WO2018235229A1 - Microvalve - Google Patents

Microvalve Download PDF

Info

Publication number
WO2018235229A1
WO2018235229A1 PCT/JP2017/023035 JP2017023035W WO2018235229A1 WO 2018235229 A1 WO2018235229 A1 WO 2018235229A1 JP 2017023035 W JP2017023035 W JP 2017023035W WO 2018235229 A1 WO2018235229 A1 WO 2018235229A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
micro valve
diaphragm
base layer
diaphragm layer
Prior art date
Application number
PCT/JP2017/023035
Other languages
French (fr)
Japanese (ja)
Inventor
文剣 盧
繁明 芝本
一法 ▲高▼橋
Original Assignee
株式会社島津製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社島津製作所 filed Critical 株式会社島津製作所
Priority to PCT/JP2017/023035 priority Critical patent/WO2018235229A1/en
Publication of WO2018235229A1 publication Critical patent/WO2018235229A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B3/00Devices comprising flexible or deformable elements, e.g. comprising elastic tongues or membranes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K7/00Diaphragm valves or cut-off apparatus, e.g. with a member deformed, but not moved bodily, to close the passage ; Pinch valves
    • F16K7/12Diaphragm valves or cut-off apparatus, e.g. with a member deformed, but not moved bodily, to close the passage ; Pinch valves with flat, dished, or bowl-shaped diaphragm
    • F16K7/14Diaphragm valves or cut-off apparatus, e.g. with a member deformed, but not moved bodily, to close the passage ; Pinch valves with flat, dished, or bowl-shaped diaphragm arranged to be deformed against a flat seat
    • F16K7/17Diaphragm valves or cut-off apparatus, e.g. with a member deformed, but not moved bodily, to close the passage ; Pinch valves with flat, dished, or bowl-shaped diaphragm arranged to be deformed against a flat seat the diaphragm being actuated by fluid pressure
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N30/16Injection
    • G01N30/20Injection using a sampling valve

Definitions

  • the present invention relates to a micro valve having a laminated structure in which a plurality of layers are laminated.
  • a valve device for switching a flow path in the device.
  • an analyzer such as a gas chromatograph
  • a multiport valve is used as a valve device.
  • Each port of the multiport valve in the analyzer is directed to the detector through a sample gas introduction pipe for introducing a sample gas, a sample loop for collecting the sample gas, a carrier gas introduction pipe for introducing a carrier gas, and a separation column. It communicates with a sample gas supply pipe or the like for supplying a sample gas (see, for example, Patent Document 1 below).
  • a sample gas is introduced from a sample introduction pipe.
  • the sample gas flows into the sample loop through the port of the multiport valve and is collected by the sample loop.
  • the flow path of the multiport valve is switched.
  • the carrier gas is introduced from the carrier gas inlet pipe.
  • Carrier gas flows into the sample loop through the port of the multiport valve.
  • Such a multiport valve has a mechanism for switching the flow path inside.
  • the multiport valve includes a disk-shaped rotor provided with a plurality of openings, and a disk-shaped stator provided with a plurality of grooves.
  • the rotor and the stator are provided in the multiport valve in a stacked state.
  • the openings of the rotor and the grooves of the stator constitute a flow path.
  • the flow path is switched by rotating the rotor with respect to the stator and changing the relative position of the opening of the rotor and the groove of the stator.
  • the rotor rotates in contact with the stator each time the flow path is switched. Therefore, there is a problem that the rotor and the stator are easily worn and the product life is shortened.
  • the contact portion (seal surface) in these mechanisms is generally made of fluorocarbon resin. Therefore, when the multiport valve is used in a high temperature state, there is a problem that the seal surface is plastically deformed and the contact becomes imperfect, and a leak occurs in the subsequent operation.
  • the multiport valve is relatively large in size, there is also a problem that it is not suitable for analysis of a small amount of gas.
  • the present invention has been made in view of the above-described circumstances, and an object thereof is to provide a micro valve capable of improving durability and achieving downsizing.
  • the micro valve according to the present invention is a micro valve having a laminated structure in which a plurality of layers are laminated.
  • the micro valve comprises a base layer and a diaphragm layer.
  • an inlet through which the gas flows into the micro valve, and an outlet through which the gas flowing from the inlet flows out of the micro valve are respectively formed as through holes.
  • the diaphragm layer is made of a silicon film opposed to the base layer, and opens and closes at least one of the inlet and the outlet by elastically deforming with the inflow of pneumatic fluid into the micro valve. .
  • the micro valve in the micro valve, at least one of the inlet and the outlet is opened and closed by elastically deforming the diaphragm layer with the inflow of the pneumatic fluid. Therefore, in the micro valve, at least one of the inlet and the outlet can be opened and closed without having a mechanism for rotating the member.
  • the microvalve can be miniaturized.
  • the micro valve may further include a cover layer.
  • the cover layer faces the diaphragm layer on the side opposite to the base layer side.
  • the diaphragm layer can be protected by the cover layer.
  • a pneumatic fluid may flow between the diaphragm layer and the cover layer to press the diaphragm layer toward the base layer.
  • the diaphragm layer can be elastically deformed to the base layer side.
  • the said cover layer may function as a stopper with respect to the said diaphragm layer, when the said diaphragm layer is pressed on the said cover layer side by the gas which flows in from the said inflow port.
  • the cover layer functions as a stopper for restricting the deformation of the diaphragm layer to a certain degree or more even when high pressure gas flows in from the inlet. Therefore, the cover layer can prevent the diaphragm layer from being broken.
  • At least one of the inlet and the outlet can be opened and closed without having a mechanism for rotating the member. Therefore, the member worn by rotation can be eliminated, and the durability can be improved.
  • the mechanism for opening and closing the inlet and the outlet can be simply configured. Therefore, it is possible to reduce the size.
  • FIG. 1 is a perspective view showing a configuration of a micro valve 1 according to an embodiment of the present invention, showing a state in which the micro valve 1 is viewed from the upper side.
  • FIG. 2 is an exploded perspective view of the micro valve 1 shown in FIG.
  • FIG. 3 is a perspective view showing the micro valve 1 as viewed from below.
  • FIG. 4 is an exploded perspective view of the micro valve 1 shown in FIG. 1 to 4 show a state in which a part of the micro valve 1 is cut away.
  • the upper side of the sheet is the upper side
  • the lower side of the sheet is the lower side
  • the vertical direction coincides with the axial direction of the micro valve 1. That is, the upper side is one in the axial direction, and the lower side is the other in the axial direction.
  • the micro valve 1 is a plate-like member having a predetermined thickness in the form of a square in plan view, and has a laminated structure in which a plurality of (three-layer) flat-plate-like members are laminated.
  • the micro valve 1 includes a base layer 2, a diaphragm layer 3, and a cover layer 4 as a layered structure.
  • the dimension in the width direction (left and right direction) of the micro valve 1 and the dimension in the orthogonal direction (front and back direction) orthogonal to the width direction are each about 1 cm.
  • Each layer 2, 3, 4, fine processing is given by the MEMS (Micro Electro Mechanical Systems) technology.
  • the base layer 2 is a layer located on the lowermost side in the micro valve 1.
  • the base layer 2 is formed in a flat plate shape having a square shape in plan view, and is made of, for example, silicon.
  • the base layer 2 is formed with a recess 21, an outer opening 22, a first inner opening 23 and a second inner opening 24.
  • Recess 21 is located in central base layer 2.
  • Recess 21 is a circular shape in plan view, is recessed from the upper surface of the base layer 2 downward.
  • the thickness of the recess 21 is, for example, 5 to 20 ⁇ m, and preferably about 10 ⁇ m.
  • the portion located below the recess 21 is the contact portion 26, and the portion located outside the recess 21 and the contact portion 26 is the contact portion 27.
  • the outer opening 22 is located at the outer edge (contact portion 27) of the base layer 2.
  • the outer opening 22 is circular in a plan view, and penetrates the adhesion portion 27 in the thickness direction.
  • the outer opening 22 is spaced apart from the recess 21.
  • the first inner opening 23 is formed as a through hole located in the center of the central portion of the base layer 2 (contact portion 26).
  • the first inner opening 23 is circular in plan view, and penetrates the contact portion 26 in the thickness direction.
  • the first inner opening 23 is communicated with the recess 21.
  • the first inner opening 23 is an example of an inlet.
  • the second inner opening 24 is formed as a through hole located in the center of the base layer 2 (contact portion 26). Specifically, the second inner opening 24 is positioned at a distance in the vicinity of the first inner opening 23. The second inner opening 24 is circular in plan view, and penetrates the contact portion 26 in the thickness direction. The second inner opening 24 is in communication with the recess 21.
  • the second inner opening 24 is an example of a flow outlet.
  • the diaphragm layer 3 is located above the base layer 2 and faces the base layer 2.
  • the diaphragm layer 3 is formed in a flat plate shape of a square in plan view, and is made of, for example, silicon. That is, the diaphragm layer 3 is formed as a silicon film.
  • the outer shape of the diaphragm layer 3 is formed substantially the same as the outer shape of the base layer 2.
  • the diaphragm layer 3 is formed with an annular recess 31 and an outer opening 32.
  • the thickness of the diaphragm layer 3 is 150 ⁇ m or less.
  • the annular recess 31 is located at the center of the diaphragm layer 3.
  • Annular recess 31 is a plan view annular recessed downward from the upper surface of the diaphragm layer 3.
  • the outer diameter of the annular recess 31 is substantially the same as the outer diameter of the recess 21 of the base layer 2.
  • a portion located below the annular recess 31 is the deformation portion 33, and a portion located inward of the annular recess 31 and the deformation portion 33 is the moving portion 34.
  • the annular recess 31 and the deformation portion part located outside the 33, a fixing portion 35.
  • Deformable portion 33 is a thin film in a plan view annular.
  • the thickness of the deformed portion 33 is, for example, 10 to 100 ⁇ m, and preferably about 50 ⁇ m. Since the deformation portion 33 is formed in a thin film shape, it has flexibility.
  • the inner end portion of the deformation portion 33 is continuous with the outer edge of the lower end portion of the moving portion 34 formed in a disk shape, and the outer end portion of the deformation portion 33 is a lower end portion of the fixed portion 35 formed annularly. It is continuous with the inner edge of
  • the outer opening 32 is located at the outer edge (fixed portion 35) of the diaphragm layer 3.
  • the outer opening 32 is circular in plan view, and penetrates the fixing portion 35 in the thickness direction.
  • the outer opening 32 is spaced apart from the annular recess 31.
  • the diameter of the outer opening 32 is substantially the same as the diameter of the outer opening 22 of the base layer 2.
  • the positional relationship between the outer opening 32 and the annular recess 31 corresponds to the positional relationship between the outer opening 22 and the recess 21 in the base layer 2.
  • the cover layer 4 is located above the diaphragm layer 3 and faces the diaphragm layer 3. That is, the cover layer 4 is opposed to the diaphragm layer 3 on the opposite side to the base layer 2.
  • the cover layer 4 is formed in a flat plate shape having a square shape in plan view, and is made of, for example, silicon.
  • the outer shape of the cover layer 4 is formed substantially the same as the outer shape of the diaphragm layer 3 and the outer shape of the base layer 2.
  • the cover layer 4 is formed with a first recess 41 and a second recess 42.
  • the first recess 41 is located at the center of the cover layer 4.
  • the first recess 41 is a circular shape in plan view, is recessed upward from the lower surface of the cover layer 4.
  • the thickness of the first recess 41 is substantially the same as the thickness of the recess 21 of the base layer 2.
  • the second recess 42 is located at the outer edge of the cover layer 4.
  • the second recess 42 linearly extends in the horizontal direction (radial direction), and is recessed upward from the lower surface of the cover layer 4.
  • An inner portion of the second recess 42 communicates with the first recess 41.
  • the width of the second recess 42 is substantially the same as the diameter of the outer opening 22 of the base layer 2 and the diameter of the outer opening 32 of the diaphragm layer 3.
  • the positional relationship between the outer portion 42 a of the second recess 42 and the first recess 41 is the positional relationship between the outer opening 32 and the annular recess 31 in the diaphragm layer 3, and the outer opening 22 and the recess 21 in the base layer 2. It corresponds to the positional relationship of.
  • a portion located above the first recess 41 is the regulating portion 43, and a portion located outside the first recess 41, the second recess 42 and the regulating portion 43 is the adhesion portion 44.
  • each layer is formed in each layer in advance by etching or blasting. Further, each layer is subjected to inactivation treatment in advance. Then, the layers after being subjected to these treatments are stacked to form the micro valve 1.
  • the adhesion portion 27 of the base layer 2 and the adhesion portion 44 of the cover layer 4 adhere to the fixing portion 35 of the diaphragm layer 3. doing.
  • the outer opening 22 of the base layer 2 communicates with the outer opening 32 of the diaphragm layer 3 and the second recess 42 (outer portion 42 a) of the cover layer 4.
  • the annular recess 31 of the diaphragm layer 3 communicates with the first recess 41 and the second recess 42 of the cover layer 4.
  • the moving portion 34 of the diaphragm layer 3 is disposed at a distance from each of the contact portion 26 of the base layer 2 and the regulating portion 43 of the diaphragm layer 3. As described above, by stacking and fixing each layer, the space located on the upper side and the space located on the lower side are separated and formed in the micro valve 1 with the diaphragm layer 3 interposed therebetween. There is.
  • FIGS. 5 to 7 are cross-sectional views showing the configuration of the micro valve 1.
  • FIG. 5 shows a state where the moving part 34 of the diaphragm layer 3 is located at the first position.
  • FIG. 6 shows a state where the moving part 34 of the diaphragm layer 3 is positioned at the second position by the introduction of the sample gas.
  • FIG. 7 shows a state in which the moving part 34 of the diaphragm layer 3 is positioned at the third position by the introduction of the pneumatic fluid.
  • the micro valve 1 is connected to the flow path member 50 and used.
  • the flow path member 50 is a member made of a metal material having a flat surface 51.
  • openings 52, 53, and 54 that penetrate the flat surface 51 are formed.
  • Each of the openings 52, 53 and 54 is formed to correspond to the outer opening 22, the first inner opening 23 and the second inner opening 24 of the micro valve 1.
  • the lower surface of the close contact portion 27 of the base layer 2 and the lower surface of the contact portion 26 are in close contact with the flat surface 51 of the flow path member 50.
  • the opening 52 of the flow path member 50 communicates with the outer opening 22 of the base layer 2
  • the opening 53 of the flow path member 50 communicates with the first inner opening 23 of the base layer 2
  • the opening 54 of the flow passage member 50 is in communication with the second inner opening 24 of the base layer 2.
  • the moving portion 34 of the diaphragm layer 3 is disposed at a distance from each of the contact portion 26 of the base layer 2 and the restricting portion 43 of the cover layer 4 as described above. Specifically, the mobile unit 34 to the contact portion 26, are spaced apart in the thickness of the recess 21. The mobile unit 34, to the regulating unit 43 are arranged at a distance corresponding to the thickness of the first recess 41. The position of the moving part 34 of the diaphragm layer 3 shown in FIG. 5 is the first position.
  • the sample gas is supplied toward the opening 53 of the channel member 50 to the microvalve 1.
  • Sample gas from the flow path member 50 is introduced into the micro-valve 1 through the first inner aperture 23 of the base layer 2.
  • the pneumatic fluid described later is not introduced.
  • the moving portion 34 of the diaphragm layer 3 When the sample gas is introduced into the micro valve 1, the moving portion 34 of the diaphragm layer 3 is pressed toward the upper side (the cover layer 4 side) by the pressure of the sample gas. Thereby, the deformation portion 33 of the diaphragm layer 3 is elastically deformed, and the moving portion 34 moves (displaces) to the upper side (the cover layer 4 side). Then, the moving portion 34 that abuts against the restriction portion 43 of the cover layer 4, further movement of the moving part 34 is restricted. Thus, restricting portion 43 of the cover layer 4 functions as a stopper for the moving part 34 of the diaphragm layer 3.
  • the position of the moving part 34 of the diaphragm layer 3 shown in FIG. 6 is the second position.
  • the distance between the moving portion 34 of the diaphragm layer 3 and the contact portion 26 of the base layer 2 is expanded, the flow path of the sample gas is secured, and the micro valve 1 is in the open state.
  • the gas that has flowed into the micro valve 1 from the first inner opening 23 passes through the space between the moving part 34 and the contact part 26, and then passes through the second inner opening 24. It flows out of the opening 54.
  • the pneumatic fluid is supplied.
  • Pneumatic fluid is, for example, a gas such as air.
  • the pneumatic fluid supplied from the flow path member 50 is introduced into the micro valve 1 via the outer opening 22 of the base layer 2 at a pressure higher than that of the sample gas.
  • the pneumatic fluid supplied into the micro valve 1 sequentially passes through the outer opening 22 of the base layer 2, the outer opening 32 of the diaphragm layer 3, and the second recess 42 of the cover layer 4 to form the diaphragm layer 3. Reaches the deformation portion 33 of the
  • the pressure of the pneumatic fluid applies a force toward the lower side (the base layer 2 side) with respect to the deformation portion 33 of the diaphragm layer 3.
  • the deformation portion 33 of the diaphragm layer 3 is elastically deformed, and a gap is generated between the moving portion 34 of the diaphragm layer 3 and the regulation portion 43 of the cover layer 4.
  • the pneumatic fluid flows into the gap, and the pressure of the pneumatic fluid pushes the moving portion 34 of the diaphragm layer 3 toward the lower side (the base layer 2 side).
  • the deformation portion 33 of the diaphragm layer 3 is further elastically deformed, and the moving portion 34 of the diaphragm layer 3 moves (displaces) to the lower side (base layer 2 side), and the contact portion of the base layer 2 Close contact with 26.
  • the position of the moving part 34 of the diaphragm layer 3 shown in FIG. 7 is the third position.
  • the introduction of the pneumatic fluid into the micro valve 1 causes the moving portion 34 of the diaphragm layer 3 to be in close contact with the contact portion 26 of the base layer 2 so that the micro valve 1 is closed. Further, the sample gas is supplied while the pneumatic fluid is not supplied to the micro valve 1, whereby the distance between the moving part 34 of the diaphragm layer 3 and the contact part 26 of the base layer 2 is expanded, and the micro valve 1 will be open.
  • micro valve 1 can be used as a valve provided in various devices. Also, by preparing a plurality of microvalves 1 and using each microvalve 1 as a port, it is possible to perform the same operation as a multiport valve. 3. Action effect
  • the first inner opening 23 and the second inner opening 24 can be opened and closed without having a mechanism for rotating the member.
  • the durability of the micro valve 1 can be improved.
  • the mechanism for opening and closing the first inner opening 23 and the second inner opening 24 can be simply configured. Therefore, the microvalve 1 can be miniaturized.
  • the base layer 2, the diaphragm layer 3 and the cover layer 4 of the micro valve 1 are each made of silicon. Therefore, the heat resistance of the micro valve 1 can be improved. As a result, it is possible to use the micro valve 1 even in a high temperature environment of, for example, 400 ° C. or higher.
  • the micro valve 1 includes the cover layer 4.
  • the cover layer 4 faces the diaphragm layer 3 on the side opposite to the base layer 2 side. Therefore, the diaphragm layer 3 can be protected by the cover layer 4.
  • the diaphragm layer 3 is a base by the pneumatic fluid flowing between the diaphragm layer 3 and the cover layer 4. It is pressed to the layer 2 side.
  • the diaphragm layer 3 (deformed portion 33) is elastically deformed to the base layer 2 side. Can.
  • the cover layer 4 is pressed to the cover layer 4 side by the sample gas flowing in from the first inner opening 23 of the base layer 2. Function as a stopper for the diaphragm layer 3.
  • the cover layer 4 functions as a stopper for restricting the deformation of the diaphragm layer 3 to a certain degree or more. Therefore, the cover layer 4 can prevent the diaphragm layer 3 from being broken.
  • the base layer 2, the diaphragm layer 3 and the cover layer 4 of the micro valve 1 are each described as being made of silicon. However, at least one of the base layer 2 and the cover layer 4 of the micro valve 1 may be formed of another material such as glass.
  • the moving portion 34 of the diaphragm layer 3 is described as being separated from the restricting portion 43 of the cover layer 4 in the state where the moving portion 34 of the diaphragm layer 3 is positioned at the first position.
  • the moving part 34 of the diaphragm layer 3 may be in close contact with the restricting part 43 of the cover layer 4 in the state where the moving part 34 of the diaphragm layer 3 is positioned at the first position.
  • the moving portion 34 of the diaphragm layer 3 may be in close contact with the contact portion 26 of the base layer 2.
  • the pneumatic fluid is described as a gas such as air.
  • pneumatic fluid may be a liquid.
  • the pneumatic fluid is described as being introduced into the micro valve 1 from the base layer 2 side.
  • the cover layer 4 may be provided with an opening, and the pneumatic fluid may be introduced into the micro valve 1 from the opening.

Abstract

In this invention, if a pneumatic fluid is supplied to a microvalve 1, a deforming section 33 of a diaphragm layer 3 deforms elastically and a moving section 34 of the diaphragm layer 3 adheres closely to a contact section 26 of a base layer 2. Then, a first internal opening 23 and a second internal opening 24 of the base layer 2 are closed by the moving section 34 of the diaphragm layer 3, closing a sample gas flow channel and putting the microvalve in a closed state. If a sample gas is supplied when a pneumatic fluid is not being supplied to the microvalve 1, the space between the moving section 34 of the diaphragm layer 3 and the contact section 26 of the base layer 2 widens, establishing a sample gas flow channel and putting the microvalve 1 in an open state. As a result, it is possible to open and close the first internal opening 23 and the second internal opening 24 without having a member-rotating mechanism in the microvalve 1. It is also possible to simplify the configuration of the mechanism for opening and closing the first internal opening 23 and the second internal opening 24 and to reduce the size of the microvalve 1.

Description

マイクロバルブMicro valve
 本発明は、複数層が積層された積層構造を有するマイクロバルブに関するものである。 The present invention relates to a micro valve having a laminated structure in which a plurality of layers are laminated.
 従来から、各種装置において、装置内の流路を切り替えるためのバルブ装置が設けられている。例えば、ガスクロマトグラフなどの分析装置では、バルブ装置としてマルチポートバルブが用いられている。分析装置におけるマルチポートバルブの各ポートは、サンプルガスを導入するサンプルガス導入管、サンプルガスを捕集するサンプルループ、キャリアガスを導入するキャリアガス導入管、及び、分離カラムを経て検出器に向けてサンプルガスを供給するサンプルガス供給管などと連通している(例えば、下記特許文献1参照)。 2. Description of the Related Art Conventionally, in various devices, a valve device for switching a flow path in the device is provided. For example, in an analyzer such as a gas chromatograph, a multiport valve is used as a valve device. Each port of the multiport valve in the analyzer is directed to the detector through a sample gas introduction pipe for introducing a sample gas, a sample loop for collecting the sample gas, a carrier gas introduction pipe for introducing a carrier gas, and a separation column. It communicates with a sample gas supply pipe or the like for supplying a sample gas (see, for example, Patent Document 1 below).
 この分析装置では、まず、サンプル導入管からサンプルガスが導入される。サンプルガスは、マルチポートバルブのポートを介してサンプルループに流入し、サンプルループで捕集される。サンプルループ内がサンプルガスで満たされた後、マルチポートバルブの流路が切り替えられる。そして、キャリアガス導入管からキャリアガスが導入される。キャリアガスは、マルチポートバルブのポートを介してサンプルループに流入する。これにより、サンプルループ内部を満たしているサンプルガスが、マルチポートバルブのポートを介してサンプルガス供給管から分離カラムを経て検出器に送られる。 In this analyzer, first, a sample gas is introduced from a sample introduction pipe. The sample gas flows into the sample loop through the port of the multiport valve and is collected by the sample loop. After the inside of the sample loop is filled with the sample gas, the flow path of the multiport valve is switched. Then, the carrier gas is introduced from the carrier gas inlet pipe. Carrier gas flows into the sample loop through the port of the multiport valve. Thereby, the sample gas filling the inside of the sample loop is sent from the sample gas supply pipe to the detector through the separation column via the port of the multiport valve.
 このようなマルチポートバルブは、その内部に流路を切り替えるための機構を備えている。例えば、マルチポートバルブは、複数の開口が設けられた円板状のロータと、複数の溝が形成された円板状のステータとを備えている。ロータ及びステータは、積層される状態で、マルチポートバルブ内に設けられている。ロータの開口、及び、ステータの溝は、流路を構成している。そして、マルチポートバルブでは、ロータがステータに対して回転されて、ロータの開口とステータの溝との相対位置が変化されることにより、流路が切り替えられる。 Such a multiport valve has a mechanism for switching the flow path inside. For example, the multiport valve includes a disk-shaped rotor provided with a plurality of openings, and a disk-shaped stator provided with a plurality of grooves. The rotor and the stator are provided in the multiport valve in a stacked state. The openings of the rotor and the grooves of the stator constitute a flow path. In the multiport valve, the flow path is switched by rotating the rotor with respect to the stator and changing the relative position of the opening of the rotor and the groove of the stator.
特開2015-190875号公報JP, 2015-190875, A
 上記したようなマルチポートバルブでは、流路を切り替えるたびに、ロータがステータに接触した状態で回転する。そのため、ロータ及びステータが摩耗しやすく、製品寿命が短くなるという不具合があった。また、これらの機構における接触部分(シール面)は、一般的にフッ素樹脂からなる。そのため、高温状態でマルチポートバルブを使用した場合には、シール面が塑性変形して接触不完全となり、その後の動作においてリークが生じてしまうという不具合があった。また、マルチポートバルブは、サイズが比較的大型であるため、微量のガスの分析などに用いる場合には適していないという不具合もあった。
 本発明は、上記実情に鑑みてなされたものであり、耐久性を向上でき、かつ、小型化を図ることができるマイクロバルブを提供することを目的とする。
In the multiport valve as described above, the rotor rotates in contact with the stator each time the flow path is switched. Therefore, there is a problem that the rotor and the stator are easily worn and the product life is shortened. In addition, the contact portion (seal surface) in these mechanisms is generally made of fluorocarbon resin. Therefore, when the multiport valve is used in a high temperature state, there is a problem that the seal surface is plastically deformed and the contact becomes imperfect, and a leak occurs in the subsequent operation. In addition, since the multiport valve is relatively large in size, there is also a problem that it is not suitable for analysis of a small amount of gas.
The present invention has been made in view of the above-described circumstances, and an object thereof is to provide a micro valve capable of improving durability and achieving downsizing.
(1)本発明に係るマイクロバルブは、複数層が積層された積層構造を有するマイクロバルブである。前記マイクロバルブは、基台層と、ダイヤフラム層とを備える。前記基台層には、前記マイクロバルブ内にガスが流入する流入口、及び、前記流入口から流入したガスが前記マイクロバルブ内から流出する流出口が、それぞれ貫通孔として形成される。前記ダイヤフラム層は、前記基台層に対向するシリコン膜からなり、前記マイクロバルブ内へのニューマチック流体の流入に伴って弾性変形することにより、前記流入口及び前記流出口の少なくとも一方を開閉する。 (1) The micro valve according to the present invention is a micro valve having a laminated structure in which a plurality of layers are laminated. The micro valve comprises a base layer and a diaphragm layer. In the base layer, an inlet through which the gas flows into the micro valve, and an outlet through which the gas flowing from the inlet flows out of the micro valve are respectively formed as through holes. The diaphragm layer is made of a silicon film opposed to the base layer, and opens and closes at least one of the inlet and the outlet by elastically deforming with the inflow of pneumatic fluid into the micro valve. .
 このような構成によれば、マイクロバルブでは、ニューマチック流体の流入に伴ってダイヤフラム層が弾性変形することにより、流入口及び流出口の少なくとも一方が開閉される。
 そのため、マイクロバルブにおいて、部材を回転させる機構を有することなく、流入口及び流出口の少なくとも一方を開閉させることができる。
According to such a configuration, in the micro valve, at least one of the inlet and the outlet is opened and closed by elastically deforming the diaphragm layer with the inflow of the pneumatic fluid.
Therefore, in the micro valve, at least one of the inlet and the outlet can be opened and closed without having a mechanism for rotating the member.
 その結果、マイクロバルブにおいて、回転によって摩耗する部材をなくすことができる。よって、マイクロバルブの耐久性を向上できる。
 また、流入口及び流出口を開閉するための機構を簡易に構成できる。
 そのため、マイクロバルブの小型化を図ることができる。
As a result, in the micro valve, it is possible to eliminate members that wear due to rotation. Therefore, the durability of the micro valve can be improved.
In addition, the mechanism for opening and closing the inlet and the outlet can be simply configured.
Therefore, the microvalve can be miniaturized.
(2)また、前記マイクロバルブは、カバー層をさらに備えてもよい。前記カバー層は、前記ダイヤフラム層に対して前記基台層側とは反対側に対向する。 (2) Further, the micro valve may further include a cover layer. The cover layer faces the diaphragm layer on the side opposite to the base layer side.
 このような構成によれば、ダイヤフラム層をカバー層によって保護できる。 According to such a configuration, the diaphragm layer can be protected by the cover layer.
(3)また、前記前記マイクロバルブでは、前記ダイヤフラム層と前記カバー層との間にニューマチック流体が流入して、前記ダイヤフラム層を前記基台層側に押圧してもよい。 (3) Further, in the micro valve, a pneumatic fluid may flow between the diaphragm layer and the cover layer to press the diaphragm layer toward the base layer.
 このような構成によれば、ダイヤフラム層とカバー層との間の領域を活用して、その領域にニューマチック流体を流入することで、ダイヤフラム層を基台層側に弾性変形させることができる。 According to such a configuration, by utilizing the area between the diaphragm layer and the cover layer and flowing the pneumatic fluid into that area, the diaphragm layer can be elastically deformed to the base layer side.
(4)また、前記カバー層は、前記流入口から流入するガスにより前記ダイヤフラム層が前記カバー層側に押圧されたときに、前記ダイヤフラム層に対するストッパとして機能してもよい。 (4) Moreover, the said cover layer may function as a stopper with respect to the said diaphragm layer, when the said diaphragm layer is pressed on the said cover layer side by the gas which flows in from the said inflow port.
 このような構成によれば、高い圧力のガスが流入口から流入した場合であっても、カバー層が、ダイヤフラム層の一定以上の変形を規制するストッパとして機能する。
 そのため、カバー層によって、ダイヤフラム層が破損することを防止できる。
According to such a configuration, the cover layer functions as a stopper for restricting the deformation of the diaphragm layer to a certain degree or more even when high pressure gas flows in from the inlet.
Therefore, the cover layer can prevent the diaphragm layer from being broken.
 本発明によれば、部材を回転させる機構を有することなく、流入口及び流出口の少なくとも一方を開閉させることができる。そのため、回転によって摩耗する部材をなくすことができ、耐久性を向上できる。また、流入口及び流出口を開閉するための機構を簡易に構成できる。そのため、小型化を図ることができる。 According to the present invention, at least one of the inlet and the outlet can be opened and closed without having a mechanism for rotating the member. Therefore, the member worn by rotation can be eliminated, and the durability can be improved. In addition, the mechanism for opening and closing the inlet and the outlet can be simply configured. Therefore, it is possible to reduce the size.
本発明の一実施形態に係るマイクロバルブの構成を示した斜視図であって、マイクロバルブを上方側から見た状態を示している。It is the perspective view which showed the structure of the micro valve which concerns on one Embodiment of this invention, Comprising: The state which looked at the micro valve from the upper side is shown. 図1に示すマイクロバルブの分解斜視図である。It is an exploded perspective view of a microvalve shown in FIG. マイクロバルブを下方側から見た状態を示した斜視図である。It is the perspective view which showed the state which looked at the micro valve from the downward side. 図3に示すマイクロバルブの分解斜視図である。It is an exploded perspective view of a microvalve shown in FIG. マイクロバルブの構成を示した断面図であって、基台層の移動部が第1位置に位置する状態を示している。A cross-sectional view showing a configuration of a microvalve, moving part of the base layer shows a state located in the first position. マイクロバルブの構成を示した断面図であって、サンプルガスが導入されることにより、基台層の移動部が第2位置に位置する状態を示している。It is sectional drawing which showed the structure of a micro valve, Comprising: The state which the moving part of a base layer is located in a 2nd position is shown by introduce | transducing sample gas. マイクロバルブの構成を示した断面図であって、ニューマチック流体が導入されることにより、基台層の移動部が第3位置に位置する状態を示している。It is sectional drawing which showed the structure of a micro valve, Comprising: The state which the moving part of a base layer is located in a 3rd position is shown by introduce | transducing pneumatic fluid.
1.マイクロバルブの構成
 図1は、本発明の一実施形態に係るマイクロバルブ1の構成を示した斜視図であって、マイクロバルブ1を上方側から見た状態を示している。図2は、図1に示すマイクロバルブ1の分解斜視図である。図3は、マイクロバルブ1を下方側から見た状態を示した斜視図である。図4は、図3に示すマイクロバルブ1の分解斜視図である。なお、図1~図4では、マイクロバルブ1の一部を切り欠いた状態を示している。
1. Configuration of Micro Valve FIG. 1 is a perspective view showing a configuration of a micro valve 1 according to an embodiment of the present invention, showing a state in which the micro valve 1 is viewed from the upper side. FIG. 2 is an exploded perspective view of the micro valve 1 shown in FIG. FIG. 3 is a perspective view showing the micro valve 1 as viewed from below. FIG. 4 is an exploded perspective view of the micro valve 1 shown in FIG. 1 to 4 show a state in which a part of the micro valve 1 is cut away.
 なお、以下の説明において、マイクロバルブ1の方向について言及するときは、図1~図4に示す状態を上下の基準とする。すなわち、紙面上方が上方であり、紙面下方が下方である。また、上下方向は、マイクロバルブ1の軸方向に一致している。すなわち、上方は、軸方向一方であり、下方は、軸方向他方である。 In the following description, when referring to the direction of the micro-valve 1, the state shown in FIGS. 1 to 4 and the upper and lower reference. That is, the upper side of the sheet is the upper side, and the lower side of the sheet is the lower side. Further, the vertical direction coincides with the axial direction of the micro valve 1. That is, the upper side is one in the axial direction, and the lower side is the other in the axial direction.
 マイクロバルブ1は、平面視正方形状の所定の厚みを有する板状の部材であって、複数(3層)の平板状の部材が積層された積層構造を有している。具体的には、マイクロバルブ1は、層構造として、基台層2と、ダイヤフラム層3と、カバー層4とを備えている。マイクロバルブ1の幅方向(左右方向)の寸法、及び、幅方向と直交する直交方向(前後方向)の寸法は、それぞれ約1cmである。各層2,3,4には、MEMS(Micro Electro Mechanical Systems)技術により微細加工が施されている。 The micro valve 1 is a plate-like member having a predetermined thickness in the form of a square in plan view, and has a laminated structure in which a plurality of (three-layer) flat-plate-like members are laminated. Specifically, the micro valve 1 includes a base layer 2, a diaphragm layer 3, and a cover layer 4 as a layered structure. The dimension in the width direction (left and right direction) of the micro valve 1 and the dimension in the orthogonal direction (front and back direction) orthogonal to the width direction are each about 1 cm. Each layer 2, 3, 4, fine processing is given by the MEMS (Micro Electro Mechanical Systems) technology.
 図2に示すように、基台層2は、マイクロバルブ1において、最下方に位置する層である。基台層2は、平面視正方形状の平板状に形成されており、例えば、シリコンからなる。基台層2には、凹部21と、外側開口22と、第1内側開口23と、第2内側開口24とが形成されている。 As shown in FIG. 2, the base layer 2 is a layer located on the lowermost side in the micro valve 1. The base layer 2 is formed in a flat plate shape having a square shape in plan view, and is made of, for example, silicon. The base layer 2 is formed with a recess 21, an outer opening 22, a first inner opening 23 and a second inner opening 24.
 凹部21は、基台層2の中央部に位置している。凹部21は、平面視円形状であって、基台層2の上面から下方に向かって窪んでいる。凹部21の厚みは、例えば、5~20μmであって、好ましくは、約10μmである。基台層2において、凹部21の下方に位置する部分が、接触部26であり、凹部21及び接触部26の外方に位置する部分が密着部27である。 Recess 21 is located in central base layer 2. Recess 21 is a circular shape in plan view, is recessed from the upper surface of the base layer 2 downward. The thickness of the recess 21 is, for example, 5 to 20 μm, and preferably about 10 μm. In the base layer 2, the portion located below the recess 21 is the contact portion 26, and the portion located outside the recess 21 and the contact portion 26 is the contact portion 27.
 外側開口22は、基台層2の外縁部(密着部27)に位置している。外側開口22は、平面視円形状であって、密着部27を厚み方向に貫通している。外側開口22は、凹部21と間隔を隔てて配置されている。 The outer opening 22 is located at the outer edge (contact portion 27) of the base layer 2. The outer opening 22 is circular in a plan view, and penetrates the adhesion portion 27 in the thickness direction. The outer opening 22 is spaced apart from the recess 21.
 第1内側開口23は、基台層2の中央部(接触部26)の中心に位置する貫通孔として形成されている。第1内側開口23は、平面視円形状であって、接触部26を厚み方向に貫通している。第1内側開口23は、凹部21に連通している。第1内側開口23が、流入口の一例である。 The first inner opening 23 is formed as a through hole located in the center of the central portion of the base layer 2 (contact portion 26). The first inner opening 23 is circular in plan view, and penetrates the contact portion 26 in the thickness direction. The first inner opening 23 is communicated with the recess 21. The first inner opening 23 is an example of an inlet.
 第2内側開口24は、基台層2の中央部(接触部26)に位置する貫通孔として形成されている。具体的には、第2内側開口24は、第1内側開口23の近傍に間隔を隔てて位置している。第2内側開口24は、平面視円形状であって、接触部26を厚み方向に貫通している。第2内側開口24は、凹部21に連通している。第2内側開口24が、流出口の一例である。 The second inner opening 24 is formed as a through hole located in the center of the base layer 2 (contact portion 26). Specifically, the second inner opening 24 is positioned at a distance in the vicinity of the first inner opening 23. The second inner opening 24 is circular in plan view, and penetrates the contact portion 26 in the thickness direction. The second inner opening 24 is in communication with the recess 21. The second inner opening 24 is an example of a flow outlet.
 ダイヤフラム層3は、基台層2の上方に位置しており、基台層2に対向している。ダイヤフラム層3は、平面視正方形状の平板状に形成されており、例えば、シリコンからなる。すなわち、ダイヤフラム層3は、シリコン膜として形成されている。ダイヤフラム層3の外形は、基台層2の外形とほぼ同一に形成されている。ダイヤフラム層3には、環状凹部31と、外側開口32とが形成されている。ダイヤフラム層3の厚みは、150μm以下である。 The diaphragm layer 3 is located above the base layer 2 and faces the base layer 2. The diaphragm layer 3 is formed in a flat plate shape of a square in plan view, and is made of, for example, silicon. That is, the diaphragm layer 3 is formed as a silicon film. The outer shape of the diaphragm layer 3 is formed substantially the same as the outer shape of the base layer 2. The diaphragm layer 3 is formed with an annular recess 31 and an outer opening 32. The thickness of the diaphragm layer 3 is 150μm or less.
 環状凹部31は、ダイヤフラム層3の中央部に位置している。環状凹部31は、平面視円環状であって、ダイヤフラム層3の上面から下方に向かって窪んでいる。環状凹部31の外径は、基台層2の凹部21の外径とほぼ同一である。ダイヤフラム層3において、環状凹部31の下方に位置する部分が、変形部33であり、環状凹部31及び変形部33の内方に位置する部分が、移動部34であり、環状凹部31及び変形部33の外方に位置する部分が、固定部35である。 The annular recess 31 is located at the center of the diaphragm layer 3. Annular recess 31 is a plan view annular recessed downward from the upper surface of the diaphragm layer 3. The outer diameter of the annular recess 31 is substantially the same as the outer diameter of the recess 21 of the base layer 2. In the diaphragm layer 3, a portion located below the annular recess 31 is the deformation portion 33, and a portion located inward of the annular recess 31 and the deformation portion 33 is the moving portion 34. The annular recess 31 and the deformation portion part located outside the 33, a fixing portion 35.
 変形部33は、平面視円環状の薄膜である。変形部33の厚みは、例えば、10~100μmであって、好ましくは、約50μmである。変形部33は、薄膜状に形成されているため、可撓性を有している。変形部33の内側端部は、円板状に形成される移動部34の下端部の外縁に連続しており、変形部33の外側端部は、環状に形成される固定部35の下端部の内縁に連続している。 Deformable portion 33 is a thin film in a plan view annular. The thickness of the deformed portion 33 is, for example, 10 to 100 μm, and preferably about 50 μm. Since the deformation portion 33 is formed in a thin film shape, it has flexibility. The inner end portion of the deformation portion 33 is continuous with the outer edge of the lower end portion of the moving portion 34 formed in a disk shape, and the outer end portion of the deformation portion 33 is a lower end portion of the fixed portion 35 formed annularly. It is continuous with the inner edge of
 外側開口32は、ダイヤフラム層3の外縁部(固定部35)に位置している。外側開口32は、平面視円形状であって、固定部35を厚み方向に貫通している。外側開口32は、環状凹部31と間隔を隔てて配置されている。外側開口32の径は、基台層2の外側開口22の径とほぼ同一である。外側開口32と環状凹部31との位置関係は、基台層2における外側開口22と凹部21との位置関係に対応している。 The outer opening 32 is located at the outer edge (fixed portion 35) of the diaphragm layer 3. The outer opening 32 is circular in plan view, and penetrates the fixing portion 35 in the thickness direction. The outer opening 32 is spaced apart from the annular recess 31. The diameter of the outer opening 32 is substantially the same as the diameter of the outer opening 22 of the base layer 2. The positional relationship between the outer opening 32 and the annular recess 31 corresponds to the positional relationship between the outer opening 22 and the recess 21 in the base layer 2.
 図4に示すように、カバー層4は、ダイヤフラム層3の上方に位置しており、ダイヤフラム層3に対向している。すなわち、カバー層4は、ダイヤフラム層3に対して基台層2と反対側に対向している。カバー層4は、平面視正方形状の平板状に形成されており、例えば、シリコンからなる。カバー層4の外形は、ダイヤフラム層3の外形、及び、基台層2の外形とほぼ同一に形成されている。カバー層4には、第1凹部41と、第2凹部42とが形成されている。 As shown in FIG. 4, the cover layer 4 is located above the diaphragm layer 3 and faces the diaphragm layer 3. That is, the cover layer 4 is opposed to the diaphragm layer 3 on the opposite side to the base layer 2. The cover layer 4 is formed in a flat plate shape having a square shape in plan view, and is made of, for example, silicon. The outer shape of the cover layer 4 is formed substantially the same as the outer shape of the diaphragm layer 3 and the outer shape of the base layer 2. The cover layer 4 is formed with a first recess 41 and a second recess 42.
 第1凹部41は、カバー層4の中央部に位置している。第1凹部41は、平面視円形状であって、カバー層4の下面から上方に向かって窪んでいる。第1凹部41の厚みは、基台層2の凹部21の厚みとほぼ同一である。 The first recess 41 is located at the center of the cover layer 4. The first recess 41 is a circular shape in plan view, is recessed upward from the lower surface of the cover layer 4. The thickness of the first recess 41 is substantially the same as the thickness of the recess 21 of the base layer 2.
 第2凹部42は、カバー層4の外縁部に位置している。第2凹部42は、水平方向(径方向)に直線状に延びており、カバー層4の下面から上方に向かって窪んでいる。第2凹部42の内側部分は、第1凹部41に連通している。第2凹部42の幅は、基台層2の外側開口22の径、及び、ダイヤフラム層3の外側開口32の径とほぼ同一である。第2凹部42の外側部分42aと、第1凹部41との位置関係は、ダイヤフラム層3における外側開口32と環状凹部31との位置関係、及び、基台層2における外側開口22と凹部21との位置関係に対応している。カバー層4において、第1凹部41の上方に位置する部分が、規制部43であり、第1凹部41、第2凹部42及び規制部43の外方に位置する部分が密着部44である。 The second recess 42 is located at the outer edge of the cover layer 4. The second recess 42 linearly extends in the horizontal direction (radial direction), and is recessed upward from the lower surface of the cover layer 4. An inner portion of the second recess 42 communicates with the first recess 41. The width of the second recess 42 is substantially the same as the diameter of the outer opening 22 of the base layer 2 and the diameter of the outer opening 32 of the diaphragm layer 3. The positional relationship between the outer portion 42 a of the second recess 42 and the first recess 41 is the positional relationship between the outer opening 32 and the annular recess 31 in the diaphragm layer 3, and the outer opening 22 and the recess 21 in the base layer 2. It corresponds to the positional relationship of. In the cover layer 4, a portion located above the first recess 41 is the regulating portion 43, and a portion located outside the first recess 41, the second recess 42 and the regulating portion 43 is the adhesion portion 44.
 このような各層における開口及び凹部は、エッチング又はブラスト処理により、予め各層に形成される。また、各層には、予め不活性化処理が施される。そして、これらの処理が施された後の各層が積層されて、マイクロバルブ1が構成される。 The openings and recesses in each layer are formed in each layer in advance by etching or blasting. Further, each layer is subjected to inactivation treatment in advance. Then, the layers after being subjected to these treatments are stacked to form the micro valve 1.
 図1及び図3に示すように、各層が積層された状態においては、ダイヤフラム層3の固定部35に対して、基台層2の密着部27、及び、カバー層4の密着部44が密着している。基台層2の外側開口22は、ダイヤフラム層3の外側開口32、及び、カバー層4の第2凹部42(外側部分42a)に連通している。ダイヤフラム層3の環状凹部31は、カバー層4の第1凹部41及び第2凹部42に連通している。ダイヤフラム層3の移動部34は、基台層2の接触部26、及び、ダイヤフラム層3の規制部43のそれぞれと間隔を隔てて配置されている。
 このように、各層が積層されて固定されることにより、マイクロバルブ1内では、ダイヤフラム層3を挟んで、上方側に位置する空間と、下方側に位置する空間とが区分けされて形成されている。
As shown in FIGS. 1 and 3, in the state in which each layer is laminated, the adhesion portion 27 of the base layer 2 and the adhesion portion 44 of the cover layer 4 adhere to the fixing portion 35 of the diaphragm layer 3. doing. The outer opening 22 of the base layer 2 communicates with the outer opening 32 of the diaphragm layer 3 and the second recess 42 (outer portion 42 a) of the cover layer 4. The annular recess 31 of the diaphragm layer 3 communicates with the first recess 41 and the second recess 42 of the cover layer 4. The moving portion 34 of the diaphragm layer 3 is disposed at a distance from each of the contact portion 26 of the base layer 2 and the regulating portion 43 of the diaphragm layer 3.
As described above, by stacking and fixing each layer, the space located on the upper side and the space located on the lower side are separated and formed in the micro valve 1 with the diaphragm layer 3 interposed therebetween. There is.
2.マイクロバルブの動作
 以下では、図5~図7を用いて、マイクロバルブ1の動作について説明する。
 図5~図7は、マイクロバルブ1の構成を示した断面図である。具体的には、図5は、ダイヤフラム層3の移動部34が第1位置に位置する状態を示している。図6は、サンプルガスが導入されることにより、ダイヤフラム層3の移動部34が第2位置に位置する状態を示している。図7は、ニューマチック流体が導入されることにより、ダイヤフラム層3の移動部34が第3位置に位置する状態を示している。
2. Operation of Micro Valve Hereinafter, the operation of the micro valve 1 will be described with reference to FIGS.
5 to 7 are cross-sectional views showing the configuration of the micro valve 1. Specifically, FIG. 5 shows a state where the moving part 34 of the diaphragm layer 3 is located at the first position. FIG. 6 shows a state where the moving part 34 of the diaphragm layer 3 is positioned at the second position by the introduction of the sample gas. FIG. 7 shows a state in which the moving part 34 of the diaphragm layer 3 is positioned at the third position by the introduction of the pneumatic fluid.
 マイクロバルブ1は、流路部材50に接続されて使用される。
 流路部材50は、平坦面51を有する金属材料からなる部材である。流路部材50には、平坦面51を貫通する開口52,53,54が形成されている。開口52,53,54のそれぞれは、マイクロバルブ1の外側開口22、第1内側開口23及び第2内側開口24のそれぞれに対応するように形成されている。
The micro valve 1 is connected to the flow path member 50 and used.
The flow path member 50 is a member made of a metal material having a flat surface 51. In the flow path member 50, openings 52, 53, and 54 that penetrate the flat surface 51 are formed. Each of the openings 52, 53 and 54 is formed to correspond to the outer opening 22, the first inner opening 23 and the second inner opening 24 of the micro valve 1.
 マイクロバルブ1が流路部材50に接続された状態では、基台層2の密着部27の下面、及び、接触部26の下面が、流路部材50の平坦面51に密着している。また、流路部材50の開口52が、基台層2の外側開口22に連通しており、流路部材50の開口53が、基台層2の第1内側開口23に連通しており、流路部材50の開口54が、基台層2の第2内側開口24に連通している。 In the state where the micro valve 1 is connected to the flow path member 50, the lower surface of the close contact portion 27 of the base layer 2 and the lower surface of the contact portion 26 are in close contact with the flat surface 51 of the flow path member 50. Further, the opening 52 of the flow path member 50 communicates with the outer opening 22 of the base layer 2, and the opening 53 of the flow path member 50 communicates with the first inner opening 23 of the base layer 2, The opening 54 of the flow passage member 50 is in communication with the second inner opening 24 of the base layer 2.
 図5に示す状態では、マイクロバルブ1内には、ガスが流入されていない。この状態において、ダイヤフラム層3の移動部34は、上記したように、基台層2の接触部26、及び、カバー層4の規制部43のそれぞれと間隔を隔てて配置されている。具体的には、移動部34は、接触部26に対して、凹部21の厚み分の間隔を隔てて配置されている。また、移動部34は、規制部43に対して、第1凹部41の厚み分の間隔を隔てて配置されている。なお、図5に示すダイヤフラム層3の移動部34の位置が第1位置である。 In the state shown in FIG. 5, no gas flows into the micro valve 1. In this state, the moving portion 34 of the diaphragm layer 3 is disposed at a distance from each of the contact portion 26 of the base layer 2 and the restricting portion 43 of the cover layer 4 as described above. Specifically, the mobile unit 34 to the contact portion 26, are spaced apart in the thickness of the recess 21. The mobile unit 34, to the regulating unit 43 are arranged at a distance corresponding to the thickness of the first recess 41. The position of the moving part 34 of the diaphragm layer 3 shown in FIG. 5 is the first position.
 この状態から、図6に示すように、流路部材50の開口53からマイクロバルブ1に向けてサンプルガスが供給される。流路部材50からのサンプルガスは、基台層2の第1内側開口23を介してマイクロバルブ1内に導入される。このとき、後述するニューマチック流体は導入されていない。 From this state, as shown in FIG. 6, the sample gas is supplied toward the opening 53 of the channel member 50 to the microvalve 1. Sample gas from the flow path member 50 is introduced into the micro-valve 1 through the first inner aperture 23 of the base layer 2. At this time, the pneumatic fluid described later is not introduced.
 マイクロバルブ1内にサンプルガスが導入されると、サンプルガスの圧力によって、ダイヤフラム層3の移動部34が上方側(カバー層4側)に向けて押圧される。これにより、ダイヤフラム層3の変形部33が弾性変形して、移動部34が上方側(カバー層4側)に移動(変位)する。そして、移動部34がカバー層4の規制部43に当接することで、移動部34のさらなる移動が規制される。このように、カバー層4の規制部43は、ダイヤフラム層3の移動部34に対するストッパとして機能する。なお、図6に示すダイヤフラム層3の移動部34の位置が第2位置である。 When the sample gas is introduced into the micro valve 1, the moving portion 34 of the diaphragm layer 3 is pressed toward the upper side (the cover layer 4 side) by the pressure of the sample gas. Thereby, the deformation portion 33 of the diaphragm layer 3 is elastically deformed, and the moving portion 34 moves (displaces) to the upper side (the cover layer 4 side). Then, the moving portion 34 that abuts against the restriction portion 43 of the cover layer 4, further movement of the moving part 34 is restricted. Thus, restricting portion 43 of the cover layer 4 functions as a stopper for the moving part 34 of the diaphragm layer 3. The position of the moving part 34 of the diaphragm layer 3 shown in FIG. 6 is the second position.
 このようにして、ダイヤフラム層3の移動部34と基台層2の接触部26との間の間隔が拡がり、サンプルガスの流路が確保されて、マイクロバルブ1が開状態となる。そして、第1内側開口23からマイクロバルブ1内に流入したガスは、移動部34と接触部26との間の空間を通過した後、第2内側開口24を通過して、流路部材50の開口54から流出する。 Thus, the distance between the moving portion 34 of the diaphragm layer 3 and the contact portion 26 of the base layer 2 is expanded, the flow path of the sample gas is secured, and the micro valve 1 is in the open state. The gas that has flowed into the micro valve 1 from the first inner opening 23 passes through the space between the moving part 34 and the contact part 26, and then passes through the second inner opening 24. It flows out of the opening 54.
 一方、マイクロバルブ1において、サンプルガスの流路を閉じる場合、すなわち、マイクロバルブ1を閉状態とする場合には、図7に示すように、流路部材50の開口52からマイクロバルブ1に向けてニューマチック流体が供給される。ニューマチック流体は、例えば、空気などのガスである。流路部材50から供給されたニューマチック流体は、基台層2の外側開口22を介して、サンプルガスよりも高い圧力でマイクロバルブ1内に導入される。 On the other hand, when the flow path of the sample gas is closed in the micro valve 1, that is, when the micro valve 1 is in the closed state, as shown in FIG. The pneumatic fluid is supplied. Pneumatic fluid is, for example, a gas such as air. The pneumatic fluid supplied from the flow path member 50 is introduced into the micro valve 1 via the outer opening 22 of the base layer 2 at a pressure higher than that of the sample gas.
 マイクロバルブ1内に供給されたニューマチック流体は、基台層2の外側開口22、ダイヤフラム層3の外側開口32、及び、カバー層4の第2凹部42を順々に通過し、ダイヤフラム層3の変形部33まで到達する。 The pneumatic fluid supplied into the micro valve 1 sequentially passes through the outer opening 22 of the base layer 2, the outer opening 32 of the diaphragm layer 3, and the second recess 42 of the cover layer 4 to form the diaphragm layer 3. Reaches the deformation portion 33 of the
 すると、ニューマチック流体の圧力によって、ダイヤフラム層3の変形部33に対して下方側(基台層2側)に向かう力が加えられる。これにより、ダイヤフラム層3の変形部33が弾性変形して、ダイヤフラム層3の移動部34と、カバー層4の規制部43との間に隙間が生じる。その隙間にニューマチック流体が流入し、ニューマチック流体の圧力によって、ダイヤフラム層3の移動部34が下方側(基台層2側)に向かって押圧される。これにより、ダイヤフラム層3の変形部33がさらに弾性変形して、ダイヤフラム層3の移動部34が、下方側(基台層2側)に移動(変位)して、基台層2の接触部26に密着する。 Then, the pressure of the pneumatic fluid applies a force toward the lower side (the base layer 2 side) with respect to the deformation portion 33 of the diaphragm layer 3. Thereby, the deformation portion 33 of the diaphragm layer 3 is elastically deformed, and a gap is generated between the moving portion 34 of the diaphragm layer 3 and the regulation portion 43 of the cover layer 4. The pneumatic fluid flows into the gap, and the pressure of the pneumatic fluid pushes the moving portion 34 of the diaphragm layer 3 toward the lower side (the base layer 2 side). Thereby, the deformation portion 33 of the diaphragm layer 3 is further elastically deformed, and the moving portion 34 of the diaphragm layer 3 moves (displaces) to the lower side (base layer 2 side), and the contact portion of the base layer 2 Close contact with 26.
 そして、基台層2の第1内側開口23及び第2内側開口24が、ダイヤフラム層3の移動部34によって閉鎖(閉塞)され、サンプルガスの流路が閉じられて、マイクロバルブが閉状態となる。なお、図7に示すダイヤフラム層3の移動部34の位置が第3位置である。 Then, the first inner opening 23 and the second inner opening 24 of the base layer 2 are closed (blocked) by the moving portion 34 of the diaphragm layer 3, and the flow path of the sample gas is closed to close the micro valve. Become. The position of the moving part 34 of the diaphragm layer 3 shown in FIG. 7 is the third position.
 また、マイクロバルブ1内へのサンプルガス及びニューマチック流体の供給が停止されると、ダイヤフラム層3の変形部33の弾性力により、図5に示すように、ダイヤフラム層3の移動部34が第1位置に戻る。 Further, when the supply of the sample gas and the pneumatic fluid into the micro valve 1 is stopped, the moving portion 34 of the diaphragm layer 3 is moved to the third position as shown in FIG. Return to 1 position.
 このように、マイクロバルブ1にニューマチック流体が導入されることで、ダイヤフラム層3の移動部34が基台層2の接触部26に密着して、マイクロバルブ1が閉状態となる。また、マイクロバルブ1にニューマチック流体が供給されない状態で、サンプルガスが供給されることで、ダイヤフラム層3の移動部34と基台層2の接触部26との間の間隔が拡がり、マイクロバルブ1が開状態となる。 As described above, the introduction of the pneumatic fluid into the micro valve 1 causes the moving portion 34 of the diaphragm layer 3 to be in close contact with the contact portion 26 of the base layer 2 so that the micro valve 1 is closed. Further, the sample gas is supplied while the pneumatic fluid is not supplied to the micro valve 1, whereby the distance between the moving part 34 of the diaphragm layer 3 and the contact part 26 of the base layer 2 is expanded, and the micro valve 1 will be open.
 上記したマイクロバルブ1は、各種装置に設けられるバルブとして用いることができる。また、複数のマイクロバルブ1を準備し、各マイクロバルブ1をポートとして用いることで、マルチポートバルブと同様の動作を行うことができる。
3.作用効果
The above-described micro valve 1 can be used as a valve provided in various devices. Also, by preparing a plurality of microvalves 1 and using each microvalve 1 as a port, it is possible to perform the same operation as a multiport valve.
3. Action effect
(1)本実施形態によれば、図7に示すように、マイクロバルブ1にニューマチック流体が供給されると、ダイヤフラム層3の変形部33が弾性変形して、ダイヤフラム層3の移動部34が基台層2の接触部26に密着する。そして、基台層2の第1内側開口23及び第2内側開口24が、ダイヤフラム層3の移動部34によって閉鎖され、サンプルガスの流路が閉じられて、マイクロバルブが閉状態となる。また、マイクロバルブ1にニューマチック流体が供給されない状態で、サンプルガスが供給されることで、ダイヤフラム層3の移動部34と基台層2の接触部26との間の間隔が拡がり、サンプルガスの流路が確保されて、マイクロバルブ1が開状態となる。 (1) According to the present embodiment, as shown in FIG. 7, when the pneumatic fluid is supplied to the micro valve 1, the deformation portion 33 of the diaphragm layer 3 is elastically deformed to move the movement portion 34 of the diaphragm layer 3. There is in close contact with the contact portion 26 of the base layer 2. Then, the first inner opening 23 and the second inner opening 24 of the base layer 2 are closed by the moving portion 34 of the diaphragm layer 3, the flow path of the sample gas is closed, and the micro valve is closed. Further, the sample gas is supplied while the pneumatic fluid is not supplied to the micro valve 1, whereby the distance between the moving part 34 of the diaphragm layer 3 and the contact part 26 of the base layer 2 is expanded, and the sample gas is supplied. The flow path is secured, and the micro valve 1 is opened.
 そのため、マイクロバルブ1において、部材を回転させる機構を有することなく、第1内側開口23及び第2内側開口24を開閉させることができる。
 その結果、マイクロバルブ1において、回転によって摩耗する部材をなくすことができる。よって、マイクロバルブ1の耐久性を向上できる。
 また、第1内側開口23及び第2内側開口24を開閉するための機構を簡易に構成できる。
 そのため、マイクロバルブ1の小型化を図ることができる。
Therefore, in the micro valve 1, the first inner opening 23 and the second inner opening 24 can be opened and closed without having a mechanism for rotating the member.
As a result, in the micro valve 1, it is possible to eliminate members that wear due to rotation. Therefore, the durability of the micro valve 1 can be improved.
Further, the mechanism for opening and closing the first inner opening 23 and the second inner opening 24 can be simply configured.
Therefore, the microvalve 1 can be miniaturized.
 また、マイクロバルブ1の基台層2、ダイヤフラム層3及びカバー層4は、それぞれシリコンからなる。
 そのため、マイクロバルブ1の耐熱性を向上できる。
 その結果、例えば、400℃以上の高温の環境であっても、マイクロバルブ1を使用することが可能となる。
The base layer 2, the diaphragm layer 3 and the cover layer 4 of the micro valve 1 are each made of silicon.
Therefore, the heat resistance of the micro valve 1 can be improved.
As a result, it is possible to use the micro valve 1 even in a high temperature environment of, for example, 400 ° C. or higher.
(2)また、本実施形態によれば、図1に示すように、マイクロバルブ1は、カバー層4を備えている。カバー層4は、ダイヤフラム層3に対して基台層2側とは反対側に対向する。
 そのため、ダイヤフラム層3をカバー層4によって保護できる。
(2) Further, according to the present embodiment, as shown in FIG. 1, the micro valve 1 includes the cover layer 4. The cover layer 4 faces the diaphragm layer 3 on the side opposite to the base layer 2 side.
Therefore, the diaphragm layer 3 can be protected by the cover layer 4.
(3)また、本実施形態によれば、図7に示すように、マイクロバルブ1では、ダイヤフラム層3とカバー層4との間にニューマチック流体が流入することにより、ダイヤフラム層3が基台層2側に押圧される。 (3) Further, according to the present embodiment, as shown in FIG. 7, in the micro valve 1, the diaphragm layer 3 is a base by the pneumatic fluid flowing between the diaphragm layer 3 and the cover layer 4. It is pressed to the layer 2 side.
 そのため、ダイヤフラム層3とカバー層4との間の領域を活用して、その領域にニューマチック流体を流入することで、ダイヤフラム層3(変形部33)を基台層2側に弾性変形させることができる。 Therefore, by utilizing the area between the diaphragm layer 3 and the cover layer 4 and flowing the pneumatic fluid into that area, the diaphragm layer 3 (deformed portion 33) is elastically deformed to the base layer 2 side. Can.
(4)また、本実施形態によれば、図6に示すように、カバー層4は、基台層2の第1内側開口23から流入するサンプルガスによりダイヤフラム層3がカバー層4側に押圧されたときに、ダイヤフラム層3に対するストッパとして機能する。 (4) Further, according to the present embodiment, as shown in FIG. 6, the cover layer 4 is pressed to the cover layer 4 side by the sample gas flowing in from the first inner opening 23 of the base layer 2. Function as a stopper for the diaphragm layer 3.
 すなわち、基台層2の第1内側開口23から高い圧力のガスが流入した場合であっても、カバー層4が、ダイヤフラム層3の一定以上の変形を規制するストッパとして機能する。
 そのため、カバー層4によって、ダイヤフラム層3が破損することを防止できる。
That is, even when a high pressure gas flows in from the first inner opening 23 of the base layer 2, the cover layer 4 functions as a stopper for restricting the deformation of the diaphragm layer 3 to a certain degree or more.
Therefore, the cover layer 4 can prevent the diaphragm layer 3 from being broken.
4.変形例
 上記した実施形態では、マイクロバルブ1の基台層2、ダイヤフラム層3及びカバー層4は、それぞれシリコンからなるとして説明した。しかし、マイクロバルブ1の基台層2及びカバー層4の少なくとも一方は、ガラスなどの他の材料により形成されていてもよい。
4. Modified Example In the above-described embodiment, the base layer 2, the diaphragm layer 3 and the cover layer 4 of the micro valve 1 are each described as being made of silicon. However, at least one of the base layer 2 and the cover layer 4 of the micro valve 1 may be formed of another material such as glass.
 また、上記した実施形態では、ダイヤフラム層3の移動部34が第1位置に位置する状態において、ダイヤフラム層3の移動部34は、カバー層4の規制部43と間隔を隔てているとして説明した。しかし、ダイヤフラム層3の移動部34が第1位置に位置する状態において、ダイヤフラム層3の移動部34は、カバー層4の規制部43と密着していてもよい。同様に、ダイヤフラム層3の移動部34が第1位置に位置する状態において、ダイヤフラム層3の移動部34は、基台層2の接触部26と密着していてもよい。 Further, in the embodiment described above, the moving portion 34 of the diaphragm layer 3 is described as being separated from the restricting portion 43 of the cover layer 4 in the state where the moving portion 34 of the diaphragm layer 3 is positioned at the first position. . However, the moving part 34 of the diaphragm layer 3 may be in close contact with the restricting part 43 of the cover layer 4 in the state where the moving part 34 of the diaphragm layer 3 is positioned at the first position. Similarly, in a state where the moving portion 34 of the diaphragm layer 3 is positioned at the first position, the moving portion 34 of the diaphragm layer 3 may be in close contact with the contact portion 26 of the base layer 2.
 また、上記した実施形態では、マイクロバルブ1にニューマチック流体が供給されると、ダイヤフラム層3の移動部34が基台層2の接触部26に密着し、基台層2の第1内側開口23及び第2内側開口24が、ダイヤフラム層3の移動部34によって閉鎖されるとして説明した。しかし、マイクロバルブ1にニューマチック流体が供給された場合に、基台層2の第1内側開口23及び第2内側開口24の一方が、ダイヤフラム層3の移動部34によって閉鎖される構成であってもよい。 Further, in the above embodiment, when the pneumatic fluid is supplied to the micro valve 1, the moving portion 34 of the diaphragm layer 3 adheres to the contact portion 26 of the base layer 2, and the first inner opening of the base layer 2 The 23 and the second inner opening 24 have been described as being closed by the moving portion 34 of the diaphragm layer 3. However, when the micro valve 1 is supplied with the pneumatic fluid, one of the first inner opening 23 and the second inner opening 24 of the base layer 2 is closed by the moving portion 34 of the diaphragm layer 3. May be
 また、上記した実施形態では、ニューマチック流体は、空気などのガスであるとして説明した。しかし、ニューマチック流体は、液体であってもよい。 In the above-described embodiment, the pneumatic fluid is described as a gas such as air. However, pneumatic fluid may be a liquid.
 また、上記した実施形態では、ニューマチック流体は、基台層2側からマイクロバルブ1内に導入されるとして説明した。しかし、カバー層4に開口が設けられ、ニューマチック流体が、この開口からマイクロバルブ1内に導入される構成であってもよい。 Further, in the above-described embodiment, the pneumatic fluid is described as being introduced into the micro valve 1 from the base layer 2 side. However, the cover layer 4 may be provided with an opening, and the pneumatic fluid may be introduced into the micro valve 1 from the opening.
   1    マイクロバルブ
   2    基台層
   3    ダイヤフラム層
   4    カバー層
   23   第1内側開口
   24   第2内側開口
   33   変形部
   34   移動部
   43   規制部
Reference Signs List 1 micro valve 2 base layer 3 diaphragm layer 4 cover layer 23 first inner opening 24 second inner opening 33 deformed portion 34 moving portion 43 restricting portion

Claims (4)

  1.  複数層が積層された積層構造を有するマイクロバルブであって、
     前記マイクロバルブ内にガスが流入する流入口、及び、前記流入口から流入したガスが前記マイクロバルブ内から流出する流出口が、それぞれ貫通孔として形成された基台層と、
     前記基台層に対向するシリコン膜からなり、前記マイクロバルブ内へのニューマチック流体の流入に伴って弾性変形することにより、前記流入口及び前記流出口の少なくとも一方を開閉するダイヤフラム層とを備えることを特徴とするマイクロバルブ。
    A micro valve having a laminated structure in which a plurality of layers are laminated,
    An inlet through which gas flows into the micro valve, and a base layer in which an outlet through which the gas flowing from the inlet flows out of the micro valve is formed as a through hole.
    It comprises a silicon film facing the base layer, and is provided with a diaphragm layer which opens and closes at least one of the inlet and the outlet by being elastically deformed with the inflow of pneumatic fluid into the micro valve. A micro valve characterized by
  2.  前記ダイヤフラム層に対して前記基台層側とは反対側に対向するカバー層をさらに備えることを特徴とする請求項1に記載のマイクロバルブ。 The micro valve according to claim 1, further comprising a cover layer facing the diaphragm layer on the side opposite to the base layer side.
  3.  前記ダイヤフラム層と前記カバー層との間にニューマチック流体が流入して、前記ダイヤフラム層を前記基台層側に押圧することを特徴とする請求項2に記載のマイクロバルブ。 The micro valve according to claim 2, wherein a pneumatic fluid flows between the diaphragm layer and the cover layer to press the diaphragm layer toward the base layer.
  4.  前記カバー層は、前記流入口から流入するガスにより前記ダイヤフラム層が前記カバー層側に押圧されたときに、前記ダイヤフラム層に対するストッパとして機能することを特徴とする請求項2に記載のマイクロバルブ。 The micro valve according to claim 2, wherein the cover layer functions as a stopper for the diaphragm layer when the diaphragm layer is pressed toward the cover layer by gas flowing in from the inflow port.
PCT/JP2017/023035 2017-06-22 2017-06-22 Microvalve WO2018235229A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/023035 WO2018235229A1 (en) 2017-06-22 2017-06-22 Microvalve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/023035 WO2018235229A1 (en) 2017-06-22 2017-06-22 Microvalve

Publications (1)

Publication Number Publication Date
WO2018235229A1 true WO2018235229A1 (en) 2018-12-27

Family

ID=64737010

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/023035 WO2018235229A1 (en) 2017-06-22 2017-06-22 Microvalve

Country Status (1)

Country Link
WO (1) WO2018235229A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021050758A (en) * 2019-09-24 2021-04-01 株式会社島津製作所 Micro valve
JP2021050978A (en) * 2019-09-24 2021-04-01 株式会社島津製作所 Gas sampler

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004291187A (en) * 2003-03-27 2004-10-21 Shimadzu Corp Electrostatic micro valve and micro pump
JP2006506239A (en) * 2002-11-18 2006-02-23 レッドウッド マイクロシステムズ インコーポレイテッド Methods for manufacturing and testing corrosion resistant channels in silicon devices
JP2009014010A (en) * 2007-06-29 2009-01-22 Ulvac Seimaku Kk Micro valve and its manufacturing method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006506239A (en) * 2002-11-18 2006-02-23 レッドウッド マイクロシステムズ インコーポレイテッド Methods for manufacturing and testing corrosion resistant channels in silicon devices
JP2004291187A (en) * 2003-03-27 2004-10-21 Shimadzu Corp Electrostatic micro valve and micro pump
JP2009014010A (en) * 2007-06-29 2009-01-22 Ulvac Seimaku Kk Micro valve and its manufacturing method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021050758A (en) * 2019-09-24 2021-04-01 株式会社島津製作所 Micro valve
JP2021050978A (en) * 2019-09-24 2021-04-01 株式会社島津製作所 Gas sampler
US11242943B2 (en) 2019-09-24 2022-02-08 Shimadzu Corporation Micro-valve
US11531008B2 (en) 2019-09-24 2022-12-20 Shimadzu Corporation Gas sampler
JP7226223B2 (en) 2019-09-24 2023-02-21 株式会社島津製作所 gas sampler
JP7226221B2 (en) 2019-09-24 2023-02-21 株式会社島津製作所 micro valve

Similar Documents

Publication Publication Date Title
JP6622724B2 (en) High conductance valve for fluid and steam
JP5701864B2 (en) Short stroke flow control valve
US9555410B2 (en) Valve plug
JP4879285B2 (en) Valve with repulsive diaphragm
CN102812276B (en) Microvalve
JP2020046076A (en) Diaphragm valve with welded diaphragm seat carrier
JP2013516582A5 (en)
US8141585B2 (en) Rocker type diaphragm valve
WO2018235229A1 (en) Microvalve
CN112628462B (en) Micro valve
US11885420B2 (en) Control plate for a high conductance valve
WO2018167829A1 (en) Microvalve
JP2009236284A (en) Microvalve and micropump
WO2020217961A1 (en) Diaphragm, valve, and film forming method
JP7445314B2 (en) Diaphragms, valves, and diaphragm manufacturing methods
WO2022137693A1 (en) Differential pressure valve and valve device having same
US11541389B2 (en) Fluid handling device and fluid handling system
JP5476197B2 (en) Micro displacement output device
WO2020012876A1 (en) Fluid-handling device and fluid-handling system
JP2020116568A (en) Fluid treatment apparatus, fluid treatment system, and transfer base plate
US20160319958A1 (en) Multiplexed valve for microfluidic devices
JPH11325276A (en) Passage selector valve
JP2020006347A (en) Fluid handling device and fluid handling system
JP2011214666A (en) Valve mechanism and valve device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17914512

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17914512

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP