WO2018233563A1 - 用于无线通信系统的电子设备、方法和存储介质 - Google Patents

用于无线通信系统的电子设备、方法和存储介质 Download PDF

Info

Publication number
WO2018233563A1
WO2018233563A1 PCT/CN2018/091474 CN2018091474W WO2018233563A1 WO 2018233563 A1 WO2018233563 A1 WO 2018233563A1 CN 2018091474 W CN2018091474 W CN 2018091474W WO 2018233563 A1 WO2018233563 A1 WO 2018233563A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
transmit
synchronization signal
transmit beam
terminal device
Prior art date
Application number
PCT/CN2018/091474
Other languages
English (en)
French (fr)
Inventor
曹建飞
Original Assignee
索尼公司
曹建飞
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to KR1020207022681A priority Critical patent/KR102260824B1/ko
Priority to CA3048935A priority patent/CA3048935A1/en
Application filed by 索尼公司, 曹建飞 filed Critical 索尼公司
Priority to KR1020217016543A priority patent/KR102345218B1/ko
Priority to JP2019567248A priority patent/JP6881614B2/ja
Priority to AU2018287868A priority patent/AU2018287868B2/en
Priority to KR1020197020811A priority patent/KR20190088574A/ko
Priority to BR112019007779-0A priority patent/BR112019007779A2/pt
Priority to MX2019005517A priority patent/MX2019005517A/es
Priority to US16/338,491 priority patent/US10931333B2/en
Priority to RU2019116949A priority patent/RU2768972C2/ru
Priority to CN201880039390.XA priority patent/CN110771081B/zh
Priority to EP23178240.0A priority patent/EP4236582A3/en
Priority to CN202210746150.1A priority patent/CN115149990A/zh
Priority to EP18821592.5A priority patent/EP3633903B1/en
Publication of WO2018233563A1 publication Critical patent/WO2018233563A1/zh
Priority to ZA2019/04398A priority patent/ZA201904398B/en
Priority to US17/156,636 priority patent/US11881913B2/en
Priority to AU2023204609A priority patent/AU2023204609A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0408Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas using two or more beams, i.e. beam diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0417Feedback systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0626Channel coefficients, e.g. channel state information [CSI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0868Hybrid systems, i.e. switching and combining
    • H04B7/088Hybrid systems, i.e. switching and combining using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/005Allocation of pilot signals, i.e. of signals known to the receiver of common pilots, i.e. pilots destined for multiple users or terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0092Indication of how the channel is divided
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/002Transmission of channel access control information
    • H04W74/004Transmission of channel access control information in the uplink, i.e. towards network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/08Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access]
    • H04W74/0833Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access] using a random access procedure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals

Definitions

  • the present disclosure relates generally to wireless communication systems and, in particular, to beam management techniques related to beamforming.
  • wireless communication has never met the needs of people's voice and data communication.
  • wireless communication systems employ various technologies at different levels, such as beamforming techniques. Beamforming can provide beamforming gain to compensate for loss of wireless signals by increasing the directivity of antenna transmission and/or reception.
  • future wireless communication systems for example, 5G systems such as the NR (New Radio) system
  • the number of antenna ports on the base station and the terminal device side will further increase.
  • the number of antenna ports on the base station side can be increased to hundreds or more to constitute a Massive MIMO system.
  • Massive MIMO Massive MIMO
  • beamforming is more used for the data transceiving process between a base station and a terminal device.
  • the initial connection/synchronization between the terminal device and the base station including, for example, the base station transmitting a Synchronization Signal (SS), the terminal device transmitting the random access signal to the base station
  • SS Synchronization Signal
  • the terminal device transmitting the random access signal to the base station is such that the terminal device can properly communicate with the base station.
  • beamforming techniques can be considered for initial connection/synchronization between the terminal device and the base station.
  • beamforming techniques can be considered for the transceiving process of the synchronization signal and the transceiving process of the random access signal.
  • aspects of the present disclosure relate to beam management in beamforming techniques of wireless communication systems.
  • the electronic device may comprise processing circuitry.
  • the processing circuit can be configured to repeatedly transmit a synchronization signal to the terminal device using a different transmit beam based on the transmit beam configuration, the synchronization signal indicating transmit beam information used to transmit the synchronization signal.
  • the processing circuit can also be configured to obtain feedback from the terminal device, the feedback including transmit beam information for transmit beam management.
  • the electronic device comprises a processing circuit.
  • the processing circuit can be configured to receive a synchronization signal based on a transmit beam configuration of a base station side of the wireless communication system, the synchronization signal being capable of indicating a transmit beam information used by the base station to transmit the synchronization signal.
  • the processing circuit can also be configured to provide feedback to the base station, the feedback can include transmitting beam information for use by the base station for transmit beam management.
  • the method can include repeatedly transmitting a synchronization signal to the terminal device using different transmit beams based on the transmit beam configuration, the synchronization signal being capable of indicating transmit beam information used to transmit the synchronization signal; and obtaining feedback from the terminal device
  • the feedback includes transmit beam information for transmit beam management.
  • the method may include receiving a synchronization signal based on a transmit beam configuration of a base station side of the wireless communication system, the synchronization signal being capable of indicating a transmit beam information used by the base station to transmit the synchronization signal; and providing feedback to the base station, the feedback including The beam information is transmitted for use by the base station for transmit beam management.
  • the electronic device may comprise processing circuitry.
  • the processing circuit can be configured to receive a transmit beam configuration from another base station that transmits a synchronization signal to the terminal device based on the transmit beam configuration.
  • the processing circuit can also be configured to transmit a transmit beam configuration to the terminal device.
  • the electronic device comprises a processing circuit.
  • the processing circuit may be configured to obtain random access configuration information; and transmit a random access preamble based on the random access configuration information to indicate a base station side of the downlink paired with one or more receive beams on the terminal device side One or more transmit beams.
  • the electronic device may comprise processing circuitry.
  • the processing circuit may be configured to transmit random access configuration information; and receive a random access preamble transmitted from the terminal device to obtain one of base station sides in the downlink that is paired with one or more receive beams on the terminal device side Or multiple transmit beams.
  • the method may include obtaining random access configuration information; and transmitting a random access preamble based on the random access configuration information to indicate pairing with one or more receive beams on the terminal device side in the downlink. One or more transmit beams on the base station side.
  • the method may include transmitting random access configuration information; and receiving a random access preamble transmitted from the terminal device to obtain a base station in the downlink that is paired with one or more receiving beams on the terminal device side. One or more transmit beams on the side.
  • Another aspect of the disclosure relates to a computer readable storage medium having stored one or more instructions.
  • the one or more instructions when executed by one or more processors of an electronic device, cause the electronic device to perform methods in accordance with various embodiments of the present disclosure.
  • Another aspect of the disclosure relates to various apparatus, including components or units for performing the operations of the methods in accordance with embodiments of the present disclosure.
  • FIG. 1 depicts an exemplary cell synchronization and random access procedure in a wireless communication system.
  • 2A-2D depict an exemplary beam scanning process in beamforming techniques.
  • FIG. 3A illustrates an exemplary electronic device for a base station side in accordance with an embodiment of the present disclosure.
  • FIG. 3B illustrates an exemplary electronic device for a terminal device side in accordance with an embodiment of the present disclosure.
  • 4A-4D illustrate exemplary time domain frequency domain resources for a synchronization signal, in accordance with an embodiment of the disclosure.
  • 5A and 5B illustrate an exemplary synchronization signal time window in accordance with an embodiment of the present disclosure.
  • 6A-6C illustrate an exemplary transmit beam configuration of a base station side in accordance with an embodiment of the disclosure.
  • FIG. 7A-7D illustrate an exemplary correspondence between a transmit beam and a synchronization signal time window in accordance with an embodiment of the present disclosure.
  • 8A and 8B illustrate an exemplary receive beam arrangement on a terminal device side in a base station side specific transmit beam configuration, in accordance with an embodiment of the disclosure.
  • FIG. 9 illustrates an exemplary operation of a secondary node addition in accordance with an embodiment of the present disclosure.
  • FIG. 10 illustrates example performance of beam detection in accordance with an embodiment of the present disclosure.
  • 11A and 11B illustrate an example manner of indicating base station side transmit beam information, in accordance with an embodiment of the present disclosure.
  • 12A and 12B illustrate an example method for communication in accordance with an embodiment of the disclosure.
  • FIG. 13 illustrates an exemplary electronic device for a base station side, according to an embodiment of the present disclosure
  • FIG. 14 illustrates an example hierarchical transmit beam scanning process flow in accordance with an embodiment of the present disclosure.
  • FIG. 15A illustrates an exemplary electronic device for a terminal device side, according to an embodiment of the present disclosure
  • FIG. 15B illustrates an exemplary electronic device for a base station side in accordance with an embodiment of the present disclosure.
  • FIG. 16 illustrates an exemplary random access time window in accordance with an embodiment of the present disclosure.
  • 17A and 17B illustrate an exemplary receive beam configuration at the base station side in accordance with an embodiment of the present disclosure.
  • FIG. 18 illustrates an exemplary correspondence between a base station side receive beam and a random access time window in accordance with an embodiment of the present disclosure.
  • 19A and 19B illustrate an exemplary transmit beam arrangement of a terminal device side in a base station side specific receive beam configuration, in accordance with an embodiment of the present disclosure.
  • 20A and 20B illustrate an example method of transmitting a random access preamble in accordance with an embodiment of the disclosure.
  • FIG. 21A illustrates an exemplary method in which a terminal device transmits a random access preamble according to an embodiment of the present disclosure.
  • 21B illustrates an exemplary method of a base station receiving a random access preamble in accordance with an embodiment of the disclosure.
  • FIG. 22 illustrates an exemplary method of retransmitting a random access preamble in accordance with an embodiment of the present disclosure.
  • 23A and 23B illustrate an example method for communication in accordance with an embodiment of the disclosure.
  • 24 is a block diagram showing an example structure of a personal computer as an information processing device that can be employed in an embodiment of the present disclosure
  • 25 is a block diagram showing a first example of a schematic configuration of a gNB to which the technology of the present disclosure can be applied;
  • 26 is a block diagram showing a second example of a schematic configuration of a gNB to which the technology of the present disclosure can be applied;
  • FIG. 27 is a block diagram showing an example of a schematic configuration of a smartphone to which the technology of the present disclosure can be applied;
  • FIG. 28 is a block diagram showing an example of a schematic configuration of a car navigation device to which the technology of the present disclosure can be applied.
  • a wireless communication system can include multiple base stations, each of which can serve several terminal devices within a respective coverage area (e.g., a cell).
  • An exemplary cell synchronization and random access procedure between the terminal device 110 and the base station 120 is shown in FIG. 1, and the terminal device 110 is one of several terminal devices served by the base station 120. This process can also be applied to any terminal device in a wireless communication system.
  • the terminal device 110 first needs to perform cell search when it is powered on or to switch to the base station 120.
  • One of the purposes of the cell search is to enable the terminal device 110 to acquire the cell frame timing of the base station 120 to obtain the starting position of the downlink frame.
  • the base station 120 transmits the synchronization signal 101 to enable the terminal device 110 to acquire the cell frame timing, and the base station 120 can periodically perform synchronization signal transmission, for example.
  • a synchronization sequence may be included in the synchronization signal, the synchronization sequence selected from the synchronization sequence being known to both the base station and the terminal device.
  • a synchronization signal includes a Primary Synchronization Signal (PSS) and a Secondary Synchronization Signal (SSS).
  • PSS Primary Synchronization Signal
  • SSS Secondary Synchronization Signal
  • the primary synchronization signal may be a Zadoff-Chu sequence of length 63
  • the secondary synchronization signal may be a sequence of length 62 and derived from two M-sequences of length 31.
  • the synchronization signal can be transmitted in a certain time period or time mode, for example, the synchronization signal can be transmitted at fixed locations (e.g., fixed subframes, time slots, and symbol locations) in the downlink frame.
  • the terminal device 110 can perform a correlation operation on the received signal in a single subframe and the synchronization sequence in the known synchronization sequence set one by one at the carrier center, and the peak position of the correlation corresponds to the synchronization signal in the downlink.
  • the location in the road frame whereby the terminal device 110 can obtain downlink cell synchronization.
  • the terminal device 110 can receive the cell system information at an appropriate location in the downlink frame.
  • the system information may be periodically broadcast by the base station 120 through a channel for broadcasting (e.g., broadcast channel PBCH, shared channel PDSCH, etc.), and may include information necessary for the terminal device 110 to access the base station 120, such as random access related information.
  • a channel for broadcasting e.g., broadcast channel PBCH, shared channel PDSCH, etc.
  • An exemplary random access procedure operates as follows.
  • the terminal device 110 can notify the base station 120 of its access behavior by transmitting a random access preamble (e.g., included in the MSG-1) to the base station 120.
  • the transmission of the random access preamble enables the base station 120 to estimate the uplink timing advance (Timing Advance) of the terminal device.
  • the base station 120 can notify the terminal device 110 of the timing advance by transmitting a random access response (e.g., included in the MSG-2) to the terminal device 110.
  • the terminal device 110 can implement uplink cell synchronization by the timing advance.
  • the information of the uplink resource may also be included in the random access response, and the terminal device 110 may use the uplink resource in the following operation 104.
  • the terminal device 110 can transmit the terminal device identification and possibly other information (eg, included in the MSG-3) through the above-described scheduled uplink resources.
  • the base station 120 can determine the contention resolution result by the terminal device identification.
  • base station 120 can inform terminal device 110 of the contention resolution result (eg, included in MSG-4).
  • the competition is successful, the terminal device 110 successfully accesses the base station 120, and the random access process ends; otherwise, the terminal device 110 needs to repeat the random access procedure of operations 102 to 105.
  • the initial connection/synchronization process between the terminal device and the base station can be considered to be complete, and the terminal device can perform subsequent communication with the base station.
  • Beamforming generally refers to the strong directivity of the antenna transmission and/or reception, so that each transmit beam and/or receive beam is limited to a specific direction and beam coverage, and the coverage of each beam is narrower than the full-width beam.
  • the gain of the beam increases.
  • These transmit beams and/or receive beams can be approximately combined into a full width beam.
  • a full-width beam may refer to a beam without beamforming, ie its beamwidth is not narrowed by beamforming processing.
  • the beam of an omnidirectional antenna can be considered to be a full width beam.
  • the transmitting communication device has multiple radio frequency links, each radio frequency link is connected to multiple antennas and their phase shifters, and the signals on each radio frequency link pass through multiple phases having different phases.
  • the antennas are superimposed and transmitted into the air to form a transmit beam.
  • the control unit of the transmitting end communication device determines the phase values of the corresponding plurality of antennas according to the target transmitting beam direction, and configures a corresponding phase shifter to control the transmit beamforming.
  • the receiving end communication device has one or more radio frequency links, each radio frequency link is connected to the plurality of antennas and their phase shifters, and the airborne radio signals are superimposedly received by the plurality of antennas having different phases. The receive beam is thus formed in the link.
  • the control unit of the receiving end communication device determines the phase values of the corresponding plurality of antennas according to the target receiving beam direction, and configures a corresponding phase shifter, thereby controlling the receiving beamforming.
  • control unit of the communication device configures phase shifters of the plurality of antennas of each radio frequency link according to a predetermined codebook, the codebook includes a plurality of codewords, each codeword corresponding to one beam direction, indicating A phase combination of phase shifters.
  • the beam scanning may include a transmit beam scan and a receive beam scan, respectively, which respectively transmit and receive different beams in a predetermined manner over a period of time to cover a certain spatial region, thereby finding a transmit and receive beam suitable for a certain azimuth spatial region. .
  • a pair of matched transmit and receive beams may refer to transmit and receive beam pairs that cause correlation results of synchronization sequence correlation operations when the synchronization signal is received to conform to a certain threshold level.
  • the communication quality of the pair of transmitting and receiving beams (such as received signal strength (such as RSRP), signal to interference and noise ratio (such as CQI), bit error rate (such as BER, BLER), etc.) Can meet certain communication quality needs.
  • received signal strength such as RSRP
  • signal to interference and noise ratio such as CQI
  • bit error rate such as BER, BLER
  • the transmitting end can perform transmit beam scanning through multiple transmit beams.
  • the transmitting end is provided with four transmitting beams, and in the example of Fig. 2B, the transmitting end is provided with three transmitting beams.
  • the receiving end may or may not use receive beamforming depending on the configuration or application requirements.
  • the receiving end uses receive beamforming and performs receive beam scanning through three receive beams.
  • the receiving end does not use receive beamforming and is only provided with one full-width receive beam.
  • the transmitting end and/or the receiving end may also be provided with a hierarchical transmit beam, such as a first level transmit beam (also called a coarse transmit beam) and a second level transmit beam (also called a fine transmit beam).
  • a hierarchical transmit beam such as a first level transmit beam (also called a coarse transmit beam) and a second level transmit beam (also called a fine transmit beam).
  • the transmitting end is provided with three first-level transmit beams (ie, TX_B1 to TX_B3), and each first-level transmit beam is further provided with two second-level transmit beams (for example, two of TX_B1).
  • the fine transmit beams are TX_B1, 1 and TX_B1, 2, and the rest are similar).
  • both the transmitting end and the receiving end are provided with a hierarchical transmit beam.
  • the transmitting beam of the transmitting end is similar to that of FIG. 2C, and the receiving end is provided with three first-level receiving beams (ie, RX_B1 to RX_B3), and each first-level receiving beam is further provided with two second-level receiving beams.
  • the receive beam for example, the two fine transmit beams of RX_B1 are RX_B1, 1 and RX_B1, 2, and the rest are similar.
  • the beamwidth of the coarse transmit beam may be wider than that of the fine transmit beam, and the gain of the fine transmit beam may be larger than that of the coarse transmit beam.
  • the transmitting end can transmit one by one (ie, transmit beam scanning). For example, considering the situation of the receiving end, each transmitting beam can be transmitted once or repeatedly.
  • the receiving end may receive the transmissions (ie, receive beam scans) one by one for each transmission of the transmit beam to determine a matched transmit and receive beam pair. For example, in the example of FIG. 2A, the transmitting end may first transmit 3 times using the transmit beam TX_B1.
  • the receiving end can receive the corresponding one transmission using the receiving beams RX_B1 to RX_B3 one by one, and obtain the corresponding synchronization sequence correlation.
  • the transmitting end can repeatedly transmit the transmission beam TX_B2 three times, and the receiving end can receive the corresponding one transmission using the receiving beams RX_B1 to RX_B3 one by one and obtain the corresponding synchronization sequence correlation.
  • the receiving end can determine the matched transmit and receive beam pairs based on the obtained synchronization sequence correlation.
  • subsequent communication between the transmitting end and the receiving end can be performed using the transmit and receive beam pairs.
  • the number of repeated transmissions of each transmit beam in the above example may be an integer multiple of the number of receive beams.
  • FIG. 2B is an example in which the receiving end does not use receive beamforming.
  • the terminal device receives using a full-width receive beam and determines a corresponding synchronization sequence correlation to determine a transmit beam that matches the full-width receive beam.
  • the transmitting end will communicate using the determined transmit beam.
  • a matched first level transmit beam may be determined first, followed by a matched second level transmit beam under the matched first level transmit beam.
  • the transmitting end may first perform the first level of transmit beam scanning, and the receiving end may determine the first level of the transmitted beam that matches it in a similar manner as described above.
  • the transmitting end performs beam scanning through the second-level transmit beam of the matched first-level transmit beam
  • the receiving end can similarly determine the second-level transmit beam that matches it.
  • the second level transmit beam and the matched receive beam are thus ultimately determined as matched transmit and receive beam pairs for subsequent communication use.
  • the receiving end may directly use the matched receive beam determined when scanning at the first level of the transmit beam as the receive beam for receiving and determining, instead of All receive beams, thereby reducing beam scanning overhead.
  • the transmitting end may first perform the first-level transmit beam scanning, and the receiving end may receive the corresponding first-level receive beam.
  • the matched first level transmit beam and first level receive beam are thus determined in a similar manner as described above.
  • the transmitting end performs beam scanning through the second-level transmit beam of the matched first-level transmit beam
  • the receiving end may receive the second-level receive beam under the corresponding matched first-level receive beam.
  • the matched second level transmit beam and second level receive beam are determined in a similar manner as described above as matched transmit and receive beam pairs for subsequent communication use.
  • the transmitting end may correspond to the base station 120, and the receiving end may correspond to the terminal device 110.
  • the transmitting end may correspond to the terminal device 110, and the receiving end may correspond to the base station 120.
  • the matched transmit and receive beams in the uplink correspond to (eg, are the same) the matched receive and transmit beams in the downlink
  • the transmit and receive beams in the uplink and downlink are referred to.
  • the pair has symmetry.
  • the symmetry means that, in terms of matching with the terminal device 110, the transmit beam and the receive beam of the base station 120 are corresponding, and the matched corresponding receive beam (or transmit) can be determined according to the matched transmit beam (or receive beam) of the base station side. Beam). In terms of matching with the base station 120, the situation on the side of the terminal device 110 is similar.
  • beamforming may be used to transmit a synchronization signal.
  • base station 120 can transmit the synchronization signal using transmit beamforming to compensate for the loss of the synchronization signal to ensure that terminal device 110 properly performs downlink synchronization and random access procedures.
  • the technical solution according to the present disclosure can be used in various communication frequency bands, including conventional radio frequency communication bands ranging from several hundred MHz to several GHz.
  • the transmission of the synchronization signal may indicate the transmit beam information used to transmit the synchronization signal, so that the terminal device may obtain the transmission beam information by receiving the synchronization signal for simplifying and speeding up subsequent data transmission. Beam scanning.
  • the synchronization signal may be repeatedly transmitted by the base station to the plurality of terminal devices including the terminal device using different transmit beams based on the transmit beam configuration, and the synchronization signal may include a transmit beam used to transmit the synchronization signal Information, as described below herein.
  • base station 120 will repeatedly transmit synchronization signals in a plurality of different transmit beams, redesigning the synchronization signal time window in the downlink frame, as herein It will be described in detail later.
  • the repeating pattern of multiple transmit beams in a transmit beam scan may be represented by a transmit beam configuration, and a synchronization signal may be transmitted based on the transmit beam configuration.
  • the terminal device can receive the synchronization signal in a variety of ways. Upon receiving the synchronization signal, the terminal device can determine at least the transmit beam of the base station that matches the terminal device and feed back the matched transmit beam to the base station by any suitable means, including the following description of the present disclosure and any other manner. At least the transmit beam of the matched base station can be used for subsequent communication between the base station and the terminal device (including a random access procedure and a data transceiving process).
  • the terminal device 110 may not use receive beamforming when receiving the synchronization signal to compromise between fast synchronization and reduced subsequent beam scanning overhead. At this time, it can be considered that the terminal device 110 receives the synchronization signal transmitted by each of the transmit beams on the base station side with its own full-width beam, and feeds back the transmit beam of the base station side that matches the full-width beam to the base station when the synchronization signal is successfully received. 120. In another embodiment, the terminal device 110 may also use receive beamforming when receiving the synchronization signal to resist fading of the high frequency synchronization signal and save subsequent beam scanning overhead.
  • the base station 120 and the terminal device 110 use the same beam as the transmit beam and the receive beam of the synchronization signal for data transmission and reception, in other words, the synchronization signal and the beamforming codebook of the data signal are the same.
  • the base station 120 and the terminal device 110 use the transmit beam and the receive beam of the matched synchronization signal as the first level beam pair, and perform a second level beam scan within the coverage range of the first level beam pair to determine finer transmission and reception.
  • the beam pair is used for data transceiving, in other words, the beamforming codebook of the synchronizing signal and the data signal, and the beamforming codebook of the data signal is a subset of the beamforming codebook of the synchronizing signal.
  • the terminal device may also be based on the transmit beam configuration of the base station transmitting the synchronization signal (eg, how many transmit beams are shared, and the number of repetitions of each transmit beam) ) to set the receiving beam of the terminal device to receive the synchronization signal. For example, since the terminal device 110 needs to perform receive beam scanning, that is, using different receive beams to receive signals transmitted by the base station side through the same transmit beam, the terminal device 110 may need to know the transmit beam configuration of the base station 120. In one example, the transmit beam configuration of base station 120 can be communicated to the terminal device in advance.
  • the transmit beam configuration of base station 120 can be communicated to the terminal device in advance.
  • the terminal device can simultaneously obtain the service of the base station 120 and another base station (for example, an LTE eNB) that does not perform beamforming transceiver by means of dual connectivity, and the terminal device 110 can obtain the transmission of the base station 120 from the other base station.
  • Beam configuration information for example, an LTE eNB
  • the terminal device 110 first accesses the another base station (which may be referred to as a primary base station) according to a conventional manner, and the primary base station requests the base station 120 to add it as a secondary base station to the terminal device 110 through, for example, an Xn interface, and the base station 120 feeds back the secondary base station to add A confirmation is sent to the primary base station, which includes synchronization signal transmit beam configuration information for base station 120, and may also include random access configuration information in some examples.
  • the primary base station provides such information to the terminal device 110 for completion of synchronization with the base station 120, for example, in a radio resource control connection reconfiguration message.
  • the terminal device 110 can obtain the transmit beam configuration of the base station 120 from the synchronization signal transmitted by the base station 120.
  • the terminal device 110 can estimate the transmit beam configuration of the base station 120 by the measurement process of the synchronization signal.
  • the feedback of the matched base station side transmit beam by the terminal device will be briefly described below.
  • the terminal device 110 in order for the terminal device 110 to be able to feed back the matched base station side transmit beam to the base station 120, it is also necessary to indicate the transmit beam in some manner.
  • the beam scanning result report can be performed by indicating the transmitting beam of the matched base station side in an implicit or explicit manner. This beam scan result report can be included in the random access procedure performed by the terminal device.
  • the feedback related to the transmit beam of the base station side may be transmitted separately from the random access preamble, for example, before or after the random access preamble.
  • the terminal device transmitting the random access preamble may indicate a transmit beam on the base station side in the downlink that matches the reception behavior on the terminal device side, as described herein below.
  • the terminal device transmits a random access preamble to indicate a transmit beam on the base station side that matches the receive beam on the terminal device side in the downlink; and does not use receive beamforming for the terminal device.
  • the terminal device transmitting the random access preamble may indicate a transmit beam on the base station side in the downlink that matches the reception behavior of the terminal device side that does not use beamforming.
  • the terminal device 110 transmits a random access preamble based on the random access configuration information to indicate a base station side transmit beam in the downlink that matches the receive beam on the terminal device side.
  • the random access configuration information may include a correspondence between a base station side receive beam and a plurality of random access time windows.
  • the correspondence may include a correspondence between multiple level receiving beams on the base station side and multiple random access time windows.
  • the terminal device 110 may transmit a random access preamble based on the correspondence.
  • the base station can identify the corresponding transmit beam on the base station side by receiving the random access preamble in a particular time window. This is an example of indicating a matching transmit beam on the base station side in an implicit manner.
  • the base station side transmit beam that matches the receive beam on the terminal device side in the downlink may also be indicated by a random access preamble subsequent uplink message, such as an additional bit, etc., which is An example of the way.
  • a first aspect according to the present disclosure which mainly discloses transceiving of a synchronization signal according to an embodiment of the present disclosure, is described below in conjunction with FIGS. 3A through 14.
  • the synchronization signal is transmitted from the base station side to the terminal device side by beamforming, the terminal device receives the synchronization signal, and obtains information of the transmission beam used by the base station to transmit the synchronization signal. Thereafter, the terminal device feeds back the obtained transmit beam information back to the base station, whereby the base station can learn from the feedback the transmit beam used by the synchronization signal for subsequent communication.
  • the operations according to the first aspect of the present disclosure may be performed by electronic devices on the base station side and the terminal device side. The operation according to the first aspect of the present disclosure will be described in detail below.
  • FIG. 3A illustrates an exemplary electronic device for a base station side, where the base station can be used with various wireless communication systems, in accordance with an embodiment of the present disclosure.
  • the electronic device 300A shown in FIG. 3A can include various units to implement the first general aspect in accordance with the present disclosure.
  • the electronic device 300A may include, for example, a synchronization signal transmitting unit 305 and a feedback acquisition unit 310.
  • the electronic device 300A may be, for example, the base station 120 in FIG. 1 or may be part of the base station 120, or may be a device for controlling a base station (for example, a base station controller) or a device for a base station or their portion.
  • the various operations described below in connection with the base station can be implemented by units 305, 310 or other units of electronic device 300A.
  • the synchronization signal transmitting unit 305 can be configured to transmit a synchronization signal to the terminal device by beamforming to indicate the transmit beam information used to transmit the synchronization signal.
  • the synchronization signal transmitting unit 305 may repeatedly transmit the synchronization signal to the terminal device using different transmission beams based on the transmission beam configuration, and the synchronization signal includes transmission beam information used to transmit the synchronization signal.
  • the synchronization signal itself may include or indicate transmit beam information used to transmit the synchronization signal.
  • a transmission resource, such as a frequency, time parameter, used to transmit the synchronization signal may indicate the above-described transmit beam information.
  • the transmit beam information can include transmit beam IDs, each transmit beam ID corresponding to a particular oriented transmit beam.
  • the feedback acquisition unit 310 can be configured to obtain feedback from the terminal device, the feedback including transmit beam information for transmit beam management.
  • the transmit beam corresponding to the transmit beam information may be a transmit beam that is matched or matched with the terminal device.
  • the feedback acquisition unit 310 can directly receive feedback sent from the terminal device.
  • the feedback acquisition unit 310 can obtain feedback from the terminal device from another base station via, for example, the Xn interface, such as from the primary base station in the dual connectivity described above. The feedback and the process of providing feedback will be described in detail below.
  • the electronic device 300A can obtain transmit beam information, such as a transmit beam ID, from the feedback.
  • the transmit beam represented by the transmit beam ID is a transmit beam that is matched with the terminal device, and the electronic device 300A can manage the transmit beam matched with each terminal device to use the transmit beam in subsequent downlink communication with the terminal device. .
  • FIG. 3B illustrates an exemplary electronic device for a terminal device side, where the terminal device can be used in various wireless communication systems, in accordance with an embodiment of the present disclosure.
  • the electronic device 300B shown in FIG. 3B can include various units to implement the first general aspect in accordance with the present disclosure.
  • the electronic device 300B may include a synchronization signal receiving unit 325 and a feedback providing unit 330.
  • the electronic device 300B may be, for example, the terminal device 110 of FIG. 1 or may be part of the terminal device 110.
  • the various operations described below in connection with the terminal device can be implemented by units 325, 330 of the electronic device 300B or other units.
  • the synchronization signal receiving unit 325 can be configured to receive a synchronization signal to obtain transmit beam information used by the base station to transmit the synchronization signal based on the received synchronization signal. In one embodiment, the synchronization signal receiving unit 325 can be configured to receive the synchronization signal based on a transmit beam configuration of the base station side of the wireless communication system. Alternatively or additionally, the synchronization signal receiving unit 325 may obtain the above-described transmission beam information based on a transmission resource, such as a time or frequency parameter, used to transmit the synchronization signal. In some embodiments, the transmit beam information can include a transmit beam ID.
  • the feedback providing unit 330 can be configured to provide feedback to the base station, the feedback can include or indicate transmit beam information for use by the base station for transmit beam management.
  • the transmit beam corresponding to the transmitted transmit beam information is the transmit beam that is matched or most closely matched to the reception of electronic device 300B (eg, determined based on synchronization signal transceiving).
  • the feedback providing unit 330 can transmit the feedback directly to the base station that transmitted the synchronization signal to the electronic device 300B.
  • feedback providing unit 330 can forward feedback to the base station via another base station (e.g., via a dual-connected primary base station).
  • a synchronization signal and its transceiving which may include or indicate transmit beam information of a base station transmit beam, will be described in detail below.
  • the synchronization signal itself may indicate information of the transmit beam transmitting the synchronization signal by utilizing a different synchronization sequence or by including different additional bits, or the particular transmission mode of the synchronization signal may indicate information of the transmit beam transmitting the synchronization signal.
  • the synchronization signals transmitted by the base station may have different types.
  • Each type of synchronization signal can generally include a corresponding synchronization signal sequence.
  • the synchronization signal can include at least a primary synchronization signal and a secondary synchronization signal.
  • the synchronization signal may further include a third synchronization signal (Tertiary Synchronizing Signal, TSS).
  • TSS Tertiary Synchronizing Signal
  • a synchronization signal needs to be transmitted on a time domain frequency domain resource.
  • the plurality of synchronization signals may be continuous in the time domain; in other embodiments, the plurality of synchronization signals may be discontinuous in the time domain.
  • the plurality of synchronization signals may be continuous in the frequency domain; in other embodiments, the plurality of synchronization signals may be discontinuous in the frequency domain.
  • the frequency domain resources used to transmit the synchronization signal may be relatively fixed, such as may be a number of resource blocks or subcarriers in the center of the band, and the corresponding time domain resources may be located at predetermined locations in the downlink frame.
  • the frequency domain resources used for transmitting the primary synchronization signal and the secondary synchronization signal may be several (for example, six) resource blocks of the frequency band center (not specifically shown).
  • the time domain resource for transmitting the primary synchronization signal may be located at one OFDM symbol of the first time slot of the subframe number 5 in one downlink frame, for transmitting the time domain of the secondary synchronization signal
  • the resource may be located at another OFDM symbol of the first slot of the subframe in the downlink frame.
  • the primary sync signal and the secondary sync signal are discontinuous in the time domain.
  • 4B is similar to FIG. 4A, but in the example of FIG. 4B the primary synchronization signal and the secondary synchronization signal are continuous in the time domain.
  • the frames including a plurality of subframes shown in FIGS. 4A and 4B are repeated in the time domain, and each frame may have a radio frame number having a certain period.
  • a radio frame number also referred to as a system frame number (SFN)
  • SFN system frame number
  • each frame can be identified within a range of 1024 frames.
  • one frequency domain resource block can be used to transmit the primary synchronization signal, and another frequency domain resource block can be used to transmit the secondary synchronization signal.
  • the primary sync signal and the secondary sync signal are discontinuous in the frequency domain. See Figure 4D (i.e., arrangements (1) through (5)) for more placement of different types of synchronization signals over time domain frequency domain resources.
  • time domain resources for transmitting different types of synchronization signals may have a certain positional relationship.
  • the location relationship can include an order between time domain resources.
  • the symbol for the secondary synchronization signal in FIG. 4A is preceded by the symbol for the primary synchronization signal; and the symbol for the primary synchronization signal is preceded by the symbol for the secondary synchronization signal in FIG. 4B.
  • the location relationship may include an interval between time domain resources.
  • the symbols for the primary synchronization signal and the secondary synchronization signal in FIG. 4A are separated by 3 symbols; and the symbols for the primary synchronization signal and the secondary synchronization signal in FIG. 4B are separated by 0 symbols.
  • frequency domain resource blocks for transmitting different types of synchronization signals may also have similar positional relationships.
  • the positional relationship may also be a combined time domain and frequency domain positional relationship.
  • system information may be represented by relative positions of different types of synchronization signals in the time or frequency domain.
  • the system information can include at least one of a duplex type of a wireless communication system and a different cyclic prefix length.
  • the order between the primary synchronization signal and the secondary synchronization signal may indicate a duplex type (eg, the primary synchronization signal formerly represents TDD, and the latter represents FDD), and the interval between the primary synchronization signal and the secondary synchronization signal may represent a different cycle.
  • the prefix length (such as an interval of 3 symbols indicates an extended cyclic prefix, etc.).
  • Figure 4D shows five exemplary arrangements of synchronization signals on time domain frequency domain resources (the horizontal direction represents the time domain and the vertical direction represents the frequency domain).
  • the (time domain, frequency domain, or a combination thereof) positional relationship between different types of synchronization signals in these arrangements may represent different system information.
  • the exemplary arrangement in Figure 4D has in common that the individual synchronization signals are continuous, i.e., continuous in the time domain, frequency domain or time-frequency domain. It can be considered that these different types of consecutive sync signals form a sync block (SS Block).
  • the synchronization signal can be carried in each sync signal block and transmitted repeatedly.
  • the sync signal block may correspond to N OFDM symbols based on a default subcarrier spacing, where N is a constant.
  • the terminal device may obtain at least a slot index and a symbol (eg, OFDM symbol) index in the radio frame from the synchronization signal block.
  • the sync signal block may also include a channel for broadcasting from which the terminal device obtains the radio frame number.
  • the sync signal block may also include a PBCH broadcast channel.
  • the synchronization information may include transmit beam information of a transmit beam used by the base station to transmit the synchronization signal.
  • different sync signal blocks may include different sync signal content (eg, different sync signal sequences or different additional information bits) to indicate the transmit beam information (transmit beam ID) used to transmit the sync signal block.
  • the synchronization signals can be transmitted in specific time windows in the downlink frames, which can be arranged in a certain time period or time pattern. These time windows may correspond to a particular transceiver timing of the sync signal/synchronization signal block.
  • the synchronization signal since the synchronization signal is transmitted using beamforming, more synchronization signal transmission windows are required for: 1) transmission using a plurality of different beams, and 2) repetition using a single beam send.
  • the time window for a plurality of sync signal blocks may be scattered or discontinuous in the downlink frame. See Figure 5A for a corresponding example.
  • time windows for transmitting sync signal blocks are arranged at a certain period, and each sync signal block may include, for example, a main sync signal, a sub sync signal, and a broadcast channel.
  • multiple (eg, 2, 4, 8, 12, 16) sync signal blocks may be concentrated (ie, consecutive) in the time domain to form a synchronization signal burst (SS Burst) to The transmit signal is transmitted using transmit beamforming.
  • the sync signal burst can include a plurality of consecutive sync signal blocks.
  • the length of the sync signal burst can be represented by the number of sync signal blocks included.
  • Multiple sync signal bursts may have a certain interval in the time domain. Since the synchronization signal burst can concentrate a plurality of synchronization signal blocks, the base station and the terminal device can perform beam scanning faster while transmitting and receiving the synchronization signal.
  • Each sync signal block may also include, for example, a primary sync signal, a secondary sync signal, and a broadcast channel.
  • the transmission time window of the synchronization signal is often designated to correspond to a particular time parameter of the downlink frame.
  • the sync signal burst, sync signal block and sync signal in Figures 5A and 5B can be associated with the time parameter of the downlink frame via a time window, which can include an OFDM symbol index, a radio frame, Slot index and radio frame number, etc.
  • a time window which can include an OFDM symbol index, a radio frame, Slot index and radio frame number, etc.
  • the sync signal burst, sync block or sync signal is located in a certain radio frame, and is specifically located at a certain OFDM symbol of a certain slot. That is, the terminal device can identify one or more of an OFDM symbol index, a slot index in a radio frame, and a radio frame number according to the reception of the synchronization signal block or the synchronization signal.
  • the manner in which the synchronization signal is transmitted may indicate information of a transmit beam used to transmit the synchronization signal.
  • these time parameters can be combined with a transmit beam configuration for identifying (eg, by a terminal device) a transmit beam used by the synchronization signal.
  • the base station side may transmit a synchronization signal based on the transmit beam configuration.
  • the repetition pattern of multiple transmit beams on the base station side can be represented by a transmit beam configuration.
  • the transmit beam configuration may include or indicate at least two aspects of information, namely the number of transmit beams and the number of times that each transmit beam is repeatedly transmitted (eg, a synchronization signal).
  • the transmit beam configuration may also specify a time parameter for at least one synchronization signal transmission.
  • the transmit beam configuration may specify the number of transmit beams that the base station can use to transmit the synchronization signal and the number of times each transmit beam is transmitted continuously.
  • 6A and 6B illustrate an exemplary transmit beam configuration at the base station side, in accordance with an embodiment of the present disclosure. As shown in FIG. 6A, the transmit beam configuration 600A specifies that the base station side has four transmit beams TX_B1 to TX_B4 for transmitting the synchronization signal, and each of the transmit beams can be used continuously for three times to transmit the synchronization signal. As shown in FIG.
  • the transmit beam configuration 600B specifies that there are 12 transmit beams TX_B1 to TX_B12 on the base station side for transmitting the synchronization signal, and the synchronization signal can be transmitted only once per transmit beam.
  • the transmit beam configuration may be represented in N x M times.
  • an exemplary transmit beam configuration in which four different transmit beams are repeated in FIG. 6A and each transmit beam is repeated three times may be referred to as 4 x 3 times configuration.
  • the example configuration in FIG. 6B may be referred to simply as 12 x 1 configuration.
  • These transmit beam configurations are only examples.
  • the number of transmission beams may be any number, and the number of repetitions may be one or more times.
  • the electronic device 300A may transmit a synchronization signal using each of a plurality of (eg, 4 or 12) transmit beams based on a transmit beam configuration, and continuously transmit a synchronization signal using each transmit beam.
  • the specified number of times for example, 3 or 1 time (ie, transmit beam scanning).
  • the transmit beam configuration may specify the number of different levels of transmit beams that the base station can use to transmit the synchronization signal and the number of times each transmit beam is transmitted using different levels.
  • FIG. 6C illustrates an exemplary transmit beam configuration in the case of a hierarchical transmit beam on the base station side, in accordance with an embodiment of the present disclosure. It is assumed that there are four first-level transmit beams on the base station side, and each first-level transmit beam has two second-level transmit beams.
  • the first level of transmit beam configuration can be, for example, as shown in Figure 6A
  • the second level of transmit beam configuration can be, for example, as shown in Figure 6C.
  • the second level of transmit beam configuration 600C specifies eight second level transmit beams TX_B1,1 through TX_B4,2 for transmitting synchronization signals, and each of the second level transmit beams can be used continuously for three times to transmit the synchronization signals.
  • the hierarchical transmit beam configuration may also be represented in N x M times.
  • the first level transmit beam configuration of FIG. 6C can be represented as 4 x 3 times configuration
  • the second level transmit beam configuration can be represented as 2 x 3 times configuration (where "2" second level transmit beams correspond to a single first Level transmit beam) or 8 x 3 times configuration (where "8" second level transmit beams correspond to the first level transmit beam as a whole).
  • electronic device 300A may be configured to transmit a synchronization signal using each of the different levels of transmit beams and continuously transmit a synchronization signal for each specified number of times using each transmit beam.
  • the transmit beam configuration may also indicate a correspondence of base station side transmit beams to a plurality of synchronization signal time windows, such as by indicating a correspondence between a particular transmit of a particular transmit beam and a synchronization signal time window.
  • transmit beam configuration 600A may specify a time window for transmission using a first synchronization signal of transmit beam TX_B1 (eg, specifying a time parameter of the time frame including a particular frame, subframe, time slot, and/or OFDM symbol, etc.).
  • the electronic device 300A may transmit the synchronization signal using the transmission beam TX_B1 based on the time window/time parameter, and continue the subsequent transmission based on the arrangement of the synchronization signal time window and the transmission beam configuration.
  • the electronic device 300B can determine the transmit beam used to transmit the synchronization signal based on the time window/time parameter and the transmit beam configuration of the successful reception of the synchronization signal. Specific examples can be referred to the following description of FIGS. 7A through 7D.
  • 7A through 7D illustrate correspondence between a transmit beam and a sync signal block (or sync signal), according to an embodiment of the present disclosure.
  • 7A and 7B show an exemplary correspondence relationship in a 4 ⁇ 3 order configuration, in which FIG. 7A corresponds to a case where sync signal blocks are temporally dispersed, and FIG. 7B corresponds to a case where sync signal blocks form a sync signal burst. .
  • the first transmit beam is used to transmit the sync signal block at the three sync signal block positions of the first group.
  • the sync signal block is transmitted using the second transmit beam.
  • the sync signal blocks are transmitted using the third and fourth transmit beams, respectively.
  • FIG. 7A shows only one cycle of the exemplary beam configuration, and the above arrangement may be repeated at a later time to transmit a synchronization signal.
  • the sync signal blocks are arranged in time as sync signal bursts, and the signal bursts can be transmitted based on a certain period.
  • the length of the sync signal burst is exactly 12 sync signal blocks, so it matches the 12 sync signal transmissions in the 4 x 3 times configuration.
  • the length of the sync signal burst does not exactly match the transmit beam configuration (eg, a sync burst of length 15 may not exactly match the configuration of 4 x 3 times), and thus may Match the two by pre-configuration.
  • the sync signal block is transmitted using the first transmit beam at the three sync signal block positions of the first group.
  • the sync signal block is transmitted using the second transmit beam.
  • the sync signal blocks are transmitted using the third and fourth transmit beams, respectively. Thereafter, for the next sync signal burst, the above arrangement is repeated to transmit the sync signal.
  • different transmit beam configurations may be selected as needed, for example, 6 x 3 times, 8 x 2 times, and the like.
  • a sync signal burst for example for a sync signal burst of length 12
  • the configuration may be; in addition, there may be other lengths of synchronization signal bursts and corresponding transmit beam configurations (eg, 5 x 3 times configuration, length 15 sync signal bursts).
  • the selection of the transmit beam configuration includes, for example, the number of transmit beams supported by the base station, the number of transmit beams supported by the terminal device, and the like. For example, in the case that the coverage of the cell is large, the synchronization signal is required to cover a relatively long distance. Therefore, a larger transmit beamforming gain on the base station side is required, and each transmit beam angle can be relatively narrow, and accordingly, the number of transmit beams is relatively large. .
  • each transmit beam angle can be relatively wide, and accordingly the number of transmit beams is small.
  • the receiving beam of the terminal device is large, it is possible to select, for example, two x 6 times, three x 4 times configurations.
  • the terminal device uses a full-width receive beam, it is possible to select a configuration of 12 x 1 time. Since the synchronization signal transmit beam configuration of the base station is cell-specific rather than terminal-specific, in some examples the base station can count the receive beamforming capabilities of its already served terminal devices, setting the transmit beam configuration according to the fairness principle.
  • the time window/time parameter and the transmit beam configuration for successfully receiving the synchronization signal can be used to determine the use of the synchronization signal to transmit the synchronization signal. Transmit beam.
  • the time parameter t1 corresponding to the first transmit beam 701 is known, and the terminal device receives the synchronization signal from the sync signal block and determines the time parameter t2 of the transmit beam 702.
  • the sync signal block period is T, then (t1-t2)/T indicates that the transmit beam 702 is the first transmit beam transmission after the transmit beam 701.
  • T the sync signal block period
  • the terminal device can determine that the transmit beam 702 is the ninth transmit beam transmission after the transmit beam 701, and can be determined by combining four of the four x 3 times configurations and three times for each beam. Transmit beam 702 is the fourth transmit beam.
  • the method is equally applicable to FIG. 7B, except that the period to be considered includes the sync signal burst period and the period of the intra-burst sync signal block.
  • the terminal device can receive the synchronization signal from the base station side in a variety of ways. According to an embodiment, if the terminal device does not use beamforming to receive the synchronization signal (ie, using a full-width reception beam), the electronic device 300B on the terminal device side may only need to use the full-width beam reception base station to transmit through different transmit beams. Synchronization signal. According to one example, for a consecutive number of transmissions of each transmit beam, a full-width beam can be used to receive all number of transmit beams, or only one transmit beam, such as the first transmitted transmit beam.
  • a full-width beam can be used to receive all times of transmit beams, or only all transmit beams received once, such as all transmit beams transmitted for the first time.
  • the electronic device 300B on the terminal device side may be configured to use different receive beam receive synchronization for the transmission of the specified number of transmissions for each of the transmit beams for the base station.
  • Signal ie receive beam scan.
  • different receive beams may be used to receive the synchronization signals transmitted by the same transmit beam.
  • the same receive beam can be used to receive all transmit beams that are sent in sequence, or different receive beams are used to receive transmit beams until each receive beam Capable of receiving all transmit beams.
  • the electronic device 300B on the terminal device side needs to know or can know the transmission beam configuration, thereby determining its own reception beam arrangement.
  • the reception beam arrangement employed by the terminal device when the terminal device performs the synchronization signal reception will be exemplarily described below.
  • the terminal device may or may not use receive beamforming to receive synchronization signals transmitted by the base station by transmit beamforming.
  • Figure 8A shows an exemplary receive beam arrangement of a terminal device in a 4 x 3 transmit beam configuration.
  • the receive beam arrangements 1 and 2 in Fig. 8A correspond to the case where the terminal device does not use receive beamforming to receive the synchronization signal.
  • electronic device 300B may generally use receive beam arrangement 1 , that is, receive each transmission of each transmit beam using a full-width receive beam (eg, RX_B1).
  • An advantage of the receive beam arrangement 1 is that the diversity gain can be obtained for multiple transmissions through each transmit beam.
  • the electronic device 300B may perform a correlation operation based on the content of the synchronization signal block, and the transmit/receive beam pair having the highest correlation or higher than a certain predetermined threshold is the matched transmit beam. For example, when the synchronization signal receiving the transmit beam 2 is more correlated than the other transmit beams, the transmit beam 2 can be considered to match the full width receive beam. In a preferred specific example, considering that the number of sequences in the primary synchronization signal sequence set is much smaller than the number of sequences in the secondary synchronization signal sequence set, the design electronic device 300B firstly receives the received transmission beam in the synchronization signal block.
  • the synchronization signal sequence is correlated with each of the pre-stored primary synchronization signal sequence sets, and the matched transmission beam (and the matched primary synchronization signal sequence) is determined according to the correlation degree of the primary synchronization signal sequence carried by each transmission beam, and then Correlating the secondary synchronization signal sequence in the synchronization signal block carried by the matched transmit beam with each of the secondary synchronization signal sequence sets to determine a matched secondary synchronization signal sequence, and the electronic device 300B next according to the matched primary synchronization signal
  • PCI physical cell identity
  • the PSS values are 0...2 (actually 3 different PSS sequences), and the SSS values are 0...167 (actually 168 different SSS sequences).
  • the range of PCI can be obtained by using the above formula. It is from 0...503, so there are 504 PCIs in the physical layer.
  • the synchronization signal further includes the third synchronization signal
  • the matching of the third synchronization signal sequence is finally performed and the PCI is calculated according to the redesigned PCI calculation formula (the specific formula is not the technical problem intended to be solved by the present disclosure, and is not described herein).
  • the complexity of the synchronization scheme based on the present disclosure can be effectively reduced, and in particular, the number of SSSs in the next generation cellular network may increase to thousands, and the technical effect of the preferred example is particularly remarkable at that time.
  • the electronic device 300B knows the transmit beam configuration of the base station, only partial transmission in multiple repeated transmissions of each transmit beam may be received.
  • electronic device 300B may use receive beam arrangement 2, that is, for multiple transmissions of each transmit beam, using a full-width receive beam (e.g., RX_B1) to receive only once (e.g., only receive the first transmission).
  • the advantage of the receiving beam arrangement 2 is that the receiving resources (e.g., energy consumption, etc.) of the terminal device can be saved.
  • the receive beam arrangements 3 and 4 in Fig. 8A correspond to the case where the terminal device receives the synchronization signal using 2 or 3 different receive beams, respectively.
  • the electronic device 300B needs to receive using different receive beams.
  • the electronic device 300B needs to know the transmit beam configuration of the base station to arrange the corresponding receive beams.
  • the receive beam arrangement 3 or 4 since the electronic device 300B knows that each transmit beam is repeated 3 times, it is possible to arrange its own receive beams in these 3 repetitions, so that each receive beam is used at least once, thereby implementing beam scanning.
  • Figure 8A shows only one cycle of transmission of different transmit beams, which can be followed by the next cycle.
  • Figure 8A is merely a schematic arrangement of time windows, which may represent the relative positions of the various time windows, but does not indicate their exact location in the downlink frame.
  • multiple discrete time windows can be used as in Figures 7A and 7C, or multiple consecutive time windows can be used as in Figures 7B and 7D.
  • the time windows in the various figures herein and the distances between them are merely illustrative and not necessarily to scale.
  • Figure 8A can be considered to show a first level of transmitted beams and corresponding various receive beam arrangements.
  • the second level of transmit beam can be followed by the first level of transmit beam.
  • Figure 8B shows a second level of transmit beam configuration and an exemplary receive beam arrangement of the terminal device.
  • the first level configuration of the hierarchical transmit beam configuration may be the above 4 ⁇ 3 times transmit beam configuration
  • the second level configuration may be 2 ⁇ 3 times transmit beam configurations, ie, each coarse transmit beam corresponding Two fine transmit beams, each of which is repeated three times (for simplicity, only the thin beams corresponding to the first two coarse beams are shown).
  • each of the fine transmit beams corresponding to each coarse transmit beam is successively repeated up to the number of times indicated in the transmit beam configuration.
  • the fine transmit beam TX_B1,1 corresponding to the coarse transmit beam TX_B1 is first repeated 3 times, and then TX_B1, 2 is also repeated 3 times, thereby completing the scanning of the fine transmit beam corresponding to the first coarse transmit beam TX_B1.
  • scanning of the fine transmit beam corresponding to the next coarse transmit beam is sequentially performed.
  • the reception beam arrangements 1 and 2 correspond to the case where the terminal device does not use reception beamforming.
  • the electronic device 300B can use the receive beam arrangement 1 , that is, receive each transmission of each transmit beam using a full-width receive beam (eg, RX_B1).
  • An advantage of the receive beam arrangement 1 is that the diversity gain can be obtained for multiple transmissions through each transmit beam.
  • the electronic device 300B may perform a correlation operation based on the content of the synchronization signal block, and the transmit and receive beam pairs having the highest correlation or higher than a certain predetermined threshold are the matched transmit and receive beam pairs.
  • TX_B2,1 when the correlation of the synchronization signal receiving TX_B2,1 is higher than that of other transmission beams, TX_B2,1 can be considered to match RX_B1.
  • the electronic device 300B knows the transmit beam configuration of the base station, the electronic device 300B can also use the receive beam arrangement 2, that is, for multiple repeated transmissions for each transmit beam, only partial transmissions are received. For example, a full-width receive beam (eg, RX_B1) can be received only once (eg, only the first transmission is received).
  • RX_B1 a full-width receive beam
  • An advantage of the receiving beam arrangement 2 is that the receiving resources (e.g., energy consumption, etc.) of the terminal device can be saved.
  • the receive beam arrangements 3 and 4 in Fig. 8B correspond to the case where the terminal device receives the synchronization signal using 2 or 3 different receive beams, respectively.
  • the electronic device 300B needs to receive using different receive beams.
  • the electronic device 300B needs to know the transmit beam configuration of the base station to arrange the corresponding receive beams.
  • the receiving beam arrangement 3 or 4 since the electronic device 300B knows that each fine transmitting beam is repeated 3 times, it is possible to arrange its own receiving beam in these 3 repetitions, so that each receiving beam is used at least once, thereby realizing the beam.
  • Figure 8B shows one cycle of different fine transmit beam transmissions.
  • the length of the sync signal burst can be matched to the transmit beam configuration by a prior configuration such that the entire transmit beam configuration can be known with knowledge of one of the number of transmit beams or the number of repetitions.
  • a sync burst of length 12 matches the four x 3 times configuration described above.
  • a sync burst of length 12 once it is known that there are 4 transmit beams, it can be known that each transmit beam is repeated 3 times; vice versa.
  • the terminal device in order to facilitate the terminal device to receive the synchronization signal, the terminal device needs to know the transmit beam configuration of the base station side. However, the terminal device cannot obtain any information about the transmit beam configuration from the base station by signaling before successfully receiving the synchronization signal. According to an embodiment of the present disclosure, the terminal device may obtain a transmit beam configuration by at least obtaining a transmit beam configuration by other base stations, and/or obtaining a transmit beam configuration by transmitting beam measurements.
  • the electronic device 300A for the base station may be configured to pass the transmit beam configuration to another base station serving the terminal device through the dual connection, the transmit beam configuration may be indicated by the other base station to the terminal device.
  • Dual Connectivity is a technology that enables a terminal device to communicate with a plurality of base stations, thereby increasing the data rate.
  • the terminal device can maintain a connection with both the first base station and the second base station.
  • the second base station may be added to form a dual connection according to a desire (for example, an increase in data rate), then the first base station becomes the primary node, and the second base station becomes the secondary node.
  • the primary node may be an eNB in an LTE system
  • the secondary base station may be a corresponding node in a 5G system, such as a gNB in an NR system.
  • the adding operation may be implemented by a secondary node addition operation as follows.
  • FIG. 9 illustrates an exemplary operation of a secondary node addition in accordance with an embodiment of the present disclosure.
  • the electronic device 300A may correspond to a second base station by which the terminal device forms a dual connection with the two base stations.
  • the first base station can transmit a secondary node addition request message to the second base station to request the second base station to allocate radio resources for communicating with the terminal device.
  • the first base station may indicate a configuration of a primary cell group (MCG) serving the terminal device and a terminal device capability, and may provide a secondary cell group (SCG) from the second base station that is required to be added to the terminal device. The measurement results of the cell.
  • MCG primary cell group
  • SCG secondary cell group
  • the second base station can allocate a corresponding resource and transmit a secondary node add request ACK to the first base station after the radio resource management entity grants the resource request.
  • the second base station may trigger random access so that synchronization of the secondary node radio resource configuration may be performed.
  • the second base station may provide the first base station with new radio resources of the SCG and beam configuration information of the primary cell PSCell among the SCGs.
  • the beam configuration information may also include beam configuration information of other cells in the SCG.
  • the first base station can instruct the terminal device to perform RRC connection reconfiguration and indicate the transmit beam configuration to the terminal device.
  • the terminal device can indicate to the first base station that the RRC connection reconfiguration is complete.
  • the first base station can indicate to the second base station that the secondary node reconfiguration is complete.
  • the terminal device can perform a synchronization process with the PSCell of the secondary node based on the obtained transmit beam configuration information.
  • the second base station as the secondary node does not need to broadcast system information other than the radio frame timing and the SFN, and provides the terminal device with system information (initial configuration) through dedicated RRC signaling of the first base station as the primary node.
  • the radio frame timing and SFN of the SCG may be obtained from at least the synchronization signals of the PSCell (eg, PSS, SSS, and PBCH).
  • the first base station may not be limited to be an eNB, and the second base station may not be limited to a gNB.
  • the first base station and the second base station may be any base stations belonging to the same wireless communication system or belonging to different wireless communication systems.
  • the first base station described above may be a base station belonging to a wireless communication system of a prior generation.
  • the terminal device may include an omnidirectional antenna.
  • the electronic device 300B may be configured to receive the synchronization signal by not using beamforming to obtain a transmission beam configuration at the base station side before receiving the synchronization signal using different reception beams.
  • the electronic device 300B receives the synchronization signal transmitted by the base station side using different transmission beams with a full-width reception beam.
  • different transmit beams on the base station side mean different reception performance.
  • the reception performance detected by the electronic device 300B can be as shown in FIG. Among them, A, B, and C respectively indicate different receiving performance.
  • the transmit beam configuration may be determined based on the length of the sync signal burst combined with one of the number of different receive performances and the number of repetitions of each receive performance.
  • the length of the synchronization signal burst is 9
  • transmitting a synchronization signal in transmit beamforming may be used to indicate transmit beam information used to transmit the synchronization signal, such as a transmit beam ID.
  • the transmission of the synchronization signal may be indicated by or include a transmit beam ID by at least one of the following.
  • the synchronization signal can include a synchronization sequence.
  • the synchronization sequence itself may represent a transmit beam ID.
  • the synchronization sequence can be divided into groups, and each synchronization sequence in the same group can represent the same transmit beam.
  • these Zadoff-Chu sequences can be divided (eg, equally divided) into 4 groups as shown in FIG. 11A, and the sequence in each group can represent one of 4 transmit beams.
  • any one of the first set of sequences (1st to N/4th sequences) may represent the transmit beam ID1.
  • the synchronization sequence included in the synchronization signal may be any one of the first group of sequences.
  • the electronic device 300B can determine that the transmit beam ID used to transmit the synchronization signal is 1 based on the synchronization sequence in the synchronization signal.
  • the base station and the terminal device are required to agree on the correspondence between each set of synchronization sequences and the transmit beams (for example, by a communication protocol and pre-existing the correspondence in the chips of both communicating parties).
  • the synchronization signal in addition to the synchronization sequence, also includes additional information bits, which may represent the transmit beam ID. As shown in FIG. 11B, for 4 x 3 times of transmit beam configurations, additional bits 00, 01, 10, 11 may be designated to represent one of the 4 transmit beams, respectively. For example, the extra information bit 00 may represent the transmit beam ID 1.
  • the synchronization signal may include an additional information bit 00.
  • the electronic device 300B can determine, based on the extra bit 00 in the synchronization signal, the transmit beam ID used to transmit the synchronization signal to be 1 when receiving the synchronization signal. In such an embodiment, it is similarly required that the base station and the terminal device can agree on the correspondence of the extra bits to the transmit beam.
  • the transmit beam ID may be represented by a time window/time parameter in which the sync signal is located.
  • the electronic device 300B can determine the transmit beam ID of the matched transmit beam based on the time parameter and the transmit beam configuration (ie, the number of transmit beams and the number of repetitions) of the synchronization signal transmitted by the matched transmit beam. See the description of Figure 7A for a specific example.
  • the terminal device may feed back the transmit beam ID to the base station in various suitable manners. For example, after the dual connection is established between the two base stations via the process of FIG. 9 and the base station acts as the secondary node and the other base station acts as the primary node, the terminal device can provide the transmit beam ID to the base station via the primary node.
  • the transmit beam of the matching base station side may be indicated in an implicit or explicit manner to feed it back to the base station.
  • the transmit beam ID may be indicated by additional bits in the feedback from the terminal device to the base station.
  • feedback may be performed according to a specific transmission time window, and a transmission beam may be known according to a correspondence between a transmission time window and a beam.
  • This feedback can be included in the random access procedure performed by the terminal device.
  • the feedback related to the transmit beam of the base station side may be transmitted separately from the random access preamble, for example, before or after the random access preamble. This feedback operation will be described in detail later in conjunction with the random access procedure.
  • FIG. 12A illustrates an example method for communication in accordance with an embodiment of the present disclosure.
  • the method 1200A can include repeatedly transmitting a synchronization signal to a terminal device using a different transmit beam based on a transmit beam configuration, the synchronization signal including transmit beam information used to transmit the synchronization signal (block 1205).
  • the method also includes obtaining feedback from the terminal device, the feedback including transmitting beam information for transmit beam management (block 1210).
  • the method can be performed by the electronic device 300A, and detailed example operations of the method can be referred to the above description of operations and functions performed by the electronic device 300A, which are briefly described as follows.
  • the transmit beam corresponding to the transmit beam information fed back by the terminal device is the transmit beam with the highest matching degree with the terminal device.
  • the transmit beam configuration specifies the number of multiple transmit beams that the base station can use to transmit the synchronization signal and the number of times each transmit beam is continuously transmitted, the method further comprising using each of the plurality of transmit beams to transmit The beam transmits a synchronization signal and continuously transmits the synchronization signal using each of the transmission beams for the number of times.
  • the transmit beam configuration specifies the number of different levels of transmit beams that the base station can use to transmit the synchronization signal and the number of times each transmit beam is transmitted using different levels continuously, the method further comprising using each of the different levels
  • the transmit beam transmits a synchronization signal and continuously transmits the synchronization signal using each of the transmit beams for the number of times.
  • the transmit beam configuration further includes a correspondence between the base station side transmit beam and the plurality of synchronization signal time windows, the method further comprising transmitting the synchronization signal using the transmit beam based on a correspondence between the transmit beam and the plurality of synchronization signal time windows.
  • the method further comprises communicating the transmit beam configuration to another base station serving the terminal device by dual connectivity, the transmit beam configuration being indicated by the other base station to the terminal device.
  • the other base station is a base station of the wireless communication system or a base station of a prior generation wireless communication system of the wireless communication system.
  • the wireless communication system is a 5G system and the predecessor wireless communication system is an LTE system.
  • different types of consecutive sync signals form a sync signal block, and a plurality of consecutive sync signal blocks form a sync signal burst.
  • the transmit beam information comprises a transmit beam ID
  • the synchronization signal indicates a transmit beam ID by one of: the synchronization signal comprises a synchronization sequence, the synchronization sequence itself representing a transmit beam ID; in addition to the synchronization sequence, The synchronization signal also includes additional information bits that represent the transmit beam ID; or the time parameter in which the synchronization signal is located.
  • the transmit beam information of the most well-matched transmit beam is determined based on the time parameter and transmit beam configuration of the synchronization signal transmitted by the most well-matched transmit beam.
  • the time parameters include an OFDM symbol index, a slot index in a radio frame, and a radio frame number.
  • the synchronization signal includes a primary synchronization signal PSS and a secondary synchronization signal SSS, or includes a primary synchronization signal PSS, a secondary synchronization signal SSS, and a third synchronization signal TSS.
  • system information is represented by relative positions of different types of synchronization signals in the time or frequency domain, the system information including at least one of: a duplex type of a wireless communication system; or a different cyclic prefix length.
  • FIG. 12B illustrates another example method for communication in accordance with an embodiment of the present disclosure.
  • the method 1200B can include receiving a synchronization signal based on a transmit beam configuration of a base station side of the wireless communication system, the synchronization signal including transmit beam information used by the base station to transmit the synchronization signal (block 1250).
  • the method also includes providing feedback to the base station, the feedback including transmitting beam information for use by the base station for transmit beam management (block 1255).
  • the method may be performed by the electronic device 300B, and detailed example operations of the method may refer to the above description of operations and functions performed by the electronic device 300B, which are briefly described as follows.
  • the transmit beam corresponding to the transmitted transmit beam information is the transmit beam with the highest matching degree with the terminal device.
  • the transmit beam configuration specifies the number of transmit beams that the base station can use to transmit the synchronization signal and the number of consecutive transmissions using each transmit beam, the method further comprising continuously using each transmit beam for the base station Each transmission in the transmission of the number of times uses a different receiving beam to receive the synchronization signal.
  • the transmit beam configuration specifies the number of different levels of transmit beams that the base station can use to transmit the synchronization signal and the number of consecutive transmissions of each transmit beam using different levels, the method further comprising continuously using each of the base stations for each Each transmission in the transmission of the number of transmission beams receives a synchronization signal using a different receive beam.
  • the transmit beam configuration further includes a correspondence between the base station side transmit beam and the plurality of synchronization signal time windows.
  • the method further comprises obtaining a transmit beam configuration from another base station serving the terminal device with the base station over a dual connection.
  • the other base station is a base station of the wireless communication system or a base station of a prior generation wireless communication system of the wireless communication system.
  • the wireless communication system is a 5G system and the predecessor wireless communication system is an LTE system.
  • the terminal device or electronic device 300B may comprise an omnidirectional antenna, the method further comprising receiving the synchronization signal by not using beamforming to obtain a transmit beam configuration at the base station side before receiving the synchronization signal using different receive beams .
  • the transmit beam information comprises a transmit beam ID
  • the method further comprising obtaining a transmit beam ID from the synchronization signal, and the synchronization signal indicating the transmit beam ID by one of: the synchronization signal comprising a synchronization sequence, the synchronization sequence
  • the transmission beam ID is itself represented; in addition to the synchronization sequence, the synchronization signal also includes additional information bits, the additional information bits representing the transmit beam ID; or the time parameter in which the synchronization signal is located.
  • the method further comprises determining transmit beam information of the most well-matched transmit beam based on a time parameter and a transmit beam configuration of the synchronization signal transmitted by the most well-matched transmit beam.
  • the time parameters include an OFDM symbol index, a slot index in a radio frame, and a radio frame number.
  • the synchronization signal includes a primary synchronization signal PSS and a secondary synchronization signal SSS, or includes a primary synchronization signal PSS, a secondary synchronization signal SSS, and a third synchronization signal TSS.
  • the method further comprises obtaining system information from a relative location of the different types of synchronization signals in the time or frequency domain, the system information comprising at least one of: a duplex type of the wireless communication system; or a different The cyclic prefix length.
  • FIG. 13 illustrates an exemplary electronic device for a base station side, where the base station can be used in various wireless communication systems, in accordance with an embodiment of the present disclosure.
  • the electronic device 1300A shown in FIG. 13 may include various units to implement the operations or functions in accordance with the present disclosure.
  • the electronic device 1300A may include, for example, a transmit beam configuration receiving unit 1360 and a transmit beam configuration providing unit 1370.
  • transmit beam configuration receiving unit 1360 can be configured to receive a transmit beam configuration from another base station that transmits a synchronization signal to the terminal device based on the transmit beam configuration.
  • the transmit beam configuration providing unit 1370 can be configured to provide a transmit beam configuration to the terminal device for the terminal device to receive signals from the base station based on the transmit beam configuration.
  • the electronic device 1300A can be used with the other base station described above for the same wireless communication system, or can be used for a wireless communication system that is older than the other base station described above.
  • electronic device 1300A may be used for an LTE eNB, and the other base station may be a 5G base station, such as a gNB in an NR system.
  • the electronic device 1300A may be, for example, the first base station in FIG. 9, and the other base station may be the second base station in FIG.
  • hierarchical transmit beamforming can be performed across synchronization processes and data communication processes.
  • a first level of transmit beam scanning can be performed during the synchronization process and a matched first level transmit beam is determined.
  • the base station may use a second-level transmit beam to transmit a reference signal (such as CSI-RS) in the data communication process to determine a matched second-level transmission.
  • the beam is used for data communication.
  • FIG. 14 illustrates an example hierarchical transmit beam scanning process flow in accordance with an embodiment of the present disclosure. As shown in FIG. 14, at 1461, the base station can transmit a synchronization signal through a first level transmit beam scan.
  • the terminal device receives the synchronization signal, synchronizes to the downlink timing and obtains a first level transmit beam that matches itself (with or without receive beamforming).
  • a random access procedure is performed and the terminal device feeds back the matched first level transmit beam to the base station.
  • this feedback can be made in a variety of suitable ways.
  • matching beam feedback can be performed through a random access procedure.
  • the base station records and maintains a matched first level transmit beam, such as TX_Bm. Next is the data communication process.
  • the CSI-RS can be transmitted through the second level transmit beam at TX_Bm.
  • the terminal device receives the CSI-RS and obtains a second level transmit beam that matches itself.
  • the terminal device feeds back the matched second level transmit beam to the base station.
  • the base station records and maintains a matched second level transmit beam, such as TX_Bm,j. Thereafter, the base station can perform data communication with the terminal device using the transmit beam TX_Bm,j.
  • the example process of FIG. 14 can utilize the first level of transmit beam scan results in the synchronization process as compared to the conventional method of performing a hierarchical transmit beam scan in a data communication process to determine a matched second level of transmit beam, and The second level of transmit beam scanning is directly performed in the data communication process, thereby saving the training overhead for performing beam scanning in the data communication process.
  • a random access signal is transmitted from the terminal device side to the base station side by beamforming, the base station receives the random access signal, and obtains information of a transmit beam used by the base station when transmitting the synchronization signal. Thereby the base station can know the appropriate transmit beam and receive beam information for a particular terminal device for subsequent communication use. According to an example, in case the random access is successful, the base station will inform the terminal device of the transmit beam in the uplink that matches the base station.
  • the operations according to the second aspect of the present disclosure may be performed by electronic devices on the base station side and the terminal device side. The operation according to the second aspect of the present disclosure will be described in detail below.
  • FIG. 15A illustrates an exemplary electronic device for a terminal device side, which may be used for various wireless communication systems, in accordance with an embodiment of the present disclosure.
  • the electronic device 1500A shown in Fig. 15A can include various units to implement the second general aspect in accordance with the present disclosure.
  • the electronic device 1500A may include a PRACH configuration acquisition unit 1505 and a PRACH transmission unit 1510.
  • the electronic device 1500A may be, for example, the terminal device 110 of FIG. 1 or may be part of the terminal device 110.
  • the various operations described below in connection with the terminal device can be implemented by units 1505, 1510 or other units of electronic device 1500A.
  • the PRACH configuration acquisition unit 1505 can be configured to obtain random access configuration information.
  • the electronic device 1500A e.g., unit 1505
  • the terminal device obtains random access configuration information of the secondary base station through the dual-connected primary base station.
  • the random access configuration information may include a time-frequency domain resource, that is, a physical random access channel (PRACH), which allows each terminal device to transmit a random access preamble thereon.
  • the random access configuration information may further include a correspondence between the base station side receiving beam and the time domain resource (time window), as described in detail below.
  • the PRACH transmitting unit 1510 may be configured to transmit a random access preamble based on random access configuration information (eg, time-frequency domain resources) to indicate one or more receptions in the downlink with the terminal device side.
  • random access configuration information eg, time-frequency domain resources
  • the one or more transmit beams on the matched base station side are determined by the terminal device based on receiving the synchronization signal, as described in the first aspect herein.
  • a transmit beam indicating that the match is transmitted by transmitting a random access preamble can be used as a possible way for the terminal device to feed back the matched transmit beam.
  • FIG. 15B illustrates an exemplary electronic device for a base station side, where the base station can be used with various wireless communication systems, in accordance with an embodiment of the present disclosure.
  • the electronic device 1500B shown in FIG. 15B can include various units to implement a second general aspect in accordance with the present disclosure.
  • the electronic device 1500B may include, for example, a PRACH configuration providing unit 1515 and a PRACH receiving unit 1520.
  • the electronic device 1500B may be, for example, the base station 120 in FIG. 1 or may be part of the base station 120, or may be a device for controlling a base station (for example, a base station controller) or a device for a base station or their portion.
  • the various operations described below in connection with the base station can be implemented by units 1515, 1520 or other units of electronic device 1500B.
  • the PRACH configuration providing unit 1515 can be configured to transmit random access configuration information.
  • electronic device 1500B e.g., unit 1515
  • the random access configuration information can be as described above with reference to unit 1505.
  • the PRACH receiving unit 1520 may be configured to receive a random access preamble transmitted from the terminal device to obtain one of base station sides in the downlink that is paired with one or more receive beams on the terminal device side Multiple transmit beams. In one embodiment, one or more transmit beams on the matched base station side are determined by the terminal device based on receiving the synchronization signal.
  • the random access configuration information may include a time-frequency domain resource on which each terminal device is allowed to transmit a random access preamble.
  • the random access configuration information may further include a correspondence between the base station side receiving beam and the multiple random access time windows. The correspondence is generally specified by the base station side receiving beam configuration (as described below), but can be sent to the terminal device through random access configuration information.
  • the random access configuration information may also include other information.
  • the random access configuration information may further include indication information of beam symmetry, such as 1 bit.
  • indication information of beam symmetry such as 1 bit.
  • the random access configuration information may alternatively or additionally include a receive beam configuration at the base station side, thereby enabling the terminal device to know the receive beam configuration at the base station side.
  • the foregoing information and the correspondence between the base station side receive beam and the multiple random access time windows may also be sent to the terminal device in other manners, for example, by a dual connection.
  • the random access preambles may be transmitted in a particular time window in the uplink frame, which may be arranged in a certain time period or time pattern. These time windows may correspond to a particular transceiver opportunity of the random access signal.
  • time windows may correspond to a particular transceiver opportunity of the random access signal.
  • the base station side since the base station side uses beamforming to receive the random access preamble, more random access time windows are needed for receive beam scanning, ie: 1) using multiple different beams Receive, and 2) repeated reception using a single beam.
  • consecutive random access time windows may be arranged within 1 frame or across multiple frames. See Figure 16 for a corresponding example. As shown in FIG.
  • a plurality of random access time windows 1650 through 1661 may be consecutive in the time domain to form a larger random access time window 1680.
  • the random access time window 1650 to 1661 may also be referred to as a basic random access resource.
  • the basic random access resources may correspond to several (for example, six) resource blocks in the center of the frequency band, and the length may be 1 ms, 2 ms, or 3 ms according to the system configuration.
  • the larger random access time window 1680 can be arranged in a certain period.
  • One purpose of forming a random access time window 1680 is to enable the base station to complete a complete receive beam scan within the larger time window.
  • the random access time window may be designated to correspond to a particular time parameter of the uplink frame. For example, a frame number, a subframe number, a slot index, and/or a symbol index of a random access time window may be specified.
  • the terminal device can identify a random access time window based on the time parameter such that the random access preamble can be selectively transmitted in the random access time window.
  • a random access preamble (e.g., random access preamble 1670) may be transmitted in any of the random access time windows 1650 through 1661.
  • the random access preamble may include a cyclic prefix and a random access sequence, which may be, for example, a Zadoff-Chu sequence.
  • the random access preamble may also include additional information bits.
  • the random access preamble may be used to indicate one or more transmit beams on the base station side that match the terminal device. For example, a random access sequence or additional information bits may be used to indicate the above-described matched base station side transmit beams.
  • Base station side receive beam configuration
  • a repetition pattern of multiple receive beams on the base station side may be represented by a receive beam configuration.
  • the base station can receive a random access preamble from each terminal device based on the receive beam configuration; on the other hand, the terminal device may need to send a random access preamble based on the receive beam configuration, for example, The terminal device transmits by using transmit beamforming.
  • the receive beam configuration may include or indicate at least two aspects, namely the number of receive beams and the number of times the receive beam is repeatedly received (eg, a random access preamble) using each receive beam. .
  • the receive beam configuration may specify the number of receive beams that the base station can use to receive the random access preamble and the number of times each receive beam is received continuously.
  • FIG. 17A illustrates an exemplary receive beam configuration at the base station side, in accordance with an embodiment of the present disclosure.
  • the receive beam configuration 1700A designates that the base station side has four receive beams RX_B1 to RX_B4 for receiving the random access preamble, and can continuously use each receive beam three times for the reception. Similar to the above example of the transmit beam configuration, the receive beam configuration can also be represented in N x M times.
  • the receive beam configuration 1700A can be referred to as 4 x 3 times for short.
  • This receive beam configuration is only an example.
  • the receiving beam may be any number, and the number of repetitions may be any number of times.
  • the electronic device 1500B may be configured to receive a random access preamble using each of a plurality of (eg, four) receive beams based on a receive beam configuration, and continuously use each receive beam to perform the Received a specified number of times (for example, 3 times). If the terminal device does not use transmit beam scanning to transmit the random access preamble, the electronic device 1500A may only need to use the full width beam to perform the transmission to the base station; if the terminal device needs to use transmit beamforming, the electronic device 1500A may use different The transmit beam transmits a random access preamble for the base station to receive based on the receive beam configuration.
  • a plurality of eg, four
  • the receive beam configuration may specify the number of different levels of receive beams that the base station can use to receive the random access preamble and the number of times each receive beam is received using different levels.
  • FIG. 17B illustrates an exemplary receive beam configuration in the case of a hierarchical receive beam on the base station side, in accordance with an embodiment of the present disclosure. Assuming that there are four first-level receive beams on the base station side, each first-level receive beam has two second-level receive beams.
  • the first level of receive beam configuration may be, for example, as shown in FIG. 17A, and the second level of receive beam configuration may be, for example, as shown in FIG. 17B.
  • the second level of receive beam configuration 1700B is assigned eight second level receive beams RX_B1, 1 to RX_B4, 2 for receiving random access preambles, and each of the second level receive beams can be used continuously for 3 times for the reception. .
  • the hierarchical receive beam configuration can also be represented in N x M times.
  • the first level receive beam configuration of Figure 17B can be represented as 4 x 3 times configuration
  • the second level receive beam configuration can be represented as 2 x 3 times configuration (where "2" second level receive beams correspond to a single first Level transmit beam) or 8 x 3 times configuration (where "8" second level receive beams correspond to the first level transmit beam as a whole).
  • electronic device 1500B may be configured to receive a random access preamble using each of the different levels of receive beams and continuously use the receive beams for the specified number of times. If the terminal device does not use beamforming to transmit the random access preamble, the electronic device 1500A may only need to use the full width beam to make the transmission to the base station; if the terminal device needs to use transmit beamforming, the electronic device 1500A may be configured as The random access preamble is transmitted using different levels of transmit beams for the base station to receive based on the receive beam configuration.
  • the electronic device 1500A needs to know or can know the receiving beam configuration of the base station side, thereby determining its own transmit beam arrangement, as will be described below with reference to FIGS. 19A to 20B. describe.
  • the receive beam configuration may also indicate a correspondence between the base station side receive beam and a plurality of random access time windows.
  • the receive beam configuration may indicate a correspondence (or a complete correspondence) of each reception of each receive beam to a plurality of random access time windows.
  • the receive beam configuration may indicate a correspondence (or a partial correspondence) of reception of a certain receive beam to a plurality of random access time windows. For example, it may be specified that the first reception using the first receive beam RX_B1 corresponds to the first random access time window.
  • the base station side or the terminal device side may determine a complete correspondence relationship based on a partial correspondence relationship and a repetition pattern of the reception beam.
  • the electronic device 1500B may use the receive beam RX_B1 to perform the first reception of the random access preamble and subsequent reception based on the above correspondence. Accordingly, the electronic device 1500A can transmit a random access preamble based on the correspondence.
  • FIG. 18 illustrates a correspondence relationship between a base station side reception beam and a random access time window according to an embodiment of the present disclosure.
  • Figure 18 shows an exemplary correspondence under 4 x 3 reception beam configurations.
  • the receive beams eg, RX_B1
  • receive the random access preamble In the second random access time window of the second group, the second receive beam is used for reception.
  • the third and fourth receiving beams are respectively used for receiving.
  • FIG. 18 only shows one cycle of an exemplary beam configuration, which may be repeated at a later time to receive a random access preamble.
  • the correspondence between the base station side receive beam and the multiple random access time windows may include a correspondence between multiple base station side received beams and multiple random access time windows.
  • the terminal device In the case where the transmit and receive beams in the uplink and downlink have symmetry, if the terminal device has obtained the transmit beam configuration of the base station side before transmitting the random access preamble (for example, during the synchronization signal reception), the terminal device The receive beam configuration at the base station side can be determined based on beam symmetry. At this time, if the terminal device has determined its own receiving beam arrangement as in FIG. 8, it can directly determine its own transmitting beam based on the correspondence between the receiving and transmitting beams on either side (transmitting or receiving side) under beam symmetry. Configuration. That is to say, the terminal device only needs to be based on the indication of beam symmetry to determine its own transmit beam configuration.
  • the terminal device can determine its own transmit beam arrangement based on the receive beam configuration at the base station side.
  • the base station can notify the terminal device of its receive beam configuration.
  • the receive beam configuration can be notified by the dual connection shown in FIG.
  • the terminal device can obtain the receive beam configuration of the base station as the secondary node via the primary node.
  • the base station can inform its receive beam configuration through system information. After obtaining the receive beam configuration at the base station side, the terminal device can determine its own transmit beam arrangement, as described in detail below.
  • the terminal device may transmit a random access preamble with or without transmit beamforming.
  • Figure 19A shows an exemplary transmit beam arrangement of a terminal device at 4 x 3 reception beam configurations at the base station side.
  • the transmit beam arrangements 1 and 2 in Fig. 19A correspond to the case where the terminal device does not use transmit beamforming to transmit a random access preamble.
  • electronic device 1500A may generally use transmit beam arrangement 1 to receive each transmission of each transmit beam using a full width receive beam (e.g., TX_B1).
  • An advantage of the receive beam arrangement 1 is, for example, that the random access preamble can be transmitted multiple times to achieve a diversity gain.
  • the electronic device 1500A in the case of knowing the receive beam configuration at the base station side, can also use the transmit beam arrangement 2, ie for multiple receptions of each receive beam, only one transmission is used using a full-width transmit beam (eg TX_B1).
  • the advantage of the transmit beam arrangement 2 is that the transmission resources (e.g., power, etc.) of the terminal device can be saved and the occupation of random access resources can be reduced, and collisions between the terminal devices can be avoided.
  • the transmit beam arrangements 3 and 4 in Fig. 19A correspond to the case where the terminal device transmits a random access preamble using 2 or 3 different transmit beams, respectively.
  • the electronic device 1500A needs to transmit using different transmit beams.
  • the receiving beam arrangement 3 or 4 since the electronic device 1500A knows that each receiving beam is repeated 3 times on the base station side, it is possible to arrange its own transmitting beam in these 3 repetitions, so that each transmitting beam is used at least once, thereby realizing The purpose of beam scanning.
  • Figure 19A shows only one cycle of transmission of different transmit beams, which can be followed by the next cycle.
  • FIG. 19A can be considered to show the first level of receive beams and the corresponding terminal device side various transmit beam arrangements.
  • the beam of the second level can be followed by the beam of the first level.
  • Figure 19B shows a second level of receive beam configuration and an exemplary transmit beam arrangement of the terminal device.
  • the first level of the hierarchical receive beam configuration is 4 x 3 times configuration
  • the second level configuration is 2 x 3 times configuration (where each first level receive beam corresponds to 2 second level receive beams) ( For simplicity, only the second level beam corresponding to the first two first level beams is shown).
  • FIG. 19A after receiving the reception of the first level of receive beams as in FIG.
  • the receive can then be received using the second level of receive beams, as shown in the receive beam configuration in FIG. 19B.
  • each of the second level receive beams corresponding to each of the first level receive beams is successively repeated up to the number of times indicated in the receive beam configuration.
  • the second level receiving beam RX_B1,1 corresponding to the first level receiving beam RX_B1 is first repeated 3 times, and then RX_B1, 2 is also repeated 3 times, thereby completing the second corresponding to the first first level receiving beam RX_B1.
  • Scanning of the level transmit beam Next, scanning of the second-level receive beam corresponding to the next second-level receive beam is sequentially performed.
  • the transmit beam arrangements 1 and 2 correspond to the case where the terminal device does not use transmit beamforming.
  • the electronic device 1500A can transmit the random access preamble using the transmit beam arrangement 1, that is, using a full-width transmit beam (e.g., RX_B1).
  • the transmit beam arrangement 1 can achieve a diversity gain.
  • the electronic device 1500A may also use the transmit beam arrangement 2, that is, for multiple receptions of each receive beam, using a full-width transmit beam (eg, TX_B1) only once. .
  • the advantage of the receiving beam arrangement 2 is that the receiving resources (such as power, etc.) of the terminal device can be saved and the occupation of the random access resources can be reduced, and collisions between the terminal devices can be avoided.
  • the transmit beam arrangements 3 and 4 in Figure 19B correspond to the case where the terminal device transmits a random access preamble using 2 or 3 different transmit beams, respectively.
  • the electronic device 1500A needs to transmit using a different transmit beam.
  • the electronic device 1500A needs to know the receive beam configuration of the base station to arrange the corresponding transmit beams.
  • the transmit beam arrangement 3 or 4 since the electronic device 1500A knows that each second-level receive beam is repeated 3 times, it is possible to arrange its own transmit beam in these 3 repetitions, so that each transmit beam is used at least once, thereby The purpose of beam scanning is achieved.
  • Figure 19B shows one cycle of different second level beam transmissions.
  • a first level beam scan and a second level beam scan of the next cycle may be performed.
  • one or more transmit beams on the base station side paired with one or more receive beams on the terminal device side are determined by the terminal device based on receiving the synchronization signal.
  • the terminal device transmitting the random access preamble may indicate one or more transmit beams on the base station side of the downlink paired with one or more receive beams on the terminal device side.
  • the transmit beam ID of one or more transmit beams on the base station side that is paired with the receive beam on the terminal device side is indicated by a random access preamble.
  • the random access preamble may include a preamble sequence (eg, a Zadoff-Chu sequence), which itself may represent a transmit beam ID.
  • a preamble sequence eg, a Zadoff-Chu sequence
  • the preamble sequence can be divided into groups, and each preamble sequence in the same group can represent the same transmit beam.
  • these preamble sequences can be divided (eg, equally divided into 4 groups), and the sequence in each group can represent one of the 4 transmit beams.
  • any of the first set of sequences (1st to N/4th sequences) may represent the transmit beam ID1.
  • the electronic device 1500A may transmit a preamble sequence corresponding to the transmit beam when the transmit beam ID 1 is fed back. After determining that one of the first set of sequences is received, the electronic device 1500B may determine that the matched transmit beam ID is the transmit beam ID 1.
  • the base station and the terminal device are also required to agree on the correspondence between each set of preamble sequences and the transmit beam (for example, the base station notifies the terminal device by any signaling).
  • the random access preamble may also include additional information bits, which may represent the transmit beam ID.
  • additional information bits 00, 01, 10, 11 may be designated to represent one of the 4 transmit beams, respectively.
  • the extra information bit 00 may represent the transmit beam ID 1.
  • the electronic device 1500A may transmit an additional information bit 00 when feeding back the transmit beam ID 1. After determining that the extra bit 00 is received, the electronic device 1500B may determine that the matched transmit beam ID is the transmit beam ID 1.
  • a single transmission of a random access preamble may indicate multiple transmit beam IDs.
  • the number of additional information bits described above may be increased, for example, in the example of FIG. 11B, 4 transmit beam IDs may be indicated using 4 bits.
  • the terminal devices may each transmit a random access preamble.
  • This approach can be applied to both uplink and downlink and without beam symmetry.
  • the terminal device may perform the transmission of the random access preamble only for the matched receive beam, as described below with reference to Figures 20A and 20B. .
  • FIG. 20A and 20B illustrate an example of transmitting a random access preamble based on a terminal device side transmit beam arrangement.
  • the terminal device side transmit beam configuration in Figs. 20A and 20B is the same as in Figs. 19A and 19B, but the random access preamble is transmitted only for a specific base station side receive beam. Moreover, these transmissions can be made using a specific transmit beam, as indicated by the shading in the figure.
  • This method can be applied to the case where the uplink and downlink have beam symmetry. In this case, if the terminal device knows the matching transmit receive beam pair in the downlink (eg determined by the reception of the synchronization signal), then the matched transmit receive beam pair in the uplink can be determined for random access Send the preamble.
  • the terminal device determines that the base station side transmit beam TX_B1 in the downlink matches the terminal device side receive beam RX_B2, it may determine that the uplink device matches the terminal device.
  • the base station side receive beam is RX_B1, which matches the terminal device side transmit beam TX_B2. Accordingly, the terminal device can transmit the random access preamble (for example, using the transmit beams TX_B1 to TX_B3) only in the random access time window corresponding to the receive beam RX_B1.
  • the terminal device may transmit the random access preamble (shown by hatching in the figure) using the matched transmit beam TX_B2 only in the random access time window corresponding to the receive beam RX_B1.
  • the full-wave transmission random access preamble can be transmitted only in the random access time window corresponding to the receive beam RX_B1.
  • FIG. 20B shows an example of a second level of beam scanning corresponding to FIG. 20A.
  • the second level of beam scanning assuming that the terminal device determines that the base station side transmit beam TX_B1, 2 in the downlink matches the terminal device side receive beam RX_B2, it can be determined that the base station side receive beam that matches the terminal device in the uplink is RX_B1 2, which matches the terminal device side transmit beam TX_B2.
  • the terminal device can transmit the random access preamble only in the random access time window corresponding to the receive beam RX_B1, 2 (for example using the transmit beams TX_B1 to TX_B3).
  • the terminal device may transmit the random access preamble (shown by shading in the figure) using the matched transmit beam TX_B2 only in the random access time window corresponding to the receive beam RX_B1,2.
  • the full-wave transmission random access preamble can be transmitted only in the random access time window corresponding to the receive beam RX_B1,2.
  • FIG. 21A illustrates an example method in which a terminal device transmits a random access preamble according to an embodiment of the present disclosure.
  • the terminal device can determine the uplink based on beam symmetry The matched base station side (one or more) receive beams and the terminal device side (one or more) transmit beams.
  • the terminal device may determine, according to the correspondence between the receiving beam(s) of the base station side and the plurality of random access time windows, from the plurality of random access time windows, the base station side (one or more) receiving One or more random access time windows corresponding to the beam.
  • the terminal device can transmit the random access preamble with one or more transmit beams on the terminal device side in at least a portion of the one or more random access time windows.
  • 21B illustrates an example method of a base station receiving a random access preamble in accordance with an embodiment of the disclosure.
  • the base station can receive the random access preamble with the receiving beam of the base station side based on the correspondence between the receiving beam(s) of the base station side and the multiple random access time windows. It can be understood that the base station should receive the corresponding random access preamble in the random access time window corresponding to the base station side receive beam determined at step 2110.
  • the base station may determine a receive beam that receives the random access preamble based on a correspondence between the base station side receive beam and the random access time window.
  • the base station can determine a transmit beam corresponding to the receive beam at the base station side based on beam symmetry, ie, a transmit beam in the downlink that matches the terminal device.
  • the random access time window itself may indicate a transmit beam ID.
  • the same matching transmit beam ID may be indicated by a synchronization sequence or additional information bits to increase transmit beam ID detection robustness.
  • another matched transmit beam ID may be indicated by a synchronization sequence or additional information bits such that a single transmission of the random access preamble may indicate multiple transmit beam IDs.
  • a single transmission of the random access preamble may indicate a plurality of transmit beam IDs.
  • one or more of the base station sides in the downlink that are paired with one or more receive beams on the terminal device side may be indicated by a subsequent uplink message of the random access preamble Transmit beam.
  • a matching base station side transmit beam can be indicated by the MSG-3 message in FIG.
  • the terminal device may preferentially use the transmit beam that is most relevant to the previous transmit beam direction on the terminal device side for the retransmission, wherein the direction correlation includes the transmit direction adjacent Or at least partially overlap.
  • the terminal device waits for a random access response (RAR) sent by the base station within a certain time window. If the RAR is received, the terminal device considers that the random access preamble is successfully transmitted. If the terminal device does not receive the RAR in the RAR waiting time window, as shown in FIG. 22, the terminal device needs to perform random access preamble retransmission.
  • the terminal device may select a transmit beam for retransmission around the transmit beam used for transmitting the random access preamble for the first time.
  • the surrounding transmit beam may be the transmit beam most relevant to the direction of the first used transmit beam and thus may be the beam that best matches the base station.
  • the beam around the first used transmit beam can form a Candidate Beam Set, as shown in FIG.
  • the transmission power can be gradually increased according to the step size until the upper limit of the transmission power of the terminal device. If the terminal device retransmits the random access preamble and still does not receive the RAR, the range of the beam scanning may be expanded for transmission. Thereafter, the process is repeated until the terminal device receives the RAR.
  • the base station may notify the terminal device of the transmit beam matching the base station in the uplink in the RAR message.
  • FIG. 23A illustrates an example method for communication in accordance with an embodiment of the present disclosure.
  • the method 2300A can include obtaining random access configuration information (block 2305).
  • the method also includes transmitting a random access preamble based on the random access configuration information to indicate one or more transmit beams on the base station side of the downlink paired with one or more receive beams on the terminal device side (block 2310) ).
  • the method may be performed by electronic device 1500A, which may refer to the above description of operations and functions performed by electronic device 1500A, briefly described below.
  • one or more transmit beams on the base station side paired with one or more receive beams on the terminal device side are determined by the terminal device based on receiving the synchronization signal.
  • the random access preamble indicates identification information of one or more transmit beams on the base station side paired with one or more receive beams on the terminal device side, such as a transmit beam ID.
  • the random access preamble indicates a transmit beam ID of one or more transmit beams of the base station side paired with one or more receive beams of the terminal device side by at least one of: a random access preamble
  • the code includes a preamble sequence, the preamble sequence itself representing a transmit beam ID; and the random access preamble further includes additional information bits, the additional information bits representing the transmit beam ID.
  • a single transmission of a random access preamble can indicate a single transmit beam ID or multiple transmit beam IDs.
  • the random access configuration information further includes a correspondence between the base station side beam and the multiple random access occasions
  • the method further includes: repeatedly transmitting the random access preamble by using different transmit beams on the terminal device side based on the corresponding relationship. And transmitting a random access preamble repeatedly according to the corresponding relationship with a transmit beam corresponding to one or more receive beams on the terminal device side.
  • the method further comprises transmitting a random access preamble in a particular random access opportunity, the specific random access opportunity indicating pairing with one or more receive beams on the terminal device side in the downlink The transmit beam ID of one or more transmit beams on the base station side.
  • the random access configuration information further includes a correspondence between the base station side beam and the multiple random access occasions, where the uplink and downlink links between the base station and the terminal device satisfy beam symmetry.
  • the method includes: transmitting, according to beam symmetry, one or more receiving beams on the matching base station side and one or more transmitting beams on the terminal device side in the uplink according to beam symmetry; Determining one or more random access occasions corresponding to one or more beams on the base station side in a random access occasion; and one or more on the terminal device side in at least a part of one or more random access occasions
  • the transmit beam transmits a random access preamble.
  • the correspondence between the base station side beam and the multiple random access occasions includes a correspondence between multiple hierarchical beams on the base station side and multiple random access occasions.
  • the method further comprises indicating one or more transmit beams on the base station side of the downlink paired with one or more receive beams on the terminal device side by a subsequent uplink message of the random access preamble.
  • the method further comprises, in the case that the random access preamble needs to be retransmitted, preferentially using the transmission beam that is most relevant to the previous transmit beam direction on the terminal device side for retransmission, wherein the direction correlation includes the transmit direction phase Neighbors or at least partially overlap.
  • the synchronization signal corresponds to a synchronization signal block including a primary synchronization signal, a secondary synchronization signal, and a PBCH, the method further comprising receiving a plurality of synchronization signal blocks transmitted by different base station side transmit beams in a concentrated time domain.
  • a base station side transmit beam corresponding to the sync signal block in which the signal reception quality satisfies a predetermined condition is used as a base station side transmit beam paired with the terminal device.
  • the method further comprises determining, by the reference signal sequence itself in the synchronization signal block that satisfies the predetermined condition, a transmit beam used by the base station to transmit the synchronization signal block.
  • the method further comprises determining, by the additional information bits in the synchronization signal block that satisfies the predetermined condition, a transmit beam used by the base station to transmit the synchronization signal block.
  • the method further comprises receiving radio resource control signaling and obtaining the random access configuration information therefrom.
  • an electronic device performing the method can operate as a terminal device, which can include one or more radio frequency links, each radio frequency link being coupled to a plurality of antennas and their phase shifters.
  • the terminal device eg, its processing circuitry
  • the wireless communication system is a fifth generation New Radio communication system and the base station is a gNB.
  • FIG. 23B illustrates another example method for communication in accordance with an embodiment of the present disclosure.
  • the method 2300B can include transmitting random access configuration information (block 2350).
  • the method also includes receiving a random access preamble transmitted from the terminal device to obtain one or more transmit beams on the base station side that are paired with one or more receive beams on the terminal device side in the downlink (block 2355).
  • the method can be performed by electronic device 1500B, and detailed example operations of the method can be described with reference to the above description of operations and functions performed by electronic device 1500B, briefly described below.
  • one or more transmit beams on the base station side paired with one or more receive beams on the terminal device side are determined by the terminal device based on receiving the synchronization signal.
  • the random access preamble indicates identification information of one or more transmit beams on the base station side paired with one or more receive beams on the terminal device side, such as a transmit beam ID.
  • the random access preamble indicates a transmit beam ID of one or more transmit beams paired with a base station side paired with one or more receive beams of the terminal device side by at least one of: random access
  • the preamble includes a preamble sequence, the preamble sequence itself representing a transmit beam ID; and the random access preamble further includes additional information bits, the additional information bits representing the transmit beam ID.
  • a single transmission of a random access preamble can indicate a single transmit beam ID or multiple transmit beam IDs.
  • the random access configuration information further includes a correspondence between the base station side beam and the multiple random access occasions
  • the method further includes receiving the random access preamble by using the beam of the base station side based on the correspondence.
  • the method further comprises receiving a random access preamble in a particular random access opportunity, the specific random access opportunity indicating pairing with one or more receive beams on the terminal device side in the downlink The transmit beam ID of one or more transmit beams on the base station side.
  • the random access configuration information further includes a correspondence between the base station side beam and the multiple random access occasions, where the uplink and downlink links between the base station and the terminal device satisfy beam symmetry.
  • the method includes: receiving a random access preamble by: receiving a random access preamble by using a receiving beam at a base station side according to a correspondence; determining a receiving beam that receives a random access preamble; and determining, based on beam symmetry, a base station side Receive beam corresponding to the transmit beam.
  • the correspondence between the base station side beam and the multiple random access occasions includes a correspondence between multiple hierarchical beams on the base station side and multiple random access occasions.
  • the method further comprises obtaining, from the subsequent uplink message of the random access preamble, one or more transmit beams of the base station side paired with one or more receive beams on the terminal device side in the downlink. .
  • the synchronization signal corresponds to a synchronization signal block comprising a primary synchronization signal, a secondary synchronization signal, and a PBCH, the method further comprising transmitting a plurality of synchronization signal blocks over different base station side transmit beams in a concentrated time domain.
  • the synchronization signal block indicates, by the reference signal sequence itself in the synchronization signal block, the transmit beam information used by the base station to transmit the synchronization signal block.
  • the synchronization signal block further includes additional information bits through which the base station transmits the transmit beam information used by the base station to transmit the synchronization signal block.
  • the method further includes transmitting radio resource control signaling to transmit the random access configuration information to the terminal device.
  • the wireless communication system is a fifth generation New Radio communication system and the base station is a gNB.
  • electronic devices 300A, 300B, 1300A, 1500A, and 1500B, etc. may be implemented at the chip level, or may also be implemented at the device level by including other external components.
  • each electronic device can operate as a communication device as a complete machine.
  • each of the above units may be implemented as a separate physical entity, or may be implemented by a single entity (eg, a processor (CPU or DSP, etc.), an integrated circuit, etc.).
  • the processing circuit may refer to various implementations of digital circuitry, analog circuitry, or mixed signal (combination of analog and digital) circuitry that perform functions in a computing system.
  • Processing circuitry may include, for example, circuitry such as an integrated circuit (IC), an application specific integrated circuit (ASIC), a portion or circuit of a separate processor core, an entire processor core, a separate processor, such as a field programmable gate array (FPGA) Programmable hardware device, and/or system including multiple processors.
  • IC integrated circuit
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • one electronic device may implement all of the operations or functions of electronic devices 300A, 1300A, and 1500B, or one electronic device may implement all of the operations or functions of electronic devices 300B and 1500A.
  • the operational steps of the various methods can also be combined with each other in any suitable order to similarly achieve more or less operations than those described.
  • an electronic device for a terminal device side in a wireless communication system may include processing circuitry configured to receive from a base station in the wireless communication system Separating a plurality of synchronization signal blocks of a primary synchronization signal, a secondary synchronization signal, and a PBCH, respectively, for performing downlink synchronization, the plurality of synchronization signal blocks being transmitted by different base station side transmit beams, and each synchronization signal block being capable of instructing the base station to transmit Transmit beam information used by the synchronization signal block; determining a synchronization signal block that matches the terminal device based on the reception quality; and transmitting a random access preamble to the base station to perform a random access procedure, where the random access The incoming preamble can instruct the base station to transmit transmit beam information used by the matched sync block for beam management by the base station.
  • the synchronization signal block indicates, by the reference signal sequence itself in the synchronization signal block, the transmit beam information used by the base station to transmit the synchronization signal block.
  • the synchronization signal block further includes additional information bits indicating, by the additional information bits, the transmit beam information used by the base station to transmit the synchronization signal block.
  • the preamble sequence of the random access preamble indicates the transmit beam information used by the base station to transmit the matched sync block.
  • a plurality of preamble sequences are used to indicate transmit beam information for the same sync signal block, and the electronic device determines a plurality of preamble sequences and transmit beams of the sync signal block from signaling from the base station. Correspondence relationship.
  • the processing circuit is further configured to: receive, from the base station, radio resource control signaling including random access configuration information, where the random access configuration information includes a base station side beam and multiple random connections Corresponding relationship of the incoming time; and selecting a specific random access occasion to transmit a random access preamble according to the random access configuration information to indicate the transmitting beam information used by the base station to send the matched synchronization signal block.
  • the processing circuitry is further configured to receive a CSI-RS beam transmitted by the base station in a transmit beam direction corresponding to the matched sync signal block, and to feed back a CSI matching the terminal device. RS beam information to the base station.
  • the processing circuitry is further configured to receive the plurality of synchronization signal blocks using a plurality of receive beams and determine a receive beam that the terminal device matches based on the received quality.
  • the wireless communication system has beam symmetry
  • the processing circuitry is further configured to transmit random access to the base station using a terminal-device transmit beam corresponding to a received beam of the matched terminal device Preamble.
  • the processing circuitry is further configured to use the terminal device side transmit beam if a random access response of the base station is not received within a predetermined time after transmitting the random access preamble The surrounding transmit beams retransmit the random access preamble.
  • the wireless communication system is a 5G NR system
  • the base station is a gNB
  • the terminal device includes a plurality of antennas for transmitting signals by beamforming.
  • a method for a terminal device side in a wireless communication system includes: receiving, from a base station in the wireless communication system, a plurality of primary synchronization signals, secondary synchronization signals, and PBCHs, respectively Sync block for downlink synchronization, the plurality of sync blocks are transmitted by different base station side transmit beams, and each sync block can indicate the transmit beam information used by the base station to transmit the sync block; Quality determining a synchronization signal block that matches the terminal device; and transmitting a random access preamble to the base station to perform a random access procedure, wherein the random access preamble can instruct the base station to send the matched synchronization signal block
  • the transmit beam information used is for beam management by the base station.
  • the synchronization signal block indicates, by the reference signal sequence itself in the synchronization signal block, the transmit beam information used by the base station to transmit the synchronization signal block.
  • the synchronization signal block further includes additional information bits indicating, by the additional information bits, the transmit beam information used by the base station to transmit the synchronization signal block.
  • the preamble sequence of the random access preamble indicates the transmit beam information used by the base station to transmit the matched sync block.
  • a plurality of preamble sequences are used to indicate transmit beam information for the same sync signal block, the method further comprising determining a plurality of preamble sequences and transmit beam of the sync block from signaling from the base station Correspondence.
  • the method further includes: receiving, from the base station, radio resource control signaling including random access configuration information, where the random access configuration information includes a correspondence between a base station side beam and multiple random access occasions And selecting a specific random access occasion to transmit a random access preamble according to the random access configuration information to indicate, by the base station, the transmit beam information of the matched synchronization signal block.
  • the method further comprises receiving a CSI-RS beam transmitted by the base station in a transmit beam direction corresponding to the matched sync signal block, and feeding back CSI-RS beam information matching the terminal device to The base station.
  • the method further comprises receiving the plurality of synchronization signal blocks using a plurality of receive beams, and determining a receive beam that the terminal device matches based on the received quality.
  • the wireless communication system has beam symmetry, the method further comprising transmitting a random access preamble to the base station using a terminal device side transmit beam corresponding to a received beam of the matched terminal device.
  • the method further includes using a transmit beam around the transmit beam of the terminal device side in a case that the random access response of the base station is not received within a predetermined time after transmitting the random access preamble. Retransmit the random access preamble.
  • an electronic device for a base station side in a wireless communication system includes processing circuitry configured to utilize different base station side transmit beams to the wireless
  • the terminal device in the communication system transmits a plurality of synchronization signal blocks respectively including a primary synchronization signal, a secondary synchronization signal, and a PBCH for downlink synchronization, wherein each synchronization signal block can indicate a base station used to transmit the synchronization signal block.
  • Transmitting beam information ; receiving a random access preamble from the terminal device to assist a random access procedure of the terminal device, wherein the random access preamble can indicate transmit beam information of the synchronization signal block that matches the terminal device; And determining, according to the random access preamble, a base station side transmit beam suitable for the downlink transmission of the terminal device to perform beam management.
  • the synchronization signal block indicates, by the reference signal sequence itself in the synchronization signal block, the transmit beam information used by the base station to transmit the synchronization signal block, and the processing circuitry is further configured to be in the plurality of synchronizations. Different reference signal sequences are placed in the signal block to indicate different transmit beam information.
  • the synchronization signal block further includes additional information bits indicating, by the additional information bits, transmit beam information used by the base station to transmit the synchronization signal block, the processing circuitry further configured to Different additional information bits are placed in multiple sync signal blocks to indicate different transmit beam information.
  • the preamble sequence of the random access preamble indicates transmit beam information of a sync block that matches the terminal device.
  • a plurality of preamble sequences are used to indicate transmit beam information of the same sync signal block, and the base station sends signaling to the terminal device for indicating transmission of a plurality of preamble sequences and sync signal blocks Correspondence of beams.
  • the processing circuitry is further configured to send, to the terminal device, radio resource control signaling including random access configuration information, where the random access configuration information includes a base station side beam and multiple random connections Corresponding relationship of the timing, so that the terminal device selects a specific random access opportunity to transmit a random access preamble according to the random access configuration information to indicate the transmit beam information of the matched synchronization signal block.
  • the processing circuitry is further configured to transmit a CSI-RS beam in a transmit beam direction corresponding to the matched sync signal block, and receive from the terminal device a match with the terminal device CSI-RS beam information feedback.
  • the wireless communication system is a 5G NR system
  • the base station is a gNB
  • the base station further includes a plurality of antennas for transmitting signals by beamforming.
  • a method for a base station side in a wireless communication system includes: transmitting, by using different base station side transmit beams, to a terminal device in the wireless communication system, respectively, including a primary synchronization signal, a secondary synchronization signal and a plurality of synchronization signal blocks of the PBCH for downlink synchronization, wherein each synchronization signal block is capable of indicating a transmission beam information used by the base station to transmit the synchronization signal block; and receiving a random access preamble from the terminal device a code to assist a random access procedure of the terminal device, wherein the random access preamble can indicate transmit beam information of a synchronization signal block that matches the terminal device; and determine, according to the random access preamble, The base station side transmit beam of the terminal device downlink transmission is used for beam management.
  • the synchronization signal block indicates, by the reference signal sequence itself in the synchronization signal block, the transmit beam information used by the base station to transmit the synchronization signal block, the method further comprising placing in the plurality of synchronization signal blocks Different reference signal sequences to indicate different transmit beam information.
  • the synchronization signal block further includes an additional information bit, by which the base station transmits the transmit beam information used by the base station to transmit the synchronization signal block, the method further comprising the multiple synchronization signals Different extra information bits are placed in the block to indicate different transmit beam information.
  • the preamble sequence of the random access preamble indicates transmit beam information of a sync block that matches the terminal device.
  • a plurality of preamble sequences are used to indicate transmit beam information for the same sync signal block, the method further comprising signaling to the terminal device for indicating a plurality of preamble sequences and sync signal blocks Correspondence of the transmitted beams.
  • the method further includes transmitting, to the terminal device, radio resource control signaling including random access configuration information, where the random access configuration information includes a correspondence between a base station side beam and multiple random access occasions a relationship, so that the terminal device selects a specific random access opportunity to transmit a random access preamble according to the random access configuration information to indicate transmit beam information of the matched synchronization signal block.
  • the method further comprises transmitting a CSI-RS beam in a transmit beam direction corresponding to the matched sync signal block, and receiving a CSI-RS beam matching the terminal device from the terminal device information feedback.
  • machine-executable instructions in the storage medium and the program product according to the embodiments of the present disclosure may also be configured to perform the method corresponding to the apparatus embodiment described above, and thus the content not described in detail herein may refer to the previous corresponding position. The description is not repeated here.
  • a storage medium for carrying the above-described program product including machine executable instructions is also included in the disclosure of the present invention.
  • the storage medium includes, but is not limited to, a floppy disk, an optical disk, a magneto-optical disk, a memory card, a memory stick, and the like.
  • FIG. 24 is a block diagram showing an example structure of a personal computer which is an information processing device which can be employed in the embodiment of the present disclosure.
  • the personal computer may correspond to the above-described exemplary terminal device in accordance with the present disclosure.
  • a central processing unit (CPU) 1301 executes various processes in accordance with a program stored in a read only memory (ROM) 1302 or a program loaded from a storage portion 1308 to a random access memory (RAM) 1303.
  • ROM read only memory
  • RAM random access memory
  • data required when the CPU 1301 executes various processes and the like is also stored as needed.
  • the CPU 1301, the ROM 1302, and the RAM 1303 are connected to each other via a bus 1304.
  • Input/output interface 1305 is also coupled to bus 1304.
  • the following components are connected to the input/output interface 1305: an input portion 1306 including a keyboard, a mouse, etc.; an output portion 1307 including a display such as a cathode ray tube (CRT), a liquid crystal display (LCD), etc., and a speaker, etc.; the storage portion 1308 , including a hard disk or the like; and a communication portion 1309 including a network interface card such as a LAN card, a modem, and the like.
  • the communication section 1309 performs communication processing via a network such as the Internet.
  • the driver 1310 is also connected to the input/output interface 1305 as needed.
  • a removable medium 1311 such as a magnetic disk, an optical disk, a magneto-optical disk, a semiconductor memory or the like is mounted on the drive 1310 as needed, so that the computer program read therefrom is installed into the storage portion 1308 as needed.
  • a program constituting the software is installed from a network such as the Internet or a storage medium such as the removable medium 1311.
  • such a storage medium is not limited to the removable medium 1311 shown in FIG. 24 in which a program is stored and distributed separately from the device to provide a program to the user.
  • Examples of the detachable medium 1311 include a magnetic disk (including a floppy disk (registered trademark)), an optical disk (including a compact disk read only memory (CD-ROM) and a digital versatile disk (DVD)), and a magneto-optical disk (including a mini disk (MD) (registered trademark) )) and semiconductor memory.
  • the storage medium may be a ROM 1302, a hard disk included in the storage portion 1308, or the like, in which programs are stored, and distributed to the user together with the device containing them.
  • the base stations mentioned in this disclosure may be implemented as any type of evolved Node B (eNB), such as a macro eNB and a small eNB.
  • the small eNB may be an eNB covering a cell smaller than the macro cell, such as a pico eNB, a micro eNB, and a home (femto) eNB.
  • the base station can be implemented as any other type of base station, such as a NodeB and a Base Transceiver Station (BTS).
  • BTS Base Transceiver Station
  • the base station may include: a body (also referred to as a base station device) configured to control wireless communication; and one or more remote radio heads (RRHs) disposed at a different location from the main body.
  • a body also referred to as a base station device
  • RRHs remote radio heads
  • various types of terminals which will be described below, can operate as a base station by performing base station functions temporarily or semi-persistently.
  • the terminal device mentioned in the present disclosure is also referred to as a user device in some examples, and can be implemented as a mobile terminal (such as a smart phone, a tablet personal computer (PC), a notebook PC, a portable game terminal, a portable/dongle dog). Mobile routers and digital camera devices) or vehicle terminals (such as car navigation devices).
  • the user equipment may also be implemented as a terminal (also referred to as a machine type communication (MTC) terminal) that performs machine-to-machine (M2M) communication.
  • MTC machine type communication
  • M2M machine-to-machine
  • the user equipment may be a wireless communication module (such as an integrated circuit module including a single wafer) installed on each of the above terminals.
  • the term base station in this disclosure has the full breadth of its ordinary meaning and includes at least a wireless communication station that is used as part of a wireless communication system or radio system to facilitate communication.
  • the base station may be, for example but not limited to, the following: the base station may be one or both of a base transceiver station (BTS) and a base station controller (BSC) in the GSM system, and may be a radio network controller in the WCDMA system.
  • BTS base transceiver station
  • BSC base station controller
  • One or both of (RNC) and Node B may be eNBs in LTE and LTE-Advanced systems, or may be corresponding network nodes in future communication systems (eg, gNBs that may appear in 5G communication systems, eLTE) eNB, etc.).
  • Some of the functions in the base station of the present disclosure may also be implemented as an entity having a control function for communication in a D2D, M2M, and V2V communication scenario, or as an entity that
  • FIG. 25 is a block diagram showing a first example of a schematic configuration of a gNB to which the technology of the present disclosure can be applied.
  • the gNB 1400 includes a plurality of antennas 1410 and a base station device 1420.
  • the base station device 1420 and each antenna 1410 may be connected to each other via an RF cable.
  • the gNB 1400 (or base station device 1420) herein may correspond to the electronic devices 300A, 1300A, and/or 1500B described above.
  • Each of the antennas 1410 includes a single or multiple antenna elements, such as multiple antenna elements included in a multiple input multiple output (MIMO) antenna, and is used by the base station device 1420 to transmit and receive wireless signals.
  • the gNB 1400 can include a plurality of antennas 1410.
  • multiple antennas 1410 can be compatible with multiple frequency bands used by gNB 1400.
  • the base station device 1420 includes a controller 1421, a memory 1422, a network interface 1423, and a wireless communication interface 1425.
  • the controller 1421 may be, for example, a CPU or a DSP, and operates various functions of higher layers of the base station device 1420. For example, controller 1421 generates data packets based on data in signals processed by wireless communication interface 1425 and communicates the generated packets via network interface 1423. The controller 1421 can bundle data from a plurality of baseband processors to generate bundled packets and deliver the generated bundled packets. The controller 1421 may have a logical function that performs control such as radio resource control, radio bearer control, mobility management, admission control, and scheduling. This control can be performed in conjunction with nearby gNB or core network nodes.
  • the memory 1422 includes a RAM and a ROM, and stores programs executed by the controller 1421 and various types of control data such as a terminal list, transmission power data, and scheduling data.
  • Network interface 1423 is a communication interface for connecting base station device 1420 to core network 1424. Controller 1421 can communicate with a core network node or another gNB via network interface 1423. In this case, the gNB 1400 and the core network node or other gNBs can be connected to each other through logical interfaces such as an S1 interface and an X2 interface. Network interface 1423 may also be a wired communication interface or a wireless communication interface for wireless backhaul lines. If network interface 1423 is a wireless communication interface, network interface 1423 can use a higher frequency band for wireless communication than the frequency band used by wireless communication interface 1425.
  • the wireless communication interface 1425 supports any cellular communication scheme, such as Long Term Evolution (LTE) and LTE-Advanced, and provides wireless connectivity to terminals located in cells of the gNB 1400 via the antenna 1410.
  • Wireless communication interface 1425 may typically include, for example, baseband (BB) processor 1426 and RF circuitry 1427.
  • the BB processor 1426 can perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and performs layers (eg, L1, Medium Access Control (MAC), Radio Link Control (RLC), and Packet Data Convergence Protocol (PDCP)) Various types of signal processing.
  • BB processor 1426 may have some or all of the logic functions described above.
  • the BB processor 1426 may be a memory that stores a communication control program, or a module that includes a processor and associated circuitry configured to execute the program.
  • the update program can cause the function of the BB processor 1426 to change.
  • the module can be a card or blade that is inserted into a slot of base station device 1420. Alternatively, the module can also be a chip mounted on a card or blade.
  • the RF circuit 1427 may include, for example, a mixer, a filter, and an amplifier, and transmits and receives a wireless signal via the antenna 1410.
  • FIG. 25 shows an example in which one RF circuit 1427 is connected to one antenna 1410, the present disclosure is not limited to the illustration, but one RF circuit 1427 may connect a plurality of antennas 1410 at the same time.
  • the wireless communication interface 1425 can include a plurality of BB processors 1426.
  • multiple BB processors 1426 can be compatible with multiple frequency bands used by gNB 1400.
  • the wireless communication interface 1425 can include a plurality of RF circuits 1427.
  • multiple RF circuits 1427 can be compatible with multiple antenna elements.
  • FIG. 25 illustrates an example in which the wireless communication interface 1425 includes a plurality of BB processors 1426 and a plurality of RF circuits 1427, the wireless communication interface 1425 may also include a single BB processor 1426 or a single RF circuit 1427.
  • FIG. 26 is a block diagram showing a second example of a schematic configuration of a gNB to which the technology of the present disclosure can be applied.
  • the gNB 1530 includes a plurality of antennas 1540, a base station device 1550, and an RRH 1560.
  • the RRH 1560 and each antenna 1540 may be connected to each other via an RF cable.
  • the base station device 1550 and the RRH 1560 can be connected to each other via a high speed line such as a fiber optic cable.
  • the gNB 1530 (or base station device 1550) herein may correspond to the electronic devices 300A, 1300A, and/or 1500B described above.
  • Each of the antennas 1540 includes a single or multiple antenna elements (such as multiple antenna elements included in a MIMO antenna) and is used by the RRH 1560 to transmit and receive wireless signals.
  • gNB 1530 can include multiple antennas 1540.
  • multiple antennas 1540 can be compatible with multiple frequency bands used by gNB 1530.
  • the base station device 1550 includes a controller 1551, a memory 1552, a network interface 1553, a wireless communication interface 1555, and a connection interface 1557.
  • the controller 1551, the memory 1552, and the network interface 1553 are the same as the controller 1421, the memory 1422, and the network interface 1423 described with reference to FIG.
  • the wireless communication interface 1555 supports any cellular communication scheme (such as LTE and LTE-Advanced) and provides wireless communication to terminals located in sectors corresponding to the RRH 1560 via the RRH 1560 and the antenna 1540.
  • Wireless communication interface 1555 can typically include, for example, BB processor 1556.
  • the BB processor 1556 is identical to the BB processor 1426 described with reference to FIG. 25 except that the BB processor 1556 is connected to the RF circuit 1564 of the RRH 1560 via the connection interface 1557.
  • the wireless communication interface 1555 can include a plurality of BB processors 1556.
  • multiple BB processors 1556 can be compatible with multiple frequency bands used by gNB 1530.
  • FIG. 26 illustrates an example in which the wireless communication interface 1555 includes a plurality of BB processors 1556, the wireless communication interface 1555 can also include a single BB processor 1556.
  • connection interface 1557 is an interface for connecting the base station device 1550 (wireless communication interface 1555) to the RRH 1560.
  • the connection interface 1557 may also be a communication module for connecting the base station device 1550 (wireless communication interface 1555) to the communication in the above-described high speed line of the RRH 1560.
  • the RRH 1560 includes a connection interface 1561 and a wireless communication interface 1563.
  • connection interface 1561 is an interface for connecting the RRH 1560 (wireless communication interface 1563) to the base station device 1550.
  • the connection interface 1561 can also be a communication module for communication in the above high speed line.
  • the wireless communication interface 1563 transmits and receives wireless signals via the antenna 1540.
  • Wireless communication interface 1563 can generally include, for example, RF circuitry 1564.
  • the RF circuit 1564 can include, for example, a mixer, a filter, and an amplifier, and transmits and receives wireless signals via the antenna 1540.
  • FIG. 26 shows an example in which one RF circuit 1564 is connected to one antenna 1540, the present disclosure is not limited to the illustration, but one RF circuit 1564 may connect a plurality of antennas 1540 at the same time.
  • the wireless communication interface 1563 can include a plurality of RF circuits 1564.
  • multiple RF circuits 1564 can support multiple antenna elements.
  • FIG. 26 illustrates an example in which the wireless communication interface 1563 includes a plurality of RF circuits 1564, the wireless communication interface 1563 may also include a single RF circuit 1564.
  • FIG. 27 is a block diagram showing an example of a schematic configuration of a smartphone 1600 to which the technology of the present disclosure can be applied.
  • the smart phone 1600 includes a processor 1601, a memory 1602, a storage device 1603, an external connection interface 1604, an imaging device 1606, a sensor 1607, a microphone 1608, an input device 1609, a display device 1610, a speaker 1611, a wireless communication interface 1612, and one or more An antenna switch 1615, one or more antennas 1616, a bus 1617, a battery 1618, and an auxiliary controller 1619.
  • smart phone 1600 (or processor 1601) herein may correspond to terminal device 300B and/or 1500A described above.
  • the processor 1601 may be, for example, a CPU or a system on chip (SoC), and controls the functions of the application layer and the other layers of the smartphone 1600.
  • the memory 1602 includes a RAM and a ROM, and stores data and programs executed by the processor 1601.
  • the storage device 1603 may include a storage medium such as a semiconductor memory and a hard disk.
  • the external connection interface 1604 is an interface for connecting an external device such as a memory card and a universal serial bus (USB) device to the smartphone 1600.
  • the imaging device 1606 includes an image sensor such as a charge coupled device (CCD) and a complementary metal oxide semiconductor (CMOS), and generates a captured image.
  • Sensor 1607 can include a set of sensors, such as a measurement sensor, a gyro sensor, a geomagnetic sensor, and an acceleration sensor.
  • the microphone 1608 converts the sound input to the smartphone 1600 into an audio signal.
  • the input device 1609 includes, for example, a touch sensor, a keypad, a keyboard, a button, or a switch configured to detect a touch on the screen of the display device 1610, and receives an operation or information input from a user.
  • the display device 1610 includes screens such as a liquid crystal display (LCD) and an organic light emitting diode (OLED) display, and displays an output image of the smartphone 1600.
  • the speaker 1611 converts the audio signal output from the smartphone 1600 into sound.
  • the wireless communication interface 1612 supports any cellular communication scheme (such as LTE and LTE-Advanced) and performs wireless communication.
  • Wireless communication interface 1612 may typically include, for example, BB processor 1613 and RF circuitry 1614.
  • the BB processor 1613 can perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and performs various types of signal processing for wireless communication.
  • RF circuitry 1614 may include, for example, mixers, filters, and amplifiers, and transmit and receive wireless signals via antenna 1616.
  • the wireless communication interface 1612 can be a chip module on which the BB processor 1613 and the RF circuit 1614 are integrated. As shown in FIG.
  • the wireless communication interface 1612 can include a plurality of BB processors 1613 and a plurality of RF circuits 1614.
  • FIG. 27 illustrates an example in which the wireless communication interface 1612 includes a plurality of BB processors 1613 and a plurality of RF circuits 1614, the wireless communication interface 1612 may also include a single BB processor 1613 or a single RF circuit 1614.
  • wireless communication interface 1612 can support additional types of wireless communication schemes, such as short-range wireless communication schemes, near field communication schemes, and wireless local area network (LAN) schemes.
  • the wireless communication interface 1612 can include a BB processor 1613 and RF circuitry 1614 for each wireless communication scheme.
  • Each of the antenna switches 1615 switches the connection destination of the antenna 1616 between a plurality of circuits included in the wireless communication interface 1612, such as circuits for different wireless communication schemes.
  • Each of the antennas 1616 includes a single or multiple antenna elements (such as multiple antenna elements included in a MIMO antenna) and is used by the wireless communication interface 1612 to transmit and receive wireless signals.
  • smart phone 1600 can include multiple antennas 1616.
  • FIG. 27 illustrates an example in which smart phone 1600 includes multiple antennas 1616, smart phone 1600 may also include a single antenna 1616.
  • smart phone 1600 can include an antenna 1616 for each wireless communication scheme.
  • the antenna switch 1615 can be omitted from the configuration of the smartphone 1600.
  • the bus 1617 has a processor 1601, a memory 1602, a storage device 1603, an external connection interface 1604, an imaging device 1606, a sensor 1607, a microphone 1608, an input device 1609, a display device 1610, a speaker 1611, a wireless communication interface 1612, and an auxiliary controller 1619. connection.
  • Battery 1618 provides power to various blocks of smart phone 1600 shown in FIG. 27 via a feeder, which is partially shown as a dashed line in the figure.
  • the secondary controller 1619 operates the minimum required function of the smartphone 1600, for example, in a sleep mode.
  • the car navigation device 1720 includes a processor 1721, a memory 1722, a global positioning system (GPS) module 1724, a sensor 1725, a data interface 1726, a content player 1727, a storage medium interface 1728, an input device 1729, a display device 1730, a speaker 1731, and a wireless device.
  • car navigation device 1720 (or processor 1721) herein may correspond to terminal device 300B and/or 1500A described above.
  • the processor 1721 can be, for example, a CPU or SoC and controls the navigation functions and additional functions of the car navigation device 1720.
  • the memory 1722 includes a RAM and a ROM, and stores data and programs executed by the processor 1721.
  • the GPS module 1724 measures the position (such as latitude, longitude, and altitude) of the car navigation device 1720 using GPS signals received from GPS satellites.
  • Sensor 1725 can include a set of sensors, such as a gyro sensor, a geomagnetic sensor, and an air pressure sensor.
  • the data interface 1726 is connected to, for example, the in-vehicle network 1741 via a terminal not shown, and acquires data (such as vehicle speed data) generated by the vehicle.
  • the content player 1727 reproduces content stored in a storage medium such as a CD and a DVD, which is inserted into the storage medium interface 1728.
  • the input device 1729 includes, for example, a touch sensor, a button or a switch configured to detect a touch on the screen of the display device 1730, and receives an operation or information input from a user.
  • the display device 1730 includes a screen such as an LCD or OLED display, and displays an image of the navigation function or reproduced content.
  • the speaker 1731 outputs the sound of the navigation function or the reproduced content.
  • the wireless communication interface 1733 supports any cellular communication scheme (such as LTE and LTE-Advanced) and performs wireless communication.
  • Wireless communication interface 1733 can generally include, for example, BB processor 1734 and RF circuitry 1735.
  • the BB processor 1734 can perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and performs various types of signal processing for wireless communication.
  • the RF circuit 1735 can include, for example, a mixer, a filter, and an amplifier, and transmits and receives wireless signals via the antenna 1737.
  • the wireless communication interface 1733 can also be a chip module on which the BB processor 1734 and the RF circuit 1735 are integrated. As shown in FIG.
  • the wireless communication interface 1733 can include a plurality of BB processors 1734 and a plurality of RF circuits 1735.
  • FIG. 28 illustrates an example in which the wireless communication interface 1733 includes a plurality of BB processors 1734 and a plurality of RF circuits 1735, the wireless communication interface 1733 may also include a single BB processor 1734 or a single RF circuit 1735.
  • wireless communication interface 1733 can support additional types of wireless communication schemes, such as short-range wireless communication schemes, near field communication schemes, and wireless LAN schemes.
  • the wireless communication interface 1733 can include a BB processor 1734 and an RF circuit 1735 for each wireless communication scheme.
  • Each of the antenna switches 1736 switches the connection destination of the antenna 1737 between a plurality of circuits included in the wireless communication interface 1733, such as circuits for different wireless communication schemes.
  • Each of the antennas 1737 includes a single or multiple antenna elements (such as multiple antenna elements included in a MIMO antenna) and is used by the wireless communication interface 1733 to transmit and receive wireless signals.
  • car navigation device 1720 can include a plurality of antennas 1737.
  • FIG. 28 shows an example in which the car navigation device 1720 includes a plurality of antennas 1737, the car navigation device 1720 may also include a single antenna 1737.
  • car navigation device 1720 can include an antenna 1737 for each wireless communication scheme.
  • the antenna switch 1736 can be omitted from the configuration of the car navigation device 1720.
  • Battery 1738 provides power to various blocks of car navigation device 1720 shown in FIG. 28 via a feeder, which is partially shown as a dashed line in the figure. Battery 1738 accumulates power supplied from the vehicle.
  • the technology of the present disclosure may also be implemented as an in-vehicle system (or vehicle) 1740 including one or more of the car navigation device 1720, the in-vehicle network 1741, and the vehicle module 1742.
  • vehicle module 1742 generates vehicle data such as vehicle speed, engine speed, and fault information, and outputs the generated data to the in-vehicle network 1741.
  • a plurality of functions included in one unit in the above embodiment may be implemented by separate devices.
  • a plurality of functions implemented by a plurality of units in the above embodiments may be implemented by separate devices, respectively.
  • one of the above functions may be implemented by a plurality of units. Needless to say, such a configuration is included in the technical scope of the present disclosure.
  • the steps described in the flowcharts include not only processes performed in time series in the stated order, but also processes performed in parallel or individually rather than necessarily in time series. Further, even in the step of processing in time series, it is needless to say that the order can be appropriately changed.

Abstract

本公开内容涉及用于无线通信系统的电子设备、方法和存储介质。描述了关于波束管理的各种实施例。在一个实施例中,用于无线通信系统中的基站侧的电子设备可以包括处理电路系统,该处理电路系统可以被配置为基于发射波束配置利用不同的发射波束向终端设备重复地发送同步信号,同步信号可以指示发送该同步信号所使用的发射波束信息。该处理电路系统可以被配置为获取来自终端设备的反馈,该反馈可以包括发射波束信息以用于发射波束管理。

Description

用于无线通信系统的电子设备、方法和存储介质 技术领域
本公开一般地涉及无线通信系统,并且具体地涉及与波束成形相关的波束管理技术。
背景技术
近年来,随着移动互联网技术的发展和广泛应用,无线通信前所未有地满足了人们的语音和数据通信需求。为了提供更高的通信质量和容量,无线通信系统采用了不同层面的各种技术,例如波束成形(Beamforming)技术。波束成形可以通过增加天线发射和/或接收的指向性,提供波束成形增益以补偿无线信号的损耗。在未来无线通信系统(例如像NR(New Radio)系统这样的5G系统)中,基站和终端设备侧的天线端口数将进一步提升。例如,基站侧的天线端口数可以增加到成百甚至更多,从而构成大规模天线(Massive MIMO)系统。这样,在大规模天线系统中,波束成形将具有更大的应用空间。
目前,波束成形更多地用于基站与终端设备之间的数据收发过程。然而,终端设备与基站之间的初始连接/同步(包括例如,基站发送同步信号(Synchronization Signal,SS),终端设备发送随机接入信号至基站)是使得终端设备能够与基站进行适当的通信的第一步。因此,可以考虑将波束成形技术用于终端设备与基站之间的初始连接/同步,例如可以考虑将波束成形技术用于同步信号的收发过程以及随机接入信号的收发过程。
发明内容
本公开内容的各个方面涉及无线通信系统的波束成形技术中的波束管理。
本公开的一个方面涉及用于无线通信系统中的基站侧的电子设备。根据一个实施例,该电子设备可以包括处理电路。该处理电路可以被配置为基于发射波束配置利用不同的发射波束向终端设备重复地发送同步信号,同步信号指示发送该同步信号所使用的发射波束信息。该处理电路还可以被配置为获取来自终端设备的反馈,该反馈包括发射波束信息以用于发射波束管理。
本公开的另一个方面涉及用于无线通信系统中的终端设备侧的电子设备。根据一个实施例,该电子设备包括处理电路。该处理电路可以被配置为基于无线通信系统的基站侧的发射波束配置接收同步信号,同步信号能够指示基站发送该同步信号所使用的发射波束信息。该处理电路还可以被配置为提供反馈给基站,该反馈可以包括发射波束信息 以供基站用于发射波束管理。
本公开的另一个方面涉及无线通信方法。在一个实施例中,该方法可以包括基于发射波束配置利用不同的发射波束向终端设备重复地发送同步信号,同步信号能够指示发送该同步信号所使用的发射波束信息;以及获取来自终端设备的反馈,该反馈包括发射波束信息以用于发射波束管理。
本公开的另一个方面涉及另一无线通信方法。在一个实施例中,该方法可以包括基于无线通信系统的基站侧的发射波束配置接收同步信号,同步信号能够指示基站发送该同步信号所使用的发射波束信息;以及提供反馈给基站,该反馈包括发射波束信息以供所述基站用于发射波束管理。
本公开的另一个方面涉及用于无线通信系统中的基站侧的电子设备。根据一个实施例,该电子设备可以包括处理电路。该处理电路可以被配置为接收来自另一基站的发射波束配置,该另一基站基于发射波束配置向终端设备发送同步信号。该处理电路还可以被配置为向终端设备发送发射波束配置。
本公开的另一个方面涉及用于无线通信系统中的终端设备侧的电子设备。根据一个实施例,该电子设备包括处理电路。该处理电路可以被配置为获得随机接入配置信息;以及基于随机接入配置信息发送随机接入前导码,以指示下行链路中与终端设备侧的一个或多个接收波束配对的基站侧的一个或多个发射波束。
本公开的另一个方面涉及用于无线通信系统中的基站侧的电子设备。根据一个实施例,该电子设备可以包括处理电路。该处理电路可以被配置为发送随机接入配置信息;以及接收从终端设备发送的随机接入前导码,以获得下行链路中与终端设备侧的一个或多个接收波束配对的基站侧的一个或多个发射波束。
本公开的另一个方面涉及无线通信方法。在一个实施例中,该方法可以包括获得随机接入配置信息;以及基于随机接入配置信息发送随机接入前导码,以指示下行链路中与终端设备侧的一个或多个接收波束配对的基站侧的一个或多个发射波束。
本公开的另一个方面涉及另一无线通信方法。在一个实施例中,该方法可以包括发送随机接入配置信息;以及接收从终端设备发送的随机接入前导码,以获得下行链路中与终端设备侧的一个或多个接收波束配对的基站侧的一个或多个发射波束。
本公开的另一个方面涉及存储有一个或多个指令的计算机可读存储介质。在一些实施例中,该一个或多个指令可以在由电子设备的一个或多个处理器执行时,使电子设备执行根据本公开的各种实施例的方法。
本公开的另一个方面涉及各种装置,包括用于执行根据本公开实施例的各方法的操作的部件或单元。
提供上述概述是为了总结一些示例性的实施例,以提供对本文所描述的主题的各方面的基本理解。因此,上述特征仅仅是例子并且不应该被解释为以任何方式缩小本文所描述的主题的范围或精神。本文所描述的主题的其他特征、方面和优点将从以下结合附图描述的具体实施方式而变得明晰。
附图说明
当结合附图考虑实施例的以下具体描述时,可以获得对本公开内容更好的理解。在各附图中使用了相同或相似的附图标记来表示相同或者相似的部件。各附图连同下面的具体描述一起包含在本说明书中并形成说明书的一部分,用来例示说明本公开的实施例和解释本公开的原理和优点。其中:
图1描述了无线通信系统中的示例性小区同步和随机接入过程。
图2A至图2D描述了波束成形技术中的示例性波束扫描过程。
图3A示出了根据本公开实施例的用于基站侧的示例性电子设备。
图3B示出了根据本公开实施例的用于终端设备侧的示例性电子设备。
图4A至图4D示出了根据本公开实施例的用于同步信号的示例性时域频域资源。
图5A和图5B示出了根据本公开实施例的示例性同步信号时间窗口。
图6A至图6C示出了根据本公开实施例的基站侧的示例性发射波束配置。
图7A至图7D示出了根据本公开实施例的发射波束与同步信号时间窗口之间的示例性对应关系。
图8A和图8B示出了根据本公开实施例的基站侧特定发射波束配置下终端设备侧的示例性接收波束布置。
图9示出了根据本公开实施例的辅节点添加的示例性操作。
图10示出了根据本公开实施例的波束检测的示例性能。
图11A和图11B示出了根据本公开实施例的指示基站侧发射波束信息的示例方式。
图12A和图12B示出了根据本公开实施例的用于通信的示例方法。
图13示出了根据本公开实施例的用于基站侧的示例性电子设备,
图14示出了根据本公开实施例的示例的分等级发射波束扫描处理流程。
图15A示出了根据本公开实施例的用于终端设备侧的示例性电子设备,
图15B示出了根据本公开实施例的用于基站侧的示例性电子设备
图16示出了根据本公开实施例的示例性随机接入时间窗口。
图17A和图17B示出了根据本公开实施例的基站侧的示例性接收波束配置。
图18示出了根据本公开实施例的基站侧接收波束与随机接入时间窗口之间的示例性对应关系。
图19A和图19B示出了根据本公开实施例的基站侧特定接收波束配置下终端设备侧的示例性发射波束布置。
图20A和20B示出了根据本公开实施例的发送随机接入前导码的示例方法。
图21A示出了根据本公开实施例的终端设备发送随机接入前导码的示例性方法。
图21B示出了根据本公开实施例的基站接收随机接入前导码的示例性方法。
图22示出了根据本公开实施例的重传随机接入前导码的示例性方法。
图23A和图23B示出了根据本公开实施例的用于通信的示例方法。
图24是作为本公开的实施例中可采用的信息处理设备的个人计算机的示例结构的框图;
图25是示出可以应用本公开的技术的gNB的示意性配置的第一示例的框图;
图26是示出可以应用本公开的技术的gNB的示意性配置的第二示例的框图;
图27是示出可以应用本公开的技术的智能电话的示意性配置的示例的框图;以及
图28是示出可以应用本公开的技术的汽车导航设备的示意性配置的示例的框图。
虽然在本公开内容中所描述的实施例可能易于有各种修改和另选形式,但是其具体实施例在附图中作为例子示出并且在本文中被详细描述。但是,应当理解,附图以及对其的详细描述不是要将实施例限定到所公开的特定形式,而是相反,目的是要涵盖属于权利要求的精神和范围内的所有修改、等同和另选方案。
具体实施方式
在下文中将结合附图对本公开的示例性实施例进行描述。为了清楚和简明起见,在说明书中并未描述实际实施方式的所有特征。然而,应当清楚,在开发任何这种实际实施例的过程中必须做出特定于实施方式的决定,以便实现开发人员的具体目标。例如,符合与系统及业务相关的限制条件,并且这些限制条件可能会随着实施方式的不同而有所改变。此外,还应清楚,虽然开发工作有可能是较复杂和费时的,但对得益于本公开内容的本领域技术人员来说,这种开发工作仅仅是例行的任务。
为了避免因不必要的细节而模糊了本公开,在附图中仅仅示出了与根据本公开的方案密切相关的设备结构和/或操作步骤,而省略了与本公开关系不大的其他细节。
基站与终端设备的初始连接/同步过程
首先结合图1描述无线通信系统中的示例性基站与终端设备初始连接/同步过程,包括小区同步和随机接入过程。一般而言,无线通信系统可以包括多个基站,每个基站可以服务相应覆盖范围(例如,小区)内的若干个终端设备。图1中示出了终端设备110与基站120之间的示例性小区同步和随机接入过程,终端设备110是基站120所服务的若干个终端设备之一。该过程也可以适用于无线通信系统中的任何终端设备。
终端设备110在开机或要切换到基站120时首先需要进行小区搜索,小区搜索的目的之一是使终端设备110获取基站120的小区帧定时,得出下行链路帧的起始位置。另一方面,基站120发送同步信号101,以便使终端设备110能够获取小区帧定时,基站120例如可以定期地进行同步信号发送。一般而言,同步信号中可以包括同步序列,该同步序列选自的同步序列集合对于基站和终端设备均是已知的。例如在LTE系统中,同步信号包括主同步信号(Primary Synchronization Signal,PSS)和辅同步信号(Secondary Synchronization Signal,SSS)。在一个示例中,主同步信号可以是长度为63的Zadoff-Chu序列,辅同步信号可以是长度为62的序列并由两个长度为31的M序列级联得到。而且,同步信号可以以一定的时间周期或时间模式发送,例如同步信号可以在下行链路帧中的固定位置(例如固定的子帧、时隙以及符号位置)处发送。这样,终端设备110可以在载波中心处对例如单个子帧内接收到的信号与已知的同步序列集合中的同步序列逐个进行相关运算,相关性的峰值所在位置则对应于同步信号在下行链路帧中的位置,由此终端设备110可以获得下行链路小区同步。
在获得下行链路小区同步之后,终端设备110可以在下行链路帧中的适当位置接收小区系统信息。系统信息可以由基站120通过广播用的信道(例如广播信道PBCH、共享信道PDSCH等)周期广播,并且可以包括终端设备110要接入基站120所必需的信息,如随机接入相关信息。
之后,为了获得上行链路小区同步,终端设备110需要进行随机接入过程。示例性的随机接入过程操作如下。在102处,终端设备110可以通过向基站120发送随机接入前导码(例如包括在MSG-1中)来向基站120通知自己的接入行为。随机接入前导码的发送使基站120能够估计终端设备的上行链路定时提前(Timing Advance)。在103处,基站120可以通过向终端设备110发送随机接入响应(例如包括在MSG-2中)来向终端 设备110通知上述定时提前。终端设备110可以通过该定时提前实现上行链路小区同步。随机接入响应中还可以包括上行链路资源的信息,终端设备110可以在以下操作104中使用该上行链路资源。对于竞争型的随机接入过程,在104处,终端设备110可以通过上述调度的上行链路资源发送终端设备标识以及可能的其他信息(例如包括在MSG-3中)。基站120可以通过终端设备标识确定竞争解决结果。在105处,基站120可以告知终端设备110该竞争解决结果(例如包括在MSG-4中)。此时,如果竞争成功,则终端设备110成功接入基站120,该随机接入过程结束;否则,终端设备110需重复操作102至105的随机接入过程。在一个例子中,在随机接入过程成功之后,可认为终端设备与基站之间的初始连接/同步过程结束,终端设备可以与基站进行后续的通信。
波束成形以及波束扫描概述
波束成形通常是指考虑到天线发射和/或接收的指向性强,使得各发射波束和/或接收波束被局限于特定的方向指向和波束覆盖范围,各波束的覆盖范围窄于全宽波束,而波束的增益增大。这些发射波束和/或接收波束可以近似组合成全宽波束。全宽的波束可以指在不使用波束成形的情况下的波束,即其波束宽度没有通过波束成形处理而变窄。例如,全向天线的波束可以认为是全宽的波束。在物理实现的一些实例中,发射端通信设备具有多个射频链路,每一射频链路连接到多个天线及其移相器,每一射频链路上的信号通过具有不同相位的多个天线而被叠加发射到空中从而形成发射波束。发射端通信设备的控制单元根据目标发射波束方向确定对应的多个天线的相位值,并配置相应的移相器,从而控制发射波束成形。相应地,接收端通信设备具有一个或多个射频链路,每一射频链路连接到多个天线及其移相器,空中无线电信号通过具有不同相位的多个天线而被叠加地接收到射频链路中从而形成接收波束。接收端通信设备的控制单元根据目标接收波束方向确定对应的多个天线的相位值,并配置相应的移相器,从而控制接收波束成形。在一些示例中,通信设备的控制单元根据预定的码本来配置每一射频链路的多个天线的移相器,码本包含有多个码字,每一码字对应于一个波束方向,指示一种移相器的相位组合。
在波束成形中,由于天线发射和/或接收的指向性强,所以下行链路或上行链路中需要匹配的发射和接收波束以保证取得波束成形增益。因此,可以收集并维护下行链路或上行链路中这种匹配的发射和接收波束,也即进行波束管理。波束管理涉及两个重要方面,即波束扫描和扫描结果交互。波束扫描可以包括发射波束扫描和接收波束扫描,它们分别是指以预定方式在一段时间内发射和接收不同波束以覆盖一定的空间区域,从 而找出适于某个方位空间区域的发射和接收波束。以下行链路为例,由于一个终端设备通常位于基站的特定方位,因此基站侧通常仅存在一个(或多个)特定的发射波束适于与该终端设备进行通信。在终端设备侧也通常存在与该特定的发射波束配合的一个(或多个)接收波束。终端设备可以通过扫描结果报告将与其配合的基站侧特定发射波束报告给基站。在同步信号收发中,一对匹配的发射和接收波束可以指使得在接收同步信号时的同步序列相关运算的相关性结果符合一定阈值水平的发射和接收波束对。可以理解,在后续数据收发中,经由该对发射和接收波束的通信质量(例如接收信号强度(如RSRP)、信干噪比(如CQI)、误码率(如BER、BLER)等)也可以符合一定的通信质量需求。
以下结合图2A至图2D描述波束成形技术中的波束扫描。在波束成形中,发射端可以通过多个发射波束进行发射波束扫描。在图2A的例子中,发射端设置有4个发射波束,在图2B的例子中,发射端设置有3个发射波束。根据配置或应用需要,接收端可以使用或不使用接收波束成形。在图2A的例子中,接收端使用接收波束成形并通过3个接收波束进行接收波束扫描。在图2B的例子中,接收端不使用接收波束成形并仅设置有1个全宽的接收波束。在波束成形中,发射端和/或接收端还可以设置有分等级的发射波束,例如第一等级发射波束(也称粗发射波束)和第二等级发射波束(也称细发射波束)。在图2C的例子中,发射端设置有3个第一等级的发射波束(即TX_B1至TX_B3),每个第一等级的发射波束又设置有2个第二等级的发射波束(例如TX_B1的两个细发射波束为TX_B1,1和TX_B1,2,其余类似)。在图2D的例子中,发射端与接收端都设置有分等级的发射波束。在图2D中,发射端的发射波束与图2C类似,接收端设置有3个第一等级的接收波束(即RX_B1至RX_B3),每个第一等级的接收波束又设置有2个第二等级的接收波束(例如RX_B1的两个细发射波束为RX_B1,1和RX_B1,2,其余类似)。如图2C和图2D所示,粗发射波束的波束宽度可以比细发射波束的宽,细发射波束的增益可以比粗发射波束的大。
在波束扫描过程中,发射端可以逐个发射波束进行发送(即发射波束扫描),例如考虑到接收端的情况,各发射波束可以发射一次或者重复发射多次。接收端可以针对每一发射波束的发送使用接收波束逐一进行接收(即接收波束扫描),从而确定匹配的发射和接收波束对。例如,在图2A的例子中,发射端可以首先重复使用发射波束TX_B1发送3次。相应地,接收端可以逐个使用接收波束RX_B1至RX_B3接收对应的1次发送,得出相应的同步序列相关性。接着,发射端可以重复使用发射波束TX_B2发送3次,接收端可以逐个使用接收波束RX_B1至RX_B3接收对应的1次发送并得出相应的同步序列相关 性。在发射端重复使用发射波束TX_B3、TX_B4进行了发送之后,接收端可以基于得出的同步序列相关性确定匹配的发射和接收波束对。这样,发射端和接收端之间的后续通信可以使用该发射和接收波束对进行。上述示例中每一发射波束的重复发送次数可以是接收波束个数的整数倍。在接收端具有多个射频链路从而能够同时使用多个接收波束进行接收的情况下,发射端不必重复发射每一发射波束,而只须依次发射TX_B1~TX_B4。图2B是接收端不使用接收波束成形的例子。在图2B中,对于发射端的每次发送,终端设备使用全宽的接收波束进行接收并确定相应的同步序列相关性,从而确定与全宽接收波束匹配的发射波束。这样,在发射端和接收端之间的后续通信中,发射端将使用所确定的发射波束进行通信。
在图2C中分等级的发射波束情况下,可以首先确定匹配的第一等级发射波束,接着在该匹配的第一等级发射波束下确定匹配的第二等级发射波束。例如,发射端可以首先进行第一等级的发射波束扫描,接收端可以以上述类似方式确定与其匹配的第一等级发射波束。在发射端通过该匹配的第一等级发射波束下的第二等级的发射波束进行波束扫描时,接收端可以类似地确定与其匹配的第二等级发射波束。由此最终确定第二等级发射波束以及匹配的接收波束作为匹配的发射和接收波束对,以供后续通信使用。根据示例性实现方式,在第二等级的发射波束进行波束扫描时,接收端可以直接利用在第一等级的发射波束进行扫描时所确定的匹配接收波束作为接收波束来进行接收和确定,而不是所有接收波束,从而降低波束扫描开销。
在图2D中发射波束和接收波束均分等级的情况下,在波束扫描中,发射端可以首先进行第一等级的发射波束扫描,接收端可以利用相对应的第一等级的接收波束进行接收,从而以上述类似方式确定匹配的第一等级发射波束和第一等级接收波束。在发射端通过该匹配的第一等级发射波束下的第二等级的发射波束进行波束扫描时,接收端可以利用相对应的的匹配的第一等级接收波束下的第二等级的接收波束进行接收,从而以上述类似方式确定匹配的第二等级发射波束和第二等级接收波束,作为匹配的发射和接收波束对,以供后续通信使用。
应当理解,在下行链路通信中,发射端可以对应于基站120,接收端可以对应于终端设备110。在上行链路通信中,发射端可以对应于终端设备110,接收端可以对应于基站120。在本公开的实施例中,在上行链路中匹配的发射和接收波束与下行链路中匹配的接收和发射波束对应(例如相同)的情况下,称上下行链路中的发射和接收波束对具有对称性。该对称性意味着,就与终端设备110的匹配而言,基站120的发射波束和接收 波束是对应的,可以根据基站侧匹配的发射波束(或接收波束)确定匹配的对应接收波束(或发射波束)。就与基站120的匹配而言,终端设备110侧的情况类似。
波束成形技术在同步信号收发中的应用
以下将简要描述波束成形技术在上述同步信号的收发中的应用。在无线通信领域中,波束成形技术已经用于发送数据信号。根据本公开的实施例,可以使用波束成形来发送同步信号。例如,基站120可以使用发射波束成形发送同步信号,从而补偿同步信号的损耗以确保终端设备110适当地进行下行链路同步以及随机接入过程。根据本公开的技术方案可以用于各种通信频段,包括几百MHz到几GHz范围的传统射频通信频段。随着无线通信系统频段的提高,例如使用26GHz、60GHz或者更高的频段,无线信道将经受相比低频段(例如2GHz)更大的路径损耗、大气吸收损耗等负面影响。因此,根据本公开的技术方案对于高频段(例如毫米波)通信同样适用,甚至更为重要。
在本公开的一些实施例中,同步信号的发送可以指示发送该同步信号所使用的发射波束信息,从而终端设备可以通过接收同步信号来获得该发射波束信息以用于简化、加快后续数据传输的波束扫描。根据本公开的一些实施例,同步信号可以由基站基于发射波束配置利用不同的发射波束向终端设备在内的多个终端设备重复地发送,并且同步信号可以包括发送该同步信号所使用的发射波束信息,如本文以下描述的。例如,在使用波束成形技术以发送同步信号的一些实施例中,考虑到基站120将以多个不同的发射波束重复发送同步信号,重新设计了下行链路帧中的同步信号时间窗口,如本文之后将具体描述的。发射波束扫描中多个发射波束的重复模式可以通过发射波束配置来表示,可以基于该发射波束配置发送同步信号。
终端设备可以以多种方式来接收同步信号。在接收同步信号时,终端设备可以至少确定与终端设备相匹配的基站的发射波束,并且通过任何适当的方式将该匹配的发射波束反馈给基站,包括本公开以下描述的以及任何其他的方式。至少该匹配的基站的发射波束可用于基站与终端设备之间的后续通信(包括随机接入过程以及数据收发过程)。
在一个实施例中,终端设备110在接收同步信号时可以不使用接收波束成形从而在快速同步和降低后续波束扫描开销之间取得折中。此时,可以认为终端设备110以自身全宽的波束接收通过基站侧的各个发射波束而发送的同步信号,并将成功接收同步信号时与该全宽波束匹配的基站侧的发射波束反馈给基站120。在另一个实施例中,终端设备110在接收同步信号时可以也使用接收波束成形从而抵抗高频同步信号的衰落以及节省后续波束扫描开销。此时,可以确定成功接收同步信号时匹配的终端设备侧的接收波束和 基站侧的发射波束,并且可以将该匹配的发射波束反馈给基站120。该匹配的发射和接收波束对将直接或间接用于基站120和终端设备110之间的后续通信(包括随机接入过程以及数据收发过程)。例如,基站120和终端设备110使用和匹配的同步信号的发射波束和接收波束相同的波束来进行数据收发,换言之,同步信号和数据信号的波束成形码本相同。又例如,基站120和终端设备110使用匹配的同步信号的发射波束和接收波束作为第一等级波束对,在该第一等级波束对覆盖的范围内进行第二等级波束扫描来确定更精细的收发波束对以用于数据收发,换言之,同步信号和数据信号的波束成形码本不同,数据信号的波束成形码本是同步信号的波束成形码本的子集。
在一些实施例中,在终端设备也采用波束成形技术来接收同步信号的情况下,终端设备也可以基于基站发射同步信号的发射波束配置(例如共有多少个发射波束、每一发射波束的重复次数)来设定终端设备的接收波束以接收同步信号。例如,由于终端设备110需要进行接收波束扫描,也就是使用不同的接收波束来接收基站侧通过同一发射波束发送的信号,因此终端设备110可能需要知晓基站120的发射波束配置。在一个例子中,基站120的发射波束配置可被预先告知给终端设备。例如,终端设备可以通过双连接(Dual Connectivity)的方式同时获得基站120和另一不进行波束成形收发的基站(例如LTE eNB)的服务,终端设备110可以从该另一基站获得基站120的发射波束配置信息。具体地,终端设备110首先根据传统方式接入该另一基站(可称为主基站),主基站通过例如Xn接口请求基站120将其作为辅基站添加给终端设备110,基站120反馈辅基站添加请求确认给主基站,其中包含基站120的同步信号发射波束配置信息,在一些示例中还可以包含随机接入配置信息。接下来,主基站将这些信息包含于例如无线电资源控制连接重配置消息中提供给终端设备110以用于完成和基站120的同步。在另一个例子中,终端设备110可以从基站120发射的同步信号来获得基站120的发射波束配置。例如,终端设备110可以通过同步信号的测量过程估计基站120的发射波束配置。
波束扫描结果报告
以下将简要描述终端设备所进行的匹配的基站侧发射波束的反馈。在根据本公开的实施例中,为了使终端设备110能够将匹配的基站侧发射波束反馈给基站120,也需要以某种方式来指示发射波束。可以通过隐式或显式的方式指示匹配的基站侧的发射波束,从而进行波束扫描结果报告。此波束扫描结果报告可以包含在终端设备进行的随机接入过程中。当然,根据一些实施例,涉及基站侧的发射波束的反馈可以与随机接入前导码分离地被发送,例如可以在随机接入前导码之前或之后被发送。
根据本公开的一些实施例,终端设备发送随机接入前导码可以指示下行链路中与终端设备侧的接收行为匹配的基站侧的发射波束,如本文以下描述的。例如,对于终端设备使用接收波束成形的情况,终端设备发送随机接入前导码可以指示下行链路中与终端设备侧的接收波束匹配的基站侧的发射波束;对于终端设备不使用接收波束成形的情况,终端设备发送随机接入前导码可以指示的是下行链路中与终端设备侧未使用波束成形的接收行为匹配的基站侧的发射波束。
在一些实施例中,终端设备110基于随机接入配置信息发送随机接入前导码,以指示下行链路中与终端设备侧的接收波束匹配的基站侧的发射波束。在一些实施例中,随机接入配置信息可以包括基站侧接收波束与多个随机接入时间窗口的对应关系。在一个实施例中,该对应关系可以包括基站侧多个等级接收波束与多个随机接入时间窗口的对应关系。终端设备110可以基于该对应关系发送随机接入前导码。在一个例子中,基站能够通过在特定时间窗口接收到该随机接入前导码来识别出相对应的基站侧的发射波束。这是通过隐式的方式指示匹配的基站侧的发射波束的一个示例。
在一些实施例中,还可以通过随机接入前导码后续的上行链路消息,例如附加比特位等,指示下行链路中与终端设备侧的接收波束匹配的基站侧的发射波束,这是显式方式的一个示例。
以下结合图3A至图14描述根据本公开的第一方面,其主要公开了根据本公开的实施例的同步信号的收发。根据一些实施例,从基站侧通过波束成形向终端设备侧发送同步信号,终端设备接收同步信号,并且获得基站发送该同步信号所使用的发射波束的信息。此后终端设备将所获得的发射波束信息反馈回基站,由此基站可以从该反馈中获知其发送同步信号所使用的发射波束,以供后续通信使用。根据一些实施例,根据本公开的第一方面的操作可以由基站侧和终端设备侧的电子设备执行。以下将详细描述根据本公开的第一方面的操作。
用于基站侧的电子设备示例
图3A示出了根据本公开的实施例的用于基站侧的示例性电子设备,其中该基站可以用于各种无线通信系统。图3A所示的电子设备300A可以包括各种单元以实现根据本公开的第一总体方面。如图3A所示,电子设备300A例如可以包括同步信号发送单元305和反馈获取单元310。根据一种实施方式,电子设备300A例如可以是图1中的基站120或者可以是基站120的一部分,也可以是用于控制基站的设备(例如基站控制器)或用于基站的设备或者它们的一部分。以下结合基站描述的各种操作均可以由电子设备300A 的单元305、310或者其他单元实现。
在一些实施例中,同步信号发送单元305可以被配置为通过波束成形向终端设备发送同步信号,以指示发送该同步信号所使用的发射波束信息。同步信号发送单元305可以基于发射波束配置利用不同的发射波束向终端设备重复地发送同步信号,同步信号包括发送该同步信号所使用的发射波束信息。在一个例子中,同步信号本身可以包括或指示发送该同步信号所使用的发射波束信息。在另一个例子中,发送同步信号所使用的传输资源例如频率、时间参数可以指示上述发射波束信息。在一些实施例中,发射波束信息可以包括发射波束ID,每一发射波束ID对应于特定朝向的发射波束。
在一些实施例中,反馈获取单元310可以被配置为获取来自终端设备的反馈,该反馈包括发射波束信息以用于发射波束管理。该发射波束信息所对应的发射波束可以是与终端设备接收匹配或匹配度最高的发射波束。在一个例子中,反馈获取单元310可以直接接收从终端设备发送的反馈。在另一个例子中,反馈获取单元310可以通过例如Xn接口从另一基站获得终端设备的反馈,例如从前述的双连接中的主基站。反馈以及提供反馈的过程将在下文具体描述。电子设备300A可以从反馈中获得发射波束信息,例如发射波束ID。该发射波束ID所表示的发射波束是与终端设备接收匹配的发射波束,电子设备300A可以管理与各终端设备匹配的发射波束,以在后续与该终端设备的下行链路通信中使用该发射波束。
用于终端设备侧的电子设备示例
图3B示出了根据本公开的实施例的用于终端设备侧的示例性电子设备,其中该终端设备可以用于各种无线通信系统。图3B所示的电子设备300B可以包括各种单元以实现根据本公开的第一总体方面。如图3B所示,在一个实施例中,电子设备300B可以包括同步信号接收单元325和反馈提供单元330。根据一种实施方式,电子设备300B例如可以是图1中的终端设备110或者可以是终端设备110的一部分。以下结合终端设备描述的各种操作均可以由电子设备300B的单元325、330或者其他单元实现。
在一些实施例中,同步信号接收单元325可以被配置为接收同步信号,以基于所接收的同步信号获得基站发送该同步信号所使用的发射波束信息。在一个实施例中,同步信号接收单元325可以被配置为基于无线通信系统的基站侧的发射波束配置来接收同步信号。另选地或附加地,同步信号接收单元325可以基于发送同步信号所使用的传输资源例如时间或频率参数获得上述发射波束信息。在一些实施例中,发射波束信息可以包括发射波束ID。
在一些实施例中,反馈提供单元330可以被配置为提供反馈给基站,该反馈可以包括或指示发射波束信息以供基站用于发射波束管理。在一个例子中,反馈的发射波束信息所对应的发射波束是与电子设备300B的接收匹配或匹配度最高的发射波束(例如基于同步信号收发确定的)。在一个例子中,反馈提供单元330可以将反馈直接发送给向电子设备300B发送了同步信号的基站。在另一个例子中,反馈提供单元330可以将反馈通过另一基站(例如通过双连接的主基站)转发给上述基站。
以下将详细描述根据本公开的实施例的同步信号及其收发,该同步信号可以包含或者指示基站发射波束的发射波束信息。例如,同步信号本身可以通过利用不同的同步序列或者通过包含不同的附加比特来指示发射该同步信号的发射波束的信息,或者同步信号的特定发送方式可以指示发射该同步信号的发射波束的信息。
同步信号示例
根据本公开的实施例,基站发送的同步信号可以具有不同类型。每种类型的同步信号一般可以包括相应的同步信号序列。在一些实施例中,同步信号可以至少包括主同步信号和辅同步信号。在另一些实施例中,同步信号还可以包括第三同步信号(Tertiary Synchronizing Signal,TSS)。一般而言,需要在时域频域资源上发送同步信号。在一些实施例中,多个同步信号可以在时域是连续的;在另一些实施例中,多个同步信号可以在时域是不连续的。在一些实施例中,多个同步信号可以在频域是连续的;在另一些实施例中,多个同步信号可以在频域是不连续的。
图4A至图4D示出了根据本公开实施例的用于同步信号的示例性时域频域资源。在一些实施例中,用于发送同步信号的频域资源可以相对固定,例如可以是频带中心的若干个资源块或子载波,相应的时域资源可以位于下行链路帧中的预定位置处。如图4A和4B所示,以LTE系统中的帧结构为例,用于发送主同步信号和辅同步信号的频域资源可以是频带中心的若干个(例如6个)资源块(未具体示出),用于发送主同步信号的时域资源可以位于1个下行链路帧中的编号为5的子帧的第一个时隙的一个OFDM符号处,用于发送辅同步信号的时域资源可以位于该下行链路帧中的该子帧的第一个时隙的另一个OFDM符号处。在图4A的例子中,主同步信号和辅同步信号在时域是不连续的。图4B与图4A类似,但是在图4B的例子中主同步信号和辅同步信号在时域是连续的。如已知的,图4A和图4B所示的包括多个子帧的帧在时域上是重复的,每个帧可以具有无线电帧号,该无线电帧号具有一定的周期。例如,在LTE系统中,无线电帧号也称为系统帧号(SFN),其具有1024的周期,可以在1024个帧的范围内对每个帧进行识别。
如图4C所示,可以使用一个频域资源块来发送主同步信号,使用另一个频域资源块来发送辅同步信号。在图4C的例子中,主同步信号和辅同步信号在频域是不连续的。不同类型的同步信号在时域频域资源上的更多布置参见图4D(即布置(1)至(5))。
进一步地,如图4A和4B所示,用于发送不同类型的同步信号的时域资源可以具有某种位置关系。该位置关系可以包括时域资源之间的顺序。例如,图4A中用于辅同步信号的符号在前,用于主同步信号的符号在后;而图4B中用于主同步信号的符号在前,用于辅同步信号的符号在后。另选或附加地,位置关系可以包括时域资源之间的间隔。例如,图4A中用于主同步信号和辅同步信号的符号之间间隔3个符号;而图4B中用于主同步信号和辅同步信号的符号之间间隔0个符号。虽然这里没有具体描述,但应当理解用于发送不同类型的同步信号的频域资源块也可以具有类似的位置关系。而且,位置关系还可以是组合的时域和频域位置关系。在一些实施例中,可以通过不同类型的同步信号在时域或频域的相对位置表示系统信息。在一个例子中,该系统信息可以包括无线通信系统的双工类型和不同的循环前缀长度中的至少一者。例如,主同步信号和辅同步信号之间的顺序可以表示双工类型(如主同步信号在前表示TDD,在后表示FDD),主同步信号和辅同步信号之间的间隔可以表示不同的循环前缀长度(如间隔3个符号表示扩展的循环前缀等等)。
图4D示出了同步信号在时域频域资源上的5种示例性布置(水平方向代表时域,竖直方向代表频域)。如前面描述的,这些布置中不同类型的同步信号之间的(时域、频域或其组合)位置关系可以表示不同的系统信息。图4D中的示例性布置的共同之处在于各个同步信号是连续的,即在时域、频域或时频域是连续的。可以认为,这些不同类型的连续的同步信号形成了同步信号块(SS Block)。同步信号可以承载于每个同步信号块中被重复发送。对于给定的频带,同步信号块可以对应于基于默认子载波间隔的N个OFDM符号,其中N是常数。终端设备可以从同步信号块中至少获得无线电帧中的时隙索引和符号(例如OFDM符号)索引。在一个例子中,同步信号块还可以包括广播用的信道,终端设备从中获得无线电帧号。例如,在布置(5)中,同步信号块还可以包括PBCH广播信道。
根据本公开的一些实施例,同步信息可以包含基站发送该同步信号所使用的发射波束的发射波束信息。例如,不同同步信号块可以包括不同的同步信号内容(例如不同的同步信号序列或不同的额外信息比特)以指示发送该同步信号块所使用的发射波束信息(发射波束ID)。
同步信号/同步信号块的发送时间窗口示例
一般而言,同步信号可以在下行链路帧中的特定时间窗口发送,这些时间窗口可以以一定的时间周期或时间模式布置。这些时间窗口可以对应于同步信号/同步信号块的特定收发时机(occasion)。在根据本公开的实施例中,由于使用波束成形来发送同步信号,因此需要更多的同步信号发送窗口,以用于:1)使用多个不同波束的发送,以及2)使用单个波束的重复发送。以发送同步信号块为例,在一些实施例中,用于多个同步信号块的时间窗口可以在下行链路帧中是分散即不连续的。相应的一个示例参见图5A。如图5A所示,用于发送同步信号块的时间窗口以一定的周期布置,每个同步信号块可以包括例如主同步信号、辅同步信号和广播信道。
在一些实施例中,可以使多个(例如2个、4个、8个、12个、16个)同步信号块在时域集中(即连续)以形成同步信号突发(SS Burst),以使用发射波束成形发送同步信号。在时域上,同步信号突发可以包括多个连续的同步信号块。在一个例子中,同步信号突发的长度可以用所包括的同步信号块的个数表示。多个同步信号突发之间可以在时域具有一定的间隔。由于同步信号突发可以集中多个同步信号块,使得基站和终端设备能够更快地在收发同步信号的同时完成波束扫描。同步信号突发的一个示例参见图5B,其中同步信号突发的长度为12。如图5B所示,用于发送同步信号块的12个时间窗口彼此集中,形成用于同步信号突发的1个较大时间窗口,并且多个较大时间窗口可以以一定的周期(如SS突发周期)布置。每个同步信号块同样可以包括例如主同步信号、辅同步信号和广播信道。
在无线通信系统中,同步信号的发送时间窗口往往被指定为与下行链路帧的特定的时间参数相对应。这样,图5A和图5B中的同步信号突发、同步信号块和同步信号可以经由时间窗口而与下行链路帧的时间参数相关联,示例的时间参数可以包括OFDM符号索引、无线电帧中的时隙索引以及无线电帧号等。例如,可以确定同步信号突发、同步信号块或同步信号位于某个无线电帧中,并且具体地位于某个时隙的某个OFDM符号处。也就是说,终端设备可以根据同步信号块或同步信号的接收识别出OFDM符号索引、无线电帧中的时隙索引以及无线电帧号中的一个或多个。
根据本公开的一些实施例,同步信号的发送方式(例如,发送时间窗口,时间参数等)可以指示发送同步信号所使用的发射波束的信息。例如,在一些实施例中,这些时间参数可以结合发射波束配置用于识别(例如由终端设备)发送同步信号所使用的发射波束。
基站侧的同步信号发送
根据一些实施例,基站侧可以基于发射波束配置来发送同步信号。如前面描述的,基站侧多个发射波束的重复模式可以通过发射波束配置来表示。一般而言,为了表示发射波束的重复模式,发射波束配置可以包括或指示至少两方面的信息,即发射波束的个数以及使用每个发射波束重复地发送(例如同步信号)的次数。在一些实施例中,发射波束配置还可以指定至少一次同步信号发送的时间参数。
在一些实施例中,发射波束配置可以指定基站能够用于发送同步信号的发射波束的个数以及连续使用每个发射波束发送的次数。图6A和图6B示出了根据本公开的实施例的基站侧的示例性发射波束配置。如图6A所示,发射波束配置600A指定基站侧有4个发射波束TX_B1至TX_B4用于发送同步信号,并且可以连续使用每个发射波束3次来发送同步信号。如图6B所示,发射波束配置600B指定基站侧有12个发射波束TX_B1至TX_B12用于发送同步信号,并且仅可以使用每个发射波束1次来发送同步信号。在一些情况下,可以以N个×M次的形式表示发射波束配置。例如,图6A中4个不同的发射波束、每个发射波束重复3次的示例性发射波束配置可简称4个×3次配置。类似地,图6B中的示例配置可以简称为12个×1次配置。这些发射波束配置仅是示例。在各实施例中,发射波束可以是任意多个,重复次数也可以为1次或多次。
在相应的实施例中,电子设备300A可以基于发射波束配置,使用多个(例如4个或12个)发射波束中的每个发射波束发送同步信号,并且连续使用每个发射波束发送同步信号达指定次数(例如3次或1次)(即发射波束扫描)。
根据本公开的一些实施例,还可以依次使用每个发射波束发射同步信号一次,然后重复此过程达指定次数,由此进行发射波束扫描。
在一些实施例中,发射波束配置可以指定基站能够用于发送同步信号的不同等级的发射波束的个数和连续使用不同等级的每个发射波束发送的次数。图6C示出了根据本公开的实施例的基站侧的分等级发射波束情况下的示例性发射波束配置。假设基站侧有4个第一等级的发射波束,每个第一等级的发射波束具有2个第二等级的发射波束。第一等级的发射波束配置可以例如如图6A所示,第二等级的发射波束配置可以例如如图6C所示。第二等级的发射波束配置600C指定有8个第二等级发射波束TX_B1,1至TX_B4,2用于发送同步信号,并且可以连续使用每个第二等级发射波束3次来发送同步信号。在一些情况下,同样可以以N个×M次的形式表示分等级的发射波束配置。例如,图6C第一等级发射波束配置可以表示为4个×3次配置,第二等级发射波束配置可以表示为2个 ×3次配置(其中“2个”第二等级发射波束对应单个第一等级发射波束)或8个×3次配置(其中“8个”第二等级发射波束对应第一等级发射波束整体)。
在相应的实施例中,电子设备300A可以被配置为使用所述不同等级的每个发射波束发送同步信号,并且连续使用每个发射波束发送同步信号达指定次数。
在一些实施例中,发射波束配置还可以指示基站侧发射波束与多个同步信号时间窗口的对应关系,例如通过指示特定发射波束的特定发送与同步信号时间窗口的对应关系。例如,发射波束配置600A可以指定使用发射波束TX_B1的第一次同步信号发送的时间窗口(例如指定该时间窗口的包括特定帧、子帧、时隙和/或OFDM符号等的时间参数)。此时,电子设备300A可以基于该时间窗口/时间参数使用发射波束TX_B1来发送同步信号,并基于同步信号时间窗口的布置和发射波束配置继续接下来的发送。相应地,电子设备300B可以基于成功接收到同步信号的时间窗口/时间参数和发射波束配置来确定发送该同步信号所使用的发射波束。具体示例可以参考图7A至图7D的以下描述。
图7A至图7D示出了根据本公开的实施例的发射波束与同步信号块(或同步信号)之间的对应关系。图7A和图7B示出了4个×3次配置下的示例性对应关系,其中图7A对应于同步信号块在时间上分散的情况,图7B对应于同步信号块形成同步信号突发的情况。
在图7A中,基于基站侧发射波束与多个同步信号时间窗口的对应关系,在第一组的三个同步信号块位置上,均使用第一个发射波束发送同步信号块。在第二组的三个同步信号块位置上,均使用第二个发射波束发送同步信号块。接下来,在第三组、第四组的同步信号块位置上,分别均使用第三个和第四个发射波束发送同步信号块。要指出的是,图7A仅示出示例性波束配置的一次循环,在之后的时间可以重复上述布置以发送同步信号。
在图7B中,同步信号块在时间上被布置为同步信号突发,信号突发可以基于一定的周期发送。其中,同步信号突发的长度恰好为12个同步信号块,因此与4个×3次的配置下的12次同步信号发送匹配。在一些实施例中,可能存在同步信号突发的长度与发射波束配置并不完全匹配的情况(例如长度为15的同步信号突发与4个×3次的配置可能不完全匹配),因此可以通过预先配置来使得二者匹配。在图7B中,对于第一个同步信号突发,在第一组的三个同步信号块位置上,均使用第一个发射波束发送同步信号块。在第二组的三个同步信号块位置上,均使用第二个发射波束发送同步信号块。接下来,在第三组、第四组的同步信号块位置上,分别均使用第三个和第四个发射波束发送同步 信号块。之后,对于接下来的同步信号突发,重复上述布置以发送同步信号。
除了4个×3次的配置之外,还可以根据需要选择不同的发射波束配置,例如6个×3次、8个×2次等配置。特别地,在同步信号突发的情况下,例如对于长度为12的同步信号突发,还可以存在例如2个×6次、3个×4次、6个×2次、12个×1次的配置;而且,还可以存在其他长度的同步信号突发以及相应的发射波束配置(例如5个×3次的配置、长度为15的同步信号突发)。
图7C和图7D示出了12个×1次的配置,对于图7C和7D的理解可以参照以上对图7A和7B的描述,此处不再重复。发射波束配置的选择依据包括例如基站支持的发射波束数量、终端设备支持的发射波束数量等。例如,在小区覆盖范围较大的情况下,要求同步信号能够覆盖较远的距离,因此需要基站侧较大的发射波束成形增益,每个发射波束角度可以相对窄,相应地发射波束数量较多。此时,可能选择例如6个×2次、12个×1次的配置。反之,在小区覆盖范围较小的情况下每个发射波束角度可以相对宽,相应地发射波束数量较少。在终端设备的接收波束较多的情况下,可能选择例如2个×6次、3个×4次的配置。在终端设备使用全宽接收波束的情况下,可能选择12个×1次的配置。由于基站的同步信号发射波束配置是特定于小区而非特定于终端设备的,在一些示例中基站可以统计其既已服务的终端设备的接收波束成形能力,根据公平原则来设定发射波束配置。
如以上描述的,在已知基站侧发射波束与同步信号时间窗口的对应关系的情况下,可以基于成功接收到同步信号的时间窗口/时间参数和发射波束配置来确定发送该同步信号所使用的发射波束。以图7A为例,假设已知第1个发射波束701对应的时间参数t1,并且终端设备从同步信号块接收到同步信号并确定发射波束702的时间参数t2。假设同步信号块周期为T,则(t1-t2)/T表示发射波束702是发射波束701之后的第几次发射波束发送。在图7A的例子中,终端设备可以确定发射波束702是发射波束701之后的第9次发射波束发送,并且结合4个×3次配置中有4个波束以及每个波束重复3次,可以确定发射波束702是第4个发射波束。该方法同样适用于图7B,只是需要考虑的周期包括同步信号突发周期以及突发内同步信号块的周期。
终端设备侧的同步信号接收
根据一些实施例,终端设备可以按多种方式来接收来自基站侧的同步信号。根据一个实施例,如果终端设备不使用波束成形来接收同步信号(即使用全宽的接收波束),则终端设备侧的电子设备300B可以只需要使用全宽的波束接收基站通过不同发射波束发送 的同步信号。根据一个示例,对于每个发射波束的连续指定次数的发送,可以使用全宽的波束接收所有次数的发射波束,或者仅接收一次的发射波束,例如第一次发送的发射波束。根据另一个示例,对于所有发射波束依次发射直至指定次数的发送,可以使用全宽的波束接收所有次数的发射波束,或者仅接收一次的所有发射波束,例如第一次发送的所有发射波束。
根据另一个实施例,如果终端设备需要使用接收波束成形,则终端设备侧的电子设备300B可以被配置为对于基站使用每个发射波束的指定次数的发送中的发送,使用不同的接收波束接收同步信号(即接收波束扫描)。作为一个示例,对于基站连续发送每个发射波束的指定次数的发送,可以使用不同的接收波束来接收由同一发射波束发射的同步信号。根据另一个示例,对于所有发射波束依次发射直至指定次数的发送,可以使用相同的接收波束接收每一次依次发送的所有发射波束,或者使用不同的接收波束来接收发射波束,直至每个接收波束都能够接收所有发射波束。在上述实施例中,在需要接收波束扫描的情况下,终端设备侧的电子设备300B需要已经知晓或者能够知晓发射波束配置,从而确定自身的接收波束布置。
以下将示例性地描述在终端设备进行同步信号接收时终端设备所采用的接收波束布置。
如前面描述的,终端设备可能使用或不使用接收波束成形来接收基站通过发射波束成形发送的同步信号。图8A示出了在4个×3次的发射波束配置下终端设备的示例性接收波束布置。图8A中的接收波束布置1和2对应于终端设备不使用接收波束成形来接收同步信号的情况。此时,电子设备300B一般可以使用接收波束布置1,也即使用全宽的接收波束(例如RX_B1)接收每个发射波束的每次发送。接收波束布置1的优点在于对于通过每个发射波束的发送均接收多次,可以取得分集增益。在接收同步信号时,电子设备300B可以基于同步信号块的内容进行相关运算,相关度最高或者高于一定预定阈值的发射接收波束对即为匹配的发射波束。例如,当接收发射波束2的同步信号的相关程度高于其他发射波束的情况时,可以认为发射波束2与全宽的接收波束匹配。在一个优选的具体示例中,考虑主同步信号序列集合中的序列个数远小于辅同步信号序列集合中的序列个数,设计电子设备300B首先将接收到的发射波束承载的同步信号块中主同步信号序列与预存的主同步信号序列集合中的每一个进行相关运算,根据每一发射波束承载的主同步信号序列相关程度确定其中匹配的发射波束(以及匹配的主同步信号序列),然后再将该匹配的发射波束承载的同步信号块中的辅同步信号序列与辅同步信号序列集合中 的每一个进行相关运算从而确定匹配的辅同步信号序列,电子设备300B接下来根据匹配的主同步信号序列以及辅同步信号序列计算得到相应小区的物理小区标识(PCI),例如PCI=PSS+3*SSS,并根据PCI确定下行参考信号结构以对PBCH进行解码。在一些示例中PSS取值为0...2(实为3种不同PSS序列),SSS取值为0...167(实为168种不同SSS序列),利用上述公式可得PCI的范围是从0...503,因此在物理层存在504个PCI。在同步信号还包含第三同步信号的示例中,最后进行第三同步信号序列的匹配和根据重新设计的PCI计算公式计算PCI(具体公式非本公开意图解决的技术问题,不在此赘述)。借此,可以有效降低基于本公开的同步方案的复杂度,尤其是下一代蜂窝网络中SSS的个数可能增长到上千个,届时本优选示例的技术效果尤为显著。在电子设备300B知晓基站的发射波束配置的情况下,可以仅接收每个发射波束的多次重复发送中的部分发送。例如,电子设备300B可以使用接收波束布置2,也即对于每个发射波束的多次发送,使用全宽的接收波束(例如RX_B1)仅接收一次(例如仅接收第一次发送)。接收波束布置2的优点在于可以节省终端设备的接收资源(例如能耗等)。
图8A中的接收波束布置3和4分别对应于终端设备使用2个或3个不同的接收波束接收同步信号的情况。此时,对于每个发射波束的多次发送,电子设备300B需要使用不同的接收波束进行接收。为此,电子设备300B需要知晓基站的发射波束配置以安排相应的接收波束。在接收波束布置3或4中,由于电子设备300B知晓每个发射波束重复3次,因此可以在这3次重复中安排自己的接收波束,使得每个接收波束至少使用1次,从而实现波束扫描的目的。图8A仅示出不同发射波束发送的一次循环,其后可以跟着下一次循环。
对于以上4个×3次的发射波束配置,当终端设备具有多于3个接收波束时,不同发射波束发送的一次循环将不能完成全部接收波束的扫描。然而,由于电子设备300B知晓发射波束配置,其可以在下一次循环中安排其他的接收波束进行扫描。在本公开的教导下,本领域的普通技术人员能够构想各种变形的接收波束配置来实现波束扫描,这些变形均落入本公开的范围内。
另外,图8A仅是时间窗口的示意性布置,其可以表示各时间窗口的相对位置,但不表示它们在下行链路帧中的确切位置。例如,可以如图7A和图7C那样使用多个不连续的时间窗口,或者可以如图7B和7D那样使用多个连续的时间窗口。另外,本文各图中时间窗口以及其间的距离的大小仅是示意,并不一定按比例绘制。
应当理解,在分等级的发射波束配置下,可以认为图8A示出了第一等级的发射波 束以及相应的各种接收波束布置。在第一等级的发射波束之后可以跟着第二等级的发射波束。图8B示出了第二等级的发射波束配置以及终端设备的示例性接收波束布置。该分等级的发射波束配置的第一等级的配置可以是上述4个×3次的发射波束配置,第二等级的配置可以是2个×3次的发射波束配置,即每个粗发射波束对应2个细发射波束,每个细发射波束重复3次(为了简化,仅示出与前两个粗波束对应的细波束)。在一个例子中,在如图8A中那样使用第一等级的发射波束的发送之后,可以接着使用第二等级的发射波束进行发送,如图8B中的发射波束布置所示。在图8B中,与每个粗发射波束对应的各细发射波束逐次重复达发射波束配置中所指示的次数。例如,与粗发射波束TX_B1对应的细发射波束TX_B1,1首先重复3次,接着TX_B1,2也重复3次,从而完成了与第一个粗发射波束TX_B1对应的细发射波束的扫描。接下来依次进行与接下来的粗发射波束对应的细发射波束的扫描。
与图8A所描述的类似,在图8B中,接收波束布置1和2对应于终端设备不使用接收波束成形的情况。此时,电子设备300B可以使用接收波束布置1,也就是使用全宽的接收波束(例如RX_B1)接收每个发射波束的每次发送。接收波束布置1的优点在于对于通过每个发射波束的发送均接收多次,可以取得分集增益。在接收通过各细发射波束发送的同步信号时,电子设备300B可以基于同步信号块的内容进行相关运算,相关度最高或者高于一定预定阈值的发射接收波束对即为匹配的发射接收波束对。例如,当接收TX_B2,1的同步信号的相关性高于其他发射波束的情况时,可以认为TX_B2,1与RX_B1匹配。在电子设备300B知晓基站的发射波束配置的情况下,电子设备300B也可以使用接收波束布置2,也就是对于每个发射波束的多次重复发送,仅接收部分发送。例如,可以使用全宽的接收波束(例如RX_B1)仅接收一次(例如仅接收第一次发送)。接收波束布置2的优点在于可以节省终端设备的接收资源(例如能耗等)。
图8B中的接收波束布置3和4分别对应于终端设备使用2个或3个不同的接收波束接收同步信号的情况。此时,对于每个细发射波束的多次发送,电子设备300B需要使用不同的接收波束进行接收。为此,电子设备300B需要知晓基站的发射波束配置以安排相应的接收波束。在接收波束布置3或4中,由于电子设备300B知晓每个细发射波束重复3次,因此可以在这3次重复中安排自己的接收波束,使得每个接收波束至少使用1次,从而实现波束扫描的目的。图8B示出不同细发射波束发送的一次循环。在分等级的发射波束扫描的情况下,在完成一次循环的细发射波束扫描之后,可以进行下一循环的粗发射波束扫描以及细发射波束扫描。在本公开的教导下,本领域的普通技术人员能够 构想各种变形的接收波束配置来实现波束扫描,这些变形均落入本公开的范围内。
应当理解,在图8B的例子中,第二等级的全部发射波束扫描需要24个(8个×3次)时间窗口完成。因此,可能需要在2个长度为12的同步信号突发中完成。
如前面描述的,可以通过预先的配置来使同步信号突发的长度与发射波束配置匹配,使得在得知发射波束个数或重复次数之一的情况下可以知晓整个发射波束配置。例如,长度为12的同步信号突发与上述4个×3次的配置是匹配的。在长度为12的同步信号突发的情况下,一旦得知存在4个发射波束,则可以知晓每个发射波束重复3次;反之亦然。
终端设备对发射波束配置的获得
在一些实施例中,为了便于终端设备接收同步信号,终端设备需要知晓基站侧的发射波束配置。然而,在成功接收到同步信号之前,终端设备不能通过信令从基站获得关于发射波束配置的任何信息。根据本公开的实施例,终端设备可以通过至少以下方式获得发射波束配置,即借由其他基站获得发射波束配置,以及/或者通过发射波束测量来获得发射波束配置。
根据本公开的一些实施例,用于基站的电子设备300A可以被配置为将发射波束配置传递给通过双连接一起服务终端设备的另一基站,该发射波束配置可以由该另一基站指示给终端设备。
如已知的,双连接(Dual Connectivity)是使终端设备能够与多个基站通信,从而提高数据速率的技术。例如,终端设备可以维护与第一基站和第二基站两者的连接。在第一基站与终端设备通信的过程中,可以根据期望(例如期望提高数据速率)添加第二基站形成双连接,则第一基站成为主节点,第二基站成为辅节点。在一些情况下,主节点可以是LTE系统中的eNB,从基站可以是5G系统中的对应节点,例如NR系统中的gNB。根据本公开的实施例,该添加操作可以通过如下的辅节点添加(addition)操作实现。
图9示出了根据本公开的实施例的辅节点添加的示例性操作。在图9中,电子设备300A可以对应于第二基站,通过该示例性操作使终端设备与这两个基站形成双连接。在902处,第一基站可以向第二基站发送辅节点添加请求消息,以请求第二基站分配用于与终端设备通信的无线电资源。此处,第一基站可以指示用于服务该终端设备的主小区组(MCG)的配置和终端设备能力,并且可以提供对于要求添加给终端设备的来自第二基站的辅小区组(SCG)中的小区的测量结果。在904处,第二基站可以在无线电资源管理实 体准许资源请求后,分配相应的资源并向第一基站发送辅节点添加请求ACK。此处,第二基站可以触发随机接入以便可以执行辅节点无线电资源配置的同步。第二基站可以向第一基站提供SCG的新无线电资源以及SCG当中的主小区PSCell的波束配置信息。当然,在一些情况下,波束配置信息还可以包括SCG当中的其他小区的波束配置信息。在906处,第一基站可以指示终端设备进行RRC连接重配置,并向终端设备指示上述发射波束配置。在908处,终端设备可以向第一基站指示RRC连接重配置完成。在910处,第一基站可以向第二基站指示辅节点重配置完成。这样,终端设备可以基于获得的发射波束配置信息来执行与辅节点的PSCell的同步过程。作为辅节点的第二基站不需要广播除了无线帧定时和SFN之外的系统信息,通过作为主节点的第一基站的专用RRC信令为终端设备提供系统信息(初始配置)。可以至少从PSCell的同步信号(例如PSS、SSS和PBCH)获取SCG的无线帧定时和SFN。
在一些实施例中,第一基站可以不限于是eNB,第二基站也可以不限于是gNB。例如,第一基站和第二基站可以是属于同一无线通信系统或者属于不同的无线通信系统的任何基站。在一些示例中,上述第一基站可以是属于较前代的无线通信系统的基站。
根据本公开的一些实施例,终端设备可以包括全向天线。电子设备300B可以被配置为在使用不同的接收波束接收同步信号之前,通过不使用波束成形来接收同步信号以获得基站侧的发射波束配置。
参考图2B,假设电子设备300B以全宽的接收波束接收基站侧使用不同发射波束发送的同步信号。对于电子设备300B而言,基站侧不同的发射波束意味着不同的接收性能。在3个×3次配置下,电子设备300B检测的接收性能可以如图10所示。其中A、B、C分别表示不同的接收性能。通过一定时间的测量,可以基于有3种接收性能而确定有3个发射波束,可以基于每种接收性能重复3次而确定每个发射波束重复3次。在发射波束配置与同步信号突发配合的情况下,可以基于同步信号突发的长度结合不同接收性能的数量和每种接收性能重复的次数中的一者来确定发射波束配置。在该例子中,在同步信号突发的长度为9的情况下,可以基于有3种接收性能而确定每个发射波束重复(9/3)=3次,或者可以基于每种接收性能重复3次而确定有(9/3)=3发射波束。
发射波束的指示和反馈
在本公开的实施例中,以发射波束成形来发送同步信号可以用于指示发送该同步信号所使用的发射波束信息,例如发射波束ID。同步信号的发送可以通过以下中的至少一者而指示或包括发射波束ID。
如前面描述的,同步信号可以包括同步序列。在一个实施例中,该同步序列本身可以表示发射波束ID。例如,可以将同步序列分成多个组,同一组中的每个同步序列都可以表示同一个发射波束。以LTE系统中的主同步信号为例,系统中可以有多个长度为63的Zadoff-Chu序列。对于4个×3次的发射波束配置,可以如图11A那样将这些Zadoff-Chu序列分为(例如平均分为)4组,每一组中的序列可以表示4个发射波束之一。例如,第一组序列(第1至N/4个序列)中的任何一个序列可以表示发射波束ID 1。电子设备300A在使用该发射波束发送同步信号时,该同步信号所包括的同步序列可以为第一组序列中的任一个。这样,电子设备300B在接收到该同步信号时可以基于同步信号中的同步序列确定发射该同步信号所使用的发射波束ID为1。当然,在这样的实施例中,需要基站和终端设备可以关于每组同步序列与发射波束的对应关系协商一致(例如通过通信协议规定并将对应关系预存在通信双方的芯片中)。
在一个实施例中,除同步序列之外,同步信号还包括额外的信息比特,该额外的信息比特可以表示发射波束ID。如图11B所示,对于4个×3次的发射波束配置,可以指定额外比特00、01、10、11分别表示4个发射波束之一。例如,额外信息比特00可以表示发射波束ID 1。电子设备300A在使用该发射波束发送同步信号时,该同步信号可以包括额外信息比特00。这样,电子设备300B在接收到同步信号时可以基于同步信号中的额外比特00确定发射该同步信号所使用的发射波束ID为1。在这样的实施例中,类似地需要基站和终端设备可以关于额外比特与发射波束的对应关系协商一致。
在一个实施例中,可以通过同步信号所在的时间窗口/时间参数表示发射波束ID。例如,电子设备300B可以基于匹配的发射波束所发送的同步信号的时间参数和发射波束配置(即发射波束个数和重复次数)来确定匹配的发射波束的发射波束ID。具体示例参见对图7A的描述。
在各实施例中,终端设备在确定了匹配的发射波束的发射波束ID后,可以以各种适当的方式将该发射波束ID反馈给基站。例如,在经图9的处理在两个基站之间建立了双连接并且该基站作为辅节点、另一基站作为主节点后,终端设备可以经主节点将发射波束ID提供给该基站。
根据一些示例,可以通过隐式或显式的方式指示匹配的基站侧的发射波束,从而将其反馈回基站。根据一些示例,作为显式方式,可以通过在从终端设备到基站的反馈中以附加的比特来指示发射波束ID。根据一些示例,作为隐式方式,可以按照特定的发送时间窗口来进行反馈,而根据发送时间窗口与波束之间的对应关系可以获知发射波束。
此反馈可以包含在终端设备进行的随机接入过程中。当然,根据一些实施例,涉及基站侧的发射波束的反馈可以与随机接入前导码分离地被发送,例如可以在随机接入前导码之前或之后被发送。稍后将结合随机接入过程来详细描述此反馈操作。
示例性方法
图12A示出了根据本公开实施例的用于通信的示例方法。如图12A所示,该方法1200A可以包括基于发射波束配置利用不同的发射波束向终端设备重复地发送同步信号,该同步信号包括发送该同步信号所使用的发射波束信息(框1205)。该方法还包括获取来自终端设备的反馈,该反馈包括发射波束信息以用于发射波束管理(框1210)。该方法可以由电子设备300A执行,该方法的详细示例操作可以参考上文关于电子设备300A所执行的操作和功能的描述,简单描述如下。
在一个实施例中,终端设备反馈的发射波束信息所对应的发射波束是与终端设备接收匹配度最高的发射波束。
在一个实施例中,发射波束配置指定基站能够用于发送同步信号的多个发射波束的个数以及连续使用每个发射波束发送的次数,该方法还包括使用多个发射波束中的每个发射波束发送同步信号,并且连续使用每个发射波束发送同步信号达该次数。
在一个实施例中,发射波束配置指定基站能够用于发送同步信号的不同等级的发射波束的个数和连续使用不同等级的每个发射波束发送的次数,该方法还包括使用不同等级的每个发射波束发送同步信号,并且连续使用每个发射波束发送同步信号达该次数。
在一个实施例中,发射波束配置还包括基站侧发射波束与多个同步信号时间窗口的对应关系,该方法还包括基于发射波束与多个同步信号时间窗口的对应关系来使用发射波束发送同步信号。
在一个实施例中,该方法还包括将发射波束配置传递给通过双连接一起服务终端设备的另一基站,发射波束配置由该另一基站指示给终端设备。
在一个实施例中,该另一基站是该无线通信系统的基站,或者是该无线通信系统的前代无线通信系统的基站。
在一个实施例中,该无线通信系统是5G系统,前代无线通信系统是LTE系统。
在一个实施例中,不同类型的连续的同步信号形成同步信号块,多个连续的同步信号块形成同步信号突发。
在一个实施例中,发射波束信息包括发射波束ID,并且同步信号通过以下中的一者而指示发射波束ID:同步信号包括同步序列,该同步序列本身表示发射波束ID;除同步 序列之外,同步信号还包括额外的信息比特,该额外的信息比特表示发射波束ID;或者同步信号所在的时间参数。
在一个实施例中,基于匹配度最高的发射波束所发送的同步信号的时间参数和发射波束配置确定匹配度最高的发射波束的发射波束信息。
在一个实施例中,时间参数包括OFDM符号索引、无线电帧中的时隙索引以及无线电帧号。
在一个实施例中,同步信号包括主同步信号PSS和辅同步信号SSS,或者包括主同步信号PSS、辅同步信号SSS和第三同步信号TSS。
在一个实施例中,通过不同类型的同步信号在时域或频域的相对位置表示系统信息,系统信息包括以下中的至少一者:无线通信系统的双工类型;或不同的循环前缀长度。
图12B示出了根据本公开实施例的用于通信的另一示例方法。如图12B所示,该方法1200B可以包括基于无线通信系统的基站侧的发射波束配置接收同步信号,同步信号包括基站发送该同步信号所使用的发射波束信息(框1250)。该方法还包括提供反馈给基站,该反馈包括发射波束信息以供基站用于发射波束管理(框1255)。该方法可以由电子设备300B执行,该方法的详细示例操作可以参考上文关于电子设备300B所执行的操作和功能的描述,简单描述如下。
在一个实施例中,反馈的发射波束信息所对应的发射波束是与终端设备接收匹配度最高的发射波束。
在一个实施例中,发射波束配置指定基站能够用于发送同步信号的多个发射波束的个数以及连续使用每个发射波束发送的次数,该方法还包括对于基站连续使用每个发射波束的该次数的发送中的每次发送,使用不同的接收波束接收同步信号。
在一个实施例中,发射波束配置指定基站能够用于发送同步信号的不同等级的发射波束的个数和连续使用不同等级的每个发射波束发送的次数,该方法还包括对于基站连续使用每个发射波束的该次数的发送中的每次发送,使用不同的接收波束接收同步信号。
在一个实施例中,发射波束配置还包括基站侧发射波束与多个同步信号时间窗口的对应关系。
在一个实施例中,该方法还包括从通过双连接与该基站一起服务终端设备的另一基站获取发射波束配置。
在一个实施例中,该另一基站是该无线通信系统的基站,或者是该无线通信系统的前代无线通信系统的基站。
在一个实施例中,该无线通信系统是5G系统,前代无线通信系统是LTE系统。
在一个实施例中,终端设备或电子设备300B可以包括全向天线,该方法还包括在使用不同的接收波束接收同步信号之前,通过不使用波束成形来接收同步信号以获得基站侧的发射波束配置。
在一个实施例中,发射波束信息包括发射波束ID,该方法还包括从同步信号获得发射波束ID,并且同步信号通过以下中的一者而指示发射波束ID:同步信号包括同步序列,该同步序列本身表示发射波束ID;除同步序列之外,同步信号还包括额外的信息比特,该额外的信息比特表示发射波束ID;或者同步信号所在的时间参数。
在一个实施例中,该方法还包括基于匹配度最高的发射波束所发送的同步信号的时间参数和发射波束配置确定匹配度最高的发射波束的发射波束信息。
在一个实施例中,时间参数包括OFDM符号索引、无线电帧中的时隙索引以及无线电帧号。
在一个实施例中,同步信号包括主同步信号PSS和辅同步信号SSS,或者包括主同步信号PSS、辅同步信号SSS和第三同步信号TSS。
在一个实施例中,该方法还包括从不同类型的同步信号在时域或频域的相对位置获得系统信息,该系统信息包括以下中的至少一者:无线通信系统的双工类型;或不同的循环前缀长度。
用于基站侧的另一电子设备示例
图13示出了根据本公开的实施例的用于基站侧的示例性电子设备,其中该基站可以用于各种无线通信系统。图13所示的电子设备1300A可以包括各种单元以实现根据本公开的操作或功能。如图13所示,电子设备1300A例如可以包括发射波束配置接收单元1360和发射波束配置提供单元1370。在一些实施例中,发射波束配置接收单元1360可以被配置为接收来自另一基站的发射波束配置,该另一基站基于发射波束配置向终端设备发送同步信号。发射波束配置提供单元1370可以被配置为向终端设备提供发射波束配置,以供终端设备基于发射波束配置接收来自基站的信号。
在一个例子中,电子设备1300A可以与上述另一基站用于同一无线通信系统,或者可以用于比上述另一基站前代的无线通信系统。例如,电子设备1300A可以用于LTE eNB,上述另一基站可以是5G基站,例如NR系统中的gNB。根据一种实施方式,电子设备1300A例如可以是图9中的第一基站,上述另一基站可以是图9中的第二基站。
同步信号波束扫描的示例应用
根据本公开的一个实施例,可以跨同步过程和数据通信过程来进行分等级的发射波束成形。在一个例子中,可以在同步过程进行第一等级的发射波束扫描,并确定匹配的第一等级发射波束。基站在获得匹配的第一等级发射波束后,可以在数据通信过程中使用该第一等级发射波束下的第二等级发射波束发送参考信号(如CSI-RS),从而确定匹配的第二等级发射波束用于数据通信。图14示出了根据本公开实施例的示例的分等级发射波束扫描处理流程。如图14所示,在1461处,基站可以通过第一等级发射波束扫描来发送同步信号。在1462处,终端设备接收同步信号,同步到下行链路定时并获得与自身(使用或不使用接收波束成形)匹配的第一等级发射波束。接下来,在1463和1464处,执行随机接入过程,并且终端设备向基站反馈匹配的第一等级发射波束。如前面提及的,该反馈可以根据各种适当的方式进行。在一种实现方式中,可以通过随机接入过程来进行匹配波束反馈。在1465处,基站记录并维护匹配的第一等级发射波束,如TX_Bm。接下来是数据通信过程。在1466处,由于基站已知第一等级发射波束TX_Bm与终端设备匹配,因此可以通过TX_Bm下的第二等级发射波束发送CSI-RS。在1467处,终端设备接收CSI-RS,并获得与自身匹配的第二等级发射波束。在1468处,终端设备向基站反馈匹配的第二等级发射波束。在1469处,基站记录并维护匹配的第二等级发射波束,如TX_Bm,j。之后,基站可以使用发射波束TX_Bm,j与该终端设备进行数据通信。
与传统在数据通信过程进行分等级的发射波束扫描从而确定匹配的第二等级的发射波束的方式相比,图14的示例处理由于可以利用同步过程中的第一等级的发射波束扫描结果,并且在数据通信过程中直接进行第二等级的发射波束扫描,因而可以节省数据通信过程中进行波束扫描的训练开销。
以下结合图15A至图23B描述根据本公开的第二总体方面,其主要公开了根据本公开的实施例的随机接入过程。根据一些实施例,从终端设备侧通过波束成形向基站侧发送随机接入信号,基站接收该随机接入信号,并且获得基站发送同步信号时所使用的发射波束的信息。由此基站可以获知对于特定终端设备适当的发射波束和接收波束信息,以供后续通信使用。根据一个示例,在随机接入成功的情况下基站将告知终端设备上行链路中与基站匹配的发射波束。根据一些实施例,根据本公开的第二方面的操作可以由基站侧和终端设备侧的电子设备执行。以下将详细描述根据本公开的第二方面的操作。
用于终端设备侧的电子设备示例
图15A示出了根据本公开的实施例的用于终端设备侧的示例性电子设备,其中该终端设备可以用于各种无线通信系统。图15A所示的电子设备1500A可以包括各种单元以 实现根据本公开的第二总体方面。如图15A所示,在一个实施例中,电子设备1500A可以包括PRACH配置获取单元1505和PRACH发送单元1510。根据一种实施方式,电子设备1500A例如可以是图1中的终端设备110或者可以是终端设备110的一部分。以下结合终端设备描述的各种操作均可以由电子设备1500A的单元1505、1510或者其他单元实现。
在一些实施例中,PRACH配置获取单元1505可以被配置为获得随机接入配置信息。例如,在终端设备侧获得下行链路小区同步之后,电子设备1500A(如单元1505)可以通过广播用的信道在下行链路帧中的适当位置获得随机接入配置信息。又例如,终端设备通过双连接的主基站获得辅基站的随机接入配置信息。随机接入配置信息可以包括允许各终端设备在其上发送随机接入前导码(preamble)的时频域资源,即物理随机接入信道(PRACH)。在一个实施例中,随机接入配置信息还可以包括基站侧接收波束与时域资源(时间窗口)的对应关系,如以下具体描述的。
在一些实施例中,PRACH发送单元1510可以被配置为基于随机接入配置信息(如时频域资源)发送随机接入前导码,以指示下行链路中与终端设备侧的一个或多个接收波束匹配的基站侧的一个或多个发射波束。在一个实施例中,这些匹配的基站侧的一个或多个发射波束是终端设备基于接收同步信号而确定的,如在本文第一方面中描述的。通过发送随机接入前导码指示匹配的发射波束可以用作终端设备反馈匹配的发射波束的一种可能的方式。
用于基站侧的电子设备示例
图15B示出了根据本公开的实施例的用于基站侧的示例性电子设备,其中该基站可以用于各种无线通信系统。图15B所示的电子设备1500B可以包括各种单元以实现根据本公开的第二总体方面。如图15B所示,电子设备1500B例如可以包括PRACH配置提供单元1515和PRACH接收单元1520。根据一种实施方式,电子设备1500B例如可以是图1中的基站120或者可以是基站120的一部分,也可以是用于控制基站的设备(例如基站控制器)或用于基站的设备或者它们的一部分。以下结合基站描述的各种操作均可以由电子设备1500B的单元1515、1520或者其他单元实现。
在一些实施例中,PRACH配置提供单元1515可以被配置为发送随机接入配置信息。例如,电子设备1500B(如单元1515)可以在下行链路帧中的适当位置广播系统信息,其中可以包括随机接入配置信息。随机接入配置信息可以如以上参照单元1505所描述的。
在一些实施例中,PRACH接收单元1520可以被配置为接收从终端设备发送的随机接入前导码,以获得下行链路中与终端设备侧的一个或多个接收波束配对的基站侧的一个 或多个发射波束。在一个实施例中,这些匹配的基站侧的一个或多个发射波束是终端设备基于接收同步信号而确定的。
随机接入配置信息
随机接入配置信息可以包括允许各终端设备在其上发送随机接入前导码(preamble)的时频域资源。在一个实施例中,随机接入配置信息还可以包括基站侧接收波束与多个随机接入时间窗口的对应关系。该对应关系一般由基站侧接收波束配置指定(如以下描述的),但可以通过随机接入配置信息发送给终端设备。
在一些实施例中,随机接入配置信息还可以包括其他信息。例如,随机接入配置信息还可以包括波束对称性的指示信息,例如1个比特。例如,在具备波束对称性的情况下,该比特值为1;在不具备波束对称性的情况下,该比特值为0。根据一个示例,在不具有波束对称性的情况下,随机接入配置信息可以另选或附加地包括基站侧的接收波束配置,从而使终端设备能够知晓基站侧的该接收波束配置。
在一些实施例中,上述其他信息以及基站侧接收波束与多个随机接入时间窗口的对应关系也可以以其他方式发送给终端设备,例如通过双连接的方式。
随机接入时间窗口与随机接入前导码
一般而言,随机接入前导码可以在上行链路帧中的特定时间窗口发送,这些时间窗口可以以一定的时间周期或时间模式布置。这些时间窗口可以对应于随机接入信号的特定收发时机(occasion)。在根据本公开的实施例中,由于基站侧使用波束成形来接收随机接入前导码,因此需要更多的随机接入时间窗口,以用于接收波束扫描,即:1)使用多个不同波束的接收,以及2)使用单个波束的重复接收。在一些实施例中,可以在1个帧内或者跨多个帧布置连续的随机接入时间窗口。相应的一个示例参见图16。如图16所示,多个随机接入时间窗口1650至1661可以在时域连续,形成一个较大的随机接入时间窗口1680。随机接入时间窗口1650至1661也可以称为基本随机接入资源。以LTE系统中的帧结构为例,基本随机接入资可以对应频带中心的若干个(例如6个)资源块,根据系统配置,其长度可以为1ms、2ms或3ms。较大的随机接入时间窗口1680可以以以一定的周期布置。形成随机接入时间窗口1680的一个目的是使得基站能够在该较大时间窗口内完成完整的接收波束扫描。
在一些实施例中,随机接入时间窗口可以被指定为与上行链路帧的特定的时间参数相对应。例如,可以指定随机接入时间窗口的帧号、子帧号、时隙索引和/或符号索引。在一些实施例中,终端设备可以根据时间参数识别随机接入时间窗口,从而可以选择性 地在随机接入时间窗口中发送随机接入前导码。
如图16所示,随机接入前导码(例如随机接入前导码1670)可以在任一随机接入时间窗口1650至1661中发送。在一些实施例中,随机接入前导码可以包括循环前缀和随机接入序列,该随机接入序列例如可以是Zadoff-Chu序列。在一些实施例中,随机接入前导码还可以包括额外的信息比特。根据本公开的实施例,随机接入前导码可以用于指示与终端设备匹配的基站侧的一个或多个发射波束。例如,随机接入序列或额外的信息比特可以用于指示上述匹配的基站侧发射波束。
基站侧接收波束配置
在接收波束成形中,基站侧多个接收波束的重复模式可以通过接收波束配置来表示。在一些实施例中,一方面,基站可以基于该接收波束配置接收来自各终端设备的随机接入前导码;另一方面,终端设备可能需要基于该接收波束配置发送随机接入前导码,例如在终端设备通过使用发射波束成形进行发送时。一般而言,为了表示接收波束的重复模式,接收波束配置可以包括或指示至少两方面的信息,即接收波束的个数以及使用每个接收波束重复地接收(例如随机接入前导码)的次数。
在一些实施例中,接收波束配置可以指定基站能够用于接收随机接入前导码的接收波束的个数以及连续使用每个接收波束接收的次数。图17A示出了根据本公开的实施例的基站侧的示例性接收波束配置。如图17A所示,接收波束配置1700A指定基站侧有4个接收波束RX_B1至RX_B4用于接收随机接入前导码,并且可以连续使用每个接收波束3次来进行该接收。与上述发射波束配置的例子类似,也可以以N个×M次的形式表示接收波束配置。例如,接收波束配置1700A可简称4个×3次配置。该接收波束配置仅是示例。在各实施例中,接收波束可以是任意多个,重复次数也可以为任意次数。
在相应的实施例中,电子设备1500B可以被配置为基于接收波束配置使用多个(例如4个)接收波束中的每个接收波束接收随机接入前导码,并且连续使用每个接收波束进行该接收达指定的次数(例如3次)。如果终端设备不使用发射波束扫描来发送随机接入前导码,则电子设备1500A可以只需要使用全宽的波束向基站进行该发送;如果终端设备需要使用发射波束成形,则电子设备1500A可以使用不同的发射波束发送随机接入前导码,以供基站基于接收波束配置进行接收。
在一些实施例中,接收波束配置可以指定基站能够用于接收随机接入前导码的不同等级的接收波束的个数和连续使用不同等级的每个接收波束接收的次数。图17B示出了根据本公开的实施例的基站侧的分等级接收波束情况下的示例性接收波束配置。假设基 站侧有4个第一等级的接收波束,每个第一等级的接收波束具有2个第二等级的接收波束。第一等级的接收波束配置可以例如如图17A所示,第二等级的接收波束配置可以例如如图17B所示。第二等级的接收波束配置1700B指定有8个第二等级接收波束RX_B1,1至RX_B4,2用于接收随机接入前导码,并且可以连续使用每个第二等级接收波束3次来进行该接收。在一些情况下,同样可以以N个×M次的形式表示分等级的接收波束配置。例如,图17B第一等级接收波束配置可以表示为4个×3次配置,第二等级接收波束配置可以表示为2个×3次配置(其中“2个”第二等级接收波束对应单个第一等级发射波束)或8个×3次配置(其中“8个”第二等级接收波束对应第一等级发射波束整体)。
在相应的实施例中,电子设备1500B可以被配置为使用不同等级的每个接收波束接收随机接入前导码,并且连续使用每个接收波束进行该接收达指定次数。如果终端设备不使用波束成形来发送随机接入前导码,则电子设备1500A可以只需要使用全宽的波束向基站进行该发送;如果终端设备需要使用发射波束成形,则电子设备1500A可以被配置为使用不同等级的发射波束发送随机接入前导码,以供基站基于接收波束配置进行接收。
在上述实施例中,在需要终端设备发射波束扫描的情况下,电子设备1500A需要已经知晓或者能够知晓基站侧的接收波束配置,从而确定自身的发射波束布置,如以下参照图19A至图20B所描述的。
在一些实施例中,接收波束配置还可以指示基站侧接收波束与多个随机接入时间窗口的对应关系。在一个例子中,接收波束配置可以指示每个接收波束的每次接收与多个随机接入时间窗口的对应关系(或称完全的对应关系)。在另一个例子中,接收波束配置可以指示某个接收波束的接收与多个随机接入时间窗口的对应关系(或称部分的对应关系)。例如,可以指定使用第一个接收波束RX_B1的第一次接收对应于第一个随机接入时间窗口。基站侧或终端设备侧可以基于部分的对应关系结合接收波束的重复模式确定出完全的对应关系。在这样的实施例中,电子设备1500B可以基于上述对应关系使用接收波束RX_B1进行随机接入前导码的第一次接收以及后续的接收。相应地,电子设备1500A可以基于该对应关系来发送随机接入前导码。
图18示出了根据本公开的实施例的基站侧接收波束与随机接入时间窗口之间的对应关系。图18示出了4个×3次接收波束配置下的示例性对应关系。如图18所示,基于使用第一个接收波束RX_B1的第一次接收对应于第一个随机接入时间窗口的对应关系,在第一组的三个随机接入时间窗口,均使用第一个接收波束(例如RX_B1)接收随机接入 前导码。在第二组的三个随机接入时间窗口,均使用第二个接收波束进行接收。接下来,在第三组、第四组的随机接入时间窗口,分别均使用第三个和第四个接收波束进行接收。要指出的是,图18仅示出示例性波束配置的一次循环,在之后的时间可以重复上述布置以接收随机接入前导码。
在一些实施例中,在分等级波束成形中,基站侧接收波束与多个随机接入时间窗口的对应关系可以包括基站侧多个等级接收波束与多个随机接入时间窗口的对应关系。
终端设备侧发射波束布置
在上下行链路中的发射接收波束具有对称性的情况下,如果在发送随机接入前导码之前(例如在同步信号接收过程中),终端设备已经获得基站侧的发射波束配置,则终端设备可以根据波束对称性确定基站侧的接收波束配置。此时,终端设备如果已经如图8中那样确定了自身的接收波束布置,则可以基于波束对称性下任一侧(发射或接收侧)接收和发射波束的对应性,直接确定自身的发射波束配置。也就是说,终端设备只需要基于波束对称性的指示就可以确定自身的发射波束配置。
在不具有波束对称性的情况下,如果终端设备需要使用发射波束成形来发送随机接入前导码,则其可以基于基站侧的接收波束配置来确定自身的发射波束布置。此时,基站可以向终端设备通知其接收波束配置。例如,可以通过图9所示的双连接来通知接收波束配置。在经图9的处理在两个基站之间建立了双连接并且该基站作为辅节点、另一基站作为主节点后,终端设备可以经主节点获得作为辅节点的基站的接收波束配置。再例如,基站可以通过系统信息来通知其接收波束配置。在获得基站侧的接收波束配置后,终端设备可以确定自身的发射波束布置,如以下具体描述的。
终端设备可能使用或不使用发射波束成形来发送随机接入前导码。图19A示出了在基站侧4个×3次的接收波束配置下终端设备的示例性发射波束布置。图19A中的发射波束布置1和2对应于终端设备不使用发射波束成形来发射随机接入前导码的情况。此时,电子设备1500A一般可以使用发射波束布置1,也即使用全宽的接收波束(例如TX_B1)接收每个发射波束的每次发送。接收波束布置1的优点例如在于可以多次发送随机接入前导码,取得分集增益。电子设备1500A在知晓基站侧的接收波束配置的情况下,也可以使用发射波束布置2,也即对于每个接收波束的多次接收,使用全宽的发射波束(例如TX_B1)仅发送一次。发射波束布置2的优点在于可以节省终端设备的发射资源(例如功率等)以及减少对随机接入资源的占用,避免终端设备之间发生碰撞。
图19A中的发射波束布置3和4分别对应于终端设备使用2个或3个不同的发射波 束发送随机接入前导码的情况。此时,对于每个接收波束的多次接收,电子设备1500A需要使用不同的发射波束进行发送。在接收波束布置3或4中,由于电子设备1500A知晓基站侧每个接收波束重复3次,因此可以在这3次重复中安排自己的发射波束,使得每个发射波束至少使用1次,从而实现波束扫描的目的。图19A仅示出不同发射波束发送的一次循环,其后可以跟着下一次循环。
与前述终端设备侧接收波束布置的情况类似,在本公开的教导下,本领域的普通技术人员能够构想各种变形的接收波束配置来实现波束扫描,这些变形均落入本公开的范围内。
应当理解,在基站侧分等级的接收波束配置下,可以认为图19A示出了第一等级的接收波束以及相应的终端设备侧各种发射波束布置。在第一等级的波束之后可以跟着第二等级的波束。图19B示出了第二等级的接收波束配置以及终端设备的示例性发射波束布置。该分等级的接收波束配置的第一等级为4个×3次配置,第二等级的配置为2个×3次配置(其中每个第一等级接收波束对应2个第二等级接收波束)(为了简化,仅示出与前两个第一等级波束对应的第二等级波束)。在一个例子中,在如图19A中那样使用第一等级的接收波束的接收之后,可以接着使用第二等级的接收波束进行接收,如图19B中的接收波束配置所示。在图19B中,与每个第一等级接收波束对应的各第二等级接收波束逐次重复达接收波束配置中所指示的次数。例如,与第一等级接收波束RX_B1对应的第二等级接收波束RX_B1,1首先重复3次,接着RX_B1,2也重复3次,从而完成了与第一个第一等级接收波束RX_B1对应的第二等级发射波束的扫描。接下来依次进行与接下来的第二等级接收波束对应的第二等级接收波束的扫描。
与图19A所描述的类似,在图19B中,发射波束布置1和2对应于终端设备不使用发射波束成形的情况。此时,电子设备1500A可以使用发射波束布置1,也就是使用全宽的发射波束(例如RX_B1)发送随机接入前导码。如前面提及的,发射波束布置1可以取得分集增益。在电子设备1500A知晓基站的接收波束配置的情况下,电子设备1500A也可以使用发射波束布置2,也就是对于每个接收波束的多次接收,使用全宽的发射波束(例如TX_B1)仅发送一次。接收波束布置2的优点在于可以节省终端设备的接收资源(例如功率等)以及减少对随机接入资源的占用,避免终端设备之间发生碰撞。
图19B中的发射波束布置3和4分别对应于终端设备使用2个或3个不同的发射波束发射随机接入前导码的情况。此时,对于每个第二等级接收波束的多次接收,电子设备1500A需要使用不同的发射波束进行发送。为此,电子设备1500A需要知晓基站的接 收波束配置以安排相应的发射波束。在发射波束布置3或4中,由于电子设备1500A知晓每个第二等级接收波束重复3次,因此可以在这3次重复中安排自己的发射波束,使得每个发射波束至少使用1次,从而实现波束扫描的目的。图19B示出不同第二等级波束发送的一次循环。在分等级的波束扫描的情况下,在完成一次循环的第二等级波束扫描之后,可以进行下一循环的第一等级波束扫描以及第二等级波束扫描。在本公开的教导下,本领域的普通技术人员能够构想各种变形的发射波束配置来实现波束扫描,这些变形均落入本公开的范围内。
匹配的基站侧发射波束的反馈
以下描述根据本公开实施例的终端设备向基站反馈匹配的基站侧发射波束的示例操作。在一些实施例中,与终端设备侧的一个或多个接收波束配对的基站侧的一个或多个发射波束是该终端设备基于接收同步信号而确定的。在一些实施例中,终端设备发送随机接入前导码可以指示下行链路中与终端设备侧的一个或多个接收波束配对的基站侧的一个或多个发射波束。
在一个实施例中,通过随机接入前导码来指示与终端设备侧的接收波束配对的基站侧的一个或多个发射波束的发射波束ID。例如,随机接入前导码可以包括前导码序列(例如Zadoff-Chu序列),该前导码序列本身可以表示发射波束ID。这与图11A的例子类似,可以将前导码序列分成多个组,同一组中的每个前导码序列都可以表示同一个发射波束。对于4个×3次发射波束配置,可以将这些前导码序列分为(例如平均分为)4组,每一组中的序列可以表示4个发射波束之一。例如,第一组序列(第1至N/4个序列)中的任何一个可以表示发射波束ID 1。电子设备1500A在反馈发射波束ID 1时可以发送与该发射波束对应的一个前导码序列。电子设备1500B在确定接收了第一组序列中的一个后,可以确定匹配的发射波束ID是发射波束ID 1。当然,在这样的实施例中,也需要基站和终端设备可以关于每组前导码序列与发射波束的对应关系协商一致(例如由基站以任何信令通知终端设备)。
再例如,除前导码序列之外,随机接入前导码还可以包括额外的信息比特,该额外的信息比特可以表示发射波束ID。在一个例子中,随机接入前导码的单次发送可以指示单个发射波束ID。参照图11B的例子,对于4个×3次发射波束配置,可以指定额外比特00、01、10、11分别表示4个发射波束之一。例如,额外信息比特00可以表示发射波束ID 1。电子设备1500A在反馈发射波束ID 1时可以发送额外的信息比特00。电子设备1500B在确定接收了额外比特00后,可以确定匹配的发射波束ID是发射波束ID 1。 在这样的实施例中,类似地需要基站和终端设备可以关于额外比特与发射波束的对应关系协商一致。在一个例子中,随机接入前导码的单次发送可以指示多个发射波束ID。可以增加上述额外信息比特的数量,例如在图11B的例子中,使用4个比特可以指示2个发射波束ID。
根据图19A和图19B所示的终端设备发射波束的示例性布置1至4,对于基站侧的每个接收波束(例如RX_B1至RX_B4以及各细波束),终端设备可以均发送随机接入前导码。这种方式对于上下行链路具有以及不具有波束对称性的情况均可以适用。在一些实施例中,例如在终端设备知晓匹配的基站侧接收波束的情况下,终端设备可以仅对于该匹配的接收波束进行随机接入前导码的发送,如以下参照图20A和20B所描述的。
图20A和20B示出了基于终端设备侧发射波束布置发送随机接入前导码的例子。图20A和20B中的终端设备侧发射波束配置与图19A和19B中的相同,但是仅对于特定的基站侧接收波束发送随机接入前导码。而且,这些发送可以使用特定的发射波束进行,如图中阴影所标记的。该方式可以适用于上下行链路具有波束对称性的情况。在该情况下,如果终端设备已知下行链路中匹配的发射接收波束对(例如通过同步信号的接收而确定的),则可以确定上行链路中匹配的发射接收波束对,以便于随机接入前导码的发送。
例如,在图20A中,对于第一等级的波束扫描,假设终端设备确定下行链路中基站侧发射波束TX_B1与终端设备侧接收波束RX_B2匹配,则可以确定上行链路中与该终端设备匹配的基站侧接收波束是RX_B1,其与终端设备侧发射波束TX_B2匹配。相应地,终端设备可以只在接收波束RX_B1对应的随机接入时间窗口中发送随机接入前导码(例如使用发射波束TX_B1至TX_B3)。进一步,终端设备可以只在接收波束RX_B1对应的随机接入时间窗口中使用匹配的发射波束TX_B2发送随机接入前导码(如图中阴影所示)。对于发射波束配置1和2,由于终端设备使用全波发射,因此可以只在接收波束RX_B1对应的随机接入时间窗口中使用全波发送随机接入前导码。
图20B示出了与图20A对应的第二等级的波束扫描的示例。第二等级的波束扫描,假设终端设备确定下行链路中基站侧发射波束TX_B1,2与终端设备侧接收波束RX_B2匹配,则可以确定上行链路中与该终端设备匹配的基站侧接收波束是RX_B1,2,其与终端设备侧发射波束TX_B2匹配。相应地,终端设备可以只在接收波束RX_B1,2对应的随机接入时间窗口中发送随机接入前导码(例如使用发射波束TX_B1至TX_B3)。进一步,终端设备可以只在接收波束RX_B1,2对应的随机接入时间窗口中使用匹配的发射波束TX_B2发送随机接入前导码(如图中阴影所示)。对于发射波束配置1和2,由于终端设备使用 全波发射,因此可以只在接收波束RX_B1,2对应的随机接入时间窗口中使用全波发送随机接入前导码。
在上述例子中,当在特定的随机接入时间窗口中发送随机接入前导码时,该特定的随机接入时间窗口本身可以指示下行链路中与终端设备侧的一个或多个接收波束配对的基站侧的一个或多个发射波束的发射波束ID。图21A示出了根据本公开实施例的终端设备发送随机接入前导码的示例方法。在2105处,在已知下行链路中匹配的基站侧(一个或多个)发射波束和终端设备侧(一个或多个)接收波束的情况下,基于波束对称性,终端设备可以确定上行链路中匹配的基站侧(一个或多个)接收波束和终端设备侧(一个或多个)发射波束。在2110处,终端设备可以基于基站侧(一个或多个)接收波束与多个随机接入时间窗口的对应关系,从多个随机接入时间窗口中确定与基站侧(一个或多个)接收波束对应的一个或多个随机接入时间窗口。在2115处,终端设备可以在一个或多个随机接入时间窗口的至少一部分中以终端设备侧的一个或多个发射波束发送随机接入前导码。
图21B示出了根据本公开实施例的基站接收随机接入前导码的示例方法。在2150处,基站可以基于基站侧(一个或多个)接收波束与多个随机接入时间窗口的对应关系,以基站侧的接收波束接收随机接入前导码。可以理解,基站应当在步骤2110处所确定的与基站侧接收波束对应的随机接入时间窗口中接收到相应的随机接入前导码。在2155处,基站可以基于基站侧接收波束与随机接入时间窗口的对应关系,确定接收到随机接入前导码的接收波束。在2160处,基站可以基于波束对称性,确定与基站侧的接收波束对应的发射波束,即下行链路中与终端设备匹配的发射波束。
在上述方法示例中,随机接入时间窗口本身可以指示一个发射波束ID。此时,可以由同步序列或额外信息比特指示同一个匹配的发射波束ID,以增加发射波束ID检测鲁棒性。或者,可以由同步序列或额外信息比特指示另一个匹配的发射波束ID,使得随机接入前导码的单次发送可以指示多个发射波束ID。
根据前述实施例,随机接入前导码的单次发送可以指示多个发射波束ID。另选或附加地,在一些实施例中,可以通过随机接入前导码后续的上行链路消息指示下行链路中与终端设备侧的一个或多个接收波束配对的基站侧的一个或多个发射波束。例如,可以通过图1中的MSG-3消息指示匹配的基站侧发射波束。
随机接入前导码的重传
根据一些实施例,在需要重传随机接入前导码的情况下,终端设备可以优先使用终 端设备侧的与先前发射波束方向最相关的发射波束进行该重传,其中方向相关包括发射方向相邻或至少部分重叠。
终端设备在首次随机接入前导码发送后,会在一定的时间窗口内等待基站发送的随机接入响应(Random Access Response,RAR)。如果接收到RAR,则终端设备认为随机接入前导码发送成功。如果终端设备在RAR等待时间窗口内未接收到RAR,如图22所示,则终端设备需要进行随机接入前导码重传。在一些实施例中,在重传过程中,为了避免全局波束扫描带来的资源浪费,终端设备可以在首次发送随机接入前导码所使用的发射波束周围选择用于进行重传的发射波束。该周围的发射波束可以是与首次使用的发射波束方向最相关的发射波束,因此可能是与基站最优匹配的波束。也就是说,可以认为首次使用的发射波束周围的波束可以形成备选波束组(Candidate Beam Set),如图22所示。在随机接入前导码重传过程中,可以逐渐地按照步长来提高发送功率直到终端设备发射功率的上限。如果终端设备重传随机接入前导码后,依然没有接收到RAR,则可以扩大波束扫描的范围进行发送。之后,重复该过程,直到终端设备接收到RAR。
根据本公开的实施例,在扩大波束扫描的范围发送随机接入前导码后,基站可以在RAR消息中通知终端设备上行链路中与基站匹配的发射波束。
示例性方法
图23A示出了根据本公开实施例的用于通信的示例方法。如图23A所示,该方法2300A可以包括获得随机接入配置信息(框2305)。该方法还包括基于所述随机接入配置信息发送随机接入前导码,以指示下行链路中与终端设备侧的一个或多个接收波束配对的基站侧的一个或多个发射波束(框2310)。该方法可以由电子设备1500A执行,该方法详细示例操作可以参考上文关于电子设备1500A所执行的操作和功能的描述,简单描述如下。
在一个实施例中,与终端设备侧的一个或多个接收波束配对的基站侧的一个或多个发射波束是终端设备基于接收同步信号而确定的。
在一个实施例中,随机接入前导码指示与终端设备侧的一个或多个接收波束配对的基站侧的一个或多个发射波束的识别信息,例如发射波束ID。
在一个实施例中,随机接入前导码通过以下中的至少一者指示与终端设备侧的一个或多个接收波束配对的基站侧的一个或多个发射波束的发射波束ID:随机接入前导码包括前导码序列,该前导码序列本身表示发射波束ID;以及随机接入前导码还包括额外的信息比特,该额外的信息比特表示发射波束ID。
在一个实施例中,随机接入前导码的单次发送能够指示单个发射波束ID或者多个发射波束ID。
在一个实施例中,随机接入配置信息还包括基站侧波束与多个随机接入时机的对应关系,该方法还包括:基于该对应关系以终端设备侧的不同发射波束重复发送随机接入前导码;或者基于该对应关系以终端设备侧的与一个或多个接收波束对应的发射波束重复发送随机接入前导码。
在一个实施例中,该方法还包括在特定的随机接入时机中发送随机接入前导码,该特定的随机接入时机指示下行链路中与终端设备侧的一个或多个接收波束配对的基站侧的一个或多个发射波束的发射波束ID。
在一个实施例中,随机接入配置信息还包括基站侧波束与多个随机接入时机的对应关系,在基站与终端设备之间的上下行链路满足波束对称性的情况下,该方法还包括通过以下方式发送随机接入前导码:基于波束对称性,确定上行链路中匹配的基站侧的一个或多个接收波束和终端设备侧的一个或多个发射波束;基于对应关系,从多个随机接入时机中确定与基站侧的一个或多个波束对应的一个或多个随机接入时机;以及在一个或多个随机接入时机的至少一部分中以终端设备侧的一个或多个发射波束发送随机接入前导码。
在一个实施例中,基站侧波束与多个随机接入时机的对应关系包括基站侧多个等级波束与多个随机接入时机的对应关系。
在一个实施例中,该方法还包括通过随机接入前导码后续的上行链路消息指示下行链路中与终端设备侧的一个或多个接收波束配对的基站侧的一个或多个发射波束。
在一个实施例中,该方法还包括在需要重传随机接入前导码的情况下,优先使用终端设备侧的与先前发射波束方向最相关的发射波束进行重传,其中方向相关包括发射方向相邻或至少部分重叠。
在一个实施例中,同步信号对应于包含主同步信号、辅同步信号以及PBCH的同步信号块,该方法还包括在集中的时域上接收由不同的基站侧发射波束发送的多个同步信号块,将其中信号接收质量满足预定条件的同步信号块对应的基站侧发射波束作为与终端设备配对的基站侧发射波束。
在一个实施例中,该方法还包括通过所述满足预定条件的同步信号块中的参考信号序列本身确定基站发送该同步信号块所使用的发射波束。
在一个实施例中,该方法还包括通过所述满足预定条件的同步信号块中的额外的信 息比特确定基站发送该同步信号块所使用的发射波束。
在一个实施例中,该方法还包括接收无线资源控制信令并且从中获得所述随机接入配置信息。
在一个实施例中,执行该方法的电子设备可以操作为终端设备,该终端设备可以包括一个或多个射频链路,每一射频链路连接到多个天线及其移相器。终端设备(例如其处理电路系统)可以根据与基站侧波束匹配的波束方向配置所述多个天线的移相器以使得所述多个天线通过波束成形向基站发送所述随机接入前导码。在一个实施例中,无线通信系统为第五代New Radio通信系统,基站为gNB。
图23B示出了根据本公开实施例的用于通信的另一示例方法。如图23B所示,该方法2300B可以包括发送随机接入配置信息(框2350)。该方法还包括接收从终端设备发送的随机接入前导码,以获得下行链路中与终端设备侧的一个或多个接收波束配对的基站侧的一个或多个发射波束(框2355)。该方法可以由电子设备1500B执行,该方法的详细示例操作可以参考上文关于电子设备1500B所执行的操作和功能的描述,简单描述如下。
在一个实施例中,与终端设备侧的一个或多个接收波束配对的基站侧的一个或多个发射波束是终端设备基于接收同步信号而确定的。
在一个实施例中,随机接入前导码指示与终端设备侧的一个或多个接收波束配对的基站侧的一个或多个发射波束的识别信息,例如发射波束ID。
在一个实施例中,随机接入前导码通过以下中的至少一者指示与终端设备侧的一个或多个接收波束配对的基站侧配对的一个或多个发射波束的发射波束ID:随机接入前导码包括前导码序列,该前导码序列本身表示发射波束ID;以及随机接入前导码还包括额外的信息比特,该额外的信息比特表示发射波束ID。
在一个实施例中,随机接入前导码的单次发送能够指示单个发射波束ID或者多个发射波束ID。
在一个实施例中,随机接入配置信息还包括基站侧波束与多个随机接入时机的对应关系,该方法还包括基于对应关系以基站侧的波束接收随机接入前导码。
在一个实施例中,该方法还包括在特定的随机接入时机中接收随机接入前导码,该特定的随机接入时机指示下行链路中与终端设备侧的一个或多个接收波束配对的基站侧的一个或多个发射波束的发射波束ID。
在一个实施例中,随机接入配置信息还包括基站侧波束与多个随机接入时机的对应关系,在基站与终端设备之间的上下行链路满足波束对称性的情况下,该方法还包括通 过以下方式接收随机接入前导码:基于对应关系以基站侧的接收波束接收随机接入前导码;确定接收到随机接入前导码的接收波束;以及基于波束对称性,确定与基站侧的接收波束对应的发射波束。
在一个实施例中,基站侧波束与多个随机接入时机的对应关系包括基站侧多个等级波束与多个随机接入时机的对应关系。
在一个实施例中,该方法还包括从随机接入前导码后续的上行链路消息中获得下行链路中与终端设备侧的一个或多个接收波束配对的基站侧的一个或多个发射波束。
在一个实施例中,同步信号对应于包含主同步信号、辅同步信号以及PBCH的同步信号块,该方法还包括在集中的时域上通过不同的基站侧发射波束发送多个同步信号块。
在一个实施例中,同步信号块通过同步信号块中的参考信号序列本身指示基站发送该同步信号块所使用的发射波束信息。
在一个实施例中,同步信号块还包括额外的信息比特,通过该额外的信息比特指示基站发送该同步信号块所使用的发射波束信息。
在一个实施例中,该方法还包括发送无线资源控制信令以向终端设备发送所述随机接入配置信息。在一个实施例中,无线通信系统为第五代New Radio通信系统,基站为gNB。
在一些实施例中,电子设备300A、300B、1300A、1500A和1500B等可以以芯片级来实现,或者也可以通过包括其他外部部件而以设备级来实现。例如,各电子设备可以作为整机而工作为通信设备。
应注意,上述各个单元仅是根据其所实现的具体功能划分的逻辑模块,而不是用于限制具体的实现方式,例如可以以软件、硬件或者软硬件结合的方式来实现。在实际实现时,上述各个单元可被实现为独立的物理实体,或者也可由单个实体(例如,处理器(CPU或DSP等)、集成电路等)来实现。其中,处理电路可以指在计算系统中执行功能的数字电路系统、模拟电路系统或混合信号(模拟和数字的组合)电路系统的各种实现。处理电路可以包括例如诸如集成电路(IC)、专用集成电路(ASIC)这样的电路、单独处理器核心的部分或电路、整个处理器核心、单独的处理器、诸如现场可编程门阵列(FPGA)的可编程硬件设备、和/或包括多个处理器的系统。
以上分别描述了根据本公开的各示例性电子设备和方法。应该理解,这些电子设备的操作或功能可以相互组合,从而实现比所描述的更多或更少的操作或功能。在一个实施例中,一个电子设备可以实现电子设备300A、1300A和1500B的所有操作或功能,或 者一个电子设备可以实现电子设备300B和1500A的所有操作或功能。各方法的操作步骤也可以以任何适当的顺序相互组合,从而类似地实现比所描述的更多或更少的操作。
例如,根据本公开的又一个方面,一种用于无线通信系统中的终端设备侧的电子设备可以包括处理电路系统,所述处理电路系统被配置为:从所述无线通信系统中的基站接收分别包含主同步信号、辅同步信号以及PBCH的多个同步信号块以进行下行链路同步,所述多个同步信号块由不同的基站侧发射波束发送,并且每一同步信号块能够指示基站发送该同步信号块所使用的发射波束信息;基于接收质量确定与所述终端设备匹配的同步信号块;以及向所述基站发送随机接入前导码以进行随机接入过程,其中,所述随机接入前导码能够指示基站发送该匹配的同步信号块所使用的发射波束信息以供所述基站进行波束管理。
在一个实施例中,所述同步信号块通过同步信号块中的参考信号序列本身指示基站发送该同步信号块所使用的发射波束信息。
在一个实施例中,所述同步信号块还包括额外的信息比特,通过该额外的信息比特指示基站发送该同步信号块所使用的发射波束信息。
在一个实施例中,所述随机接入前导码的前导码序列指示基站发送该匹配的同步信号块所使用的发射波束信息。
在一个实施例中,多个前导码序列用于指示同一个同步信号块的发射波束信息,所述电子设备从来自所述基站的信令确定多个前导码序列与同步信号块的发射波束的对应关系。
在一个实施例中,所述处理电路系统还被配置为:从所述基站接收包含随机接入配置信息的无线资源控制信令,所述随机接入配置信息包括基站侧波束与多个随机接入时机的对应关系;以及根据所述随机接入配置信息选择特定的随机接入时机发射随机接入前导码用以指示基站发送该匹配的同步信号块所使用的发射波束信息。
在一个实施例中,所述处理电路系统还被配置为在对应于所述匹配的同步信号块的发射波束方向上接收基站发射的CSI-RS波束,以及反馈与该终端设备相匹配的CSI-RS波束信息至所述基站。
在一个实施例中,所述处理电路系统还被配置为使用多个接收波束接收所述多个同步信号块,并且根据接收质量确定所述终端设备匹配的接收波束。
在一个实施例中,所述无线通信系统具有波束对称性,所述处理电路系统还被配置为使用与所匹配的终端设备的接收波束对应的终端设备侧发射波束向所述基站发送随机 接入前导码。
在一个实施例中,所述处理电路系统还被配置为在发送所述随机接入前导码之后的预定时间内没有收到基站的随机接入响应的情况下,使用所述终端设备侧发射波束周围的发射波束重传随机接入前导码。
在一个实施例中,所述无线通信系统为5G NR系统,所述基站为gNB,所述终端设备包括多个天线以用于通过波束成形发射信号。
例如,根据本公开的又一个方面,一种用于无线通信系统中的终端设备侧的方法,包括:从所述无线通信系统中的基站接收分别包含主同步信号、辅同步信号以及PBCH的多个同步信号块以进行下行链路同步,所述多个同步信号块由不同的基站侧发射波束发送,并且每一同步信号块能够指示基站发送该同步信号块所使用的发射波束信息;基于接收质量确定与所述终端设备匹配的同步信号块;以及向所述基站发送随机接入前导码以进行随机接入过程,其中,所述随机接入前导码能够指示基站发送该匹配的同步信号块所使用的发射波束信息以供所述基站进行波束管理。
在一个实施例中,所述同步信号块通过同步信号块中的参考信号序列本身指示基站发送该同步信号块所使用的发射波束信息。
在一个实施例中,所述同步信号块还包括额外的信息比特,通过该额外的信息比特指示基站发送该同步信号块所使用的发射波束信息。
在一个实施例中,所述随机接入前导码的前导码序列指示基站发送该匹配的同步信号块所使用的发射波束信息。
在一个实施例中,多个前导码序列用于指示同一个同步信号块的发射波束信息,所述方法还包括从来自所述基站的信令确定多个前导码序列与同步信号块的发射波束的对应关系。
在一个实施例中,所述方法还包括:从所述基站接收包含随机接入配置信息的无线资源控制信令,所述随机接入配置信息包括基站侧波束与多个随机接入时机的对应关系;以及根据所述随机接入配置信息选择特定的随机接入时机发射随机接入前导码用以指示基站该匹配的同步信号块的发射波束信息。
在一个实施例中,所述方法还包括在对应于所述匹配的同步信号块的发射波束方向上接收基站发射的CSI-RS波束,以及反馈与该终端设备相匹配的CSI-RS波束信息至所述基站。
在一个实施例中,所述方法还包括使用多个接收波束接收所述多个同步信号块,并 且根据接收质量确定所述终端设备匹配的接收波束。
在一个实施例中,所述无线通信系统具有波束对称性,所述方法还包括使用与所匹配的终端设备的接收波束对应的终端设备侧发射波束向所述基站发送随机接入前导码。
在一个实施例中,所述方法还包括在发送所述随机接入前导码之后的预定时间内没有收到基站的随机接入响应的情况下,使用所述终端设备侧发射波束周围的发射波束重传随机接入前导码。
例如,根据本公开的又一个方面,一种用于无线通信系统中的基站侧的电子设备,包括处理电路系统,所述处理电路系统被配置为:利用不同的基站侧发射波束向所述无线通信系统中的终端设备发射分别包含主同步信号、辅同步信号以及PBCH的多个同步信号块以用于下行链路同步,其中,每一同步信号块能够指示基站发送该同步信号块所使用的发射波束信息;接收来自终端设备的随机接入前导码以辅助终端设备的随机接入过程,其中,所述随机接入前导码能够指示与该终端设备相匹配的同步信号块的发射波束信息;以及根据所述随机接入前导码确定适用于所述终端设备下行链路传输的基站侧发射波束以进行波束管理。
在一个实施例中,所述同步信号块通过同步信号块中的参考信号序列本身指示基站发送该同步信号块所使用的发射波束信息,所述处理电路系统还被配置为在所述多个同步信号块中放置不同的参考信号序列以指示不同的发射波束信息。
在一个实施例中,所述同步信号块还包括额外的信息比特,通过该额外的信息比特指示基站发送该同步信号块所使用的发射波束信息,所述处理电路系统还被配置为在所述多个同步信号块中放置不同的额外信息比特以指示不同的发射波束信息。
在一个实施例中,所述随机接入前导码的前导码序列指示与该终端设备相匹配的同步信号块的发射波束信息。
在一个实施例中,多个前导码序列用于指示同一个同步信号块的发射波束信息,所述基站向所述终端设备发送信令以用于指示多个前导码序列与同步信号块的发射波束的对应关系。
在一个实施例中,所述处理电路系统还被配置为向所述终端设备发送包含随机接入配置信息的无线资源控制信令,所述随机接入配置信息包括基站侧波束与多个随机接入时机的对应关系,以便所述终端设备根据所述随机接入配置信息选择特定的随机接入时机发射随机接入前导码来指示该匹配的同步信号块的发射波束信息。
在一个实施例中,所述处理电路系统还被配置为在对应于所述匹配的同步信号块的 发射波束方向上发射CSI-RS波束,以及从所述终端设备接收与该终端设备相匹配的CSI-RS波束信息反馈。
在一个实施例中,所述无线通信系统为5G NR系统,所述基站为gNB,所述基站还包括多个天线以用于通过波束成形发射信号。
例如,根据本公开的又一个方面,一种用于无线通信系统中的基站侧的方法,包括:利用不同的基站侧发射波束向所述无线通信系统中的终端设备发射分别包含主同步信号、辅同步信号以及PBCH的多个同步信号块以用于下行链路同步,其中,每一同步信号块能够指示基站发送该同步信号块所使用的发射波束信息;接收来自终端设备的随机接入前导码以辅助终端设备的随机接入过程,其中,所述随机接入前导码能够指示与该终端设备相匹配的同步信号块的发射波束信息;以及根据所述随机接入前导码确定适用于所述终端设备下行链路传输的基站侧发射波束以进行波束管理。
在一个实施例中,所述同步信号块通过同步信号块中的参考信号序列本身指示基站发送该同步信号块所使用的发射波束信息,所述方法还包括在所述多个同步信号块中放置不同的参考信号序列以指示不同的发射波束信息。
在一个实施例中,所述同步信号块还包括额外的信息比特,通过该额外的信息比特指示基站发送该同步信号块所使用的发射波束信息,所述方法还包括在所述多个同步信号块中放置不同的额外信息比特以指示不同的发射波束信息。
在一个实施例中,所述随机接入前导码的前导码序列指示与该终端设备相匹配的同步信号块的发射波束信息。
在一个实施例中,多个前导码序列用于指示同一个同步信号块的发射波束信息,所述方法还包括向所述终端设备发送信令以用于指示多个前导码序列与同步信号块的发射波束的对应关系。
在一个实施例中,所述方法还包括向所述终端设备发送包含随机接入配置信息的无线资源控制信令,所述随机接入配置信息包括基站侧波束与多个随机接入时机的对应关系,以便所述终端设备根据所述随机接入配置信息选择特定的随机接入时机发射随机接入前导码来指示该匹配的同步信号块的发射波束信息。
在一个实施例中,所述方法还包括在对应于所述匹配的同步信号块的发射波束方向上发射CSI-RS波束,以及从所述终端设备接收与该终端设备相匹配的CSI-RS波束信息反馈。
应当理解,根据本公开的实施例的存储介质和程序产品中的机器可执行指令还可以 被配置为执行与上述装置实施例相对应的方法,因此在此未详细描述的内容可参考先前相应位置的描述,在此不再重复进行描述。
相应地,用于承载上述包括机器可执行指令的程序产品的存储介质也包括在本发明的公开中。该存储介质包括但不限于软盘、光盘、磁光盘、存储卡、存储棒等等。
另外,还应该指出的是,上述系列处理和设备也可以通过软件和/或固件实现。在通过软件和/或固件实现的情况下,从存储介质或网络向具有专用硬件结构的计算机,例如图24所示的通用个人计算机1300安装构成该软件的程序,该计算机在安装有各种程序时,能够执行各种功能等等。图24是示出作为本公开的实施例中可采用的信息处理设备的个人计算机的示例结构的框图。在一个例子中,该个人计算机可以对应于根据本公开的上述示例性终端设备。
在图24中,中央处理单元(CPU)1301根据只读存储器(ROM)1302中存储的程序或从存储部分1308加载到随机存取存储器(RAM)1303的程序执行各种处理。在RAM1303中,也根据需要存储当CPU 1301执行各种处理等时所需的数据。
CPU 1301、ROM 1302和RAM 1303经由总线1304彼此连接。输入/输出接口1305也连接到总线1304。
下述部件连接到输入/输出接口1305:输入部分1306,包括键盘、鼠标等;输出部分1307,包括显示器,比如阴极射线管(CRT)、液晶显示器(LCD)等,和扬声器等;存储部分1308,包括硬盘等;和通信部分1309,包括网络接口卡比如LAN卡、调制解调器等。通信部分1309经由网络比如因特网执行通信处理。
根据需要,驱动器1310也连接到输入/输出接口1305。可拆卸介质1311比如磁盘、光盘、磁光盘、半导体存储器等等根据需要被安装在驱动器1310上,使得从中读出的计算机程序根据需要被安装到存储部分1308中。
在通过软件实现上述系列处理的情况下,从网络比如因特网或存储介质比如可拆卸介质1311安装构成软件的程序。
本领域技术人员应当理解,这种存储介质不局限于图24所示的其中存储有程序、与设备相分离地分发以向用户提供程序的可拆卸介质1311。可拆卸介质1311的例子包含磁盘(包含软盘(注册商标))、光盘(包含光盘只读存储器(CD-ROM)和数字通用盘(DVD))、磁光盘(包含迷你盘(MD)(注册商标))和半导体存储器。或者,存储介质可以是ROM 1302、存储部分1308中包含的硬盘等等,其中存有程序,并且与包含它们的设备一起被分发给用户。
本公开的技术能够应用于各种产品。例如,本公开中提到的基站可以被实现为任何类型的演进型节点B(eNB),诸如宏eNB和小eNB。小eNB可以为覆盖比宏小区小的小区的eNB,诸如微微eNB、微eNB和家庭(毫微微)eNB。代替地,基站可以被实现为任何其他类型的基站,诸如NodeB和基站收发台(Base Transceiver Station,BTS)。基站可以包括:被配置为控制无线通信的主体(也称为基站设备);以及设置在与主体不同的地方的一个或多个远程无线头端(Remote Radio Head,RRH)。另外,下面将描述的各种类型的终端均可以通过暂时地或半持久性地执行基站功能而作为基站工作。
例如,本公开中提到的终端设备在一些示例中也称为用户设备,可以被实现为移动终端(诸如智能电话、平板个人计算机(PC)、笔记本式PC、便携式游戏终端、便携式/加密狗型移动路由器和数字摄像装置)或者车载终端(诸如汽车导航设备)。用户设备还可以被实现为执行机器对机器(M2M)通信的终端(也称为机器类型通信(MTC)终端)。此外,用户设备可以为安装在上述终端中的每个终端上的无线通信模块(诸如包括单个晶片的集成电路模块)。
以下将参照图25至图28描述根据本公开的应用示例。
[关于基站的应用示例]
应当理解,本公开中的基站一词具有其通常含义的全部广度,并且至少包括被用于作为无线通信系统或无线电系统的一部分以便于通信的无线通信站。基站的例子可以例如是但不限于以下:基站可以是GSM系统中的基站收发信机(BTS)和基站控制器(BSC)中的一者或两者,可以是WCDMA系统中的无线电网络控制器(RNC)和Node B中的一者或两者,可以是LTE和LTE-Advanced系统中的eNB,或者可以是未来通信系统中对应的网络节点(例如可能在5G通信系统中出现的gNB,eLTE eNB等等)。本公开的基站中的部分功能也可以实现为在D2D、M2M以及V2V通信场景下对通信具有控制功能的实体,或者实现为在认知无线电通信场景下起频谱协调作用的实体。
第一应用示例
图25是示出可以应用本公开内容的技术的gNB的示意性配置的第一示例的框图。gNB 1400包括多个天线1410以及基站设备1420。基站设备1420和每个天线1410可以经由RF线缆彼此连接。在一种实现方式中,此处的gNB 1400(或基站设备1420)可以对应于上述电子设备300A、1300A和/或1500B。
天线1410中的每一个均包括单个或多个天线元件(诸如包括在多输入多输出(MIMO)天线中的多个天线元件),并且用于基站设备1420发送和接收无线信号。如图 25所示,gNB 1400可以包括多个天线1410。例如,多个天线1410可以与gNB 1400使用的多个频段兼容。
基站设备1420包括控制器1421、存储器1422、网络接口1423以及无线通信接口1425。
控制器1421可以为例如CPU或DSP,并且操作基站设备1420的较高层的各种功能。例如,控制器1421根据由无线通信接口1425处理的信号中的数据来生成数据分组,并经由网络接口1423来传递所生成的分组。控制器1421可以对来自多个基带处理器的数据进行捆绑以生成捆绑分组,并传递所生成的捆绑分组。控制器1421可以具有执行如下控制的逻辑功能:该控制诸如为无线资源控制、无线承载控制、移动性管理、接纳控制和调度。该控制可以结合附近的gNB或核心网节点来执行。存储器1422包括RAM和ROM,并且存储由控制器1421执行的程序和各种类型的控制数据(诸如终端列表、传输功率数据以及调度数据)。
网络接口1423为用于将基站设备1420连接至核心网1424的通信接口。控制器1421可以经由网络接口1423而与核心网节点或另外的gNB进行通信。在此情况下,gNB1400与核心网节点或其他gNB可以通过逻辑接口(诸如S1接口和X2接口)而彼此连接。网络接口1423还可以为有线通信接口或用于无线回程线路的无线通信接口。如果网络接口1423为无线通信接口,则与由无线通信接口1425使用的频段相比,网络接口1423可以使用较高频段用于无线通信。
无线通信接口1425支持任何蜂窝通信方案(诸如长期演进(LTE)和LTE-先进),并且经由天线1410来提供到位于gNB 1400的小区中的终端的无线连接。无线通信接口1425通常可以包括例如基带(BB)处理器1426和RF电路1427。BB处理器1426可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行层(例如L1、介质访问控制(MAC)、无线链路控制(RLC)和分组数据汇聚协议(PDCP))的各种类型的信号处理。代替控制器1421,BB处理器1426可以具有上述逻辑功能的一部分或全部。BB处理器1426可以为存储通信控制程序的存储器,或者为包括被配置为执行程序的处理器和相关电路的模块。更新程序可以使BB处理器1426的功能改变。该模块可以为插入到基站设备1420的槽中的卡或刀片。可替代地,该模块也可以为安装在卡或刀片上的芯片。同时,RF电路1427可以包括例如混频器、滤波器和放大器,并且经由天线1410来传送和接收无线信号。虽然图25示出一个RF电路1427与一根天线1410连接的示例,但是本公开并不限于该图示,而是一个RF电路1427可以同时连接多根天线1410。
如图25所示,无线通信接口1425可以包括多个BB处理器1426。例如,多个BB处理器1426可以与gNB 1400使用的多个频段兼容。如图25所示,无线通信接口1425可以包括多个RF电路1427。例如,多个RF电路1427可以与多个天线元件兼容。虽然图25示出其中无线通信接口1425包括多个BB处理器1426和多个RF电路1427的示例,但是无线通信接口1425也可以包括单个BB处理器1426或单个RF电路1427。
第二应用示例
图26是示出可以应用本公开内容的技术的gNB的示意性配置的第二示例的框图。gNB 1530包括多个天线1540、基站设备1550和RRH 1560。RRH 1560和每个天线1540可以经由RF线缆而彼此连接。基站设备1550和RRH 1560可以经由诸如光纤线缆的高速线路而彼此连接。在一种实现方式中,此处的gNB 1530(或基站设备1550)可以对应于上述电子设备300A、1300A和/或1500B。
天线1540中的每一个均包括单个或多个天线元件(诸如包括在MIMO天线中的多个天线元件)并且用于RRH 1560发送和接收无线信号。如图26所示,gNB 1530可以包括多个天线1540。例如,多个天线1540可以与gNB 1530使用的多个频段兼容。
基站设备1550包括控制器1551、存储器1552、网络接口1553、无线通信接口1555以及连接接口1557。控制器1551、存储器1552和网络接口1553与参照图25描述的控制器1421、存储器1422和网络接口1423相同。
无线通信接口1555支持任何蜂窝通信方案(诸如LTE和LTE-先进),并且经由RRH1560和天线1540来提供到位于与RRH 1560对应的扇区中的终端的无线通信。无线通信接口1555通常可以包括例如BB处理器1556。除了BB处理器1556经由连接接口1557连接到RRH 1560的RF电路1564之外,BB处理器1556与参照图25描述的BB处理器1426相同。如图26所示,无线通信接口1555可以包括多个BB处理器1556。例如,多个BB处理器1556可以与gNB 1530使用的多个频段兼容。虽然图26示出其中无线通信接口1555包括多个BB处理器1556的示例,但是无线通信接口1555也可以包括单个BB处理器1556。
连接接口1557为用于将基站设备1550(无线通信接口1555)连接至RRH 1560的接口。连接接口1557还可以为用于将基站设备1550(无线通信接口1555)连接至RRH1560的上述高速线路中的通信的通信模块。
RRH 1560包括连接接口1561和无线通信接口1563。
连接接口1561为用于将RRH 1560(无线通信接口1563)连接至基站设备1550的 接口。连接接口1561还可以为用于上述高速线路中的通信的通信模块。
无线通信接口1563经由天线1540来传送和接收无线信号。无线通信接口1563通常可以包括例如RF电路1564。RF电路1564可以包括例如混频器、滤波器和放大器,并且经由天线1540来传送和接收无线信号。虽然图26示出一个RF电路1564与一根天线1540连接的示例,但是本公开并不限于该图示,而是一个RF电路1564可以同时连接多根天线1540。
如图26所示,无线通信接口1563可以包括多个RF电路1564。例如,多个RF电路1564可以支持多个天线元件。虽然图26示出其中无线通信接口1563包括多个RF电路1564的示例,但是无线通信接口1563也可以包括单个RF电路1564。
[关于用户设备的应用示例]
第一应用示例
图27是示出可以应用本公开内容的技术的智能电话1600的示意性配置的示例的框图。智能电话1600包括处理器1601、存储器1602、存储装置1603、外部连接接口1604、摄像装置1606、传感器1607、麦克风1608、输入装置1609、显示装置1610、扬声器1611、无线通信接口1612、一个或多个天线开关1615、一个或多个天线1616、总线1617、电池1618以及辅助控制器1619。在一种实现方式中,此处的智能电话1600(或处理器1601)可以对应于上述终端设备300B和/或1500A。
处理器1601可以为例如CPU或片上系统(SoC),并且控制智能电话1600的应用层和另外层的功能。存储器1602包括RAM和ROM,并且存储数据和由处理器1601执行的程序。存储装置1603可以包括存储介质,诸如半导体存储器和硬盘。外部连接接口1604为用于将外部装置(诸如存储卡和通用串行总线(USB)装置)连接至智能电话1600的接口。
摄像装置1606包括图像传感器(诸如电荷耦合器件(CCD)和互补金属氧化物半导体(CMOS)),并且生成捕获图像。传感器1607可以包括一组传感器,诸如测量传感器、陀螺仪传感器、地磁传感器和加速度传感器。麦克风1608将输入到智能电话1600的声音转换为音频信号。输入装置1609包括例如被配置为检测显示装置1610的屏幕上的触摸的触摸传感器、小键盘、键盘、按钮或开关,并且接收从用户输入的操作或信息。显示装置1610包括屏幕(诸如液晶显示器(LCD)和有机发光二极管(OLED)显示器),并且显示智能电话1600的输出图像。扬声器1611将从智能电话1600输出的音频信号转换为声音。
无线通信接口1612支持任何蜂窝通信方案(诸如LTE和LTE-先进),并且执行无线通信。无线通信接口1612通常可以包括例如BB处理器1613和RF电路1614。BB处理器1613可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行用于无线通信的各种类型的信号处理。同时,RF电路1614可以包括例如混频器、滤波器和放大器,并且经由天线1616来传送和接收无线信号。无线通信接口1612可以为其上集成有BB处理器1613和RF电路1614的一个芯片模块。如图27所示,无线通信接口1612可以包括多个BB处理器1613和多个RF电路1614。虽然图27示出其中无线通信接口1612包括多个BB处理器1613和多个RF电路1614的示例,但是无线通信接口1612也可以包括单个BB处理器1613或单个RF电路1614。
此外,除了蜂窝通信方案之外,无线通信接口1612可以支持另外类型的无线通信方案,诸如短距离无线通信方案、近场通信方案和无线局域网(LAN)方案。在此情况下,无线通信接口1612可以包括针对每种无线通信方案的BB处理器1613和RF电路1614。
天线开关1615中的每一个在包括在无线通信接口1612中的多个电路(例如用于不同的无线通信方案的电路)之间切换天线1616的连接目的地。
天线1616中的每一个均包括单个或多个天线元件(诸如包括在MIMO天线中的多个天线元件),并且用于无线通信接口1612传送和接收无线信号。如图27所示,智能电话1600可以包括多个天线1616。虽然图27示出其中智能电话1600包括多个天线1616的示例,但是智能电话1600也可以包括单个天线1616。
此外,智能电话1600可以包括针对每种无线通信方案的天线1616。在此情况下,天线开关1615可以从智能电话1600的配置中省略。
总线1617将处理器1601、存储器1602、存储装置1603、外部连接接口1604、摄像装置1606、传感器1607、麦克风1608、输入装置1609、显示装置1610、扬声器1611、无线通信接口1612以及辅助控制器1619彼此连接。电池1618经由馈线向图27所示的智能电话1600的各个块提供电力,馈线在图中被部分地示为虚线。辅助控制器1619例如在睡眠模式下操作智能电话1600的最小必需功能。
第二应用示例
图28是示出可以应用本公开内容的技术的汽车导航设备1720的示意性配置的示例的框图。汽车导航设备1720包括处理器1721、存储器1722、全球定位系统(GPS)模块1724、传感器1725、数据接口1726、内容播放器1727、存储介质接口1728、输入装置1729、显示装置1730、扬声器1731、无线通信接口1733、一个或多个天线开关1736、 一个或多个天线1737以及电池1738。在一种实现方式中,此处的汽车导航设备1720(或处理器1721)可以对应于上述终端设备300B和/或1500A。
处理器1721可以为例如CPU或SoC,并且控制汽车导航设备1720的导航功能和另外的功能。存储器1722包括RAM和ROM,并且存储数据和由处理器1721执行的程序。
GPS模块1724使用从GPS卫星接收的GPS信号来测量汽车导航设备1720的位置(诸如纬度、经度和高度)。传感器1725可以包括一组传感器,诸如陀螺仪传感器、地磁传感器和空气压力传感器。数据接口1726经由未示出的终端而连接到例如车载网络1741,并且获取由车辆生成的数据(诸如车速数据)。
内容播放器1727再现存储在存储介质(诸如CD和DVD)中的内容,该存储介质被插入到存储介质接口1728中。输入装置1729包括例如被配置为检测显示装置1730的屏幕上的触摸的触摸传感器、按钮或开关,并且接收从用户输入的操作或信息。显示装置1730包括诸如LCD或OLED显示器的屏幕,并且显示导航功能的图像或再现的内容。扬声器1731输出导航功能的声音或再现的内容。
无线通信接口1733支持任何蜂窝通信方案(诸如LTE和LTE-先进),并且执行无线通信。无线通信接口1733通常可以包括例如BB处理器1734和RF电路1735。BB处理器1734可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行用于无线通信的各种类型的信号处理。同时,RF电路1735可以包括例如混频器、滤波器和放大器,并且经由天线1737来传送和接收无线信号。无线通信接口1733还可以为其上集成有BB处理器1734和RF电路1735的一个芯片模块。如图28所示,无线通信接口1733可以包括多个BB处理器1734和多个RF电路1735。虽然图28示出其中无线通信接口1733包括多个BB处理器1734和多个RF电路1735的示例,但是无线通信接口1733也可以包括单个BB处理器1734或单个RF电路1735。
此外,除了蜂窝通信方案之外,无线通信接口1733可以支持另外类型的无线通信方案,诸如短距离无线通信方案、近场通信方案和无线LAN方案。在此情况下,针对每种无线通信方案,无线通信接口1733可以包括BB处理器1734和RF电路1735。
天线开关1736中的每一个在包括在无线通信接口1733中的多个电路(诸如用于不同的无线通信方案的电路)之间切换天线1737的连接目的地。
天线1737中的每一个均包括单个或多个天线元件(诸如包括在MIMO天线中的多个天线元件),并且用于无线通信接口1733传送和接收无线信号。如图28所示,汽车导航设备1720可以包括多个天线1737。虽然图28示出其中汽车导航设备1720包括多个天线 1737的示例,但是汽车导航设备1720也可以包括单个天线1737。
此外,汽车导航设备1720可以包括针对每种无线通信方案的天线1737。在此情况下,天线开关1736可以从汽车导航设备1720的配置中省略。
电池1738经由馈线向图28所示的汽车导航设备1720的各个块提供电力,馈线在图中被部分地示为虚线。电池1738累积从车辆提供的电力。
本公开内容的技术也可以被实现为包括汽车导航设备1720、车载网络1741以及车辆模块1742中的一个或多个块的车载系统(或车辆)1740。车辆模块1742生成车辆数据(诸如车速、发动机速度和故障信息),并且将所生成的数据输出至车载网络1741。
以上参照附图描述了本公开的示例性实施例,但是本公开当然不限于以上示例。本领域技术人员可在所附权利要求的范围内得到各种变更和修改,并且应理解这些变更和修改自然将落入本公开的技术范围内。
例如,在以上实施例中包括在一个单元中的多个功能可以由分开的装置来实现。替选地,在以上实施例中由多个单元实现的多个功能可分别由分开的装置来实现。另外,以上功能之一可由多个单元来实现。无需说,这样的配置包括在本公开的技术范围内。
在该说明书中,流程图中所描述的步骤不仅包括以所述顺序按时间序列执行的处理,而且包括并行地或单独地而不是必须按时间序列执行的处理。此外,甚至在按时间序列处理的步骤中,无需说,也可以适当地改变该顺序。
虽然已经详细说明了本公开及其优点,但是应当理解在不脱离由所附的权利要求所限定的本公开的精神和范围的情况下可以进行各种改变、替代和变换。而且,本公开实施例的术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。

Claims (71)

  1. 一种用于无线通信系统中的基站侧的电子设备,包括处理电路系统,所述处理电路系统被配置为:
    基于发射波束配置利用不同的发射波束向终端设备重复地发送同步信号,所述同步信号能够指示发送所述同步信号所使用的发射波束信息;以及
    获取来自所述终端设备的反馈,所述反馈包括发射波束信息以用于发射波束管理。
  2. 如权利要求1所述的电子设备,其中,所述终端设备反馈的发射波束信息所对应的发射波束是与所述终端设备接收匹配度最高的发射波束。
  3. 如权利要求1所述的电子设备,其中,所述发射波束配置指定基站能够用于发送同步信号的多个发射波束的个数以及连续使用每个发射波束发送的次数,所述处理电路系统还被配置为:
    使用所述多个发射波束中的每个发射波束发送同步信号,并且连续使用每个发射波束发送同步信号达所述次数。
  4. 如权利要求1所述的电子设备,其中,所述发射波束配置指定基站能够用于发送同步信号的不同等级的发射波束的个数和连续使用不同等级的每个发射波束发送的次数,所述处理电路系统还被配置为:
    使用所述不同等级的每个发射波束发送同步信号,并且连续使用每个发射波束发送同步信号达所述次数。
  5. 如权利要求3或4所述的电子设备,其中,所述发射波束配置还包括基站侧发射波束与多个同步信号时间窗口的对应关系,所述处理电路系统还被配置为:
    基于发射波束与所述多个同步信号时间窗口的对应关系来使用发射波束发送同步信号。
  6. 如权利要求3至5中任一项所述的电子设备,其中,所述处理电路系统还被配置为:
    将所述发射波束配置传递给通过双连接一起服务终端设备的另一基站,所述发射波束配置由所述另一基站指示给终端设备。
  7. 如权利要求6所述的电子设备,其中,所述另一基站是该无线通信系统的基站,或者是该无线通信系统的前代无线通信系统的基站。
  8. 如权利要求7述的电子设备,其中,该无线通信系统是5G系统,前代无线通信系统是LTE系统。
  9. 如权利要求3至5中任一项所述的电子设备,其中,不同类型的连续的同步信号形成同步信号块,多个连续的同步信号块形成同步信号突发。
  10. 如权利要求5所述的电子设备,其中,所述发射波束信息包括发射波束ID,并且所述同步信号通过以下中的一者而指示发射波束ID:
    同步信号包括同步序列,该同步序列本身表示发射波束ID;
    除同步序列之外,同步信号还包括额外的信息比特,该额外的信息比特表示发射波束ID;或者
    同步信号所在的时间参数。
  11. 如权利要求10所述的电子设备,其中,基于匹配度最高的发射波束所发送的同步信号的时间参数和所述发射波束配置确定匹配度最高的发射波束的发射波束信息。
  12. 如权利要求11所述的电子设备,其中,所述时间参数包括OFDM符号索引、无线电帧中的时隙索引以及无线电帧号。
  13. 如前述任一项权利要求所述的电子设备,其中,同步信号包括主同步信号PSS和辅同步信号SSS,或者包括主同步信号PSS、辅同步信号SSS和第三同步信号TSS。
  14. 如权利要求13所述的电子设备,其中,通过不同类型的同步信号在时域或频域的相对位置表示系统信息,所述系统信息包括以下中的至少一者:
    无线通信系统的双工类型;或
    不同的循环前缀长度。
  15. 一种用于无线通信系统中的终端设备侧的电子设备,包括处理电路系统,所述处理电路系统被配置为:
    基于无线通信系统的基站侧的发射波束配置接收同步信号,所述同步信号能够指示基站发送所述同步信号所使用的发射波束信息;以及
    提供反馈给所述基站,所述反馈包括发射波束信息以供所述基站用于发射波束管理。
  16. 如权利要求15所述的电子设备,其中,反馈的发射波束信息所对应的发射波束是与所述终端设备接收匹配度最高的发射波束。
  17. 如权利要求15所述的电子设备,其中,所述发射波束配置指定基站能够用于发送同步信号的多个发射波束的个数以及连续使用每个发射波束发送的次数,所述处理电路系统还被配置为:
    对于基站连续使用每个发射波束的所述次数的发送中的每次发送,使用不同的接收波束接收同步信号。
  18. 如权利要求15所述的电子设备,其中,所述发射波束配置指定基站能够用于发送同步信号的不同等级的发射波束的个数和连续使用不同等级的每个发射波束发送的次数,所述处理电路系统还被配置为:
    对于基站连续使用每个发射波束的所述次数的发送中的每次发送,使用不同的接收波束接收同步信号。
  19. 如权利要求17或18所述的电子设备,其中,所述发射波束配置还包括基站侧发射波束与多个同步信号时间窗口的对应关系。
  20. 如权利要求17至19中任一项所述的电子设备,其中,所述处理电路系统还被配置为:
    从通过双连接与所述基站一起服务所述终端设备的另一基站获取所述发射波束配置。
  21. 如权利要求20所述的电子设备,其中,所述另一基站是该无线通信系统的基站,或者是该无线通信系统的前代无线通信系统的基站。
  22. 如权利要求21所述的电子设备,其中,该无线通信系统是5G系统,前代无线通信系统是LTE系统。
  23. 如权利要求17至19中任一项所述的电子设备,还包括全向天线,其中,所述处理电路系统还被配置为:
    在使用不同的接收波束接收同步信号之前,通过不使用波束成形来接收同步信号以获得基站侧的所述发射波束配置。
  24. 如权利要求17至19中任一项所述的电子设备,其中,所述发射波束信息包括发射波束ID,所述处理电路系统还被配置为从所述同步信号获得发射波束ID,并且所述同步信号通过以下中的一者而指示发射波束ID:
    同步信号包括同步序列,该同步序列本身表示发射波束ID;
    除同步序列之外,同步信号还包括额外的信息比特,该额外的信息比特表示发射波束ID;或者
    同步信号所在的时间参数。
  25. 如权利要求24所述的电子设备,其中,所述处理电路系统还被配置为:
    基于匹配度最高的发射波束所发送的同步信号的时间参数和所述发射波束配置确定匹配度最高的发射波束的发射波束信息。
  26. 如权利要求25所述的电子设备,其中,所述时间参数包括OFDM符号索引、无线电帧中的时隙索引以及无线电帧号。
  27. 如前述任一项权利要求所述的电子设备,其中,同步信号包括主同步信号PSS和辅同步信号SSS,或者包括主同步信号PSS、辅同步信号SSS和第三同步信号TSS。
  28. 如权利要求27所述的电子设备,其中,所述处理电路系统还被配置为:
    从不同类型的同步信号在时域或频域的相对位置获得系统信息,所述系统信息包括以下中的至少一者:
    无线通信系统的双工类型;或
    不同的循环前缀长度。
  29. 一种用于无线通信系统中的终端设备侧的电子设备,包括处理电路系统,所述处理电路系统被配置为:
    从所述无线通信系统中的基站接收分别包含主同步信号、辅同步信号以及PBCH的多个同步信号块以进行下行链路同步,所述多个同步信号块由不同的基站侧发射波束发送,并且每一同步信号块能够指示基站发送该同步信号块所使用的发射波束信息;
    基于接收质量确定与所述终端设备匹配的同步信号块;以及
    向所述基站发送随机接入前导码以进行随机接入过程,其中,所述随机接入前导码能够指示基站发送该匹配的同步信号块所使用的发射波束信息以供所述基站进行波束管理。
  30. 如权利要求29所述的电子设备,其中,所述同步信号块通过同步信号块中的参考信号序列本身指示基站发送该同步信号块所使用的发射波束信息。
  31. 如权利要求29所述的电子设备,其中,所述同步信号块还包括额外的信息比特,通过该额外的信息比特指示基站发送该同步信号块所使用的发射波束信息。
  32. 如权利要求29所述的电子设备,其中,所述随机接入前导码的前导码序列指示基站发送该匹配的同步信号块所使用的发射波束信息。
  33. 如权利要求32所述的电子设备,其中,多个前导码序列用于指示同一个同步信号块的发射波束信息,所述电子设备从来自所述基站的信令确定多个前导码序列与同步信号块的发射波束的对应关系。
  34. 如权利要求29至33中任一项所述的电子设备,其中,所述处理电路系统还被配置为:
    从所述基站接收包含随机接入配置信息的无线资源控制信令,所述随机接入配置信息包括基站侧波束与多个随机接入时机的对应关系;以及
    根据所述随机接入配置信息选择特定的随机接入时机发射随机接入前导码用以指示基站发送该匹配的同步信号块所使用的发射波束信息。
  35. 如权利要求29至33中任一项所述的电子设备,其中,所述处理电路系统还被配置为在对应于所述匹配的同步信号块的发射波束方向上接收基站发射的CSI-RS波束,以及反馈与该终端设备相匹配的CSI-RS波束信息至所述基站。
  36. 如权利要求29所述的电子设备,其中,所述处理电路系统还被配置为使用多个接收波束接收所述多个同步信号块,并且根据接收质量确定所述终端设备匹配的接收波束。
  37. 如权利要求36所述的电子设备,其中,所述无线通信系统具有波束对称性,所述处理电路系统还被配置为使用与所匹配的终端设备的接收波束对应的终端设备侧发射波束向所述基站发送随机接入前导码。
  38. 如权利要求37所述的电子设备,其中,所述处理电路系统还被配置为在发送所述随机接入前导码之后的预定时间内没有收到基站的随机接入响应的情况下,使用所述终端设备侧发射波束周围的发射波束重传随机接入前导码。
  39. 如权利要求29至33或36至38中任一项所述的电子设备,其中,
    所述无线通信系统为5G NR系统,所述基站为gNB,所述终端设备包括多个天线以用于通过波束成形发射信号。
  40. 一种用于无线通信系统中的终端设备侧的方法,包括:
    从所述无线通信系统中的基站接收分别包含主同步信号、辅同步信号以及PBCH的多个同步信号块以进行下行链路同步,所述多个同步信号块由不同的基站侧发射波束发送,并且每一同步信号块能够指示基站发送该同步信号块所使用的发射波束信息;
    基于接收质量确定与所述终端设备匹配的同步信号块;以及
    向所述基站发送随机接入前导码以进行随机接入过程,其中,所述随机接入前导码能够指示基站发送该匹配的同步信号块所使用的发射波束信息以供所述基站进行波束管理。
  41. 如权利要求40所述的方法,其中,所述同步信号块通过同步信号块中的参考信号序列本身指示基站发送该同步信号块所使用的发射波束信息。
  42. 如权利要求40所述的方法,其中,所述同步信号块还包括额外的信息比特,通过该额外的信息比特指示基站发送该同步信号块所使用的发射波束信息。
  43. 如权利要求40所述的方法,其中,所述随机接入前导码的前导码序列指示基站发送该匹配的同步信号块所使用的发射波束信息。
  44. 如权利要求43所述的方法,其中,多个前导码序列用于指示同一个同步信号块的发射波束信息,所述方法还包括从来自所述基站的信令确定多个前导码序列与同步信号块的发射波束的对应关系。
  45. 如权利要求40至44中任一项所述的方法,其中,所述方法还包括:
    从所述基站接收包含随机接入配置信息的无线资源控制信令,所述随机接入配置信息包括基站侧波束与多个随机接入时机的对应关系;以及
    根据所述随机接入配置信息选择特定的随机接入时机发射随机接入前导码用以指示基站该匹配的同步信号块的发射波束信息。
  46. 如权利要求40至44中任一项所述的方法,其中,所述方法还包括在对应于所述匹配的同步信号块的发射波束方向上接收基站发射的CSI-RS波束,以及反馈与该终端设备相匹配的CSI-RS波束信息至所述基站。
  47. 如权利要求40所述的方法,其中,所述方法还包括使用多个接收波束接收所述多个同步信号块,并且根据接收质量确定所述终端设备匹配的接收波束。
  48. 如权利要求47所述的方法,其中,所述无线通信系统具有波束对称性,所述方法还包括使用与所匹配的终端设备的接收波束对应的终端设备侧发射波束向所述基站发送随机接入前导码。
  49. 如权利要求48所述的方法,其中,所述方法还包括在发送所述随机接入前导码之后的预定时间内没有收到基站的随机接入响应的情况下,使用所述终端设备侧发射波束周围的发射波束重传随机接入前导码。
  50. 一种用于无线通信系统中的基站侧的电子设备,包括处理电路系统,所述处理电路系统被配置为:
    利用不同的基站侧发射波束向所述无线通信系统中的终端设备发射分别包含主同步信号、辅同步信号以及PBCH的多个同步信号块以用于下行链路同步,其中,每一同步信号块能够指示基站发送该同步信号块所使用的发射波束信息;
    接收来自终端设备的随机接入前导码以辅助终端设备的随机接入过程,其中,所述随机接入前导码能够指示与该终端设备相匹配的同步信号块的发射波束信息;以及
    根据所述随机接入前导码确定适用于所述终端设备下行链路传输的基站侧发射波束以进行波束管理。
  51. 如权利要求50所述的电子设备,其中,所述同步信号块通过同步信号块中的参考信号序列本身指示基站发送该同步信号块所使用的发射波束信息,所述处理电路系统还被配置为在所述多个同步信号块中放置不同的参考信号序列以指示不同的发射波束信息。
  52. 如权利要求50所述的电子设备,其中,所述同步信号块还包括额外的信息比特,通过该额外的信息比特指示基站发送该同步信号块所使用的发射波束信息,所述处理电路系统还被配置为在所述多个同步信号块中放置不同的额外信息比特以指示不同的发射波束信息。
  53. 如权利要求50所述的电子设备,其中,所述随机接入前导码的前导码序列指示与该终端设备相匹配的同步信号块的发射波束信息。
  54. 如权利要求53所述的电子设备,其中,多个前导码序列用于指示同一个同步信号块的发射波束信息,所述基站向所述终端设备发送信令以用于指示多个前导码序列与同步信号块的发射波束的对应关系。
  55. 如权利要求50至54中任一项所述的电子设备,其中,所述处理电路系统还被配置为向所述终端设备发送包含随机接入配置信息的无线资源控制信令,所述随机接入配置信息包括基站侧波束与多个随机接入时机的对应关系,以便所述终端设备根据所述随机接入配置信息选择特定的随机接入时机发射随机接入前导码来指示该匹配的同步信号块的发射波束信息。
  56. 如权利要求50至54中任一项所述的电子设备,其中,所述处理电路系统还被配置为在对应于所述匹配的同步信号块的发射波束方向上发射CSI-RS波束,以及从所述终端设备接收与该终端设备相匹配的CSI-RS波束信息反馈。
  57. 如权利要求50至55中任一项所述的电子设备,其中,
    所述无线通信系统为5G NR系统,所述基站为gNB,所述基站还包括多个天线以用于通过波束成形发射信号。
  58. 一种用于无线通信系统中的基站侧的方法,包括:
    利用不同的基站侧发射波束向所述无线通信系统中的终端设备发射分别包含主同步信号、辅同步信号以及PBCH的多个同步信号块以用于下行链路同步,其中,每一同步信号块能够指示基站发送该同步信号块所使用的发射波束信息;
    接收来自终端设备的随机接入前导码以辅助终端设备的随机接入过程,其中,所述随机接入前导码能够指示与该终端设备相匹配的同步信号块的发射波束信息;以及
    根据所述随机接入前导码确定适用于所述终端设备下行链路传输的基站侧发射波束以进行波束管理。
  59. 如权利要求58所述的方法,其中,所述同步信号块通过同步信号块中的参考信号序列本身指示基站发送该同步信号块所使用的发射波束信息,所述方法还包括在所述多个同步信号块中放置不同的参考信号序列以指示不同的发射波束信息。
  60. 如权利要求58所述的方法,其中,所述同步信号块还包括额外的信息比特,通过该额外的信息比特指示基站发送该同步信号块所使用的发射波束信息,所述方法还包括在所述多个同步信号块中放置不同的额外信息比特以指示不同的发射波束信息。
  61. 如权利要求58所述的方法,其中,所述随机接入前导码的前导码序列指示与该终端设备相匹配的同步信号块的发射波束信息。
  62. 如权利要求61所述的方法,其中,多个前导码序列用于指示同一个同步信号块的发射波束信息,所述方法还包括向所述终端设备发送信令以用于指示多个前导码序列与同步信号块的发射波束的对应关系。
  63. 如权利要求58至62中任一项所述的方法,其中,所述方法还包括向所述终端设备发送包含随机接入配置信息的无线资源控制信令,所述随机接入配置信息包括基站侧波束与多个随机接入时机的对应关系,以便所述终端设备根据所述随机接入配置信息选择特定的随机接入时机发射随机接入前导码来指示该匹配的同步信号块的发射波束信息。
  64. 如权利要求58至62中任一项所述的方法,其中,所述方法还包括在对应于所述匹配的同步信号块的发射波束方向上发射CSI-RS波束,以及从所述终端设备接收与该终端设备相匹配的CSI-RS波束信息反馈。
  65. 一种无线通信方法,包括:
    基于发射波束配置利用不同的发射波束向终端设备重复地发送同步信号,所述同步信号能够指示发送所述同步信号所使用的发射波束信息;以及
    获取来自所述终端设备的反馈,所述反馈包括发射波束信息以用于发射波束管理。
  66. 一种无线通信方法,包括:
    基于无线通信系统的基站侧的发射波束配置接收同步信号,所述同步信号能够指示基站发送所述同步信号所使用的发射波束信息;以及
    提供反馈给所述基站,所述反馈包括发射波束信息以供所述基站用于发射波束管理。
  67. 一种存储有一个或多个指令的计算机可读存储介质,所述一个或多个指令在由电子设备的一个或多个处理器执行时使该电子设备执行根据权利要求40至49以及58至66中任一项所述的方法。
  68. 一种用于无线通信系统中的装置,包括用于执行如权利要求40至49以及58至66中任一项所述的方法的操作的部件。
  69. 一种用于无线通信系统中的基站侧的电子设备,包括处理电路系统,所述处理电路系统被配置为:
    接收来自另一基站的发射波束配置,所述另一基站基于所述发射波束配置向终端设备发送同步信号;以及
    向所述终端设备发送所述发射波束配置。
  70. 如权利要求69所述的电子设备,其中,所述另一基站是该无线通信系统的基站,或者是该无线通信系统的后代无线通信系统的基站。
  71. 如权利要求70所述的电子设备,其中,该无线通信系统是LTE系统,后代无线通信系统是5G系统。
PCT/CN2018/091474 2017-06-20 2018-06-15 用于无线通信系统的电子设备、方法和存储介质 WO2018233563A1 (zh)

Priority Applications (17)

Application Number Priority Date Filing Date Title
CN202210746150.1A CN115149990A (zh) 2017-06-20 2018-06-15 用于无线通信系统的电子设备、方法和存储介质
MX2019005517A MX2019005517A (es) 2017-06-20 2018-06-15 Dispositivo electronico, metodo y medio de almacenamiento para sistema de comunicacion inalambrica.
KR1020217016543A KR102345218B1 (ko) 2017-06-20 2018-06-15 무선 통신 시스템을 위한 전자 디바이스 및 방법
JP2019567248A JP6881614B2 (ja) 2017-06-20 2018-06-15 無線通信システムに用いられる電子機器、及び方法
AU2018287868A AU2018287868B2 (en) 2017-06-20 2018-06-15 Electronic device and method for wireless communication system, and storage medium
KR1020197020811A KR20190088574A (ko) 2017-06-20 2018-06-15 무선 통신 시스템을 위한 전자 디바이스, 방법, 및 저장 매체
BR112019007779-0A BR112019007779A2 (pt) 2017-06-20 2018-06-15 Dispositivo eletrônico e método para um lado de estação base em um sistema de comunicação sem fio, dispositivo eletrônico e método para um lado de dispositivo de terminal em um sistema de comunicação sem fio, método de comunicação por rádio, mídia de armazenamento legível por computador, e, aparelho para um sistema de comunicação sem fio.
KR1020207022681A KR102260824B1 (ko) 2017-06-20 2018-06-15 무선 통신 시스템을 위한 전자 디바이스, 방법, 및 저장 매체
US16/338,491 US10931333B2 (en) 2017-06-20 2018-06-15 Electronic device, method and storage medium for wireless communication system
CN201880039390.XA CN110771081B (zh) 2017-06-20 2018-06-15 用于无线通信系统的电子设备、方法和存储介质
RU2019116949A RU2768972C2 (ru) 2017-06-20 2018-06-15 Электронное устройство, способ и носитель данных для системы беспроводной связи
EP23178240.0A EP4236582A3 (en) 2017-06-20 2018-06-15 Electronic device and method for wireless communication system, and storage medium
CA3048935A CA3048935A1 (en) 2017-06-20 2018-06-15 Electronic device, method and storage medium for wireless communication system
EP18821592.5A EP3633903B1 (en) 2017-06-20 2018-06-15 Electronic device and method for wireless communication system, and storage medium
ZA2019/04398A ZA201904398B (en) 2017-06-20 2019-07-04 Electronic device and method for wireless communication system, and storage medium
US17/156,636 US11881913B2 (en) 2017-06-20 2021-01-25 Electronic device, method and storage medium for wireless communication system
AU2023204609A AU2023204609A1 (en) 2017-06-20 2023-07-12 Electronic device, method and storage medium for wireless communication system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710470653.XA CN109104227A (zh) 2017-06-20 2017-06-20 用于无线通信系统的电子设备、方法和存储介质
CN201710470653.X 2017-06-20

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/338,491 A-371-Of-International US10931333B2 (en) 2017-06-20 2018-06-15 Electronic device, method and storage medium for wireless communication system
US17/156,636 Continuation US11881913B2 (en) 2017-06-20 2021-01-25 Electronic device, method and storage medium for wireless communication system

Publications (1)

Publication Number Publication Date
WO2018233563A1 true WO2018233563A1 (zh) 2018-12-27

Family

ID=64735881

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/091474 WO2018233563A1 (zh) 2017-06-20 2018-06-15 用于无线通信系统的电子设备、方法和存储介质

Country Status (12)

Country Link
US (2) US10931333B2 (zh)
EP (2) EP3633903B1 (zh)
JP (2) JP6881614B2 (zh)
KR (3) KR102345218B1 (zh)
CN (3) CN109104227A (zh)
AU (2) AU2018287868B2 (zh)
BR (1) BR112019007779A2 (zh)
CA (1) CA3048935A1 (zh)
MX (1) MX2019005517A (zh)
RU (1) RU2768972C2 (zh)
WO (1) WO2018233563A1 (zh)
ZA (1) ZA201904398B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11864139B2 (en) 2019-01-31 2024-01-02 Telefonaktiebolaget Lm Ericsson (Publ) Transmitting device, receiving device and methods performed therein for handling communication

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018204863A1 (en) 2017-05-04 2018-11-08 Ofinno Technologies, Llc Beam-based measurement configuration
CN109104226A (zh) * 2017-06-20 2018-12-28 索尼公司 用于无线通信系统的电子设备、方法和存储介质
US10630357B2 (en) * 2017-06-30 2020-04-21 Qualcomm Incorporated Wireless personal area network transmit beamforming
US10742295B2 (en) * 2018-05-04 2020-08-11 Qualcomm Incorporated Methods for early stoppage of beam refinement in millimeter wave systems
WO2020147086A1 (zh) * 2019-01-17 2020-07-23 华为技术有限公司 一种信号传输方法、相关设备及系统
CN111585729A (zh) 2019-02-15 2020-08-25 电信科学技术研究院有限公司 一种信号的发送、接收方法、网络设备及终端
US10498029B1 (en) 2019-07-15 2019-12-03 Bao Tran Cellular system
US10461421B1 (en) 2019-05-07 2019-10-29 Bao Tran Cellular system
US11321282B2 (en) 2019-05-17 2022-05-03 Bao Tran Blockchain cellular system
US10812992B1 (en) * 2019-09-02 2020-10-20 Bao Tran Cellular system
US10694399B1 (en) * 2019-09-02 2020-06-23 Bao Tran Cellular system
US11228346B2 (en) * 2019-10-03 2022-01-18 Qualcomm Incorporated Beam capability enhancements using multiple receive ports
CN112532309B (zh) * 2020-12-21 2022-07-22 四川安迪科技实业有限公司 适用于简易卫星物联网终端的物理层传输方法及装置
US11509381B2 (en) * 2021-11-12 2022-11-22 Ultralogic 6G, Llc Resource-efficient beam selection in 5G and 6G

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103379079A (zh) * 2012-04-28 2013-10-30 中兴通讯股份有限公司 一种同步信号的发送方法及装置
US20150085795A1 (en) * 2013-09-25 2015-03-26 Samsung Electronics Co., Ltd. System and method for resource mapping for coverage enhancements of broadcast channels
US20150312026A1 (en) * 2012-11-05 2015-10-29 Lg Electronics Inc. Method and device for generating synchronization signal in wireless access system supporting ultrahigh frequency band
CN106559206A (zh) * 2015-09-30 2017-04-05 中兴通讯股份有限公司 同步信号的传输方法及装置

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007088624A1 (ja) * 2006-02-02 2007-08-09 Fujitsu Limited 無線伝送方法並びに無線送信機及び無線受信機
KR20130028397A (ko) * 2011-09-09 2013-03-19 삼성전자주식회사 무선 통신 시스템에서 동기 및 시스템 정보 획득을 위한 장치 및 방법
US9426761B2 (en) * 2012-02-08 2016-08-23 Panasonic Corporation Wireless communication device
US9468022B2 (en) * 2012-12-26 2016-10-11 Samsung Electronics Co., Ltd. Method and apparatus for random access in communication system with large number of antennas
CN105164951B (zh) * 2013-06-13 2018-03-27 Lg电子株式会社 在无线通信系统中发送/接收用于终端之间的直接通信的同步信号的方法
KR102118693B1 (ko) 2013-06-24 2020-06-03 삼성전자주식회사 무선 통신 시스템에서 랜덤 액세스를 위한 적응적 송신 빔 패턴 결정 장치 및 방법
CN104734758A (zh) * 2013-12-20 2015-06-24 中兴通讯股份有限公司 一种同步波束成形信号的发送、接收方法、基站和终端
KR102036210B1 (ko) * 2013-12-20 2019-10-24 삼성전자주식회사 빔포밍 시스템에서 단말의 셀 탐색을 위한 방법 및 장치
PT3123802T (pt) * 2014-03-25 2018-11-16 Ericsson Telefon Ab L M Sistema e método para acesso aleatório físico baseado em feixe
CN106256144B (zh) 2014-04-30 2022-02-11 株式会社Ntt都科摩 用户装置、基站、通信接入方法以及通信方法
US9451536B2 (en) * 2014-06-18 2016-09-20 Qualcomm Incorporated UE initiated discovery in assisted millimeter wavelength wireless access networks
CN111417136A (zh) * 2014-09-23 2020-07-14 华为技术有限公司 终端、基站、基站控制器及毫米波蜂窝通信方法
CN115483956A (zh) * 2014-11-26 2022-12-16 Idac控股公司 高频无线系统中的初始接入
EP3229380B1 (en) 2014-12-31 2019-05-29 Huawei Technologies Co. Ltd. Antenna alignment method and system
JPWO2016148127A1 (ja) 2015-03-16 2018-02-08 株式会社Nttドコモ ユーザ装置、基地局及び通信方法
EP3308483B1 (en) 2015-06-15 2020-02-05 Telefonaktiebolaget LM Ericsson (publ) Variable synchronization block format
CN106341170A (zh) * 2015-07-07 2017-01-18 北京信威通信技术股份有限公司 一种波束训练方法
CN106559122A (zh) * 2015-09-28 2017-04-05 中兴通讯股份有限公司 一种采用波束赋形的数据通信方法和装置
CN111030794A (zh) 2015-12-03 2020-04-17 华为技术有限公司 一种数据的传输方法和基站以及用户设备
JP2019054305A (ja) * 2016-01-26 2019-04-04 シャープ株式会社 基地局装置、端末装置および通信方法
US10278160B2 (en) * 2016-02-26 2019-04-30 Samsung Electronics Co., Ltd. Apparatus and method for performing random access in beam-formed system
KR20230128391A (ko) * 2016-03-03 2023-09-04 인터디지탈 패튼 홀딩스, 인크 빔 포밍 기반의 시스템에서의 빔 제어를 위한 방법및 장치
CN111510981B (zh) * 2016-08-10 2021-10-22 中兴通讯股份有限公司 无线链路管理方法及装置
KR20220072878A (ko) * 2016-09-28 2022-06-02 아이디에이씨 홀딩스, 인크. 빔포밍 시스템의 새로운 무선 랜 액세스
WO2018129357A1 (en) * 2017-01-05 2018-07-12 Zte Wistron Telecom Ab Random access configurations
WO2018143375A1 (ja) * 2017-02-03 2018-08-09 株式会社Nttドコモ ユーザ装置、及びプリアンブル送信方法
EP3602826A1 (en) * 2017-03-23 2020-02-05 Convida Wireless, LLC Beam training and initial access
EP3619988B1 (en) * 2017-05-03 2021-07-07 IDAC Holdings, Inc. Method and apparatus for paging procedures in new radio (nr)
US10541851B2 (en) * 2017-05-25 2020-01-21 Qualcomm Incorporated Synchronization signal block signaling for wireless communications in shared spectrum
US10980064B2 (en) * 2017-06-16 2021-04-13 Futurewei Technologies, Inc. Radio communications using random access in wireless networks

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103379079A (zh) * 2012-04-28 2013-10-30 中兴通讯股份有限公司 一种同步信号的发送方法及装置
US20150312026A1 (en) * 2012-11-05 2015-10-29 Lg Electronics Inc. Method and device for generating synchronization signal in wireless access system supporting ultrahigh frequency band
US20150085795A1 (en) * 2013-09-25 2015-03-26 Samsung Electronics Co., Ltd. System and method for resource mapping for coverage enhancements of broadcast channels
CN106559206A (zh) * 2015-09-30 2017-04-05 中兴通讯股份有限公司 同步信号的传输方法及装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11864139B2 (en) 2019-01-31 2024-01-02 Telefonaktiebolaget Lm Ericsson (Publ) Transmitting device, receiving device and methods performed therein for handling communication

Also Published As

Publication number Publication date
RU2019116949A3 (zh) 2021-10-19
US10931333B2 (en) 2021-02-23
US11881913B2 (en) 2024-01-23
JP2020522945A (ja) 2020-07-30
US20210152218A1 (en) 2021-05-20
KR20210068150A (ko) 2021-06-08
KR20190088574A (ko) 2019-07-26
AU2023204609A1 (en) 2023-08-03
CN110771081B (zh) 2022-07-05
RU2768972C2 (ru) 2022-03-28
JP7111218B2 (ja) 2022-08-02
EP4236582A3 (en) 2023-10-18
RU2019116949A (ru) 2020-11-30
CN110771081A (zh) 2020-02-07
EP3633903A1 (en) 2020-04-08
MX2019005517A (es) 2019-08-12
EP3633903B1 (en) 2023-07-26
CN109104227A (zh) 2018-12-28
AU2018287868B2 (en) 2023-07-06
KR20200096704A (ko) 2020-08-12
CN115149990A (zh) 2022-10-04
JP2021119711A (ja) 2021-08-12
AU2018287868A1 (en) 2020-02-06
KR102345218B1 (ko) 2021-12-30
US20190229776A1 (en) 2019-07-25
KR102260824B1 (ko) 2021-06-07
EP3633903A4 (en) 2020-06-03
CA3048935A1 (en) 2018-12-27
ZA201904398B (en) 2021-05-26
EP4236582A2 (en) 2023-08-30
JP6881614B2 (ja) 2021-06-02
BR112019007779A2 (pt) 2020-03-10

Similar Documents

Publication Publication Date Title
US11881913B2 (en) Electronic device, method and storage medium for wireless communication system
US11824607B2 (en) Electronic device, method and storage medium for wireless communication system
WO2019129006A1 (zh) 用于无线通信系统的电子设备、方法、装置和存储介质
WO2020088353A1 (zh) 电子装置、无线通信方法和计算机可读介质
WO2021190386A1 (zh) 用于无线通信的电子设备和方法、计算机可读存储介质
WO2021027802A1 (zh) 用于无线通信系统的电子设备、方法和存储介质
KR20210108960A (ko) 무선 통신에 이용되는 전자 디바이스 및 방법, 및 컴퓨터 판독가능 저장 매체
JP6992743B2 (ja) 通信制御装置、端末装置、方法及びプログラム
WO2022028318A1 (zh) 用于无线通信的电子设备和方法、计算机可读存储介质
WO2019041375A1 (zh) 电子装置、无线通信方法和计算机可读介质
US20240137078A1 (en) Electronic device, method and storage medium for wireless communication system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18821592

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112019007779

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 3048935

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 20197020811

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019567248

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018821592

Country of ref document: EP

Effective date: 20191229

ENP Entry into the national phase

Ref document number: 2018287868

Country of ref document: AU

Date of ref document: 20180615

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 112019007779

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20190416