WO2018230952A1 - Novel polypeptide having turanose production activity and method for producing turanose using same - Google Patents

Novel polypeptide having turanose production activity and method for producing turanose using same Download PDF

Info

Publication number
WO2018230952A1
WO2018230952A1 PCT/KR2018/006677 KR2018006677W WO2018230952A1 WO 2018230952 A1 WO2018230952 A1 WO 2018230952A1 KR 2018006677 W KR2018006677 W KR 2018006677W WO 2018230952 A1 WO2018230952 A1 WO 2018230952A1
Authority
WO
WIPO (PCT)
Prior art keywords
amino acid
polypeptide
turanose
acid sequence
seq
Prior art date
Application number
PCT/KR2018/006677
Other languages
French (fr)
Korean (ko)
Inventor
양성재
이영미
김성보
Original Assignee
씨제이제일제당 (주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 씨제이제일제당 (주) filed Critical 씨제이제일제당 (주)
Publication of WO2018230952A1 publication Critical patent/WO2018230952A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1048Glycosyltransferases (2.4)
    • C12N9/1051Hexosyltransferases (2.4.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/02Monosaccharides
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/04Polysaccharides, i.e. compounds containing more than five saccharide radicals attached to each other by glycosidic bonds
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/12Disaccharides
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/18Preparation of compounds containing saccharide radicals produced by the action of a glycosyl transferase, e.g. alpha-, beta- or gamma-cyclodextrins
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y204/00Glycosyltransferases (2.4)
    • C12Y204/01Hexosyltransferases (2.4.1)
    • C12Y204/01004Amylosucrase (2.4.1.4)

Definitions

  • the present application relates to a polypeptide having an activity of converting sucrose to turanose, a variant polypeptide thereof, and a method for producing turanose using the same.
  • Turanose is an isomer of sucrose, ⁇ -D-glucopyranosyl- (1 ⁇ 3) - ⁇ D-fructopira containing glucose and fructose units linked via ⁇ (1 ⁇ 3) bonds. North [ ⁇ -D-glucopyranosyl- (1 ⁇ 3) - ⁇ -D-fructopyranose].
  • Turanos have a sweetness of about half (about 0.5) of sucrose sweetness (about 1), can be easily crystallized, has high solubility and low cariogenicity, and can be applied to food as a sugar substitute.
  • Turanose is also of interest in the pharmaceutical and diagnostic fields as it is an inhibitor of ⁇ -glucosidase useful for the diagnosis of Pompe's disease.
  • turanose is present in the honey in very small amounts of 0% to 3%, so an alternative method for industrial production is required.
  • the present inventors have diligently researched to develop a polypeptide having an activity of converting into turanose having heat resistance, and as a result, the polypeptide of the present application was found to have activity of converting sucrose into turanose while having heat resistance.
  • the present application was completed by obtaining a variant polypeptide with further improved turanose conversion activity.
  • One object of the present application is to provide a polypeptide having the activity of converting sucrose to turanose comprising an amino acid sequence having at least 85% homology with the amino acid sequence of SEQ ID NO: 1.
  • a variant polypeptide comprising one or more amino acid variations in the amino acid sequence of SEQ ID NO: 1, wherein said amino acid variant is one Glycine (G: Glycine) amino acid residue from the N-terminus of the polypeptide comprising the amino acid sequence of SEQ ID NO: 1 It is to provide a variant polypeptide having the activity of converting sucrose to turanose, including those substituted with the above other amino acids.
  • Another object of the present application is to provide a polynucleotide encoding the polypeptide or variant polypeptide.
  • Another object of the present application is to provide a vector comprising a polynucleotide of the present application.
  • Another object of the present application is to provide a recombinant microorganism comprising the polynucleotide or the vector.
  • Another object of the present application to a polypeptide comprising an amino acid sequence having an amino acid sequence of at least 85% homology with the amino acid sequence of SEQ ID NO: 1, a microorganism expressing the polypeptide, or a composition for producing a turanose comprising a culture of the microorganism To provide.
  • Another object of the present application is to contact a sucrose to a polypeptide consisting of a sequence consisting of an amino acid sequence having at least 85% identity with an amino acid sequence of SEQ ID NO: 1, a microorganism expressing the polypeptide, or a culture of the microorganism, To provide a method for producing turanose, comprising the step of converting sucrose to turanose.
  • the present application has the advantage of enabling the industrial production of turanose by newly proposing a heat resistant polypeptide and a variant polypeptide thereof having the activity of converting sucrose to turanose.
  • 1A to 1D show the results of confirming the turanose production activity of MRF, MRF + G392T, MRF + G392E, and MRF + G392A, respectively.
  • 3A and 3B show the results of activity evaluation according to pH of MRF and MRF + G392A, respectively.
  • One aspect of the present application for achieving the object of the present application provides a polypeptide having the activity of converting sucrose to turanos comprising an amino acid sequence having at least 85% homology with the amino acid sequence of SEQ ID NO: 1 It is.
  • the polypeptide of the present application may include, but is not limited to, the amino acid sequence of SEQ ID NO: 1 or an amino acid sequence having at least 80% homology or identity thereto.
  • the polypeptide may include SEQ ID NO: 1 and polypeptides having at least 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% homology or identity with SEQ ID NO: 1.
  • An amino acid sequence having homology or identity may exclude sequences having 100% identity in the above categories or may be sequences having less than 100% identity.
  • polypeptide having a can be used as a polypeptide of the present application.
  • variant polypeptide comprising at least one amino acid variation in the amino acid sequence of SEQ ID NO: 1, wherein the amino acid variation is the 392th glycine from the N-terminus of the polypeptide comprising the amino acid sequence of SEQ ID NO: 1 (G: Glycine) It is to provide a variant polypeptide having the activity of converting sucrose to turanose, wherein the amino acid residue is substituted with one or more other amino acids.
  • the variant polypeptide is sucrose, in which the 392th glycine amino acid in the amino acid sequence of SEQ ID NO: 1 is substituted with threonine (T: Threonine), glutamic acid (E: Glutamic acid) or alanine (A: Alanine) It may be a variant polypeptide having the activity of converting to, but is not limited thereto. Such variant polypeptides have enhanced activity in converting sucrose to turanose as compared to the polypeptide consisting of the amino acid sequence of SEQ ID NO: 1.
  • polypeptide having the activity of converting sucrose to turanose refers to a variant polypeptide having the activity of converting sucrose to turanose, a turanose producing variant polypeptide, a variant polypeptide that produces turanose It can be used in combination with a variant amylosucrase, amylosucrase variant and the like.
  • the variant polypeptide may be composed of the amino acid sequence of SEQ ID NO: 3, 5 or 7.
  • the variant polypeptide may include, but is not limited to, an amino acid sequence of SEQ ID NO: 3, 5, or 7 or an amino acid sequence having at least 80% homology or identity thereto.
  • the variant polypeptide of the present application has at least 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% homology or identity with SEQ ID NO: 3, 5 or 7 And polypeptides.
  • polypeptide has an amino acid sequence having such homology or identity and exhibits a potency corresponding to the polypeptide, it is obvious that a protein having an amino acid sequence in which some sequences are deleted, modified, substituted or added is also included within the scope of the present application. .
  • variant polypeptide refers to a culture or individual that exhibits one stable phenotypic change, genetically or non-genetically, and specifically in the present application, one or more amino acid sequences derived from Corynebacterium glutamicum It refers to a variant polypeptide whose amino acid is mutated and its activity is weakened compared to wild type, so that the carbon flow is efficiently balanced.
  • the variant polypeptide is a polypeptide having an activity of converting sucrose to turanose, a variant polypeptide having activity of converting sucrose to turanose, a variant amylosucrase, amylosucra It can be used interchangeably as the first variant.
  • the 'variant' may be used interchangeably with terms such as variant, mutated protein, and variant polypeptide, and in English, it may be used as variant, modification, modified protein, modified polypeptide, mutant, mutein, divergent, etc. As long as the term is used in a mutated sense, it is not limited thereto.
  • homology refers to the degree of relevance to two given amino acid sequences or base sequences and can be expressed as a percentage. In this specification, homologous sequences thereof having the same or similar activity as a given amino acid sequence or base sequence are designated as "% homology".
  • identity refers to the degree of agreement between amino acid or nucleotide sequences, and in some cases determined by the match between strings of such sequences.
  • sequence homology or identity of conserved polynucleotides or polypeptides is determined by standard alignment algorithms, and the default gap penalty established by the program used may be used together.
  • Substantially, homologous or identical polynucleotides or polypeptides generally have a medium stringency or along at least about 50%, 60%, 70%, 80% or 90% of all or the full-length of the target polynucleotide or polypeptide. Will hybrid at high stringency.
  • polynucleotides containing degenerate codons instead of codons in the hybridizing polynucleotides are also contemplated.
  • any two polynucleotide or polypeptide sequences are at least for example 50%, 55%, 60%, 65% 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98 Whether having% or 99% homology or identity is described, for example, in Pearson et al (1988) [Proc. Natl. Acad. Sci. USA 85]: can be determined using known computer algorithms such as the " FASTA " program using default parameters such as at 2444. Or in the needle-only program of the EMBOSS package (EMBOSS: The European Molecular Biology Open Software Suite, Rice et al., 2000, Trends Genet.
  • Needleman-Wunsch algorithm (Needleman and Wunsch, 1970, J. Mol. Biol. 48: 443-453), as can be determined, can be determined.
  • GCG program package (Devereux, J., et al, Nucleic Acids Research 12: 387 (1984)), BLASTP, BLASTN, FASTA (Atschul, [S.] [F.,] [ET AL, J MOLEC BIOL 215] 403 (1990); including Guide to Huge Computers, Martin J. Bishop, [ED.,] Academic Press, San Diego, 1994, and CARILLO ETA /. (1988) SIAM J Applied Math 48: 1073).
  • homology or identity can be determined using BLAST, or ClustalW, of the National Biotechnology Information Database Center.
  • the homology or identity of a polynucleotide or polypeptide is described, for example, in Smith and Waterman, Adv. Appl. As known in Math (1981) 2: 482, for example, Needleman et al. (1970), J Mol Biol. 48: 443, and can be determined by comparing the sequence information using a GAP computer program.
  • the GAP program defines the total number of symbols in the shorter of the two sequences, divided by the number of similarly arranged symbols (ie, nucleotides or amino acids).
  • the default parameters for the GAP program are (1) a binary comparison matrix (containing 1 for identity and 0 for non-identity) and Schwartz and Dayhoff, eds., Atlas Of Protein Sequence And Structure, National Biomedical Research Foundation, pp. As disclosed by 353-358 (1979), Gribskov et al (1986) Nucl. Acids Res. 14: weighted comparison matrix of 6745 (or EDNAFULL (EMBOSS version of NCBI NUC4.4) substitution matrix); (2) a penalty of 3.0 for each gap and an additional 0.10 penalty for each symbol in each gap (or gap opening penalty 10, gap extension penalty 0.5); And (3) no penalty for the end gap.
  • the term “homology” or “identity” refers to a comparison between polypeptides or polynucleotides.
  • variant polypeptide having a homologous or homologous polypeptide having a amino acid sequence in which the 392th amino acid is replaced with another amino acid from the N-terminus in the amino acid sequence of SEQ ID NO. 1 by codon degeneracy can also be included.
  • probes which can be prepared from known gene sequences, for example, hydride under stringent conditions with complementary sequences for all or part of the nucleotide sequence, wherein the 392th amino acid in the amino acid sequence of SEQ ID NO: 1 is threonine
  • Any polynucleotide sequence encoding a variant polypeptide having the activity of a variant polypeptide consisting of an amino acid sequence selected from the group substituted with (T: Threonine), Glutamic acid (E: Glutamic acid) or Alanine (A: Alanine) May be included.
  • Polypeptides of the present application or variant polypeptides of the present application may have heat resistance.
  • the term "heat resistance” means that the thermal stability of the variant polypeptide is increased. Specifically, by the heat resistance, the enzyme reaction is possible at high temperature, and the solubility of the substrate may be increased in the high temperature reaction process. As the substrate solubility increases, it is possible to use a high concentration of the substrate, and the productivity may be improved by shortening the reaction time by increasing the diffusion rate or the reaction rate of the material. In addition, process contamination due to external microorganisms can be minimized.
  • microorganisms can be used as a sterile microbial cells using heat resistance properties. Specifically, not only can the microorganisms be effectively sterilized by heat treatment at a high temperature, but also if the polypeptide is to be separated and used, the proteins derived from the recombinant microorganism can be selectively denatured and removed, thereby improving the purification process of the polypeptide. There are advantages to it.
  • the polypeptide or variant polypeptide may maintain at least 75% of its activity before the heat treatment when heat treated at 50 ° C. to 70 ° C. for 0.5 hour to 24 hours. More specifically, the polypeptide can maintain at least 100% of the activity before the heat treatment at 50 °C to 70 °C heat treatment for 0.5 hours to 24 hours. In addition, the variant polypeptide can maintain at least 85% of the activity before the heat treatment at 50 °C to 60 °C heat treatment for 0.5 hours to 24 hours. In addition, the variant polypeptide can maintain at least 85% of the activity before the heat treatment at 50 °C to 70 °C heat treatment for 0.5 hours to 9 hours.
  • the variant polypeptide wherein the glycine (G) amino acid residue 392 from the N- terminal of the polypeptide consisting of the amino acid sequence of SEQ ID NO: 1 mutated to threonine (T) is 0.5 hours to 50 °C to 70 °C 95% or more of the activity before the heat treatment at 24 hours, or 0.5% to 9 hours at 50 °C to 70 °C heat treatment can maintain at least 98% of the activity before the heat treatment.
  • alanine (A) from the N-terminal end of the polypeptide consisting of the amino acid sequence of SEQ ID NO: 1 at 50 °C to 60 °C 0.5 hour to 24 hours heat treatment
  • At least 100% of the activity before the heat treatment at least 90% of the activity before the heat treatment at 50 ° C. to 70 ° C. for 0.5 hours to 9 hours, or at the time of the heat treatment at 50 ° C. to 70 ° C. for 0.5 hours to 3 hours. It can maintain at least 100% activity.
  • the polypeptide of the present application is Meiothermus lupus. rufus ) may be derived from, but is not limited thereto.
  • Another aspect of the present application is to provide a polynucleotide encoding the polypeptide or variant polypeptide.
  • polynucleotide is a polymer of nucleotides in which nucleotide monomers are long chained by covalent bonds, and are DNA or RNA strands of a predetermined length or more, and more specifically, the polypeptide or variant. By polynucleotide fragment encoding a polypeptide.
  • Polynucleotides of the present application may include base sequences that encode amino acid sequences of polypeptides or variant polypeptides of the present application due to genetic code degeneracy.
  • the polynucleotide encoding a variant polypeptide having the activity of converting sucrose of the present application to Turanose if the polynucleotide sequence encoding a variant polypeptide having the activity of converting sucrose of the present application to Turanose May be included without limitation.
  • the polynucleotide of the present application may be modified in various ways in the coding region without changing the amino acid sequence of the polypeptide due to the degeneracy of the codon or in consideration of the codon preferred in the organism in which the polypeptide is to be expressed. This can be done.
  • Any amino acid sequence 392 in the amino acid sequence of SEQ ID 1 may be included without limitation as long as it is a polynucleotide sequence encoding a variant polypeptide substituted with another amino acid.
  • a variant polypeptide of the present application may be, but is not limited to, a polynucleotide sequence encoding the variant polypeptide.
  • the polynucleotide of the present application is at least 80%, at least 85%, at least 90% of the polynucleotide consisting of the nucleotide sequence of SEQ ID NO: 2, 4, 6 or 8, or the nucleotide sequence of SEQ ID NO: 2, 4, 6 or 8 Polynucleotide consisting of a base sequence having at least%, at least 95%, at least 97%, at least 99% homology or identity, but is not limited thereto.
  • a probe can be prepared from a known gene sequence, for example, a polypeptide encoded by a polynucleotide that hybridizes under stringent conditions with complementary sequences to all or part of the nucleotide sequence encoding the polypeptide. Any polypeptide having the activity of converting the cross to turanose can be included without limitation.
  • stringent conditions are meant conditions that enable specific hybridization between polynucleotides. Such conditions are described specifically in the literature (eg, J. Sambrook et al., Homology). For example, genes with high homology or identity are hybridized with genes having at least 80%, at least 85%, at least 90%, at least 95%, at least 97%, or at least 99% homology or identity.
  • Hybridization requires that two polynucleotides have complementary sequences, although mismatch between bases is possible depending on the stringency of the hybridization.
  • complementary is used to describe the relationship between nucleotide bases that can hybridize with each other. For example, with respect to DNA, adenosine is complementary to thymine and cytosine is complementary to guanine.
  • the present application may also include isolated polynucleotide fragments that are complementary to the entire sequence as well as substantially similar polynucleotide sequences.
  • polynucleotides having homology or identity can be detected using hybridization conditions comprising a hybridization step at a Tm value of 55 ° C. and using the conditions described above.
  • the Tm value may be 60 ° C, 63 ° C or 65 ° C, but is not limited thereto and may be appropriately adjusted by those skilled in the art according to the purpose.
  • Polypeptides or variant polypeptides consisting of the amino acid sequence of SEQ ID NO: 1, 3, 5 or 7 of the present application may be encoded by the polynucleotide sequence of SEQ ID NO: 2, 4, 6 or 8, respectively.
  • Another aspect of the present application is to provide a vector comprising a polynucleotide of the present application.
  • the term "vector” refers to a DNA preparation containing a nucleotide sequence of a polynucleotide encoding said target protein operably linked to a suitable regulatory sequence such that the target protein can be expressed in a suitable host.
  • the regulatory sequence may comprise a promoter capable of initiating transcription, any operator sequence for regulating such transcription, a sequence encoding a suitable mRNA ribosomal binding site, and a sequence regulating termination of transcription and translation. After being transformed into a suitable host cell, the vector can be replicated or function independent of the host genome and integrated into the genome itself.
  • the vector used in the present application is not particularly limited as long as it can replicate in a host cell, and any vector known in the art may be used.
  • Examples of commonly used vectors include natural or recombinant plasmids, cosmids, viruses and bacteriophages.
  • pWE15, M13, MBL3, MBL4, IXII, ASHII, APII, t10, t11, Charon4A, Charon21A, etc. can be used as a phage vector or cosmid vector, and pBR-based, pUC-based, pBluescriptII-based, etc. , pGEM-based, pTZ-based, pCL-based and pET-based and the like can be used.
  • pDZ pACYC177, pACYC184, pCL, pECCG117, pUC19, pBR322, pMW118, pCC1BAC vector and the like
  • the vector usable in the present application is not particularly limited and known expression vectors may be used.
  • a polynucleotide encoding a desired variant polypeptide in a chromosome may be replaced with a mutated polynucleotide through a vector for intracellular chromosome insertion. Insertion of the polynucleotide into the chromosome can be made by any method known in the art, such as, but not limited to, homologous recombination.
  • the method may further include a selection marker for checking whether the chromosome is inserted.
  • the selection marker is for selecting cells transformed with the vector, i.e., confirming the insertion of the nucleic acid molecule of interest, and selectable phenotypes such as drug resistance, nutritional requirements, resistance to cytotoxic agents or expression of surface variant polypeptides.
  • the present application is to provide a microorganism that produces a purine nucleotide comprising the variant polypeptide, or comprising a polynucleotide encoding the variant polypeptide.
  • a microorganism comprising a variant polypeptide and / or a polynucleotide encoding the variant polypeptide may be a microorganism prepared by transformation with a vector comprising a polynucleotide encoding a variant polypeptide, but is not limited thereto. .
  • operably linked means that the polynucleotide sequence is functionally linked with a promoter sequence for initiating and mediating the transcription of a polynucleotide encoding a target protein of the present application.
  • Operable linkages can be prepared using known genetic recombination techniques, and site-specific DNA cleavage and ligation can be made using, but are not limited to, cleavage and ligation enzymes in the art.
  • Another aspect of the present application is to provide a recombinant microorganism comprising a polynucleotide of the present application or a vector of the present application.
  • the recombination may be achieved by transformation.
  • transformation in the present application means introducing a vector comprising a polynucleotide encoding a target protein into a host cell so that the protein encoded by the polynucleotide in the host cell can be expressed.
  • the transformed polynucleotides may include all of them, as long as they can be expressed in the host cell, either inserted into the chromosome of the host cell or located outside the chromosome.
  • the polynucleotide also includes DNA and RNA encoding the target protein.
  • the polynucleotide may be introduced in any form as long as it can be expressed by being introduced into a host cell.
  • the polynucleotide may be introduced into a host cell in the form of an expression cassette, which is a gene construct containing all the elements necessary for its expression.
  • the expression cassette may include a promoter, a transcription termination signal, a ribosomal binding site, and a translation termination signal, which are typically operably linked to the polynucleotide.
  • the expression cassette may be in the form of an expression vector capable of self replication.
  • the polynucleotide may be introduced into the host cell in its own form and operably linked with a sequence required for expression in the host cell, but is not limited thereto.
  • the transformation method may include any method of introducing a polynucleotide into a cell, and may be performed by selecting a suitable standard technique as known in the art depending on the host cell. For example, electroporation, calcium phosphate (Ca (H 2 PO 4 ) 2 , CaHPO 4 , or Ca 3 (PO 4 ) 2 ) precipitation, calcium chloride (CaCl 2 ) precipitation, microinjection, Polyethylene glycol (PEG) method, DEAE-dextran method, cationic liposome method, lithium acetate-DMSO method and the like, but is not limited thereto.
  • a suitable standard technique as known in the art depending on the host cell. For example, electroporation, calcium phosphate (Ca (H 2 PO 4 ) 2 , CaHPO 4 , or Ca 3 (PO 4 ) 2 ) precipitation, calcium chloride (CaCl 2 ) precipitation, microinjection, Polyethylene glycol (PEG) method, DEAE-dextran method,
  • the host cell or microorganism of the present application may be any microorganism capable of producing turanose from sucrose, including the polynucleotide of the present application or the vector of the present application.
  • Recombinant microorganism of the present application is a microorganism capable of expressing a polypeptide or a mutant polypeptide having the activity of converting sucrose of the present application to turanose by various known methods, in addition to the introduction of the polynucleotide of the present application or the vector of the present application. It can contain everything.
  • recombinant microorganisms of the present application are CJ_Mrf_AS (KCCM11939P), E. coli BL21 (DE3) / MRF + G392T (KCCM12113P), E. coli BL21 (DE3) / MRF + G392E (KCCM12112P) and E. coli BL21 (DE3) / MRF + G392A (KCCM12111P)
  • the present application provides a polypeptide comprising an amino acid sequence having at least 85% homology with the amino acid sequence of SEQ ID NO: 1, a microorganism expressing the polypeptide, or a culture comprising the microorganism. It is to provide a composition for producing lanose.
  • the composition for producing turanose may comprise a polypeptide consisting of the amino acid sequence of SEQ ID NO: 1.
  • the present application provides a variant polypeptide comprising at least one amino acid variation in the amino acid sequence of SEQ ID NO: 1, a microorganism expressing the variant polypeptide, or a culture comprising the microorganism.
  • a composition for producing lanose, wherein the amino acid variation comprises glycan (G) amino acid residue 392 substituted at least one other amino acid from the N-terminus of the polypeptide comprising the amino acid sequence of SEQ ID NO: 1, wherein the composition for producing turanose To provide.
  • the composition is not limited thereto as long as it is involved in the production of turanose.
  • composition may further include sucrose, but is not limited thereto.
  • composition of the present application may further comprise any suitable excipient commonly used in the composition for producing the turanose.
  • excipients may be, for example, but not limited to, preservatives, wetting agents, dispersants, suspending agents, buffers, stabilizers or isotonic agents.
  • the present application is directed to a polypeptide comprising an amino acid sequence having at least 85% homology with the amino acid sequence of SEQ ID NO: 1, sucrose to a microorganism expressing the polypeptide, or a culture of the microorganism.
  • a polypeptide comprising an amino acid sequence having at least 85% homology with the amino acid sequence of SEQ ID NO: 1, sucrose to a microorganism expressing the polypeptide, or a culture of the microorganism.
  • the method for producing turanose may include a polypeptide consisting of the amino acid sequence of SEQ ID NO: 1.
  • the present application is a variant polypeptide comprising one or more amino acid variations in the amino acid sequence of SEQ ID NO: 1, a microorganism expressing the variant polypeptide, or a culture comprising the microorganism
  • a composition for producing lanose wherein the amino acid variation comprises glycan (G) amino acid residue 392 substituted at least one other amino acid from the N-terminus of the polypeptide comprising the amino acid sequence of SEQ ID NO: 1, wherein the composition for producing turanose To provide.
  • the composition is not limited thereto as long as it is involved in the production of turanose.
  • the contact may be carried out at pH 5.0 to 9.0 conditions, 40 °C to 80 °C temperature conditions, and / or 0.5 hours to 24 hours, but is not limited thereto.
  • the contact of the present application may be performed at pH 6.0 to pH 9.0, pH 7.0 to pH 9.0, pH 5.0 to pH 8.0, pH 6.0 to pH 8.0, pH 7.0 to pH 8.0.
  • the contact of the present application is 45 °C to 80 °C, 50 °C to 80 °C, 55 °C to 80 °C, 60 °C to 80 °C, 40 °C to 75 °C, 45 °C to 75 °C, 50 °C to 75 °C, 55 °C to 75 °C, 60 °C to 75 °C, 40 °C to 70 °C, 45 °C to 70 °C, 50 °C to 70 °C, 55 °C to 70 °C, 60 °C to 70 °C, 40 °C to 65 °C, 45 °C to It may be carried out at 65 °C, 50 °C to 65 °C, 55 °C to 65 °C, 40 °C to 60 °C, 45 °C to 60 °C or 50 °C to 60 °C temperature conditions.
  • the contact of the present application is 0.5 hours to 24 hours, 0.5 hours to 12 hours, 0.5 hours to 6 hours, 1 hour to 24 hours, 1 hour to 12 hours, 1 hour to 6 hours, 3 For hours to 24 hours, for 3 hours to 12 hours, for 3 hours to 6 hours, for 6 hours to 48 hours, for 6 hours to 36 hours, for 6 hours to 24 hours.
  • the culture of the microorganism may be prepared from the step of culturing the microorganism expressing the polypeptide or variant polypeptide of the present application in the medium.
  • the term "culture” means growing the microorganisms under appropriately controlled environmental conditions. Cultivation of the present application can be carried out according to the appropriate medium and culture conditions known in the art. Such culture can be easily adjusted and used by those skilled in the art according to the strain selected. Specifically, the culture of the present application may be carried out by a known batch culture method, continuous culture method, fed-batch culture method, but is not limited thereto.
  • the culture conditions are not particularly limited thereto, but using a basic compound (eg, sodium hydroxide, potassium hydroxide or ammonia) or an acidic compound (eg, phosphoric acid or sulfuric acid), an appropriate pH (eg, pH 5 to pH 9, specific) PH 6 to pH 8, most specifically pH 6.8) can be adjusted.
  • a basic compound eg, sodium hydroxide, potassium hydroxide or ammonia
  • an acidic compound eg, phosphoric acid or sulfuric acid
  • pH eg, pH 5 to pH 9, specific
  • PH 6 to pH 8 most specifically pH 6.8
  • antifoaming agents such as fatty acid polyglycol esters can be used to suppress bubble formation, and in order to maintain the aerobic state of the culture, oxygen or oxygen-containing gas is injected into the culture, or anaerobic and microaerobic conditions are maintained. To maintain, it can be injected with no gas or with nitrogen, hydrogen or carbon dioxide gas.
  • the culture temperature may be maintained at 20 °C to 45 °C, specifically 25 °C to 40 °C, can be incubated for about 0.5 hours to 160 hours, but is not limited thereto.
  • Polypeptides or variant polypeptides of the present application produced by the culture may be secreted into the medium or remain in cells.
  • the culture medium used may include sugars and carbohydrates (e.g. glucose, sucrose, lactose, fructose, maltose, molasses, starch and cellulose), fats and fats (e.g. soybean oil, sunflower seeds) as carbon sources.
  • sugars and carbohydrates e.g. glucose, sucrose, lactose, fructose, maltose, molasses, starch and cellulose
  • fats and fats e.g. soybean oil, sunflower seeds
  • fatty acids e.g. palmitic acid, stearic acid and linoleic acid
  • alcohols e.g. glycerol and ethanol
  • organic acids e.g. acetic acid
  • Nitrogen sources include nitrogen-containing organic compounds such as peptone, yeast extract, gravy, malt extract, corn steep liquor, soybean meal and urea, or inorganic compounds such as ammonium sulfate, ammonium chloride, ammonium phosphate, ammonium carbonate and Ammonium nitrate) and the like can be used individually or in combination, but is not limited thereto.
  • a source of phosphorus potassium dihydrogen phosphate, dipotassium hydrogen phosphate, a corresponding sodium-containing salt, and the like may be used individually or in combination, but is not limited thereto.
  • the medium may also contain essential growth-promoting substances such as other metal salts (eg magnesium sulfate or iron sulfate), amino acids and vitamins.
  • the preparation method of the present application may further comprise the step of separating and / or purifying the manufactured turanose.
  • the separation and / or purification may use a method commonly used in the art of the present application. Non-limiting examples include dialysis, precipitation, adsorption, electrophoresis, ion exchange chromatography, fractional crystallization, and the like.
  • the purification may be carried out in only one method, or may be performed in combination of two or more methods.
  • the production method of the present application may further comprise the step of performing the decolorization and / or desalting before or after the separation and / or purification step.
  • the preparation method of the present application may further comprise the step of crystallizing the turanose after the step of converting, separating and / or purifying, or decolorizing and / or desalting into the turanose of the present application.
  • the crystallization can be carried out using a conventionally used crystallization method.
  • crystallization may be performed using a cooling crystallization method.
  • the production method of the present application may further comprise the step of concentrating the turanose before the step of crystallization.
  • the concentration can increase the crystallization efficiency.
  • the preparation method of the present application is a microorganism or microorganism expressing the unreacted sucrose polypeptide or variant polypeptide, the polypeptide or variant polypeptide of the present application after the separation and / or purification step of the present application
  • the method may further include contacting the culture of the mother solution, reusing the mother liquor from which the crystals are separated after the crystallization of the present application to the separation and / or purification steps, or a combination thereof.
  • turanose can be obtained in higher yield, and the amount of discarded sucrose can be reduced, which is an economic advantage.
  • PCR was performed at 94 ° C for 2 minutes, 94 ° C for 30 seconds, followed by annealing at 60 ° C for 30 seconds, followed by extension at 72 ° C for 10 minutes, and repeated 30 times at 72 ° C for 60 minutes.
  • the primer was prepared by using a primer of 33bp consisting of the base 15bp of the substitution site, the base 3bp (RMG) of the substitution site, 15bp of the back base of the substitution site, the primer sequence is as described in Table 2 below.
  • Each recombinant vector prepared in Examples 1-1 and 1-2 was transformed into E. coli BL21 (DE3) (invitrogen) by heat shock transformation (Sambrook and Russell: Molecular cloning, 2001) to recombinant microorganisms After the preparation, it was used by storing frozen in 50% glycerol.
  • the recombinant microorganisms are named CJ_Mrf_AS, E. coli BL21 (DE3) / MRF + G392T, E. coli BL21 (DE3) / MRF + G392E, and E. coli BL21 (DE3) / MRF + G392A, respectively, and are under the international treaty of Budapest.
  • KCCM Korean Culture Center of Microorganisms
  • Deposit No. KCCM11939P deposited on November 22, 2016
  • KCCM12113P deposited on September 13, 2017
  • KCCM12112P September 13, 2017
  • Daily deposit KCCM12111P
  • Example 1 Inoculated in the liquid medium and spawn culture until the absorbance at 600 nm was 2.0. The culture after seed culture was inoculated into LB liquid medium to carry out the main culture, and when the absorbance at 600 nm reached 2.0, 0.5 mM IPTG was added to induce recombinant polypeptide and mutant polypeptide expression.
  • the seed culture and the stirring speed of the main culture were 200 rpm, and the incubation temperature was maintained at 37 ° C. After the incubation, the culture medium was recovered by centrifuging the culture solution at 8,000 ⁇ g for 20 minutes at 4 ° C., and the recovered cells were washed twice with 50 mM phosphate buffer (pH 7.5), and then suspended in the same buffer solution. The cells were disrupted using an ultrasonic cell crusher.
  • the cell lysate was centrifuged at 13,000 ⁇ g for 20 minutes at 4 ° C., and then only the supernatant was taken, using His-tag affinity chromatography, purified polypeptides from each recombinant microorganism, MRF and purified variant polypeptides MRF + G392T, MRF + G392E and MRF + G392A were obtained.
  • the purified polypeptides were dialyzed with 50 mM phosphate buffer (pH 7.5) and used for activity analysis.
  • Example 3 of recombinant polypeptides and variant polypeptides Turanos Conversion activity analysis
  • MRF, MRF + G392T, MRF + G392E and MRF + G392A all have the activity of converting sucrose to turanos. Specifically, MRF produced 60 g / l, MRF + G392T produced 100.7 g / l, MRF + G392E produced 100.3 g / l, and MRF + G392A produced 123.6 g / l of Turanose. All of them had better turanose conversion activity than wild type MRF. In particular, it was confirmed that MRF + G392A has at least 200% conversion activity of the wild type under the same reaction conditions (Table 3 and FIGS. 1A-1D).
  • each purified polypeptide was added to a 50 mM potassium phosphate (pH 7.5) buffer containing 10% (w / v) sucrose, followed by 40 [deg.] C., 45 [deg.] C., 50 After reacting at 1 ° C., 55 ° C., 60 ° C., 65 ° C., 70 ° C., and 75 ° C. for 1 hour, turanose was analyzed by HPLC in the same manner as in Example 3.
  • MRF showed maximum activity at 55 ° C, MRF + G392T, MRF + G392E and MRF + G392A at 65 ° C.
  • each purified polypeptide was heat-treated at 50 ° C., 60 ° C. and 70 ° C. for 24 hours, and then the turanose conversion activity was measured. Activity was added to 50 mM potassium phosphate (pH 7.5) buffer containing 10% (w / v) sucrose, and 0.1 unit / ml of each of the heat treated polypeptides was reacted at 55 ° C. for 1 hour. Turanose was analyzed by HPLC in the same manner as in Example 3.
  • MRF remained active even after 24 hours under all heat treatment conditions (Table 5 and FIG. 4A).
  • MRF + G392E was confirmed to maintain more than 89% of the activity at 24 °C or more after 24 hours at 50 °C and 60 °C heat treatment conditions, 79% or more after 24 hours at 70 °C heat treatment conditions (Table 5 and Figure 4d).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Biophysics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Enzymes And Modification Thereof (AREA)

Abstract

The present application relates to a polypeptide having an activity of converting sucrose into turanose, a mutant polypeptide thereof, a polynucleotide encoding the polypeptide or the mutant polypeptide, a vector comprising the polynucleotide, and a recombinant microorganism comprising the polynucleotide or the vector, and a method for producing turanose using the same.

Description

투라노스 생산 활성을 가지는 신규한 폴리펩티드 및 이를 이용한 투라노스 제조방법Novel polypeptide having turanose production activity and method for producing turanose using same
본 출원은 수크로스를 투라노스로 전환시키는 활성을 가지는 폴리펩티드, 이의 변이형 폴리펩티드 및 이를 이용한 투라노스 제조방법에 관한 것이다. The present application relates to a polypeptide having an activity of converting sucrose to turanose, a variant polypeptide thereof, and a method for producing turanose using the same.
투라노스(turanose)는 수크로스(sucrose)의 이성질체로서, α(1→3) 결합을 통해 연결된 글루코스 단위와 과당 단위를 포함한 α-D-글루코피라노실-(1→3)-αD-프럭토피라노스[α-D-glucopyranosyl-(1→3)-α-D-fructopyranose]이다.Turanose is an isomer of sucrose, α-D-glucopyranosyl- (1 → 3) -αD-fructopira containing glucose and fructose units linked via α (1 → 3) bonds. North [α-D-glucopyranosyl- (1 → 3) -α-D-fructopyranose].
투라노스는 수크로스 감미도(약 1)의 절반 정도(약 0.5)의 감미도를 가지며, 용이하게 결정화될 수 있고, 고용해성 및 낮은 우식원성(cariogenicity)을 가져 설탕 대체제로 식품에 적용이 가능하다. 또한, 투라노스는 폼페병(Pompe's disease)의 진단에 유용한 α-글루코시다제의 억제제인바 제약 분야 및 진단 분야에서의 관심 대상이다. 그러나 투라노스는 0% 내지 3%의 매우 적은 양으로 벌꿀에 존재하는바, 이를 산업적으로 생산하기 위한 대체 방법이 요구된다.Turanos have a sweetness of about half (about 0.5) of sucrose sweetness (about 1), can be easily crystallized, has high solubility and low cariogenicity, and can be applied to food as a sugar substitute. Turanose is also of interest in the pharmaceutical and diagnostic fields as it is an inhibitor of α-glucosidase useful for the diagnosis of Pompe's disease. However, turanose is present in the honey in very small amounts of 0% to 3%, so an alternative method for industrial production is required.
종래 네이세리아 폴리사카레아(Neisseria polysaccharea) 유래 효소를 사용하여 수크로스를 투라노스로 전환시키는 방법이 제안되었으나(Wang et al, 2012, Food Chemistry, 132, 773-779; 대한민국 등록특허 제10-1177218호), 내열성 효소가 아닌바 산업적 생산에 적용이 어려운 문제점이 있었다.Conventionally, a method for converting sucrose to turanose using an enzyme derived from Neisseria polysaccharea has been proposed (Wang et al, 2012, Food Chemistry , 132, 773-779; Korean Patent No. 10-1177218). Ho), because it is not a heat-resistant enzyme, there was a problem that is difficult to apply to industrial production.
본 발명자들은 내열성을 가진 투라노스로 전환시키는 활성을 가지는 폴리펩티드를 개발하기 위하여 예의 연구 노력한 결과, 본 출원의 폴리펩티드가 내열성을 가지면서 수크로스를 투라노스로 전환시키는 활성을 가짐을 확인하고, 이에 더하여 투라노스 전환 활성이 더욱 향상된 변이형 폴리펩티드를 확보함으로써 본 출원을 완성하였다.The present inventors have diligently researched to develop a polypeptide having an activity of converting into turanose having heat resistance, and as a result, the polypeptide of the present application was found to have activity of converting sucrose into turanose while having heat resistance. The present application was completed by obtaining a variant polypeptide with further improved turanose conversion activity.
본 출원의 하나의 목적은 서열번호 1의 아미노산 서열과 85% 이상의 상동성을 가지는 아미노산 서열을 포함하는 수크로스를 투라노스로 전환시키는 활성을 가지는, 폴리펩티드를 제공하는 것이다.One object of the present application is to provide a polypeptide having the activity of converting sucrose to turanose comprising an amino acid sequence having at least 85% homology with the amino acid sequence of SEQ ID NO: 1.
본 출원의 다른 목적은 Another purpose of this application is
서열번호 1의 아미노산 서열 내 하나 이상의 아미노산 변이를 포함하는 변이형 폴리펩티드로서, 상기 아미노산 변이는 서열번호 1의 아미노산 서열을 포함하는 폴리펩티드의 N-말단으로부터 392번째 글리신(G: Glycine) 아미노산 잔기가 하나 이상의 다른 아미노산으로 치환된 것을 포함하는, 수크로스를 투라노스로 전환시키는 활성을 가지는 변이형 폴리펩티드 를 제공하는 것이다.A variant polypeptide comprising one or more amino acid variations in the amino acid sequence of SEQ ID NO: 1, wherein said amino acid variant is one Glycine (G: Glycine) amino acid residue from the N-terminus of the polypeptide comprising the amino acid sequence of SEQ ID NO: 1 It is to provide a variant polypeptide having the activity of converting sucrose to turanose, including those substituted with the above other amino acids.
본 출원의 또 다른 목적은 상기 폴리펩티드 또는 변이형 폴리펩티드를 코딩하는 폴리뉴클레오티드를 제공하는 것이다.Another object of the present application is to provide a polynucleotide encoding the polypeptide or variant polypeptide.
본 출원의 또 다른 목적은 본 출원의 폴리뉴클레오티드를 포함하는 벡터를 제공하는 것이다.Another object of the present application is to provide a vector comprising a polynucleotide of the present application.
본 출원의 또 다른 목적은 상기 폴리뉴클레오티드 또는 상기 벡터를 포함하는 재조합 미생물을 제공하는 것이다.Another object of the present application is to provide a recombinant microorganism comprising the polynucleotide or the vector.
본 출원의 또 다른 목적은 서열번호 1의 아미노산 서열과 85% 이상의 상동성을 가지는 아미노산 서열을 포함하는 폴리펩티드, 상기 폴리펩티드를 발현하는 미생물, 또는 상기 미생물의 배양물을 포함하는 투라노스 생산용 조성물을 제공하는 것이다. Another object of the present application to a polypeptide comprising an amino acid sequence having an amino acid sequence of at least 85% homology with the amino acid sequence of SEQ ID NO: 1, a microorganism expressing the polypeptide, or a composition for producing a turanose comprising a culture of the microorganism To provide.
본 출원의 또 다른 목적은 서열번호 1의 아미노산 서열과 85% 이상의 동일성을 가지는 아미노산 서열로 이루어진 서열로 이루어진 폴리펩티드, 상기 폴리펩티드를 발현하는 미생물, 또는 상기 미생물의 배양물에 수크로스를 접촉시켜, 상기 수크로스를 투라노스로 전환하는 단계를 포함하는, 투라노스 제조방법을 제공하는 것이다.Another object of the present application is to contact a sucrose to a polypeptide consisting of a sequence consisting of an amino acid sequence having at least 85% identity with an amino acid sequence of SEQ ID NO: 1, a microorganism expressing the polypeptide, or a culture of the microorganism, To provide a method for producing turanose, comprising the step of converting sucrose to turanose.
본 출원은 수크로스를 투라노스로 전환시키는 활성을 가지는 내열성 폴리펩티드 및 이의 변이형 폴리펩티드를 새롭게 제안함으로써, 투라노스의 산업적 제조를 가능하게 한 이점이 있다. The present application has the advantage of enabling the industrial production of turanose by newly proposing a heat resistant polypeptide and a variant polypeptide thereof having the activity of converting sucrose to turanose.
도 1a 내지 1d는 각각 MRF, MRF+G392T, MRF+G392E 및 MRF+G392A의 투라노스 생산 활성을 확인한 결과이다.1A to 1D show the results of confirming the turanose production activity of MRF, MRF + G392T, MRF + G392E, and MRF + G392A, respectively.
도 2는 MRF, MRF+G392T, MRF+G392E 및 MRF+G392A의 온도에 따른 활성 평가 결과이다.2 is a result of activity evaluation according to the temperature of MRF, MRF + G392T, MRF + G392E and MRF + G392A.
도 3a 및 3b는 각각 MRF, 및 MRF+G392A의 pH에 따른 활성 평가 결과이다.3A and 3B show the results of activity evaluation according to pH of MRF and MRF + G392A, respectively.
이하에서는, 본 출원을 더욱 상세히 설명한다. In the following, the present application will be described in more detail.
한편, 본 출원에서 개시되는 각각의 설명 및 실시형태는 각각의 다른 설명 및 실시 형태에도 적용될 수 있다. 즉, 본 출원에서 개시된 다양한 요소들의 모든 조합이 본 출원의 범주에 속한다. 또한, 하기 기술되는 구체적인 서술에 의하여 본 출원의 범주가 제한된다고 할 수 없다.In addition, each description and embodiment disclosed in this application can be applied also to each other description and embodiment. That is, all combinations of the various elements disclosed in this application are within the scope of the present application. In addition, the scope of this application is not limited by the specific description described below.
또한, 당해 기술분야의 통상의 지식을 가진 자는 통상의 실험만을 사용하여 본 출원에 기재된 본 출원의 특정 양태에 대한 다수의 등가물을 인지하거나 확인할 수 있다. 또한, 이러한 등가물은 본 출원에 포함되는 것으로 의도된다.In addition, one of ordinary skill in the art can recognize or ascertain a number of equivalents to certain aspects of the present application described in this application using conventional experiments only. Also, such equivalents are intended to be included in this application.
본 출원의 목적을 달성하기 위한 본 출원의 하나의 양태는, 서열번호 1의 아미노산 서열과 85% 이상의 상동성을 가지는 아미노산 서열을 포함하는 수크로스를 투라노스로 전환시키는 활성을 가지는, 폴리펩티드를 제공하는 것이다.One aspect of the present application for achieving the object of the present application provides a polypeptide having the activity of converting sucrose to turanos comprising an amino acid sequence having at least 85% homology with the amino acid sequence of SEQ ID NO: 1 It is.
본 출원의 폴리펩티드는, 서열번호 1의 아미노산 서열 또는 이와 80% 이상의 상동성 또는 동일성을 갖는 아미노산 서열을 포함할 수 있으나, 이에 제한되는 것은 아니다. 구체적으로 상기 폴리펩티드는 서열번호 1 및 상기 서열번호 1과 적어도 80%, 85%, 90%, 95%, 96%, 97%, 98%, 또는 99% 이상의 상동성 또는 동일성을 가지는 폴리펩티드를 포함할 수 있다. 상동성 또는 동일성을 갖는 아미노산 서열은 상기 범주 중 100% 동일성을 갖는 서열은 제외되거나, 100% 미만의 동일성을 갖는 서열일 수 있다. 또한, 이러한 상동성 또는 동일성을 가지며 상기 폴리펩티드에 상응하는 효능(즉, 수크로스를 투라노스로 전환시키는 활성)을 나타내는 아미노산 서열을 가지는 폴리펩티드라면, 일부 서열이 결실, 변형, 치환 또는 부가된 아미노산 서열을 갖는 폴리펩티드도 본 출원의 폴리펩티드로 사용될 수 있음은 자명하다.The polypeptide of the present application may include, but is not limited to, the amino acid sequence of SEQ ID NO: 1 or an amino acid sequence having at least 80% homology or identity thereto. Specifically, the polypeptide may include SEQ ID NO: 1 and polypeptides having at least 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% homology or identity with SEQ ID NO: 1. Can be. An amino acid sequence having homology or identity may exclude sequences having 100% identity in the above categories or may be sequences having less than 100% identity. In addition, if the polypeptide has such homology or identity and has an amino acid sequence that exhibits an efficacy corresponding to the polypeptide (ie, the activity of converting sucrose to turanose), the amino acid sequence of which some sequences are deleted, modified, substituted or added It is apparent that a polypeptide having a can be used as a polypeptide of the present application.
본 출원의 다른 하나의 양태는, 서열번호 1의 아미노산 서열 내 하나 이상의 아미노산 변이를 포함하는 변이형 폴리펩티드로서, 상기 아미노산 변이는 서열번호 1의 아미노산 서열을 포함하는 폴리펩티드의 N-말단으로부터 392번째 글리신(G: Glycine) 아미노산 잔기가 하나 이상의 다른 아미노산으로 치환된 것을 포함하는, 수크로스를 투라노스로 전환시키는 활성을 가지는 변이형 폴리펩티드 를 제공하는 것이다.Another aspect of the present application is a variant polypeptide comprising at least one amino acid variation in the amino acid sequence of SEQ ID NO: 1, wherein the amino acid variation is the 392th glycine from the N-terminus of the polypeptide comprising the amino acid sequence of SEQ ID NO: 1 (G: Glycine) It is to provide a variant polypeptide having the activity of converting sucrose to turanose, wherein the amino acid residue is substituted with one or more other amino acids.
상기 변이형 폴리펩티드는 서열번호 1의 아미노산 서열에서 상기 392번째 글리신 아미노산이 쓰레오닌(T: Threonine), 글루타민산(E: Glutamic acid) 또는 알라닌(A: Alanine)으로 치환된, 수크로스를 투라노스로 전환시키는 활성을 가지는 변이형 폴리펩티드일 수 있으나, 이에 제한되는 것은 아니다. 이와 같은 변이형 폴리펩티드는 상기 서열번호 1의 아미노산 서열로 이루어진 폴리펩티드에 비해 수크로스를 투라노스로 전환시키는 활성이 강화된 특징을 갖는다. The variant polypeptide is sucrose, in which the 392th glycine amino acid in the amino acid sequence of SEQ ID NO: 1 is substituted with threonine (T: Threonine), glutamic acid (E: Glutamic acid) or alanine (A: Alanine) It may be a variant polypeptide having the activity of converting to, but is not limited thereto. Such variant polypeptides have enhanced activity in converting sucrose to turanose as compared to the polypeptide consisting of the amino acid sequence of SEQ ID NO: 1.
본 출원에서 용어, "수크로스를 투라노스로 전환시키는 활성을 가지는 폴리펩티드"는 수크로스를 투라노스로 전환시키는 활성을 가지는 변이형 폴리펩티드, 투라노스 생산 변이형 폴리펩티드, 투라노스를 생산하는 변이형 폴리펩티드, 변이형 아밀로수크라제, 아밀로수크라제 변이체 등과 혼용되어 사용될 수 있다. As used herein, the term "polypeptide having the activity of converting sucrose to turanose" refers to a variant polypeptide having the activity of converting sucrose to turanose, a turanose producing variant polypeptide, a variant polypeptide that produces turanose It can be used in combination with a variant amylosucrase, amylosucrase variant and the like.
구체적으로, 상기 변이형 폴리펩티드는 서열번호 3, 5 또는 7의 아미노산 서열로 이루어진 것일 수 있다. 또한, 상기 변이형 폴리펩티드는 서열번호 3, 5 또는 7의 아미노산 서열 또는 이와 80% 이상의 상동성 또는 동일성을 갖는 아미노산 서열을 포함할 수 있으나, 이에 제한되는 것은 아니다. 구체적으로 본 출원의 상기 변이형 폴리펩티드는 서열번호 3, 5 또는 7과 적어도 80%, 85%, 90%, 95%, 96%, 97%, 98%, 또는 99% 이상의 상동성 또는 동일성을 가지는 폴리펩티드를 포함할 수 있다. 또한, 이러한 상동성 또는 동일성을 가지며 상기 폴리펩티드에 상응하는 효능을 나타내는 아미노산 서열을 가지는 폴리펩티드라면, 일부 서열이 결실, 변형, 치환 또는 부가된 아미노산 서열을 갖는 단백질도 본 출원의 범위 내에 포함됨은 자명하다.Specifically, the variant polypeptide may be composed of the amino acid sequence of SEQ ID NO: 3, 5 or 7. In addition, the variant polypeptide may include, but is not limited to, an amino acid sequence of SEQ ID NO: 3, 5, or 7 or an amino acid sequence having at least 80% homology or identity thereto. Specifically, the variant polypeptide of the present application has at least 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% homology or identity with SEQ ID NO: 3, 5 or 7 And polypeptides. In addition, as long as the polypeptide has an amino acid sequence having such homology or identity and exhibits a potency corresponding to the polypeptide, it is obvious that a protein having an amino acid sequence in which some sequences are deleted, modified, substituted or added is also included within the scope of the present application. .
본 출원에서 용어, "변이형 폴리펩티드"는 유전적 또는 비유전적으로 하나의 안정적인 표현형적 변화를 나타내는 배양물이나 개체를 뜻하며, 구체적으로 본 출원에서는 코리네박테리움 글루타미쿰 유래의 아미노산 서열상에서 하나 이상의 아미노산이 변이되어 그 활성이 야생형과 비교하여 약화되어 탄소흐름이 효율적으로 균형을 이루는 변이형 폴리펩티드를 의미한다. 본 출원의 목적상 상기 변이형 폴리펩티드는 수크로스를 투라노스로 전환시키는 활성을 가지는 폴리펩티드, 수크로스를 투라노스로 전환시키는 활성을 가지는 변이형 폴리펩티드, 변이형 아미로수크라제, 아밀로수크라제 변이체로 혼용되어 사용될 수 있다. As used herein, the term “variant polypeptide” refers to a culture or individual that exhibits one stable phenotypic change, genetically or non-genetically, and specifically in the present application, one or more amino acid sequences derived from Corynebacterium glutamicum It refers to a variant polypeptide whose amino acid is mutated and its activity is weakened compared to wild type, so that the carbon flow is efficiently balanced. For the purposes of the present application, the variant polypeptide is a polypeptide having an activity of converting sucrose to turanose, a variant polypeptide having activity of converting sucrose to turanose, a variant amylosucrase, amylosucra It can be used interchangeably as the first variant.
또한, 상기 '변이형'은 변이체, 변이된 단백질, 변이형 폴리펩티드 등의 용어로 혼용될 수 있으며, 영문 표현으로는 variant, modification, modified protein, modified polypeptide, mutant, mutein, divergent 등으로 사용될 수 있으나, 변이된 의미로 사용되는 용어라면 이에 제한되지 않는다.In addition, the 'variant' may be used interchangeably with terms such as variant, mutated protein, and variant polypeptide, and in English, it may be used as variant, modification, modified protein, modified polypeptide, mutant, mutein, divergent, etc. As long as the term is used in a mutated sense, it is not limited thereto.
또한, 본 출원에서 '특정 서열번호로 기재된 아미노산 서열을 갖는 단백질 또는 폴리펩티드'라고 기재되어 있다 하더라도, 해당 서열번호의 아미노산 서열로 이루어진 폴리펩티드와 동일 혹은 상응하는 활성을 가지는 경우라면, 일부 서열이 결실, 변형, 치환 또는 부가된 아미노산 서열을 갖는 단백질도 본 출원에서 사용될 수 있음은 자명하다. 예를 들어, 상기 변이형 폴리펩티드와 동일 혹은 상응하는 활성을 가지는 경우라면 특정 활성을 부여하는 상기 특정 392번째 변이 이외에 해당 서열번호의 아미노산 서열 앞뒤의 무의미한 서열 추가 또는 자연적으로 발생할 수 있는 돌연변이, 혹은 이의 잠재성 돌연변이 (silent mutation)를 제외하는 것이 아니며, 이러한 서열 추가 혹은 돌연변이를 가지는 경우에도 본원의 범위 내에 속하는 것이 자명하다. In addition, even if it is described as 'a protein or polypeptide having an amino acid sequence described by a specific sequence number' in the present application, if the sequence having the same or corresponding activity as the polypeptide consisting of the amino acid sequence of the sequence number, some sequences are deleted, It is apparent that proteins having modified, substituted or added amino acid sequences can also be used in the present application. For example, in the case of having the same or corresponding activity as that of the variant polypeptide, in addition to the specific 392th mutation that confers a specific activity, a meaningless sequence before or after the amino acid sequence of the corresponding SEQ ID number or a naturally occurring mutation, or its It is not intended to exclude latent mutations, and to have such sequence additions or mutations is obviously within the scope of the present application.
상기 "상동성"은 두 개의 주어진 아미노산 서열 또는 염기 서열과 관련성 정도를 의미하며 백분율로 표시될 수 있다. 본 명세서에서, 주어진 아미노산 서열 또는 염기 서열과 동일하거나 유사한 활성을 가지는 그의 상동성 서열이 "% 상동성"으로 표시된다. The term “homology” refers to the degree of relevance to two given amino acid sequences or base sequences and can be expressed as a percentage. In this specification, homologous sequences thereof having the same or similar activity as a given amino acid sequence or base sequence are designated as "% homology".
또한, 상기 "동일성"은 아미노산 또는 뉴클레오티드 서열 사이의 일치하는 정도를 의미하며, 경우에 따라서는 그러한 서열의 스트링 사이의 일치에 의해 결정된다.In addition, "identity" refers to the degree of agreement between amino acid or nucleotide sequences, and in some cases determined by the match between strings of such sequences.
용어 "상동성" 및 "동일성"은 종종 상호교환적으로 이용될 수 있다. The terms "homology" and "identity" are often used interchangeably.
보존된 (conserved) 폴리뉴클레오티드 또는 폴리펩티드의 서열 상동성 또는 동일성은 표준 배열 알고리즘에 의해 결정되며, 사용되는 프로그램에 의해 확립된 디폴트 갭 페널티가 함께 이용될 수 있다. 실질적으로, 상동성 또는 동일성이 있는 폴리뉴클레오티드 또는 폴리펩티드는 일반적으로 모두 또는 타겟 폴리뉴클레오티드 또는 폴리펩티드의 전체-길이의 적어도 약 50%, 60%, 70%, 80% 또는 90%를 따라 중간 엄격도 또는 높은 엄격도에서 하이브리드할 것이다. 하이브리드하는 폴리뉴클레오티드에서 코돈 대신 축퇴 코돈을 함유하는 폴리뉴클레오티드 또한 고려된다.Sequence homology or identity of conserved polynucleotides or polypeptides is determined by standard alignment algorithms, and the default gap penalty established by the program used may be used together. Substantially, homologous or identical polynucleotides or polypeptides generally have a medium stringency or along at least about 50%, 60%, 70%, 80% or 90% of all or the full-length of the target polynucleotide or polypeptide. Will hybrid at high stringency. Also contemplated are polynucleotides containing degenerate codons instead of codons in the hybridizing polynucleotides.
임의의 두 폴리뉴클레오티드 또는 폴리펩티드 서열이 적어도 예를 들어, 50%, 55%, 60%, 65% 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98% 또는 99% 상동성 또는 동일성을 갖는지 여부는 예를 들어, Pearson et al (1988)[Proc. Natl. Acad. Sci. USA 85]: 2444에서와 같은 디폴트 파라미터를 이용하여 "FASTA" 프로그램과 같은 공지의 컴퓨터 알고리즘을 이용하여 결정될 수 있다. 또는, EMBOSS 패키지의 니들만 프로그램(EMBOSS: The European Molecular Biology Open Software Suite, Rice et al., 2000, Trends Genet. 16: 276-277)(바람직하게는, 버전 5.0.0 또는 이후 버전)에서 수행되는 바와 같은, 니들만-운치(Needleman-Wunsch) 알고리즘(Needleman and Wunsch, 1970, J. Mol. Biol. 48: 443-453)이 사용되어 결정될 수 있다. (GCG 프로그램 패키지 (Devereux, J., et al, Nucleic Acids Research 12: 387 (1984)), BLASTP, BLASTN, FASTA (Atschul, [S.] [F.,] [ET AL, J MOLEC BIOL 215]: 403 (1990); Guide to Huge Computers, Martin J. Bishop, [ED.,] Academic Press, San Diego,1994, 및 [CARILLO ETA/.](1988) SIAM J Applied Math 48: 1073을 포함한다). 예를 들어, 국립 생물공학 정보 데이터베이스 센터의 BLAST, 또는 ClustalW를 이용하여 상동성 또는 동일성을 결정할 수 있다. Any two polynucleotide or polypeptide sequences are at least for example 50%, 55%, 60%, 65% 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98 Whether having% or 99% homology or identity is described, for example, in Pearson et al (1988) [Proc. Natl. Acad. Sci. USA 85]: can be determined using known computer algorithms such as the " FASTA " program using default parameters such as at 2444. Or in the needle-only program of the EMBOSS package (EMBOSS: The European Molecular Biology Open Software Suite, Rice et al., 2000, Trends Genet. 16: 276-277) (preferably version 5.0.0 or later) Needleman-Wunsch algorithm (Needleman and Wunsch, 1970, J. Mol. Biol. 48: 443-453), as can be determined, can be determined. (GCG program package (Devereux, J., et al, Nucleic Acids Research 12: 387 (1984)), BLASTP, BLASTN, FASTA (Atschul, [S.] [F.,] [ET AL, J MOLEC BIOL 215] 403 (1990); including Guide to Huge Computers, Martin J. Bishop, [ED.,] Academic Press, San Diego, 1994, and CARILLO ETA /. (1988) SIAM J Applied Math 48: 1073). For example, homology or identity can be determined using BLAST, or ClustalW, of the National Biotechnology Information Database Center.
폴리뉴클레오티드 또는 폴리펩티드의 상동성 또는 동일성은 예를 들어, Smith and Waterman, Adv. Appl. Math (1981) 2:482 에 공지된 대로, 예를 들면, Needleman et al. (1970), J Mol Biol.48 : 443과 같은 GAP 컴퓨터 프로그램을 이용하여 서열 정보를 비교함으로써 결정될 수 있다. 요약하면, GAP 프로그램은 두 서열 중 더 짧은 것에서의 기호의 전체 수로, 유사한 배열된 기호(즉, 뉴클레오티드 또는 아미노산)의 수를 나눈 값으로 정의한다. GAP 프로그램을 위한 디폴트 파라미터는 (1) 일진법 비교 매트릭스(동일성을 위해 1 그리고 비-동일성을 위해 0의 값을 함유함) 및 Schwartz and Dayhoff, eds., Atlas Of Protein Sequence And Structure, National Biomedical Research Foundation, pp. 353-358 (1979)에 의해 개시된 대로, Gribskov et al(1986) Nucl. Acids Res. 14: 6745의 가중된 비교 매트릭스 (또는 EDNAFULL(NCBI NUC4.4의 EMBOSS 버전) 치환 매트릭스); (2) 각 갭을 위한 3.0의 페널티 및 각 갭에서 각 기호를 위한 추가의 0.10 페널티 (또는 갭 개방 패널티 10, 갭 연장 패널티 0.5); 및 (3) 말단 갭을 위한 무 페널티를 포함할 수 있다. 따라서, 본원에서 사용된 것으로서, 용어 "상동성" 또는 "동일성"은 폴리펩티드 또는 폴리뉴클레오티드 사이의 비교를 나타낸다.The homology or identity of a polynucleotide or polypeptide is described, for example, in Smith and Waterman, Adv. Appl. As known in Math (1981) 2: 482, for example, Needleman et al. (1970), J Mol Biol. 48: 443, and can be determined by comparing the sequence information using a GAP computer program. In summary, the GAP program defines the total number of symbols in the shorter of the two sequences, divided by the number of similarly arranged symbols (ie, nucleotides or amino acids). The default parameters for the GAP program are (1) a binary comparison matrix (containing 1 for identity and 0 for non-identity) and Schwartz and Dayhoff, eds., Atlas Of Protein Sequence And Structure, National Biomedical Research Foundation, pp. As disclosed by 353-358 (1979), Gribskov et al (1986) Nucl. Acids Res. 14: weighted comparison matrix of 6745 (or EDNAFULL (EMBOSS version of NCBI NUC4.4) substitution matrix); (2) a penalty of 3.0 for each gap and an additional 0.10 penalty for each symbol in each gap (or gap opening penalty 10, gap extension penalty 0.5); And (3) no penalty for the end gap. Thus, as used herein, the term “homology” or “identity” refers to a comparison between polypeptides or polynucleotides.
또한, 코돈 축퇴성 (codon degeneracy)에 의해 상기 서열번호 1의 아미노산 서열에서 N-말단으로부터 392번째 아미노산이 다른 아미노산으로 치환된 아미노산 서열로 이루어진 변이형 폴리펩티드 또는 이와 상동성 또는 동일성을 가지는 변이형 폴리펩티드로 번역될 수 있는 폴리뉴클레오티드 역시 포함될 수 있음은 자명하다. 또한 공지의 유전자 서열로부터 조제될 수 있는 프로브, 예를 들면, 상기 염기 서열의 전체 또는 일부에 대한 상보 서열과 엄격한 조건 하에 하이드리드화하여, 서열번호 1의 아미노산 서열에서 392번째 아미노산이 쓰레오닌(T: Threonine), 글루타민산(E: Glutamic acid) 또는 알라닌(A: Alanine)으로 치환된 군에서 선택되는 아미노산 서열로 이루어진 변이형 폴리펩티드의 활성을 가지는 변이형 폴리펩티드를 암호화하는 폴리뉴클레오티드 서열이라면 제한없이 포함될 수 있다.In addition, a variant polypeptide having a homologous or homologous polypeptide having a amino acid sequence in which the 392th amino acid is replaced with another amino acid from the N-terminus in the amino acid sequence of SEQ ID NO. 1 by codon degeneracy. Obviously, polynucleotides that can be translated into can also be included. In addition, probes which can be prepared from known gene sequences, for example, hydride under stringent conditions with complementary sequences for all or part of the nucleotide sequence, wherein the 392th amino acid in the amino acid sequence of SEQ ID NO: 1 is threonine Any polynucleotide sequence encoding a variant polypeptide having the activity of a variant polypeptide consisting of an amino acid sequence selected from the group substituted with (T: Threonine), Glutamic acid (E: Glutamic acid) or Alanine (A: Alanine) May be included.
본 출원의 폴리펩티드 또는 본 출원의 변이형 폴리펩티드는 내열성을 가질수 있다.Polypeptides of the present application or variant polypeptides of the present application may have heat resistance.
본 출원에서 사용된 용어 "내열성"은 변이형 폴리펩티드의 열안정성이 증가된 것을 의미한다. 구체적으로 상기 내열성에 의하여 고온에서 효소반응이 가능하며, 고온의 반응 공정에서 기질의 용해도를 증가시킬 수 있다. 기질 용해도가 증가함에 따라 고농도의 기질 사용이 가능하며, 물질의 확산 속도 또는 반응속도가 증가되어 반응시간이 단축됨으로써 생산성이 향상될 수 있다. 또한, 외부 미생물로 인한 공정오염을 최소화할 수 있다. As used herein, the term "heat resistance" means that the thermal stability of the variant polypeptide is increased. Specifically, by the heat resistance, the enzyme reaction is possible at high temperature, and the solubility of the substrate may be increased in the high temperature reaction process. As the substrate solubility increases, it is possible to use a high concentration of the substrate, and the productivity may be improved by shortening the reaction time by increasing the diffusion rate or the reaction rate of the material. In addition, process contamination due to external microorganisms can be minimized.
또한, GRAS(generally recognized as safety) 미생물들에서 상기 폴리펩티드를 대량 발현 시킨 후 내열성 특성을 이용하면 사균화 균체로 이용가능하다. 구체적으로, 고온에서 열처리하는 방법으로 효과적으로 재조합 미생물들을 사균화 가능할 뿐만 아니라, 상기 폴리펩티드를 분리하여 이용하고자 할 경우에도 재조합 미생물 유래의 단백질들을 선택적으로 변성시키고 제거 할 수 있어 폴리펩티드의 정제공정을 효율화 할 수 있는 장점이 있다. In addition, after the mass expression of the polypeptide in GRAS (generally recognized as safety) microorganisms can be used as a sterile microbial cells using heat resistance properties. Specifically, not only can the microorganisms be effectively sterilized by heat treatment at a high temperature, but also if the polypeptide is to be separated and used, the proteins derived from the recombinant microorganism can be selectively denatured and removed, thereby improving the purification process of the polypeptide. There are advantages to it.
구체적으로 상기 폴리펩티드 또는 변이형 폴리펩티드는 50℃ 내지 70℃에서 0.5시간 내지 24시간 열처리 시, 상기 열처리 전의 활성의 75% 이상의 활성을 유지할 수 있다. 보다 구체적으로, 상기 폴리펩티드는 50℃ 내지 70℃에서 0.5시간 내지 24시간 열처리 시 상기 열처리 전의 활성의 100% 이상의 활성을 유지할 수 있다. 또한, 상기 변이형 폴리펩티드는 50℃ 내지 60℃에서 0.5시간 내지 24시간 열처리 시 상기 열처리 전의 활성의 85% 이상의 활성을 유지할 수 있다. 또한, 상기 변이형 폴리펩티드는 50℃ 내지 70℃에서 0.5시간 내지 9시간 열처리 시 상기 열처리 전의 활성의 85% 이상의 활성을 유지할 수 있다. 보다 구체적으로, 상기 서열번호 1의 아미노산 서열로 이루어진 폴리펩티드의 N-말단으로부터 392번 글리신(G) 아미노산 잔기가 쓰레오닌(T)으로 돌연변이된 변이형 폴리펩티드는 50℃ 내지 70℃에서 0.5시간 내지 24시간 열처리 시 상기 열처리 전의 활성의 95% 이상, 또는 50℃ 내지 70℃에서 0.5시간 내지 9시간 열처리 시 상기 열처리 전의 활성의 98% 이상의 활성을 유지할 수 있다. 또한, 상기 서열번호 1의 아미노산 서열로 이루어진 폴리펩티드의 N-말단으로부터 392번 글리신(G) 아미노산 잔기가 글루타민산(E)으로 돌연변이된 변이형 폴리펩티드는 50℃ 내지 60℃에서 0.5시간 내지 24시간 열처리 시 상기 열처리 전의 활성의 85% 이상, 50℃ 내지 70℃에서 0.5시간 내지 9시간 열처리 시 상기 열처리 전의 활성의 85% 이상, 또는 50℃ 내지 60℃에서 0.5시간 내지 24시간 열처리 시 상기 열처리 전의 활성의 90% 이상의 활성을 유지할 수 있다. 더불어, 상기 서열번호 1의 아미노산 서열로 이루어진 폴리펩티드의 N-말단으로부터 392번 글리신(G) 아미노산 잔기가 알라닌(A)으로 돌연변이된 변이형 폴리펩티드는 50℃ 내지 60℃에서 0.5시간 내지 24시간 열처리 시 상기 열처리 전의 활성의 100% 이상, 50℃ 내지 70℃에서 0.5시간 내지 9시간 열처리 시 상기 열처리 전의 활성의 90% 이상, 또는 50℃ 내지 70℃에서 0.5시간 내지 3시간 열처리 시 상기 열처리 전의 활성의 100% 이상의 활성을 유지할 수 있다.Specifically, the polypeptide or variant polypeptide may maintain at least 75% of its activity before the heat treatment when heat treated at 50 ° C. to 70 ° C. for 0.5 hour to 24 hours. More specifically, the polypeptide can maintain at least 100% of the activity before the heat treatment at 50 ℃ to 70 ℃ heat treatment for 0.5 hours to 24 hours. In addition, the variant polypeptide can maintain at least 85% of the activity before the heat treatment at 50 ℃ to 60 ℃ heat treatment for 0.5 hours to 24 hours. In addition, the variant polypeptide can maintain at least 85% of the activity before the heat treatment at 50 ℃ to 70 ℃ heat treatment for 0.5 hours to 9 hours. More specifically, the variant polypeptide wherein the glycine (G) amino acid residue 392 from the N- terminal of the polypeptide consisting of the amino acid sequence of SEQ ID NO: 1 mutated to threonine (T) is 0.5 hours to 50 ℃ to 70 ℃ 95% or more of the activity before the heat treatment at 24 hours, or 0.5% to 9 hours at 50 ℃ to 70 ℃ heat treatment can maintain at least 98% of the activity before the heat treatment. In addition, the variant polypeptide wherein the glycine (G) amino acid residue 392 is mutated to glutamic acid (E) from the N-terminal end of the polypeptide consisting of the amino acid sequence of SEQ ID NO: 1 at 50 ℃ to 60 ℃ 0.5 hour to 24 hours heat treatment 85% or more of the activity before the heat treatment, at least 85% of the activity before the heat treatment at 50 ° C. to 70 ° C. for 0.5 hours to 9 hours, or 0.5 to 24 hours of the heat treatment at 50 ° C. to 60 ° C., prior to the heat treatment. It can maintain at least 90% activity. In addition, the variant polypeptide mutated glycine (G) amino acid residue No. 392 to alanine (A) from the N-terminal end of the polypeptide consisting of the amino acid sequence of SEQ ID NO: 1 at 50 ℃ to 60 ℃ 0.5 hour to 24 hours heat treatment At least 100% of the activity before the heat treatment, at least 90% of the activity before the heat treatment at 50 ° C. to 70 ° C. for 0.5 hours to 9 hours, or at the time of the heat treatment at 50 ° C. to 70 ° C. for 0.5 hours to 3 hours. It can maintain at least 100% activity.
본 출원의 폴리펩티드는 메이오써머스 루퍼스(Meiothermus rufus) 유래일 수 있으나, 이에 제한되지 않는다.The polypeptide of the present application is Meiothermus lupus. rufus ) may be derived from, but is not limited thereto.
본 출원의 또 다른 하나의 양태는 상기 폴리펩티드 또는 변이형 폴리펩티드를 코딩하는 폴리뉴클레오티드를 제공하는 것이다. Another aspect of the present application is to provide a polynucleotide encoding the polypeptide or variant polypeptide.
본 출원에서 용어, "폴리뉴클레오티드"는 뉴클레오티드 단위체(monomer)가 공유결합에 의해 길게 사슬모양으로 이어진 뉴클레오티드의 중합체(polymer)로 일정한 길이 이상의 DNA 또는 RNA 가닥으로서, 보다 구체적으로는 상기 폴리펩티드 또는 변이형 폴리펩티드를 코딩하는 폴리뉴클레오티드 단편을 의미한다.As used herein, the term "polynucleotide" is a polymer of nucleotides in which nucleotide monomers are long chained by covalent bonds, and are DNA or RNA strands of a predetermined length or more, and more specifically, the polypeptide or variant. By polynucleotide fragment encoding a polypeptide.
본 출원의 폴리뉴클레오티드는 유전 암호의 축퇴성(genetic code degeneracy)에 기인하여 본 출원의 폴리펩티드 또는 변이형 폴리펩티드의 아미노산 서열을 코딩하는 염기 서열을 포함할 수 있다. Polynucleotides of the present application may include base sequences that encode amino acid sequences of polypeptides or variant polypeptides of the present application due to genetic code degeneracy.
또한, 본 출원의 수크로스를 투라노스로 전환시키는 활성을 가지는 변이형 폴리펩티드를 코딩하는 폴리뉴클레오티드는, 본 출원의 수크로스를 투라노스로 전환시키는 활성을 가지는 변이형 폴리펩티드를 코딩하는 폴리뉴클레오티드서열이라면 제한없이 포함될 수 있다. 구체적으로 본 출원의 폴리뉴클레오티드는 코돈의 축퇴성(degeneracy)으로 인하여 또는 상기 폴리펩티드를 발현시키고자 하는 생물에서 선호되는 코돈을 고려하여, 폴리펩티드의 아미노산 서열을 변화시키지 않는 범위 내에서 코딩 영역에 다양한 변형이 이루어질 수 있다. 서열번호 1의 아미노산 서열에서 392번째 아미노산이 다른 아미노산으로 치환된 변이형 폴리펩티드를 코딩하는 폴리뉴클레오티드 서열이라면 제한 없이 포함할 수 있다. 예를 들어, 본 출원의 변이형 폴리펩티드는 상기 변이형 폴리펩티드를 코딩하는 폴리뉴클레오티드 서열일 수 있으나, 이에 제한되는 것은 아니다. 또한 공지의 유전자 서열로부터 조제될 수 있는 프로브, 예를 들면, 상기 염기 서열의 전체 또는 일부에 대한 상보 서열과 엄격한 조건 하에 하이드리드화하여, 서열번호 1의 아미노산 서열에서 392번째 아미노산이 다른 아미노산으로 치환된 변이형 폴리펩티드의 활성을 가지는 단백질을 코딩하는 서열이라면 제한없이 포함될 수 있다.In addition, if the polynucleotide encoding a variant polypeptide having the activity of converting sucrose of the present application to Turanose, if the polynucleotide sequence encoding a variant polypeptide having the activity of converting sucrose of the present application to Turanose May be included without limitation. Specifically, the polynucleotide of the present application may be modified in various ways in the coding region without changing the amino acid sequence of the polypeptide due to the degeneracy of the codon or in consideration of the codon preferred in the organism in which the polypeptide is to be expressed. This can be done. Any amino acid sequence 392 in the amino acid sequence of SEQ ID 1 may be included without limitation as long as it is a polynucleotide sequence encoding a variant polypeptide substituted with another amino acid. For example, a variant polypeptide of the present application may be, but is not limited to, a polynucleotide sequence encoding the variant polypeptide. In addition, probes which can be prepared from known gene sequences, for example, the hydride under stringent conditions with complementary sequences for all or part of the nucleotide sequence, and the 392th amino acid in the amino acid sequence of SEQ ID NO. Any sequence encoding a protein having the activity of a substituted variant polypeptide can be included without limitation.
구체적으로, 본 출원의 폴리뉴클레오티드는 서열번호 2, 4, 6 또는 8의 염기 서열로 이루어진 폴리뉴클레오티드, 또는 서열번호 2, 4, 6 또는 8의 염기서열과 적어도 80% 이상, 85% 이상, 90% 이상, 95% 이상, 97% 이상, 99% 이상의 상동성 또는 동일성을 가지는 염기 서열로 이루어진 폴리뉴클레오티드일 수 있으나, 이에 제한되지 않는다. Specifically, the polynucleotide of the present application is at least 80%, at least 85%, at least 90% of the polynucleotide consisting of the nucleotide sequence of SEQ ID NO: 2, 4, 6 or 8, or the nucleotide sequence of SEQ ID NO: 2, 4, 6 or 8 Polynucleotide consisting of a base sequence having at least%, at least 95%, at least 97%, at least 99% homology or identity, but is not limited thereto.
또한, 공지의 유전자 서열로부터 조제될 수 있는 프로브, 예를 들면, 상기 폴리펩티드를 코딩하는 염기 서열의 전체 또는 일부에 대한 상보 서열과 엄격한 조건 하에 하이드리드화하는 폴리뉴클레오티드에 의해 코딩되는 폴리펩티드로서, 수크로스를 투라노스로 전환시키는 활성을 가지는 폴리펩티드라면 제한없이 포함될 수 있다. 상기 "엄격한 조건"이란 폴리뉴클레오티드 간의 특이적 혼성화를 가능하게 하는 조건을 의미한다. 이러한 조건은 문헌(예컨대, J. Sambrook et al., 상동)에 구체적으로 기재되어 있다. 예를 들어, 상동성 또는 동일성이 높은 유전자끼리, 80% 이상, 85% 이상, 90% 이상, 95% 이상, 97% 이상 또는 99% 이상의 상동성 또는 동일성을 갖는 유전자끼리 하이브리드화하고, 그보다 상동성 또는 동일성이 낮은 유전자끼리 하이브리드화하지 않는 조건, 또는 통상의 써던 하이브리드화의 세척 조건인 60℃, 1 X SSC, 0.1% SDS, 구체적으로는 60℃, 0.1 X SSC, 0.1% SDS, 보다 구체적으로는 68℃, 0.1 X SSC, 0.1% SDS에 상당하는 염 농도 및 온도에서, 1회, 구체적으로는 2회 내지 3회 세정하는 조건을 열거할 수 있다.In addition, a probe can be prepared from a known gene sequence, for example, a polypeptide encoded by a polynucleotide that hybridizes under stringent conditions with complementary sequences to all or part of the nucleotide sequence encoding the polypeptide. Any polypeptide having the activity of converting the cross to turanose can be included without limitation. By "stringent conditions" are meant conditions that enable specific hybridization between polynucleotides. Such conditions are described specifically in the literature (eg, J. Sambrook et al., Homology). For example, genes with high homology or identity are hybridized with genes having at least 80%, at least 85%, at least 90%, at least 95%, at least 97%, or at least 99% homology or identity. 60 ° C., 1 × SSC, 0.1% SDS, specifically 60 ° C., 0.1 × SSC, 0.1% SDS, more specifically, conditions that do not hybridize between genes of low homology or identity, or washing conditions of conventional Southern hybridization Examples thereof include the conditions of washing once, specifically, two to three times at a salt concentration and temperature corresponding to 68 ° C., 0.1 × SSC, and 0.1% SDS.
혼성화는 비록 혼성화의 엄격도에 따라 염기 간의 미스매치(mismatch)가 가능할지라도, 두 개의 폴리뉴클레오티드가 상보적 서열을 가질 것을 요구한다. 용어, "상보적"은 서로 혼성화가 가능한 뉴클레오티드 염기 간의 관계를 기술하는데 사용된다. 예를 들면, DNA에 관하여, 아데노신은 티민에 상보적이며 시토신은 구아닌에 상보적이다. 따라서, 본 출원은 또한 실질적으로 유사한 폴리뉴클레오티드 서열뿐만 아니라 전체 서열에 상보적인 단리된 폴리뉴클레오티드 단편을 포함할 수 있다.Hybridization requires that two polynucleotides have complementary sequences, although mismatch between bases is possible depending on the stringency of the hybridization. The term "complementary" is used to describe the relationship between nucleotide bases that can hybridize with each other. For example, with respect to DNA, adenosine is complementary to thymine and cytosine is complementary to guanine. Thus, the present application may also include isolated polynucleotide fragments that are complementary to the entire sequence as well as substantially similar polynucleotide sequences.
구체적으로, 상동성 또는 동일성을 가지는 폴리뉴클레오티드는 55℃의 Tm 값에서 혼성화 단계를 포함하는 혼성화 조건을 사용하고 상술한 조건을 사용하여 탐지할 수 있다. 또한, 상기 Tm 값은 60℃, 63℃ 또는 65℃일 수 있으나, 이에 제한되는 것은 아니고 그 목적에 따라 당업자에 의해 적절히 조절될 수 있다.Specifically, polynucleotides having homology or identity can be detected using hybridization conditions comprising a hybridization step at a Tm value of 55 ° C. and using the conditions described above. In addition, the Tm value may be 60 ° C, 63 ° C or 65 ° C, but is not limited thereto and may be appropriately adjusted by those skilled in the art according to the purpose.
폴리뉴클레오티드를 혼성화하는 적절한 엄격도는 폴리뉴클레오티드의 길이 및 상보성 정도에 의존하고 변수는 해당기술분야에 잘 알려져 있다(Sambrook et al., supra, 9.50-9.51, 11.7-11.8 참조).Proper stringency for hybridizing polynucleotides depends on the length and degree of complementarity of the polynucleotides and variables are well known in the art (see Sambrook et al., Supra, 9.50-9.51, 11.7-11.8).
본 출원의 서열번호 1, 3, 5 또는 7의 아미노산 서열로 이루어진 폴리펩티드 또는 변이형 폴리펩티드는 각각 서열번호 2, 4, 6 또는 8의 폴리뉴클레오티드 서열에 의하여 코딩된 것일 수 있다. Polypeptides or variant polypeptides consisting of the amino acid sequence of SEQ ID NO: 1, 3, 5 or 7 of the present application may be encoded by the polynucleotide sequence of SEQ ID NO: 2, 4, 6 or 8, respectively.
본 출원의 또 다른 하나의 양태는 본 출원의 폴리뉴클레오티드를 포함하는 벡터를 제공하는 것이다. Another aspect of the present application is to provide a vector comprising a polynucleotide of the present application.
본 출원에서 사용된 용어 "벡터"는 적합한 숙주 내에서 목적 단백질을 발현시킬 수 있도록 적합한 조절 서열에 작동 가능하게 연결된 상기 목적 단백질을 코딩하는 폴리뉴클레오티드의 염기서열을 함유하는 DNA 제조물을 의미한다. 상기 조절 서열은 전사를 개시할 수 있는 프로모터, 그러한 전사를 조절하기 위한 임의의 오퍼레이터 서열, 적합한 mRNA 리보좀 결합부위를 코딩하는 서열, 및 전사 및 해독의 종결을 조절하는 서열을 포함할 수 있다. 벡터는 적당한 숙주세포 내로 형질전환된 후, 숙주 게놈과 무관하게 복제되거나 기능할 수 있으며, 게놈 그 자체에 통합될 수 있다.As used herein, the term "vector" refers to a DNA preparation containing a nucleotide sequence of a polynucleotide encoding said target protein operably linked to a suitable regulatory sequence such that the target protein can be expressed in a suitable host. The regulatory sequence may comprise a promoter capable of initiating transcription, any operator sequence for regulating such transcription, a sequence encoding a suitable mRNA ribosomal binding site, and a sequence regulating termination of transcription and translation. After being transformed into a suitable host cell, the vector can be replicated or function independent of the host genome and integrated into the genome itself.
본 출원에서 사용되는 벡터는 숙주세포 내에서 복제 가능한 것이면 특별히 한정되지 않으며, 당업계에 알려진 임의의 벡터를 이용할 수 있다. 통상 사용되는 벡터의 예로는 천연 상태이거나 재조합된 상태의 플라스미드, 코스미드, 바이러스 및 박테리오파지를 들 수 있다. 예를 들어, 파지 벡터 또는 코스미드 벡터로서 pWE15, M13, MBL3, MBL4, IXII, ASHII, APII, t10, t11, Charon4A, 및 Charon21A 등을 사용할 수 있으며, 플라스미드 벡터로서 pBR계, pUC계, pBluescriptII계, pGEM계, pTZ계, pCL계 및 pET계 등을 사용할 수 있다. 구체적으로는 pDZ, pACYC177, pACYC184, pCL, pECCG117, pUC19, pBR322, pMW118, pCC1BAC 벡터 등을 사용할 수 있다. 본 출원에서 사용 가능한 벡터는 특별히 제한되는 것이 아니며 공지된 발현 벡터를 사용할 수 있다. The vector used in the present application is not particularly limited as long as it can replicate in a host cell, and any vector known in the art may be used. Examples of commonly used vectors include natural or recombinant plasmids, cosmids, viruses and bacteriophages. For example, pWE15, M13, MBL3, MBL4, IXII, ASHII, APII, t10, t11, Charon4A, Charon21A, etc. can be used as a phage vector or cosmid vector, and pBR-based, pUC-based, pBluescriptII-based, etc. , pGEM-based, pTZ-based, pCL-based and pET-based and the like can be used. Specifically, pDZ, pACYC177, pACYC184, pCL, pECCG117, pUC19, pBR322, pMW118, pCC1BAC vector and the like can be used. The vector usable in the present application is not particularly limited and known expression vectors may be used.
일례로 세포 내 염색체 삽입용 벡터를 통해 염색체 내에 목적 변이형 폴리펩티드를 코딩하는 폴리뉴클레오티드를 변이된 폴리뉴클레오티드로 교체시킬 수 있다. 상기 폴리뉴클레오티드의 염색체 내로의 삽입은 당업계에 알려진 임의의 방법, 예를 들면, 상동재조합에 의하여 이루어질 수 있으나, 이에 한정되지는 않는다. 상기 염색체 삽입 여부를 확인하기 위한 선별 마커(selection marker)를 추가로 포함할 수 있다. 선별 마커는 벡터로 형질전환된 세포를 선별, 즉 목적 핵산 분자의 삽입 여부를 확인하기 위한 것으로, 약물 내성, 영양 요구성, 세포 독성제에 대한 내성 또는 표면 변이형 폴리펩티드의 발현과 같은 선택가능 표현형을 부여하는 마커들이 사용될 수 있다. 선택제(selective agent)가 처리된 환경에서는 선별 마커를 발현하는 세포만 생존하거나 다른 표현 형질을 나타내므로, 형질전환된 세포를 선별할 수 있다. 본 출원의 또 하나의 양태로서, 본 출원은 상기 변이형 폴리펩티드를 포함하거나, 상기 변이형 폴리펩티드를 코딩하는 폴리뉴클레오티드를 포함하여, 퓨린 뉴클레오티드를 생산하는 미생물을 제공하는 것이다. 구체적으로 변이형 폴리펩티드 및/또는 상기 변이형 폴리펩티드를 코딩하는 폴리뉴클레오티드를 포함하는 미생물은 변이형 폴리펩티드를 코딩하는 폴리뉴클레오티드를 포함하는 벡터로 형질전환에 의해 제조되는 미생물일 수 있으나, 이에 제한되지 않는다. For example, a polynucleotide encoding a desired variant polypeptide in a chromosome may be replaced with a mutated polynucleotide through a vector for intracellular chromosome insertion. Insertion of the polynucleotide into the chromosome can be made by any method known in the art, such as, but not limited to, homologous recombination. The method may further include a selection marker for checking whether the chromosome is inserted. The selection marker is for selecting cells transformed with the vector, i.e., confirming the insertion of the nucleic acid molecule of interest, and selectable phenotypes such as drug resistance, nutritional requirements, resistance to cytotoxic agents or expression of surface variant polypeptides. Markers that impart a may be used. In an environment in which a selective agent is treated, only cells expressing a selection marker survive or exhibit different expression traits, so that transformed cells can be selected. As another aspect of the present application, the present application is to provide a microorganism that produces a purine nucleotide comprising the variant polypeptide, or comprising a polynucleotide encoding the variant polypeptide. Specifically, a microorganism comprising a variant polypeptide and / or a polynucleotide encoding the variant polypeptide may be a microorganism prepared by transformation with a vector comprising a polynucleotide encoding a variant polypeptide, but is not limited thereto. .
또한, 상기에서 용어 "작동 가능하게 연결"된 것이란 본 출원의 목적 단백질을 코딩하는 폴리뉴클레오티드의 전사를 개시 및 매개하도록 하는 프로모터 서열과 상기 폴리뉴클레오티드 서열이 기능적으로 연결되어 있는 것을 의미한다. 작동 가능한 연결은 당업계의 공지된 유전자 재조합 기술을 이용하여 제조할 수 있으며, 부위-특이적 DNA 절단 및 연결은 당업계의 절단 및 연결 효소 등을 사용하여 제작할 수 있으나, 이에 제한되지 않는다.In addition, the term "operably linked" means that the polynucleotide sequence is functionally linked with a promoter sequence for initiating and mediating the transcription of a polynucleotide encoding a target protein of the present application. Operable linkages can be prepared using known genetic recombination techniques, and site-specific DNA cleavage and ligation can be made using, but are not limited to, cleavage and ligation enzymes in the art.
본 출원의 또 다른 하나의 양태는 본 출원의 폴리뉴클레오티드 또는 본 출원의 벡터를 포함하는 재조합 미생물을 제공하는 것이다.Another aspect of the present application is to provide a recombinant microorganism comprising a polynucleotide of the present application or a vector of the present application.
본 출원의 재조합 미생물에 있어서 상기 재조합은 형질 전환에 의해 이루어질 수 있다. 본 출원에서 용어 "형질전환"은 표적 단백질을 코딩하는 폴리뉴클레오티드를 포함하는 벡터를 숙주세포 내에 도입하여 숙주세포 내에서 상기 폴리뉴클레오티드가 코딩하는 단백질이 발현할 수 있도록 하는 것을 의미한다. 형질전환된 폴리뉴클레오티드는 숙주세포 내에서 발현될 수 있기만 한다면, 숙주세포의 염색체 내에 삽입되어 위치하거나 염색체 외에 위치하거나 상관없이 이들 모두를 포함할 수 있다. 또한, 상기 폴리뉴클레오티드는 표적 단백질을 코딩하는 DNA 및 RNA를 포함한다. 상기 폴리뉴클레오티드는 숙주세포 내로 도입되어 발현될 수 있는 것이면, 어떠한 형태로 도입되는 것이든 상관없다. 예를 들면, 상기 폴리뉴클레오티드는 자체적으로 발현되는데 필요한 모든 요소를 포함하는 유전자 구조체인 발현 카세트(expression cassette)의 형태로 숙주세포에 도입될 수 있다. 상기 발현 카세트는 통상 상기 폴리뉴클레오티드에 작동 가능하게 연결되어 있는 프로모터(promoter), 전사 종결신호, 리보좀 결합부위 및 번역 종결신호를 포함할 수 있다. 상기 발현 카세트는 자체 복제가 가능한 발현 벡터 형태일 수 있다. 또한, 상기 폴리뉴클레오티드는 그 자체의 형태로 숙주세포에 도입되어 숙주세포에서 발현에 필요한 서열과 작동 가능하게 연결되어 있는 것일 수도 있으며, 이에 한정되지 않는다. 상기 형질전환 하는 방법은 폴리뉴클레오티드를 세포 내로 도입하는 어떤 방법도 포함되며, 숙주세포에 따라 당 분야에서 공지된 바와 같이 적합한 표준 기술을 선택하여 수행할 수 있다. 예를 들어, 전기천공법(electroporation), 인산칼슘(Ca(H2PO4)2, CaHPO4, 또는 Ca3(PO4)2) 침전, 염화칼슘(CaCl2) 침전, 미세주입법(microinjection), 폴리에틸렌글리콜(PEG)법, DEAE-덱스트란법, 양이온 리포좀법, 및 초산 리튬-DMSO법 등이 있으나, 이에 제한되지 않는다.In the recombinant microorganism of the present application, the recombination may be achieved by transformation. The term "transformation" in the present application means introducing a vector comprising a polynucleotide encoding a target protein into a host cell so that the protein encoded by the polynucleotide in the host cell can be expressed. The transformed polynucleotides may include all of them, as long as they can be expressed in the host cell, either inserted into the chromosome of the host cell or located outside the chromosome. The polynucleotide also includes DNA and RNA encoding the target protein. The polynucleotide may be introduced in any form as long as it can be expressed by being introduced into a host cell. For example, the polynucleotide may be introduced into a host cell in the form of an expression cassette, which is a gene construct containing all the elements necessary for its expression. The expression cassette may include a promoter, a transcription termination signal, a ribosomal binding site, and a translation termination signal, which are typically operably linked to the polynucleotide. The expression cassette may be in the form of an expression vector capable of self replication. In addition, the polynucleotide may be introduced into the host cell in its own form and operably linked with a sequence required for expression in the host cell, but is not limited thereto. The transformation method may include any method of introducing a polynucleotide into a cell, and may be performed by selecting a suitable standard technique as known in the art depending on the host cell. For example, electroporation, calcium phosphate (Ca (H 2 PO 4 ) 2 , CaHPO 4 , or Ca 3 (PO 4 ) 2 ) precipitation, calcium chloride (CaCl 2 ) precipitation, microinjection, Polyethylene glycol (PEG) method, DEAE-dextran method, cationic liposome method, lithium acetate-DMSO method and the like, but is not limited thereto.
본 출원의 숙주세포 또는 미생물은 본 출원의 폴리뉴클레오티드 또는 본 출원의 벡터를 포함하여 수크로스로부터 투라노스를 생산할 수 있는 미생물이라면 모두 가능하다. 구체적 예로, 에스케리키아(Escherichia) 속, 세라티아(Serratia) 속, 어위니아(Erwinia) 속, 엔테로박테리아(Enterobacteria) 속, 프로비덴시아(Providencia) 속, 살모넬라(Salmonella) 속, 스트렙토마이세스(Streptomyces) 속, 슈도모나스(Pseudomonas) 속, 브레비박테리움(Brevibacterium) 속 또는 코리네박테리움(Corynebacterium) 속 등의 미생물 균주가 포함될 수 있으며, 구체적으로 에스케리키아(Escherichia) 속 또는 코리네박테리움(Corynebacterium) 속 미생물일 수 있고, 보다 구체적인 예로는 에스케리키아 콜라이(Escherichia coli) 또는 코리네박테리움 글루타미쿰(Corynebacterium glutamicum)일 수 있으나 이에 한정되지 않는다. 본 출원의 재조합 미생물은 본 출원의 폴리뉴클레오티드 또는 본 출원의 벡터 도입 이외에도 다양한 공지의 방법에 의해 본 출원의 수크로스를 투라노스로 전환시키는 활성을 가지는 폴리펩티드 또는 변이형 폴리펩티드를 발현할 수 있는 미생물을 모두 포함할 수 있다. 일 구현예로, 본 출원의 재조합 미생물은 CJ_Mrf_AS(KCCM11939P), E. coli BL21(DE3)/MRF+G392T(KCCM12113P), E. coli BL21(DE3)/MRF+G392E(KCCM12112P) 및 E. coli BL21(DE3)/MRF+G392A(KCCM12111P)일 수 있다The host cell or microorganism of the present application may be any microorganism capable of producing turanose from sucrose, including the polynucleotide of the present application or the vector of the present application. Specifically, for example, Escherichia (Escherichia) genus, Serratia marcescens (Serratia), An air Winiah (Erwinia) genus, Enterobacter bacteria (Enterobacteria) genus, Providencia (Providencia) genus, Salmonella (Salmonella) genus Streptomyces ( Streptomyces) genus Pseudomonas (Pseudomonas) genus Brevibacterium (Brevibacterium) in or Corynebacterium (Corynebacterium), and may contain the microorganism strain, such as in, specifically, Escherichia (Escherichia) in or Corynebacterium (Corynebacterium) may be in microorganisms, more specific examples of Escherichia coli (Escherichia coli ) or Corynebacterium glutamicum ( Corynebacterium) glutamicum ), but is not limited thereto. Recombinant microorganism of the present application is a microorganism capable of expressing a polypeptide or a mutant polypeptide having the activity of converting sucrose of the present application to turanose by various known methods, in addition to the introduction of the polynucleotide of the present application or the vector of the present application. It can contain everything. In one embodiment, recombinant microorganisms of the present application are CJ_Mrf_AS (KCCM11939P), E. coli BL21 (DE3) / MRF + G392T (KCCM12113P), E. coli BL21 (DE3) / MRF + G392E (KCCM12112P) and E. coli BL21 (DE3) / MRF + G392A (KCCM12111P)
본 출원의 또 하나의 양태로서, 본 출원은서열번호 1의 아미노산 서열과 85% 이상의 상동성을 가지는 아미노산 서열을 포함하는 폴리펩티드, 상기 폴리펩티드를 발현하는 미생물, 또는 상기 미생물의 배양물을 포함하는 투라노스 생산용 조성물을 제공하는 것이다. 구체적으로, 상기 투라노스 생산용 조성물은 서열번호 1의 아미노산 서열로 이루어진 폴리펩티드를 포함하는 것일 수 있다. As another aspect of the present application, the present application provides a polypeptide comprising an amino acid sequence having at least 85% homology with the amino acid sequence of SEQ ID NO: 1, a microorganism expressing the polypeptide, or a culture comprising the microorganism. It is to provide a composition for producing lanose. Specifically, the composition for producing turanose may comprise a polypeptide consisting of the amino acid sequence of SEQ ID NO: 1.
본 출원의 또 다른 하나의 양태로서, 본 출원은서열번호 1의 아미노산 서열 내 하나 이상의 아미노산 변이를 포함하는 변이형 폴리펩티드, 상기 변이형 폴리펩티드를 발현하는 미생물, 또는 상기 미생물의 배양물을 포함하는 투라노스 생산용 조성물로서, 상기 아미노산 변이는 서열번호 1의 아미노산 서열을 포함하는 폴리펩티드의 N-말단으로부터 392번 글리신(G) 아미노산 잔기가 하나 이상의 다른 아미노산으로 치환된 것을 포함하는, 투라노스 생산용 조성물을 제공하는 것이다. 상기 조성물은 투라노스 생산에 관여하는 것이라면 이에 제한되지 않는다. As still another aspect of the present application, the present application provides a variant polypeptide comprising at least one amino acid variation in the amino acid sequence of SEQ ID NO: 1, a microorganism expressing the variant polypeptide, or a culture comprising the microorganism. A composition for producing lanose, wherein the amino acid variation comprises glycan (G) amino acid residue 392 substituted at least one other amino acid from the N-terminus of the polypeptide comprising the amino acid sequence of SEQ ID NO: 1, wherein the composition for producing turanose To provide. The composition is not limited thereto as long as it is involved in the production of turanose.
또한, 상기 조성물은 수크로스(sucrose)를 추가로 포함할 수 있으나, 이에 제한되지 않는다. 본 출원의 조성물은 당해 투라노스 생산용 조성물에 통상 사용되는 임의의 적합한 부형제를 추가로 포함할 수 있다. 이러한 부형제로는, 예를 들어, 보존제, 습윤제, 분산제, 현탁화제, 완충제, 안정화제 또는 등장화제 등일 수 있으나, 이에 한정되는 것은 아니다.In addition, the composition may further include sucrose, but is not limited thereto. The composition of the present application may further comprise any suitable excipient commonly used in the composition for producing the turanose. Such excipients may be, for example, but not limited to, preservatives, wetting agents, dispersants, suspending agents, buffers, stabilizers or isotonic agents.
본 출원의 또 하나의 양태로서, 본 출원은 서열번호 1의 아미노산 서열과 85% 이상의 상동성을 가지는 아미노산 서열을 포함하는 폴리펩티드, 상기 폴리펩티드를 발현하는 미생물, 또는 상기 미생물의 배양물에 수크로스를 접촉시켜, 상기 수크로스를 투라노스로 전환하는 단계를 포함하는, 투라노스 제조방법을 제공하는 것이다. 구체적으로, 상기 투라노스 제조방법은 서열번호 1의 아미노산 서열로 이루어진 폴리펩티드를 포함하는 것일 수 있다. As another aspect of the present application, the present application is directed to a polypeptide comprising an amino acid sequence having at least 85% homology with the amino acid sequence of SEQ ID NO: 1, sucrose to a microorganism expressing the polypeptide, or a culture of the microorganism. By contacting, converting the sucrose to turanose, to provide a method for producing turanose. Specifically, the method for producing turanose may include a polypeptide consisting of the amino acid sequence of SEQ ID NO: 1.
본 출원의 또 다른 하나의 양태로서, 본 출원은 서열번호 1의 아미노산 서열 내 하나 이상의 아미노산 변이를 포함하는 변이형 폴리펩티드, 상기 변이형 폴리펩티드를 발현하는 미생물, 또는 상기 미생물의 배양물을 포함하는 투라노스 생산용 조성물로서, 상기 아미노산 변이는 서열번호 1의 아미노산 서열을 포함하는 폴리펩티드의 N-말단으로부터 392번 글리신(G) 아미노산 잔기가 하나 이상의 다른 아미노산으로 치환된 것을 포함하는, 투라노스 생산용 조성물을 제공하는 것이다. 상기 조성물은 투라노스 제조에 관여하는 것이라면 이에 제한되지 않는다.As another aspect of the present application, the present application is a variant polypeptide comprising one or more amino acid variations in the amino acid sequence of SEQ ID NO: 1, a microorganism expressing the variant polypeptide, or a culture comprising the microorganism A composition for producing lanose, wherein the amino acid variation comprises glycan (G) amino acid residue 392 substituted at least one other amino acid from the N-terminus of the polypeptide comprising the amino acid sequence of SEQ ID NO: 1, wherein the composition for producing turanose To provide. The composition is not limited thereto as long as it is involved in the production of turanose.
또한, 상기 접촉은 pH 5.0 내지 9.0 조건에서, 40℃ 내지 80℃ 온도 조건에서, 및/또는 0.5시간 내지 24시간 동안 수행하는 것일 수 있으나, 이에 제한되지 않는다. 구체적으로, 본 출원의 접촉은 pH 6.0 내지 pH 9.0, pH 7.0 내지 pH 9.0, pH 5.0 내지 pH 8.0, pH 6.0 내지 pH 8.0, pH 7.0 내지 pH 8.0에서 수행할 수 있다. 또한, 본 출원의 접촉은 45℃ 내지 80℃, 50℃ 내지 80℃, 55℃ 내지 80℃, 60℃ 내지 80℃, 40℃ 내지 75℃, 45℃ 내지 75℃, 50℃ 내지 75℃, 55℃ 내지 75℃, 60℃ 내지 75℃, 40℃ 내지 70℃, 45℃ 내지 70℃, 50℃ 내지 70℃, 55℃ 내지 70℃, 60℃ 내지 70℃, 40℃ 내지 65℃, 45℃ 내지 65℃, 50℃ 내지 65℃, 55℃ 내지 65℃, 40℃ 내지 60℃, 45℃ 내지 60℃ 또는 50℃ 내지 60℃ 온도 조건에서 수행할 수 있다. 더불어, 본 출원의 접촉은 0.5시간 내지 24시간 동안, 0.5시간 내지 12시간 동안, 0.5시간 내지 6시간 동안, 1시간 내지 24시간 동안, 1시간 내지 12시간 동안, 1시간 내지 6시간 동안, 3시간 내지 24시간 동안, 3시간 내지 12시간 동안, 3시간 내지 6시간 동안, 6시간 내지 48시간 동안, 6시간 내지 36시간 동안, 6시간 내지 24시간 동안 수행할 수 있다.In addition, the contact may be carried out at pH 5.0 to 9.0 conditions, 40 ℃ to 80 ℃ temperature conditions, and / or 0.5 hours to 24 hours, but is not limited thereto. Specifically, the contact of the present application may be performed at pH 6.0 to pH 9.0, pH 7.0 to pH 9.0, pH 5.0 to pH 8.0, pH 6.0 to pH 8.0, pH 7.0 to pH 8.0. In addition, the contact of the present application is 45 ℃ to 80 ℃, 50 ℃ to 80 ℃, 55 ℃ to 80 ℃, 60 ℃ to 80 ℃, 40 ℃ to 75 ℃, 45 ℃ to 75 ℃, 50 ℃ to 75 ℃, 55 ℃ to 75 ℃, 60 ℃ to 75 ℃, 40 ℃ to 70 ℃, 45 ℃ to 70 ℃, 50 ℃ to 70 ℃, 55 ℃ to 70 ℃, 60 ℃ to 70 ℃, 40 ℃ to 65 ℃, 45 ℃ to It may be carried out at 65 ℃, 50 ℃ to 65 ℃, 55 ℃ to 65 ℃, 40 ℃ to 60 ℃, 45 ℃ to 60 ℃ or 50 ℃ to 60 ℃ temperature conditions. In addition, the contact of the present application is 0.5 hours to 24 hours, 0.5 hours to 12 hours, 0.5 hours to 6 hours, 1 hour to 24 hours, 1 hour to 12 hours, 1 hour to 6 hours, 3 For hours to 24 hours, for 3 hours to 12 hours, for 3 hours to 6 hours, for 6 hours to 48 hours, for 6 hours to 36 hours, for 6 hours to 24 hours.
상기 조성물 또는 상기 방법에 있어서, 상기 미생물의 배양물은 본 출원의 폴리펩티드 또는 변이형 폴리펩티드를 발현하는 미생물을 배지에서 배양하는 단계로부터 제조될 수 있다.In the composition or the method, the culture of the microorganism may be prepared from the step of culturing the microorganism expressing the polypeptide or variant polypeptide of the present application in the medium.
본 출원에서 용어, "배양"은 상기 미생물을 적당히 조절된 환경 조건에서 생육시키는 것을 의미한다. 본 출원의 배양은 당업계에 알려진 적당한 배지와 배양 조건에 따라 수행될 수 있다. 이러한 배양은 선택되는 균주에 따라 당업자가 용이하게 조정하여 사용할 수 있다. 구체적으로, 본 출원의 배양은 공지된 회분식 배양방법, 연속식 배양방법, 유가식 배양방법 등에 의해 수행될 수 있으나, 이에 제한되지 않는다. 이때, 배양조건은, 특별히 이에 제한되지 않으나, 염기성 화합물(예: 수산화나트륨, 수산화칼륨 또는 암모니아) 또는 산성 화합물(예: 인산 또는 황산)을 사용하여 적정 pH(예컨대, pH 5 내지 pH 9, 구체적으로는 pH 6 내지 pH 8, 가장 구체적으로는 pH 6.8)를 조절할 수 있다. 또한, 배양 중에는 지방산 폴리글리콜 에스테르와 같은 소포제를 사용하여 기포 생성을 억제할 수 있고, 또한, 배양물의 호기 상태를 유지하기 위하여, 배양물 내로 산소 또는 산소 함유 기체를 주입하거나 혐기 및 미호기 상태를 유지하기 위해 기체의 주입 없이 혹은 질소, 수소 또는 이산화탄소 가스를 주입할 수 있다. 배양온도는 20℃ 내지 45℃, 구체적으로는 25℃ 내지 40℃를 유지할 수 있고, 약 0.5시간 내지 160시간 동안 배양할 수 있으나, 이에 제한 되는 것은 아니다. 상기 배양에 의하여 생산된 본 출원의 폴리펩티드 또는 변이형 폴리펩티드는 배지 중으로 분비되거나 세포 내에 잔류할 수 있다.As used herein, the term "culture" means growing the microorganisms under appropriately controlled environmental conditions. Cultivation of the present application can be carried out according to the appropriate medium and culture conditions known in the art. Such culture can be easily adjusted and used by those skilled in the art according to the strain selected. Specifically, the culture of the present application may be carried out by a known batch culture method, continuous culture method, fed-batch culture method, but is not limited thereto. At this time, the culture conditions are not particularly limited thereto, but using a basic compound (eg, sodium hydroxide, potassium hydroxide or ammonia) or an acidic compound (eg, phosphoric acid or sulfuric acid), an appropriate pH (eg, pH 5 to pH 9, specific) PH 6 to pH 8, most specifically pH 6.8) can be adjusted. In addition, during the culture, antifoaming agents such as fatty acid polyglycol esters can be used to suppress bubble formation, and in order to maintain the aerobic state of the culture, oxygen or oxygen-containing gas is injected into the culture, or anaerobic and microaerobic conditions are maintained. To maintain, it can be injected with no gas or with nitrogen, hydrogen or carbon dioxide gas. The culture temperature may be maintained at 20 ℃ to 45 ℃, specifically 25 ℃ to 40 ℃, can be incubated for about 0.5 hours to 160 hours, but is not limited thereto. Polypeptides or variant polypeptides of the present application produced by the culture may be secreted into the medium or remain in cells.
아울러, 사용되는 배양용 배지는 탄소 공급원으로는 당 및 탄수화물(예: 글루코오스, 슈크로오스, 락토오스, 프럭토오스, 말토오스, 몰라세, 전분 및 셀룰로오스), 유지 및 지방(예: 대두유, 해바라기씨유, 땅콩유 및 코코넛유), 지방산(예: 팔미트산, 스테아르산 및 리놀레산), 알코올(예: 글리세롤 및 에탄올) 및 유기산(예: 아세트산) 등을 개별적으로 사용하거나 또는 혼합하여 사용할 수 있으나, 이에 제한되지 않는다. 질소 공급원으로는 질소-함유 유기 화합물(예: 펩톤, 효모 추출액, 육즙, 맥아 추출액, 옥수수 침지액, 대두 박분 및 우레아), 또는 무기 화합물(예: 황산암모늄, 염화암모늄, 인산암모늄, 탄산암모늄 및 질산암모늄) 등을 개별적으로 사용하거나 또는 혼합하여 사용할 수 있으나, 이에 제한되지 않는다. 인 공급원으로 인산 이수소칼륨, 인산수소이칼륨, 이에 상응하는 나트륨 함유 염 등을 개별적으로 사용하거나 또는 혼합하여 사용할 수 있으나, 이에 제한되지 않는다. 또한, 배지에는 기타 금속염(예: 황산마그네슘 또는 황산철), 아미노산 및 비타민과 같은 필수성장-촉진 물질을 포함할 수 있다.In addition, the culture medium used may include sugars and carbohydrates (e.g. glucose, sucrose, lactose, fructose, maltose, molasses, starch and cellulose), fats and fats (e.g. soybean oil, sunflower seeds) as carbon sources. Oils, peanut oils and coconut oils), fatty acids (e.g. palmitic acid, stearic acid and linoleic acid), alcohols (e.g. glycerol and ethanol) and organic acids (e.g. acetic acid) may be used individually or in combination. This is not restrictive. Nitrogen sources include nitrogen-containing organic compounds such as peptone, yeast extract, gravy, malt extract, corn steep liquor, soybean meal and urea, or inorganic compounds such as ammonium sulfate, ammonium chloride, ammonium phosphate, ammonium carbonate and Ammonium nitrate) and the like can be used individually or in combination, but is not limited thereto. As a source of phosphorus, potassium dihydrogen phosphate, dipotassium hydrogen phosphate, a corresponding sodium-containing salt, and the like may be used individually or in combination, but is not limited thereto. The medium may also contain essential growth-promoting substances such as other metal salts (eg magnesium sulfate or iron sulfate), amino acids and vitamins.
본 출원의 제조방법은 제조된 투라노스를 분리 및/또는 정제하는 단계를 추가로 포함할 수 있다. 상기 분리 및/또는 정제는 본 출원의 기술 분야에서 통상적으로 사용하는 방법을 사용할 수 있으며. 비제한적인 예로, 투석, 침전, 흡착, 전기영동, 이온교환 크로마토그래피 및 분별 결정 등을 사용할 수 있다. 상기 정제는 하나의 방법만 실시될 수도 있으며, 두 가지 이상의 방법을 함께 실시할 수도 있다.The preparation method of the present application may further comprise the step of separating and / or purifying the manufactured turanose. The separation and / or purification may use a method commonly used in the art of the present application. Non-limiting examples include dialysis, precipitation, adsorption, electrophoresis, ion exchange chromatography, fractional crystallization, and the like. The purification may be carried out in only one method, or may be performed in combination of two or more methods.
또한, 본 출원의 제조방법은 상기 분리 및/또는 정제하는 단계 이전 또는 이후에 탈색 및/또는 탈염을 수행하는 단계를 추가로 포함할 수 있다. 상기 탈색 및/또는 탈염을 실시함으로써, 보다 품질이 우수한 투라노스를 얻을 수 있다.In addition, the production method of the present application may further comprise the step of performing the decolorization and / or desalting before or after the separation and / or purification step. By carrying out the above-mentioned decolorization and / or desalting, it is possible to obtain turanose with better quality.
다른 구현예로, 본 출원의 제조방법은 본 출원의 투라노스로 전환하는 단계, 분리 및/또는 정제하는 단계, 또는 탈색 및/또는 탈염하는 단계 이후 투라노스를 결정화하는 단계를 추가로 포함할 수 있다. 상기 결정화는 통상적으로 사용하는 결정화 방법을 사용하여 수행할 수 있다. 예를 들어, 냉각결정화 방법을 사용하여 결정화를 수행할 수 있다.In another embodiment, the preparation method of the present application may further comprise the step of crystallizing the turanose after the step of converting, separating and / or purifying, or decolorizing and / or desalting into the turanose of the present application. have. The crystallization can be carried out using a conventionally used crystallization method. For example, crystallization may be performed using a cooling crystallization method.
다른 구현예로, 본 출원의 제조방법은 상기 결정화하는 단계 이전에 투라노스를 농축하는 단계를 추가로 포함할 수 있다. 상기 농축은 결정화 효율을 높일 수 있다.In another embodiment, the production method of the present application may further comprise the step of concentrating the turanose before the step of crystallization. The concentration can increase the crystallization efficiency.
다른 구현예로, 본 출원의 제조방법은 본 출원의 분리 및/또는 정제하는 단계 이후 미반응된 수크로스를 본 출원의 폴리펩티드 또는 변이형 폴리펩티드, 상기 폴리펩티드 또는 변이형 폴리펩티드를 발현하는 미생물 또는 상기 미생물의 배양물과 접촉시키는 단계, 본 출원의 결정화하는 단계 이후 결정이 분리된 모액을 상기 분리 및/또는 정제 단계에 재사용하는 단계, 또는 이의 조합을 추가로 포함할 수 있다. 상기 추가 단계를 통해 투라노스를 더욱 고수율로 수득할 수 있으며 버려지는 수크로스의 양을 절감할 수 있어 경제적 이점이 있다. In another embodiment, the preparation method of the present application is a microorganism or microorganism expressing the unreacted sucrose polypeptide or variant polypeptide, the polypeptide or variant polypeptide of the present application after the separation and / or purification step of the present application The method may further include contacting the culture of the mother solution, reusing the mother liquor from which the crystals are separated after the crystallization of the present application to the separation and / or purification steps, or a combination thereof. Through this additional step, turanose can be obtained in higher yield, and the amount of discarded sucrose can be reduced, which is an economic advantage.
변이법을 사용하였다(2014. Anal. Biochem. 449:90-98). PCR은 94℃에서 2분간 변성, 94℃ 30초 변성한 후 60℃ 30초 어닐링한 다음 72℃ 10분 신장하는 것을 30회 반복 및 72℃에서 60분간 신장반응 조건으로 수행하였다. 프라이머는 치환 부위의 앞쪽 염기 15bp와 치환 부위의 염기 3bp(RMG), 치환 부위의 뒤쪽 염기 15bp로 이루어진 33bp의 프라이머를 제작하여 이용하였으며, 프라이머 서열은 하기 표 2에 기재한 바와 같다.Mutations were used (2014. Anal. Biochem . 449: 90-98). PCR was performed at 94 ° C for 2 minutes, 94 ° C for 30 seconds, followed by annealing at 60 ° C for 30 seconds, followed by extension at 72 ° C for 10 minutes, and repeated 30 times at 72 ° C for 60 minutes. The primer was prepared by using a primer of 33bp consisting of the base 15bp of the substitution site, the base 3bp (RMG) of the substitution site, 15bp of the back base of the substitution site, the primer sequence is as described in Table 2 below.
서열번호SEQ ID NO: 프라이머primer 서열(5'-3')Sequence (5'-3 ')
1111 정방향Forward direction TGCCACGACGACATCRMGTGGGCCATCTCCGACTGCCACGACGACATCRMGTGGGCCATCTCCGAC
1212 역방향Reverse GTCGGAGATGGCCCACKYGATGTCGTCGTGGCAGTCGGAGATGGCCCACKYGATGTCGTCGTGGCA
1-3. 재조합 미생물 제조1-3. Recombinant Microbial Manufacturing
상기 실시예 1-1 및 1-2에서 제조한 각 재조합 벡터는 열 충격(heat shock transformation, Sambrook and Russell: Molecular cloning, 2001)에 의하여 대장균 BL21(DE3)(invitrogen)에 형질전환하여 재조합 미생물을 제조한 후, 50% 글리세롤에 냉동 보관하여 사용하였다. 상기 재조합 미생물을 각각 CJ_Mrf_AS, E. coli BL21(DE3)/MRF+G392T, E. coli BL21(DE3)/MRF+G392E 및 E. coli BL21(DE3)/MRF+G392A로 명명하고, 부다페스트 조약 하의 국제기탁기관인 한국미생물보존센터(Korean Culture Center of Microorganisms, KCCM)에 기탁하여, 기탁번호 KCCM11939P(2016년 11월 22일 기탁), KCCM12113P(2017년 9월 13일 기탁), KCCM12112P(2017년 9월 13일 기탁) 및 KCCM12111P(2017년 9월 13일 기탁)를 부여 받았다.Each recombinant vector prepared in Examples 1-1 and 1-2 was transformed into E. coli BL21 (DE3) (invitrogen) by heat shock transformation (Sambrook and Russell: Molecular cloning, 2001) to recombinant microorganisms After the preparation, it was used by storing frozen in 50% glycerol. The recombinant microorganisms are named CJ_Mrf_AS, E. coli BL21 (DE3) / MRF + G392T, E. coli BL21 (DE3) / MRF + G392E, and E. coli BL21 (DE3) / MRF + G392A, respectively, and are under the international treaty of Budapest. Deposited to the Korean Culture Center of Microorganisms (KCCM), Deposit No. KCCM11939P (deposited on November 22, 2016), KCCM12113P (deposited on September 13, 2017), KCCM12112P (September 13, 2017) Daily deposit) and KCCM12111P (deposited September 13, 2017).
실시예 2: 재조합 폴리펩티드 및 변이형 폴리펩티드 제조Example 2: Preparation of Recombinant Polypeptides and Variant Polypeptides
실시예 1에서 제조한 재조합 미생물 CJ_Mrf_AS, E. coli BL21(DE3)/MRF+G392T, E. coli BL21(DE3)/MRF+G392E 및 E. coli BL21(DE3)/MRF+G392A를 각각 5 ml LB 액체배지에 접종하고, 600 nm에서의 흡광도가 2.0이 될 때까지 종균 배양하였다. 종균 배양 후의 배양액을 LB 액체배지에 접종하여 본 배양을 진행하고, 600 nm에서의 흡광도가 2.0이 될 때 0.5 mM IPTG를 첨가하여 재조합 폴리펩티드 및 변이형 폴리펩티드 발현을 유도하였다. 종균 배양 및 본 배양의 교반 속도는 200 rpm이며, 배양 온도는 37℃가 유지되도록 하였다. 본 배양 후, 배양액을 8,000×g로 4℃에서 20분 동안 원심분리하여 균체를 회수하고, 회수된 균체를 50 mM 인산염 완충용액(pH 7.5)으로 2회 세척한 후, 동일한 완충용액으로 현탁 후 초음파 세포파쇄기를 이용하여 파쇄하였다. 세포 파쇄물을 13,000×g로 4℃에서 20분 동안 원심분리 후 상등액만을 취하고, His-tag 친화 크로마토그래피를 사용하여 각각의 재조합 미생물에서 정제된 폴리펩티드인 MRF 및 정제된 변이형 폴리펩티드인 MRF+G392T, MRF+G392E 및 MRF+G392A를 수득하였다. 상기 정제 폴리펩티드들을 50 mM 인산염 완충용액(pH 7.5)으로 투석 후, 활성 분석을 위해 사용하였다.5 ml LB of the recombinant microorganisms CJ_Mrf_AS, E. coli BL21 (DE3) / MRF + G392T, E. coli BL21 (DE3) / MRF + G392E and E. coli BL21 (DE3) / MRF + G392A, respectively prepared in Example 1 Inoculated in the liquid medium and spawn culture until the absorbance at 600 nm was 2.0. The culture after seed culture was inoculated into LB liquid medium to carry out the main culture, and when the absorbance at 600 nm reached 2.0, 0.5 mM IPTG was added to induce recombinant polypeptide and mutant polypeptide expression. The seed culture and the stirring speed of the main culture were 200 rpm, and the incubation temperature was maintained at 37 ° C. After the incubation, the culture medium was recovered by centrifuging the culture solution at 8,000 × g for 20 minutes at 4 ° C., and the recovered cells were washed twice with 50 mM phosphate buffer (pH 7.5), and then suspended in the same buffer solution. The cells were disrupted using an ultrasonic cell crusher. The cell lysate was centrifuged at 13,000 × g for 20 minutes at 4 ° C., and then only the supernatant was taken, using His-tag affinity chromatography, purified polypeptides from each recombinant microorganism, MRF and purified variant polypeptides MRF + G392T, MRF + G392E and MRF + G392A were obtained. The purified polypeptides were dialyzed with 50 mM phosphate buffer (pH 7.5) and used for activity analysis.
실시예Example 3: 재조합 폴리펩티드 및 변이형 폴리펩티드의  3: of recombinant polypeptides and variant polypeptides 투라노스Turanos 전환 활성 분석 Conversion activity analysis
실시예 2에서 제조한 각 폴리펩티드 별 투라노스 전환 활성을 확인하기 위하여, 1M 수크로스를 포함하는 50 mM 포타슘-포스페이트(potassium phosphate, pH 7.5) 완충용액에, 정제된 각 폴리펩티드를 0.1 unit/ml 첨가하여 60℃에서 5시간 동안 반응시킨 후, 얼음에서 반응을 중지시키고 생성된 투라노스를 HPLC로 분석하여 측정하였다. HPLC 분석은 SUGAR SP0810(Shodex) 컬럼을 사용하여 80℃에서, 이동상으로 물을 0.6 ml/분 유속으로 흘려 주면서 수행하였으며, 시차 굴절률 검출기(Refractive Index Detector)로 투라노스를 검출하였다.In order to confirm the Turanose conversion activity of each polypeptide prepared in Example 2, 0.1 unit / ml of each purified polypeptide was added to a 50 mM potassium phosphate (pH 7.5) buffer solution containing 1M sucrose. After the reaction at 60 ° C. for 5 hours, the reaction was stopped on ice and the resulting turanose was analyzed by HPLC. HPLC analysis was performed using a SUGAR SP0810 (Shodex) column at 80 ° C. while flowing water into the mobile phase at a flow rate of 0.6 ml / min, and turanose was detected with a differential index detector.
그 결과, MRF, MRF+G392T, MRF+G392E 및 MRF+G392A 모두 수크로스를 투라노스로 전환하는 활성을 가짐을 확인하였다. 구체적으로, MRF는 60 g/l, MRF+G392T는 100.7 g/l, MRF+G392E는 100.3 g/l, 그리고 MRF+G392A는 123.6 g/l의 투라노스를 생산하였는바, 변이형 폴리펩티드 3종 모두 야생형 MRF 보다 투라노스 전환 활성능이 우수하였다. 특히, MRF+G392A는 동일 반응 조건에서 야생형의 200% 이상의 전환 활성을 가짐을 확인하였다(표 3 및 도 1a 내지 1d).As a result, it was confirmed that MRF, MRF + G392T, MRF + G392E and MRF + G392A all have the activity of converting sucrose to turanos. Specifically, MRF produced 60 g / l, MRF + G392T produced 100.7 g / l, MRF + G392E produced 100.3 g / l, and MRF + G392A produced 123.6 g / l of Turanose. All of them had better turanose conversion activity than wild type MRF. In particular, it was confirmed that MRF + G392A has at least 200% conversion activity of the wild type under the same reaction conditions (Table 3 and FIGS. 1A-1D).
균주명Strain name 투라노스(g/L)Turanos (g / L) 전환율(%)% Conversion 전환활성(%)% Conversion activity
MRFMRF 6060 17.517.5 100100
MRF+G392TMRF + G392T 100.7100.7 29.429.4 168168
MRF+G392EMRF + G392E 100.3100.3 29.329.3 167167
MRF+G392AMRF + G392A 123.6123.6 36.136.1 206206
실시예 4: 반응 조건에 따른 투라노스 전환 활성 분석Example 4 Turanose Conversion Activity Assay According to Reaction Conditions
4-1. 온도에 따른 활성 분석4-1. Activity analysis by temperature
온도에 따른 활성을 평가하기 위해 10 %(w/v) 수크로스를 포함하는 50 mM 포타슘-포스페이트(potassium phosphate, pH 7.5) 완충용액에, 정제된 각 폴리펩티드를 첨가하여 40℃, 45℃, 50℃, 55℃, 60℃, 65℃, 70℃ 및 75℃에서 1시간 동안 반응시킨 후 실시예 3과 동일한 방법으로 HPLC로 투라노스를 분석하여 측정하였다.To assess activity over temperature, each purified polypeptide was added to a 50 mM potassium phosphate (pH 7.5) buffer containing 10% (w / v) sucrose, followed by 40 [deg.] C., 45 [deg.] C., 50 After reacting at 1 ° C., 55 ° C., 60 ° C., 65 ° C., 70 ° C., and 75 ° C. for 1 hour, turanose was analyzed by HPLC in the same manner as in Example 3.
그 결과, MRF는 55℃에서, MRF+G392T, MRF+G392E 및 MRF+G392A는 65℃에서 최대 활성을 보였다. 또한, MRF는 40℃ 내지 75℃, MRF+G392T는 60℃ 내지 75℃, MRF+G392E는 45℃ 내지 75℃에서, MRF+G392A는 40℃ 내지 75℃에서 최대 활성의 80% 이상의 활성을 보임을 확인하였다(표 4 및 도 2).As a result, MRF showed maximum activity at 55 ° C, MRF + G392T, MRF + G392E and MRF + G392A at 65 ° C. In addition, MRF at 40 ℃ to 75 ℃, MRF + G392T at 60 ℃ to 75 ℃, MRF + G392E at 45 ℃ to 75 ℃, MRF + G392A shows at least 80% of the maximum activity at 40 ℃ to 75 ℃ It was confirmed (Table 4 and Figure 2).
온도에 따른 상대활성Relative activity with temperature
구분division MRFMRF MRF+G392TMRF + G392T MRF+G392EMRF + G392E MRF+G392AMRF + G392A
40℃40 ℃ 88.088.0 81.681.6 71.571.5 61.161.1
45℃45 ℃ 91.591.5 88.288.2 81.981.9 71.871.8
50℃50 ℃ 92.492.4 92.092.0 83.883.8 73.973.9
55℃55 ℃ 100.0100.0 96.796.7 84.084.0 77.277.2
60℃60 ℃ 99.899.8 98.498.4 91.091.0 87.587.5
65℃65 ℃ 98.498.4 100.0100.0 100.0100.0 100.0100.0
70℃70 ℃ 86.386.3 90.890.8 98.098.0 96.996.9
75℃75 ℃ 82.782.7 72.672.6 93.593.5 96.296.2
4-2. pH에 따른 활성 분석4-2. Activity analysis according to pH
pH에 따른 활성을 평가하기 위해 10 %(w/v) 수크로스를 포함하는 50 mM 소듐 아세테이트(SA: sodium acetate, pH 5-6) 완충용액 및 50 mM 포타슘-포스페이트 완충용액(KPB: potassium phosphate buffer, pH 6-8)에, 정제된 MRF 및 MRf+G392A(0.1 unit/ml)를 각각 첨가하여 55℃에서 1시간 동안 반응시킨 후 실시예 3과 동일한 방법으로 HPLC로 투라노스를 분석하여 측정하였다.50 mM sodium acetate (SA: pH 5-6) buffer and 50 mM potassium-phosphate buffer (KPB: potassium phosphate) containing 10% (w / v) sucrose to assess pH-dependent activity buffer, pH 6-8), and purified MRF and MRf + G392A (0.1 unit / ml), respectively, were reacted at 55 ° C. for 1 hour and analyzed by HPLC in the same manner as in Example 3 It was.
그 결과, pH 7 내지 pH 8에서 높은 활성을 보이며, 특히pH 7.5에서 가장 높은 활성을 보였다. 또한, 각각의 pH에 해당되는 완충용액 중에서도 포타슘-포스페이트 완충용액에서 활성이 최대로 나타남을 확인하였다(도 3a 및 3b).As a result, it showed high activity at pH 7 to pH 8, especially at pH 7.5. In addition, it was confirmed that the maximum activity in the potassium-phosphate buffer among the buffers corresponding to the respective pH (Figs. 3a and 3b).
실시예 5: 열안정성 분석Example 5: Thermal Stability Analysis
열 안정성 확인을 위하여 정제된 각 폴리펩티드를 50℃, 60℃ 및 70℃에서 24시간 동안 열처리한 후 투라노스 전환 활성을 측정하였다. 활성은 10 %(w/v) 수크로스를 포함하는 50 mM 포타슘-포스페이트(potassium phosphate, pH 7.5) 완충용액에, 열처리된 폴리펩티드 각각을 0.1 unit/ml 첨가하여 55℃에서 1시간 동안 반응시킨 후 실시예 3과 동일한 방법으로 HPLC로 투라노스를 분석하여 측정하였다.In order to confirm thermal stability, each purified polypeptide was heat-treated at 50 ° C., 60 ° C. and 70 ° C. for 24 hours, and then the turanose conversion activity was measured. Activity was added to 50 mM potassium phosphate (pH 7.5) buffer containing 10% (w / v) sucrose, and 0.1 unit / ml of each of the heat treated polypeptides was reacted at 55 ° C. for 1 hour. Turanose was analyzed by HPLC in the same manner as in Example 3.
그 결과, MRF, MRF+G392T, MRF+G392A 및 MRF+G392E 모두가 열안정성을 가짐을 확인하였다. 특히, MRF는 모든 열처리 조건에서 24시간 경과 시에도 활성이 유지되었다(표 5 및 도 4a). MRF+G392T는 모든 열처리 조건에서 24시간 경과 시 활성이 95% 이상 유지되었고, MRF+G392A는 50℃ 및 60℃ 열처리 조건에서는 24시간 이상 경과 시 활성이 유지되고, 70℃ 열처리 조건에서 24시간 경과 시에도 활성이 80% 이상을 유지함을 확인할 수 있었다(표 5 및 도 4b 및 4c). MRF+G392E는 50℃ 및 60℃ 열처리 조건에서 24시간 이상 경과 시 89% 이상, 70℃ 열처리 조건으로 24시간 경과 시 79% 이상의 활성을 유지함을 확인할 수 있었다(표 5 및 도 4d).As a result, it was confirmed that MRF, MRF + G392T, MRF + G392A, and MRF + G392E all have thermal stability. In particular, MRF remained active even after 24 hours under all heat treatment conditions (Table 5 and FIG. 4A). MRF + G392T retained 95% or more of its activity after 24 hours under all heat treatment conditions, and MRF + G392A retained its activity after 24 hours under 50 ° C and 60 ° C heat treatment conditions and 24 hours after 70 ° C heat treatment conditions. It was confirmed that the activity was maintained at 80% or more even when (Table 5 and Figures 4b and 4c). MRF + G392E was confirmed to maintain more than 89% of the activity at 24 ℃ or more after 24 hours at 50 ℃ and 60 ℃ heat treatment conditions, 79% or more after 24 hours at 70 ℃ heat treatment conditions (Table 5 and Figure 4d).
상대활성(%)Relative activity (%)
MRFMRF MRF+G392TMRF + G392T MRF+G392EMRF + G392E MRF+G392A MRF + G392A
50°C50 ° C 60°C60 ° C 70°C70 ° C 50°C50 ° C 60°C60 ° C 70°C70 ° C 50°C50 ° C 60°C60 ° C 70°C70 ° C 50°C50 ° C 60°C60 ° C 70°C70 ° C
0 h0 h 100100 100100 100100 100100 100100 100100 100100 100100 100100 100100 100100 100100
3 h3 h 112112 110110 109109 9898 109109 100100 108108 9292 8989 102102 109109 109109
6 h6 h 104104 106106 100100 101101 111111 100100 9494 9393 9393 103103 105105 9393
9 h9 h 103103 108108 101101 9999 109109 102102 9595 9292 8989 104104 103103 9595
24 h24 h 111111 109109 101101 107107 113113 9595 102102 8989 7979 103103 101101 8484
이상의 설명으로부터, 본 출원이 속하는 기술분야의 당업자는 본 출원이 그 기술적 사상이나 필수적 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 이와 관련하여, 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적인 것이 아닌 것으로 이해해야만 한다. 본 출원의 범위는 상기 상세한 설명보다는 후술하는 특허 청구범위의 의미 및 범위 그리고 그 등가 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 출원의 범위에 포함되는 것으로 해석되어야 한다.From the above description, those skilled in the art will appreciate that the present application can be implemented in other specific forms without changing the technical spirit or essential features. In this regard, it should be understood that the embodiments described above are exemplary in all respects and not limiting. The scope of the present application should be construed that all changes or modifications derived from the meaning and scope of the following claims and equivalent concepts rather than the detailed description are included in the scope of the present application.
Figure PCTKR2018006677-appb-I000001
Figure PCTKR2018006677-appb-I000001
Figure PCTKR2018006677-appb-I000002
Figure PCTKR2018006677-appb-I000002
Figure PCTKR2018006677-appb-I000003
Figure PCTKR2018006677-appb-I000003
Figure PCTKR2018006677-appb-I000004
Figure PCTKR2018006677-appb-I000004

Claims (16)

  1. 서열번호 1의 아미노산 서열과 85% 이상의 상동성을 가지는 아미노산 서열을 포함하는 수크로스를 투라노스로 전환시키는 활성을 가지는, 폴리펩티드.A polypeptide having the activity of converting sucrose to turanose comprising an amino acid sequence having at least 85% homology with the amino acid sequence of SEQ ID NO: 1.
  2. 서열번호 1의 아미노산 서열 내 하나 이상의 아미노산 변이를 포함하는 변이형 폴리펩티드로서,A variant polypeptide comprising one or more amino acid variations in the amino acid sequence of SEQ ID NO: 1,
    상기 아미노산 변이는 서열번호 1의 아미노산 서열을 포함하는 폴리펩티드의 N-말단으로부터 392번째 글리신(G: Glycine) 아미노산 잔기가 하나 이상의 다른 아미노산으로 치환된 것을 포함하는, 수크로스를 투라노스로 전환시키는 활성을 가지는 변이형 폴리펩티드.The amino acid variation is an activity of converting sucrose to turanos, wherein the 392th glycine (G: Glycine) amino acid residue is substituted with one or more other amino acids from the N-terminus of the polypeptide comprising the amino acid sequence of SEQ ID NO: 1 Variant polypeptides.
  3. 제2항에 있어서, 상기 다른 아미노산은 쓰레오닌(T: Threonine), 글루타민산(E: Glutamic acid) 또는 알라닌(A: Alanine)인 것인 , 변이형 폴리펩티드.The variant polypeptide of claim 2, wherein the other amino acid is Threonine (T :), glutamic acid (E: Glutamic acid), or alanine (A: Alanine).
  4. 제2항에 있어서, 상기 변이형 폴리펩티드는 서열번호 3, 5 또는 7의 아미노산 서열로 이루어진, 변이형 폴리펩티드.The variant polypeptide of claim 2, wherein the variant polypeptide consists of the amino acid sequence of SEQ ID 3, 5 or 7.
  5. 제1항의 폴리펩티드 또는 제2항 내지 제4항 중 어느 한 항의 변이형 폴리펩티드를 코딩하는 폴리뉴클레오티드.A polynucleotide encoding the polypeptide of claim 1 or the variant polypeptide of any one of claims 2 to 4.
  6. 제5항의 폴리뉴클레오티드를 포함하는 벡터.A vector comprising the polynucleotide of claim 5.
  7. 제5항의 폴리뉴클레오티드를 포함하는 재조합 미생물.A recombinant microorganism comprising the polynucleotide of claim 5.
  8. 제6항의 벡터를 포함하는 재조합 미생물.Recombinant microorganism comprising the vector of claim 6.
  9. 서열번호 1의 아미노산 서열과 85% 이상의 상동성을 가지는 아미노산 서열을 포함하는 폴리펩티드, 상기 폴리펩티드를 발현하는 미생물, 또는 상기 미생물의 배양물을 포함하는 투라노스 생산용 조성물.A composition for producing a turanose comprising a polypeptide comprising an amino acid sequence having at least 85% homology with an amino acid sequence of SEQ ID NO: 1, a microorganism expressing the polypeptide, or a culture of the microorganism.
  10. 제9항에 있어서, The method of claim 9,
    상기 폴리펩티드는 서열번호 1의 아미노산 서열로 이루어진 것인, 투라노스 생산용 조성물. The polypeptide is composed of the amino acid sequence of SEQ ID NO: 1, a composition for producing turanose.
  11. 서열번호 1의 아미노산 서열 내 하나 이상의 아미노산 변이를 포함하는 변이형 폴리펩티드, 상기 변이형 폴리펩티드를 발현하는 미생물, 또는 상기 미생물의 배양물을 포함하는 투라노스 생산용 조성물로서, 상기 아미노산 변이는 서열번호 1의 아미노산 서열을 포함하는 폴리펩티드의 N-말단으로부터 392번 글리신(G) 아미노산 잔기가 하나 이상의 다른 아미노산으로 치환된 것을 포함하는, 투라노스 생산용 조성물. A variant polypeptide comprising at least one amino acid variation in the amino acid sequence of SEQ ID NO: 1, a microorganism expressing the variant polypeptide, or a composition for producing turanose comprising the culture of the microorganism, wherein the amino acid variation is SEQ ID NO: 1 A composition for producing turanose, comprising the substitution of one or more other amino acids for glycine (G) amino acid number 392 from the N-terminus of a polypeptide comprising an amino acid sequence of.
  12. 제9항 또는 제11항에 있어서, 상기 조성물은 수크로스(sucrose)를 추가로 포함하는, 투라노스 생산용 조성물.The composition of claim 9 or 11, wherein the composition further comprises sucrose.
  13. 서열번호 1의 아미노산 서열과 85% 이상의 상동성을 가지는 아미노산 서열을 포함하는 폴리펩티드, 상기 폴리펩티드를 발현하는 미생물, 또는 상기 미생물의 배양물에 수크로스를 접촉시켜, 상기 수크로스를 투라노스로 전환하는 단계를 포함하는, 투라노스 제조방법.Sucrose is converted into turanose by contacting sucrose with a polypeptide comprising an amino acid sequence having at least 85% homology with the amino acid sequence of SEQ ID NO: 1, a microorganism expressing the polypeptide, or a culture of the microorganism. Including a step, a turanose manufacturing method.
  14. 제13항에 있어서, The method of claim 13,
    상기 폴리펩티드는 서열번호 1의 아미노산 서열로 이루어진 것인, 투라노스 제조방법.The polypeptide is consisting of the amino acid sequence of SEQ ID NO: 1, method for producing turanose.
  15. 서열번호 1의 아미노산 서열 내 하나 이상의 아미노산 변이를 포함하는 변이형 폴리펩티드, 상기 변이형 폴리펩티드를 발현하는 미생물, 또는 상기 미생물의 배양물에 수크로스를 접촉시켜 상기 수크로스를 투라노스로 전환하는 단계를 포함하는 투라노스 제조방법에 있어서,Converting the sucrose to turanose by contacting sucrose with a variant polypeptide comprising at least one amino acid variation in the amino acid sequence of SEQ ID NO: 1, a microorganism expressing the variant polypeptide, or a culture of the microorganism In the turanose manufacturing method comprising,
    상기 아미노산의 변이는 서열번호 1의 아미노산 서열을 포함하는 폴리펩티드의 N-말단으로부터 392번 글리신(G) 아미노산 잔기가 하나 이상의 다른 아미노산으로 치환된 것인, 투라노스 제조방법.The variation of the amino acid is a turanose production method, wherein the amino acid residue 392 glycine (G) amino acid residue 392 is substituted with one or more other amino acids from the N-terminal of the polypeptide comprising the amino acid sequence of SEQ ID NO: 1.
  16. 제13항 또는 제15항에 있어서, 상기 접촉은 pH 5.0 내지 9.0 조건에서, 40℃ 내지 80℃ 온도 조건에서, 또는 0.5시간 내지 24시간 동안 수행하는, 투라노스 제조방법.The method of claim 13, wherein the contacting is performed at a pH of 5.0 to 9.0, at a temperature of 40 ° C. to 80 ° C., or for 0.5 to 24 hours.
PCT/KR2018/006677 2017-06-12 2018-06-12 Novel polypeptide having turanose production activity and method for producing turanose using same WO2018230952A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20170073233 2017-06-12
KR10-2017-0073233 2017-06-12
KR10-2018-0004546 2018-01-12
KR20180004546 2018-01-12

Publications (1)

Publication Number Publication Date
WO2018230952A1 true WO2018230952A1 (en) 2018-12-20

Family

ID=64660085

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/006677 WO2018230952A1 (en) 2017-06-12 2018-06-12 Novel polypeptide having turanose production activity and method for producing turanose using same

Country Status (2)

Country Link
KR (1) KR102232839B1 (en)
WO (1) WO2018230952A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05252974A (en) * 1992-03-09 1993-10-05 Hayashibara Biochem Lab Inc Production of turanose and its use
KR20120049421A (en) * 2010-11-02 2012-05-17 세종대학교산학협력단 Preparation method of turanose using amylosucrase and sweetner using turanose
KR20120136752A (en) * 2011-06-10 2012-12-20 세종대학교산학협력단 Preparation method of turanose using immobilized enzyme on ph-sensitive polymer
KR20150010955A (en) * 2012-05-16 2015-01-29 로께뜨프레르 Strain producing turanose and uses thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05252974A (en) * 1992-03-09 1993-10-05 Hayashibara Biochem Lab Inc Production of turanose and its use
KR20120049421A (en) * 2010-11-02 2012-05-17 세종대학교산학협력단 Preparation method of turanose using amylosucrase and sweetner using turanose
KR20120136752A (en) * 2011-06-10 2012-12-20 세종대학교산학협력단 Preparation method of turanose using immobilized enzyme on ph-sensitive polymer
KR20150010955A (en) * 2012-05-16 2015-01-29 로께뜨프레르 Strain producing turanose and uses thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DATABASE NCBI 12 June 2014 (2014-06-12), "NCBI reference sequence", Database accession no. WP_027883290.1 *

Also Published As

Publication number Publication date
KR102232839B1 (en) 2021-03-29
KR20180135424A (en) 2018-12-20

Similar Documents

Publication Publication Date Title
WO2019027267A2 (en) Atp phosphoribosyltransferase mutant and l-histidine production method using same
WO2018182345A1 (en) Composition for tagatose production and method for tagatose production using same
WO2017018863A1 (en) Hexuronate c4-epimerase mutant with improved conversion activity, and method for producing d-tagatose by using same
WO2020111436A1 (en) Camp receptor protein mutant and l-amino acid production method using same
WO2020022547A1 (en) Novel 5'-inosine monophosphate dehydrogenase and 5'-inosine monophosphate production method using same
WO2018093153A1 (en) Novel d-psicose 3-epimerase and method for preparing d-psicose using same
WO2020111438A1 (en) Camp receptor protein mutant and l-amino acid production method using same
WO2019027173A2 (en) Novel psicose-6-phosphate phosphatase, composition for producing psicose including said enzyme, method for producing psicose using said enzyme
WO2021112469A1 (en) Novel branched-chain amino acid aminotransferase mutant and leucine production method using same
WO2016129812A1 (en) Novel lysine decarboxylase, and method for producing cadaverine by using same
WO2020111437A1 (en) Camp receptor protein mutant and method for preparing l-amino acid by using same
WO2020067649A1 (en) Novel fructose-4-epimerase and method for preparing tagatose using same
WO2022225322A1 (en) Novel f0f1 atp synthase subunit alpha variant and method for producing xmp or gmp using same
WO2019098723A1 (en) Novel d-psicose-3-epimerase and method for producing d-psicose by using same
WO2018230953A1 (en) Novel polypeptide having activity of producing glucosylglycerol and glucosylglycerol production method using same
WO2019112368A1 (en) Novel psicose-6-phosphate phosphatase, composition for producing psicose comprising same, and method for producing psicose using same
WO2018230952A1 (en) Novel polypeptide having turanose production activity and method for producing turanose using same
WO2022225321A1 (en) Novel f0f1 atp synthase subunit gamma variant, and method for producing xmp or gmp using same
WO2022225320A1 (en) Novel phosphoglycerate dehydrogenase variant, and method for producing xap or gmp using same
WO2017065529A1 (en) O-acetylhomoserine sulfhydrylase variant and method for producing l-methionine using same
WO2022154190A1 (en) Novel phosphonoacetate hydrolase variant and method for producing xmp or gmp using same
WO2022225319A1 (en) Novel l-serine ammonia-lyase variant and method for producing xmp or gmp, using same
WO2022231371A1 (en) Novel 5-(carboxyamino)imidazole ribonucleotide synthetase mutant and imp production method using same
WO2020184889A1 (en) Allulose-producing microorganism of genus staphylococcus and method for manufacturing allulose using same
WO2020067786A1 (en) Novel fructose-4-epimerase and tagatose production method using same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18818636

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 20.03.2020)

122 Ep: pct application non-entry in european phase

Ref document number: 18818636

Country of ref document: EP

Kind code of ref document: A1