて、培養液1による吸収を受けた光の色度(x,y)が算出される(ステップ208)。例えば、(数5)での計算と同様に、(XRGB,YRGB,ZRGB)が合算され、色度x及びyが以下のように算出される。
Figure JPOXMLDOC01-appb-M000008
 (数8)で算出された色度x及びyは、培養液1の色の測定値として用いられる。図14では、測定値として算出された色度(x、y)の一例が黒丸66で模式的に図示されている。算出された色度(x、y)は、例えば表示制御部23等に出力される。本実施形態では、培養液1の色度(x、y)は、細胞を含む液体の色情報に含まれる。
 算出部22は、培養液1の色度(x,y)に基づいて、細胞2を含む培養液1のpH値を算出する(ステップ209)。上記したように、培養液1にはフェノールレッド等のpH指示薬が添加されている。例えば培養液1の色度と培養液1のpH値とが紐付けられた換算データ等が予め記録される。これにより、例えば換算データを参照することで、培養液1の色度に基づいて培養液1のpH値を容易に算出することが可能である。この他、色度に基づいてpH値を算出する方法は限定されない。培養液1のpH値は、培養液1に関する培養液情報である。本実施形態では、培養液1のpH値は、液体情報に含まれる。
 算出部22により、色情報として、細胞2を含む培養液1の色を表示するための表示色が算出される(ステップ210)。表示色は、培養液1の色度(x,y)に基づいて算出される。また表示色は、表示装置30等で用いられるRGB値に変換される。すなわちXYZ表色系の表示色が、RGB表色系の数値に変換される。
 例えば、間隙43の幅tが狭い場合(例えば~数mm)には、培養液1により光の吸収量が小さく、色度(x、y)により指定される色が薄い色となることがあり得る。本実施形態では、xy色度座標上で測定値(黒丸66)を移動して、培養液1の色を強調した表示色(白丸67)が算出される。
 例えば図14に示すように、白色を表す点(0.333,0.333)と黒丸66(x、y)とを繋ぐ直線に沿って、黒丸66が白色を表す点から離れる方向に、黒丸66を所定の距離だけ移動する。移動後の点(白丸67)は、表示色を表す点としてRGB値に変換される。このように色度図では、xy色度座標上の点を白色から遠ざかるように移動することで、より濃い色を表現することが可能である。これにより、培養液1の色を強調することが可能となる。
 なお色度(x,y)に基づいて表示色を算出する方法等は限定されない。例えば、測定値を強調する任意の方法を用いて表示色が算出されてもよい。また例えば、測定値である色度(x、y)がそのまま表示色として算出されてもよい。このように、培養液1の色を表示するための表示色を算出することで、例えば所望の色合い(濃度、彩度、明度等)で培養液1の色を表現することが可能となる。表示色はRGB値に変換された後、例えば表示制御部23等に出力される。本実施形態では、表示色は、表示色情報に相当する。また表示色情報は、色情報に含まれる。
 このように、測定システム100では、測定装置10と処理装置20とが協働することにより、細胞2に関する細胞情報と、培養液1に関する培養液情報とが取得される。これらの情報は、例えば所定の間隔で取得され、表示制御部23によるモニタリング画像50の表示制御等に用いられる。もちろん、取得された情報をHDD等に記録することで、培養過程を記録したデータとして参照されてもよい。
 [モニタリング画像の表示制御]
 図16は、モニタリング画像50の構成例を示す模式図である。上記したように、モニタリング画像50の表示は、表示制御部23により制御される。図16に示す例では、モニタリング画像50は、モニタリング領域51と、数値表示領域52とを有する。
 モニタリング領域51は、矩形状の領域であり、横軸53と、第1の縦軸54と、第2の縦軸55とを有する。横軸53は、モニタリング領域51の下側の底辺に設定される。また第1及び第2の縦軸54及び55は、モニタリング領域51の左側及び右側の辺に設定される。
 また図16に示すように、モニタリング領域51は、領域内の全面を使ってカラーマップ56を表示することが可能である。なお、モニタリング画像50では、カラーマップ56の色と数値を対応させたカラーバー(図示省略)等が表示可能であってもよい。
 モニタリング画像50には、細胞情報の時間的な変化を示すグラフが含まれる。図16では、モニタリング領域51の横軸53を培養時間とし、第1の縦軸54を細胞情報として、細胞情報の時間変化を示すグラフが図示されている。
 細胞情報としては、例えば培養液1の単位体積あたりの細胞数(細胞の濃度)が表示される。この場合、第1の縦軸54は細胞数を表し、培養時間とともに増殖する細胞2の数(濃度)等を容易に監視することが可能となる。また細胞情報として、例えば細胞2の直径の平均が表示されてもよい。この場合、第1の縦軸54は平均細胞直径を表し、培養が進むに連れて細胞2のサイズがどのように変化したかといったこと等を容易に監視可能である。
 グラフ化される細胞情報の種類等は限定されず、細胞情報に含まれる任意の情報が用いられてよい。また表示される細胞情報の種類等を切り替えてグラフ化することが可能であってもよい。例えば表示制御部23は、ユーザによる指示等に基づいて、グラフ化される細胞情報の種類を切り替えることが可能であってもよい。
 またモニタリング画像50には、培養液1のpH値の時間的な変化を示すグラフが含まれる。図16では、第2の縦軸55をpH値として、pH値の時間変化を示すグラフが図示されている。これにより、培養過程でのpH値の変化等を容易に監視することが可能となる。
 モニタリング画像50は、培養液情報の時間的な変化を示す。本実施形態では、モニタリング画像50は、培養液情報である色情報の時間的な変化を示すマップを含む。図14及び図15で説明したように、算出部22は、培養液1の色を示す色度(x,y)から、培養液1の色を表示するための表示色をRGB値として算出する。モニタリング画像50には、算出されたRGB値を用いて、表示色の時間的な変化を示すカラーマップ56が表示される。
 図16では、カラーマップ56は、横軸53(培養時間)に沿って培養液1の色(表示色)の時間変化を表示するように構成される。例えばモニタリング領域51では、時間ごとの培養液1の色が、横方向に色が変化するグラデーションとして表示される。これにより、例えば培養液1の色が培養中にどのように変化したかを容易に監視することが可能となる。なおカラーマップ56の具体的な構成等は限定されない。例えばモニタリング領域51の一部の領域を使ってカラーマップ56が表示されてもよい。
 図16に示すように、モニタリング領域51では、カラーマップ56に重ねて細胞情報の時間変化を表すグラフが表示される。このように、表示制御部23は、細胞情報の時間的な変化を示すグラフ及び培養液情報の時間的な変化を示すマップの各々を重畳して表示する。これにより細胞2の状態と培養液1の状態とを同時に示すことが可能となり、例えば細胞2を培養する工程等を容易にモニタリングすることが可能となる。
 数値表示領域52は、例えばモニタリング領域51の近傍に配置される。図16には、モニタリング領域51の右上に配置された数値表示領域52が図示されている。数値表示領域52には、細胞情報や培養液情報が数値により表示される。図16に示す例では、例えば現在の培養液1の色度(x,y)や、当該色度(x,y)から換算されたpH値等が、数値表示領域52に所定の有効桁数で表示される。
 数値表示領域52に表示される数値の種類等は限定されない。例えば現在の細胞2の濃度や細胞2の平均サイズ等が、数値により表示されてもよい。また例えばユーザにより指示されたグラフやマップ上の各点での値(細胞2の濃度や培養液1の色度等)が数値表示領域52に表示されてもよい。
 図17及び図18は、モニタリング画像50の他の構成例を示す模式図である。図17では、互いに異なるサイズA~Cの細胞2について、各サイズごとの細胞数の時間的な変化が示されている。グラフ57cは、サイズCの細胞2の数を示す。グラフ57bは、サイズC及びサイズBの細胞2の数を示す。グラフ57aは、細胞2の総数(サイズA、サイズB、及びサイズCの細胞の総和)を示す。
 このようにグラフ57a~57cを表示することで、増殖する細胞2のサイズの割合等を容易に監視することが可能となる。これにより、細胞2等の状態を詳細にセンシングすることが可能となり、高度なモニタリングを実現することが可能となる。
 図18では、モニタリング領域51の横軸53として、細胞数が設定されている。また第1の縦軸54として、pH値が設定されている。またモニタリング領域51では、培養液1の色を示すカラーマップ56が、第1の縦軸54に沿って変化するグラデーションとして表示される。この場合、カラーマップ56の色は第1の縦軸54に設定されたpHに対応して設定される。
 表示制御部23は、細胞数を横軸としpH値を縦軸として、培養時間中に取得された各データ点をプロットする。例えば、図18中のデータ点t1は、最初に取得されたデータにおける細胞数とpH値を示す。またデータ点tlatestは、最新の細胞数とpH値を示す。このように、細胞数に対して各データ点でのpH値をプロットした場合でも、細胞の状態がどのように変化したか、すなわち細胞情報の時間的な変化を示すことが可能である。
 また表示制御部23により、細胞情報の時間的な変化が正常な状態である正常範囲58がモニタリング画像50に表示される。図18では、正常範囲58が点線で模式的に図示されている。正常範囲58は、例えば過去に行なわれた細胞培養等のデータを使って算出される。
 例えば、データ点が正常範囲58の範囲内に収まっている場合、細胞2が正常に生育していることになる。またデータ点が正常範囲58から外れている場合、細胞2の生育状態が正常な状態から乖離していることになる。このように、正常範囲58とともに細胞2の状態等を示すことで、培養工程での異常等を容易に監視することが可能となる。これによりモニタリングの作業を十分に支援することが可能となる。
 以上、本実施形態に係る測定システム100では、光源12から出射された照明光4の光路上に、互いに対向する第1及び第2の面44及び45に挟まれた間隙43が設けられ、この間隙43には細胞2を含む培養液1が充填される。そして間隙43に充填された細胞2を含む培養液1による照明光4の干渉縞が検出される。これにより干渉縞に基づいて細胞2等の状態を容易にリアルタイムでセンシングすることが可能となる。
 細胞や培地等の状態をセンシングする方法として、光学顕微鏡等を用いる方法が考えられる。光学顕微鏡を用いた場合、一般に被写界深度外の物体を撮影するためには、メカニカルにフォーカスを変えて複数回に分けて撮影を行なうことが必要である。例えば液体培地等を用いた浮遊系の細胞培養では、培地が攪拌され撮影対象となる粒子(細胞等)が常に動いている。このため、奥行き方向の位置(Z座標)の異なる粒子をすべて撮影することは難しく、適正なセンシングを行なえない可能性が生じる。
 例えば、液体培地に含まれる細胞を細胞計数盤等などの平面上に配置して、細胞等のセンシングを行なうことがあり得る。この場合、液体培地を抽出する操作等が必要となる。また液体培地に浮遊する細胞を直接観察する場合には、専用の培養容器や流路を設計する必要があり、コストが増大してしまう可能性が生じる。
 本実施形態に係る測定装置10では、培養液1を充填可能な間隙43が設けられる。そしてイメージセンサ14により間隙43を通過した照明光4の細胞2を含む培養液1によるホログラム(干渉縞)が検出される。このホログラムに基づいて、間隙43に含まれる各細胞2をセンシングすることが可能である。
 例えば、検出されたホログラムに基づいて、互いにZ軸方向の位置が異なるフォーカス面17でのフォーカス画像データを生成することが可能である。これにより、1度の撮影で間隙43に含まれる略全ての細胞2についてのセンシングを行なうことが可能となる。この結果、細胞2が常に移動している浮遊系の培養であっても、リアルタイムで細胞等の状態をセンシングすることが可能である。
 また測定装置10は、培養液1の内部に設置可能に構成される。従って、培養液1を取り出すことなく、細胞数等をリアルタイムでセンシングすることが可能である。また測定装置10は、培養用のパック3を始め、種々の培養容器で用いることが可能である。従って測定装置10を用いることで、細胞2等のセンシングに要するコストを十分に抑えることが可能である。
 このように培養液1を取得する操作が不要となるため、例えば培養液1へのコンタミネーションに伴う培地の汚染等のリスクを回避することが可能である。これにより培養工程の信頼性が飛躍的に増大する。また、測定装置10は自動的に細胞2等の情報を取得可能であり、細胞2等の状態を容易にモニタリングすることが可能となる。
 また本実施形態に係る測定システム100では、照明光4の細胞2を含む培養液1による干渉縞が画像データとして取得される。取得された画像データに基づいて照明光4の伝播計算が実行され細胞情報が算出される。そして細胞情報の時間的な変化を示すモニタリング画像50の表示が制御される。モニタリング画像50を参照することで、細胞2等の状態を容易にリアルタイムでセンシングすることが可能となる。
 粒子(細胞)による干渉縞(ホログラム)には、同心円状の回折像が含まれる。例えば粒子数をカウントする方法として、検出されたホログラムに対して画像処理を行い、回折像の中心座標をカウントする方法が考えられる。この方法では、例えば粒子が近接して回折像が重なりあっている場合などには、粒子数を適正にカウントすることが難しくなるといった可能性が生じる。
 本実施形態に係る処理装置20では、取得部21により、細胞2を含む培養液1による照明光4の干渉縞が記録された画像データが取得される。算出部22により、画像データに基づいて照明光4の伝播計算が実行され、光路上に並んだ各フォーカス面17でのフォーカス画像データが生成される。このように一列に並んだフォーカス画像データ(インラインホログラム)を用いることで、細胞2の状態等を高精度にセンシングすることが可能である。
 例えば複数のフォーカス画像データを用いることで、各細胞2の位置を高精度に算出することが可能である。これにより、間隙43に含まれる細胞2の数を高い精度でカウントすることが可能となる。また例えば、各細胞2に焦点の合ったフォーカス画像データを用いることで、各細胞2のサイズや形状等を高精度に検出可能である。このようなデジタルフォーカスを用いることで、細胞2等のセンシングを十分高精度に実現可能である。
 また本実施形態では、表示制御部23により、細胞情報の時間的な変化を示すモニタリング画像の表示が制御される。これにより細胞情報の時間的な変化をリアルタイムで容易に監視することが可能となり、高度な製造管理を実現することが可能となる。
 例えば、細胞治療の分野では、細胞2に対して、3次元的に細胞2をまとめるスフェロイド化を行い、体内に戻すという方法が研究されている。本測定システム100を用いることで例えば回転浮遊培養等により大量にスフェロイドを製造する場合に、リアルタイムでスフェロイドの成長をモニタリングすることが可能となる。
 モニタリング画像50には、培養液1のpHと細胞密度とを同時に確認できる情報が表示される。これによりオペレータが異常に気付きやすくなる。またコンピュータ等を用いて細胞2の生産状態の恒常性を管理する上で重要となるパラメータ(培養液1のpH値や細胞2の濃度等)を提供することが可能となる。これにより、非常に高度な製造管理を行なうことが可能となる。
 <その他の実施形態>
 本技術は、以上説明した実施形態に限定されず、他の種々の実施形態を実現することができる。
 上記の実施形態では、測定装置が培養液内に配置された。これに限定されず、例えば測定装置が培養液の外に配置された場合であっても、本技術は適用可能である。
 図19は、測定装置の配置の一例を説明するための図である。図19Aは、測定装置410と培養用のパック403との配置を示す斜視図である。図19Bは、図19AのB-B線断面図である。測定装置410としては、例えば図6に示す測定装置210と略同様の構成を有する。図19では、給電・受像機等の図示は省略されている。もちろん図7に示す測定装置310と略同様の構成を有する測定装置410が用いられてもよい。
 パック403は、細胞2を含む培養液1を観察するための観察窓404を有する。図19Bに示すように、観察窓404は、互いに略平行となるように所定の間隔をあけて配置された入射窓405と出射窓406とを有する。入射窓405及び出射窓406は、例えば透明なビニールやアクリル等の素材で構成される。また入射窓405及び出射窓406は、測定装置410の間隙443に挿入可能な間隔で配置される。
 測定装置410は、パック403に設けられた観察窓404(入射窓405及び出射窓406)を間隙443で挟むように、パック403の外側に配置される。測定装置410では、光源412から出射された照明光4がコリメータレンズ413及び第1の光学窓446を通過して入射窓405からパック403内に入射する。パック403内に入射した照明光4は、細胞2を含む培養液1を通過して出射窓406から出射され、第2の光学窓447を介してイメージセンサ414に入射する。
 これにより、測定装置410は、パック403の外側に配置された状態で、パック403内側に浮遊する細胞2による照明光4の干渉縞を検出することが可能である。これにより、パック403内で培養される細胞2等の状態を、パック403の外側から容易にセンシングすることが可能となる。
 なお観察窓404が設けられた培養用のパック403を用いる場合に限定されず、例えば観察窓が設けられた任意の培養容器等が用いられてもよい。また細胞を含む培養液が充填された流路等に、観察窓が設けられてもよい。この他、観察窓を有する任意の構成が用いられてよい。
 上記では、測定装置の間隙の幅tは、検出空間に含まれる細胞の断面積の総和が、検出面よりも小さくなるように設定された。間隙の幅tを設定する方法は限定されない。間隙の幅tは、検出空間に含まれる細胞が2次元に最密充填された場合の細胞が充填される領域の面積が、検出面よりも小さくなるように設定されてもよい。
 図20は、細胞断面の2次元の最密充填の例を示す模式図である。図20では、細胞2の断面(細胞断面70)として円が用いられる。図20Aは、隣接する細胞2の中心71が正方格子状に配置される最密充填の例である。図20Bは、隣接する細胞2の中心71が三角格子状に配置される最密充填の例である。
 図20Aに示すように、細胞2の中心71が正方格子状に配置された場合、正方格子72内での細胞断面70が占める割合が、2次元面内での充填率となる。細胞断面70の半径をrとすると、正方格子72の面積は4r2である。また正方格子72内の細胞断面70の総和はπr2である。従って、充填率はπr2/4r2≒0.785と計算される。
 このため細胞2を正方格子状に充填した場合、細胞断面70の総和は、細胞が充填される領域の面積の約78.5%の面積となる。図20Aでは、間隙の幅tは、検出空間に含まれる細胞2の断面積(細胞断面70)の総和が、検出面の78.5%よりも小さくなるように設定される。すなわち、検出空間に含まれる細胞の総数が、検出面に細胞2を正方格子状に充填した場合の細胞の総数よりも小さくなるように、間隙の幅tが設定される。
 また図20Bに示すように、細胞2の中心71が三角格子状に配置された場合、三角格子73内での細胞断面70が占める割合が、2次元面内での充填率となる。細胞断面70の半径をrとすると、三角格子73の面積は31/22である。また三角格子73内の細胞断面70の総和はπr2/2である。従って、充填率は(πr2/2)/31/22≒0.906と計算される。
 図20Bでは、間隙の幅tは、検出空間に含まれる細胞2の断面積(細胞断面70)の総和が、検出面の90.6%よりも小さくなるように設定される。すなわち、検出空間に含まれる細胞の総数が、検出面に細胞2を三角格子状に充填した場合の細胞の総数よりも小さくなるように、間隙の幅tが設定される。
 このように、細胞2を2次元的に充填された場合を基準として、間隙の幅tを設定することにより、間隙を通過する照明光4の干渉性を十分に高く保つことが可能となる。これにより、例えば液体内の各細胞により回折された照明光を精度よく検出することが可能となる。この結果、細胞等の状態を十分高精度にセンシングすることが可能となる。
 上記の実施形態では、光源12から出射される照明光4として部分コヒーレントな光が用いられた。これに限定されず、照明光として略コヒーレントな光が用いられてもよい。
 例えば、光源として所定の波長のレーザ光を出射可能なLD(Laser Diode)等の固体光源が用いられてもよい。この場合、光源からは、照明光として略コヒーレントな光であるレーザ光が出射される。一般にレーザ光の波長帯域は狭く、高い干渉性を発揮することが可能である。これにより、細胞等の状態を高い精度でセンシングすることが可能となる。また波長帯域が先鋭化されていることから、例えば第1の光学窓等を光学フィルタとして構成する必要がなくなり、装置のコストを抑えることが可能である。
 上記の実施形態では、光源12は、互いに波長の異なる光を切替えて出射可能に構成された。例えば光源は、単一の波長の光を出射可能に構成されてもよい。この場合、光源から出射された単一の波長の照明光を用いて、細胞情報(細胞の数、密度、サイズ、形状等)を算出することが可能となる。これにより、細胞の状態をリアルタイムで容易にモニタリングすることが可能となる。
 また処理装置は、他の装置等を用いて取得された培養液等の情報に基づいて、モニタリング画像の表示を制御してもよい。例えば処理装置は、培養液の色、pH値、温度等の情報を別途取得し、取得された情報の時間変化をモニタリング画像に表示してもよい。このような場合であっても、細胞及び培養液の状態等を容易にモニタリングすることが可能となり、高度な製造管理を実現することが可能となる。
 上記では、処理装置により、細胞に関する細胞情報の算出や細胞情報の時間的な変化を示すモニタリング画像の表示の制御等を含む、本技術に係る情報処理方法が実行された。これに限定されず、クラウドサーバにより、本技術に係る情報処理方法が実行されてもよい。すなわち情報処理装置の機能が、クラウドサーバに搭載されてもよい。この場合、当該クラウドサーバは、本技術に係る情報処理装置として動作することになる。
 また細胞を含む液体を通過した照明光の干渉縞が記録された画像データを取得するコンピュータにより、本技術に係る情報処理方法が実行される場合に限定されず、細胞を含む液体を通過した照明光の干渉縞が記録された画像データを取得するコンピュータと、ネットワーク等を介して通信可能な他のコンピュータとが連動して、本技術に係る測定システムが構築されてもよい。
 すなわち本技術に係る情報処理方法、及びプログラムは、単体のコンピュータにより構成されたコンピュータシステムのみならず、複数のコンピュータが連動して動作するコンピュータシステムにおいても実行可能である。なお本開示において、システムとは、複数の構成要素(装置、モジュール(部品)等)の集合を意味し、すべての構成要素が同一筐体中にあるか否かは問わない。したがって、別個の筐体に収納され、ネットワークを介して接続されている複数の装置、及び、1つの筐体の中に複数のモジュールが収納されている1つの装置は、いずれもシステムである。
 コンピュータシステムによる本技術に係る情報処理方法、及びプログラムの実行は、例えば細胞に関する細胞情報の算出処理や細胞情報の時間的な変化を示すモニタリング画像の表示の制御処理等が、単体のコンピュータにより実行される場合、及び各処理が異なるコンピュータにより実行される場合の両方を含む。また所定のコンピュータによる各処理の実行は、当該処理の一部または全部を他のコンピュータに実行させその結果を取得することを含む。
 すなわち本技術に係る情報処理方法及びプログラムは、1つの機能をネットワークを介して複数の装置で分担、共同して処理するクラウドコンピューティングの構成にも適用することが可能である。
 また測定装置に、処理装置の機能の全部または一部が備えられてもよい。すなわち、測定装置に細胞に関する細胞情報の算出等を行なう機能が適宜搭載されてもよい。また例えば、測定装置と処理装置とが一体的に構成されてもよい。もちろん表示装置が測定装置や処理装置と一体的に構成されてもよい。
 以上説明した本技術に係る特徴部分のうち、少なくとも2つの特徴部分を組み合わせることも可能である。すなわち各実施形態で説明した種々の特徴部分は、各実施形態の区別なく、任意に組み合わされてもよい。また上記で記載した種々の効果は、あくまで例示であって限定されるものではなく、また他の効果が発揮されてもよい。
 なお、本技術は以下のような構成も採ることができる。
(1)照明光を出射する光源部と、
 前記照明光の光路上に設けられ互いに対向する第1の面部及び第2の面部を有し、前記第1及び前記第2の面部の間の間隙に細胞を含む液体を充填可能な充填部と、
 前記間隙を通過した前記照明光の前記細胞を含む液体による干渉縞を検出する検出部と
 を具備する測定装置。
(2)(1)に記載の測定装置であって、
 前記充填部は、前記間隙の前記第1の面部から前記第2の面部までの幅が、前記細胞に関するパラメータに応じて設定される
 測定装置。
(3)(2)に記載の測定装置であって、
 前記細胞に関するパラメータは、前記細胞のサイズと、前記液体における前記細胞の濃度との少なくとも一方を含む
 測定装置。
(4)(1)から(3)のうちいずれか1つに記載の測定装置であって、
 前記検出部は、前記照明光の光路に略垂直な検出面を有し、
 前記充填部は、前記検出面に応じた検出空間を有する
 測定装置。
(5)(4)に記載の測定装置であって、
 前記間隙の幅は、前記検出空間に含まれる前記細胞の断面積の総和が、前記検出面よりも小さくなるように設定される
 測定装置。
(6)(4)に記載の測定装置であって、
 前記間隙の幅は、前記検出空間に含まれる前記細胞が2次元に最密充填された場合の前記細胞が充填される領域の面積が、前記検出面よりも小さくなるように設定される
 測定装置。
(7)(2)から(6)のうちいずれか1つに記載の測定装置であって、
 前記間隙の幅は、11.8mm未満である
 測定装置。
(8)(1)から(7)のうちいずれか1つに記載の測定装置であって、
 前記照明光は、略コヒーレントな光または部分コヒーレントな光である
 測定装置。
(9)(1)から(8)のうちいずれか1つに記載の測定装置であって、
 前記第1の面部は、前記光源から出射された前記照明光が入射する第1の光学窓を有し、
 前記第2の面部は、前記第1の光学窓と略平行に配置され前記充填部を通過する前記照明光が出射される第2の光学窓を有する
 測定装置。
(10)(9)に記載の測定装置であって、
 前記第1の光学窓は、前記照明光の一部の波長成分を通過する光学フィルタである
 測定装置。
(11)(1)から(10)のうちいずれか1つに記載の測定装置であって、さらに、
 前記光源と前記充填部との間に配置され、前記照明光をコリメートするコリメート部を具備する
 測定装置。
(12)(1)から(11)のうちいずれか1つに記載の測定装置であって、
 前記検出部は、前記照明光の干渉縞が記録された画像データを生成する
 測定装置。
(13)(12)に記載の測定装置であって、
 前記光源は、前記照明光として、互いに波長の異なる光を切替えて出射可能であり、
 前記検出部は、前記互いに波長の異なる光の各々に対応する複数の画像データを生成する
 測定装置。
(14)(13)に記載の測定装置であって、さらに、
 前記複数の画像データに基づいて、前記細胞を含む液体の色情報を算出する色情報算出部を具備する
 測定装置。
(15)(1)から(14)のうちいずれか1つに記載の測定装置であって、
 前記細胞は、免疫細胞である
 測定装置。
(16)(1)から(15)のうちいずれか1つに記載の測定装置であって、
 前記細胞を含む液体は、pH指示薬が添加された液体培地である
 測定装置。
(17)(11)から(16)のうちいずれか1つに記載の測定装置であって、
 前記細胞を含む液体中に設置される
 測定装置。
(18)細胞を含む液体を通過した照明光の干渉縞が記録された画像データを取得する取得部と、
 前記画像データに基づいて前記照明光に対する伝播計算を実行することにより、前記細胞に関する細胞情報を算出する算出部と、
 前記細胞情報の時間的な変化を示すモニタリング画像の表示を制御する表示制御部と
 を具備する情報処理装置。
(19)(18)に記載の情報処理装置であって、
 前記算出部は、前記細胞情報として、前記細胞の数、密度、サイズ、及び形状の少なくとも1つを算出する
 情報処理装置。
(20)(18)又は(19)に記載の情報処理装置であって、
 前記モニタリング画像は、前記細胞情報の時間的な変化を示すグラフを含む
 情報処理装置。
(21)(18)から(20)のうちいずれか1つに記載の情報処理装置であって、
 前記算出部は、前記画像データに基づいて、前記細胞を含む液体に関する液体情報を算出し、
 前記モニタリング画像は、前記液体情報の時間的な変化を示す
 情報処理装置。
(22)(21)に記載の情報処理装置であって、
 前記取得部は、前記照明光として出射された互いに波長の異なる複数の光の各々に対応する複数の画像データを取得し、
 前記算出部は、前記複数の画像データに基づいて、前記液体情報として前記細胞を含む液体の色情報を算出する
 情報処理装置。
(23)(22)に記載の情報処理装置であって、
 前記モニタリング画像は、前記色情報の時間的な変化を示すマップを含む
 情報処理装置。
(24)(22)又は(23)に記載の情報処理装置であって、
 前記算出部は、前記色情報として、前記細胞を含む液体の色を表示するための表示色情報を算出し、
 前記モニタリング画像は、前記表示色情報の時間的な変化を示すマップを含む
 情報処理装置。
(25)(23)又は(24)に記載の情報処理装置であって、
 前記表示制御部は、前記細胞情報の時間的な変化を示すグラフ及び前記液体情報の時間的な変化を示すマップの各々を重畳して表示する
 情報処理装置。
(26)(22)から(25)のうちいずれか1つに記載の情報処理装置であって、
 前記算出部は、前記色情報に基づいて、前記細胞を含む液体のpH値を算出し、
 前記モニタリング画像は、前記pH値の時間的な変化を示すグラフを含む
 情報処理装置。
(27)(21)から(26)のうちいずれか1つに記載の情報処理装置であって、
 前記モニタリング画像は、前記細胞情報及び前記液体情報の少なくとも1つを示す数値を含む
 情報処理装置。
(28)(18)から(27)のうちいずれか1つに記載の情報処理装置であって、
 前記表示制御部は、前記細胞情報の時間的な変化が正常な状態である範囲を前記モニタリング画像に表示する
 情報処理装置。
(29)(18)から(28)のうちいずれか1つに記載の情報処理装置であって、
 前記算出部は、前記照明光に対する伝播計算により、前記細胞を含む液体内において前記照明光が通過する複数の中間面の各々に対応する複数の中間画像データを算出する
 情報処理装置。
(30)(29)に記載の情報処理装置であって、
 前記算出部は、前記複数の中間画像データに基づいて、前記照明光の光路方向に垂直な面方向での前記細胞の位置を算出する
 情報処理装置。
(31)(30)に記載の情報処理装置であって、
 前記算出部は、前記細胞の位置に基づいて、前記細胞の数を算出する
 情報処理装置。
(32)(29)から(31)のうちいずれか1つに記載の情報処理装置であって、
 前記算出部は、前記複数の中間画像データの各々について輝度情報を算出し、前記輝度情報の前記光路方向の変化に基づいて前記細胞の前記光路方向の位置を算出する
 情報処理装置。
(33)(32)に記載の情報処理装置であって、
 前記算出部は、前記光路方向の位置が算出された前記細胞のサイズ及び形状の少なくとも一方を算出する
 情報処理装置。
(34)(18)から(33)のうちいずれか1つに記載の測定装置であって、
 前記細胞は、免疫細胞である
 情報処理装置。
(35)(18)から(34)のうちいずれか1つに記載の測定装置であって、
 前記細胞を含む液体は、pH指示薬が添加された液体培地である
 情報処理装置。
(36)細胞を含む液体を通過した照明光の干渉縞が記録された画像データを取得し、
 前記画像データに基づいて前記照明光に対する伝播計算を実行することにより、前記細胞に関する細胞情報を算出し、
 前記細胞情報の時間的な変化を示すモニタリング画像の表示を制御する
 ことをコンピュータシステムが実行する情報処理方法。
(37)細胞を含む液体を通過した照明光の干渉縞が記録された画像データを取得するステップと、
 前記画像データに基づいて前記照明光に対する伝播計算を実行することにより、前記細胞に関する細胞情報を算出するステップと、
 前記細胞情報の時間的な変化を示すモニタリング画像の表示を制御するステップと
 をコンピュータシステムに実行させるプログラム。
 O…光軸
 1…培養液
 2、C1~C8…細胞
 3、403…パック
 4…照明光
 10、210、310、410…測定装置
 11…筐体
 12、412…光源
 13、413…コリメータレンズ
 14、414…イメージセンサ
 16…検出面
 17…フォーカス面
 20…処理装置
 21…取得部
 22…算出部
 23…表示制御部
 43、443…間隙
 44…第1の面
 45…第2の面
 46、446…第1の光学窓
 47、447…第2の光学窓
 48…検出空間
 50…モニタリング画像
 56…カラーマップ
 57a~57c…グラフ
 58…正常範囲
 60…画像データにより構成される画像
 61…フォーカス画像データにより構成される画像
 70…細胞断面
 100…測定システム

Claims (17)

  1.  照明光を出射する光源部と、
     前記照明光の光路上に設けられ互いに対向する第1の面部及び第2の面部を有し、前記第1及び前記第2の面部の間の間隙に細胞を含む液体を充填可能な充填部と、
     前記間隙を通過した前記照明光の前記細胞を含む液体による干渉縞を検出する検出部と
     を具備する測定装置。
  2.  請求項1に記載の測定装置であって、
     前記充填部は、前記間隙の前記第1の面部から前記第2の面部までの幅が、前記細胞に関するパラメータに応じて設定される
     測定装置。
  3.  請求項2に記載の測定装置であって、
     前記細胞に関するパラメータは、前記細胞のサイズと、前記液体における前記細胞の濃度との少なくとも一方を含む
     測定装置。
  4.  請求項1に記載の測定装置であって、
     前記検出部は、前記照明光の光路に略垂直な検出面を有し、
     前記充填部は、前記検出面に応じた検出空間を有する
     測定装置。
  5.  請求項4に記載の測定装置であって、
     前記間隙の幅は、前記検出空間に含まれる前記細胞の断面積の総和が、前記検出面よりも小さくなるように設定される
     測定装置。
  6.  請求項4に記載の測定装置であって、
     前記間隙の幅は、前記検出空間に含まれる前記細胞が2次元に最密充填された場合の前記細胞が充填される領域の面積が、前記検出面よりも小さくなるように設定される
     測定装置。
  7.  請求項2に記載の測定装置であって、
     前記間隙の幅は、11.8mm未満である
     測定装置。
  8.  請求項1に記載の測定装置であって、
     前記照明光は、略コヒーレントな光または部分コヒーレントな光である
     測定装置。
  9.  請求項1に記載の測定装置であって、
     前記第1の面部は、前記光源から出射された前記照明光が入射する第1の光学窓を有し、
     前記第2の面部は、前記第1の光学窓と略平行に配置され前記充填部を通過する前記照明光が出射される第2の光学窓を有する
     測定装置。
  10.  請求項9に記載の測定装置であって、
     前記第1の光学窓は、前記照明光の一部の波長成分を通過する光学フィルタである
     測定装置。
  11.  請求項1に記載の測定装置であって、さらに、
     前記光源と前記充填部との間に配置され、前記照明光をコリメートするコリメート部を具備する
     測定装置。
  12.  請求項1に記載の測定装置であって、
     前記検出部は、前記照明光の干渉縞が記録された画像データを生成する
     測定装置。
  13.  請求項12に記載の測定装置であって、
     前記光源は、前記照明光として、互いに波長の異なる光を切替えて出射可能であり、
     前記検出部は、前記互いに波長の異なる光の各々に対応する複数の画像データを生成する
     測定装置。
  14.  請求項13に記載の測定装置であって、さらに、
     前記複数の画像データに基づいて、前記細胞を含む液体の色情報を算出する色情報算出部を具備する
     測定装置。
  15.  請求項1に記載の測定装置であって、
     前記細胞は、免疫細胞である
     測定装置。
  16.  請求項1に記載の測定装置であって、
     前記細胞を含む液体は、pH指示薬が添加された液体培地である
     測定装置。
  17.  請求項1に記載の測定装置であって、
     前記細胞を含む液体中に設置される
     測定装置。
PCT/JP2018/019237 2017-06-22 2018-05-18 測定装置 WO2018235477A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/621,793 US11549093B2 (en) 2017-06-22 2018-05-18 Measurement apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-122091 2017-06-22
JP2017122091 2017-06-22

Publications (1)

Publication Number Publication Date
WO2018235477A1 true WO2018235477A1 (ja) 2018-12-27

Family

ID=64735696

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/019237 WO2018235477A1 (ja) 2017-06-22 2018-05-18 測定装置

Country Status (2)

Country Link
US (1) US11549093B2 (ja)
WO (1) WO2018235477A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111935870B (zh) * 2020-09-18 2021-02-12 广州市浩洋电子股份有限公司 一种多色灯颜色统一控制方法
US11729876B2 (en) 2020-09-18 2023-08-15 Guangzhou Haoyang Electronic Co., Ltd. Unified color control method for multi-color light

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009218478A (ja) * 2008-03-12 2009-09-24 Sharp Corp 発振モード検出装置、発振モード制御装置、レーザシステム、発振モード検出方法、および、発振モード制御方法
JP2012013686A (ja) * 2010-06-02 2012-01-19 Tochigi Nikon Corp 干渉計
JP2014115077A (ja) * 2011-03-31 2014-06-26 Fujifilm Corp レンズの面ズレ・面倒れを測定するレンズ測定方法及び装置
JP2015500475A (ja) * 2011-12-07 2015-01-05 アイメックImec 流体中の物体の分析および選別
WO2015115471A1 (ja) * 2014-01-28 2015-08-06 国立大学法人大阪大学 観察装置、デバイス、デバイス製造方法、粒径測定方法、耐性観察方法、化学的反応方法、粒子保存方法、及び自動観察装置
JP2016034235A (ja) * 2014-08-01 2016-03-17 パナソニックヘルスケアホールディングス株式会社 pH判定装置、pH測定機、pH判定方法およびpH判定プログラム
JP2016529493A (ja) * 2013-07-23 2016-09-23 コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ 細胞選別方法および関連する装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005147826A (ja) * 2003-11-14 2005-06-09 Hamamatsu Photonics Kk 蛍光測定装置
JP4774835B2 (ja) 2005-07-04 2011-09-14 株式会社ニコン 顕微鏡
WO2010080708A2 (en) * 2009-01-12 2010-07-15 Molecular Sensing, Inc. Methods and systems for interferometric analysis
US8599383B2 (en) * 2009-05-06 2013-12-03 The Regents Of The University Of California Optical cytometry
EP2562246B1 (en) * 2010-04-23 2018-09-05 Hamamatsu Photonics K.K. Cell observation device and cell observation method
JP6312123B2 (ja) * 2013-11-19 2018-04-18 国立大学法人京都大学 細胞判定方法、細胞判定装置及び細胞判定プログラム
US10677790B2 (en) * 2016-07-20 2020-06-09 City University Of Hong Kong Optochemical detector and a method for fabricating an optochemical detector
CN107645625B (zh) * 2016-07-22 2020-10-09 松下知识产权经营株式会社 图像生成装置以及图像生成方法
US10302923B2 (en) * 2016-10-26 2019-05-28 Molecular Devices, Llc Trans-illumination imaging with use of interference fringes to enhance contrast and find focus

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009218478A (ja) * 2008-03-12 2009-09-24 Sharp Corp 発振モード検出装置、発振モード制御装置、レーザシステム、発振モード検出方法、および、発振モード制御方法
JP2012013686A (ja) * 2010-06-02 2012-01-19 Tochigi Nikon Corp 干渉計
JP2014115077A (ja) * 2011-03-31 2014-06-26 Fujifilm Corp レンズの面ズレ・面倒れを測定するレンズ測定方法及び装置
JP2015500475A (ja) * 2011-12-07 2015-01-05 アイメックImec 流体中の物体の分析および選別
JP2016529493A (ja) * 2013-07-23 2016-09-23 コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ 細胞選別方法および関連する装置
WO2015115471A1 (ja) * 2014-01-28 2015-08-06 国立大学法人大阪大学 観察装置、デバイス、デバイス製造方法、粒径測定方法、耐性観察方法、化学的反応方法、粒子保存方法、及び自動観察装置
JP2016034235A (ja) * 2014-08-01 2016-03-17 パナソニックヘルスケアホールディングス株式会社 pH判定装置、pH測定機、pH判定方法およびpH判定プログラム

Also Published As

Publication number Publication date
US20200172848A1 (en) 2020-06-04
US11549093B2 (en) 2023-01-10

Similar Documents

Publication Publication Date Title
WO2018235476A1 (ja) 情報処理装置、情報処理方法、及びプログラム
US10834377B2 (en) Forensic three-dimensional measurement device
EP2630536B1 (en) Microscope system
CN106413543A (zh) 成像装置、成像方法以及医疗成像系统
US20180017939A1 (en) Device for observing a sample
US9423343B2 (en) Membrane potential change detection device and membrane potential change detection method
KR20180011762A (ko) 입자 분석 방법
US20210080375A1 (en) Spectrum analysis apparatus, fine particle measurement apparatus, and method and program for spectrum analysis or spectrum chart display
CN108027328A (zh) 宝石的颜色测量
EP3270120B1 (en) Measurement method, measurement device, and program
US11494888B2 (en) Work terminal, oil leakage detection apparatus, and oil leakage detection method
CN109069008B (zh) 光学设备和信息处理方法
US20170276476A1 (en) Shape inspection apparatus for metallic body and shape inspection method for metallic body
CN111630366B (zh) 图像处理方法、图像处理程序及记录介质
KR102562719B1 (ko) 무렌즈 촬상에 의해 샘플을 관측하는 방법
US20230314782A1 (en) Sample observation device and sample observation method
US9531950B2 (en) Imaging system and imaging method that perform a correction of eliminating an influence of ambient light for measurement data
WO2018235477A1 (ja) 測定装置
CN108204979A (zh) 用于试纸检测设备中光源校准的方法和装置
US20140016137A1 (en) Method and System for Reconstructing Optical Properties of Diffracting Objects Immersed in a Liquid Medium
JP2020073862A (ja) 水質検査システム及び水質検査方法
CN109253997A (zh) 一种基于频率调制和空间编码的拉曼断层成像系统
CN115950890B (zh) 用于工业检测的谱域光学相干层析成像检测方法及系统
JP2017131116A (ja) 植物用センサ装置
JP2012237613A (ja) 形状計測装置及び形状計測方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18820550

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18820550

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP