WO2018233226A1 - 双频缝隙 mimo 天线 - Google Patents

双频缝隙 mimo 天线 Download PDF

Info

Publication number
WO2018233226A1
WO2018233226A1 PCT/CN2017/114056 CN2017114056W WO2018233226A1 WO 2018233226 A1 WO2018233226 A1 WO 2018233226A1 CN 2017114056 W CN2017114056 W CN 2017114056W WO 2018233226 A1 WO2018233226 A1 WO 2018233226A1
Authority
WO
WIPO (PCT)
Prior art keywords
slot
line
antenna
resonator
frequency
Prior art date
Application number
PCT/CN2017/114056
Other languages
English (en)
French (fr)
Inventor
彭彪
邓力
李书芳
张贯京
葛新科
张红治
Original Assignee
深圳市景程信息科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市景程信息科技有限公司 filed Critical 深圳市景程信息科技有限公司
Publication of WO2018233226A1 publication Critical patent/WO2018233226A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/10Resonant slot antennas

Definitions

  • the present invention relates to the field of radio frequency microwave communication technologies, and in particular, to a dual frequency slot MIMO antenna.
  • the neutralization line has been widely used in MIMO (Multiple Input Multiple Output) antenna design to improve the isolation between antenna ports. That is, the isolation between the antenna ports is improved by connecting the radiator or the feeder of the monopole structure through the neutralization line.
  • the antenna feed structure is a coplanar waveguide (CPW) feeder
  • the neutralization line design method of connecting the two feeders greatly increases the difficulty of antenna matching, and thus the practicality is low.
  • the main object of the present invention is to provide a dual-frequency slot MIMO antenna, which aims to improve the dual-frequency slot MIM.
  • the present invention provides a dual-frequency slot MIMO antenna, which is etched on an upper surface of a dielectric substrate, wherein the dual-frequency slot MIMO antenna includes two antenna radiators, two The bottoms of the antenna radiators are connected to each other and form an angle between the inner edges.
  • the two antenna radiators are bilaterally symmetric about the central axis of the antenna, and the inner edges of the two antenna radiators are connected by a neutralization line, the two antennas.
  • the upper surface of the dielectric substrate covered by the radiator is provided with a metal layer as a metal radio frequency ground, wherein: the neutralization line is connected with a lumped capacitor C, and the lumped capacitor C is connected to a metal block, and the metal block is a rectangular shape and embedded in an upper surface of the dielectric substrate between the two antenna radiators, wherein the neutralization line is a straight line, a curved line or a curved line of metal lines; each of the antenna radiators is composed of a multimode slot resonator and a T shape a coplanar waveguide feed consisting of a structure, the multimode slot resonator consisting of a folded gap
  • the resonator is composed of a coplanar waveguide stepped impedance resonator that is connected to the metal RF ground and feeds the multimode slot resonator through the coplanar waveguide feed line.
  • one end of the lumped capacitor C is connected to a center position of the neutralization line, and the other end of the lumped capacitor C is connected to the metal block.
  • the minimum distance between the multimode slot resonators in the two antenna radiators is D 3
  • the coplanar waveguide stepped impedance resonator is a metal layer on a dielectric substrate surrounded by the folded slot resonator, and is connected to the metal by a metal wire having a width S1.
  • the folded slot resonator comprises a first slot line, two second slot lines, two third slot lines, two fourth slot lines, and two fifth slots.
  • One end of each of the two second slot lines is vertically connected to form a right-angle U-shaped structure at both ends of the first slot line, wherein one end of one of the third slot lines and one end of one of the fifth slot lines are respectively
  • the vertical connection forms a collimating angle U-shaped structure at both ends of one of the fourth slot lines, wherein one end of the other third slot line and one end of the other fifth slot line are vertically connected to each other Both ends of the fourth slot line form a collimating angle u-shaped structure, and the other ends of the two third slot lines are vertically connected to the other ends of the two second slot lines.
  • the two fourth slot lines of the folded slot resonator are located between the two second slot lines and are parallel to each other, and the two fourth slot lines are close to each other and are separated by a metal line, the first slot The line, the third slot line, and the fifth slot line are parallel to each other and form a coplanar waveguide stepped impedance resonator through a portion of the dielectric substrate spacer.
  • a middle slot position of the first slot line of the folded slot resonator is provided with a sixth slot line in a downward direction, and one end of the sixth slot line is connected to a middle position of the first slot line, The other end of the six-slot line extends downward and is connected to a long edge of the dielectric substrate.
  • the coplanar waveguide feed line includes a first feed line and a second feed line, and one end of the second feed line is vertically connected to a middle position of the first feed line to form a T-shaped structure, and the first feed line is built in the In the first slot line of the slot resonator and at a position where the interval between the first feed line and the lower line of the first slot line is di, the second feed line is built in the sixth slot line and the two sides of the second line are The hollow gap is d.
  • Central location Central location
  • the coplanar waveguide feed of the ⁇ -shaped structure is fed to the multimode slot resonator.
  • the inner spacing between the two fourth slot lines is S.
  • the outer spacing between the two fourth slot lines is equal to the width of the metal line.
  • the dual-frequency slot MIMO antenna of the present invention uses a neutralization line to connect two antenna radiators in a dual-frequency slot antenna, thereby forming a transmission zero point at the first working frequency, thereby improving Isolation between two ports of dual-band slot MIMO antenna (port P1 and port P2).
  • a lumped capacitor C is connected to the center of the neutralization line. The frequency of the transmission zero can be tuned by adjusting the capacitance of the lumped capacitor C to achieve reconfigurability of the antenna frequency.
  • the dual-frequency slot MIMO antenna of the present invention has a simple structure, high practicability, high isolation, and reconfigurability of the antenna frequency.
  • FIG. 1 is a schematic structural view of a dual-frequency slot MIMO antenna according to the present invention.
  • FIG. 2 is a schematic structural view of a neutralization line connecting two antenna radiators
  • FIG. 3 is a schematic structural view of an antenna radiator
  • FIG. 4 is a schematic structural view of a multimode slot resonator in an antenna radiator
  • FIG. 5 is a schematic structural view of a multimode slot resonator ⁇ provided with a slot line in an antenna radiator; [0018] FIG.
  • FIG. 6 is a schematic structural view of a coplanar waveguide feed line in an antenna radiator
  • FIG. 7 is a schematic diagram of simulation of the influence of the neutralization line on the parameters of the antenna S; [0020] FIG.
  • FIG. 8 is a schematic diagram of the simulation of the influence of the lumped capacitance C on the antenna S parameters.
  • FIG. 1 is a schematic structural diagram of a dual-frequency slot MIMO antenna according to the present invention.
  • the frequency reconfigurable dual-frequency slot MIMO (Multiple Input Multiple Output) antenna includes two antenna radiators 11, and the inner edges of the two antenna radiators 11 pass through a neutralization line 12 Connected, each of the antenna radiators 11 is composed of a multimode slot resonator 13 and a coplanar waveguide feeder 3, which is composed of a folded slot resonator (FSLR) 1 and a coplanar waveguide stepped impedance resonator (CSIR) 2 composition, the coplanar waveguide stepped impedance resonator 2 is connected to the metal RF ground 4 through a metal wire 5 having a width S (refer to FIG. 3), and is coplanar through a T-shaped structure
  • the waveguide feed line 3 (abbreviated as CPW feed line 3) feeds the multimode slot resonator 13, realizing the dual frequency characteristics of the antenna.
  • two antenna radiators 11 are etched on the dielectric substrate 10, and a portion of the dielectric substrate 10 covered by the two antenna radiators 11 is coated with a metal layer (for example, a copper-clad metal layer, 1 is indicated by a gray portion), for example, a copper-clad metal layer, as a metal RF ground 4, and the metal RF ground 4 in FIG. 1 means a portion of the metal layer not surrounded by the multi-mode slot resonator 13.
  • the specific plate type of the dielectric substrate 10 may be FR4 plate, a thickness of 1.6 mm, and a dielectric constant of 4.4.
  • the bottoms of the two antenna radiators 11 are connected to each other and form an angle ⁇ between the inner edges.
  • the angle ⁇ can be any angle between 0° and 180°. In this embodiment, the angle is 60° as the antenna structure. Preferred design.
  • the two antenna radiators 11 are bilaterally symmetrical about the central axis ab of the antenna.
  • the neutralization line 12 connects the two antenna radiators 11, thereby enabling the dual-frequency slot MIMO antenna to form a transmission zero at the corresponding operating frequency.
  • a lumped capacitor C is connected to the neutralization line 12, and the lumped capacitor C is connected to a metal block 14.
  • one end of the lumped capacitor C is connected to the center position of the neutralization line 12, and the other end is connected to the metal block 14.
  • the metal block 14 is a rectangular metal copper piece and is embedded in the upper surface of the dielectric substrate 10 between the two antenna radiators 11.
  • the transmission zero point can well cover the first working frequency band of the antenna, so there is a certain precision deviation in processing the dual-frequency slot MIMO antenna process.
  • the isolation between the two ports (port P1 and port P2) of the dual frequency slot M IMO antenna in the first frequency band can be effectively ensured.
  • selecting the capacitance value of the different lumped capacitor C for example, selecting the capacitance of the lumped capacitor C can be 0.5 pF, 2.0 pF, etc. Realizing the adjustment of the frequency of the transmission zero generated by the dual-frequency slot MIMO antenna, thereby realizing the reconfigurability of the antenna frequency, That is, the adjustability of the antenna frequency.
  • FIG. 2 is a schematic structural view of a neutralization line connecting two antenna radiators.
  • the neutralization line 12 is etched on the dielectric substrate 10 between the two antenna radiators 11, and a portion of the dielectric substrate 10 etched with the neutralization line 12 is not coated with a metal layer.
  • the neutralization line 12 is a metal wire such as a metal copper wire.
  • the neutralization line 12 may be a straight line, a curved line, or a bending line of any shape, such as a "quasi-shaped" bending line, a semi-circular bending line, a semi-elliptical bending line, and the like.
  • the neutral line 12 in this embodiment is preferably a "quasi-shaped" bending line.
  • the neutralization line 12 of the present invention is composed of a five-segment bending line which is formed of a "quasi-shaped shape" due to the inner edge of the two antenna radiators 11
  • the angle ⁇ formed is 60°
  • the width of the neutralization line 12 is preferably 0.5 mm
  • L 9 12.2 mm
  • L 1 () 5.8 mm
  • L 9 12.2 mm
  • L 8 8.45 mm.
  • the length of each bend line of the neutralization line 12 can be designed based on the angle ⁇ formed between the inner edges of the two antenna radiators 11.
  • FIG. 3 is a schematic structural view of an antenna radiator
  • FIG. 4 is a schematic structural view of a multimode slot resonator in an antenna radiator.
  • each of the antenna radiators 11 includes a multimode slot resonator 13 composed of a folded slot resonator 1 and a coplanar waveguide stepped impedance resonator 2, and
  • the axis center line of the multimode slot resonator 13 is bilaterally symmetrical.
  • the folded slot resonator 1 includes a first slot line 21, two second slot lines 22, two third slot lines 23, two fourth slot lines 24, and two fifth slot lines 25.
  • One ends of the two second slot lines 22 are vertically connected at both ends of the first slot line 21 to form a right-angle U-shaped structure, wherein one end of one of the third slot lines 23 and one end of one of the fifth slot lines 25 are perpendicular to each other.
  • Both ends of a fourth slot line 24 form a collimating angle U-shaped structure, and the other ends of the two third slot lines 23 are vertically connected to the other ends of the two second slot lines 22, and the two fourth slot lines 24 are located.
  • the two second slot lines 22 are parallel to each other, and the two fourth slot lines 24 are close to each other and are separated by a metal wire 5.
  • the first slot line 21, the third slot line 23, and the fifth slot line 25 are parallel to each other and form a coplanar waveguide stepped impedance resonator 2 via a portion of the dielectric substrate 10. Since the multimode slot resonator 13 is bilaterally symmetrical about the axis center line of the multimode slot resonator 13, the two collimation angle U-shaped structures are left with respect to the axis center line of the multimode slot resonator 13. Right symmetrical.
  • the right-angle U-shaped structure is defined such that two corners constituting the U-shape are right-angled and the lengths of the two slot lines constituting the U-shape are equal (both of the second slot lines 22), and the collimation angle U
  • the type structure is defined such that the two corners constituting the quasi-U shape are right angles and the lengths of the two slot lines constituting the quasi-U type are not equal (one slot line is the third slot line 23, and the other slot line is the fifth slot line 25). And the length of the third slot line 23 is greater than the fifth slot line 25).
  • the groove lines referred to in the utility model refer to the hollow gaps provided on the dielectric substrate 10.
  • the length of the first groove line 21 is the sum of the length L 3 of the two third groove lines 23 and the width of the metal wire 5 (ie, 2xL 3 +S i),
  • the width of the first groove line 21 is W 1 ;
  • the length of the second groove line 22 is L 2 ,
  • the length of the third groove line 23 is L 3 , and
  • the length of the fourth groove line 24 is 1 ⁇ 4
  • the length of the fifth slot line 25 is 1 ⁇ 5.
  • the widths of the second slot line 22, the third slot line 23, the fourth slot line 24, and the fifth slot line 25 are both W 2 ; the inner spacing between the two fourth slot lines 24 is S 0 , two roots The outer spacing between the four slot lines 24 is equal to the width of the metal lines 5, both of which are S 1 ; the spacing between the first slot lines 21 and the fifth slot lines 25 is S 2 .
  • the coplanar waveguide stepped impedance resonator 2 is a metal layer of a portion of the dielectric substrate 10 surrounded by the folded slot resonator 1, and is connected to the metal RF ground 4 through a metal wire 5 having a width S.
  • the first groove line 21, the third groove line 23, and the fifth groove line 25 are parallel to each other and form a coplanar waveguide step impedance resonator 2 through a portion of the dielectric substrate 10.
  • FIG. 5 is a schematic structural view of a multimode slot resonator ⁇ with slot lines.
  • the middle portion of the first slot line 21 of the folded slot resonator 1 is disposed with a sixth slot line 26 in a downward direction, and one end of the sixth slot line 26 is connected to the first slot line 21
  • the middle portion has the other end extending downward and connected to one long edge of the dielectric substrate 10.
  • the sixth slot line 26 has a length of L o+c ⁇ and a width of W. +2xd. .
  • FIG. 6 is a schematic structural view of a coplanar waveguide feed line.
  • the coplanar waveguide feed line 3 has a T-shaped structure, and the coplanar waveguide feed line 3 includes a first feed line 31 and a second feed line 32, and one end of the second feed line 32 is vertically connected to the first feed line 31. Central location. Referring to FIG. 3, the length of the first feed line 31 is twice the end lateral length L 6 of the T-shaped structure and the width W of the second feed line 32.
  • the sum (i.e., 2xL 6 + W 0 ), the width of the first feed line 31 is W 6 ; the interval between the first feed line 31 and the lower frame of the first groove line 21 is d 1 ; the length of the second feed line 32 is L.
  • the width of the second feed line 32 is W. .
  • Two sides of the second feed line 32 The spacing between the frame and the two borders of the sixth slot line 26 is d. (The hollow gaps on both sides of the second feed line 32 are both d.), and the lateral length of the coplanar waveguide feed line 3 of the T-shaped structure is L 6 .
  • the first feed line 31 of the coplanar waveguide feed line 3 is placed directly in the first slot line 21 of the slot resonator 1 and the first feeder line 31 is made
  • the spacing between the lower frames of one slot line 21 is d
  • the second feeder 32 of the CPW feeder 3 is placed directly on the sixth slot line 26 and the hollow slots on both sides of the second feeder line 32 are both d.
  • the central position is such that the coplanar waveguide feed line 3 of the T-shaped structure feeds the multimode slot resonator 13.
  • each of the antenna radiators 11 are as shown in Table 1 below:
  • the minimum distance between the multimode slot resonators 13 of the two antenna radiators 11 is D 3 , and the preferred distance in this embodiment is D 3 3.0 mm.
  • the distance between the third groove line 23 of the multimode slot resonator 13 and the inner edge of the antenna radiator 11 is L 7 , which is preferably a distance L 7 of 10.0 mm in this embodiment.
  • the length and width of the dielectric substrate 10 can be selected according to the size of the antenna.
  • FIG. 7 is a schematic diagram of the simulation of the influence of the neutralization line on the parameters of the antenna S.
  • the antenna s parameters include an antenna reflection coefficient (s slaughter) and an antenna transmission coefficient (s 21 , which may also represent isolation).
  • the antenna with the neutralization line 12 and the antenna reflection without the neutralization line 12 The effect of the coefficient (S trend) and the antenna transmission coefficient (S 21 ) is shown in Figure 7.
  • the dual-frequency slot MIMO antenna of the present invention has two working frequency bands (S Policy ⁇ -10 dB), and the center frequencies of the two frequency bands are 2.64 GHz and 5.74 GHz, respectively.
  • Increasing the neutralization line 12 can generate a transmission zero point in the first working frequency band (Serra ⁇ -10 dB), thereby effectively improving the isolation of the antenna in the first working frequency band (S 21 ), and the antenna is not in the second working frequency band. Affected by the neutralization line 12.
  • FIG. 8 is a schematic diagram of the influence of the capacitance value of the lumped capacitor C on the parameters of the antenna S.
  • the frequency of the zero point of the antenna transmission can be adjusted by adjusting the lumped capacitance C and selecting an appropriate capacitance value.
  • the transmission zero can cover the antenna well.
  • the first working frequency band therefore, in the case of processing a dual-frequency slot MIMO antenna process with a certain precision deviation, it can effectively ensure that the dual-frequency slot MIMO antenna is between two ports (port P1 and port P2) in the first frequency band. Isolation.
  • C 0pF
  • C 0.5pF
  • C 2.0pF
  • the designer adjusts the transmission zero point generated by the dual-frequency slot MIMO antenna by selecting the capacitance value of the different lumped capacitor C. Frequency, thereby achieving reconfigurability of the antenna frequency.
  • the dual-frequency slot MIMO antenna of the present invention uses a neutralization line 12 to connect two antenna radiators 11 of the dual-frequency slot antenna, thereby forming a transmission zero point at the first operating frequency, and improving the excitation by the CPW feeder 3
  • a lumped capacitor C is connected to the center of the neutralization line 12.
  • the frequency of the transmission zero can be tuned by adjusting the capacitance of the lumped capacitor C to achieve reconfigurability of the antenna frequency.
  • the dual-frequency slot M1 MO antenna of the utility model has the advantages of simple structure, high practicability, high isolation, and adjustable antenna frequency.
  • the dual-frequency slot MIMO antenna of the present invention uses a neutralization line to connect two antenna radiators in the dual-frequency slot antenna, thereby forming a transmission zero point at the first working frequency, thereby improving Isolation between two ports of dual-band slot MIMO antenna (port P1 and port P2).
  • a lumped capacitor C is connected to the center of the neutralization line. The frequency of the transmission zero can be adjusted by adjusting the capacitance of the lumped capacitor C. The value is tuned to achieve reconfigurability of the antenna frequency.
  • the dual-frequency slot MIMO antenna of the present invention has a simple structure, high practicability, high isolation, and can realize reconfigurability of the antenna frequency.

Landscapes

  • Waveguide Aerials (AREA)

Abstract

本实用新型公开一种双频缝隙MIMO天线,包括两个天线辐射体,两个天线辐射体的底部相互连接且内侧边缘之间形成一个夹角,两个天线辐射体的内侧边缘通过中和线连接,两个天线辐射体覆盖的介质基板的上表面敷设有金属层作为金属射频地,中和线连接有一个集总电容C,该集总电容C连接至一个金属块上,每一个天线辐射体由一个多模缝隙谐振器和一个T形结构的共面波导馈线组成,多模缝隙谐振器由折叠缝隙谐振器和共面波导阶梯阻抗谐振器组成,共面波导阶梯阻抗谐振器与金属射频地连接,并通过共面波导馈线给多模缝隙谐振器馈电。本实用新型所述双频缝隙MIMO天线的结构简单,实用性高,隔离度高,并且能够实现天线频率的可重构性。

Description

双频缝隙 MIMO天线
技术领域
[0001] 本实用新型涉及射频微波通信技术领域, 尤其涉及一种双频缝隙 MIMO天线。
背景技术
[0002] 中和线虽然已经广泛应用于 MIMO (Multiple Input Multiple Output, 多输入多 输出) 天线设计, 以提高天线端口间的隔离度, 但是绝大多数中和线都是应用 于单极子结构, 即通过中和线连接单极子结构的辐射体或者馈电线来提高天线 端口间的隔离度。 然而, 当天线馈电结构为共面波导 (CPW) 馈电线吋, 这种 连接两个馈电线的中和线设计方法会大大增加天线匹配难度, 因此实用性很低 。 天线结构加工过程中存在一定的公差, 为了提高该结构对天线加工误差的适 应性, 确保天线在工作频段内均能保持一个较高的隔离度及频率的可调节性, 有必要提出一种频率可重构的双频缝隙 MIMO天线。
技术问题
[0003] 本实用新型的主要目的提供一种双频缝隙 MIMO天线, 旨在提高双频缝隙 MIM
0天线的隔离度以及实现天线频率的可重构性。
问题的解决方案
技术解决方案
[0004] 为实现上述目的, 本实用新型提供了一种双频缝隙 MIMO天线, 刻蚀在介质基 板的上表面, 其特征在于, 所述双频缝隙 MIMO天线包括两个天线辐射体, 两个 天线辐射体的底部相互连接且内侧边缘之间形成一个夹角, 两个天线辐射体关 于该天线的中心轴线左右对称, 两个天线辐射体的内侧边缘通过一根中和线连 接, 两个天线辐射体覆盖的介质基板的上表面敷设有金属层作为金属射频地, 其中: 所述中和线连接有一个集总电容 C, 该集总电容 C连接至一个金属块上, 所述金属块呈长方形并镶嵌在两个天线辐射体之间的介质基板的上表面, 所述 中和线为直线、 曲线或者弯折线的金属线; 每一个天线辐射体由一个多模缝隙 谐振器和一个 T形结构的共面波导馈线组成, 该多模缝隙谐振器由一个折叠缝隙 谐振器和一个共面波导阶梯阻抗谐振器组成, 该共面波导阶梯阻抗谐振器与金 属射频地连接, 并通过共面波导馈线给多模缝隙谐振器馈电。
[0005] 优选的, 所述集总电容 C的一端连接至所述中和线的中心位置处, 所述集总电 容 C的另一端连接至所述金属块上。
[0006] 优选的, 所述两个天线辐射体中的多模缝隙谐振器之间的最小距离为 D 3
=3.0mm。
[0007] 优选的, 所述共面波导阶梯阻抗谐振器为由所述折叠缝隙谐振器包围住的介质 基板上的金属层, 且通过一个宽度为 S1的金属线与金属射频地连接。
[0008] 优选的, 其特征在于, 所述折叠缝隙谐振器由一根第一槽线、 两根第二槽线、 两根第三槽线、 两根第四槽线以及两根第五槽线组成, 所述两根第二槽线的一 端各自垂直连接在第一槽线的两端形成直角 U型结构, 其中一根第三槽线的一端 和其中一根第五槽线的一端各自垂直连接在其中一根第四槽线的两端形成一个 准直角 U型结构, 其中另一根第三槽线的一端和其中另一根第五槽线的一端各自 垂直连接在其中另一根第四槽线的两端形成一个准直角 u型结构, 两根第三槽线 的另一端垂直连接在两根第二槽线的另一端。
[0009] 优选的, 所述折叠缝隙谐振器的两根第四槽线位于两根第二槽线之间且相互平 行, 两根第四槽线相互靠近且通过金属线隔幵, 第一槽线、 第三槽线和第五槽 线相互平行且通过部分介质基板隔幵形成共面波导阶梯阻抗谐振器。
[0010] 优选的, 所述折叠缝隙谐振器的第一槽线的中部位置向下垂直方向幵设有第六 槽线, 该第六槽线的一端连通至第一槽线的中部位置, 第六槽线的另一端向下 延伸并连接至介质基板的一条长边缘。
[0011] 优选的, 所述共面波导馈线包括第一馈线和第二馈线, 所述第二馈线的一端垂 直连接至第一馈线的中部位置形成 T形结构, 所述第一馈线内置于所述缝隙谐振 器的第一槽线中且使第一馈线与第一槽线下边框之间的间隔为 d i的位置处, 所 述第二馈线内置于第六槽线且使第二馈线两侧的镂空缝隙均为 d。的中央位置处
, 使 τ形结构的共面波导馈线给多模缝隙谐振器馈电。
[0012] 优选的, 所述两根第四槽线之间的内侧间距为 S。, 两根第四槽线之间的外侧间 距等于金属线的宽度。 发明的有益效果
有益效果
[0013] 相较于现有技术, 本实用新型所述双频缝隙 MIMO天线采用中和线连接双频缝 隙天线中两个天线辐射体, 从而在第一工作频率形成了一个传输零点, 提高了 双频缝隙 MIMO天线两个端口 (端口 P1和端口 P2) 之间的隔离度。 中和线的中心 位置处连接一个集总电容 C, 该传输零点的频率可以通过调节集总电容 C的电容 值来调谐, 从而实现天线频率的可重构性。 本实用新型所述双频缝隙 MIMO天线 的结构简单, 实用性高, 隔离度高, 并且可实现天线频率的可重构性。
对附图的简要说明
附图说明
[0014] 图 1是本实用新型双频缝隙 MIMO天线的结构示意图;
[0015] 图 2是连接两个天线辐射体之间的中和线的结构示意图;
[0016] 图 3是天线辐射体的结构尺寸示意图;
[0017] 图 4是天线辐射体中的多模缝隙谐振器的结构示意图;
[0018] 图 5是天线辐射体中的多模缝隙谐振器幵设有槽线的结构示意图;
[0019] 图 6是天线辐射体中的共面波导馈线的结构示意图;
[0020] 图 7是中和线对天线 S参数影响的仿真示意图;
[0021] 图 8是集总电容 C对天线 S参数影响的仿真示意图。
[0022] 本实用新型目的实现、 功能特点及优点将结合实施例, 将在具体实施方式部分 一并参照附图做进一步说明。
实施该发明的最佳实施例
本发明的最佳实施方式
[0023] 为更进一步阐述本实用新型为达成上述目的所采取的技术手段及功效, 以下结 合附图及较佳实施例, 对本实用新型的具体实施方式、 结构、 特征及其功效进 行详细说明。 应当理解, 此处所描述的具体实施例仅仅用以解释本实用新型, 并不用于限定本实用新型。
[0024] 参照图 1所示, 图 1是本实用新型双频缝隙 MIMO天线的结构示意图。 在本实施 例中, 所述频率可重构的双频缝隙 MIMO (Multiple Input Multiple Output, 多输 入多输出) 天线包括两个天线辐射体 11, 两个天线辐射体 11的内侧边缘通过一 根中和线 12连接, 每一个天线辐射体 11由多模缝隙谐振器 13和共面波导馈线 3组 成, 该多模缝隙谐振器 13由一个折叠缝隙谐振器 (FSLR) 1和一个共面波导阶梯 阻抗谐振器 (CSIR) 2组成, 该共面波导阶梯阻抗谐振器 2通过一个宽度为 S ,的 金属线 5 (参照图 3所示) 与金属射频地 (Ground) 4连接, 并通过一个 T形结构 的共面波导馈线 3 (简称 CPW馈线 3) 给多模缝隙谐振器 13馈电, 实现了天线的 双频特性。
[0025] 在本实施例中, 两个天线辐射体 11刻蚀在介质基板 10上, 两个天线辐射体 11覆 盖的部分介质基板 10的上表面敷设有金属层 (例如敷铜金属层, 图 1中采用灰色 部分表示) , 例如敷铜金属层, 作为金属射频地 4, 图 1中的金属射频地 4是指没 有被多模缝隙谐振器 13包围的那部分金属层。 所述介质基板 10具体的板材类型 可以为 FR4板材、 厚度为 1.6mm、 介电常数为 4.4。 两个天线辐射体 11的底部相互 连接且内侧边缘之间形成一个夹角 θ, 该夹角 Θ可以为 0°至 180°之间任意角度, 本 实施例以夹角 60°作为天线结构尺寸的优选设计。 两个天线辐射体 11关于天线的 中心轴线 ab左右对称。 中和线 12连接两个天线辐射体 11, 从而使双频缝隙 MIMO 天线在相应工作频率形成一个传输零点。
[0026] 在本实施例中, 所述中和线 12上连接有一个集总电容 C, 该集总电容 C连接至 一个金属块 14。 优选的, 所述集总电容 C的一端连接至中和线 12的中心位置处, 另一端连接至金属块 14上。 所述金属块 14为长方形的金属铜片并镶嵌在两个天 线辐射体 11之间的介质基板 10的上表面, 该金属块 14的长度优选为 L„=l lmm, 宽度优选为 W„=1.0mm。 设计者通过调节集总电容 C并选取适当的电容值来调节 传输零点的频率, 传输零点可以很好地覆盖天线的第一工作频段, 因此在加工 双频缝隙 MIMO天线过程具有一定精度偏差的情况下, 可以有效保证双频缝隙 M IMO天线在第一频段内的两个端口 (端口 P1和端口 P2) 之间的隔离度。 本实施 例通过在中和线 12的中心位置处连接一个集总电容 C, 通过选择不同集总电容 C 的电容值, 例如选择集总电容 C的电容值可以为 0.5pF、 2.0pF等, 来实现对双频 缝隙 MIMO天线产生的传输零点的频率的调节, 从而实现天线频率的可重构性, 即天线频率的可调节性。
[0027] 参考图 2所示, 图 2是连接两个天线辐射体之间的中和线的结构示意图。 在本实 施例中, 所述中和线 12刻蚀在两个天线辐射体 11之间的介质基板 10上, 刻蚀有 中和线 12的部分介质基板 10上没有涂覆金属层。 所述中和线 12为金属线, 例如 金属铜线。 所述中和线 12可以为一条直线、 曲线、 或者为任意形状的弯折线, 例如"准几字型"弯折线、 半圆形弯折线、 半椭圆形弯折线等。 为了便于天线结构 尺寸设计, 本实施例中和线 12优选为 "准几字型"弯折线。
[0028] 在本实施例中, 作为天线结构尺寸的优选设计, 本实用新型所述中和线 12由五 段弯折线组成"准几字形", 由于两个天线辐射体 11的内侧边缘之间形成的夹角 Θ 为 60°, 中和线 12的宽度优选为 0.5mm, 中和线 12的五段弯折线长度分别优选为 L 8=8.45mm、 L 9=12.2mm、 L 1()=5.8mm、 L 9=12.2mm、 L 8=8.45mm。 在其它实施 中, 中和线 12的每一段弯折线长度可以根据两个天线辐射体 11的内侧边缘之间 形成的夹角 Θ来设计。
[0029] 参考图 3和图 4所示, 图 3是天线辐射体的结构尺寸示意图; 图 4是天线辐射体中 多模缝隙谐振器的结构示意图。 在本实施例中, 每一个天线辐射体 11包括一个 多模缝隙谐振器 13, 所述多模缝隙谐振器 13由一个折叠缝隙谐振器 1和一个共面 波导阶梯阻抗谐振器 2组成, 且关于该多模缝隙谐振器 13的轴中心线左右对称。 所述折叠缝隙谐振器 1包括一根第一槽线 21、 两根第二槽线 22、 两根第三槽线 23 、 两根第四槽线 24以及两根第五槽线 25。 两根第二槽线 22的一端各自垂直连接 在第一槽线 21的两端形成直角 U型结构, 其中一根第三槽线 23的一端和其中一根 第五槽线 25的一端各自垂直连接在其中一根第四槽线 24的两端形成一个准直角 U 型结构, 其中另一根第三槽线 23的一端和其中另一根第五槽线 25的一端各自垂 直连接在其中另一根第四槽线 24的两端形成一个准直角 U型结构, 两根第三槽线 23的另一端垂直连接在两根第二槽线 22的另一端, 两根第四槽线 24位于两根第 二槽线 22之间且相互平行, 两根第四槽线 24相互靠近且通过金属线 5隔幵。 第一 槽线 21、 第三槽线 23和第五槽线 25相互平行且通过部分介质基板 10隔幵形成共 面波导阶梯阻抗谐振器 2。 由于多模缝隙谐振器 13关于该多模缝隙谐振器 13的轴 中心线左右对称, 因此两个准直角 U型结构关于多模缝隙谐振器 13的轴中心线左 右对称。
[0030] 在本实施例中, 所述直角 U型结构定义为构成 U型的两个转角为直角且构成 U型 的两根槽线长度相等 (均为第二槽线 22) , 准直角 U型结构定义为构成准 U型的 两个转角为直角且构成准 U型的两根槽线长度不相等 (一根槽线为第三槽线 23, 另一根槽线为第五槽线 25, 且第三槽线 23的长度大于第五槽线 25) 。 本实用新 型所称槽线均指在介质基板 10上幵设的镂空缝隙。
[0031] 一并参考图 3和图 4所示, 第一槽线 21的长度为两根第三槽线 23的长度 L 3与金属 线 5的宽度 之和 (即 2xL 3+S i) , 第一槽线 21的宽度为 W 1 ; 第二槽线 22的长度 为 L 2, 第三槽线 23的长度为 L 3, 第四槽线 24的长度为1^ 4
, 第五槽线 25的长度为1^ 5
, 第二槽线 22、 第三槽线 23、 第四槽线 24和第五槽线 25的宽度均为 W 2 ; 两根第 四槽线 24之间的内侧间距为 S 0 , 两根第四槽线 24之间的外侧间距等于金属线 5的 宽度, 均为 S 1 ; 第一槽线 21和第五槽线 25之间的间距为 S 2
[0032] 所述共面波导阶梯阻抗谐振器 2为由折叠缝隙谐振器 1包围住的部分介质基板 10 的金属层, 且通过一个宽度为 S ,的金属线 5与金属射频地 4连接。 第一槽线 21、 第三槽线 23和第五槽线 25相互平行且通过部分介质基板 10隔幵形成共面波导阶 梯阻抗谐振器 2。
[0033] 参考图 5, 图 5是多模缝隙谐振器幵设有槽线的结构示意图。 在本实施例中, 所 述折叠缝隙谐振器 1的第一槽线 21的中部位置向下垂直方向幵设有第六槽线 26, 该第六槽线 26的一端连通至第一槽线 21的中部位置, 另一端向下延伸并连接至 介质基板 10的一条长边缘。 参考图 3所示, 第六槽线 26的长度为 L o+c^ , 宽度为 W。+2xd。。
[0034] 参考图 6所示, 图 6是共面波导馈线的结构示意图。 在本实施例中, 所述共面波 导馈线 3呈 T形结构, 该共面波导馈线 3包括第一馈线 31和第二馈线 32, 所述第二 馈线 32的一端垂直连接至第一馈线 31的中部位置。 参考图 3所示, 第一馈线 31的 长度为 T形结构的末端横向长度 L 6的两倍与第二馈线 32的宽度 W。之和 (即 2xL 6 +W 0) , 第一馈线 31的宽度为 W 6 ; 第一馈线 31与第一槽线 21下边框之间的间隔 为 d 1 ; 第二馈线 32的长度为 L。, 第二馈线 32的宽度为 W。。 第二馈线 32的两条边 框与第六槽线 26的两条边框之间的间隔均为 d。 (第二馈线 32两侧的镂空缝隙均 为 d。) , 所述 T形结构的共面波导馈线 3的末端横向长度为 L 6。 在制作本实用新 型的双频缝隙天线的天线辐射体 11吋, 将共面波导馈线 3的第一馈线 31直接放置 于缝隙谐振器 1的第一槽线 21中且使第一馈线 31与第一槽线 21下边框之间的间隔 为 d ,的位置处, 并将 CPW馈线 3的第二馈线 32直接放置于第六槽线 26且使第二馈 线 32两侧的镂空缝隙均为 d。的中央位置, 从而使得 T形结构的共面波导馈线 3给 多模缝隙谐振器 13馈电。
[0035] 结合图 1、 图 2和图 3所示, 每一个天线辐射体 11优选的各个结构尺寸如下表 1所 示:
[0036] 表 1本实用新型所述双频缝隙天线优选实施例的尺寸
[] [表 1]
Figure imgf000009_0001
[0037] 在本实施例中, 两个天线辐射体 11的多模缝隙谐振器 13之间的最小距离为 D 3 , 本实施例优选距离 D 3 3.0mm。 多模缝隙谐振器 13的第三槽线 23与天线辐射 体 11的内侧边缘之间的距离为 L 7, 本实施例优选距离 L 7 10.0mm。 所述介质基 板 10的长度和宽度可以根据天线尺寸大小的需求选择。
[0038] 参考图 7所示, 图 7是中和线对天线 S参数影响的仿真示意图。 在本实施例中, 所述天线 s参数包括天线反射系数 (s„) 和天线传输系数 (s 21, 也可以表示隔 离度) 。 具有中和线 12的天线和没有中和线 12的天线反射系数 (S„) 和天线传 输系数 (S 21) 的影响如图 7所示。 本实施例选用中和线 12的第二和第四端弯折线 的长度为 L 9=12.2mm。 从图 7中可以看出本实用新型所述双频缝隙 MIMO天线有 两个工作频段 (S„<-10dB) , 两个频段的中心频率分别为 2.64GHz和 5.74GHz。 增加中和线 12可以在天线在第一工作频段 (S„<-10dB)产生一个传输零点, 从而 有效提高天线在第一工作频段的隔离度 (S 21), 而天线在第二工作频段不受中和 线 12的影响。
[0039] 如图 8所示, 图 8是集总电容 C的电容值对天线 S参数的影响示意图。 设计者在选 定中和线 12的长度 (例如 L 9=11.2mm) 吋, 可以通过调节集总电容 C并选取适当 的电容值来调节天线传输零点的频率, 传输零点可以很好地覆盖天线的第一工 作频段, 因此在加工双频缝隙 MIMO天线过程具有一定精度偏差的情况下, 可以 有效保证双频缝隙 MIMO天线在第一频段内的两个端口 (端口 P1和端口 P2) 之间 的隔离度。 图 8分别验证了中和线 12连接有三种不同电容值的集总电容 C, 例如 C =0pF、 C=0.5pF和 C=2.0pF, 对天线反射系数 (S„) 和天线传输系数 (S 21) 的 影响曲线。 本实用新型通过在中和线 12的中心位置处连接一个集总电容 C, 设计 者通过选择不同集总电容 C的电容值来调节双频缝隙 MIMO天线产生的传输零点 的频率, 从而实现天线频率的可重构性。
[0040] 本实用新型所述双频缝隙 MIMO天线采用中和线 12连接双频缝隙天线中两个天 线辐射体 11, 从而在第一工作频率形成了一个传输零点, 提高了由 CPW馈线 3激 励的双频缝隙 MIMO天线两个端口 (端口 P1和端口 P2) 之间的隔离度。 中和线 12 的中心位置处连接一个集总电容 C, 该传输零点的频率可以通过调节集总电容 C 的电容值来调谐, 从而实现天线频率的可重构性。 本实用新型所述双频缝隙 Ml MO天线的结构简单, 实用性高, 隔离度高, 实现天线频率的可调节性。
[0041] 以上仅为本实用新型的优选实施例, 并非因此限制本实用新型的专利范围, 凡 是利用本实用新型说明书及附图内容所作的等效结构或等效功能变换, 或直接 或间接运用在其他相关的技术领域, 均同理包括在本实用新型的专利保护范围 内。
工业实用性
[0042] 相较于现有技术, 本实用新型所述双频缝隙 MIMO天线采用中和线连接双频缝 隙天线中两个天线辐射体, 从而在第一工作频率形成了一个传输零点, 提高了 双频缝隙 MIMO天线两个端口 (端口 P1和端口 P2) 之间的隔离度。 中和线的中心 位置处连接一个集总电容 C, 该传输零点的频率可以通过调节集总电容 C的电容 值来调谐, 从而实现天线频率的可重构性。 本实用新型所述双频缝隙 MIMO天线 的结构简单, 实用性高, 隔离度高, 并且可实现天线频率的可重构性。

Claims

权利要求书
一种双频缝隙 MIMO天线, 刻蚀在介质基板的上表面, 其特征在于, 所述双频缝隙 MIMO天线包括两个天线辐射体, 两个天线辐射体的底 部相互连接且内侧边缘之间形成一个夹角, 两个天线辐射体关于该天 线的中心轴线左右对称, 两个天线辐射体的内侧边缘通过一根中和线 连接, 两个天线辐射体覆盖的介质基板的上表面敷设有金属层作为金 属射频地, 其中: 所述中和线连接有一个集总电容 C, 该集总电容 C 连接至一个金属块上, 所述金属块呈长方形并镶嵌在两个天线辐射体 之间的介质基板的上表面, 所述中和线为直线、 曲线或者弯折线的金 属线; 每一个天线辐射体由一个多模缝隙谐振器和一个 T形结构的共 面波导馈线组成, 该多模缝隙谐振器由一个折叠缝隙谐振器和一个共 面波导阶梯阻抗谐振器组成, 该共面波导阶梯阻抗谐振器与金属射频 地连接, 并通过共面波导馈线给多模缝隙谐振器馈电。
如权利要求 1所述的双频缝隙 MIMO天线, 其特征在于, 所述集总电 容 C的一端连接至所述中和线的中心位置处, 所述集总电容 C的另一 端连接至所述金属块上。
如权利要求 1所述的双频缝隙 MIMO天线, 其特征在于, 所述两个天 线辐射体中的多模缝隙谐振器之间的最小距离为 D 3=3.0mm。
如权利要求 1所述的双频缝隙 MIMO天线, 其特征在于, 所述共面波 导阶梯阻抗谐振器为由所述折叠缝隙谐振器包围住的介质基板上的金 属层, 且通过一个宽度为 金属线与金属射频地连接。
如权利要求 1至 4任一项所述的双频缝隙 MIMO天线, 其特征在于, 所 述折叠缝隙谐振器由一根第一槽线、 两根第二槽线、 两根第三槽线、 两根第四槽线以及两根第五槽线组成, 所述两根第二槽线的一端各自 垂直连接在第一槽线的两端形成直角 U型结构, 其中一根第三槽线的 一端和其中一根第五槽线的一端各自垂直连接在其中一根第四槽线的 两端形成一个准直角 U型结构, 其中另一根第三槽线的一端和其中另 一根第五槽线的一端各自垂直连接在其中另一根第四槽线的两端形成 一个准直角 u型结构, 两根第三槽线的另一端垂直连接在两根第二槽 线的另一端。
如权利要求 5所述的双频缝隙 MIM0天线, 其特征在于, 所述折叠缝 隙谐振器的两根第四槽线位于两根第二槽线之间且相互平行, 两根第 四槽线相互靠近且通过金属线隔幵, 第一槽线、 第三槽线和第五槽线 相互平行且通过部分介质基板隔幵形成共面波导阶梯阻抗谐振器。 如权利要求 5所述的双频缝隙 MIMO天线, 其特征在于, 所述折叠缝 隙谐振器的第一槽线的中部位置向下垂直方向幵设有第六槽线, 该第 六槽线的一端连通至第一槽线的中部位置, 第六槽线的另一端向下延 伸并连接至介质基板的一条长边缘。
如权利要求 7所述的双频缝隙 MIMO天线, 其特征在于, 所述共面波 导馈线包括第一馈线和第二馈线, 所述第二馈线的一端垂直连接至第 一馈线的中部位置形成 T形结构, 所述第一馈线内置于所述缝隙谐振 器的第一槽线中且使第一馈线与第一槽线下边框之间的间隔为 d ,的位 置处, 所述第二馈线内置于第六槽线且使第二馈线两侧的镂空缝隙均 为 d。的中央位置处, 使 T形结构的共面波导馈线给多模缝隙谐振器馈 电。
如权利要求 5所述的双频缝隙 MIMO天线, 其特征在于, 所述两根第 四槽线之间的内侧间距为 S 0 , 两根第四槽线之间的外侧间距等于金 属线的宽度。
PCT/CN2017/114056 2017-06-23 2017-11-30 双频缝隙 mimo 天线 WO2018233226A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201720738633.1 2017-06-23
CN201720738633.1U CN206893801U (zh) 2017-06-23 2017-06-23 双频缝隙mimo天线

Publications (1)

Publication Number Publication Date
WO2018233226A1 true WO2018233226A1 (zh) 2018-12-27

Family

ID=61316239

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/114056 WO2018233226A1 (zh) 2017-06-23 2017-11-30 双频缝隙 mimo 天线

Country Status (2)

Country Link
CN (1) CN206893801U (zh)
WO (1) WO2018233226A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107369913A (zh) * 2017-06-23 2017-11-21 深圳市景程信息科技有限公司 基于中和线的双频缝隙mimo天线
CN107394399A (zh) * 2017-06-23 2017-11-24 深圳市景程信息科技有限公司 频率可重构的双频缝隙mimo天线
CN109103597A (zh) * 2018-08-03 2018-12-28 瑞声精密制造科技(常州)有限公司 多天线系统及移动终端
CN109103583B (zh) * 2018-09-11 2024-05-28 合肥联宝信息技术有限公司 天线及电子设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110133992A1 (en) * 2009-12-07 2011-06-09 Alps Electric Co.. Ltd Antenna apparatus
CN103151607A (zh) * 2013-03-01 2013-06-12 清华大学 用于移动终端的宽频带双天线系统及其去耦方法
CN105742768A (zh) * 2014-11-28 2016-07-06 青岛海尔电子有限公司 一种带通滤波器及高阶带通滤波器及性能分析方法
CN106410406A (zh) * 2016-10-28 2017-02-15 福州大学 一种双频低剖面紧耦合高隔离度mimo天线
CN107394399A (zh) * 2017-06-23 2017-11-24 深圳市景程信息科技有限公司 频率可重构的双频缝隙mimo天线

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110133992A1 (en) * 2009-12-07 2011-06-09 Alps Electric Co.. Ltd Antenna apparatus
CN103151607A (zh) * 2013-03-01 2013-06-12 清华大学 用于移动终端的宽频带双天线系统及其去耦方法
CN105742768A (zh) * 2014-11-28 2016-07-06 青岛海尔电子有限公司 一种带通滤波器及高阶带通滤波器及性能分析方法
CN106410406A (zh) * 2016-10-28 2017-02-15 福州大学 一种双频低剖面紧耦合高隔离度mimo天线
CN107394399A (zh) * 2017-06-23 2017-11-24 深圳市景程信息科技有限公司 频率可重构的双频缝隙mimo天线

Also Published As

Publication number Publication date
CN206893801U (zh) 2018-01-16

Similar Documents

Publication Publication Date Title
WO2018233224A1 (zh) 频率可重构的双频缝隙 mimo 天线
WO2018233226A1 (zh) 双频缝隙 mimo 天线
TWI533509B (zh) 寬頻天線
EP3168930B1 (en) Antenna and communication device
CN105896071A (zh) 双极化振子单元、天线及多频天线阵列
WO2018233206A1 (zh) 基于中和线的双频缝隙 mimo 天线
US9373886B2 (en) Aperture coupled radiator and antenna including the same
JP4891698B2 (ja) パッチアンテナ
KR20100100677A (ko) 소형 안테나 시스템
JP6017003B1 (ja) マイクロストリップアンテナ、及び、その製造方法
WO2001045207A1 (fr) Antenne microruban
EP2891212A1 (en) Broadband multi-strip patch antenna
WO2019151529A1 (ja) アンテナ装置
WO2018196302A1 (zh) 双频缝隙天线及其调谐方法
WO2018233225A1 (zh) 高隔离度双频缝隙 mimo 天线
US20110134011A1 (en) Antenna apparatus and wireless communication apparatus
WO2019015206A1 (zh) 具有可重构设计结构的双频缝隙天线
WO2018184358A1 (zh) 三模宽带阶梯型缝隙天线
CN112201935B (zh) 一种使用柔性共面波导对宽带平面天线馈电的结构及方法
CN101707284B (zh) 一种用于射频前端系统的ltcc电小集成天线
JP2018007195A (ja) 移相器及びアンテナ装置
TWM427688U (en) Dual broadband dipole antenna
TWI509892B (zh) 天線結構及其製造方法
JP6241782B2 (ja) 逆f平面アンテナ及びアンテナ装置
TWI455406B (zh) 用以激發輻射地緣電流之微波電路裝置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17914592

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17914592

Country of ref document: EP

Kind code of ref document: A1