WO2018235331A1 - Reactive power compensation device - Google Patents

Reactive power compensation device Download PDF

Info

Publication number
WO2018235331A1
WO2018235331A1 PCT/JP2018/004265 JP2018004265W WO2018235331A1 WO 2018235331 A1 WO2018235331 A1 WO 2018235331A1 JP 2018004265 W JP2018004265 W JP 2018004265W WO 2018235331 A1 WO2018235331 A1 WO 2018235331A1
Authority
WO
WIPO (PCT)
Prior art keywords
reactive power
compensation device
power compensation
communication
communication unit
Prior art date
Application number
PCT/JP2018/004265
Other languages
French (fr)
Japanese (ja)
Inventor
寺澤 達矢
和宏 柳樂
Original Assignee
エナジーサポート株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by エナジーサポート株式会社 filed Critical エナジーサポート株式会社
Publication of WO2018235331A1 publication Critical patent/WO2018235331A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/12Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load
    • H02J3/16Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load by adjustment of reactive power
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/18Arrangements for adjusting, eliminating or compensating reactive power in networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q9/00Arrangements in telecontrol or telemetry systems for selectively calling a substation from a main station, in which substation desired apparatus is selected for applying a control signal thereto or for obtaining measured values therefrom
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B25/00Alarm systems in which the location of the alarm condition is signalled to a central station, e.g. fire or police telegraphic systems
    • G08B25/01Alarm systems in which the location of the alarm condition is signalled to a central station, e.g. fire or police telegraphic systems characterised by the transmission medium
    • G08B25/10Alarm systems in which the location of the alarm condition is signalled to a central station, e.g. fire or police telegraphic systems characterised by the transmission medium using wireless transmission systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/30Reactive power compensation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/70Smart grids as climate change mitigation technology in the energy generation sector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/22Flexible AC transmission systems [FACTS] or power factor or reactive power compensating or correcting units
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S40/00Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them
    • Y04S40/12Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them characterised by data transport means between the monitoring, controlling or managing units and monitored, controlled or operated electrical equipment
    • Y04S40/126Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them characterised by data transport means between the monitoring, controlling or managing units and monitored, controlled or operated electrical equipment using wireless data transmission
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S40/00Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them
    • Y04S40/12Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them characterised by data transport means between the monitoring, controlling or managing units and monitored, controlled or operated electrical equipment
    • Y04S40/128Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them characterised by data transport means between the monitoring, controlling or managing units and monitored, controlled or operated electrical equipment involving the use of Internet protocol

Definitions

  • the present invention relates to a reactive power compensation device.
  • the reactive power compensation device can suppress the system voltage from deviating from the appropriate range by supplying arbitrary reactive power to the system.
  • STATCOM STATic synchronous COMpensator
  • STATCOM STATic synchronous COMpensator
  • photovoltaic power generation is often installed in a limited space, and there is generally a restriction in the place where the reactive power compensation device is installed . If there is no space for installing the reactive power compensation device on the ground, it is often installed on an H-pillar or the like passing a pole over two power poles.
  • the object of the present invention made in view of such circumstances is to provide a reactive power compensator capable of being operated from a remote place.
  • a reactive power compensation device is a reactive power compensation device capable of supplying a reactive current to a power system, and in an access point mode for direct wireless connection with a communication terminal;
  • the communication apparatus may include a communication unit having a station mode for performing wireless connection with the communication terminal via the connected relay.
  • a control unit which switches the communication unit to the station mode, and switches the communication unit to the access point mode when the communication unit can not connect to the relay in the station mode. It is characterized by
  • control unit transmits data related to an operation GUI of the reactive power compensation device to the communication terminal, and information obtained by operating the operation GUI from the communication terminal is It is characterized by receiving.
  • the communication unit periodically transmits the operating state of the reactive power compensation device to the monitoring server, and the operating state is immediately transmitted when the reactive power compensation device detects an abnormal state. It is characterized by transmitting to a monitoring server.
  • the communication unit automatically adjusts a clock incorporated in the reactive power compensation device by acquiring time information from an NTP server.
  • the communication unit performs encryption of authentication and communication between the power compensation device and the communication terminal.
  • FIG. 1 is a view showing a configuration example of a reactive power compensation device according to an embodiment of the present invention.
  • the reactive power compensation device 1 includes an inverter unit 11, a control unit 12, a transformer 13, and a communication unit 14.
  • the reactive power compensation device 1 is connected to a power system (for example, three-phase 6600 V) via the switch 2 and supplies a reactive current to the power system.
  • a power system for example, three-phase 6600 V
  • the detection unit 3 detects voltage and current of the power system, and outputs an analog detection value to the control unit 12.
  • the control unit 12 converts an analog detection value input from the detection unit 3 into a digital detection value, calculates a current command value of the inverter from the detection value, and outputs the current command value to the inverter unit 11.
  • the control unit 12 has, in addition to a circuit that performs analog-to-digital conversion, for example, a microcomputer that performs various operations and a memory that stores various settings.
  • the inverter unit 11 is configured of one or more inverter units.
  • Each inverter unit is configured of, for example, six semiconductor switches, and determines an operation pattern of the semiconductor switch based on the current command value input from the control unit 12. By combining the operation patterns, the voltage and power factor of the power system can be manipulated.
  • the transformer 13 transforms the system voltage from high voltage to low voltage and connects it to the inverter unit 11.
  • the communication terminal 4 is a device (for example, a PC or a smartphone) in which a wireless communication module of a standard corresponding to the communication unit 14 is incorporated, and performs wireless communication with the communication unit 14.
  • the communication unit 14 has an access point mode for direct wireless connection with the communication terminal 4 by Wi-Fi (registered trademark) communication or the like, and a station mode for wireless connection with the communication terminal 4 via a relay connected to the Internet. Have.
  • the communication unit 14 performs serial communication with the control unit 12 to mediate communication between the control unit 12 and an external device.
  • the configuration of FIG. 1 represents the relationship between the communication unit 14 and the communication terminal 4 in the access point mode.
  • the communication unit 14 can be directly connected to the communication terminal 4.
  • the access point mode since the communication unit 14 and the communication terminal 4 communicate by radio waves, it is necessary to communicate with each other at a distance sufficient for the radio wave intensity. Therefore, in the case of the access point mode, the user uses the communication terminal 4 to work around the installation place of the reactive power compensation device 1.
  • FIG. 2 is a diagram showing an example of the Internet connection in the station mode.
  • the communication unit 14 When the communication unit 14 is in the station mode, the communication unit 14 tries to connect to the repeater 5 installed in the periphery based on the setting data stored in the memory. If communication between the communication unit 14 and the relay unit 5 is established, the communication terminal 4 can communicate with the reactive power compensation device 1 via the Internet 6.
  • the repeater 5 is installed around the reactive power compensation device 1 and relays the Internet 6 and the local network, and the communication unit 14 is connected by wireless communication.
  • the repeater 5 is, for example, a wireless router or an access point. In addition, it may include a gateway that relays a cellular phone line and Wi-Fi communication.
  • the communication unit 14 processes data transmitted and received by the control unit 12 based on the TCP / IP protocol.
  • the control unit 12 transmits data on the operation GUI to the communication terminal 4 based on the HTTP protocol when there is an access request for acquiring data on the operation GUI (operation screen) from the communication terminal 4 via the communication unit 14. Then, the control unit 12 receives information obtained by operating the operation GUI from the communication terminal 4 via the communication unit 14, and controls the inverter unit 11 based on the information. This operation is similar not only in the station mode but also in the access point mode.
  • the control unit 12 holds it in the memory based on the change request. Change the configuration parameters you are using. That is, when the reactive power compensation device 1 is accessed by the browser software of the communication terminal 4, a button for operating the reactive power compensation device 1 or a GUI for displaying the operation status of the reactive power compensation device 1 is displayed on the browser software. It is possible to monitor and operate the power compensation device 1. Therefore, since the screen and the operation panel are not required for the reactive power compensation device 1, cost reduction can be realized.
  • setting parameters parameters related to a relay, parameters related to control of an inverter, etc.
  • FIG. 3 is a diagram showing a state transition of the communication unit 14.
  • the control unit 12 sets the communication unit 14 in the access point mode (step S02), and waits until communication between the communication terminal 4 and the communication unit 14 is established. .
  • the communication terminal 4 and the control unit 12 can communicate with each other via the communication unit 14 (step S03). In this state, if there is an access request from the browser of the communication terminal 4 to the control unit 12 based on the HTTP protocol, the control unit 12 returns an appropriate response to the browser of the communication terminal 4.
  • the control unit 12 When the communication unit 14 acquires a request for connection to the relay 5 (a request to change a setting parameter for connection to the relay 5) from the browser of the communication terminal 4 to the control unit 12, the control unit 12 The communication unit 14 is switched to the station mode (step S04). Then, based on the changed setting parameter, connection between the communication unit 14 and the relay 5 is tried. If the connection with the repeater 5 is successful, the changed setting parameter is stored in the memory of the control unit 12 and the connection with the repeater 5 is maintained. If the connection with the relay unit 5 fails, the changed setting parameter is discarded, and the communication unit 14 is switched to the access point mode (step S02).
  • step S02 When the communication unit 14 is in the access point mode (step S02) and the time during which communication with the external communication terminal 4 has not been established continues for a certain period of time, the control unit 12 operates the communication unit 14 in station mode ( It switches to step S04) and it operates so that it may connect to the repeater 5 of a periphery. At this time, when the communication unit 14 is normally connected to the repeater 5, the connection with the repeater 5 is maintained. If the connection to the nearby repeater 5 fails, the control unit 12 switches the communication unit 14 to the access point mode (step S02) and waits for access from the communication terminal 4.
  • step S04 the communication between the communication terminal 4 and the communication unit 14 is established (step S05) as in the access point mode, and the browser of the communication terminal 4 to the control unit 12 based on the HTTP protocol. If there is an access request, the control unit 12 returns an appropriate response to the browser of the communication terminal 4. In addition, the control unit 12 periodically checks whether the connection between the relay unit 5 and the communication unit 14 has been established, and if disconnected, the communication unit 14 is switched from the station mode (step S04) to the access point mode (step S04). Switch to step S02).
  • the reactive power compensation device 1 can be operated by direct access from the periphery of the reactive power compensation device 1 using the communication terminal 4.
  • the communication unit 14 may take security measures by encryption of authentication and communication between the reactive power compensation device 1 and the communication terminal 4 in order to prevent unauthorized access from a third party and cyber attacks.
  • the reactive power compensation device 1 can also communicate with the server 7 connected to the Internet 6.
  • the server 7 can be a monitoring server 7-1 accessible from the Internet 6.
  • the communication unit 14 periodically transmits the operation state of the reactive power compensation device 1 to the monitoring server 7-1, whereby the operation record is accumulated in the monitoring server 7-1.
  • the administrator can confirm the past operation record by looking at the data of the operation record accumulated in the monitoring server 7-1.
  • the communication unit 14 can immediately notify the administrator of the abnormal state by transmitting the operating state to the monitoring server as soon as the abnormal state of the reactive power compensation device 1 is detected.
  • the server 7 may be an NTP (Network Time Protocol) server 7-2 to which the reactive power compensation device 1 can connect from the Internet 6.
  • the communication unit 14 communicates with the NTP server 7-2, and by acquiring time information, it is possible to automatically adjust the clock built in the reactive power compensation device 1.
  • time information shifts due to a problem of clock accuracy.
  • the watch continues to operate by the backup power supply, but when the battery of the backup power supply is discharged, the time information of the clock is reset.
  • the reactive power compensation device 1 includes the communication unit 14 capable of wireless communication. Therefore, for example, by connecting the communication terminal 4 and the reactive power compensation device 1 by radio communication from the ground, it is possible to easily operate the reactive power compensation device 1 installed on a pole without performing work in a high place. The risk of accidents such as electric shock can also be reduced. Furthermore, by connecting the reactive power compensation device 1 to the Internet 6 by wireless communication, the reactive power compensation device 1 can be remotely controlled from anywhere without going to the installation place of the reactive power compensation device 1, and the operation is normally performed. There is no need to go to the installation site to check if any is being done, and operating costs can be reduced.
  • the reactive power compensation device 1 can automatically switch the mode of the communication unit 14 according to the connection status. Therefore, even if the peripheral repeater 5 fails, the operation of the reactive power compensation device 1 is continued since the reactive power compensation device 1 and the communication terminal 4 are switched to the access point mode in which direct connection is established. It can be carried out.
  • the reactive power compensation device 1 may transmit data related to the operation GUI to the communication terminal 4. This eliminates the need to provide a controller such as a monitor or button in the housing of the reactive power compensation device 1, leading to cost reduction of the housing.
  • the existing personal computer, a smart phone, etc. can be used as it is as the communication terminal 4, and this invention can be implemented at low cost.
  • Reactive power compensation device 1 Reactive power compensation device 2 Switch 3 Detector 4 Communication terminal 5 Repeater 6 Internet 7 Server (monitoring server, NTP server) 11 inverter unit 12 control unit 13 transformer 14 communication unit

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Selective Calling Equipment (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

Provided is a reactive power compensation device which can be operated from a remote site. A reactive power compensation device 1 is provided with a communication unit 14 that has an access point mode of performing wireless connection directly with a communication terminal 4 and a station mode of performing wireless connection with the communication terminal 4 via a relay 5 connected to an internet 6.

Description

無効電力補償装置Reactive power compensator 関連出願の相互参照Cross-reference to related applications
 本出願は、2017年6月23日に出願された日本国特許出願2017-123064号の優先権を主張するものであり、この先の出願の開示全体をここに参照のために取り込む。 This application claims the priority of Japanese Patent Application 2017-123064 filed on June 23, 2017, the entire disclosure of the prior application is incorporated herein by reference.
 本発明は、無効電力補償装置に関するものである。 The present invention relates to a reactive power compensation device.
 近年、太陽光発電の余剰電力買取制度の導入や再生可能エネルギー固定価格買取制度の導入によって、太陽光発電システムの導入が加速している。家庭用の太陽光発電システムはもちろんのこと、自治体や民間企業により遊休地や建物屋根を利用したメガソーラー発電も導入例が増えている。太陽光発電が系統の末端側に接続されると、発電設備からの逆潮流により系統接続点電圧が上昇する。太陽光発電の出力は天候に左右され不安定であるため、適切に制御しなければ系統電圧の適正範囲から逸脱する虞がある。 In recent years, the introduction of a solar power generation system has been accelerated by the introduction of a surplus power purchase system for solar power generation and the introduction of a renewable energy fixed price purchase system. As well as solar power generation systems for home use, mega solar power generation using idle land and roofs of buildings has been increasingly introduced by local governments and private companies. When solar power generation is connected to the end of the grid, the reverse connection from the power generation equipment raises the grid node voltage. Since the output of solar power generation is unstable depending on the weather, there is a risk that the power system may deviate from the proper range of the system voltage if not properly controlled.
 こういった、電圧過高問題を抑制する目的で系統に接続される無効電力補償装置が知られている(例えば、特許文献1参照)。無効電力補償装置は任意の無効電力を系統に流すことで系統電圧が適正範囲から逸脱することを抑制することができる。特に、半導体スイッチング素子で構成されたインバータにより無効電力を制御するSTATCOM(STATic synchronous COMpensator)は、高速応答が可能であり、系統電圧抑制制御だけでなく電圧不平衡補償制御や高調波抑制制御も可能である。 There is known a reactive power compensation device connected to a grid for the purpose of suppressing such an excessive voltage problem (see, for example, Patent Document 1). The reactive power compensation device can suppress the system voltage from deviating from the appropriate range by supplying arbitrary reactive power to the system. In particular, STATCOM (STATic synchronous COMpensator), which controls reactive power with an inverter composed of semiconductor switching elements, is capable of high-speed response, and not only system voltage suppression control but also voltage imbalance compensation control and harmonic suppression control. It is.
 無効電力補償装置は、発電システムの近傍に設置することが望ましいが、太陽光発電は限られたスペースに設置される場合が多く、一般的に無効電力補償装置を設置する場所には制約がある。無効電力補償装置を地上に設置するスペースがない場合には、2本の電柱に柱を渡したH柱の上などに設置されることが多い。 Although it is desirable to install the reactive power compensation device near the power generation system, photovoltaic power generation is often installed in a limited space, and there is generally a restriction in the place where the reactive power compensation device is installed . If there is no space for installing the reactive power compensation device on the ground, it is often installed on an H-pillar or the like passing a pole over two power poles.
特開2017-022882号公報JP, 2017-022288, A
 しかし、従来の無効電力補償装置をH柱上に設置した場合、設置後に無効電力補償装置を直接操作することは困難であった。また、高所作業車を用いて柱上作業を行うには資格や講習が必要であり、使用者の負担が大きいという問題があった。 However, when the conventional reactive power compensation device is installed on the H pillar, it is difficult to directly operate the reactive power compensation device after installation. Moreover, in order to perform work on a pillar using an aerial work vehicle, qualifications and training are required, and there is a problem that the burden on the user is large.
 かかる事情に鑑みてなされた本発明の目的は、離れた場所から操作することが可能な無効電力補償装置を提供することにある。 The object of the present invention made in view of such circumstances is to provide a reactive power compensator capable of being operated from a remote place.
 上記課題を解決するため、本発明に係る無効電力補償装置は、電力系統に無効電流を流すことができる無効電力補償装置であって、通信端末と直接無線接続を行うアクセスポイントモードと、インターネットに接続された中継器を介して前記通信端末と無線接続を行うステーションモードとを有する通信部を備えることを特徴とする。 In order to solve the above problems, a reactive power compensation device according to the present invention is a reactive power compensation device capable of supplying a reactive current to a power system, and in an access point mode for direct wireless connection with a communication terminal; The communication apparatus may include a communication unit having a station mode for performing wireless connection with the communication terminal via the connected relay.
 さらに、本発明に係る無効電力補償装置において、前記アクセスポイントモードにおいて、前記通信部が前記通信端末と通信を確立していない時間が一定時間継続するか、又は前記中継器への接続要求を取得した場合には、前記通信部を前記ステーションモードに切り替え、該ステーションモードにおいて、前記通信部が前記中継器と接続ができない場合には、前記通信部を前記アクセスポイントモードに切り替える制御部を備えることを特徴とする。 Furthermore, in the reactive power compensation device according to the present invention, in the access point mode, a time during which the communication unit has not established communication with the communication terminal continues for a predetermined time, or a connection request to the relay is acquired. In this case, there is provided a control unit which switches the communication unit to the station mode, and switches the communication unit to the access point mode when the communication unit can not connect to the relay in the station mode. It is characterized by
 さらに、本発明に係る無効電力補償装置において、前記制御部は、無効電力補償装置の操作GUIに関するデータを前記通信端末へ送信し、前記通信端末から操作GUIを操作することによって得られた情報を受信することを特徴とする。 Furthermore, in the reactive power compensation device according to the present invention, the control unit transmits data related to an operation GUI of the reactive power compensation device to the communication terminal, and information obtained by operating the operation GUI from the communication terminal is It is characterized by receiving.
 さらに、本発明に係る無効電力補償装置において、前記通信部は、無効電力補償装置の運転状態を定期的に監視サーバへ送信するとともに、無効電力補償装置が異常状態を検知すると直ちに運転状態を前記監視サーバへ送信することを特徴とする。 Furthermore, in the reactive power compensation device according to the present invention, the communication unit periodically transmits the operating state of the reactive power compensation device to the monitoring server, and the operating state is immediately transmitted when the reactive power compensation device detects an abnormal state. It is characterized by transmitting to a monitoring server.
 さらに、本発明に係る無効電力補償装置において、前記通信部は、NTPサーバから時刻情報を取得することにより、無効電力補償装置に内蔵された時計を自動的に調整することを特徴とする。 Furthermore, in the reactive power compensation device according to the present invention, the communication unit automatically adjusts a clock incorporated in the reactive power compensation device by acquiring time information from an NTP server.
 さらに、本発明に係る無効電力補償装置において、前記通信部は、当該電力補償装置と前記通信端末との間における認証及び通信の暗号化を施すことを特徴とする。 Furthermore, in the reactive power compensation device according to the present invention, the communication unit performs encryption of authentication and communication between the power compensation device and the communication terminal.
 本発明によれば、離れた場所から無効電力補償装置を操作することが可能となる。 According to the present invention, it is possible to operate the reactive power compensation device from a remote place.
本発明の一実施形態に係る無効電力補償装置の構成例を示す図である。It is a figure which shows the structural example of the reactive power compensation apparatus which concerns on one Embodiment of this invention. 本発明の一実施形態に係る無効電力補償装置がステーションモード時のインターネット接続例を示す図である。It is a figure which shows the example of the Internet connection at the time of station mode in the reactive power compensation apparatus based on one Embodiment of this invention. 本発明の一実施形態に係る無効電力補償装置における通信部の状態変移を表した図である。It is a figure showing the state transition of the communication part in the reactive-power-compensation apparatus based on one Embodiment of this invention.
 以下、本発明の一実施形態について、図面を参照して詳細に説明する。 Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings.
 図1は、本発明の一実施形態に係る無効電力補償装置の構成例を示す図である。この例では、無効電力補償装置1は、インバータ部11と、制御部12と、変圧器13と、通信部14とを備える。 FIG. 1 is a view showing a configuration example of a reactive power compensation device according to an embodiment of the present invention. In this example, the reactive power compensation device 1 includes an inverter unit 11, a control unit 12, a transformer 13, and a communication unit 14.
 無効電力補償装置1は、開閉器2を介して電力系統(例えば、三相6600V)に接続され、電力系統に無効電流を流す。 The reactive power compensation device 1 is connected to a power system (for example, three-phase 6600 V) via the switch 2 and supplies a reactive current to the power system.
 検出部3は、電力系統の電圧や電流を検出し、アナログの検出値を制御部12へ出力する。 The detection unit 3 detects voltage and current of the power system, and outputs an analog detection value to the control unit 12.
 制御部12は、検出部3から入力されるアナログの検出値をデジタルの検出値に変換し、検出値からインバータの電流指令値を演算してインバータ部11に出力する。制御部12は、アナログデジタル変換を行う回路のほか、例えば各種演算を行うマイコンと各種設定を保存するメモリとを有する。 The control unit 12 converts an analog detection value input from the detection unit 3 into a digital detection value, calculates a current command value of the inverter from the detection value, and outputs the current command value to the inverter unit 11. The control unit 12 has, in addition to a circuit that performs analog-to-digital conversion, for example, a microcomputer that performs various operations and a memory that stores various settings.
 インバータ部11は、1つ以上のインバータユニットで構成される。各インバータユニットは、例えば6つの半導体スイッチで構成されており、制御部12から入力された電流指令値に基づいて、半導体スイッチの動作パターンを決定する。この動作パターンの組み合わせにより、電力系統の電圧や力率を操作することができる。 The inverter unit 11 is configured of one or more inverter units. Each inverter unit is configured of, for example, six semiconductor switches, and determines an operation pattern of the semiconductor switch based on the current command value input from the control unit 12. By combining the operation patterns, the voltage and power factor of the power system can be manipulated.
 変圧器13は、系統電圧を高圧から低圧へ変圧してインバータ部11へ接続する。 The transformer 13 transforms the system voltage from high voltage to low voltage and connects it to the inverter unit 11.
 通信端末4は、通信部14に対応した規格の無線通信モジュールが内蔵された機器(例えば、PC又はスマートフォン)であり、通信部14と無線通信を行う。 The communication terminal 4 is a device (for example, a PC or a smartphone) in which a wireless communication module of a standard corresponding to the communication unit 14 is incorporated, and performs wireless communication with the communication unit 14.
 通信部14は、Wi-Fi(登録商標)通信などにより通信端末4と直接無線接続を行うアクセスポイントモードと、インターネットに接続された中継器を介して通信端末4と無線接続を行うステーションモードとを有する。通信部14は、制御部12と相互にシリアル通信を行い、制御部12と外部機器との通信を仲介する。 The communication unit 14 has an access point mode for direct wireless connection with the communication terminal 4 by Wi-Fi (registered trademark) communication or the like, and a station mode for wireless connection with the communication terminal 4 via a relay connected to the Internet. Have. The communication unit 14 performs serial communication with the control unit 12 to mediate communication between the control unit 12 and an external device.
 図1の構成は、アクセスポイントモード時の通信部14と通信端末4との関係を表している。通信部14がアクセスポイントモードのとき、通信部14は通信端末4と直接接続することができる。アクセスポイントモードでは、通信部14と通信端末4は電波で通信を行うことから、お互いに電波強度が十分な距離で通信を行う必要がある。そのため、アクセスポイントモードの場合には、ユーザは通信端末4を用いて、無効電力補償装置1の設置場所周辺で作業を行うことになる。 The configuration of FIG. 1 represents the relationship between the communication unit 14 and the communication terminal 4 in the access point mode. When the communication unit 14 is in the access point mode, the communication unit 14 can be directly connected to the communication terminal 4. In the access point mode, since the communication unit 14 and the communication terminal 4 communicate by radio waves, it is necessary to communicate with each other at a distance sufficient for the radio wave intensity. Therefore, in the case of the access point mode, the user uses the communication terminal 4 to work around the installation place of the reactive power compensation device 1.
 図2は、ステーションモード時のインターネット接続例を示す図である。通信部14がステーションモードのとき、通信部14はメモリに保存された設定データをもとに周辺に設置されている中継器5への接続を試みる。通信部14と中継器5の通信が確立されれば、通信端末4はインターネット6経由で無効電力補償装置1と通信を行うことができる。 FIG. 2 is a diagram showing an example of the Internet connection in the station mode. When the communication unit 14 is in the station mode, the communication unit 14 tries to connect to the repeater 5 installed in the periphery based on the setting data stored in the memory. If communication between the communication unit 14 and the relay unit 5 is established, the communication terminal 4 can communicate with the reactive power compensation device 1 via the Internet 6.
 中継器5は、無効電力補償装置1の周辺に設置され、インターネット6とローカルネットを中継する装置であり、通信部14は無線通信にて接続される。中継器5は、例えば無線ルータやアクセスポイントである。また、携帯電話回線とWi-Fi通信を中継するゲートウェイを含む場合もある。 The repeater 5 is installed around the reactive power compensation device 1 and relays the Internet 6 and the local network, and the communication unit 14 is connected by wireless communication. The repeater 5 is, for example, a wireless router or an access point. In addition, it may include a gateway that relays a cellular phone line and Wi-Fi communication.
 通信部14は、ステーションモード時には、制御部12が送受信するデータをTCP/IPプロトコルに基づいて処理する。 In the station mode, the communication unit 14 processes data transmitted and received by the control unit 12 based on the TCP / IP protocol.
 制御部12は、通信端末4から通信部14を介して操作GUI(操作画面)に関するデータの取得要求アクセスがあると、HTTPプロトコルに基づいて操作GUIに関するデータを通信端末4へ送信する。そして、制御部12は、通信端末4から通信部14を介して、操作GUIを操作することによって得られた情報を受信し、該情報に基づいてインバータ部11を制御する。この動作は、ステーションモード時だけでなく、アクセスポイントモード時においても同様である。 The control unit 12 transmits data on the operation GUI to the communication terminal 4 based on the HTTP protocol when there is an access request for acquiring data on the operation GUI (operation screen) from the communication terminal 4 via the communication unit 14. Then, the control unit 12 receives information obtained by operating the operation GUI from the communication terminal 4 via the communication unit 14, and controls the inverter unit 11 based on the information. This operation is similar not only in the station mode but also in the access point mode.
 また、制御部12は、通信端末4から無効電力補償装置1へ設定パラメータ(中継器に関するパラメータや、インバータの制御に関するパラメータ等)の変更要求アクセスがあると、変更要求に基づいて、メモリに保持している設定パラメータを変更する。つまり、通信端末4のブラウザソフトにより無効電力補償装置1にアクセスすると、無効電力補償装置1を操作するボタンや無効電力補償装置1の動作状況を表示するGUIがブラウザソフトに表示され、遠隔から無効電力補償装置1の監視や操作が可能となる。よって、無効電力補償装置1に画面や操作パネルを必要としなくなるため、コスト削減を実現することができる。 In addition, when there is a request for changing setting parameters (parameters related to a relay, parameters related to control of an inverter, etc.) from the communication terminal 4 to the reactive power compensation device 1, the control unit 12 holds it in the memory based on the change request. Change the configuration parameters you are using. That is, when the reactive power compensation device 1 is accessed by the browser software of the communication terminal 4, a button for operating the reactive power compensation device 1 or a GUI for displaying the operation status of the reactive power compensation device 1 is displayed on the browser software. It is possible to monitor and operate the power compensation device 1. Therefore, since the screen and the operation panel are not required for the reactive power compensation device 1, cost reduction can be realized.
 図3は、通信部14の状態変移を表す図である。まず、電源投入により制御部12が起動すると(ステップS01)、制御部12は通信部14をアクセスポイントモードに設定し(ステップS02)、通信端末4と通信部14の通信が確立するまで待機する。 FIG. 3 is a diagram showing a state transition of the communication unit 14. First, when the control unit 12 is activated by power on (step S01), the control unit 12 sets the communication unit 14 in the access point mode (step S02), and waits until communication between the communication terminal 4 and the communication unit 14 is established. .
 通信端末4と通信部14の通信が確立すれば、通信端末4と制御部12が通信部14を介して通信可能となる(ステップS03)。この状態で通信端末4のブラウザから制御部12へHTTPプロトコルに基づいたアクセス要求があれば、制御部12は通信端末4のブラウザへ適切な応答を返す。 When the communication between the communication terminal 4 and the communication unit 14 is established, the communication terminal 4 and the control unit 12 can communicate with each other via the communication unit 14 (step S03). In this state, if there is an access request from the browser of the communication terminal 4 to the control unit 12 based on the HTTP protocol, the control unit 12 returns an appropriate response to the browser of the communication terminal 4.
 通信端末4のブラウザから制御部12に対し、通信部14が中継器5への接続要求(中継器5に接続するための設定パラメータを変更する要求)を取得した場合には、制御部12は通信部14をステーションモード(ステップS04)に切り替える。そして、変更された設定パラメータを元に通信部14と中継器5の接続を試みる。中継器5との接続に成功した場合には、変更された設定パラメータを制御部12のメモリへ保存し、中継器5との接続を維持する。中継器5との接続に失敗した場合には、変更された設定パラメータを破棄して、通信部14をアクセスポイントモード(ステップS02)に切り替える。 When the communication unit 14 acquires a request for connection to the relay 5 (a request to change a setting parameter for connection to the relay 5) from the browser of the communication terminal 4 to the control unit 12, the control unit 12 The communication unit 14 is switched to the station mode (step S04). Then, based on the changed setting parameter, connection between the communication unit 14 and the relay 5 is tried. If the connection with the repeater 5 is successful, the changed setting parameter is stored in the memory of the control unit 12 and the connection with the repeater 5 is maintained. If the connection with the relay unit 5 fails, the changed setting parameter is discarded, and the communication unit 14 is switched to the access point mode (step S02).
 また、通信部14がアクセスポイントモードの状態(ステップS02)で、外部の通信端末4と通信が確立していない時間が一定時間継続した場合には、制御部12は通信部14をステーションモード(ステップS04)に切り替え、周辺の中継器5へ接続するように操作する。このとき通信部14が正常に中継器5へ接続された場合には、中継器5との接続を維持する。周辺の中継器5への接続に失敗した場合には、制御部12は通信部14をアクセスポイントモード(ステップS02)に切り替え、通信端末4からのアクセスを待つ。 When the communication unit 14 is in the access point mode (step S02) and the time during which communication with the external communication terminal 4 has not been established continues for a certain period of time, the control unit 12 operates the communication unit 14 in station mode ( It switches to step S04) and it operates so that it may connect to the repeater 5 of a periphery. At this time, when the communication unit 14 is normally connected to the repeater 5, the connection with the repeater 5 is maintained. If the connection to the nearby repeater 5 fails, the control unit 12 switches the communication unit 14 to the access point mode (step S02) and waits for access from the communication terminal 4.
 ステーションモードの状態(ステップS04)においてもアクセスポイントモード時と同様に、通信端末4と通信部14の通信が確立され(ステップS05)、通信端末4のブラウザから制御部12へHTTPプロトコルに基づいたアクセス要求があれば、制御部12は通信端末4のブラウザへ適切な応答を返す。また、制御部12は、定期的に中継器5と通信部14の接続が確立しているかを確認し、切断された場合には、通信部14をステーションモード(ステップS04)からアクセスポイントモード(ステップS02)へ切り替える。 Also in the state of the station mode (step S04), the communication between the communication terminal 4 and the communication unit 14 is established (step S05) as in the access point mode, and the browser of the communication terminal 4 to the control unit 12 based on the HTTP protocol. If there is an access request, the control unit 12 returns an appropriate response to the browser of the communication terminal 4. In addition, the control unit 12 periodically checks whether the connection between the relay unit 5 and the communication unit 14 has been established, and if disconnected, the communication unit 14 is switched from the station mode (step S04) to the access point mode (step S04). Switch to step S02).
 通信部14がこのような状態変移を行うことで、中継器5の故障や設定変更により、中継器5を通して通信端末4から無効電力補償装置1へアクセスできなくなっても、自動的に無効電力補償装置1がアクセスポイントモードとなるため、無効電力補償装置1の周辺から通信端末4を用いて直接アクセスすることで、無効電力補償装置1の操作が可能となる。 Even when the communication terminal 4 can not access the reactive power compensation device 1 through the relay unit 5 due to the failure of the relay unit 5 or the setting change by the communication unit 14 performing such a state transition, the reactive power compensation is automatically performed. Since the device 1 is in the access point mode, the reactive power compensation device 1 can be operated by direct access from the periphery of the reactive power compensation device 1 using the communication terminal 4.
 なお、通信部14は、第三者からの不正アクセスやサイバー攻撃を防止するために、無効電力補償装置1と通信端末4と間における認証及び通信の暗号化によるセキュリティ対策を施してもよい。 The communication unit 14 may take security measures by encryption of authentication and communication between the reactive power compensation device 1 and the communication terminal 4 in order to prevent unauthorized access from a third party and cyber attacks.
 無効電力補償装置1が通信部14によってインターネット6に接続されていれば、無効電力補償装置1はインターネット6に接続されているサーバ7との通信も可能である。例えば、サーバ7をインターネット6上からアクセスできる監視サーバ7-1とすることができる。通信部14は、無効電力補償装置1の運転状態を定期的に監視サーバ7-1へ送信することで、監視サーバ7-1に運用記録が蓄積されていく。管理者は、監視サーバ7-1に蓄積された運用記録のデータを見ることで、過去の運用記録を確認することが可能となる。また、通信部14は、無効電力補償装置1の異常状態を検知すると直ちに運転状態を監視サーバへ送信することで、管理者に迅速に異常状態を通知することができる。 If the reactive power compensation device 1 is connected to the Internet 6 by the communication unit 14, the reactive power compensation device 1 can also communicate with the server 7 connected to the Internet 6. For example, the server 7 can be a monitoring server 7-1 accessible from the Internet 6. The communication unit 14 periodically transmits the operation state of the reactive power compensation device 1 to the monitoring server 7-1, whereby the operation record is accumulated in the monitoring server 7-1. The administrator can confirm the past operation record by looking at the data of the operation record accumulated in the monitoring server 7-1. The communication unit 14 can immediately notify the administrator of the abnormal state by transmitting the operating state to the monitoring server as soon as the abnormal state of the reactive power compensation device 1 is detected.
 また、サーバ7を、無効電力補償装置1がインターネット6から接続可能なNTP(Network Time Protocol)サーバ7-2とすることもできる。通信部14は、NTPサーバ7-2と通信を行い、時刻情報を取得することにより、無効電力補償装置1に内蔵された時計を自動的に調整することが可能となる。無効電力補償装置1を長期運用すると、時計精度の問題により時刻情報がずれてゆく。また、停電により無効電力補償装置1に電力が供給されなくなるとバックアップ電源により時計は動き続けるが、バックアップ電源のバッテリが切れると時計の時刻情報はリセットされてしまう。無効電力補償装置1がNTPサーバ7-2から取得した時刻情報に基づいて時刻を自動的に調整することにより、これらの問題を解決することができる。 Further, the server 7 may be an NTP (Network Time Protocol) server 7-2 to which the reactive power compensation device 1 can connect from the Internet 6. The communication unit 14 communicates with the NTP server 7-2, and by acquiring time information, it is possible to automatically adjust the clock built in the reactive power compensation device 1. When the reactive power compensation device 1 is operated for a long time, time information shifts due to a problem of clock accuracy. In addition, when power is not supplied to the reactive power compensation device 1 due to a power failure, the watch continues to operate by the backup power supply, but when the battery of the backup power supply is discharged, the time information of the clock is reset. These problems can be solved by the reactive power compensation device 1 automatically adjusting the time based on the time information acquired from the NTP server 7-2.
 上述したように、本発明に係る無効電力補償装置1は、無線通信が可能な通信部14を備える。そのため、たとえば地上から無線通信にて通信端末4と無効電力補償装置1とを接続することで、高所作業を行わずに柱上に設置された無効電力補償装置1を容易に操作することができ、感電などの事故リスクも低減することができる。さらに、無効電力補償装置1を無線通信にてインターネット6へ接続することで、無効電力補償装置1の設置場所に行かずにどこからでも無効電力補償装置1を遠隔操作することができ、正常に運転が行われているかどうかを点検するために設置場所まで赴く必要がなくなり、運用コストも低下させることができる。 As described above, the reactive power compensation device 1 according to the present invention includes the communication unit 14 capable of wireless communication. Therefore, for example, by connecting the communication terminal 4 and the reactive power compensation device 1 by radio communication from the ground, it is possible to easily operate the reactive power compensation device 1 installed on a pole without performing work in a high place. The risk of accidents such as electric shock can also be reduced. Furthermore, by connecting the reactive power compensation device 1 to the Internet 6 by wireless communication, the reactive power compensation device 1 can be remotely controlled from anywhere without going to the installation place of the reactive power compensation device 1, and the operation is normally performed. There is no need to go to the installation site to check if any is being done, and operating costs can be reduced.
 また、無効電力補償装置1は接続状況に応じて通信部14のモードを自動的に切り替えることができる。そのため、もし周辺の中継器5が故障した場合であっても、無効電力補償装置1と通信端末4とが直接接続を行うアクセスポイントモードに切り替わるため、無効電力補償装置1の操作を継続して行うことができる。 Further, the reactive power compensation device 1 can automatically switch the mode of the communication unit 14 according to the connection status. Therefore, even if the peripheral repeater 5 fails, the operation of the reactive power compensation device 1 is continued since the reactive power compensation device 1 and the communication terminal 4 are switched to the access point mode in which direct connection is established. It can be carried out.
 さらに、無効電力補償装置1は操作GUIに関するデータを通信端末4へ送信してもよい。これにより、無効電力補償装置1の筐体にモニタやボタンのようなコントローラを備える必要がなくなるため、筐体のコスト削減につながる。なお、通信端末4には既存のパソコンやスマートフォンなどをそのまま利用でき、低コストで本発明を実施することができる。 Furthermore, the reactive power compensation device 1 may transmit data related to the operation GUI to the communication terminal 4. This eliminates the need to provide a controller such as a monitor or button in the housing of the reactive power compensation device 1, leading to cost reduction of the housing. In addition, the existing personal computer, a smart phone, etc. can be used as it is as the communication terminal 4, and this invention can be implemented at low cost.
 上述の実施形態は代表的な例として説明したが、本発明の趣旨及び範囲内で、多くの変更及び置換ができることは当業者に明らかである。したがって、本発明は、上述の実施形態によって制限するものと解するべきではなく、特許請求の範囲から逸脱することなく、種々の変形や変更が可能である。例えば、実施形態の構成図に記載の機能ブロックを一つの回路もしくはモジュールに集約したり、複数の回路もしくはモジュールに分割したりすることも可能である。また、通信プロトコルは実施形態のプロトコルに限定するものではなく、さまざまなプロトコルを利用できる。 Although the embodiments described above have been described as representative examples, it will be obvious to those skilled in the art that many modifications and substitutions can be made within the spirit and scope of the present invention. Therefore, the present invention should not be construed as being limited by the above-described embodiments, and various modifications and changes are possible without departing from the scope of the claims. For example, the functional blocks described in the block diagram of the embodiment can be integrated into one circuit or module, or divided into a plurality of circuits or modules. Also, the communication protocol is not limited to the protocol of the embodiment, and various protocols can be used.
 1  無効電力補償装置
 2  開閉器
 3  検出器
 4  通信端末
 5  中継器
 6  インターネット
 7  サーバ(監視サーバ、NTPサーバ)
 11 インバータ部
 12 制御部
 13 変圧器
 14 通信部
1 Reactive power compensation device 2 Switch 3 Detector 4 Communication terminal 5 Repeater 6 Internet 7 Server (monitoring server, NTP server)
11 inverter unit 12 control unit 13 transformer 14 communication unit

Claims (6)

  1.  電力系統に無効電流を流すことができる無効電力補償装置であって、
     通信端末と直接無線接続を行うアクセスポイントモードと、インターネットに接続された中継器を介して前記通信端末と無線接続を行うステーションモードとを有する通信部を備える無効電力補償装置。
    A reactive power compensator capable of supplying reactive current to a power system, comprising:
    A reactive power compensation device comprising: a communication unit having an access point mode for direct wireless connection with a communication terminal and a station mode for wireless connection with the communication terminal via a relay connected to the Internet.
  2.  前記アクセスポイントモードにおいて、前記通信部が前記通信端末と通信を確立していない時間が一定時間継続するか、又は前記中継器への接続要求を取得した場合には、前記通信部を前記ステーションモードに切り替え、該ステーションモードにおいて、前記通信部が前記中継器と接続ができない場合には、前記通信部を前記アクセスポイントモードに切り替える制御部を備える、請求項1に記載の無効電力補償装置。 In the access point mode, when the communication unit does not establish communication with the communication terminal continues for a certain period of time, or when a request for connection to the relay is obtained, the communication unit is set to the station mode. The reactive power compensation device according to claim 1, further comprising: a control unit that switches the communication unit to the access point mode when the communication unit can not connect to the relay in the station mode.
  3.  前記制御部は、無効電力補償装置の操作GUIに関するデータを前記通信端末へ送信し、前記通信端末から操作GUIを操作することによって得られた情報を受信する、請求項1に記載の無効電力補償装置。 The reactive power compensation according to claim 1, wherein the control unit transmits data on an operation GUI of a reactive power compensation device to the communication terminal, and receives information obtained by operating the operation GUI from the communication terminal. apparatus.
  4.  前記通信部は、無効電力補償装置の運転状態を定期的に監視サーバへ送信するとともに、無効電力補償装置が異常状態を検知すると直ちに運転状態を前記監視サーバへ送信する、請求項1に記載の無効電力補償装置。 The communication unit according to claim 1, wherein the communication unit periodically transmits the operating state of the reactive power compensation device to the monitoring server, and transmits the operating state to the monitoring server immediately when the reactive power compensation device detects an abnormal state. Reactive power compensation device.
  5.  前記通信部は、NTPサーバから時刻情報を取得することにより、無効電力補償装置に内蔵された時計を自動的に調整する、請求項1に記載の無効電力補償装置。 The reactive power compensation device according to claim 1, wherein the communication unit automatically adjusts a clock incorporated in the reactive power compensation device by acquiring time information from an NTP server.
  6.  前記通信部は、当該電力補償装置と前記通信端末との間における認証及び通信の暗号化を施す、請求項1に記載の無効電力補償装置。 The reactive power compensation device according to claim 1, wherein the communication unit performs encryption of authentication and communication between the power compensation device and the communication terminal.
PCT/JP2018/004265 2017-06-23 2018-02-07 Reactive power compensation device WO2018235331A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017123064A JP2019009888A (en) 2017-06-23 2017-06-23 Reactive power compensator
JP2017-123064 2017-06-23

Publications (1)

Publication Number Publication Date
WO2018235331A1 true WO2018235331A1 (en) 2018-12-27

Family

ID=64735956

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/004265 WO2018235331A1 (en) 2017-06-23 2018-02-07 Reactive power compensation device

Country Status (2)

Country Link
JP (1) JP2019009888A (en)
WO (1) WO2018235331A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110677184A (en) * 2019-11-04 2020-01-10 国网河南省电力公司襄城县供电公司 Electric power information communication network signal reinforcing means

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001028835A (en) * 1999-07-13 2001-01-30 Tohoku Electric Mfg Co Ltd Reactive power compensator
WO2002005239A1 (en) * 2000-07-07 2002-01-17 Sanwa System Corporation Remote supervision system and remote supervision apparatus
JP2006033919A (en) * 2004-07-12 2006-02-02 Chugoku Electric Power Co Inc:The Remote maintenance system
CN102377187A (en) * 2011-10-19 2012-03-14 镇江博扬电气科技有限公司 Reactive compensation system on remote monitoring post
CN102969725A (en) * 2012-11-05 2013-03-13 江苏赤那思电力科技有限公司 Reactive compensation system of rural power grid line
US20150130275A1 (en) * 2013-11-12 2015-05-14 D-Link Corporation Smart socket for automatically switching between electricity utilization modes

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017022882A (en) * 2015-07-10 2017-01-26 東洋電機製造株式会社 Power conversion device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001028835A (en) * 1999-07-13 2001-01-30 Tohoku Electric Mfg Co Ltd Reactive power compensator
WO2002005239A1 (en) * 2000-07-07 2002-01-17 Sanwa System Corporation Remote supervision system and remote supervision apparatus
JP2006033919A (en) * 2004-07-12 2006-02-02 Chugoku Electric Power Co Inc:The Remote maintenance system
CN102377187A (en) * 2011-10-19 2012-03-14 镇江博扬电气科技有限公司 Reactive compensation system on remote monitoring post
CN102969725A (en) * 2012-11-05 2013-03-13 江苏赤那思电力科技有限公司 Reactive compensation system of rural power grid line
US20150130275A1 (en) * 2013-11-12 2015-05-14 D-Link Corporation Smart socket for automatically switching between electricity utilization modes

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Wi-Fi ® for the Smart Grid", WI-FI ALLIANCE, September 2010 (2010-09-01), XP055555492, Retrieved from the Internet <URL:http://www.wi-fi.org/system/files/wp_wifi_smart_grid_with_security_faq_20100912.pdf> [retrieved on 20180406] *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110677184A (en) * 2019-11-04 2020-01-10 国网河南省电力公司襄城县供电公司 Electric power information communication network signal reinforcing means
CN110677184B (en) * 2019-11-04 2021-08-06 国网河南省电力公司襄城县供电公司 Electric power information communication network signal reinforcing means

Also Published As

Publication number Publication date
JP2019009888A (en) 2019-01-17

Similar Documents

Publication Publication Date Title
US10158199B2 (en) Power cord with in-line power control functionality
US20130339766A1 (en) Power supply dock with wireless network and power management functions
CN203732979U (en) Long-distance multiport power source restart control device
EP2838313B1 (en) Portable terminal auxiliary device having satellite communication function
WO2015143872A1 (en) Control system and method for wireless base station and related device
JPWO2013118473A1 (en) Base station system
US20190334473A1 (en) Solar module junction box, solar system and control method for solar module
JP6523810B2 (en) Wireless relay system, slave unit of wireless relay system, and recovery method of wireless relay system
KR20230082007A (en) An Apparatus for Monitering a Distribution Panel Board
WO2018235331A1 (en) Reactive power compensation device
CN103078939B (en) A kind of video wall splicing control method, device and controller
CN105205886A (en) Server, access control equipment and management terminal and method for community security and protection
CN103841266A (en) Terminal device, auxiliary device, cooperative communication method and volume adjusting system
CN203596064U (en) WIFI signal relay doorbell
CN204887029U (en) Novel configuration system of router is connected to WIFI chip
US20170195951A1 (en) Method for integrating an inverter into a wireless local area communication network, and inverter suitable therefore
CN203311225U (en) Intelligent power-supply allocation unit
CN113873483B (en) Bluetooth module setting, checking and managing method of energy controller
EP4187373A1 (en) Techniques for remotely restoring a functionality of a technical device operated with electricity
CN109547247B (en) Time management system, gateway and method of intelligent door lock
CN103163862A (en) Intelligent power distribution unit
ES2945538T3 (en) A computer-implemented method of configuring an electronic relay
EP1389854A1 (en) Remote control for a home automatisation system
CN104254146A (en) Wireless communication system and communication method
CN114501692A (en) Multimode-fused ad hoc network communication system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18821395

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18821395

Country of ref document: EP

Kind code of ref document: A1