WO2018233610A1 - 一种填埋场内协同处置垃圾焚烧飞灰及铬渣的方法 - Google Patents

一种填埋场内协同处置垃圾焚烧飞灰及铬渣的方法 Download PDF

Info

Publication number
WO2018233610A1
WO2018233610A1 PCT/CN2018/091851 CN2018091851W WO2018233610A1 WO 2018233610 A1 WO2018233610 A1 WO 2018233610A1 CN 2018091851 W CN2018091851 W CN 2018091851W WO 2018233610 A1 WO2018233610 A1 WO 2018233610A1
Authority
WO
WIPO (PCT)
Prior art keywords
fly ash
chromium slag
waste incineration
chromium
leachate
Prior art date
Application number
PCT/CN2018/091851
Other languages
English (en)
French (fr)
Inventor
张大磊
赵建雪
Original Assignee
青岛理工大学
青岛洁华环境科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛理工大学, 青岛洁华环境科技有限公司 filed Critical 青岛理工大学
Publication of WO2018233610A1 publication Critical patent/WO2018233610A1/zh
Priority to US16/722,818 priority Critical patent/US11298732B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
    • B09B3/00Destroying solid waste or transforming solid waste into something useful or harmless
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
    • B09B1/00Dumping solid waste
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/467Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction
    • C02F1/4672Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction by electrooxydation
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B34/00Obtaining refractory metals
    • C22B34/30Obtaining chromium, molybdenum or tungsten
    • C22B34/32Obtaining chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/02Working-up flue dust
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/04Working-up slag
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J1/00Removing ash, clinker, or slag from combustion chambers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
    • B09B2101/00Type of solid waste
    • B09B2101/30Incineration ashes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/4618Devices therefor; Their operating or servicing for producing "ionised" acidic or basic water
    • C02F2001/46185Devices therefor; Their operating or servicing for producing "ionised" acidic or basic water only anodic or acidic water, e.g. for oxidizing or sterilizing
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds
    • C02F2101/22Chromium or chromium compounds, e.g. chromates
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/06Contaminated groundwater or leachate
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/16Nature of the water, waste water, sewage or sludge to be treated from metallurgical processes, i.e. from the production, refining or treatment of metals, e.g. galvanic wastes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/02Specific form of oxidant
    • C02F2305/026Fenton's reagent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J2700/00Ash removal, handling and treatment means; Ash and slag handling in pulverulent fuel furnaces; Ash removal means for incinerators
    • F23J2700/003Ash removal means for incinerators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the present application relates to the field of environmental protection technologies, and in particular, to a method for co-processing waste incineration fly ash and chromium slag in a landfill.
  • Waste incineration fly ash is classified as hazardous waste due to its high concentration of heavy metals and dioxin-like POPs.
  • chromium slag is also a kind of hazardous waste.
  • the main treatment method of fly ash and chromium slag is landfill, but landfill occupies a large amount of land, and in the process of fly ash transport and open-air landfill, it is easy to form floating dust into the atmosphere, not only Increase the dust content in the air, and may increase the ecological toxicity of smog, cause serious pollution to the atmosphere, and endanger the health and ecological environment of residents.
  • the present application proposes a method for co-processing waste incineration fly ash and chromium slag in a landfill, and through special biochemical and engineering measures in the landfill process to improve the above technical problems.
  • a method for co-processing waste incineration fly ash and chromium slag in a landfill comprising:
  • the anti-seepage layer is laid in the yard for the disposal of fly ash and chromium slag, and the flow guiding material is laid at the bottom, and the upper layer includes a mixed layer of biogas residue, carbon source, ferrous sulfate, nutritional additive, fly ash and chromium slag.
  • the inner electrolysis ceramsite layer is placed on the upper part of the mixed layer; during the operation, the carbon source solution is injected from the upper part of the stack from time to time, and the leachate is collected from the bottom diversion material to the leachate collection system from time to time, and then the leachate is returned to the heap.
  • the top of the field is sprayed and recharged.
  • fly ash, chromium slag, biogas residue, carbon source, ferrous sulfate and nutritional additives in the mixed layer are added in a mass ratio of 1: (0.1-10): (0.01-5): (0.01-5) :(0.15-3): (0.1-1).
  • the thickness of the mixed layer is 1-8 m; the thickness of the inner electrolytic ceramsite layer does not exceed 1 m.
  • the spraying interval of the leachate refluxing to the top of the stack for spraying and refilling is 1-48 hours.
  • the leachate is refluxed to the top of the stack to perform pH adjustment on the leachate, so that the pH of the recirculated leachate is 2-5.
  • biogas residue includes organic wastewater, solid organic waste or sludge.
  • biogas residue is a solid organic waste after anaerobic treatment.
  • the frequency of the carbon source solution in the upper portion of the yard is once every 1-100 days.
  • the nutritional additive includes one or more of a nitrogen source, a phosphorus source, and a trace element source.
  • the carbon source mass percentage in the carbon source solution is not more than 50%.
  • the trace element source includes a nutrient containing one or more elements of boron, zinc, copper, manganese, and cobalt.
  • the carbon source solution includes a solution containing one or more of ethanol, methanol, and acetic acid.
  • the carbon source solution is doped with ferrous sulfate.
  • fly ash includes fly ash after biochemical, physical or chemical disposal.
  • the chromium slag includes chromium-containing soil or chromium-containing waste.
  • the inner electrolytic ceramsite layer is placed inside the electrolytic ceramsite.
  • Internal electrolysis ceramsite also known as microelectrolytic ceramsite, can spontaneously generate electricity under certain conditions.
  • the internal electrolysis ceramsite of the internal electrolysis ceramsite layer is Fe-C type internal electrolysis ceramsite, and the internal electrolysis ceramsite contains Fe metal and carbon material, which can generate endogenous current under acidic conditions.
  • the mechanism of the method for treating heavy metals and dioxins in fly ash is that first, ferrous sulfate reduces hexavalent chromium in the chromium slag, and then the sulfate reducing bacteria in the biogas residue converts the sulfate in the ferrous sulfate into a sulphate by using a carbon source. Sulfide, heavy metal reacts with sulfide to form a very low solubility precipitate, which greatly reduces the amount of dissolution, while further detoxifying the untreated chromium residue.
  • the dioxin in the fly ash is extracted into the leachate by using the carbon source solution and the organic matter degraded by the microorganism residue, and the leachate is recharged to the top of the yard, and the electricity is formed by the action of the internal electrolysis ceramsite.
  • the catalytic effect produces hydroxyl radicals and further promotes the decomposition of dioxins.
  • the leachate contains the eluate of the biogas residue, which contains a large amount of macromolecular organic matter such as microbial residues, which is difficult to be bio-utilized, so that the biochemical property is not strong, and it flows back to the top of the mixed landfill. Under the action of the granules, the macromolecules are converted into small molecules, which improves the biodegradability. Then, the part of the leachate enters the mixed layer, which is better utilized by the microorganisms in the biogas residue, and accelerates the biodegradation of the biogas residue as a whole.
  • the fly ash contains a large amount of Cl.
  • the Cl ion in the leachate is converted into Cl 2 and left the landfill by internal electrolysis, thereby reducing the chlorine content in the landfill.
  • the production of Cl 2 will also disinfect the harmful microorganisms in the landfill.
  • This method can improve the negative impact of waste incineration fly ash and chromium slag on the environment.
  • FIG. 1 is a schematic view showing a method for co-processing waste incineration fly ash and chromium slag in a landfill in the present application.
  • Icons 1-acid addition device; 2-electrolytic ceramsite layer; 3-impermeable layer; 4-mixed layer; 5-flow material; 6-leachate storage tank.
  • Fig. 1 is a schematic view showing a method for co-processing waste incineration fly ash and chromium slag in a landfill in the present application.
  • a method for co-processing waste incineration fly ash and chromium slag in a landfill includes laying an anti-seepage layer 3 in a yard for disposal of fly ash and chromium slag, bottom portion
  • the flow guiding material 5 is laid, and the mixed layer 4 including the biogas residue, the carbon source, the ferrous sulfate, the nutritional additive, the fly ash and the chromium residue is laid on the upper part, and the inner electrolytic ceramic layer 2 is placed on the upper part of the mixed layer 4.
  • the fly ash, chromium slag, biogas residue, carbon source, ferrous sulfate and nutritional additives in the mixed layer 4 are added in a mass ratio of 1: (0.1-10): (0.01-5): (0.01-5) :(0.15-3): (0.1-1).
  • the thickness of the mixed layer 4 is 1-8 m; the thickness of the inner electrolytic ceramsite layer 2 does not exceed 1 m.
  • the biogas residue can be selected from organic wastewater, solid organic waste or sludge, and the solid organic waste can be used as an anaerobic treatment and then as a biogas residue.
  • the nutritive additive includes one or more of a nitrogen source, a phosphorus source and a trace element source, and the addition of the phosphorus source, the nitrogen source and the trace element further promotes the activity of the microorganism in the biogas residue and enhances the disposal of the persistent organic pollutant ( Persistent Organic Pollutants, referred to as POPs).
  • the trace element source may be selected to include a nutrient containing one or more elements of boron, zinc, copper, manganese, and cobalt.
  • Fly ash includes untreated waste incineration fly ash or fly ash after biochemical, physical or chemical disposal. For example, fly ash after heat treatment, hydrothermal treatment, and chemical stabilization treatment.
  • the chromium slag of the examples of the present application may include chromium-containing soil or chromium-containing waste.
  • the carbon source solution includes a solution containing one or more of ethanol, methanol, and acetic acid, which can be used as both a microbial carbon source and a POP, such as dioxins in the fly ash.
  • the carbon source solution is optionally doped with ferrous sulfate, and the carbon source has a carbon source mass percentage of not more than 50%.
  • the spraying interval of the leachate refluxing to the top of the stack for spraying and refilling is 1-48 hours.
  • the leachate can be adjusted to pH so that the pH of the recirculated leachate is 2-5, and the pH can be adjusted by adding the acid device 1.
  • the micro-electrolytic ceramsite will release a certain amount of iron ions, which will produce a Fenton catalytic effect under the action of a trace amount of hydroxyl radical generated by electrocatalysis, effectively degrading dioxin pollution, and at the same time
  • the refractory organic matter produced by the biogas residue is removed.
  • the frequency of carbon injection solution in the upper part of the yard is once every 1-100 days.
  • Ferrous Sulfate Detoxifies chromium slag at the same time, releases iron and sulfate, iron can be used as raw material of Fenton effect, and sulfate is used as raw material of sulfate reducing bacteria in biogas residue to further participate in the next biochemical reaction.
  • the sulfate reducing bacteria in the biogas residue fully utilizes the ferrous sulfate to immobilize the heavy metal, which is ecologically safe compared with the direct use of the chemical curing agent to fix the heavy metal.
  • POPs Persistent Organic Pollutants
  • the leachate contains the leachate of the biogas residue, which contains a large amount of macromolecular organic matter such as microbial residues, which is difficult to be bio-utilized, so that the biochemical property is not strong, and it flows back to the top of the mixed landfill. Under the action of electrolytic ceramsite, macromolecules are converted into small molecules, which improves biodegradability. Then, this part of the leachate enters the mixed layer, which is better utilized by microorganisms in the biogas residue, and accelerates the biogas residue organism as a whole. degradation.
  • the fly ash contains a large amount of Cl.
  • the Cl ion in the leachate is converted into Cl 2 and left the landfill by internal electrolysis, thereby reducing the chlorine content in the landfill.
  • the production of Cl 2 will also disinfect the harmful microorganisms in the landfill.
  • the acid added to the internal electrolysis ceramsite can be used as an important raw material for the operation of internal electrolysis ceramsite, or as a raw material for neutralizing high-alkaline hazardous waste such as chromium slag and fly ash, so that the landfill tends to neutral.
  • the present embodiment provides a method for co-processing waste incineration fly ash and chromium slag in a landfill, the method comprising transferring fly ash and chromium slag into a yard; laying an anti-seepage layer 3 in the yard, laying a bottom guide
  • the flow material 5 is provided with a mixed layer of biogas residue, carbon source, ferrous sulfate, nutritional additive, fly ash and chromium slag on the upper part thereof, and the carbon source is selected as kitchen waste.
  • the addition ratio of fly ash, chromium residue, biogas residue, kitchen waste, ferrous sulfate and nutritional additives is 1:0.5:0.2:0.2:0.15:0.1
  • the thickness of the mixed layer 4 is 5m
  • the mixed layer 4 The inner electrolytic ceramsite is placed in the upper part and has a thickness of 0.1 m.
  • the carbon source solution is injected from the upper part of the stack every 1-5 days.
  • the carbon source solution is an ethanol solution.
  • the leachate is then collected through the bottom flow guiding material 5 into the leachate collection system, and then the leachate is returned to the upper portion of the yard for recirculation every 1 day, and the pH is adjusted to 4 before reflux.
  • the solid hexavalent chromium content in the yard decreased from 3000mg/kg to less than 2mg/kg, the dissolution rate of heavy metals in solid waste in the yard decreased by 91%, and Pb decreased from 5mg/L to less than 0.1mg/L.
  • the Cd decreased from 3 mg/L to less than 0.1 mg/L, while the removal rate of dioxin and other contaminants exceeded 99%, and the dioxin content reached the standard.
  • the nutritional additive of the present example is a mixture of potassium phosphate, ammonium nitrate and cobalt nitrate, and a trace amount of zinc element is added, and the internal electrolytic ceramsite is Fe-C type internal electrolytic ceramsite.
  • the present embodiment provides a method for co-processing waste incineration fly ash and chromium slag in a landfill, the method comprising transferring fly ash and chromium slag into a yard; laying an anti-seepage layer 3 in the yard, laying a bottom guide
  • the flow material 5 is provided with a mixed layer of biogas residue, carbon source, ferrous sulfate, nutritional additive, fly ash and chromium slag on the upper part thereof, and the carbon source is selected as kitchen waste.
  • the addition ratio of fly ash, chromium residue, biogas residue, kitchen waste, ferrous sulfate and nutritional additives is 1:2:0.5:0.4:0.3:0.1
  • the thickness of the mixed layer 4 is 5m
  • the mixed layer 4 The inner electrolytic ceramsite is placed in the upper part and has a thickness of 0.01 m.
  • the ethanol solution is injected from the upper part of the stack every 30 days, and then the leachate is collected into the leachate collection system through the bottom flow guiding material 5, and then every interval 2
  • the leachate is returned to the upper part of the yard for recirculation, and the pH is adjusted to 4 before reflux.
  • the solid hexavalent chromium content in the yard decreased from 3000mg/kg to less than 2mg/kg
  • the dissolution rate of heavy metals in solid waste in the yard decreased by 91%
  • Pb decreased from 5mg/L to less than 0.1mg/L.
  • the Cd decreased from 3 mg/L to less than 0.1 mg/L
  • the pollutants such as dioxins decreased from 500 ng/kg to 8 ng/kg, the removal rate exceeded 99%
  • the dioxin content reached the standard.
  • the leachate COD decreased from over 10,000 mg/L to less than 200 mg/L.
  • the nutritional additive of the present example is a mixture of potassium phosphate, ammonium nitrate and cobalt nitrate, and a trace amount of zinc element is added, and the internal electrolytic ceramsite is Fe-C type internal electrolytic ceramsite.
  • the present embodiment provides a method for co-processing waste incineration fly ash and chromium slag in a landfill, the method comprising transferring fly ash and chromium slag into a yard; laying an anti-seepage layer 3 in the yard, laying a bottom guide
  • the flow material 5 is provided with a mixed layer of biogas residue, carbon source, ferrous sulfate, nutritional additive, fly ash and chromium slag on the upper part thereof, and the carbon source is selected as kitchen waste.
  • the addition ratio of fly ash, chromium residue, biogas residue, kitchen waste, ferrous sulfate and nutritional additives is 1:1.5:0.5:0.4:0.2:0.1, the thickness of the mixed layer 4 is 5m, the mixed layer 4
  • the inner electroceramic layer 2 is not disposed on the upper part; during the operation, the ethanol solution is injected from the upper part of the yard every 25 days, and then the leachate is collected into the leachate collection system through the bottom flow guiding material 5, and then every 2 days interval The leachate is returned to the upper part of the yard for recharge, and the pH is adjusted to 4 before reflux.
  • the solid hexavalent chromium content in the yard decreased from 3000mg/kg to less than 2mg/kg.
  • the dissolution rate of heavy metals in solid waste in the yard decreased by 91%, and Pb decreased from 5mg/L to less than 0.1mg/L.
  • the Cd decreased from 3 mg/L to less than 0.1 mg/L, while the removal rate of dioxin and other contaminants exceeded 99%, and the dioxin content reached the standard.
  • the leachate COD decreased from more than 10,000 mg/L to less than 500 mg/L.
  • the nutritional additive of this example is a mixture of potassium phosphate, ammonium nitrate and cobalt nitrate, while adding a trace amount of zinc.
  • the fly ash and chromium slag are transferred to the yard; the anti-seepage layer 3 is laid in the yard, the flow guiding material 5 is laid at the bottom, and the upper part is laid with sludge, carbon source, ferrous sulfate, nutritional additives, fly ash and chromium slag.
  • Mixed layer 4 the carbon source is selected as kitchen waste. According to the mass, the addition ratio of fly ash, chromium residue, biogas residue, kitchen waste, ferrous sulfate and nutritional additives is 1:2:0.5:0.4:0.3:0.1, the thickness of the mixed layer 4 is 5m, the mixed layer 4
  • the inner electrolytic ceramsite is placed in the upper part and has a thickness of 0.01 m.
  • a mixture of the ethanol solution and the ferrous sulfate is injected from the upper part of the stack every 30 days, and then the leachate is collected through the bottom flow guiding material 5 to the leachate collection.
  • the leachate is then returned to the upper part of the yard for recirculation every 2 days, and the pH is adjusted to 4 before reflux.
  • the solid hexavalent chromium content in the yard decreased from 3000mg/kg to less than 2mg/kg.
  • the dissolution rate of heavy metals in solid waste in the yard decreased by 91%, and Pb decreased from 5mg/L to less than 0.1mg/L.
  • the Cd decreased from 3 mg/L to less than 0.1 mg/L, while the removal rate of dioxin and other contaminants exceeded 99%, and the dioxin content reached the standard.
  • the leachate COD decreased from over 10,000 mg/L to less than 300 mg/L.
  • the nutritional additive of this example is a mixture of potassium phosphate, ammonium nitrate and cobalt nitrate, while adding a trace amount of zinc.
  • the present embodiment provides a method for co-processing waste incineration fly ash and chromium slag in a landfill, the method comprising transferring fly ash and chromium slag into a yard; laying an anti-seepage layer 3 in the yard, laying a bottom guide
  • the flow material 5 is provided with a mixed layer of biogas residue, carbon source, ferrous sulfate, nutritional additive, fly ash and chromium slag on the upper part thereof, and the carbon source is selected as kitchen waste.
  • the addition ratio of fly ash, chromium residue, biogas residue, kitchen waste, ferrous sulfate and nutritional additives is 1:6:2:2:1.5:0.5
  • the thickness of the mixed layer 4 is 5m
  • the mixed layer 4 The inner electrolytic ceramsite is placed in the upper part and has a thickness of 0.1 m.
  • the carbon source solution is injected from the upper part of the stack every 70 days.
  • the carbon source solution is a methanol solution.
  • the leachate is then collected through the bottom flow guiding material 5 into the leachate collection system, and then the leachate is returned to the upper portion of the stack for reflow every 1 hour, and the pH is adjusted to 2 before reflux.
  • the solid hexavalent chromium content in the yard decreased from 3000mg/kg to less than 2mg/kg, the dissolution rate of heavy metals in solid waste in the yard decreased by 91%, and Pb decreased from 5mg/L to less than 0.1mg/L.
  • the Cd decreased from 3 mg/L to less than 0.1 mg/L, while the removal rate of dioxin and other contaminants exceeded 99%, and the dioxin content reached the standard.
  • the leachate COD decreased from more than 10,000 mg/L to less than 100 mg/L.
  • the nutritional additive of this example is a mixture of potassium phosphate, ammonium nitrate and cobalt nitrate, with the addition of trace amounts of zinc.
  • the present embodiment provides a method for co-processing waste incineration fly ash and chromium slag in a landfill, the method comprising transferring fly ash and chromium slag into a yard; laying an anti-seepage layer 3 in the yard, laying a bottom guide
  • the flow material 5 is provided with a mixed layer of biogas residue, carbon source, ferrous sulfate, nutritional additive, fly ash and chromium slag on the upper part thereof, and the carbon source is selected as kitchen waste.
  • the addition ratio of fly ash, chromium residue, biogas residue, kitchen waste, ferrous sulfate and nutritional additives is 1:3.5:2:2.5:2:0.5
  • the thickness of the mixed layer 4 is 1m
  • the mixed layer 4 The inner electrolytic ceramsite is placed in the upper part and has a thickness of 0.6 m.
  • the carbon source solution is injected from the upper part of the stack every 100 days.
  • the carbon source solution is an acetic acid solution.
  • the leachate is then collected through the bottom flow guiding material 5 into the leachate collection system, and then the leachate is returned to the upper portion of the yard for recirculation every 2 days, and the pH is adjusted to 5 before reflux.
  • the solid hexavalent chromium content in the yard decreased from 3000mg/kg to less than 2mg/kg, the dissolution rate of heavy metals in solid waste in the yard decreased by 91%, and Pb decreased from 5mg/L to less than 0.1mg/L.
  • the Cd decreased from 3 mg/L to less than 0.1 mg/L, while the removal rate of dioxin and other contaminants exceeded 99%, and the dioxin content reached the standard.
  • the nutritional additive of this example is a mixture of potassium phosphate, ammonium nitrate and cobalt nitrate, while adding a trace amount of zinc.
  • the present embodiment provides a method for co-processing waste incineration fly ash and chromium slag in a landfill, the method comprising transferring fly ash and chromium slag into a yard; laying an anti-seepage layer 3 in the yard, laying a bottom guide
  • the flow material 5 is provided with a mixed layer of biogas residue, carbon source, ferrous sulfate, nutritional additive, fly ash and chromium slag on the upper part thereof, and the carbon source is selected as kitchen waste.
  • the addition ratio of fly ash, chromium residue, biogas residue, kitchen waste, ferrous sulfate and nutritional additives is 1:10:5:5:3:1, the thickness of mixed layer 4 is 8m, mixed layer 4
  • the inner electrolytic ceramsite is placed in the upper part and has a thickness of 1 m.
  • the carbon source solution is injected from the upper part of the stack every 30 days.
  • the carbon source solution is a mixture of a methanol solution and a ferrous sulfate.
  • the leachate is then collected through the bottom flow guiding material 5 into the leachate collection system, and then the leachate is returned to the upper portion of the yard for recirculation every 1 day, and the pH is adjusted to 4 before reflux.
  • the solid hexavalent chromium content in the yard decreased from 3000mg/kg to less than 2mg/kg, the dissolution rate of heavy metals in solid waste in the yard decreased by 91%, and Pb decreased from 5mg/L to less than 0.1mg/L.
  • the Cd decreased from 3 mg/L to less than 0.1 mg/L, while the removal rate of dioxin and other contaminants exceeded 99%, and the dioxin content reached the standard.
  • the leachate COD decreased from over 10,000 mg/L to less than 200 mg/L.
  • the nutritional additive of this example is a mixture of potassium phosphate, ammonium nitrate and cobalt nitrate, while adding a trace amount of zinc.
  • the method for co-processing waste incineration fly ash and chromium residue in the landfill of the present application can extract the dioxins in the fly ash into the solution by using the carbon source solution, and promote the dioxins by the action of the internal electrolysis ceramsite. break down.
  • the heavy metal is reacted with the sulfide to form a precipitate of extremely low solubility, and the chromium residue is rendered harmless.
  • the method can improve the negative impact of waste incineration fly ash and chromium slag on the environment, and rapidly degrade the organic matter content of organic waste such as biogas residue, and promote its rapid stabilization.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Electrochemistry (AREA)
  • Water Supply & Treatment (AREA)
  • Hydrology & Water Resources (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Engineering & Computer Science (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

一种同步处置飞灰及铬渣的方法,在填埋过程中通过生化及工程措施,将二者无害化。将飞灰及铬渣转移到堆场中;堆场内铺设防渗层(3),底部铺设导流材料(5),其上部铺设沼渣、碳源、硫酸亚铁、营养添加剂、飞灰及铬渣的混合层(4),混合层(4)上部放置内电解陶粒层(2);运行过程中,不定期从堆场上部注碳源溶液,不定期将渗滤液通过底部导流材料(5)收集至渗滤液收集系统中,随后将渗滤液回流至堆场顶部进行喷洒回灌。

Description

一种填埋场内协同处置垃圾焚烧飞灰及铬渣的方法
相关申请的交叉引用
本申请要求于2017年06月20日提交中国专利局的申请号为CN201710471506.4、名称为“一种填埋场内协同处置垃圾焚烧飞灰及铬渣的方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及环境保护技术领域,具体而言,涉及一种填埋场内协同处置垃圾焚烧飞灰及铬渣的方法。
背景技术
垃圾焚烧飞灰因含有较高浓度的重金属、二噁英类持久性有机污染物而被列为危险废弃物。另外,铬渣也是一种危险废物,飞灰、铬渣目前的主要处理方式是填埋,但是填埋占用大量土地,并且飞灰转运及露天堆填等过程中,易形成飘尘进入大气,不仅增加空气中的粉尘含量,而且可能会加重雾霾的生态毒性,对大气造成严重污染,危害居民健康和生态环境。
发明内容
针对现有技术的不足,本申请提出一种填埋场内协同处置垃圾焚烧飞灰及铬渣的方法,在填埋过程中通过特殊的生化及工程措施,以改善上述的技术问题。
本申请是通过以下方式实现的:
一种填埋场内协同处置垃圾焚烧飞灰及铬渣的方法,包括:
在用于飞灰及铬渣处置的堆场内铺设防渗层,底部铺设导流材料,其上部铺设包括沼渣、碳源、硫酸亚铁、营养添加剂、飞灰及铬渣的混合层,混合层上部放置内电解陶粒层;运行过程中,不定期从堆场上部注碳源溶液,不定期将渗滤液通过底部导流材料收集至渗滤液收集系统中,随后将渗滤液回流至堆场顶部进行喷洒回灌。
进一步的,混合层中的飞灰、铬渣、沼渣、碳源、硫酸亚铁及营养添加剂按质量计添加比例为1:(0.1-10):(0.01-5):(0.01-5):(0.15-3):(0.1-1)。
进一步的,混合层的厚度为1-8m;内电解陶粒层的厚度不超过1m。
进一步的,渗滤液回流至堆场顶部进行喷洒回灌的喷洒间隔时间为1-48小时。
进一步的,将渗滤液回流至堆场顶部进行喷洒回灌时对渗滤液进行pH调节,使回灌的渗滤液pH值为2-5。
进一步的,沼渣包括有机废水、固体有机废物或污泥。
进一步的,沼渣为经厌氧处理后的固体有机废物。
进一步的,运行期间,在堆场上部注碳源溶液的频率为每1-100天一次。
进一步的,营养添加剂包括氮源、磷源及微量元素源中的一种或多种。
进一步的,碳源溶液中碳源质量百分含量不高于50%。
进一步的,微量元素源包括含有硼、锌、铜、锰、钴中的一种或多种元素的营养物质。
进一步的,碳源溶液包括含有乙醇、甲醇、乙酸中一种或多种的溶液。
进一步的,碳源溶液掺杂有硫酸亚铁。
进一步的,飞灰包括经过生化、物理或化学处置后的飞灰。
进一步的,铬渣包括含铬土壤或含铬废物。
进一步的,内电解陶粒层放置内电解陶粒。内电解陶粒,又称微电解陶粒,其可以在特定情况下自发产生电流。
进一步的,内电解陶粒层的内电解陶粒为Fe-C型内电解陶粒,内电解陶粒中含有Fe金属及碳材料,其可以在酸性条件下产生内生电流。
本申请实施例的作用机理及有益效果是:
本方法处理飞灰中重金属及二噁英的机理在于,首先硫酸亚铁将铬渣中六价铬还原,随后沼渣中的硫酸盐还原菌利用碳源将硫酸亚铁中的硫酸盐转化为硫化物,重金属与硫化物反应生成极低溶解度的沉淀物,大大减少其溶出量,同时进一步将未处置的铬渣无害化。同时利用碳源溶液及被沼渣微生物降解后的有机物将飞灰中的二噁英萃取进入渗滤液中,随着渗滤液回灌到堆场顶部,在内电解陶粒的作用下,形成电催化效应,产生羟基自由基,进一步促进二噁英的分解。
渗滤液中包含着沼渣的溶出液,其中含有大量诸如微生物残体在内的大分子有机质,难以被生物利用,即可生化性不强,通过回流至混合填埋场顶部,在内电解陶粒的作用下,大分子转变成小分子,提高了可生化性,随后这部分渗滤液进入混合层,会更好的被沼渣中微生物获取利用,从整体上加快了沼渣的生物降解。
同时,飞灰中含有大量的Cl,进入渗滤液后,通过内电解作用,将渗滤液中Cl离子转变为Cl 2离开填埋场,从而降低填埋场中氯含量。同时Cl 2的产生也会对填埋场有害微生物进行消毒处理。
通过该方法能够改善垃圾焚烧飞灰以及铬渣对环境的负面影响。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请中填埋场内协同处置垃圾焚烧飞灰及铬渣的方法的示意图。
图标:1-加酸装置;2-内电解陶粒层;3-防渗层;4-混合层;5-导流材料;6-渗滤液储存池。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将对本申请实施例中的技术方案进行清楚、完整地描述。实施例中未注明具体条件者,按照常规条件或制造商建议的条件进行。所用试剂或仪器未注明生产厂商者,均为可以通过市售购买获得的常规产品。
图1是本申请中填埋场内协同处置垃圾焚烧飞灰及铬渣的方法的示意图。请参照图1,本申请实施例提供的一种填埋场内协同处置垃圾焚烧飞灰及铬渣的方法,包括在用于飞灰及铬渣处置的堆场内铺设防渗层3,底部铺设导流材料5,其上部铺设包括沼渣、碳源、硫酸亚铁、营养添加剂、飞灰及铬渣的混合层4,混合层4上部放置内电解陶粒层2。
其中,混合层4中的飞灰、铬渣、沼渣、碳源、硫酸亚铁及营养添加剂按质量计添加比例为1:(0.1-10):(0.01-5):(0.01-5):(0.15-3):(0.1-1)。混合层4的厚度为1-8m;内电解陶粒层2的厚度不超过1m。沼渣可选为有机废水、固体有机废物或污泥,其中固体有机废物可以先经过厌氧处理再作为沼渣使用。营养添加剂包括氮源、磷源及微量元素源中的一种或多种,磷源、氮源及微量元素的加入进一步促进了沼渣中微生物的活性,增强了其处置持久性有机污染物(Persistent Organic Pollutants,简称POPs)的能力。其中,微量元素源可选为包括含有硼、锌、铜、锰、钴中的一种或多种元素的营养物质。飞灰包括未经处理的垃圾焚烧飞灰或者经过生化、物理或化学处置后的飞灰。比如经过热处理、水热处理、化学药剂稳定化处理后的飞灰。本申请实施例的铬渣可以包括含铬土壤或含铬废物。
将各层铺设完成后,不定期从堆场上部注碳源溶液,不定期将渗滤液通过底部导流材料5收集至渗滤液收集系统中,随后将渗滤液回流至堆场顶部进行喷洒回灌。碳源溶液包括含有乙醇、甲醇、乙酸中一种或多种的溶液,其既可以作为微生物碳源, 也可以用于萃取飞灰中的二噁英等持久性有机污染物。碳源溶液可选地掺杂有硫酸亚铁,并且碳源溶液中碳源质量百分含量不高于50%。
进一步的,渗滤液回流至堆场顶部进行喷洒回灌的喷洒间隔时间为1-48小时。将渗滤液回流至堆场顶部进行喷洒回灌时对渗滤液可以对进行pH调节,使回灌的渗滤液pH值为2-5,pH值的调节可以通过加酸装置1来实现。在这样的pH值下,微电解陶粒会释放一定量的铁离子,在电催化所产生的微量羟基自由基作用下,产生芬顿催化效应,有效地降解二噁英污染,同时过程中将沼渣所产生的难降解有机物去除。可选的,运行期间,在堆场上部注碳源溶液的频率为每1-100天一次。
本申请实施例的具有以下特点:
1.硫酸亚铁将铬渣无害化同时,释放铁跟硫酸盐,铁可以作为芬顿效应的原料,硫酸盐作为沼渣中硫酸盐还原菌的原料进一步参与下一步生化反应。
2.通过内电解陶粒,形成电催化效应,产生羟基自由基,伴随pH的调整(pH在2-5)及Fe-C型内电解陶粒中Fe的释放,会产生芬顿高级氧化效应,可对飞灰中二噁英进行脱Cl反应,使二噁英转变为危害较低的有机物,同时协同沼渣中微生物代谢并处理二噁英污染,形成高级氧化及生化协同处置二噁英污染的效应。
3.利用沼渣处置飞灰,以废治废,即处置了飞灰,也将沼渣污染无害化。
4.沼渣中硫酸盐还原菌充分利用硫酸亚铁固定化重金属,相比直接使用化学固化剂固定重金属,具有生态安全的特点。
5.磷源、氮源及微量元素的加入进一步促进了沼渣中微生物的活性,增强了其处置持久性有机污染物(Persistent Organic Pollutants,简称POPs)的能力。
6.渗滤液中包含着沼渣的溶出液,其中含有大量诸如微生物残体在内的大分子有机质,难以被生物利用,即可生化性不强,通过回流至混合填埋场顶部,在内电解陶粒的作用下,大分子转变成小分子,提高了可生化性,随后这部分渗滤液进入混合层,会更好的被沼渣中微生物获取利用,从整体上加快了沼渣的生物降解。
7.飞灰中含有大量的Cl,进入渗滤液后,通过内电解作用,将渗滤液中Cl离子转变为Cl 2离开填埋场,从而降低填埋场中氯含量。同时Cl 2的产生也会对填埋场有害微生物进行消毒处理。
8.在内电解陶粒上所加的酸,既可以作为内电解陶粒运行的重要原料,也可以所谓中和铬渣及飞灰等高碱性危险废物的原料,使得填埋场趋向于中性。
以下结合实施例对本申请的特征和性能作进一步的详细描述。
实施例1
本实施例提供了一种填埋场内协同处置垃圾焚烧飞灰及铬渣的方法,该方法包括将飞 灰及铬渣转移到堆场中;堆场内铺设防渗层3,底部铺设导流材料5,其上部铺设沼渣、碳源、硫酸亚铁、营养添加剂、飞灰及铬渣的混合层4,碳源选为餐厨垃圾。按质量计,飞灰、铬渣、沼渣、餐厨垃圾、硫酸亚铁及营养添加剂的添加比例为1:0.5:0.2:0.2:0.15:0.1,混合层4的厚度为5m,混合层4上部放置内电解陶粒,厚度为0.1m;运行过程中,每隔1-5天从堆场上部注碳源溶液,本实施例中碳源溶液为乙醇溶液。随后将渗滤液通过底部导流材料5收集至渗滤液收集系统中,随后每间隔1天将渗滤液回流至堆场上部进行回灌,回流前调节pH至4。
经过60天处置,堆场中固体六价铬含量从3000mg/kg降低至不足2mg/kg,堆场中固体废物中重金属溶出率降低91%,Pb从5mg/L降低至不足0.1mg/L,Cd从3mg/L降低至不足0.1mg/L,同时二噁英等污染物去除率超过99%,二噁英含量达标。本实例的营养添加剂是磷酸钾、硝酸铵及硝酸钴的混合物,同时添加了微量的锌元素,内电解陶粒为Fe-C型内电解陶粒。
实施例2
本实施例提供了一种填埋场内协同处置垃圾焚烧飞灰及铬渣的方法,该方法包括将飞灰及铬渣转移到堆场中;堆场内铺设防渗层3,底部铺设导流材料5,其上部铺设沼渣、碳源、硫酸亚铁、营养添加剂、飞灰及铬渣的混合层4,碳源选为餐厨垃圾。按质量计,飞灰、铬渣、沼渣、餐厨垃圾、硫酸亚铁及营养添加剂的添加比例为1:2:0.5:0.4:0.3:0.1,混合层4的厚度为5m,混合层4上部放置内电解陶粒,厚度为0.01m;运行过程中,每隔30天从堆场上部注乙醇溶液,随后将渗滤液通过底部导流材料5收集至渗滤液收集系统中,随后每间隔2天将渗滤液回流至堆场上部进行回灌,回流前调节pH至4。
经过60天处置,堆场中固体六价铬含量从3000mg/kg降低至不足2mg/kg,堆场中固体废物中重金属溶出率降低91%,Pb从5mg/L降低至不足0.1mg/L,Cd从3mg/L降低至不足0.1mg/L,同时二噁英等污染物从500ng/kg降低至8ng/kg,去除率超过99%,二噁英含量达标。渗滤液COD从超过10000mg/L降低至不足200mg/L。本实例的营养添加剂是磷酸钾、硝酸铵及硝酸钴的混合物,同时添加了微量的锌元素,内电解陶粒为Fe-C型内电解陶粒。
实施例3
本实施例提供了一种填埋场内协同处置垃圾焚烧飞灰及铬渣的方法,该方法包括将飞灰及铬渣转移到堆场中;堆场内铺设防渗层3,底部铺设导流材料5,其上部铺设沼渣、碳源、硫酸亚铁、营养添加剂、飞灰及铬渣的混合层4,碳源选为餐厨垃圾。按质量计,飞灰、铬渣、沼渣、餐厨垃圾、硫酸亚铁及营养添加剂的添加比例为1:1.5:0.5:0.4:0.2:0.1,混合层4的厚度为5m,混合层4上部不设置内电解陶粒层2;运行过程中,每隔25天从堆场上部注乙醇溶液,随后将渗滤液通过底部导流材料5收集至渗滤液收集系统中, 随后每间隔2天将渗滤液回流至堆场上部进行回灌,回流前调节pH至4。
经过70天处置,堆场中固体六价铬含量从3000mg/kg降低至不足2mg/kg,堆场中固体废物中重金属溶出率降低91%,Pb从5mg/L降低至不足0.1mg/L,Cd从3mg/L降低至不足0.1mg/L,同时二噁英等污染物去除率超过99%,二噁英含量达标。渗滤液COD从超过10000mg/L降低至不足500mg/L。本实例的营养添加剂是磷酸钾、硝酸铵及硝酸钴的混合物,同时添加了微量的锌元素。
实施例4
将飞灰及铬渣转移到堆场中;堆场内铺设防渗层3,底部铺设导流材料5,其上部铺设污泥、碳源、硫酸亚铁、营养添加剂、飞灰及铬渣的混合层4,碳源选为餐厨垃圾。按质量计,飞灰、铬渣、沼渣、餐厨垃圾、硫酸亚铁及营养添加剂的添加比例为1:2:0.5:0.4:0.3:0.1,混合层4的厚度为5m,混合层4上部放置内电解陶粒,厚度为0.01m;运行过程中,每隔30天从堆场上部注乙醇溶液及硫酸亚铁的混合液,随后将渗滤液通过底部导流材料5收集至渗滤液收集系统中,随后每间隔2天将渗滤液回流至堆场上部进行回灌,回流前调节pH至4。
经过70天处置,堆场中固体六价铬含量从3000mg/kg降低至不足2mg/kg,堆场中固体废物中重金属溶出率降低91%,Pb从5mg/L降低至不足0.1mg/L,Cd从3mg/L降低至不足0.1mg/L,同时二噁英等污染物去除率超过99%,二噁英含量达标。渗滤液COD从超过10000mg/L降低至不足300mg/L。本实例的营养添加剂是磷酸钾、硝酸铵及硝酸钴的混合物,同时添加了微量的锌元素。
实施例5
本实施例提供了一种填埋场内协同处置垃圾焚烧飞灰及铬渣的方法,该方法包括将飞灰及铬渣转移到堆场中;堆场内铺设防渗层3,底部铺设导流材料5,其上部铺设沼渣、碳源、硫酸亚铁、营养添加剂、飞灰及铬渣的混合层4,碳源选为餐厨垃圾。按质量计,飞灰、铬渣、沼渣、餐厨垃圾、硫酸亚铁及营养添加剂的添加比例为1:6:2:2:1.5:0.5,混合层4的厚度为5m,混合层4上部放置内电解陶粒,厚度为0.1m;运行过程中,每隔70天从堆场上部注碳源溶液,本实施例中碳源溶液为甲醇溶液。随后将渗滤液通过底部导流材料5收集至渗滤液收集系统中,随后每间隔1小时将渗滤液回流至堆场上部进行回灌,回流前调节pH至2。
经过80天处置,堆场中固体六价铬含量从3000mg/kg降低至不足2mg/kg,堆场中固体废物中重金属溶出率降低91%,Pb从5mg/L降低至不足0.1mg/L,Cd从3mg/L降低至不足0.1mg/L,同时二噁英等污染物去除率超过99%,二噁英含量达标。渗滤液COD从超过10000mg/L降低至不足100mg/L。本实例的营养添加剂是磷酸钾、硝酸铵及硝酸钴的混合物, 同时添加了微量的锌元素。
实施例6
本实施例提供了一种填埋场内协同处置垃圾焚烧飞灰及铬渣的方法,该方法包括将飞灰及铬渣转移到堆场中;堆场内铺设防渗层3,底部铺设导流材料5,其上部铺设沼渣、碳源、硫酸亚铁、营养添加剂、飞灰及铬渣的混合层4,碳源选为餐厨垃圾。按质量计,飞灰、铬渣、沼渣、餐厨垃圾、硫酸亚铁及营养添加剂的添加比例为1:3.5:2:2.5:2:0.5,混合层4的厚度为1m,混合层4上部放置内电解陶粒,厚度为0.6m;运行过程中,每隔100天从堆场上部注碳源溶液,本实施例中碳源溶液为乙酸溶液。随后将渗滤液通过底部导流材料5收集至渗滤液收集系统中,随后每间隔2天将渗滤液回流至堆场上部进行回灌,回流前调节pH至5。
经过120天处置,堆场中固体六价铬含量从3000mg/kg降低至不足2mg/kg,堆场中固体废物中重金属溶出率降低91%,Pb从5mg/L降低至不足0.1mg/L,Cd从3mg/L降低至不足0.1mg/L,同时二噁英等污染物去除率超过99%,二噁英含量达标。本实例的营养添加剂是磷酸钾、硝酸铵及硝酸钴的混合物,同时添加了微量的锌元素。
实施例7
本实施例提供了一种填埋场内协同处置垃圾焚烧飞灰及铬渣的方法,该方法包括将飞灰及铬渣转移到堆场中;堆场内铺设防渗层3,底部铺设导流材料5,其上部铺设沼渣、碳源、硫酸亚铁、营养添加剂、飞灰及铬渣的混合层4,碳源选为餐厨垃圾。按质量计,飞灰、铬渣、沼渣、餐厨垃圾、硫酸亚铁及营养添加剂的添加比例为1:10:5:5:3:1,混合层4的厚度为8m,混合层4上部放置内电解陶粒,厚度为1m;运行过程中,每隔30天从堆场上部注碳源溶液,本实施例中碳源溶液为甲醇溶液和硫酸亚铁的混合液。随后将渗滤液通过底部导流材料5收集至渗滤液收集系统中,随后每间隔1天将渗滤液回流至堆场上部进行回灌,回流前调节pH至4。
经过60天处置,堆场中固体六价铬含量从3000mg/kg降低至不足2mg/kg,堆场中固体废物中重金属溶出率降低91%,Pb从5mg/L降低至不足0.1mg/L,Cd从3mg/L降低至不足0.1mg/L,同时二噁英等污染物去除率超过99%,二噁英含量达标。渗滤液COD从超过10000mg/L降低至不足200mg/L。本实例的营养添加剂是磷酸钾、硝酸铵及硝酸钴的混合物,同时添加了微量的锌元素。
以上实施方式显示和描述了本申请的基本原理和主要特征和本申请的优点。本行业的技术人员应该了解,本申请不受上述实施例的限制,上述实施例和说明书中描述的只是说明本申请的原理,在不脱离本申请精神和范围的前提下,本申请还会有各种变化和改进,这些变化和改进都落入要求保护的本申请范围内。本申请要求保护范围由所附的权利要求 书及其等效物界定。
工业实用性
本申请的填埋场内协同处置垃圾焚烧飞灰及铬渣的方法可以利用碳源溶液将飞灰中的二噁英萃取进溶液中,在内电解陶粒的作用下,促进二噁英的分解。并使重金属与硫化物反应生成极低溶解度的沉淀物,将铬渣无害化。通过该方法能够改善垃圾焚烧飞灰以及铬渣对环境的负面影响,并快速降解沼渣等有机废物中有机质含量,促进其快速稳定化。

Claims (16)

  1. 一种填埋场内协同处置垃圾焚烧飞灰及铬渣的方法,其特征在于,包括:
    在用于飞灰及铬渣处置的堆场内铺设防渗层,底部铺设导流材料,其上部铺设包括沼渣、碳源、硫酸亚铁、营养添加剂、飞灰及铬渣的混合层,所述混合层上部放置内电解陶粒层;运行过程中,不定期从堆场上部注碳源溶液,不定期将渗滤液通过底部导流材料收集至渗滤液收集系统中,随后将所述渗滤液回流至所述堆场顶部进行喷洒回灌。
  2. 根据权利要求1所述的填埋场内协同处置垃圾焚烧飞灰及铬渣的方法,其特征在于,所述混合层中的所述飞灰、所述铬渣、所述沼渣、所述碳源、所述硫酸亚铁及所述营养添加剂按质量计添加比例为1:(0.1-10):(0.01-5):(0.01-5):(0.15-3):(0.1-1)。
  3. 根据权利要求1或2所述的填埋场内协同处置垃圾焚烧飞灰及铬渣的方法,其特征在于,所述混合层的厚度为1-8m;所述内电解陶粒层的厚度不超过1m。
  4. 根据权利要求1-3中任一项所述的填埋场内协同处置垃圾焚烧飞灰及铬渣的方法,其特征在于,所述渗滤液回流至所述堆场顶部进行喷洒回灌的喷洒间隔时间为1-48小时。
  5. 根据权利要求1-4中任一项所述种填埋场内协同处置垃圾焚烧飞灰及铬渣的方法,其特征在于,将所述渗滤液回流至所述堆场顶部进行喷洒回灌时对所述渗滤液进行pH调节,使回灌的所述渗滤液pH值为2-5。
  6. 根据权利要求1-5中任一项所述的填埋场内协同处置垃圾焚烧飞灰及铬渣的方法,其特征在于,沼渣包括有机废水、固体有机废物或污泥。
  7. 根据权利要求6所述的一种填埋场内协同处置垃圾焚烧飞灰及铬渣的方法,其特征在于,所述沼渣为经厌氧处理后的固体有机废物。
  8. 根据权利要求1-7中任一项所述种填埋场内协同处置垃圾焚烧飞灰及铬渣的方法,其特征在于,运行期间,在所述堆场上部注所述碳源溶液的频率为每1-100天一次。
  9. 根据权利要求1-8中任一项所述的填埋场内协同处置垃圾焚烧飞灰及铬渣的方法,其特征在于,所述营养添加剂包括氮源、磷源及微量元素源中的一种或多种。
  10. 根据权利要求9所述的一种填埋场内协同处置垃圾焚烧飞灰及铬渣的方法,其特征在于,所述碳源溶液中碳源质量百分含量不高于50%。
  11. 根据权利要求9所述的一种填埋场内协同处置垃圾焚烧飞灰及铬渣的方法,其特征在于,所述微量元素源包括含有硼、锌、铜、锰、钴中的一种或多种元素的营养 物质。
  12. 根据权利要求1-11中任一项所述种填埋场内协同处置垃圾焚烧飞灰及铬渣的方法,其特征在于,所述碳源溶液包括含有乙醇、甲醇、乙酸中一种或多种的溶液。
  13. 根据权利要求1-12中任一项所述的填埋场内协同处置垃圾焚烧飞灰及铬渣的方法,其特征在于,所述碳源溶液掺杂有硫酸亚铁。
  14. 根据权利要求1-13中任一项所述的填埋场内协同处置垃圾焚烧飞灰及铬渣的方法,其特征在于,所述飞灰包括经过生化、物理或化学处置后的飞灰。
  15. 根据权利要求1-14中任一项所述的填埋场内协同处置垃圾焚烧飞灰及铬渣的方法,其特征在于,所述铬渣包括含铬土壤或含铬废物。
  16. 根据权利要求1-15中任一项所述的填埋场内协同处置垃圾焚烧飞灰及铬渣的方法,其特征在于,所述内电解陶粒层的内电解陶粒为Fe-C型内电解陶粒,所述内电解陶粒中含有金属铁及碳材料。
PCT/CN2018/091851 2017-06-20 2018-06-19 一种填埋场内协同处置垃圾焚烧飞灰及铬渣的方法 WO2018233610A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/722,818 US11298732B2 (en) 2017-06-20 2019-12-20 Method for co-processing of waste incineration fly ash and chromium slag in landfill

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710471506.4A CN107497819A (zh) 2017-06-20 2017-06-20 一种填埋场内协同处置垃圾焚烧飞灰及铬渣的方法
CN201710471506.4 2017-06-20

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/722,818 Continuation US11298732B2 (en) 2017-06-20 2019-12-20 Method for co-processing of waste incineration fly ash and chromium slag in landfill

Publications (1)

Publication Number Publication Date
WO2018233610A1 true WO2018233610A1 (zh) 2018-12-27

Family

ID=60678429

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/091851 WO2018233610A1 (zh) 2017-06-20 2018-06-19 一种填埋场内协同处置垃圾焚烧飞灰及铬渣的方法

Country Status (3)

Country Link
US (1) US11298732B2 (zh)
CN (1) CN107497819A (zh)
WO (1) WO2018233610A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113321489A (zh) * 2021-07-03 2021-08-31 航天神禾(北京)环保有限公司 一种利用飞灰制备陶瓷的方法、系统及陶瓷制品

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107497819A (zh) * 2017-06-20 2017-12-22 青岛理工大学 一种填埋场内协同处置垃圾焚烧飞灰及铬渣的方法
CN114130785B (zh) * 2021-11-09 2022-12-27 深圳能源环保股份有限公司 一种垃圾焚烧炉的飞灰处理方法
CN114669587B (zh) * 2022-03-28 2023-04-07 中国环境科学研究院 生活垃圾协同处置膜浓缩液淋滤飞灰的方法、得到的残渣及应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000093934A (ja) * 1998-09-25 2000-04-04 Kawasaki Steel Corp クロム酸化物含有土壌の処理方法
CN103978025A (zh) * 2013-12-05 2014-08-13 青岛理工大学 一种可以快速稳定化含铬土壤及生活垃圾的填埋方法
CN105964683A (zh) * 2016-05-30 2016-09-28 青岛理工大学 一种基于沼渣的铬渣解毒方法
CN106031928A (zh) * 2016-05-30 2016-10-19 青岛理工大学 一种利用沼渣菌剂及硫酸亚铁耦合处理含铬土壤的方法
CN106040734A (zh) * 2016-05-30 2016-10-26 青岛理工大学 一种利用沼渣及硫酸亚铁协同处理污染土壤中六价铬的方法
CN107497819A (zh) * 2017-06-20 2017-12-22 青岛理工大学 一种填埋场内协同处置垃圾焚烧飞灰及铬渣的方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5562588A (en) * 1994-12-30 1996-10-08 Maxus Energy Corporation Process for the in situ bioremediation of Cr(VI)-bearing solids
US20080103348A1 (en) * 2006-10-30 2008-05-01 Entact Services, Llc Processes for treatment of solid wastes containing heavy metals
CN103539252B (zh) * 2013-10-30 2015-09-09 湖南大学 生物联合光催化复合降解液态体系及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000093934A (ja) * 1998-09-25 2000-04-04 Kawasaki Steel Corp クロム酸化物含有土壌の処理方法
CN103978025A (zh) * 2013-12-05 2014-08-13 青岛理工大学 一种可以快速稳定化含铬土壤及生活垃圾的填埋方法
CN105964683A (zh) * 2016-05-30 2016-09-28 青岛理工大学 一种基于沼渣的铬渣解毒方法
CN106031928A (zh) * 2016-05-30 2016-10-19 青岛理工大学 一种利用沼渣菌剂及硫酸亚铁耦合处理含铬土壤的方法
CN106040734A (zh) * 2016-05-30 2016-10-26 青岛理工大学 一种利用沼渣及硫酸亚铁协同处理污染土壤中六价铬的方法
CN107497819A (zh) * 2017-06-20 2017-12-22 青岛理工大学 一种填埋场内协同处置垃圾焚烧飞灰及铬渣的方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113321489A (zh) * 2021-07-03 2021-08-31 航天神禾(北京)环保有限公司 一种利用飞灰制备陶瓷的方法、系统及陶瓷制品
CN113321489B (zh) * 2021-07-03 2022-03-11 航天神禾(北京)环保有限公司 一种利用飞灰制备陶瓷的方法、系统及陶瓷制品

Also Published As

Publication number Publication date
CN107497819A (zh) 2017-12-22
US11298732B2 (en) 2022-04-12
US20210245211A1 (en) 2021-08-12

Similar Documents

Publication Publication Date Title
US11298732B2 (en) Method for co-processing of waste incineration fly ash and chromium slag in landfill
Hoang et al. Treatment processes to eliminate potential environmental hazards and restore agronomic value of sewage sludge: A review
Chen et al. Utilization of urban sewage sludge: Chinese perspectives
CN106978190B (zh) 一种用于铬污染土壤的稳定化修复药剂及其应用于土壤修复的方法
CN109304363B (zh) 一种适用于石油污染土壤的化学修复药剂及其使用方法
CN101774678A (zh) 一种垃圾渗滤液的处理方法
CN113788593B (zh) 一种利用硫酸盐还原菌和铅锌冶炼渣协同处理含砷废液的方法
Alawa et al. Source reduction, recycling, disposal, and treatment
CN104773925A (zh) 一种同时处理垃圾渗滤液和酸性矿山排水的方法
Wang et al. Simultaneous addition of zero-valent iron and activated carbon on enhanced mesophilic anaerobic digestion of waste-activated sludge
Al-Hazmi et al. Technological solutions to landfill management: Towards recovery of biomethane and carbon neutrality
Onay et al. Nitrogen and sulfate attenuation in simulated landfill bioreactors
CN105935697A (zh) 一种基于污泥的铬渣解毒方法
CN105964683A (zh) 一种基于沼渣的铬渣解毒方法
CN115010237A (zh) 铁基生物炭耦合过碳酸盐联用去除河道中黑臭水体底泥的方法
CN109758714B (zh) 一种修复抗生素污染土壤的方法
WO2018233613A1 (zh) 一种利用沼渣处置垃圾焚烧飞灰的方法
Kamboj et al. Leachate disposal induced groundwater pollution: A threat to drinking water scarcity and its management
CN112591893B (zh) 一种利用微生物的脱氮聚磷作用去除固定铀的方法
CN107080916B (zh) 用于煤矸石堆场污染释放原位控制的材料及方法
CN111777158A (zh) 一种还原降解液相和土壤中溴代阻燃剂的方法
Ivanov et al. Improvement of sludge quality by iron-reducing bacteria
Elgarahy et al. Biosolids management and utilizations: A review
Mishra et al. Suitability of cold rolling mill-effluent sludge as a soil amendment for reclamation of degraded lands
Fitzmorris et al. Biosolids and sludge management

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18819949

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18819949

Country of ref document: EP

Kind code of ref document: A1