WO2018233466A1 - 车载控制系统 - Google Patents
车载控制系统 Download PDFInfo
- Publication number
- WO2018233466A1 WO2018233466A1 PCT/CN2018/089087 CN2018089087W WO2018233466A1 WO 2018233466 A1 WO2018233466 A1 WO 2018233466A1 CN 2018089087 W CN2018089087 W CN 2018089087W WO 2018233466 A1 WO2018233466 A1 WO 2018233466A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- board
- control system
- transponder
- transmission unit
- message
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L12/00—Data switching networks
- H04L12/28—Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
- H04L12/40—Bus networks
- H04L12/40006—Architecture of a communication node
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L12/00—Data switching networks
- H04L12/28—Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
- H04L12/40—Bus networks
- H04L2012/40267—Bus for use in transportation systems
- H04L2012/40293—Bus for use in transportation systems the transportation system being a train
Definitions
- the invention relates to the technical field of rail transit, and in particular to an in-vehicle control system.
- the transponder message includes safety information related to the driving safety of the train, and the message content includes: transponder link information, relocation information, line gradient, speed, level conversion, communication session management, and wireless network registration information, etc. .
- a Transmitter Transmitter Module (BTM) host is used to generate a 27.095 MHz carrier frequency signal, which is radiated to the ground through a BTM antenna.
- BTM Transmitter Transmitter Module
- the transponder receives a magnetic field energy of 27.095 MHz.
- the transponder message stored in the transponder is modulated, and then sent to the BTM host.
- the BTM host demodulates and decodes the message, and sends the decoded transponder message to the automatic train control system (ATP host).
- ATP host automatic train control system
- the present invention aims to solve at least one of the technical problems in the related art to some extent.
- the object of the present invention is to provide an in-vehicle control system, which can effectively shorten the transmission processing period of the transponder message, improve the processing efficiency of the train automatic control system for the transponder message, and simplify the processing of the transponder message.
- an in-vehicle control system includes: a main control board of a train automatic control system; a transponder transmission unit connected to the main control board of the train automatic control system to decode a board, the response
- the transceiver unit decoding board is configured to receive the demodulated signal sent by the transponder transmission unit demodulation circuit, and perform decoding processing on the demodulated signal to obtain a decoded transponder message, and the decoded response after decoding
- the message is sent to the main control board of the train automatic control system, wherein the demodulated signal is obtained by demodulating the transponder message obtained by the demodulation circuit of the transponder transmission unit; the automatic control system of the train is controlled
- the card is configured to receive the transponder message after the decoding process, to automatically control the train based on the transponder message after the decoding process.
- the transponder transmission unit decoding board includes: a first central processor, where the first central processing unit is configured to receive a transponder message sent by the transponder transmission unit demodulation circuit Performing a demodulated demodulated signal, and performing decoding processing on the demodulated signal to obtain a first transponder message; a second central processing unit connected to the first central processing unit, the second central processing The device is configured to receive a demodulated signal sent by the transponder transmission unit demodulation circuit, demodulate the transponder message, and perform decoding processing on the demodulated signal to obtain a second transponder message; a module, the verification module being respectively connected to the first central processing unit and the second central processing unit, wherein the verification module is configured to verify the first transponder message and the second transponder If the message is the same, the check result is obtained; and the control module connected to the check module is configured to: when the check result is the same as the first responder message and the second responder message, Controlling the transponder transmission list Decoding
- the in-vehicle control system further includes: a first power board connected to the transponder transmission unit decoding board, configured to supply power to the first central processing unit.
- the onboard control system further includes: a second power board connected to the transponder transmission unit decoding board, configured to supply power to the second central processing unit.
- the onboard control system further includes: a train automatic control system power access board connected to the first power board and/or the second power board, for externally Power is supplied to power the first power card and/or the second power card, and the onboard control system.
- the onboard control system further includes: the transponder transmission unit demodulation circuit connected to the transponder transmission unit decoding board, for receiving the response to the transponder transmission unit antenna The message is demodulated to obtain a demodulated signal, and the demodulated signal is transmitted to the transponder transmission unit decoding board.
- the onboard control system further includes: a power amplifier power board connected to the transponder transmission unit demodulation circuit, configured to supply power to the transponder transmission unit demodulation circuit.
- the onboard control system further includes: a monitoring board connected to the main control board of the train automatic control system, configured to monitor the onboard control system, in the onboard control system When a fault occurs, the external output power of the onboard control system is disconnected.
- the onboard control system further includes: an input board connected to the main control board of the train automatic control system via a communication bus; and the main control of the train automatic control system through the communication bus The output board to which the board is connected.
- the in-vehicle control system further includes: a communication board connected to the main control board of the train automatic control system via a compactPCI bus, wherein the input board and the output board pass the The communication board performs data communication.
- the onboard control system further includes: a transponder transmission unit antenna connected to the transponder transmission unit demodulation circuit, the transponder transmission unit antenna is configured to receive the transmission by the trackside transponder Transponder message and send the transponder message to the transponder transmission unit demodulation circuit.
- the train automatic control system main control board and the transponder transmission unit decoding board are connected by the communication bus, and the communication bus is any one of the following: a controller area network bus, Process fieldbus, as well as industrial Ethernet bus.
- the in-vehicle control system is integrated into a 3U chassis.
- the vehicle control system receives the demodulated signal sent by the BTM demodulation circuit, demodulates the transponder message, and demodulates the BTM decoding board connected to the ATP main control board.
- the signal is decoded to obtain the transponder message after the decoding process, and the transponder message is sent to the ATP main control board, and the ATP main control board receives the decoded transponder message to be based on
- the transponder-processed transponder message automatically controls the train, which can effectively shorten the transmission processing period of the transponder message, improve the processing efficiency of the train automatic control system for the transponder message, and simplify the response of the transponder message processing path.
- the layout of the board is configured to control the board.
- FIG. 1 is a schematic structural diagram of an in-vehicle control system according to an embodiment of the present invention
- FIG. 2 is a schematic diagram of a processing path of a transponder message according to an embodiment of the present invention
- FIG. 3 is a schematic structural diagram of an in-vehicle control system according to another embodiment of the present invention.
- FIG. 4 is a schematic diagram of a configuration manner of an in-vehicle control system according to an embodiment of the present invention.
- FIG. 5 is a schematic diagram of a dual system architecture design of an in-vehicle control system according to an embodiment of the present invention.
- FIG. 1 is a schematic structural view of an in-vehicle control system according to an embodiment of the present invention.
- the in-vehicle control system 100 includes: an automatic train control system (Automatic Train Protection, ATP for short) main control board 101; and a transponder transmission unit (Balise Transmitter Module, which is connected to the ATP main control board 101).
- an automatic train control system Automatic Train Protection, ATP for short
- a transponder transmission unit Balise Transmitter Module, which is connected to the ATP main control board 101.
- the BTM decoding board 102 is configured to receive the demodulated signal sent by the BTM demodulation circuit 103, and perform decoding processing on the demodulated signal to obtain a decoded transponder message, and after decoding processing
- the transponder message is sent to the ATP main control board 101, wherein the demodulated signal is obtained by demodulating the transponder message obtained by the BTM demodulation circuit 103; the ATP main control board 101 is configured to receive the decoding process.
- the transponder message automatically controls the train based on the transponder message after decoding.
- the in-vehicle control system 100 includes an ATP main control board 101.
- the ATP main control board 101 is usually disposed in the ATP host for automatic control of the train.
- the in-vehicle control system 100 is used to integrate some functions of the ATP host and the BTM host, thereby simplifying the wiring design of the relevant boards on the transponder message processing path.
- the BTM host is integrated by a power transmitting board, a receiving board, a decoding board, a communication board, a power board, and a recording board.
- the BTM host and the ATP host are separately configured, and when the BTM host and the ATP host transmit the transponder message, the data communication is performed through the communication interface, and the transmission processing period of the transponder message is long.
- the in-vehicle control system 100 integrates some functions of the ATP host and the BTM host (BTM decoding board and BTM demodulation circuit), and not only simplifies the relevant board on the transponder message processing path.
- the wiring design of the card can also effectively improve the processing efficiency of the train automatic control system for the transponder message.
- the in-vehicle control system 100 includes: a BTM decoding board 102 connected to the ATP main control board 101, and the BTM decoding board 102 is configured to receive the demodulated signal sent by the BTM demodulation circuit 103, and Demodulating the signal to obtain a transponder message after decoding, and transmitting the decoded transponder message to the ATP main control board 101.
- the ATP main control board 101 and the BTM decoding board 102 are connected by a communication bus, and the communication bus is any one of the following:
- Controller Area Network (CAN) bus Controller Area Network (CAN) bus, Process Fieldbus (Profibus), and Industrial Ethernet bus.
- CAN Controller Area Network
- Profile Process Fieldbus
- Industrial Ethernet Industrial Ethernet
- the ATP main control board 101 and the BTM decoding board 102 are connected through a communication bus, and the transponder message is transmitted through the communication bus, thereby effectively shortening the transmission processing period of the transponder message.
- the ATP main control board 101 is configured to receive the transponder message after the decoding process to automatically control the train based on the transponder message after the decoding process.
- FIG. 2 is a schematic diagram of a processing path of a transponder message according to an embodiment of the present invention.
- FIG. 2 includes an ATP main control board 21, a BTM decoding board 22, and a BTM demodulation circuit 23.
- the BTM decoding board 22 receives the demodulated signal demodulated from the transponder message from the BTM demodulation circuit 23 side, decodes it, and obtains the decoded transponder message, and decodes the processed transponder.
- the message is sent to the ATP main control board 21, which simplifies the wiring design of the relevant board on the transponder message processing path.
- the BTM decoding board 102 includes:
- the first CPU 1021 is configured to receive the demodulated signal sent by the BTM demodulation circuit 103, demodulate the transponder message, and perform demodulation on the demodulated signal. Decoding processing to obtain a first transponder message.
- the second CPU 1022 is connected to the first CPU 1021.
- the second CPU 1022 is configured to receive the demodulated signal sent by the BTM demodulation circuit 103, demodulate the transponder message, and decode the demodulated signal. A second transponder message is obtained.
- the dual CPU by setting the dual CPU, not only the legitimacy check of the transponder message after the decoding process but also the two-way transponder obtained by decoding the demodulated signal through the dual processing path can be obtained.
- the matching verification of the message can effectively guarantee the accuracy of decoding and avoid the error decoding caused by the magnetic field interference.
- the verification module 1023 is connected to the first CPU 1021 and the second CPU 1022, and the verification module 1023 is configured to check whether the first responder message and the second responder message are the same, and the verification result is obtained. .
- the control module 1024 connected to the verification module 1023 is configured to control the BTM decoding board 102 to transmit the first transponder message or the second when the verification result is the same as the first transponder message and the second transponder message.
- the transponder message is sent to the ATP main control board 101 as a transponder message after the decoding process. If the result of the check is that the first responder message and the second responder message are not identical, then the in-vehicle control system 100 is deemed not to receive the transponder message.
- the in-vehicle control system 100 further includes:
- the first power card 104 connected to the BTM decoder card 102 is used to supply power to the first CPU 1021.
- the in-vehicle control system 100 further includes:
- a second power card 105 connected to the BTM decoder card 102 is used to supply power to the second CPU 1022.
- the method further includes:
- An ATP power access card 106 connected to the first power card 104 and/or the second power card 105 for connecting an external power source to the first power card 104 and/or the second power card 105, and the in-vehicle control system 100 performs power supply.
- the BTM decoding board 102 can be powered by the ATP power access board 106 of the ATP host by using an external power source.
- the external power source connected to the ATP power access board 106 is DC5V or 3.3V.
- two independent power sources that is, the first power board 104 and the second power board 105, may be used to decode the first CPU in the board 102 of the BTM.
- the one-to-one power supply between the 1021 and the second CPU 1022 can effectively ensure the physical independence between the two CPUs in the BTM decoding board 102, avoiding the common cause failure, and ensuring the performance robustness of the vehicle control system 100.
- the BTM demodulation circuit 103 connected to the BTM decoding board 102 is configured to demodulate the transponder message received by the BTM antenna 107 to obtain a demodulated signal, and transmit the demodulated signal to the BTM decoding board 102.
- a power amplifier power card 108 connected to the BTM demodulation circuit 103 is used to supply power to the BTM demodulation circuit 103.
- the BTM demodulation circuit 103 requires a large power in an operating state, and is an analog circuit. Therefore, in order to avoid interference coupling with the digital circuit, an independent power supply board can be used, that is, The BTM demodulation circuit 103 is powered by an independently arranged power amplifier power card 108.
- the power of the power amplifier power card 108 can be DC24V.
- the monitoring board 109 connected to the ATP main control board 101 is used for monitoring the onboard control system 100, and when the onboard control system 100 generates a fault, the external output power of the onboard control system 100 is disconnected.
- An input card 110 connected to the ATP main control board 101 via a communication bus.
- An output board 111 connected to the ATP main control board 101 via a communication bus.
- the communication board 112 connected to the ATP main control board 101 via a PCI (Peripheral Component Interconnect) bus, the input board 110 and the output board 111 perform data communication via the communication board 112.
- PCI Peripheral Component Interconnect
- the PCI bus is specifically: compactPCI bus.
- the BTM antenna 107 is connected to the BTM demodulation circuit 103 for receiving the transponder message transmitted by the trackside transponder and transmitting the transponder message to the BTM demodulation circuit 103.
- the in-vehicle control system 100 is integrated in a 3U (abbreviation of Unit) chassis.
- 3U abbreviation of Unit
- the in-vehicle control system 100 can be integrated in the 3U chassis, that is, the ATP host and the transponder transmission unit.
- Some functions of the BTM host (BTM decoding board and BTM demodulation circuit) are integrated in a 3U European chassis.
- the BTM decoding board, the receiving board and the power sending board are added, and the power amplifier can be powered.
- the board 108 is installed at the rear of the 3U European-style chassis, and the physical installation space of the entire in-vehicle control system 100 is effectively saved due to the increased integration.
- the in-vehicle control system 100 may further include:
- a power transmitting board connected to the receiving board.
- the functions of the receiving board and the power sending board are the same as those of the corresponding board in the BTM host in the related art, and are not described herein.
- FIG. 4 is a schematic diagram of a configuration manner of an in-vehicle control system according to an embodiment of the present invention.
- FIG. 5 is an implementation of the present invention.
- FIG. 5 includes an A system 51, a B system 52, an interlock relay 53, an IO peripheral 54, and a communication peripheral 55, wherein the A system 51 includes the one shown in FIG.
- the board design of the B system 52 is the same as that of the A system 51.
- the dual system architecture design can realize the redundant control of the vehicle control system 100, and switch to another system in real time when a system fails. It can effectively ensure the robustness of the on-board control system 100, ensure data security performance, and improve train driving safety performance.
- the intermediate communication link of the transponder message processing path is reduced, the real-time performance of the ATP host receiving the transponder message is improved, and the system software complexity is reduced.
- some functions of the ATP host and the transponder transmission unit BTM host (BTM decoding board and BTM demodulation circuit) are integrated in a 3U European chassis, which saves the physical installation space of the vehicle controller and makes the installation method. More flexible, and at the same time, due to the reduced number of boards, the development cost and maintenance cost of the entire vehicle control system 100 are also reduced.
- the BTM decoding board connected to the ATP main control board receives the demodulated signal sent by the BTM demodulation circuit, demodulates the transponder message, and decodes the demodulated signal.
- the decoder message after the decoding process is obtained, and the decoder message after the decoding process is sent to the ATP main control board, and the ATP main control board receives the transponder message after the decoding process, based on the response after the decoding process.
- the automatic control of the train message can effectively shorten the transmission processing period of the transponder message, improve the processing efficiency of the train automatic control system for the transponder message, and simplify the wiring design of the relevant board on the transponder message processing path. .
- portions of the invention may be implemented in hardware, software, firmware or a combination thereof.
- multiple steps or methods may be implemented in software or firmware stored in a memory and executed by a suitable instruction execution system.
- a suitable instruction execution system For example, if implemented in hardware, as in another embodiment, it can be implemented by any one or combination of the following techniques well known in the art: having logic gates for implementing logic functions on data signals. Discrete logic circuits, application specific integrated circuits with suitable combinational logic gates, programmable gate arrays (PGAs), field programmable gate arrays (FPGAs), etc.
- each functional unit in each embodiment of the present invention may be integrated into one processing module, or each unit may exist physically separately, or two or more units may be integrated into one module.
- the above integrated modules can be implemented in the form of hardware or in the form of software functional modules.
- the integrated modules, if implemented in the form of software functional modules and sold or used as stand-alone products, may also be stored in a computer readable storage medium.
- the above mentioned storage medium may be a read only memory, a magnetic disk or an optical disk or the like.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Electric Propulsion And Braking For Vehicles (AREA)
- Train Traffic Observation, Control, And Security (AREA)
Abstract
本发明提出一种车载控制系统,该系统包括列车自动控制系统(Automatic Train Protection,ATP)主控板卡;与ATP主控板卡相连的应答器传输单元(Balise Transmitter Module,BTM)解码板卡,BTM解码板卡用于接收BTM解调电路发送的,对应答器报文进行解调后的解调信号,并对解调信号进行解码处理以得到解码处理后应答器报文,以及将解码处理后的应答器报文发送至ATP主控板卡;ATP主控板卡用于接收解码处理后的应答器报文,以基于解码处理后的应答器报文对列车进行自动控制。通过本发明能够有效缩短应答器报文的传输处理周期,提升列车自动控制系统对应答器报文的处理效率,且简化应答器报文处理路径上相关板卡的布线设计。
Description
相关申请的交叉引用
本申请基于申请号为201710475709.0,申请日为2017年6月21日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
本发明涉及轨道交通技术领域,尤其涉及一种车载控制系统。
应答器报文中包括与列车的行车安全有关的安全信息,其报文内容具体包括:应答器链接信息、重定位信息、线路坡度、速度、等级转化、通信会话管理,以及无线网络注册信息等。相关技术中,应答器传输单元(Balise Transmitter Module,BTM)主机用于产生27.095MHz载频信号,通过BTM天线向地面辐射,当列车行驶经过应答器上方时,应答器接收到27.095MHz的磁场能量,产生应答器的工作电源后开始工作,将存储在应答器内部的应答器报文进行调制后,发给BTM主机。BTM主机接收到应答器报文后,对其进行解调和解码,并将解码后的应答器报文发送给列车自动控制系统(Automatic Train Protection,ATP主机)。
这种方式下,应答器报文的传输处理周期较长,处理效率不高。
发明内容
本发明旨在至少在一定程度上解决相关技术中的技术问题之一。
为此,本发明的目的在于提出一种车载控制系统,能够有效缩短应答器报文的传输处理周期,提升列车自动控制系统对应答器报文的处理效率,且简化应答器报文处理路径上相关板卡的布线设计。
为达到上述目的,本发明实施例提出的车载控制系统,包括:列车自动控制系统主控板卡;与所述列车自动控制系统主控板卡相连的应答器传输单元解码板卡,所述应答器传输单元解码板卡用于接收应答器传输单元解调电路发送的解调信号,并对所述解调信号进行解码处理以得到解码处理后的应答器报文,以及将解码处理后的应答器报文发送至列车自动控制系统主控板卡,其中解调信号为对所述应答器传输单元解调电路获取的应答器报 文进行解调后得到的;所述列车自动控制系统主控板卡用于接收所述解码处理后的应答器报文,以基于所述解码处理后的应答器报文对列车进行自动控制。
在一种实施方式中,所述应答器传输单元解码板卡包括:第一中央处理器,所述第一中央处理器用于接收所述应答器传输单元解调电路发送的,对应答器报文进行解调后的解调信号,并对所述解调信号进行解码处理以得到第一应答器报文;与所述第一中央处理器相连的第二中央处理器,所述第二中央处理器用于接收所述应答器传输单元解调电路发送的,对应答器报文进行解调后的解调信号,并对所述解调信号进行解码处理以得到第二应答器报文;校验模块,所述校验模块分别与所述第一中央处理器和所述第二中央处理器相连,所述校验模块用于校验所述第一应答器报文和所述第二应答器报文是否相同,得到校验结果;与所述校验模块相连的控制模块,用于在所述校验结果为所述第一应答器报文和所述第二应答器报文相同时,控制所述应答器传输单元解码板卡将所述第一应答器报文或者所述第二应答器报文作为解码处理后的应答器报文发送至所述列车自动控制系统主控板卡。
在一种实施方式中,所述车载控制系统,还包括:与所述应答器传输单元解码板卡相连的第一电源板卡,用于对所述第一中央处理器进行供电。
在一种实施方式中,所述车载控制系统,还包括:与所述应答器传输单元解码板卡相连的第二电源板卡,用于对所述第二中央处理器进行供电。
在一种实施方式中,所述车载控制系统,还包括:与所述第一电源板卡和/或所述第二电源板卡相连的列车自动控制系统电源接入板卡,用于将外部电源接入,以对所述第一电源板卡和/或所述第二电源板卡,以及所述车载控制系统进行供电。
在一种实施方式中,所述车载控制系统,还包括:与所述应答器传输单元解码板卡相连的所述应答器传输单元解调电路,用于对应答器传输单元天线接收到的应答器报文进行解调,得到解调信号,并将所述解调信号传输至所述应答器传输单元解码板卡。
在一种实施方式中,所述车载控制系统,还包括:与所述应答器传输单元解调电路相连的功放电源板卡,用于对所述应答器传输单元解调电路进行供电。
在一种实施方式中,所述车载控制系统,还包括:与所述列车自动控制系统主控板卡相连的监控板卡,用于对所述车载控制系统进行监控,在所述车载控制系统产生故障时,对所述车载控制系统的对外输出电源进行断开控制。
在一种实施方式中,所述车载控制系统,还包括:通过通信总线与所述列车自动控制系统主控板卡相连的输入板卡;通过所述通信总线与所述列车自动控制系统主控板卡相连 的输出板卡。
在一种实施方式中,所述车载控制系统,还包括:通过compactPCI总线与所述列车自动控制系统主控板卡相连的通信板卡,所述输入板卡和所述输出板卡通过所述通信板卡进行数据通信。
在一种实施方式中,所述车载控制系统,还包括:与所述应答器传输单元解调电路相连的应答器传输单元天线,所述应答器传输单元天线用于接收轨旁应答器发送的应答器报文,并将所述应答器报文发送至所述应答器传输单元解调电路。
在一种实施方式中,所述列车自动控制系统主控板卡与所述应答器传输单元解码板卡通过所述通信总线相连,所述通信总线为以下任一种:控制器局域网络总线、过程现场总线,以及工业以太网总线。
在一种实施方式中,所述车载控制系统集成设置在3U机箱内。
本发明实施例提出的车载控制系统,通过与ATP主控板卡相连的BTM解码板卡,接收BTM解调电路发送的,对应答器报文进行解调后的解调信号,并对解调信号进行解码处理以得到解码处理后的应答器报文,以及将解码处理后的应答器报文发送至ATP主控板卡,ATP主控板卡接收解码处理后的应答器报文,以基于解码处理后的应答器报文对列车进行自动控制,能够有效缩短应答器报文的传输处理周期,提升列车自动控制系统对应答器报文的处理效率,且简化应答器报文处理路径上相关板卡的布线设计。
本发明附加的方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。
本发明上述的和/或附加的方面和优点从下面结合附图对实施例的描述中将变得明显和容易理解,其中:
图1是本发明一实施例提出的车载控制系统的结构示意图;
图2为本发明实施例中应答器报文的处理路径示意图;
图3是本发明另一实施例提出的车载控制系统的结构示意图;
图4为本发明实施例中一种车载控制系统的配置方式示意图;
图5为本发明实施例中车载控制系统的双系统架构设计示意图。
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同 或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本发明,而不能理解为对本发明的限制。相反,本发明的实施例包括落入所附加权利要求书的精神和内涵范围内的所有变化、修改和等同物。
图1是本发明一实施例提出的车载控制系统的结构示意图。
参见图1,该车载控制系统100包括:列车自动控制系统(Automatic Train Protection,简称为ATP)主控板卡101;与ATP主控板卡101相连的应答器传输单元(Balise Transmitter Module,简称为BTM)解码板卡102,BTM解码板卡102用于接收BTM解调电路103发送的解调信号,并对解调信号进行解码处理以得到解码处理后的应答器报文,以及将解码处理后的应答器报文发送至ATP主控板卡101,其中解调信号为对BTM解调电路103获取的应答器报文进行解调后得到的;ATP主控板卡101用于接收解码处理后的应答器报文,以基于解码处理后的应答器报文对列车进行自动控制。
在本发明的实施例中,该车载控制系统100包括:ATP主控板卡101。
其中,该ATP主控板卡101通常设置在ATP主机中,用于对列车进行自动控制。
在本发明的实施例中,该车载控制系统100用于对ATP主机以及BTM主机的部分功能进行集成,因而,简化应答器报文处理路径上相关板卡的布线设计。
相关技术中,BTM主机由功率发送板卡、接收板卡、解码板卡、通信板卡、电源板卡,以及记录板卡集成。BTM主机和ATP主机分离设置,且BTM主机和ATP主机之间在对应答器报文进行传输时,通过通信接口进行数据通信,应答器报文的传输处理周期较长。
而在本发明的实施例中,该车载控制系统100对ATP主机以及BTM主机的部分功能(BTM解码板卡和BTM解调电路)进行集成设计,不仅仅简化应答器报文处理路径上相关板卡的布线设计,还能够有效提升列车自动控制系统对应答器报文的处理效率。
在本发明的实施例中,该车载控制系统100包括:与ATP主控板卡101相连的BTM解码板卡102,BTM解码板卡102用于接收BTM解调电路103发送的解调信号,并对解调信号进行解码处理以得到解码处理后的应答器报文,以及将解码处理后的应答器报文发送至ATP主控板卡101。
可选地,ATP主控板卡101与BTM解码板卡102通过通信总线相连,通信总线为以下任一种:
控制器局域网络(CAN)总线、过程现场总线(Profibus),以及工业以太网总线。
在本发明的实施例中,ATP主控板卡101与BTM解码板卡102通过通信总线相连,通过通信总线对应答器报文进行传输,因而,有效缩短应答器报文的传输处理周期。
在本发明的实施例中,ATP主控板卡101用于接收解码处理后的应答器报文,以基于解码处理后的应答器报文对列车进行自动控制。
参见图2,图2为本发明实施例中应答器报文的处理路径示意图,图2中包括:ATP主控板卡21、BTM解码板卡22,以及BTM解调电路23。BTM解码板卡22从BTM解调电路23侧接收到从应答器报文解调的解调信号之后,对其进行解码处理得到解码处理后的应答器报文,并将解码处理后的应答器报文发送至ATP主控板卡21,简化应答器报文处理路径上相关板卡的布线设计。
可选地,一些实施例中,参见图3,BTM解码板卡102包括:
第一中央处理器(Central Processing Unit,简称为CPU),第一CPU 1021用于接收BTM解调电路103发送的,对应答器报文进行解调后的解调信号,并对解调信号进行解码处理以得到第一应答器报文。
与第一CPU 1021相连的第二CPU 1022,第二CPU 1022用于接收BTM解调电路103发送的,对应答器报文进行解调后的解调信号,并对解调信号进行解码处理以得到第二应答器报文。
在本发明的实施例中,通过设置双CPU,不仅能够对解码处理后的应答器报文进行合法性校验,进一步地,通过双处理路径对解调信号进行解码处理得到的两路应答器报文进行匹配性验证,能够有效保障解码的精准度,并避免磁场干扰造成的误解码。
校验模块1023,校验模块1023分别与第一CPU 1021和第二CPU 1022相连,校验模块1023用于校验第一应答器报文和第二应答器报文是否相同,得到校验结果。
与校验模块1023相连的控制模块1024,用于在校验结果为第一应答器报文和第二应答器报文相同时,控制BTM解码板卡102将第一应答器报文或者第二应答器报文作为解码处理后的应答器报文发送至ATP主控板卡101。如果校验结果为第一应答器报文和第二应答器报文不相同时,则认为车载控制系统100没有收到应答器报文。
可选地,一些实施例中,参见图3,车载控制系统100,还包括:
与BTM解码板卡102相连的第一电源板卡104,用于对第一CPU1021进行供电。
可选地,一些实施例中,参见图3,车载控制系统100,还包括:
与BTM解码板卡102相连的第二电源板卡105,用于对第二CPU1022进行供电。
可选地,一些实施例中,参见图3,还包括:
与第一电源板卡104和/或第二电源板卡105相连的ATP电源接入板卡106,用于将外部电源接入,以对第一电源板卡104和/或第二电源板卡105,以及车载控制系统100进行 供电。
在本发明的实施例中,BTM解码板卡102可以由ATP主机的ATP电源接入板卡106通过采用将外部电源接入的方式进行供电,ATP电源接入板卡106接入的外部电源为DC5V或者3.3V,进一步地,在本发明的实施例中,可以采用两路独立电源,即第一电源板卡104和第二电源板卡105,分别对BTM解码板卡102中的第一CPU 1021和第二CPU 1022进行一一对应供电,能够有效保障BTM解码板卡102中两个CPU之间的物理独立性,避免共因失效,保障车载控制系统100的性能稳健性。
与BTM解码板卡102相连的BTM解调电路103,用于对BTM天线107接收到的应答器报文进行解调,得到解调信号,并将解调信号传输至BTM解码板卡102。
与BTM解调电路103相连的功放电源板卡108,用于对BTM解调电路103进行供电。
在本发明的实施例中,BTM解调电路103在工作状态下需要较大的功率,且其为模拟电路,因此,为避免与数字电路的干扰耦合,可以采用独立的电源板供电,即,采用独立设置的功放电源板卡108对BTM解调电路103进行供电,其中,功放电源板卡108的电源可以为DC24V。
与ATP主控板卡101相连的监控板卡109,用于对车载控制系统100进行监控,在车载控制系统100产生故障时,对车载控制系统100的对外输出电源进行断开控制。
通过通信总线与ATP主控板卡101相连的输入板卡110。
通过通信总线与ATP主控板卡101相连的输出板卡111。
通过PCI(Peripheral Component Interconnect,外设部件互连标准)总线与ATP主控板卡101相连的通信板卡112,输入板卡110和输出板卡111通过通信板卡112进行数据通信。PCI总线具体为:compactPCI总线。
与BTM解调电路103相连的BTM天线107,BTM天线107用于接收轨旁应答器发送的应答器报文,并将应答器报文发送至BTM解调电路103。
可选地,车载控制系统100集成设置在3U(Unit的缩写)机箱内。
在本发明的实施例中,在该车载控制系统100物理架构中,由于集成设计后板卡数量减少,因而,可以将车载控制系统100集成设置在3U机箱内,即将ATP主机以及应答器传输单元BTM主机的部分功能(BTM解码板卡和BTM解调电路)集成设计在一个3U欧式机箱中,在原有ATP基础上,增加BTM解码板卡、接收板卡和功率发送板卡,可以将功放电源板卡108安装在3U欧式机箱后部,由于集成度的提高,因而,有效节省整个车载控制系统100的物理安装空间。
可选地,在本发明的实施例中,该车载控制系统100还可以包括:
与BTM解调电路103相连的接收板卡;
与接收板卡相连的功率发送板卡。
其中,接收板卡和功率发送板卡与相关技术中BTM主机中的对应板卡的功能相同,在此不作赘述。
参见图4,图4为本发明实施例中一种车载控制系统的配置方式示意图。
进一步地,图1所示的车载控制系统100为单系统架构设计,而在本发明的实施例中,该车载控制系统100还可以为双系统架构设计,参见图5,图5为本发明实施例中车载控制系统的双系统架构设计示意图,图5中包括A系统51、B系统52、互锁继电器53、IO外设54,以及通信外设55,其中,A系统51包括图1中所示的板卡,B系统52的板卡设计与A系统51相同,该双系统架构设计能够实现车载控制系统100的冗余控制,在一套系统产生故障时,实时切换至另一套系统,能够有效保障车载控制系统100工作稳健性,保障数据安全性能,提升列车行车安全性能。
本发明实施例中,减少应答器报文处理路径的中间通信环节,提高了ATP主机接收应答器报文的实时性,降低系统软件复杂度。在物理结构中,ATP主机以及应答器传输单元BTM主机的部分功能(BTM解码板卡和BTM解调电路)集成设计在一个3U欧式机箱内,节省了车载控制器的物理安装空间,使得安装方式更加灵活,同时,由于板卡数量减少,使得整个车载控制系统100的研发成本和维护成本也随之减少。
本实施例中,通过与ATP主控板卡相连的BTM解码板卡,接收BTM解调电路发送的,对应答器报文进行解调后的解调信号,并对解调信号进行解码处理以得到解码处理后的应答器报文,以及将解码处理后的应答器报文发送至ATP主控板卡,ATP主控板卡接收解码处理后的应答器报文,以基于解码处理后的应答器报文对列车进行自动控制,能够有效缩短应答器报文的传输处理周期,提升列车自动控制系统对应答器报文的处理效率,且简化应答器报文处理路径上相关板卡的布线设计。
需要说明的是,在本发明的描述中,术语“第一”、“第二”等仅用于描述目的,而不能理解为指示或暗示相对重要性。此外,在本发明的描述中,除非另有说明,“多个”的含义是两个或两个以上。
流程图中或在此以其他方式描述的任何过程或方法描述可以被理解为,表示包括一个或更多个用于实现特定逻辑功能或过程的步骤的可执行指令的代码的模块、片段或部分,并且本发明的优选实施方式的范围包括另外的实现,其中可以不按所示出或讨论的顺序, 包括根据所涉及的功能按基本同时的方式或按相反的顺序,来执行功能,这应被本发明的实施例所属技术领域的技术人员所理解。
应当理解,本发明的各部分可以用硬件、软件、固件或它们的组合来实现。在上述实施方式中,多个步骤或方法可以用存储在存储器中且由合适的指令执行系统执行的软件或固件来实现。例如,如果用硬件来实现,和在另一实施方式中一样,可用本领域公知的下列技术中的任一项或他们的组合来实现:具有用于对数据信号实现逻辑功能的逻辑门电路的离散逻辑电路,具有合适的组合逻辑门电路的专用集成电路,可编程门阵列(PGA),现场可编程门阵列(FPGA)等。
本技术领域的普通技术人员可以理解实现上述实施例方法携带的全部或部分步骤是可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,该程序在执行时,包括方法实施例的步骤之一或其组合。
此外,在本发明各个实施例中的各功能单元可以集成在一个处理模块中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。所述集成的模块如果以软件功能模块的形式实现并作为独立的产品销售或使用时,也可以存储在一个计算机可读取存储介质中。
上述提到的存储介质可以是只读存储器,磁盘或光盘等。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。
Claims (13)
- 一种车载控制系统,其特征在于,包括:列车自动控制系统主控板卡;与所述列车自动控制系统主控板卡相连的应答器传输单元解码板卡,所述应答器传输单元解码板卡用于接收应答器传输单元解调电路发送的解调信号,并对所述解调信号进行解码处理以得到解码处理后的应答器报文,以及将解码处理后的应答器报文发送至列车自动控制系统主控板卡,其中解调信号为对所述应答器传输单元解调电路获取的应答器报文进行解调后得到的;所述列车自动控制系统主控板卡用于接收所述解码处理后的应答器报文,以基于所述解码处理后的应答器报文对列车进行自动控制。
- 如权利要求1所述的车载控制系统,其特征在于,所述应答器传输单元解码板卡包括:第一中央处理器,所述第一中央处理器用于接收所述应答器传输单元解调电路发送的,对应答器报文进行解调后的解调信号,并对所述解调信号进行解码处理以得到第一应答器报文;与所述第一中央处理器相连的第二中央处理器,所述第二中央处理器用于接收所述应答器传输单元解调电路发送的,对应答器报文进行解调后的解调信号,并对所述解调信号进行解码处理以得到第二应答器报文;校验模块,所述校验模块分别与所述第一中央处理器和所述第二中央处理器相连,所述校验模块用于校验所述第一应答器报文和所述第二应答器报文是否相同,得到校验结果;与所述校验模块相连的控制模块,用于在所述校验结果为所述第一应答器报文和所述第二应答器报文相同时,控制所述应答器传输单元解码板卡将所述第一应答器报文或者所述第二应答器报文作为解码处理后的应答器报文发送至所述列车自动控制系统主控板卡。
- 如权利要求2所述的车载控制系统,其特征在于,所述车载控制系统,还包括:与所述应答器传输单元解码板卡相连的第一电源板卡,用于对所述第一中央处理器进行供电。
- 如权利要求2或3所述的车载控制系统,其特征在于,所述车载控制系统,还包括:与所述应答器传输单元解码板卡相连的第二电源板卡,用于对所述第二中央处理器进行供电。
- 如权利要求3或4所述的车载控制系统,其特征在于,还包括:与所述第一电源板卡和/或所述第二电源板卡相连的列车自动控制系统电源接入板卡,用于将外部电源接入,以对所述第一电源板卡和/或所述第二电源板卡,以及所述车载控制系统进行供电。
- 如权利要求1-5中任一项所述的车载控制系统,其特征在于,还包括:与所述应答器传输单元解码板卡相连的所述应答器传输单元解调电路,用于对应答器传输单元天线接收到的应答器报文进行解调,得到解调信号,并将所述解调信号传输至所述应答器传输单元解码板卡。
- 如权利要求6所述的车载控制系统,其特征在于,还包括:与所述应答器传输单元解调电路相连的功放电源板卡,用于对所述应答器传输单元解调电路进行供电。
- 如权利要求1-7中任一项所述的车载控制系统,其特征在于,还包括:与所述列车自动控制系统主控板卡相连的监控板卡,用于对所述车载控制系统进行监控,在所述车载控制系统产生故障时,对所述车载控制系统的对外输出电源进行断开控制。
- 如权利要求1-8中任一项所述的车载控制系统,其特征在于,还包括:通过通信总线与所述列车自动控制系统主控板卡相连的输入板卡;通过所述通信总线与所述列车自动控制系统主控板卡相连的输出板卡。
- 如权利要求9所述的车载控制系统,其特征在于,还包括:通过PCI总线与所述列车自动控制系统主控板卡相连的通信板卡,所述输入板卡和所述输出板卡通过所述通信板卡进行数据通信。
- 如权利要求1或6所述的车载控制系统,其特征在于,还包括:与所述应答器传输单元解调电路相连的应答器传输单元天线,所述应答器传输单元天线用于接收轨旁应答器发送的应答器报文,并将所述应答器报文发送至所述应答器传输单元解调电路。
- 如权利要求9所述的车载控制系统,其特征在于,所述列车自动控制系统主控板卡与所述应答器传输单元解码板卡通过所述通信总线相连,所述通信总线为以下任一种:控制器局域网络总线、过程现场总线,以及工业以太网总线。
- 如权利要求1-12中任一项所述的车载控制系统,其特征在于,所述车载控制系统集成设置在3U机箱内。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710475709.0A CN107888470A (zh) | 2017-06-21 | 2017-06-21 | 车载控制系统 |
CN201710475709.0 | 2017-06-21 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018233466A1 true WO2018233466A1 (zh) | 2018-12-27 |
Family
ID=61780570
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2018/089087 WO2018233466A1 (zh) | 2017-06-21 | 2018-05-30 | 车载控制系统 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN107888470A (zh) |
WO (1) | WO2018233466A1 (zh) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107888470A (zh) * | 2017-06-21 | 2018-04-06 | 比亚迪股份有限公司 | 车载控制系统 |
CN112671429A (zh) * | 2021-01-12 | 2021-04-16 | 山西润泽丰科技股份有限公司 | 一种应答器传输系统 |
CN113120035B (zh) * | 2021-06-17 | 2021-09-07 | 北京全路通信信号研究设计院集团有限公司 | 一种点式列车控制车载系统及列车控制方法 |
CN114401021B (zh) * | 2022-03-25 | 2022-07-05 | 北京全路通信信号研究设计院集团有限公司 | 一种一体化btm天线装置及其通讯方法 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101924703A (zh) * | 2010-09-03 | 2010-12-22 | 北京全路通信信号研究设计院 | Btm报文解码方法、装置及基于应答器的列车控制系统 |
CN102231695A (zh) * | 2011-05-16 | 2011-11-02 | 铁道部运输局 | 应答器报文闭环检测系统及方法 |
CN102930614A (zh) * | 2011-08-11 | 2013-02-13 | 北京交大思诺科技有限公司 | 集成化车载设备记录器及记录方法 |
CN102923165A (zh) * | 2011-08-11 | 2013-02-13 | 北京交大思诺科技有限公司 | 集成化列车超速防护车载设备 |
CN103516600A (zh) * | 2012-06-27 | 2014-01-15 | 河南蓝信科技有限公司 | 应答器报文检测方法及第三方应答器报文读取装置 |
CN104129406A (zh) * | 2014-08-25 | 2014-11-05 | 北京交大思诺科技有限公司 | 一种传输轨道电路信息的设备与方法 |
CN107888470A (zh) * | 2017-06-21 | 2018-04-06 | 比亚迪股份有限公司 | 车载控制系统 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102490768B (zh) * | 2011-12-23 | 2014-06-11 | 北京交大思诺科技有限公司 | 双套自动切换的btm设备及其实现方法 |
CN104468034B (zh) * | 2014-11-12 | 2018-12-28 | 株洲南车时代电气股份有限公司 | 一种应答器传输主机 |
-
2017
- 2017-06-21 CN CN201710475709.0A patent/CN107888470A/zh active Pending
-
2018
- 2018-05-30 WO PCT/CN2018/089087 patent/WO2018233466A1/zh active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101924703A (zh) * | 2010-09-03 | 2010-12-22 | 北京全路通信信号研究设计院 | Btm报文解码方法、装置及基于应答器的列车控制系统 |
CN102231695A (zh) * | 2011-05-16 | 2011-11-02 | 铁道部运输局 | 应答器报文闭环检测系统及方法 |
CN102930614A (zh) * | 2011-08-11 | 2013-02-13 | 北京交大思诺科技有限公司 | 集成化车载设备记录器及记录方法 |
CN102923165A (zh) * | 2011-08-11 | 2013-02-13 | 北京交大思诺科技有限公司 | 集成化列车超速防护车载设备 |
CN103516600A (zh) * | 2012-06-27 | 2014-01-15 | 河南蓝信科技有限公司 | 应答器报文检测方法及第三方应答器报文读取装置 |
CN104129406A (zh) * | 2014-08-25 | 2014-11-05 | 北京交大思诺科技有限公司 | 一种传输轨道电路信息的设备与方法 |
CN107888470A (zh) * | 2017-06-21 | 2018-04-06 | 比亚迪股份有限公司 | 车载控制系统 |
Also Published As
Publication number | Publication date |
---|---|
CN107888470A (zh) | 2018-04-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018233466A1 (zh) | 车载控制系统 | |
JP2024120049A (ja) | 通信方法、対応するシステム、装置、信号及び乗物 | |
CN101415595B (zh) | 利用隐式消息序列编号的无线机车远程控制的方法和系统 | |
US9166910B2 (en) | Data relay apparatus | |
CN103731343A (zh) | 基于lpc2468的mvb-wtb网关及其工作方法 | |
CN103057567A (zh) | 一种铁路信号领域的通用轨旁安全平台 | |
RU2577936C1 (ru) | Комплексное устройство безопасного информационного обмена и контроля локомотивных и стационарных устройств безопасности на железнодорожном транспорте | |
CN104129406A (zh) | 一种传输轨道电路信息的设备与方法 | |
KR20080107398A (ko) | 통신 시스템 및 방법 | |
CN110789570A (zh) | 一种列车车载设备及其控制方法 | |
CN107885695A (zh) | 基于轨道交通的计算机平台 | |
KR20080052711A (ko) | 스위치드 이더넷을 이용한 철도신호제어설비용 네트워크시스템 및 신호 처리 방법 | |
CN104794086B (zh) | 一种串行通信的安全系统和安全的串行通信方法 | |
KR20160146045A (ko) | 차량 네트워크에서 통신노드의 동작방법 | |
JP6328173B2 (ja) | インバータ制御方法 | |
RU2572284C1 (ru) | Система обмена данными локомотивных систем с сервером ответственной информации с использованием электронной подписи | |
KR101647695B1 (ko) | 긴급 모드를 지원하는 전자 제어 장치 및 그 동작 방법 | |
CN115733729B (zh) | 通信故障处理方法、系统及设备 | |
EP3131804B1 (en) | Railway safety critical systems with task redundancy and asymmetric communications capability | |
CN102981442A (zh) | 带盲区补发功能的车载监控系统 | |
GB2554378A (en) | Method for operating a railway vehicle | |
CN111835491B (zh) | 使用oam控制以太网链路伙伴gpio | |
CN108011791A (zh) | 一种机载双余度can通信系统构型 | |
US20100250791A1 (en) | Low power physical layer for SATA and SAS transceivers | |
CN113682347A (zh) | 一种列车控制与管理系统及列车系统 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18820515 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18820515 Country of ref document: EP Kind code of ref document: A1 |