WO2018184358A1 - 三模宽带阶梯型缝隙天线 - Google Patents

三模宽带阶梯型缝隙天线 Download PDF

Info

Publication number
WO2018184358A1
WO2018184358A1 PCT/CN2017/101988 CN2017101988W WO2018184358A1 WO 2018184358 A1 WO2018184358 A1 WO 2018184358A1 CN 2017101988 W CN2017101988 W CN 2017101988W WO 2018184358 A1 WO2018184358 A1 WO 2018184358A1
Authority
WO
WIPO (PCT)
Prior art keywords
rectangular hollow
hollow
dielectric plate
microstrip line
slot antenna
Prior art date
Application number
PCT/CN2017/101988
Other languages
English (en)
French (fr)
Inventor
彭彪
邓力
李书芳
张贯京
葛新科
高伟明
张红治
Original Assignee
深圳市景程信息科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市景程信息科技有限公司 filed Critical 深圳市景程信息科技有限公司
Publication of WO2018184358A1 publication Critical patent/WO2018184358A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/10Resonant slot antennas

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a three-mode wideband stepped slot antenna.
  • a primary object of the present invention is to provide a three-mode wideband stepped slot antenna, which aims to solve the technical problem that the existing slot antenna cannot generate three basic resonance modes.
  • the present invention provides a three-mode wideband stepped slot antenna including a dielectric plate, a hollow metal sheet, an L-shaped metal microstrip line, and an SMA head, wherein the hollow metal sheet is attached to the The L-shaped metal microstrip line is attached to the lower surface of the dielectric plate; the stepped hollow hole is etched with a stepped hollow slit, and the stepped hollow gap is hollowed out by the first rectangle.
  • a second rectangular hollow, a third rectangular hollow, a fourth rectangular hollow, and a fifth rectangular hollow are sequentially connected;
  • the lateral portion of the L-shaped metal microstrip line is parallel to a long side of a lower surface of the dielectric plate, the L a vertical portion of the metal microstrip line is perpendicular to a long side of the lower surface of the dielectric plate;
  • the SMA head is fixed on the dielectric plate, and the hollow metal piece is electrically connected to a ground end of the SMA head,
  • the L-shaped metal microstrip line is electrically connected to the feed end of the SMA head.
  • the first rectangular hollow, the second rectangular hollow, the third rectangular hollow, the fourth rectangular hollow, and the wide side of the fifth rectangular hollow are parallel to the central axis of the broad side of the upper surface of the dielectric plate;
  • the first rectangular hollow, the second rectangular hollow, the third rectangular hollow, the fourth rectangular hollow, and the fifth rectangular hollow The broad side center axis is symmetrical.
  • the three-mode wideband stepped slot antenna has a rectangular parallelepiped structure, and the hollow metal piece and the L-shaped metal microstrip line are all copper.
  • the dielectric plate is a dielectric substrate of FR4, and the dielectric plate has a thickness of 0.8 mm and a dielectric constant of 4.4.
  • the length of the dielectric plate and the hollow metal sheet is 74 mm, the width of the dielectric plate and the hollow metal sheet is 106 mm; the length of the first rectangular hollow is 52 mm, and the first rectangular hollow a width of 44 mm; a length of the second rectangular hollow is 32 mm, a width of the second rectangular hollow is 6 mm; a length of the third rectangular hollow is 6.7 mm, and a width of the third rectangular hollow is 10.5 mm;
  • the fourth rectangular hollow has a length of 2.6 mm, the fourth rectangular hollow has a width of 17.7 mm, the fifth rectangular hollow has a length of 9.6 mm, and the fifth rectangular hollow has a width of 1.5 mm.
  • the distance between the lower longitudinal edge of the stepped hollow gap and the lower longitudinal edge of the upper surface of the dielectric plate is 6.3 mm.
  • the width of the L-shaped metal microstrip line is 1.32 mm
  • the length of the lateral portion of the L-shaped metal microstrip line is 27.6 mm
  • the length of the vertical portion of the L-shaped metal microstrip line is 11.32mm.
  • the distance between the vertical portion of the L-shaped metal microstrip line and the left wide side of the lower surface of the dielectric plate is 20.4 mm.
  • the three-mode wideband stepped slot antenna of the present invention can generate three resonant modes by providing stepped hollow slot resonance, and by using microstrip line feeding, which is more than the conventional dual mode slot antenna.
  • a resonant mode Compared with the conventional dual-mode slot antenna, the present invention can add a resonance mode, can generate three basic resonance modes, and realize a three-mode wideband stepped slot antenna.
  • FIG. 1 is a schematic structural view of a preferred embodiment of a three-mode wideband stepped slot antenna according to the present invention
  • FIG. 2 is a schematic structural view of a preferred embodiment of a hollow metal sheet of a three-mode wideband stepped slot antenna according to the present invention
  • 3 is a schematic structural view of a preferred embodiment of an L-shaped metal microstrip line of a three-mode wideband stepped slot antenna according to the present invention
  • FIG. 4 is a schematic diagram showing simulation results of reflection coefficients of a three-mode wideband stepped slot antenna according to the present invention.
  • FIG. 5 is a schematic diagram of a simulation result of a reflection coefficient of a L0 parameter of a three-mode wideband stepped slot antenna according to the present invention
  • FIG. 6 is a schematic diagram of a simulation result of a reflection coefficient of a dl parameter of a three-mode wideband stepped slot antenna of the present invention
  • [0019] 7 is a schematic diagram showing simulation results of reflection coefficients of the three-mode wideband stepped slot antenna W4 of the present invention.
  • Fig. 1 is a plan view showing a preferred embodiment of a preferred embodiment of a three-mode wideband stepped slot antenna of the present invention.
  • the three-mode wideband stepped slot antenna 1 includes a dielectric plate 10, a hollow metal sheet 20, an L-shaped metal microstrip line 30, and an SMA (Sub-Miniature-A) head 40.
  • the three-mode wideband stepped slot antenna 1 is a rectangular parallelepiped structure (only a schematic plan view is shown in Fig. 1), and the hollow metal piece 20 and the L-shaped metal microstrip line 30 are all copper.
  • the dielectric plate 10 is a dielectric substrate of FR4, and the dielectric plate 10 has a thickness of 0.8 mm and a dielectric constant of preferably 4.4.
  • the SMA head 40 is a coaxial connector.
  • the hollow metal sheet 20 is attached to the upper surface of the dielectric plate 10, and the L-shaped metal microstrip line 30 is attached to the lower surface of the dielectric plate 10.
  • the hollow metal sheet 20 is etched with a step.
  • a hollow-type slit 21 wherein the stepped hollow slit 21 is sequentially connected by a first rectangular hollow 211, a second rectangular hollow 212, a third rectangular hollow 213, a fourth rectangular hollow 214, and a fifth rectangular hollow 215;
  • the lateral portion 31 of the metal microstrip line is parallel to the long side of the lower surface of the dielectric plate 10, and the vertical portion 32 of the L-shaped metal microstrip line is perpendicular to the long side of the lower surface of the dielectric plate 10;
  • the SMA head 40 is disposed on the dielectric board 10, and the hollow metal piece 20 is electrically connected to the ground end of the SMA head 40.
  • the L-shaped metal microstrip line 30 is electrically connected to the feeding end of the SMA head 40.
  • the vertical portion 32 of the L-shaped metal microstrip line extends to the dielectric plate 10 a bottom long side of the lower surface
  • the SMA head 40 is disposed on the dielectric plate 10 at a position where the vertical portion 32 of the L-shaped metal microstrip line intersects the long side of the bottom surface of the lower surface of the dielectric plate 10 A feed port.
  • the three-mode wideband stepped slot antenna of the present invention can generate three resonance modes by providing step-type hollow slot resonance, and by using microstrip feed, one resonance mode more than the conventional dual mode slot antenna. Therefore, the present invention can add a resonance mode compared to the conventional two-mode slot antenna, and can generate three basic resonance modes to realize a three-mode wideband stepped slot antenna.
  • FIG. 2 is a schematic structural view of a preferred embodiment of a hollow metal sheet of a three-mode wideband stepped slot antenna.
  • the wide sides of the first rectangular hollow 211, the second rectangular hollow 212, the third rectangular hollow 213, the fourth rectangular hollow 214, and the fifth rectangular hollow 215 are opposite to the upper surface of the dielectric plate 10.
  • the broad side central axis is parallel; the first rectangular hollow 211, the second rectangular hollow 212, the third rectangular hollow 2 13 , the fourth rectangular hollow 214 and the fifth rectangular hollow 214 are symmetrical about the broad side central axis.
  • the length W of the dielectric plate 10 and the hollow metal sheet 20 is 74 mm, the width L of the dielectric plate 10 and the hollow metal sheet 20 is 106 mm, and the length W0 of the first rectangular hollow 211 is 52 mm.
  • the width L0 of the first rectangular hollow 211 is 44 mm;
  • the length W1 of the second rectangular hollow 212 is 32 mm, the width L1 of the second rectangular hollow 212 is 6 mm; and the length W2 of the third rectangular hollow 213 is 6.7.
  • the width L2 of the third rectangular hollow 213 is 10.5 mm; the length W3 of the fourth rectangular hollow 214 is 2.6 mm, and the width L3 of the fourth rectangular hollow 214 is 17.7 mm; The length W4 of the 215 is 9.6 mm, and the width L4 of the fifth rectangular hollow 215 is 1.5 mm.
  • the distance dx between the lower long side of the stepped hollow slit 21 and the lower longitudinal side of the upper surface of the dielectric plate 10 is 6.3 mm.
  • FIG. 3 is a schematic structural view of a preferred embodiment of an L-shaped metal microstrip line of a three-mode wideband stepped slot antenna.
  • the width WP1 of the L-shaped metal microstrip line 30 is 1.32 mm
  • the length d2 of the lateral portion 31 of the L-shaped metal microstrip line is 27.6 mm
  • the length dl of the vertical portion 32 of the L-shaped metal microstrip line It is 11.32mm.
  • the distance dO between the vertical portion 32 of the L-shaped metal microstrip line and the left wide side of the lower surface of the dielectric plate 10 is 20.4 mm.
  • FIG. 4 is a schematic diagram showing simulation results of reflection coefficients of a three-mode wideband stepped slot antenna of the present invention.
  • the reflection coefficient of the three-mode wideband stepped slot antenna 1 is below -10 dB, and the operating frequency can cover 1.15 GHz to 2.93 GHz, and three resonant modes of fml, fm2, and fm3 are realized, and the relative bandwidth can be Achieve 86.9%, achieving broadband performance.
  • FIG. 5 is a schematic diagram showing simulation results of reflection coefficients of the L0 parameter of the three-mode wideband stepped slot antenna of the present invention. As can be seen from Fig. 5, by adjusting the width L0 of the first rectangular cutout 211, independent tuning of fm2 can be achieved, so that fm2 is the fundamental resonant frequency of the slot resonator.
  • FIG. 6 is a schematic diagram showing the simulation result of the reflection coefficient of the dl parameter of the three-mode wideband stepped slot antenna of the present invention.
  • Fig. 6 by adjusting the length dl of the vertical portion 32 of the L-shaped metal microstrip line, independent tuning of fm3 can be achieved, so that fm3 is produced by the virtual short-circuit slot resonator formed in the slit.
  • FIG. 7 is a schematic diagram showing the simulation results of the reflection coefficient of the W4 parameter of the three-mode wideband stepped slot antenna of the present invention.
  • the three-mode wideband stepped slot antenna 1 forms a new resonant frequency fml at a low frequency relative to a conventional slot antenna, which can be passed.
  • the length W4 of the fifth rectangular ridge 215 is adjusted to achieve tuning of fml.
  • the three-mode wideband stepped slot antenna of the present invention can realize the working frequency coverage of 1.15 GHz to 2.93 GHz by providing stepped hollow slot resonance, and can realize the three resonance modes of fml, fm2, and fm3 by using microstrip line feeding.
  • the three-mode wideband stepped slot antenna of the present invention can generate three resonant modes by providing stepped hollow slot resonance, and by using microstrip line feeding, which is more than the conventional dual mode slot antenna.
  • a resonant mode Compared with the conventional dual-mode slot antenna, the present invention can add a resonance mode, can generate three basic resonance modes, and realize a three-mode wideband stepped slot antenna.

Landscapes

  • Waveguide Aerials (AREA)

Abstract

本发明公开一种三模宽带阶梯型缝隙天线,包括介质板、镂空金属片、L形金属微带线和SMA头,所述镂空金属片贴合于所述介质板的上表面,所述L形金属微带线贴合于所述介质板的下表面;所述镂空金属片上刻蚀有阶梯型镂空缝隙,所述阶梯型镂空缝隙由第一矩形镂空、第二矩形镂空、第三矩形镂空、第四矩形镂空和第五矩形镂空依次连接构成;所述L形金属微带线的横部与所述介质板的下表面的长边平行,所述L形金属微带线的竖部与所述介质板的下表面的长边垂直;所述SMA头固设于所述介质板上,所述镂空金属片与SMA头的接地端电连接,所述L形金属微带线与SMA头的馈电端电连接。本发明相比于传统的缝隙天线,可以增加一个谐振模式,能够同时覆盖三个频率。

Description

三模宽带阶梯型缝隙天线 技术领域
[0001] 本发明涉及通信技术领域, 尤其涉及一种三模宽带阶梯型缝隙天线。
背景技术
[0002] 为了便于通信终端和射频识别系统的大规模推广应用, 终端或系统的经济成本 和体积大小都是至关重要的考虑因素, 作为其中重要部件的天线, 在保证较高 性能指标的前提下, 必须都需要多频化、 宽带化、 小型化。 对于传统的缝隙天 线, 利用微带线在缝隙边缘馈电吋, 能够产生两个基本谐振模式, 通过调谐这 两个基本谐振模式的频率间距, 可以实现宽带天线设计。 然而, 现有技术传统 的缝隙天线, 存在不能产生三个基本谐振模式的技术问题。
技术问题
[0003] 本发明的主要目的提供一种三模宽带阶梯型缝隙天线, 旨在解决现有的缝隙天 线不能产生三个基本谐振模式的技术问题。
问题的解决方案
技术解决方案
[0004] 为实现上述目的, 本发明提供了一种三模宽带阶梯型缝隙天线, 包括介质板、 镂空金属片、 L形金属微带线和 SMA头, 所述镂空金属片贴合于所述介质板的上 表面, 所述 L形金属微带线贴合于所述介质板的下表面; 所述镂空金属片上刻蚀 有阶梯型镂空缝隙, 所述阶梯型镂空缝隙由第一矩形镂空、 第二矩形镂空、 第 三矩形镂空、 第四矩形镂空和第五矩形镂空依次连接构成; 所述 L形金属微带线 的横部与所述介质板的下表面的长边平行, 所述 L形金属微带线的竖部与所述介 质板的下表面的长边垂直; 所述 SMA头固设于所述介质板上, 所述镂空金属片 与 SMA头的接地端电连接, 所述 L形金属微带线与 SMA头的馈电端电连接。
[0005] 优选的, 所述第一矩形镂空、 第二矩形镂空、 第三矩形镂空、 第四矩形镂空和 第五矩形镂空的宽边与所述介质板的上表面的宽边中轴线平行; 所述第一矩形 镂空、 第二矩形镂空、 第三矩形镂空、 第四矩形镂空和第五矩形镂空关于所述 宽边中轴线对称。
[0006] 优选的, 所述三模宽带阶梯型缝隙天线为长方体结构, 所述镂空金属片及 L形 金属微带线均为铜质。
[0007] 优选的, 所述介质板为 FR4的介质基板, 所述介质板的厚度为 0.8mm且介电常 数为 4.4。
[0008] 优选的, 所述介质板和镂空金属片的长度为 74mm, 所述介质板和镂空金属片 的宽度为 106mm; 所述第一矩形镂空的长度为 52mm, 所述第一矩形镂空的宽度 为 44mm; 所述第二矩形镂空的长度为 32mm, 所述第二矩形镂空的宽度为 6mm ; 所述第三矩形镂空的长度为 6.7mm, 所述第三矩形镂空的宽度为 10.5mm; 所 述第四矩形镂空的长度为 2.6mm, 所述第四矩形镂空的宽度为 17.7mm; 所述第 五矩形镂空的长度为 9.6mm, 所述第五矩形镂空的宽度为 1.5mm。
[0009] 优选的, 阶梯型镂空缝隙的下部长边与所述介质板的上表面的下部长边的距离 为 6.3mm。
[0010] 优选的, 所述 L形金属微带线的宽度为 1.32mm, 所述 L形金属微带线的横部的 长度为 27.6mm, 所述 L形金属微带线的竖部长度为 11.32mm。
[0011] 优选的, 所述 L形金属微带线的竖部与所述介质板的下表面的左边宽边的距离 为 20.4mm。
发明的有益效果
有益效果
[0012] 相较于现有技术, 本发明三模宽带阶梯型缝隙天线通过设置阶梯型镂空缝隙谐 振, 并且利用微带线馈电, 可以产生三个谐振模式, 比传统的双模缝隙天线多 一个谐振模式。 本发明相比于传统的双模缝隙天线, 可以增加一个谐振模式, 能够产生三个基本谐振模式, 实现三模宽带阶梯型缝隙天线。
对附图的简要说明
附图说明
[0013] 图 1是本发明三模宽带阶梯型缝隙天线优选实施例的结构示意图;
[0014] 图 2是本发明三模宽带阶梯型缝隙天线的镂空金属片优选实施例的结构示意图 [0015] 图 3是本发明三模宽带阶梯型缝隙天线的 L形金属微带线优选实施例的结构示意 图;
[0016] 图 4是本发明三模宽带阶梯型缝隙天线的反射系数仿真结果示意图;
[0017] 图 5是本发明三模宽带阶梯型缝隙天线 L0参数的反射系数仿真结果示意图; [0018] 图 6是本发明三模宽带阶梯型缝隙天线 dl参数的反射系数仿真结果示意图; [0019] 图 7是本发明三模宽带阶梯型缝隙天线 W4参数的反射系数仿真结果示意图。
[0020] 本发明目的实现、 功能特点及优点将结合实施例, 将在具体实施方式部分一并 参照附图做进一步说明。
实施该发明的最佳实施例
本发明的最佳实施方式
[0021] 为更进一步阐述本发明为达成上述目的所采取的技术手段及功效, 以下结合附 图及较佳实施例, 对本发明的具体实施方式、 结构、 特征及其功效进行详细说 明。 应当理解, 此处所描述的具体实施例仅仅用以解释本发明, 并不用于限定 本发明。
[0022] 参照图 1所示, 图 1是本发明三模宽带阶梯型缝隙天线优选实施例的平面结构示 意图。 在本实施例中, 三模宽带阶梯型缝隙天线 1, 包括介质板 10、 镂空金属片 20、 L形金属微带线 30和 SMA (Sub-Miniature-A) 头 40。 所述三模宽带阶梯型缝 隙天线 1为长方体结构 (图 1中仅示出了平面示意图) , 所述镂空金属片 20及 L形 金属微带线 30均为铜质。 所述介质板 10为 FR4的介质基板, 所述介质板 10厚度为 0.8mm且介电常数优选为 4.4。 所述 SMA头 40为同轴连接器。 所述镂空金属片 20 贴合于所述介质板 10的上表面, 所述 L形金属微带线 30贴合于所述介质板 10的下 表面; 所述镂空金属片 20上刻蚀有阶梯型镂空缝隙 21, 所述阶梯型镂空缝隙 21 由第一矩形镂空 211、 第二矩形镂空 212、 第三矩形镂空 213、 第四矩形镂空 214 和第五矩形镂空 215依次连接构成; 所述 L形金属微带线的横部 31与所述介质板 1 0的下表面的长边平行, 所述 L形金属微带线的竖部 32与所述介质板 10的下表面 的长边垂直; 所述 SMA头 40穿设于所述介质板 10上, 所述镂空金属片 20与 SMA 头 40的接地端电连接, 所述 L形金属微带线 30与 SMA头 40的馈电端电连接。
[0023] 作为本发明的优选实施例, 所述 L形金属微带线的竖部 32延伸至所述介质板 10 的下表面的底部长边, 所述 SMA头 40设置于所述 L形金属微带线的竖部 32与所述 介质板 10的下表面的底部长边相交位置的介质板 10上, 形成第一馈电端口。
[0024] 本发明三模宽带阶梯型缝隙天线通过设置阶梯型镂空缝隙谐振, 并且利用微带 线馈电, 可以产生三个谐振模式, 比传统的双模缝隙天线多一个谐振模式。 因 此, 本发明相比于传统的双模缝隙天线, 可以增加一个谐振模式, 能够产生三 个基本谐振模式, 实现三模宽带阶梯型缝隙天线。
[0025] 参照图 2所示, 图 2是三模宽带阶梯型缝隙天线的镂空金属片优选实施例的结构 示意图。 在本实施例中, 所述第一矩形镂空 211、 第二矩形镂空 212、 第三矩形 镂空 213、 第四矩形镂空 214和第五矩形镂空 215的宽边与所述介质板 10的上表面 的宽边中轴线平行; 所述第一矩形镂空 211、 第二矩形镂空 212、 第三矩形镂空 2 13、 第四矩形镂空 214和第五矩形镂空 214关于所述宽边中轴线对称。
[0026] 所述介质板 10和镂空金属片 20的长度 W为 74mm, 所述介质板 10和镂空金属片 2 0的宽度 L为 106mm; 所述第一矩形镂空 211的长度 W0为 52mm, 所述第一矩形镂 空 211的宽度 L0为 44mm; 所述第二矩形镂空 212的长度 W1为 32mm, 所述第二矩 形镂空 212的宽度 L1为 6mm; 所述第三矩形镂空 213的长度 W2为 6.7mm, 所述第 三矩形镂空 213的宽度 L2为 10.5mm; 所述第四矩形镂空 214的长度 W3为 2.6mm, 所述第四矩形镂空 214的宽度 L3为 17.7mm; 所述第五矩形镂空 215的长度 W4为 9. 6mm, 所述第五矩形镂空 215的宽度 L4为 1.5mm。 所述阶梯型镂空缝隙 21的下部 长边与所述介质板 10的上表面的下部长边的距离 dx为 6.3mm。
[0027] 参照图 3所示, 图 3是三模宽带阶梯型缝隙天线的 L形金属微带线优选实施例的 结构示意图。 所述 L形金属微带线 30的宽度 WP1为 1.32mm, 所述 L形金属微带线 的横部 31的长度 d2为 27.6mm, 所述 L形金属微带线的竖部 32的长度 dl为 11.32mm 。 所述 L形金属微带线的竖部 32与所述介质板 10的下表面的左边宽边的距离 dO为 20.4mm。
[0028] 参考图 4所示, 图 4是本发明三模宽带阶梯型缝隙天线的反射系数仿真结果示意 图。 从图 4可以看出, 所述三模宽带阶梯型缝隙天线 1的反射系数在 -10dB以下, 工作频率可以覆盖 1.15GHz到 2.93GHz, 实现了 fml、 fm2、 fm3三个谐振模式, 相对带宽可以达到 86.9%, 实现宽带性能。 [0029] 参考图 5所示, 图 5是本发明三模宽带阶梯型缝隙天线 L0参数的反射系数仿真结 果示意图。 从图 5中可以看出, 通过调节所述第一矩形镂空 211的宽度 L0, 可以 实现对 fm2的独立调谐, 因此可知 fm2为该缝隙谐振器的基本谐振频率。
[0030] 参考图 6所示, 图 6是本发明三模宽带阶梯型缝隙天线 dl参数的反射系数仿真结 果示意图。 从图 6中可以看出, 通过调节 L形金属微带线的竖部 32的长度 dl, 可 以实现对 fm3的独立调谐, 因此可知 fm3是由缝隙中形成的虚拟短路缝隙谐振器 产生。
[0031] 参考图 7所示, 图 7是本发明三模宽带阶梯型缝隙天线 W4参数的反射系数仿真 结果示意图。 从图 7中可以看出, 通过调节所述第五矩形镂空 215的长度 W4, 该 三模宽带阶梯型缝隙天线 1在低频处相对于传统的缝隙天线形成了一个新的谐振 频率 fml, 可以通过调节所述第五矩形镂 215的长度 W4来实现对 fml的调谐。
[0032] 本发明三模宽带阶梯型缝隙天线通过设置阶梯型镂空缝隙谐振, 并且利用微带 线馈电, 可实现工作频率覆盖 1.15GHz到 2.93GHz, 实现了 fml、 fm2、 fm3三个 谐振模式, 相对带宽可以达到 86.9%, 实现宽带性能的阶梯型缝隙天线。
[0033] 以上仅为本发明的优选实施例, 并非因此限制本发明的专利范围, 凡是利用本 发明说明书及附图内容所作的等效结构或等效功能变换, 或直接或间接运用在 其他相关的技术领域, 均同理包括在本发明的专利保护范围内。
工业实用性
[0034] 相较于现有技术, 本发明三模宽带阶梯型缝隙天线通过设置阶梯型镂空缝隙谐 振, 并且利用微带线馈电, 可以产生三个谐振模式, 比传统的双模缝隙天线多 一个谐振模式。 本发明相比于传统的双模缝隙天线, 可以增加一个谐振模式, 能够产生三个基本谐振模式, 实现三模宽带阶梯型缝隙天线。

Claims

权利要求书
一种三模宽带阶梯型缝隙天线, 包括介质板、 镂空金属片、 L形金属 微带线和 SMA头, 其特征在于: 所述镂空金属片贴合于所述介质板 的上表面, 所述 L形金属微带线贴合于所述介质板的下表面; 所述镂 空金属片上刻蚀有阶梯型镂空缝隙, 所述阶梯型镂空缝隙由第一矩形 镂空、 第二矩形镂空、 第三矩形镂空、 第四矩形镂空和第五矩形镂空 依次连接构成; 所述 L形金属微带线的横部与所述介质板的下表面的 长边平行, 所述 L形金属微带线的竖部与所述介质板的下表面的长边 垂直; 所述 SMA头固设于所述介质板上, 所述镂空金属片与 SMA头 的接地端电连接, 所述 L形金属微带线与 SMA头的馈电端电连接。 如权利要求 1所述的三模宽带阶梯型缝隙天线, 其特征在于, 所述第 一矩形镂空、 第二矩形镂空、 第三矩形镂空、 第四矩形镂空和第五矩 形镂空的宽边与所述介质板的上表面的宽边中轴线平行; 所述第一矩 形镂空、 第二矩形镂空、 第三矩形镂空、 第四矩形镂空和第五矩形镂 空关于所述宽边中轴线对称。
如权利要求 1所述的三模宽带阶梯型缝隙天线, 其特征在于, 所述三 模宽带阶梯型缝隙天线为长方体结构, 所述镂空金属片及 L形金属微 带线均为铜质。
如权利要求 1所述的三模宽带阶梯型缝隙天线, 其特征在于, 所述介 质板为 FR4的介质基板, 所述介质板的厚度为 0.8mm且介电常数为 4.4
[权利要求 5] 如权利要求 1-4任一项所述的三模宽带阶梯型缝隙天线, 其特征在于
, 所述介质板和镂空金属片的长度为 74mm, 所述介质板和镂空金属 片的宽度为 106mm; 所述第一矩形镂空的长度为 52mm, 所述第一矩 形镂空的宽度为 44mm; 所述第二矩形镂空的长度为 32mm, 所述第 二矩形镂空的宽度为 6mm; 所述第三矩形镂空的长度为 6.7mm, 所述 第三矩形镂空的宽度为 10.5mm; 所述第四矩形镂空的长度为 2.6mm , 所述第四矩形镂空的宽度为 17.7mm; 所述第五矩形镂空的长度为 9. 6mm, 所述第五矩形镂空的宽度为 1.5mm。
如权利要求 5所述的三模宽带阶梯型缝隙天线, 其特征在于, 所述阶 梯型镂空缝隙的下部长边与所述介质板的上表面的下部长边的距离为 6.3mm。
如权利要求 6所述的三模宽带阶梯型缝隙天线, 其特征在于, 所述 L 形金属微带线的宽度为 1.32mm, 所述 L形金属微带线的横部的长度为 27.6mm, 所述 L形金属微带线的竖部长度为 11.32mm。
如权利要求 7所述的三模宽带阶梯型缝隙天线, 其特征在于, 所述 L 形金属微带线的竖部与所述介质板的下表面的左边宽边的距离为 20.4
PCT/CN2017/101988 2017-04-07 2017-09-16 三模宽带阶梯型缝隙天线 WO2018184358A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710225833.1 2017-04-07
CN201710225833.1A CN107146945A (zh) 2017-04-07 2017-04-07 三模宽带阶梯型缝隙天线

Publications (1)

Publication Number Publication Date
WO2018184358A1 true WO2018184358A1 (zh) 2018-10-11

Family

ID=59774600

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/101988 WO2018184358A1 (zh) 2017-04-07 2017-09-16 三模宽带阶梯型缝隙天线

Country Status (2)

Country Link
CN (1) CN107146945A (zh)
WO (1) WO2018184358A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107146945A (zh) * 2017-04-07 2017-09-08 深圳市景程信息科技有限公司 三模宽带阶梯型缝隙天线
CN206673107U (zh) * 2017-04-07 2017-11-24 深圳市景程信息科技有限公司 利用微带线馈电的三模宽带阶梯型缝隙天线
CN110474161A (zh) * 2019-09-29 2019-11-19 集美大学 一种缝隙加载微带结构的超宽带天线

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101345345A (zh) * 2008-09-09 2009-01-14 南京邮电大学 超宽带半折叠对跖缝隙天线及其制作方法
CN202585734U (zh) * 2012-06-08 2012-12-05 天津职业技术师范大学 一种小型三频段印刷天线
CN203312460U (zh) * 2013-04-12 2013-11-27 惠州硕贝德无线科技股份有限公司 一种多模共形缝隙天线
JP2014150433A (ja) * 2013-02-01 2014-08-21 Mitsubishi Electric Corp 積層構造
CN104241827A (zh) * 2014-09-18 2014-12-24 厦门大学 一种多频兼容叠层微带天线
CN107146945A (zh) * 2017-04-07 2017-09-08 深圳市景程信息科技有限公司 三模宽带阶梯型缝隙天线

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101697380A (zh) * 2009-10-09 2010-04-21 清华大学 用于无线局域网移动终端的双极化内置槽天线
CN105680165A (zh) * 2014-11-20 2016-06-15 中国航空工业集团公司雷华电子技术研究所 一种辐射器
CN106486763B (zh) * 2016-11-24 2023-09-26 华南理工大学 一种小型超宽带mimo直线渐变式缝隙天线

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101345345A (zh) * 2008-09-09 2009-01-14 南京邮电大学 超宽带半折叠对跖缝隙天线及其制作方法
CN202585734U (zh) * 2012-06-08 2012-12-05 天津职业技术师范大学 一种小型三频段印刷天线
JP2014150433A (ja) * 2013-02-01 2014-08-21 Mitsubishi Electric Corp 積層構造
CN203312460U (zh) * 2013-04-12 2013-11-27 惠州硕贝德无线科技股份有限公司 一种多模共形缝隙天线
CN104241827A (zh) * 2014-09-18 2014-12-24 厦门大学 一种多频兼容叠层微带天线
CN107146945A (zh) * 2017-04-07 2017-09-08 深圳市景程信息科技有限公司 三模宽带阶梯型缝隙天线

Also Published As

Publication number Publication date
CN107146945A (zh) 2017-09-08

Similar Documents

Publication Publication Date Title
CN105896071B (zh) 双极化振子单元、天线及多频天线阵列
US20220239004A1 (en) Antenna Apparatus and Mobile Terminal
WO2014206111A1 (zh) 多天线系统及移动终端
JP2007089234A (ja) アンテナ
KR100449396B1 (ko) 패치 안테나 및 그것을 이용한 전자 기기
WO2018184357A1 (zh) 可重构的斧形双模单极子天线
CN108631057B (zh) 带有滤波特性的八木天线
JPH11251825A (ja) 多周波共振型逆f型アンテナ
CN110233349B (zh) 多输入多输出天线及终端设备
WO2018184358A1 (zh) 三模宽带阶梯型缝隙天线
CN108574138A (zh) 结构紧凑型微带馈电的谐波抑制宽带贴片天线
WO2018184356A1 (zh) 斧形双模单极子天线
CN114039208A (zh) 一种多频段缝隙耦合天线
WO2018184354A1 (zh) 高隔离度双极化宽频天线
JP2002524953A (ja) アンテナ
WO2018184355A1 (zh) 可重构的高隔离度双极化宽频天线
CN111541018A (zh) 一种高增益陡峭滤波融合双工集成天线
WO2006011459A1 (ja) パッチアンテナ及びパッチアンテナの製造方法
WO2018184370A1 (zh) 利用微带线馈电的三模宽带阶梯型缝隙天线
CN111463562B (zh) 一种具备滤波效果的超宽带差分馈电pifa天线
US6765537B1 (en) Dual uncoupled mode box antenna
CN112582790B (zh) 天线系统
EP3657602A1 (en) Antenna structure
CN109449582B (zh) 一种低剖面宽带滤波天线
CN108134190B (zh) 基于磁性薄膜材料的多频段智能手机天线

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17904960

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17904960

Country of ref document: EP

Kind code of ref document: A1