WO2018230508A1 - Electrically conductive foam - Google Patents

Electrically conductive foam Download PDF

Info

Publication number
WO2018230508A1
WO2018230508A1 PCT/JP2018/022255 JP2018022255W WO2018230508A1 WO 2018230508 A1 WO2018230508 A1 WO 2018230508A1 JP 2018022255 W JP2018022255 W JP 2018022255W WO 2018230508 A1 WO2018230508 A1 WO 2018230508A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive
foam
conductive foam
emulsion
graphite
Prior art date
Application number
PCT/JP2018/022255
Other languages
French (fr)
Japanese (ja)
Inventor
敦紀 菊地
Original Assignee
株式会社イノアック技術研究所
株式会社イノアックコーポレーション
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社イノアック技術研究所, 株式会社イノアックコーポレーション filed Critical 株式会社イノアック技術研究所
Priority to KR1020197034551A priority Critical patent/KR102338096B1/en
Priority to CN201880038459.7A priority patent/CN110730799B/en
Publication of WO2018230508A1 publication Critical patent/WO2018230508A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/40Layered products comprising a layer of synthetic resin comprising polyurethanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/18Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by features of a layer of foamed material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0066Use of inorganic compounding ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/30Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by mixing gases into liquid compositions or plastisols, e.g. frothing with air
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L75/00Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L75/00Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
    • C08L75/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/001Conductive additives

Definitions

  • the present invention relates to a conductive foam.
  • Patent Document 1 proposes a conductive foam obtained by foaming a latex composition containing a conductive filler and a rubber latex such as SBR latex, NR latex, and NBR latex.
  • a conductive foam obtained by foaming a latex composition containing a conductive filler and a rubber latex such as SBR latex, NR latex, and NBR latex.
  • the rubber foam has high hardness although high conductivity is obtained.
  • the environment in which it can be used is limited due to the influence of the additive (sulfur).
  • the urethane foam can obtain low hardness, it has low electrical conductivity and cannot provide uniform conductivity.
  • the impregnation process can suppress the addition amount of the conductive material in a small amount as compared with the compound product and can obtain high conductivity, but the conductive material is easily dropped, and the usable environment is limited.
  • the amount of conductive material added can be minimized as in the impregnation process.
  • there is a dropout and there is no conductivity in the thickness direction, and only the surface resistance and the usage method are limited.
  • the present invention is excellent in various properties such as conductivity under low voltage, highly isotropic conductivity, conductive material retention, cushioning property (low hardness), moldability, etc., regardless of environment. It is an object to provide a conductive foam that can be used.
  • the present inventors have conducted intensive research and found that the above problems can be solved by forming a foam using an emulsion composition containing a specific conductive material and emulsion, and completed the present invention. That is, the present invention is as follows.
  • the present invention (1) A conductive foam obtained by foaming an emulsion composition in which a conductive material is dispersed by a mechanical froth method and then curing, wherein the conductive material has at least a basal surface curved It is a conductive foam characterized in that it contains spherical graphite having
  • the present invention (2) is the conductive foam according to the invention (1) containing 30% by mass to 50% by mass of the conductive material based on the total mass of the conductive foam.
  • the present invention (4) The conductive foam of the invention (3), wherein the conductive material contains the spherical graphite and a conductive filler in a mixing ratio (mass ratio) of 9: 1 to 5: 5.
  • the present invention (5) The conductive foam of the invention (3) or (4), wherein the conductive filler is conductive carbon.
  • the present invention (6) The conductive foam according to any one of the inventions (1) to (5), wherein the emulsion composition contains at least one resin material of a urethane resin and an acrylic resin.
  • the present invention (8) The conductive foam according to any one of the inventions (1) to (7), which is laminated on a substrate.
  • a usable conductive foam can be provided.
  • Conductive foam 1-1 Raw material 1-1-1. Emulsion composition 1-1-2. Conductive material 1-1-2-1. Spherical graphite 1-1-2-2. Conductive filler 1-1-3. Additive 1-1-3-1. Foaming agent 1-1-3-2. Crosslinking agent 1-1-3-3. Other 1-2. Production method of conductive foam 1-2-1. Each component of the raw material composition 1-2-2. Preparation method of raw material composition 1-2-3. Composition and properties of raw material composition 1-2-4. Foaming step 1-2-5. Curing step 1-2-6. Molding method 1-3. Use of conductive foam
  • Conductive foam refers to a material having a resistance of, for example, a volume resistance value of 10 8 ⁇ ⁇ cm or less.
  • the conductive foam according to the present invention is a conductive foam obtained by curing an emulsion composition containing a resin, a conductive material, and a foaming agent after foaming by a mechanical floss method.
  • the shape of the conductive foam is not particularly limited, but is preferably a sheet having a thickness of 0.05 mm to 2.0 mm.
  • the form of the bubbles in the conductive foam of the present invention is not particularly limited, but is preferably an open cell from the viewpoint of heat dissipation and flexibility.
  • the “open cell” refers to a state in which a resin film that separates adjacent bubbles has a through-hole, and adjacent bubbles communicate with each other in a three-dimensional manner.
  • the “open cell” structure has the property of allowing outside air to pass into the foam. In the present invention, it is not strictly required that all the holes communicate with each other, and even if a partially closed hole exists inside, if there is a property that the outside air can pass through as a whole, “continuous” Let it be a “bubble” structure. The form of bubbles can be confirmed by observing with an electron microscope.
  • the apparent density (in accordance with JIS K7222) of the conductive foam according to the present invention is preferably 100 kg / m 3 to 700 kg / m 3 because both the conductivity and flexibility are excellent, and preferably 200 to 600 kg / m. 3 is more preferable.
  • the apparent density is lower than the above range, the conductivity is lowered.
  • the apparent density exceeds the above range, the flexibility is lowered and the hardness is increased. As a result, the shape followability to a complicated structure is deteriorated.
  • density is simply described in the present specification, it means “apparent density”.
  • the conductive foam is characterized in that the conductive material contains spherical graphite having a structure in which at least the basal surface is curved, and the spherical graphite has extremely low anisotropy in its conductive performance, and is conductive.
  • the conductive property of the foam itself is also characterized by extremely low anisotropy. That is, the conductive foam has a conductive performance that is not related to the conductive direction. In the sheet-shaped conductive foam, the conductivity in the thickness direction (the normal direction of the sheet) is particularly in other directions. It is a conductive foam characterized by little difference from the conductive performance.
  • the conductive foam according to the present invention may contain 30% by mass to 50% by mass of the conductive material based on the total mass.
  • the conductive material is smaller than 30% by mass, the conductive performance of the conductive foam may be insufficient. That is, it becomes difficult to develop high conductive performance at a low applied voltage.
  • the conductive material is larger than 50% by mass, the moldability, flexibility and material strength of the conductive foam may be lowered.
  • the conductive material contained in the conductive foam according to the present invention can be in a state where the conductive materials are not in contact with each other. Even when the conductive materials are not in contact with each other, conductivity can be imparted by hopping or a Pool-Frenkel effect.
  • the Pool-Frenkel effect affects the distance between conductive materials, and the longer the distance, the longer the distance for flying electrons, so a higher voltage needs to be applied. Therefore, it is necessary to increase the amount of the conductive material in order to develop conductivity under a low voltage.
  • problems such as deterioration of moldability, flexibility and material strength of the conductive foam. Will occur.
  • a conductive filler in addition to the spherical graphite having a structure in which the basal surface is bent, a conductive filler can be further added as a conductive material.
  • the blending ratio of the spherical graphite and the conductive filler is preferably 9: 1 to 5: 5.
  • the conductivity is remarkably improved. That is, the volume resistance value decreases.
  • hopping type electric conduction in which a plurality of tunneling is repeated in an insulating resin forming a matrix is used.
  • a region where the conductive materials are not in contact with each other can be a conduction portion.
  • the conductive filler is carbon-based, the specific gravity of the spherical graphite and the conductive filler have substantially the same specific gravity, so the ratio according to the mixing ratio (for example, the ratio of 9: 1 to 5: 5) Therefore, the electric conduction mechanism in the conductive foam of the present invention having better performance can be obtained.
  • the conductive foam according to the present invention can be laminated on a substrate as a sheet.
  • the material of the base material is not particularly limited as long as it can suppress the seepage of the raw material of the conductive foam.
  • a resin film such as a PET film, a nonwoven fabric, a woven fabric, paper, an adhesive tape, an airless tape in which an adhesive layer has an uneven shape, and the like can be given.
  • the thickness of the substrate is not particularly limited, but a thickness of 10 ⁇ m to 100 ⁇ m is suitable.
  • the base material may be peeled off depending on the use of the conductive foam, or may be used as it is without being peeled off. When peeling and using, the base material which carried out the mold release process can be used.
  • the said base material can use what has electroconductivity.
  • the conductive substrate is not particularly limited, and examples thereof include a PET film that has been subjected to a release treatment, an aluminum tape, a conductive adhesive tape, and a non-woven fabric or paper that has been subjected to a conductive treatment by a method such as impregnation.
  • a base material By using such a base material, it is possible to use the base material without peeling off the base material for applications in which conductivity in the thickness direction of the conductive foam sheet is required.
  • the conductive foam according to the present invention uses, for example, an emulsion composition, a conductive material, a foaming agent (anionic surfactant) as a raw material, and water, a crosslinking agent and other additives as a dispersion medium.
  • a foaming agent anionic surfactant
  • the foaming gas used in the foaming process is described in the foaming process).
  • Emulsion composition The emulsion raw material of the emulsion composition used when manufacturing the foam which concerns on this invention is not specifically limited, What is necessary is just an emulsion which can form a foam by a well-known method. Examples include urethane emulsions, acrylic emulsions, styrene emulsions, EVA (ethylene vinyl acetate copolymer) resin emulsions, vinyl chloride emulsions, epoxy emulsions, etc. One or a plurality of emulsions can be used. . In particular, it is preferable to use at least one emulsion among urethane emulsion and acrylic emulsion. Furthermore, it is more preferable to use at least an acrylic emulsion. Moreover, material strength can be further imparted by using a urethane emulsion. Moreover, the urethane resin foam obtained has excellent flexibility and low compressive residual strain.
  • Urethane Emulsion The production method of the urethane emulsion (water dispersion of urethane resin) that can be used in the present invention is not particularly limited, but the following methods (I) to (III) can be exemplified.
  • aqueous solution containing a neutralizing agent and a polyamine is mixed with an active hydrogen-containing compound, a compound having a hydrophilic group, and a terminal isocyanate group-containing urethane prepolymer having a hydrophilic group obtained by reacting a polyisocyanate. Or a method in which a neutralizing agent is added to the prepolymer in advance and then an aqueous solution containing polyamine is added and mixed to obtain a urethane resin emulsion.
  • Polyisocyanates used in the urethane resin method include 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, m-phenylene diisocyanate, p-phenylene diisocyanate, 4,4′-diphenylmethane diisocyanate, 2,4 ′.
  • the active hydrogen-containing compound is not particularly limited, and known polyols such as polyester polyols, polyether polyols, polycarbonate polyols, polyacetal polyols, polyacrylate polyols, polyester amide polyols, polythioether polyols, polybutadiene-based polyolefin polyols, and the like.
  • a polyol can be illustrated. Two or more of these high molecular weight compounds may be used in combination.
  • the urethane emulsion according to this embodiment is preferably one or more selected from the group consisting of a polyether urethane emulsion, a polyester urethane emulsion, a polyether carbonate urethane emulsion, and a polycarbonate urethane emulsion.
  • the polyester-based urethane emulsion according to the present embodiment is not limited in any way.
  • a polyester polyol for example, a polymer obtained by dehydration condensation of a polybasic acid and a polyhydric alcohol, ⁇ -caprolactone, It can be produced by using a polymer obtained by ring-opening polymerization of a lactone such as ⁇ -methyl- ⁇ -caprolactone, a reaction product of a hydroxycarboxylic acid and a polyhydric alcohol, or the like.
  • polycarbonate-based urethane emulsion is not limited at all.
  • polycarbonate polyol for example, diols such as ethylene glycol, propylene glycol, butanediol, pentanediol, hexanediol, and the like, and diaryl carbonate (For example, a reaction product with a cyclic carbonate (eg, propylene carbonate), etc.).
  • the polyether-based urethane emulsion according to the present embodiment is not limited in any way, but can be manufactured, for example, by using a polyether polyol ⁇ eg, polytetramethylene glycol, polypropylene glycol, polyethylene glycol, etc.) in the above manufacturing method. It is.
  • the urethane resin contains both a carbonate group and an ether group (...- O-CO-O- [RO-R ']-O-CO-O-).
  • the structure is not limited at all, and can be produced by using a polyether polyol and a polycarbonate polyol in combination in the production method, for example.
  • an emulsifier may be further used as long as the effects of the invention are not impaired.
  • emulsifiers include nonionic emulsifiers such as polyoxyethylene nonylphenyl ether, polyoxyethylene lauryl ether, polyoxyethylene styrenated phenyl ether, polyoxyethylene sorbitol tetraoleate; fatty acid salts such as sodium oleate , Anionic emulsifiers such as alkyl sulfate salts, alkylbenzene sulfonates, alkyl sulfosuccinates, naphthalene sulfonates, alkane sulfonate sodium salts, sodium alkyl diphenyl ether sulfonates; polyoxyethylene alkyl sulfates, polyoxyethylene alkylphenyls
  • Nonionic anionic emulsifiers such as sulfates can be exe
  • the conductive foam of the present invention uses a urethane emulsion as a raw material (the foam contains a urethane resin), so that the conductive foam is obtained by blending a conductive material. It is possible to obtain a foam having various characteristics such as properties, hardness, suppression of dropping of the conductive material, and hydrolysis resistance at a high level.
  • the production method of the acrylic emulsion (acrylic resin aqueous dispersion) that can be used in the present invention is not particularly limited, but in the presence of a polymerization initiator, if necessary, an emulsifier and a dispersion stabilizer,
  • a (meth) acrylic acid ester monomer is an essential polymerizable monomer component, and if necessary, a mixture of other polymerizable monomers copolymerizable with these monomers is copolymerized. Can be obtained.
  • Two or more acrylic emulsions may be used in combination.
  • the glass transition temperature of the acrylic emulsion is preferably in the range of 0 ° C to 80 ° C.
  • Examples of the polymerizable monomer that can be used for preparing the acrylic emulsion include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, (meth ) Hexyl acrylate, heptyl (meth) acrylate, octyl (meth) acrylate, octadecyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, cyclohexyl (meth) acrylate, nonyl (meth) acrylate, ( (Meth) acrylic acid such as dodecyl (meth) acrylate, stearyl (meth) acrylate, isobornyl (meth) acrylate, dicyclopentanyl (meth) acrylate, phenyl (meth) acrylate, benzyl (meth) acrylate Ester
  • these emulsions may contain a surfactant (emulsifier) for dispersing the resin.
  • the surfactant for resin dispersion is a surfactant for dispersing a water-dispersible resin (unlike an anionic surfactant, it does not have to have an effect as a foaming agent). Such a surfactant may be appropriately selected according to the water-dispersible resin to be selected.
  • a dispersion medium of an emulsion composition although water is an essential component, the mixture of water and a water-soluble solvent may be sufficient.
  • the water-soluble solvent include alcohols such as methyl alcohol, ethyl alcohol, isopropyl alcohol, ethyl carbitol, ethyl cellosolve, butyl cellosolve, polar solvents such as N-methylpyrrolidone, and the like, one or more of these.
  • alcohols such as methyl alcohol, ethyl alcohol, isopropyl alcohol, ethyl carbitol, ethyl cellosolve, butyl cellosolve, polar solvents such as N-methylpyrrolidone, and the like, one or more of these.
  • polar solvents such as N-methylpyrrolidone, and the like, one or more of these.
  • a mixture of the above may be used.
  • Conductive Material The conductive material described below may be blended as a powder, but is preferably used as an aqueous dispersion in which the powder is dispersed in water. By using an aqueous dispersion, it is easy to uniformly disperse within the composition when it is added to the emulsion composition.
  • Spherical graphite has high electrical conductivity and contributes to the development of electrical conductivity of the conductive foam of the present invention.
  • the graphite that can be used in the present invention is spherical.
  • the term “spherical” does not mean only a true spherical shape, but a shape in which the true spherical shape is slightly deformed like a disc shape, the surface is not uniform, and a cabbage-like appearance in which layers are superimposed on the surface
  • the shape includes, for example, a shape that is not grasped as a true spherical shape.
  • the crystal form of natural graphite is a hexagonal crystal form.
  • untreated graphite is scaly and is distinguished from this. That is, the present invention requires the use of graphite that has been subjected to at least spheroidizing treatment.
  • the spheroidization treatment includes a simple treatment method such as pulverization of scale-like natural graphite, but a treatment method in which pressure is isotropically applied to graphite is preferable.
  • the treatment can be performed by a method of isotropically applying pressure to graphite using a pressure medium such as a gas (inert gas such as argon) or a liquid (for example, water).
  • a distinction is made between hot isostatic pressing and cold isostatic pressing. Either may be used.
  • the above spheroidized spherical graphite is specified as spherical graphite having a structure in which the basal surface is bent from the other side.
  • the “basal plane” means a plane orthogonal to the C axis of the graphite crystal (hexagonal system). That is, it is preferable that the spherical graphite of the present invention has a distortion in the crystal system of natural graphite. This distortion can be grasped by measuring the X-ray diffraction pattern and confirming the presence or absence of peak broadening or 2 ⁇ value shift as compared with natural graphite.
  • the conductive foam contains spherical graphite. It is confirmed by measuring the X-ray diffraction pattern of the raw graphite, and any two or more cross sections of the conductive foam are observed with a microscope. However, it can also be confirmed by checking whether or not the shape of the graphite equivalent portion is circular. Specifically, the surfaces of the conductive foam that are orthogonal to each other are observed with a microscope, and the shape of the graphite-corresponding portion in any image is a circular shape with a minor axis / major axis ratio of less than 1/2. It can be said that the conductive foam contains spherical graphite.
  • Examples of spherical graphite that can be used in the present invention include those obtained by spheroidizing non-spherical graphite powder such as flake graphite by a high-speed airflow impact method using a hybridization system; and petroleum-based or petroleum-based graphite And the like obtained by curing spherical carbon particles having crystallized pitch and thermosetting resin to obtain a powder, and graphitizing the powder.
  • the former is preferable from the viewpoint of isotropic conductivity.
  • the spherical graphite a commercially available product can be suitably used, and specific examples thereof include spherical graphite manufactured by Nippon Graphite Industries Co., Ltd.
  • the average particle diameter (median diameter) of the spherical graphite used in the present invention is about 1 to 100 ⁇ m.
  • the thickness is preferably 5 to 80 ⁇ m, more preferably 8 to 80 ⁇ m. Ensuring the conductivity of the conductive foam and ensuring its flexibility tends to decrease when one is improved. However, when spherical graphite with a relatively small average particle size is used, both properties are reduced. It is preferable because it can improve the balance.
  • the preferred average particle size range varies depending on the final shape of the conductive foam, but in the sheet-like form having a thickness of about 0.1 to 1.0 mm, it is preferably about 5 to 30 ⁇ m, and 10 to 20 ⁇ m. More preferably.
  • Conductive filler The conductive filler added to the spherical graphite used in the production of the conductive foam of the present invention (conductive filler other than the spherical graphite having a structure in which the basal surface is curved) is used as the conductive material of the foam.
  • the material is not particularly limited as long as it has the property of improving the properties, and general metal materials, conductive carbon, ion conductive materials, and the like can be exemplified, but conductive carbon is preferable.
  • the conductive carbon examples include nano-sized conductive carbon such as carbon nanotube, carbon black (for example, acetylene black), graphene, and the like, graphite, carbon fiber, and graphite (spherical graphite having a structure in which a basal surface is curved) And graphite) and activated carbon.
  • nano-sized conductive carbon such as carbon nanotube, carbon black (for example, acetylene black), graphene, and the like, graphite, carbon fiber, and graphite (spherical graphite having a structure in which a basal surface is curved) And graphite) and activated carbon.
  • These conductive carbons are effective in that the specific gravity is light compared to a metal filler of the same size, and the weight of the conductive foam is difficult to increase even if the amount added is increased.
  • the conductive carbon is rich in flexibility, that is, has low elasticity as compared with the metal filler, so that the conductive foam can be made flexible, that is, low
  • the average length of the conductive filler (average diameter in the case of a substantially spherical shape) is preferably 1 nm to 100 nm, and more preferably 5 nm to 50 nm.
  • the conductive filler preferably has an aspect ratio of 5 or less, more preferably 3 or less, and even more preferably 2 or less. When the aspect ratio exceeds 5, anisotropy may appear in the conductive performance of the conductive foam.
  • the value of “aspect ratio” is a value obtained by dividing the average length of the conductive filler by the average diameter.
  • the “average length” and “average diameter” are values obtained by observing and measuring at least 100 particles of the conductive filler and measuring the average value. More specifically, the “average diameter” is a particle cross-sectional area calculated based on a vertical cross section in the vicinity of the center in the length direction of the particle imaged by SEM observation, and a diameter of a circle having the same area as the cross-sectional area is calculated. It is the average value of the area diameter derived
  • the average diameter and average length are measured averages of 100 particles.
  • foaming agent that can be used in the production of the conductive foam of the present invention is a substance capable of stabilizing gas bubbles by mixing gas into the raw material mixture, and anionic foaming agents can be exemplified. .
  • anionic surfactant examples include sodium laurate, sodium myristate, sodium stearate, ammonium stearate, sodium oleate, potassium oleate soap, castor oil potassium soap, palm Oil potassium soap, sodium lauroyl sarcosine, sodium myristoyl sarcosine, sodium oleyl sarcosine, sodium cocoyl sarcosine, palm oil alcohol sodium sulfate, sodium polyoxyethylene lauryl ether sulfate, sodium alkylsulfosuccinate, sodium dialkylsulfosuccinate, sodium lauryl sulfoacetate, Examples include sodium alkylbenzene sulfonate and sodium ⁇ -olefin sulfonate.
  • the anionic surfactant used in this embodiment is preferably 10 or more, more preferably 20 or more, in order to facilitate dispersion in the emulsion composition.
  • the above is particularly preferable.
  • the HLB value means a hydrophilic-hydrophobic balance (HLB) value, and is determined by the Oda method.
  • the inorganic and organic numerical values are calculated from the values shown in Tables 3, 3 and 11 of the above “Introduction to New Surfactant”.
  • an amphoteric surfactant may be used as the foaming agent according to the present invention.
  • an anionic surfactant and an amphoteric surfactant are used in combination, the charge of the hydrophilic group between the molecules of the anionic surfactant is repelled, and the molecules of the anionic surfactant are kept at a certain distance from each other.
  • the electrically neutral double-sided surfactant enters between the molecules of the anionic surfactant, the bubbles can be further stabilized and the size of the bubbles can be reduced. For this reason, delamination strength can be improved. Therefore, it is preferable to use an anionic surfactant and an amphoteric surfactant in combination.
  • amphoteric surfactant is not particularly limited, and examples include amphoteric surfactants such as amino acid type, betaine type, and amine oxide type. Betaine type amphoteric surfactants have the above-mentioned effects. Since it is high, it is preferable.
  • amino acid-type amphoteric surfactants include N-alkyl or alkenyl amino acids or salts thereof.
  • N-alkyl or alkenyl amino acid an alkyl group or an alkenyl group is bonded to a nitrogen atom, and one or two “—R—COOH” (wherein R represents a divalent hydrocarbon group, preferably An alkylene group, particularly preferably having 1 to 2 carbon atoms.).
  • R represents a divalent hydrocarbon group, preferably An alkylene group, particularly preferably having 1 to 2 carbon atoms.
  • R represents a divalent hydrocarbon group, preferably An alkylene group, particularly preferably having 1 to 2 carbon atoms.
  • R represents a divalent hydrocarbon group, preferably An alkylene group, particularly preferably having 1 to 2 carbon atoms.
  • R represents a divalent hydrocarbon group, preferably An alkylene group, particularly preferably having 1 to 2 carbon atoms.
  • R represents a divalent hydrocarbon group, preferably An al
  • amphoteric surfactant any of these mono- and di-forms can be used.
  • the alkyl group or alkenyl group may be linear or branched.
  • the amino acid type amphoteric surfactant include sodium lauryldiaminoethylglycine, sodium trimethylglycine, sodium cocoyl taurine, sodium cocoyl methyl taurine, sodium lauroyl glutamate, potassium lauroyl glutamate, lauroyl methyl- ⁇ -alanine and the like. It is done.
  • betaine-type amphoteric surfactants include alkyl betaines, imidazolinium betaines, carbobetaines, amide carbobetaines, amide betaines, alkylamide betaines, sulfobetaines, amide sulfobetaines, and phosphobetaines.
  • lauryl betaine lauryl betaine, stearyl betaine, lauryl dimethylaminoacetic acid betaine, stearyl dimethylaminoacetic acid betaine, lauric acid amidopropyl dimethylaminoacetic acid betaine, isostearic acid amidoethyl dimethylaminoacetic acid betaine, Isostearic acid amidopropyl dimethylaminoacetic acid betaine, isostearic acid amidoethyl diethylaminoacetic acid betaine, isostearic acid amidopropyl diethylaminoacetic acid betaine, isostearic acid amidoethyl dimethylaminohydroxysulfobetaine, isostearic acid amidopropyl dimethylaminohydroxysulfobetaine, isostearic acid amidoethyl diethylamino Hydroxysulfobetaine, isostearamide Lopy
  • amine oxide type amphoteric surfactants examples include lauryl dimethylamine-N-oxide and oleyldimethylamine-N-oxide.
  • amphoteric surfactants mentioned above it is preferable to use a betaine type amphoteric surfactant, and among the betaine types, alkylbetaine, imidazolinium betaine, and carbobetaine are particularly preferable.
  • alkylbetaines that can be used in the present invention include stearyl betaine and lauryl betaine.
  • imidazolinium betaines include 2-alkyl-N-carboxymethyl-N-hydroxyethylimidazolinium betaine. .
  • nonionic surfactant may be used as the foaming agent according to the present invention.
  • the nonionic surfactant is not particularly limited, and nonionic surfactants such as fatty acid alkaminolamide, ether, ester, and the like can be exemplified.
  • cross-linking agent used in the production of the conductive foam of the present invention is not particularly limited, and a necessary amount may be added depending on the application and the like. It can be selected according to the type.
  • the crosslinking agent a known crosslinking agent can be used, and the resin compounding system used includes an epoxy crosslinking agent, a melamine crosslinking agent, an isocyanate crosslinking agent, a carbodiimide crosslinking agent, an oxazoline crosslinking agent, and the like.
  • An appropriate amount can be used according to the kind of the functional group and the amount of the functional group.
  • a method for producing a conductive foam of the present invention comprises a foaming step of foaming (mechanical foaming) a raw material composition, which is an emulsion composition in which a conductive material is dispersed, by a mechanical floss method, Curing the foamed raw material composition. According to this method, the conductive foam of the present invention can be stably produced.
  • the raw material composition used in the method for producing a conductive foam according to the present invention includes at least a conductive material containing spherical graphite having a structure with a curved basal surface and the emulsion composition. Further, it may contain a polyfunctional compound that contributes to the curing of the resin component of the emulsion, that is, a crosslinking agent or a foaming agent. Preferred examples of the foaming agent and the crosslinking agent are the same as the preferred examples of the respective components described for the conductive foam.
  • solvents that can be used include water, organic solvents (for example, alcohols such as methyl alcohol, ethyl alcohol, isopropyl alcohol, ethyl carbitol, ethyl cellosolve, butyl cellosolve, one kind of polar solvent such as N-methylpyrrolidone, or In the present invention, it is preferable to use only water.
  • organic solvents for example, alcohols such as methyl alcohol, ethyl alcohol, isopropyl alcohol, ethyl carbitol, ethyl cellosolve, butyl cellosolve, one kind of polar solvent such as N-methylpyrrolidone, or In the present invention, it is preferable to use only water.
  • organic solvent for example, the viscosity of the raw material composition is lower than when water is used, and there is a possibility that bubbles are defoamed. Therefore, it is preferable not to include an organic solvent, but it may be included at a ratio that does not
  • the raw material composition is prepared by preparing an aqueous dispersion of the resin, an aqueous dispersion of a conductive material such as the spherical graphite, and mixing them to prepare a conductive material such as the spherical graphite. This is preferable because the raw material composition can be prepared without causing aggregation of the functional material.
  • the solid content concentration of the resin in the aqueous emulsion of the resin and the solid content concentration of the conductive material in the aqueous dispersion of the conductive material but generally 50% by mass to 90%. It is about mass%.
  • a surfactant as a foaming agent is mixed in advance in the aqueous dispersion of the conductive material, the dispersion stability of the conductive material in the resin when mixed with the aqueous emulsion of the resin is further improved. Therefore, it is preferable.
  • at least one surfactant having good wettability as the foaming agent because the dispersion stability of the conductive material in the resin is further improved.
  • the aqueous dispersion of the conductive material can be prepared by mixing the conductive material with an aqueous solution or suspension of a surfactant (foaming agent) having a solid content of about 20 to 60% by mass.
  • a surfactant foaming agent
  • other additives are added to the aqueous dispersion of the conductive material and mixed with an aqueous emulsion of the resin. It is preferable to prepare a raw material composition.
  • the total solid content concentration of the raw material composition is about 40 to 80% by mass, and preferably 50 to 70% by mass.
  • the total mass of the resin (and optionally added crosslinking agent) and the conductive material is 95% or more, and the foaming agent (specifically, surface active agent)
  • the total mass of other additives such as (agent) is 5% or less.
  • the preferred mass ratio of each material in the solid content varies depending on the type of material used.
  • the viscosity of the raw material composition is suitably about 10,000 to 200,000 mPa ⁇ s in order to stably form bubbles in the following foaming step.
  • Foaming step In the foaming step, mechanical foaming is performed in which the raw material composition is stirred to generate bubbles.
  • the mechanical foaming (mechanical flossing) method is a method in which a raw material composition is stirred with a stirring blade or the like, and a gas such as air in the atmosphere is mixed into the emulsion composition and foamed.
  • a stirring device As the stirring device, a stirring device generally used in the mechanical foaming method can be used without particular limitation. For example, a homogenizer, a dissolver, a mechanical floss foaming machine, or the like can be used.
  • the foaming process by the mechanical foaming method by performing the foaming process by the mechanical foaming method, the formation of closed cells is suppressed, the formation of open cells is dominant, and the density of the foam after curing is prevented from being increased. A highly porous material is obtained.
  • the stirring conditions are not particularly limited, but the stirring time is usually 1 to 10 minutes, preferably 2 to 6 minutes.
  • the stirring speed in the above mixing is preferably 200 rpm or more in order to make bubbles fine (more preferably 500 rpm or more), and preferably 2000 rpm or less (800 rpm or less for smooth discharge of foam from the foaming machine). More preferred).
  • the temperature condition of the foaming process but it is usually room temperature. When the curing step described later is also performed simultaneously with foaming, heating may be performed to advance the reaction of the functional group.
  • the resin component is cured.
  • the raw material composition becomes a structure as a conductive foam.
  • the curing process is performed after the foaming process. Heating is preferably performed in order to evaporate the solvent (water) in the raw material composition and to advance the crosslinking reaction.
  • the heating temperature and heating time may be any temperature and time at which the raw material can be crosslinked (cured). For example, the heating temperature and heating time may be about 80 to 150 ° C. (especially about 120 ° C. is preferable) for about 1 hour.
  • the curing step may be performed as one step of a molding process for making the obtained conductive foam into a desired shape.
  • the curing step may be performed as one step of the casting method. Specifically, the raw material composition subjected to “(4) foaming step” is cast to a desired thickness on the surface of the base material, and heated to evaporate the solvent (water), while allowing the crosslinking reaction to proceed. It can be cured to produce a sheet on the substrate surface.
  • the conductive foam of the present invention can be molded by various conventionally known methods.
  • An appropriate molding method can be selected according to the desired final shape.
  • a casting method can be used.
  • the bubble introduction process is preferably performed before the molding process.
  • the formation of the crosslinked structure that is, the progress of the crosslinking reaction may be performed simultaneously with the molding process.
  • conductive foam according to the present invention not only has conductivity and conductivity retention (prevention of falling off of conductive material), but also has excellent cushioning properties (flexibility). Therefore, the followability to the mating member is excellent, and the reaction force (restoring force) of the conductive foam itself can be reduced. For this reason, when sandwiched between the members, while securing sufficient conductivity, the mating member (IC chip or substrate wiring, substrate warpage, etc.) is damaged or the wiring is disconnected. Can be used without causing any damage. In particular, in recent years, electronic devices have become thinner, lighter, and smaller, and there is a tendency for the space inside the electronic devices to be reduced, and the internal structure has become complicated, making the cushions thinner and better than ever.
  • conductive foams having properties (flexibility). In addition to being sandwiched between members, it can be used for various purposes regardless of its application method and usage environment (for example, grounding materials, shielding materials, cushioning materials, protective materials, and substrate insertion materials in electronic parts and devices). Etc.).
  • the conductive foam according to the present invention can be made into a conductive foam having excellent characteristics without containing silicone. If silicone is not contained, silicone for electronic parts and devices can be obtained. It can be used without worrying about contamination.
  • Example 1 As an emulsion, an acrylic emulsion is used as a main ingredient, and 5 parts by weight of an anionic surfactant 1 or 3 parts by weight of an anionic surfactant based on the total amount of the emulsion (the total amount of solids and non-solids is 100 parts by weight). 2, 2 parts by weight of amphoteric surfactant 1, 1.5 parts by weight of amphoteric surfactant 2, 0.5 parts by weight of nonionic surfactant 1, 23.5 parts by weight of graphite 1, 2.6
  • the foam raw material was prepared by mixing 1 part by mass of the conductive filler 1 and 3 parts by mass of the crosslinking agent 1. After foaming by adding air to the raw material, the foam according to Example 1 was obtained by heat treatment.
  • Examples 2 to 31, Comparative Examples 1 to 10 foams were obtained in the same manner as in Example 1 except that the types and addition amounts of graphite or conductive carbon were changed as shown in Tables 1 to 3 and 5 below. .
  • the main agent in Examples 1 and 2 was changed from acrylic emulsion to urethane emulsion.
  • the main agent in Examples 1 and 2 was acrylic and 50 masses of urethane emulsion.
  • the foam was obtained by changing into parts.
  • Examples 27 to 31 are foams prepared by adjusting the thickness and density of Example 1. ⁇ Foam evaluation method ⁇ ⁇ Thickness> The thickness was measured with a thickness gauge.
  • ⁇ Density> It was measured by calculating the weight per unit volume.
  • ⁇ Appearance> The state of the cell and the surface of the foam were evaluated visually. “ ⁇ ” when the cell is uniform and the surface is not rough, “ ⁇ ” when the cell is slightly rough, “when the cell is very rough, or the cell is not formed, or the surface state is severe” “ ⁇ ”.
  • volume resistance value and the surface resistance value were converted into common logarithms, and the anisotropy of the conductive performance was evaluated from the absolute value of the difference obtained by subtracting the volume resistance value from the surface resistance value.
  • the case where the absolute value of the difference obtained by subtracting the volume resistance value from the surface resistance value is less than 1.5 is “ ⁇ ”, 1.5 or more, less than 2.00 is “ ⁇ ”, and 2.00 or more is “ ⁇ ”. From the results of volume resistance evaluation and anisotropy evaluation, those having no “x” were evaluated as conductive foams having high conductivity / isotropy under low voltage.
  • ⁇ Hardness> The measurement was performed according to JIS K 6254. Specifically, the magnitude of the repulsive stress was measured when crushing 25% of the thickness of a sample punched out to a diameter of 50 ⁇ using an autograph at a speed of 1 mm / min (the sample was entirely covered with a 100 ⁇ compression plate). Compress and measure). The case where the 25% CLD hardness was less than 100 kPa was evaluated as “ ⁇ ”, the case where the 25% CLD hardness was 100 kPa or more and less than 200 kPa was evaluated as “ ⁇ ”, and the case where the 25% CLD hardness was 200 kPa or more was evaluated as “x”.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Laminated Bodies (AREA)
  • Conductive Materials (AREA)

Abstract

Provided is an electrically conductive foam which has excellent various properties including electrical conductivity under low voltages, highly isotropic electrical conductivity, electrically conductive material-retentive properties, cushioning properties (low hardness) and moldability, and can be used under any environments. An electrically conductive foam produced by foaming an emulsion composition having an electrically conductive material dispersed therein by a mechanical frothing method and then curing the resultant foam, wherein the electrically conductive material contains at least spherical graphite having such a structure that the basal face thereof is folded.

Description

導電性発泡体Conductive foam
 本発明は、導電性発泡体に関する。 The present invention relates to a conductive foam.
 既存の導電性発泡体には、ゴム、ウレタンなど様々な材料で導電性材料をコンパウンドして導電性を付与した発泡体や、含浸や表面処理など加工によって導電性を付与させた製品がある。例えば、特許文献1には、導電性充填剤と、SBRラテックス、NRラテックス、NBRラテックス等のゴムラテックスと、を含むラテックス組成物を発泡させることで得られる導電性発泡材が提示されている。このような発泡体に導電性の付与が求められる一番の理由は、導電性とクッション性(低硬度)の両立が可能であるからである。 Existing conductive foams include foams that are made conductive by compounding conductive materials with various materials such as rubber and urethane, and products that are made conductive by processing such as impregnation and surface treatment. For example, Patent Document 1 proposes a conductive foam obtained by foaming a latex composition containing a conductive filler and a rubber latex such as SBR latex, NR latex, and NBR latex. The primary reason why such a foam is required to have conductivity is that it is possible to achieve both conductivity and cushioning properties (low hardness).
日本国特開2004-202989号公報Japanese Unexamined Patent Publication No. 2004-202989
 しかしながら、ゴム発泡体は、高い導電性が得られるものの硬度が高い。加えて、ゴム発泡体の製造に際しては、添加剤(硫黄)の影響で使用できる環境が限定される。又、ウレタン発泡体は、低硬度が得られるものの電気伝導度が低いことに加え、均一な導電性が得られない。更に、含浸加工は、コンパウンド品に比べ導電性材料の添加量を少量で抑えられることができ、高い導電性を得られるが、導電性材料が脱落しやすく、使用できる環境が制限される。又、表面処理は、含浸加工同様に導電性材料の添加量が必要最小限に抑えられるが、脱落がある上、厚み方向での導電性はなく表面抵抗のみと使用方法に制約を受ける。以上のことから、導電性を有する発泡体は、エレクトロニクスの分野においては、あまり採用されていないのが実情であり、導電性を有する発泡体の態様としては、U字型に折り曲げられた金属板間に発泡体を挟む方法等により導電性を担保させたもの(図示せず)が採用されている。 However, the rubber foam has high hardness although high conductivity is obtained. In addition, in the production of rubber foam, the environment in which it can be used is limited due to the influence of the additive (sulfur). In addition, although urethane foam can obtain low hardness, it has low electrical conductivity and cannot provide uniform conductivity. Furthermore, the impregnation process can suppress the addition amount of the conductive material in a small amount as compared with the compound product and can obtain high conductivity, but the conductive material is easily dropped, and the usable environment is limited. In the surface treatment, the amount of conductive material added can be minimized as in the impregnation process. However, there is a dropout, and there is no conductivity in the thickness direction, and only the surface resistance and the usage method are limited. From the above, it is a fact that conductive foams are not so often used in the field of electronics, and as a form of conductive foam, a metal plate bent into a U-shape is used. The thing (not shown) which ensured electroconductivity by the method of inserting | pinching a foam between etc. is employ | adopted.
 よって、本発明は、低電圧下での導電性、等方性の高い導電性、導電性材料保持性、クッション性(低硬度)、成形性等の様々な特性に優れ、環境を選ばずに使用可能な導電性発泡体を提供することを課題とする。 Therefore, the present invention is excellent in various properties such as conductivity under low voltage, highly isotropic conductivity, conductive material retention, cushioning property (low hardness), moldability, etc., regardless of environment. It is an object to provide a conductive foam that can be used.
 本発明者らは、鋭意研究を行い、特定の導電性材料及びエマルジョンを含むエマルジョン組成物を用いた発泡体とすることで、上記課題を解決可能なことを見出し、本発明を完成させた。即ち、本発明は下記の通りである。 The present inventors have conducted intensive research and found that the above problems can be solved by forming a foam using an emulsion composition containing a specific conductive material and emulsion, and completed the present invention. That is, the present invention is as follows.
 本発明(1)は、
 導電性材料を分散させたエマルジョン組成物を、メカニカルフロス法にて発泡させた後に硬化することにより得られる導電性発泡体であって、前記導電性材料が、少なくとも、ベーサル面を褶曲させた構造を有する球状黒鉛を、含有することを特徴とする導電性発泡体である。
 本発明(2)は、前記導電性発泡体の全質量を基準として、前記導電性材料を30質量%~50質量%含有する、前記発明(1)の導電性発泡体である。
 本発明(3)は、
 前記導電性材料として、前記球状黒鉛とは異なる導電性フィラーをさらに含有する、前記発明(1)又は(2)の導電性発泡体である。
 本発明(4)は、
 前記導電性材料として、前記球状黒鉛と導電性フィラーとを配合比率(質量比)9:1~5:5で含有する、前記発明(3)の導電性発泡体である。
 本発明(5)は、
 前記導電性フィラーが、導電性カーボンである、前記発明(3)又は(4)の導電性発泡体である。
 本発明(6)は、
 前記エマルジョン組成物が、ウレタン系樹脂及びアクリル系樹脂のうちの少なくとも1つの樹脂材料を含む、前記発明(1)から(5)のいずれかの導電性発泡体である。
 本発明(7)は、
 シート状である前記発明(1)から(6)のいずれかの導電性発泡体である。
 本発明(8)は、
 基材上に積層されたものである前記発明(1)から(7)のいずれかの導電性発泡体である。
The present invention (1)
A conductive foam obtained by foaming an emulsion composition in which a conductive material is dispersed by a mechanical froth method and then curing, wherein the conductive material has at least a basal surface curved It is a conductive foam characterized in that it contains spherical graphite having
The present invention (2) is the conductive foam according to the invention (1) containing 30% by mass to 50% by mass of the conductive material based on the total mass of the conductive foam.
The present invention (3)
The conductive foam of the invention (1) or (2), further containing a conductive filler different from the spherical graphite as the conductive material.
The present invention (4)
The conductive foam of the invention (3), wherein the conductive material contains the spherical graphite and a conductive filler in a mixing ratio (mass ratio) of 9: 1 to 5: 5.
The present invention (5)
The conductive foam of the invention (3) or (4), wherein the conductive filler is conductive carbon.
The present invention (6)
The conductive foam according to any one of the inventions (1) to (5), wherein the emulsion composition contains at least one resin material of a urethane resin and an acrylic resin.
The present invention (7)
The conductive foam according to any one of the inventions (1) to (6), which is in the form of a sheet.
The present invention (8)
The conductive foam according to any one of the inventions (1) to (7), which is laminated on a substrate.
 本発明によれば、低電圧下での導電性、等方性の高い導電性能、導電性材料保持性、クッション性(低硬度)、成形性等の様々な特性に優れ、環境を選ばずに使用可能な導電性発泡体を提供することができる。 According to the present invention, it is excellent in various properties such as conductivity under low voltage, highly isotropic conductive performance, conductive material retention, cushioning property (low hardness), moldability, etc., regardless of environment. A usable conductive foam can be provided.
球状黒鉛及び導電性フィラーを含む本実施形態に係る導電性発泡体における、電気伝導機構の一例を示す概念図である。It is a conceptual diagram which shows an example of the electrical conduction mechanism in the conductive foam which concerns on this embodiment containing spherical graphite and a conductive filler.
 以下、本発明の導電性発泡体及びその製造方法について下記項目に従って詳述する。
1.導電性発泡体
1-1.原料
1-1-1.エマルジョン組成物
1-1-2.導電性材料
1-1-2-1.球状黒鉛
1-1-2-2.導電性フィラー
1-1-3.添加剤
1-1-3-1.起泡剤
1-1-3-2.架橋剤
1-1-3-3.その他
1-2.導電性発泡体の製造方法
1-2-1.原料組成物の各成分
1-2-2.原料組成物の調製方法
1-2-3.原料組成物の組成・性質
1-2-4.発泡工程
1-2-5.硬化工程
1-2-6.成形方法
1-3.導電性発泡体の用途
Hereinafter, the conductive foam of the present invention and the production method thereof will be described in detail according to the following items.
1. Conductive foam 1-1. Raw material 1-1-1. Emulsion composition 1-1-2. Conductive material 1-1-2-1. Spherical graphite 1-1-2-2. Conductive filler 1-1-3. Additive 1-1-3-1. Foaming agent 1-1-3-2. Crosslinking agent 1-1-3-3. Other 1-2. Production method of conductive foam 1-2-1. Each component of the raw material composition 1-2-2. Preparation method of raw material composition 1-2-3. Composition and properties of raw material composition 1-2-4. Foaming step 1-2-5. Curing step 1-2-6. Molding method 1-3. Use of conductive foam
1.導電性発泡体
 本明細書における「導電性」とは、例えば体積抵抗値が10Ω・cm以下の抵抗を有するものをいう。
 本発明に係る導電性発泡体は、樹脂、導電性材料及び起泡剤を含有するエマルジョン組成物をメカニカルフロス法にて発泡させた後に硬化することにより得られる導電性発泡体である。前記導電性発泡体の形状は特に限定されないが、好ましくは厚み0.05mm~2.0mmのシート状である。
1. Conductive foam In this specification, “conductive” refers to a material having a resistance of, for example, a volume resistance value of 10 8 Ω · cm or less.
The conductive foam according to the present invention is a conductive foam obtained by curing an emulsion composition containing a resin, a conductive material, and a foaming agent after foaming by a mechanical floss method. The shape of the conductive foam is not particularly limited, but is preferably a sheet having a thickness of 0.05 mm to 2.0 mm.
 本発明の導電性発泡体中の気泡の形態については特に制限はないが、放熱性、柔軟性の観点から、連続気泡であることが好ましい。なお、「連続気泡」とは、隣り合う気泡を隔てる樹脂膜に貫通孔があり、隣り合う気泡どうしが3次元的に連通している状態をいう。又、「連続気泡」構造であると、発泡体内部まで外気が通過できる性質がある。本発明では、厳密に全ての孔間が連通していることを要求するものではなく、一部閉じた孔が内部に存在していても、全体として外気が通過できる性質があれば、「連続気泡」構造であるとする。気泡の形態については、電子顕微鏡で観察することで確認できる。 The form of the bubbles in the conductive foam of the present invention is not particularly limited, but is preferably an open cell from the viewpoint of heat dissipation and flexibility. The “open cell” refers to a state in which a resin film that separates adjacent bubbles has a through-hole, and adjacent bubbles communicate with each other in a three-dimensional manner. In addition, the “open cell” structure has the property of allowing outside air to pass into the foam. In the present invention, it is not strictly required that all the holes communicate with each other, and even if a partially closed hole exists inside, if there is a property that the outside air can pass through as a whole, “continuous” Let it be a “bubble” structure. The form of bubbles can be confirmed by observing with an electron microscope.
 本発明に係る導電性発泡体の見かけの密度(JIS K7222に準拠)は、100kg/m~700kg/mであると、導電性及び柔軟性の双方に優れるので好ましく、200~600kg/mであると、より好ましい。見かけの密度が前記範囲より低いと、導電性が低くなる。又見かけの密度が前記範囲を超えると、柔軟性が低くなり、硬度が高まる結果、複雑な構造に対する形状追従性が悪くなる。
 なお、本明細書で単に「密度」と記載されている場合は、「見かけの密度」を意味するものとする。
The apparent density (in accordance with JIS K7222) of the conductive foam according to the present invention is preferably 100 kg / m 3 to 700 kg / m 3 because both the conductivity and flexibility are excellent, and preferably 200 to 600 kg / m. 3 is more preferable. When the apparent density is lower than the above range, the conductivity is lowered. On the other hand, when the apparent density exceeds the above range, the flexibility is lowered and the hardness is increased. As a result, the shape followability to a complicated structure is deteriorated.
Note that when “density” is simply described in the present specification, it means “apparent density”.
 又前記導電性発泡体は、前記導電性材料が少なくともベーサル面を褶曲させた構造を有する球状黒鉛を含有することを特徴とし、前記球状黒鉛がその導電性能の異方性が極めて低く、導電性発泡体自体の導電性能についても異方性が極めて低いことを特徴とする。即ち、前記導電性発泡体において、導電方向に関係ない導電性能を有し、前記シート状の導電性発泡体においては、特に厚み方向(シートの法線方向)における導電性が、その他の方向における導電性能と差異が少ないことを特徴とする導電性発泡体である。 The conductive foam is characterized in that the conductive material contains spherical graphite having a structure in which at least the basal surface is curved, and the spherical graphite has extremely low anisotropy in its conductive performance, and is conductive. The conductive property of the foam itself is also characterized by extremely low anisotropy. That is, the conductive foam has a conductive performance that is not related to the conductive direction. In the sheet-shaped conductive foam, the conductivity in the thickness direction (the normal direction of the sheet) is particularly in other directions. It is a conductive foam characterized by little difference from the conductive performance.
 本発明に係る導電性発泡体は、その全質量を基準として、前記導電性材料を30質量%~50質量%含有することができる。前記導電性材料が30質量%よりも小さい場合には、導電性発泡体の導電性能が不十分となるおそれがある。即ち、低印加電圧において高い導電性能を発現させることが困難になる。前記導電性材料が50質量%よりも大きい場合には、導電性発泡体の成形性、柔軟性や材料強度が低下することがある。 The conductive foam according to the present invention may contain 30% by mass to 50% by mass of the conductive material based on the total mass. When the conductive material is smaller than 30% by mass, the conductive performance of the conductive foam may be insufficient. That is, it becomes difficult to develop high conductive performance at a low applied voltage. When the conductive material is larger than 50% by mass, the moldability, flexibility and material strength of the conductive foam may be lowered.
 なお、本発明に係る導電性発泡体に含有される導電性材料は、各導電性材料が接触していない状態とすることができる。導電性材料同士が接触していない場合においても、ホッピング、又は、Pool Frenkel(プールフレンケル)効果により、導電性を付与することができる。前記Pool Frenkel効果は、導電性材料間の距離に影響し、その距離が長くなると電子を飛ばす距離が長くなるため、より高電圧を印加する必要がある。従って、低電圧下において、導電性を発現させるには導電性材料の量を多くする必要があるが、上述したように導電性発泡体の成形性、柔軟性や材料強度が低下する等の問題が発生する。 The conductive material contained in the conductive foam according to the present invention can be in a state where the conductive materials are not in contact with each other. Even when the conductive materials are not in contact with each other, conductivity can be imparted by hopping or a Pool-Frenkel effect. The Pool-Frenkel effect affects the distance between conductive materials, and the longer the distance, the longer the distance for flying electrons, so a higher voltage needs to be applied. Therefore, it is necessary to increase the amount of the conductive material in order to develop conductivity under a low voltage. However, as described above, there are problems such as deterioration of moldability, flexibility and material strength of the conductive foam. Will occur.
 本発明に係る導電性発泡体は、導電性材料として、前記ベーサル面を褶曲させた構造を有する球状黒鉛に加え、さらに導電性フィラーを添加することができる。そのようにした場合の前記球状黒鉛と導電性フィラーとの配合比は、9:1~5:5が好適である。前記配合比がこの範囲にあるときには、著しく導電性が向上する。即ち、体積抵抗値が低下する。これは前記球状黒鉛に加え、さらに導電性フィラーを添加することで、前記球状黒鉛間の隙間に導電性フィラーが存在し、導電性材料から導電性材料に電子が飛びやすくすることが可能となるためである。以下、この点に関して詳述する。 In the conductive foam according to the present invention, in addition to the spherical graphite having a structure in which the basal surface is bent, a conductive filler can be further added as a conductive material. In such a case, the blending ratio of the spherical graphite and the conductive filler is preferably 9: 1 to 5: 5. When the mixing ratio is in this range, the conductivity is remarkably improved. That is, the volume resistance value decreases. By adding a conductive filler in addition to the spherical graphite, there is a conductive filler in the gap between the spherical graphite, making it easy for electrons to fly from the conductive material to the conductive material. Because. Hereinafter, this point will be described in detail.
 本発明の導電性発泡体における電気伝導機構としては、マトリクスをなす絶縁体の樹脂の中で複数のトンネリングを繰り返すホッピング型の電気伝導を利用する。そのためには、導電性材料間に電流を流す必要があり、低い電圧で電極間(導電性材料間)の距離が極めて狭い必要がある。すなわち、図1に示すように、ミクロンサイズの球状黒鉛に対して、ナノサイズの導電性フィラーが分散している構造により、マトリクス樹脂の限界膜厚、導電性材料間の距離を達成でき、各導電性材料が互いに接触していない領域を導通部とすることができる。具体的には、導電性フィラーがカーボン系の場合、球状黒鉛の比重と導電性フィラーは、比重がほぼ同じなので、その配合比に準じた割合(例えば、9:1~5:5の割合)で均一にマトリクス空間に分布することになり、より性能に優れた本発明の導電性発泡体における電気伝導機構が得られる。 As an electric conduction mechanism in the conductive foam of the present invention, hopping type electric conduction in which a plurality of tunneling is repeated in an insulating resin forming a matrix is used. For this purpose, it is necessary to pass a current between the conductive materials, and the distance between the electrodes (between the conductive materials) needs to be extremely narrow at a low voltage. That is, as shown in FIG. 1, with a structure in which nano-sized conductive filler is dispersed with respect to micron-sized spherical graphite, the limit film thickness of the matrix resin and the distance between the conductive materials can be achieved. A region where the conductive materials are not in contact with each other can be a conduction portion. Specifically, when the conductive filler is carbon-based, the specific gravity of the spherical graphite and the conductive filler have substantially the same specific gravity, so the ratio according to the mixing ratio (for example, the ratio of 9: 1 to 5: 5) Therefore, the electric conduction mechanism in the conductive foam of the present invention having better performance can be obtained.
 本発明に係る導電性発泡体は、シート状として基材上に積層させることができる。基材の材質は特に限定されないが、前記導電性発泡体の原料の浸み出しが抑制できればよい。
 例えばPETフィルムなどの樹脂フィルム、不織布、織物、紙、粘着テープ、粘着層が凹凸形状になっているエアレステープ等が挙げられる。
 又基材の厚さも特に限定されないが、10μm~100μmの厚さが好適である。基材と積層することで、前記導電性発泡体のダメージからの保護や使用時に基材による支持により取り扱いが容易になる等が可能となる。
The conductive foam according to the present invention can be laminated on a substrate as a sheet. The material of the base material is not particularly limited as long as it can suppress the seepage of the raw material of the conductive foam.
For example, a resin film such as a PET film, a nonwoven fabric, a woven fabric, paper, an adhesive tape, an airless tape in which an adhesive layer has an uneven shape, and the like can be given.
The thickness of the substrate is not particularly limited, but a thickness of 10 μm to 100 μm is suitable. By laminating with the base material, it becomes possible to protect the conductive foam from damage and to facilitate handling by supporting the base material at the time of use.
 又、基材は前記導電性発泡体の用途によって、剥離して使用してもよく、又は、剥離せず積層体のまま使用してもよい。剥離して使用する場合には、離型処理した基材を用いることができる。 Further, the base material may be peeled off depending on the use of the conductive foam, or may be used as it is without being peeled off. When peeling and using, the base material which carried out the mold release process can be used.
 又、前記基材は導電性を有するものを使用することができる。前記導電性を有する基材は特に限定されないが、離型処理したPETフィルム、アルミテープ、導電粘着テープ、含侵などの方法により導電処理した不織布や紙等が挙げられる。このような基材を用いることで、導電性発泡体シートの厚み方向の導電性が要求されるような用途に対して、基材を剥離せずに使用することが可能となる。 Moreover, the said base material can use what has electroconductivity. The conductive substrate is not particularly limited, and examples thereof include a PET film that has been subjected to a release treatment, an aluminum tape, a conductive adhesive tape, and a non-woven fabric or paper that has been subjected to a conductive treatment by a method such as impregnation. By using such a base material, it is possible to use the base material without peeling off the base material for applications in which conductivity in the thickness direction of the conductive foam sheet is required.
1-1.原料
 本発明に係る導電性発泡体は、原料として、例えば、エマルジョン組成物、導電性材料、起泡剤(アニオン性界面活性剤)、分散媒として水、架橋剤及びその他の添加剤等を使用することができる(なお、発泡工程において用いられる発泡用の気体に関しては、発泡工程にて述べる)。
1-1. Raw material The conductive foam according to the present invention uses, for example, an emulsion composition, a conductive material, a foaming agent (anionic surfactant) as a raw material, and water, a crosslinking agent and other additives as a dispersion medium. (The foaming gas used in the foaming process is described in the foaming process).
1-1-1.エマルジョン組成物
 本発明に係る発泡体を製造する際に使用されるエマルジョン組成物のエマルジョン原料は特に限定されず、公知の方法で発泡体を形成できるエマルジョンであればよい。例えばウレタンエマルジョン、アクリルエマルジョン、スチレンエマルジョン、及びEVA(エチレン酢酸ビニル共重合体)樹脂エマルジョン、塩化ビニル系エマルジョン、エポキシ系エマルジョン等が挙げられ、1つ、又は、複数のエマルジョンを使用することができる。特にウレタンエマルジョン及びアクリルエマルジョンのうち、少なくとも1つのエマルジョンを用いることが好ましい。さらに、アクリル系エマルジョンを少なくとも用いることがより好ましい。又、ウレタンエマルジョンを用いることで、更に材料強度を付与することができる。又、得られるウレタン樹脂発泡体は柔軟性が優れ、圧縮残留歪みが低くなる。
1-1-1. Emulsion composition The emulsion raw material of the emulsion composition used when manufacturing the foam which concerns on this invention is not specifically limited, What is necessary is just an emulsion which can form a foam by a well-known method. Examples include urethane emulsions, acrylic emulsions, styrene emulsions, EVA (ethylene vinyl acetate copolymer) resin emulsions, vinyl chloride emulsions, epoxy emulsions, etc. One or a plurality of emulsions can be used. . In particular, it is preferable to use at least one emulsion among urethane emulsion and acrylic emulsion. Furthermore, it is more preferable to use at least an acrylic emulsion. Moreover, material strength can be further imparted by using a urethane emulsion. Moreover, the urethane resin foam obtained has excellent flexibility and low compressive residual strain.
 以下、(1)ウレタンエマルジョン、(2)アクリルエマルジョンについて、それぞれ詳述する。 Hereinafter, (1) urethane emulsion and (2) acrylic emulsion will be described in detail.
(1)ウレタンエマルジョン
 本発明において使用可能なウレタンエマルジョン(ウレタン樹脂の水分散体)の製法としては、特に限定されないが、下記方法(I)~(III)が例示出来る。
(I)活性水素含有化合物、親水性基を有する化合物、及び、ポリイソシアネートを反応させて得られた親水性基を有するウレタン樹脂の有機溶剤溶液又は有機溶剤分散液に、必要に応じ、中和剤を含む水溶液を混合し、ウレタン樹脂エマルジョンを得る方法。
(II)活性水素含有化合物、親水性基を有する化合物、及び、ポリイソシアネートを反応させて得られた親水性基を有する末端イソシアネート基含有ウレタンプレポリマーに、中和剤を含む水溶液を混合するか、又は、予めプレポリマー中に中和剤を加えた後水を混合して水に分散させた後、ポリアミンと反応させて、ウレタン樹脂エマルジョンを得る方法。
(III)活性水素含有化合物、親水性基を有する化合物、及び、ポリイソシアネートを反応させて得られた親水性基を有する末端イソシアネート基含有ウレタンプレポリマーに、中和剤及びポリアミンを含む水溶液を混合するか、又は、予めプレポリマー中に中和剤を加えた後、ポリアミンを含む水溶液を添加混合し、ウレタン樹脂エマルジョンを得る方法。
(1) Urethane Emulsion The production method of the urethane emulsion (water dispersion of urethane resin) that can be used in the present invention is not particularly limited, but the following methods (I) to (III) can be exemplified.
(I) An active hydrogen-containing compound, a compound having a hydrophilic group, and an organic solvent solution or an organic solvent dispersion of a urethane resin having a hydrophilic group obtained by reacting a polyisocyanate are neutralized as necessary. A method of obtaining a urethane resin emulsion by mixing an aqueous solution containing an agent.
(II) Is an aqueous solution containing a neutralizing agent mixed with an active hydrogen-containing compound, a compound having a hydrophilic group, and a terminal isocyanate group-containing urethane prepolymer having a hydrophilic group obtained by reacting polyisocyanate? Alternatively, a method of obtaining a urethane resin emulsion by adding a neutralizing agent to a prepolymer in advance, mixing water and dispersing in water, and then reacting with polyamine.
(III) An aqueous solution containing a neutralizing agent and a polyamine is mixed with an active hydrogen-containing compound, a compound having a hydrophilic group, and a terminal isocyanate group-containing urethane prepolymer having a hydrophilic group obtained by reacting a polyisocyanate. Or a method in which a neutralizing agent is added to the prepolymer in advance and then an aqueous solution containing polyamine is added and mixed to obtain a urethane resin emulsion.
 前記ウレタン樹脂の方法において用いるポリイソシアネートとしては、2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネート、m-フェニレンジイソシアネート、p-フェニレンジイソシアネート、4,4’-ジフェニルメタンジイソシアネート、2,4’-ジフェニルメタンジイソシアネート、2,2’-ジフェニルメタンジイソシアネート、3,3’-ジメチル-4,4’-ビフェニレンジイソシアネート、3,3’-ジメトキシ-4,4’-ビフェニレンジイソシアネート、3,3’-ジクロロ-4,4’-ビフェニレンジイソシアネート、1,5-ナフタレンジイソシアネート、1,5-テトラヒドロナフタレンジイソシアネート、テトラメチレンジイソシアネート、1,6-ヘキサメチレンジイソシアネート、ドデカメチレンジイソシアネート、トリメチルヘキサメチレンジイソシアネート、1,3-シクロヘキシレンジイソシアネート、1,4-シクロヘキシレンジイソシアネート、キシリレンジイソシアネート、テトラメチルキシリレンジイソシアネート、水素添加キシリレンジイソシアネート、リジンジイソシアネート、イソホロンジイソシアネート、4,4’-ジシクロヘキシルメタンジイソシアネート、3,3’-ジメチル-4,4’-ジシクロヘキシルメタンジイソシアネート等が例示できる。又発明の効果を損なわない範囲において、3価以上のポリイソシアネートを併用してもよい。 Polyisocyanates used in the urethane resin method include 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, m-phenylene diisocyanate, p-phenylene diisocyanate, 4,4′-diphenylmethane diisocyanate, 2,4 ′. -Diphenylmethane diisocyanate, 2,2'-diphenylmethane diisocyanate, 3,3'-dimethyl-4,4'-biphenylene diisocyanate, 3,3'-dimethoxy-4,4'-biphenylene diisocyanate, 3,3'-dichloro-4 , 4'-biphenylene diisocyanate, 1,5-naphthalene diisocyanate, 1,5-tetrahydronaphthalene diisocyanate, tetramethylene diisocyanate, 1,6-hexamethylene diisocyanate Dodecamethylene diisocyanate, trimethylhexamethylene diisocyanate, 1,3-cyclohexylene diisocyanate, 1,4-cyclohexylene diisocyanate, xylylene diisocyanate, tetramethylxylylene diisocyanate, hydrogenated xylylene diisocyanate, lysine diisocyanate, isophorone diisocyanate, 4,4 Examples include '-dicyclohexylmethane diisocyanate and 3,3'-dimethyl-4,4'-dicyclohexylmethane diisocyanate. In addition, trivalent or higher polyisocyanates may be used in combination as long as the effects of the invention are not impaired.
 又、前記活性水素含有化合物としては、特に限定されず、ポリエステルポリオール、ポリエーテルポリオール、ポリカーボネートポリオール、ポリアセタールポリオール、ポリアクリレートポリオール、ポリエステルアミドポリオール、ポリチオエーテルポリオール、ポリブタジエン系等のポリオレフィンポリオール等の公知のポリオールが例示できる。これら高分子量化合物は、2種以上を併用してもよい。 The active hydrogen-containing compound is not particularly limited, and known polyols such as polyester polyols, polyether polyols, polycarbonate polyols, polyacetal polyols, polyacrylate polyols, polyester amide polyols, polythioether polyols, polybutadiene-based polyolefin polyols, and the like. A polyol can be illustrated. Two or more of these high molecular weight compounds may be used in combination.
 ここで、本形態に係るウレタンエマルジョンは、ポリエーテル系ウレタンエマルジョン、ポリエステル系ウレタンエマルジョン、ポリエーテルカーボネート系ウレタンエマルジョン及びポリカーボネート系ウレタンエマルジョンからなる群より選択される一種以上であることが好適である。 Here, the urethane emulsion according to this embodiment is preferably one or more selected from the group consisting of a polyether urethane emulsion, a polyester urethane emulsion, a polyether carbonate urethane emulsion, and a polycarbonate urethane emulsion.
 本形態に係るポリエステル系ウレタンエマルジョンとしては、何ら限定されないが、例えば、前記製造方法において、ポリエステルポリオール(例えば、多塩基酸と多価アルコールとを脱水縮合して得られる重合体、ε-カプロラクトン、α-メチル-ε-カプロラクトン等のラクトンを開環重合して得られる重合体、ヒドロキシカルボン酸と多価アルコール等との反応生成物等)を用いることで製造可能である。 The polyester-based urethane emulsion according to the present embodiment is not limited in any way. For example, in the above production method, a polyester polyol (for example, a polymer obtained by dehydration condensation of a polybasic acid and a polyhydric alcohol, ε-caprolactone, It can be produced by using a polymer obtained by ring-opening polymerization of a lactone such as α-methyl-ε-caprolactone, a reaction product of a hydroxycarboxylic acid and a polyhydric alcohol, or the like.
 本形態に係るポリカーボネート系ウレタンエマルジョンとしては、何ら限定されないが、例えば、前記製造方法において、ポリカーボネートポリオール{例えば、エチレングリコール、プロピレングリコール、ブタンジオール、ペンタンジオール、ヘキサンジオール等のジオール等と、ジアリールカーボネート(例えば、ジフェニルカーボネート)、環式カーボネート(例えば、プロピレンカーボネート)等との反応生成物等}を用いることで製造可能である。 The polycarbonate-based urethane emulsion according to the present embodiment is not limited at all. For example, in the production method, polycarbonate polyol {for example, diols such as ethylene glycol, propylene glycol, butanediol, pentanediol, hexanediol, and the like, and diaryl carbonate (For example, a reaction product with a cyclic carbonate (eg, propylene carbonate), etc.).
 本形態に係るポリエーテル系ウレタンエマルジョンとしては、何ら限定されないが、例えば、前記製造方法において、ポリエーテルポリオール{例えば、ポリテトラメチレングリコ-ル、ポリプロピレングリコール、ポリエチレングリコール等}を用いることで製造可能である。 The polyether-based urethane emulsion according to the present embodiment is not limited in any way, but can be manufactured, for example, by using a polyether polyol {eg, polytetramethylene glycol, polypropylene glycol, polyethylene glycol, etc.) in the above manufacturing method. It is.
 本形態に係るポリエーテルカーボネート系ウレタンエマルジョンとしては、前記ウレタン樹脂がカーボネート基及びエーテル基の両方を含有(…-O-CO-O-[R-O-R’]-O-CO-O-…という骨格を含有)すれば何ら限定されず、例えば、前記製造方法において、ポリエーテルポリオール及びポリカーボネートポリオールを併用することで製造可能である。 In the polyether carbonate urethane emulsion according to this embodiment, the urethane resin contains both a carbonate group and an ether group (...- O-CO-O- [RO-R ']-O-CO-O- The structure is not limited at all, and can be produced by using a polyether polyol and a polycarbonate polyol in combination in the production method, for example.
 前記方法(I)~(III)において、発明の効果を損なわない範囲で、更に乳化剤を使用してもよい。このような乳化剤としては、例えば、ポリオキシエチレンノニルフェニルエーテル、ポリオキシエチレンラウリルエーテル、ポリオキシエチレンスチレン化フェニルエーテル、ポリオキシエチレンソルビトールテトラオレエート等のノニオン系乳化剤;オレイン酸ナトリウム等の脂肪酸塩、アルキル硫酸エステル塩、アルキルベンゼンスルホン酸塩、アルキルスルホコハク酸塩、ナフタレンスルホン酸塩、アルカンスルホネートナトリウム塩、アルキルジフェニルエーテルスルフォン酸ナトリウム塩等のアニオン系乳化剤;ポリオキシエチレンアルキル硫酸塩、ポリオキシエチレンアルキルフェニル硫酸塩等のノニオンアニオン系乳化剤、等を例示できる。 In the methods (I) to (III), an emulsifier may be further used as long as the effects of the invention are not impaired. Examples of such emulsifiers include nonionic emulsifiers such as polyoxyethylene nonylphenyl ether, polyoxyethylene lauryl ether, polyoxyethylene styrenated phenyl ether, polyoxyethylene sorbitol tetraoleate; fatty acid salts such as sodium oleate , Anionic emulsifiers such as alkyl sulfate salts, alkylbenzene sulfonates, alkyl sulfosuccinates, naphthalene sulfonates, alkane sulfonate sodium salts, sodium alkyl diphenyl ether sulfonates; polyoxyethylene alkyl sulfates, polyoxyethylene alkylphenyls Nonionic anionic emulsifiers such as sulfates can be exemplified.
 本発明の導電性発泡体は、その原料としてウレタンエマルジョンを用いる(発泡体がウレタン樹脂を含むものとする)ことにより、導電性材料を配合してなる導電性発泡体において、外観性、成形性、導電性、硬度、導電性材料の脱落の抑制、耐加水分解性等、様々な特性を高い水準で備える発泡体とすることが可能となる。 The conductive foam of the present invention uses a urethane emulsion as a raw material (the foam contains a urethane resin), so that the conductive foam is obtained by blending a conductive material. It is possible to obtain a foam having various characteristics such as properties, hardness, suppression of dropping of the conductive material, and hydrolysis resistance at a high level.
(2)アクリルエマルジョン
 本発明において使用可能なアクリル系エマルジョン(アクリル樹脂の水分散体)の製法としては、特に限定されないが、重合開始剤、必要に応じて乳化剤及び分散安定剤の存在下に、例えば、(メタ)アクリル酸エステル系単量体を必須の重合性単量体成分とし、更に必要に応じてこれらの単量体と共重合可能なその他の重合性単量体の混合物を共重合させることにより得ることができる。尚、2種以上のアクリル系エマルジョンを組み合わせて用いてもよい。前記アクリル系エマルジョンのガラス転移温度は、0℃~80℃の範囲にあるものが好適である。
(2) Acrylic emulsion The production method of the acrylic emulsion (acrylic resin aqueous dispersion) that can be used in the present invention is not particularly limited, but in the presence of a polymerization initiator, if necessary, an emulsifier and a dispersion stabilizer, For example, a (meth) acrylic acid ester monomer is an essential polymerizable monomer component, and if necessary, a mixture of other polymerizable monomers copolymerizable with these monomers is copolymerized. Can be obtained. Two or more acrylic emulsions may be used in combination. The glass transition temperature of the acrylic emulsion is preferably in the range of 0 ° C to 80 ° C.
 前記アクリル系エマルジョンの調製に使用することができる重合性単量体としては、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸プロピル、(メタ)アクリル酸ブチル、(メタ)アクリル酸ヘキシル、(メタ)アクリル酸ヘプチル、(メタ)アクリル酸オクチル、(メタ)アクリル酸オクタデシル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸ノニル、(メタ)アクリル酸ドデシル、(メタ)アクリル酸ステアリル、(メタ)アクリル酸イソボルニル、(メタ)アクリル酸ジシクロペンタニル、(メタ)アクリル酸フェニル、(メタ)アクリル酸ベンジル等の(メタ)アクリル酸エステル系単量体;アクリル酸、メタクリル酸、β-カルボキシエチル(メタ)アクリレート、2-(メタ)アクリロイルプロピオン酸、クロトン酸、イタコン酸、マレイン酸、フマル酸、イタコン酸ハーフエステル、マレイン酸ハーフエステル、無水マレイン酸、無水イタコン酸等のカルボキシル基を有する不飽和結合含有単量体;グリシジル(メタ)アクリレート、アリルグリシジルエーテル等のグリシジル基含有重合性単量体;2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、ポリエチレングリコールモノ(メタ)アクリレート、グリセロールモノ(メタ)アクリレート等の水酸基含有重合性単量体;エチレングリコールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、ジアリルフタレート、ジビニルベンゼン、アリル(メタ)アクリレート等が例示できる。 Examples of the polymerizable monomer that can be used for preparing the acrylic emulsion include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, (meth ) Hexyl acrylate, heptyl (meth) acrylate, octyl (meth) acrylate, octadecyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, cyclohexyl (meth) acrylate, nonyl (meth) acrylate, ( (Meth) acrylic acid such as dodecyl (meth) acrylate, stearyl (meth) acrylate, isobornyl (meth) acrylate, dicyclopentanyl (meth) acrylate, phenyl (meth) acrylate, benzyl (meth) acrylate Ester monomers; acrylic acid, methacrylic acid, β-carboxyethyl Unsaturation having carboxyl group such as (meth) acrylate, 2- (meth) acryloylpropionic acid, crotonic acid, itaconic acid, maleic acid, fumaric acid, itaconic acid half ester, maleic acid half ester, maleic anhydride, itaconic anhydride Bond-containing monomers: Glycidyl group-containing polymerizable monomers such as glycidyl (meth) acrylate and allyl glycidyl ether; 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, polyethylene glycol mono (meth) Hydroxyl group-containing polymerizable monomers such as acrylate and glycerol mono (meth) acrylate; ethylene glycol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, neopentyl glycol di (meth) acrylate, trimethyl Examples thereof include roll propane tri (meth) acrylate, polyethylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate, diallyl phthalate, divinylbenzene, and allyl (meth) acrylate.
 尚、アクリル系エマルジョンの調製時に乳化剤を使用する場合には、公知の乳化剤等を使用すればよい。 In addition, what is necessary is just to use a well-known emulsifier etc., when using an emulsifier at the time of preparation of acrylic emulsion.
 なお、これらのエマルジョンは、樹脂分散用の界面活性剤(乳化剤)等を含んでいてもよい。樹脂分散用界面活性剤とは、水分散性樹脂を分散させるための界面活性剤である(アニオン性界面活性剤と異なり、起泡剤としての効果を有さずともよい)。このような界面活性剤は、選択する水分散性樹脂に応じて適宜選択すればよい。 Note that these emulsions may contain a surfactant (emulsifier) for dispersing the resin. The surfactant for resin dispersion is a surfactant for dispersing a water-dispersible resin (unlike an anionic surfactant, it does not have to have an effect as a foaming agent). Such a surfactant may be appropriately selected according to the water-dispersible resin to be selected.
・分散媒
 本発明において、エマルジョン組成物の分散媒としては、水を必須成分とするが、水と水溶性溶剤との混合物であってもよい。水溶性溶剤とは、例えば、メチルアルコール、エチルアルコール、イソプロピルアルコール、エチルカルビトール、エチルセロソルブ、ブチルセロソルブ等のアルコール類、N-メチルピロリドン等の極性溶剤等であり、これらの1種又は2種以上の混合物等を使用してもよい。
-Dispersion medium In this invention, as a dispersion medium of an emulsion composition, although water is an essential component, the mixture of water and a water-soluble solvent may be sufficient. Examples of the water-soluble solvent include alcohols such as methyl alcohol, ethyl alcohol, isopropyl alcohol, ethyl carbitol, ethyl cellosolve, butyl cellosolve, polar solvents such as N-methylpyrrolidone, and the like, one or more of these. A mixture of the above may be used.
1-1-2.導電性材料
 下記に述べる導電性材料は、粉体のまま配合してもよいが、粉体を水に分散させた水分散体として用いることが好適である。水分散体とすることで、エマルジョン組成物に添加する際に、組成物内で均一に分散させることが容易となる。
1-1-2. Conductive Material The conductive material described below may be blended as a powder, but is preferably used as an aqueous dispersion in which the powder is dispersed in water. By using an aqueous dispersion, it is easy to uniformly disperse within the composition when it is added to the emulsion composition.
1-1-2-1.球状黒鉛
 球状黒鉛は、高い導電性があり、本発明の導電性発泡体の導電性発現に寄与する。本発明に使用可能な黒鉛は球状である。本発明において、「球状」とは、真球状のみを意味するのではなく、真球形状が円盤状様に若干変形した形状、表面が一様ではなく、表面に層が重なったキャベツ様な外観を有する形状等、一般的には、真球形状とは把握されないものも含む趣旨である。但し、天然黒鉛の結晶形は六方晶形であり、一般的には、未処理の黒鉛は鱗片状であるので、これとは区別される。即ち、本発明には、少なくとも球状化処理が施された黒鉛を使用することを要する。球状化処理には、鱗片状の天然黒鉛を粉砕処理する等の簡易な処理方法も含まれるが、好ましくは、黒鉛に対して等方的に圧力が負荷される処理方法である。当該処理は、気体(アルゴン等の不活性ガス)、液体(例えば水)等の加圧媒体を用いて、等方的に黒鉛に圧を負荷する方法等により実施できる。加熱の有無により、熱間等方加圧処理、冷間等方加圧処理として区別される。いずれを利用してもよい。この処理を施すことで、外形が球形であり、しかも内部の空壁(鱗片層間)が軽減された、等方的な高い導電性を有する球状黒鉛が得られる。
1-1-2-1. Spherical graphite Spherical graphite has high electrical conductivity and contributes to the development of electrical conductivity of the conductive foam of the present invention. The graphite that can be used in the present invention is spherical. In the present invention, the term “spherical” does not mean only a true spherical shape, but a shape in which the true spherical shape is slightly deformed like a disc shape, the surface is not uniform, and a cabbage-like appearance in which layers are superimposed on the surface In general, the shape includes, for example, a shape that is not grasped as a true spherical shape. However, the crystal form of natural graphite is a hexagonal crystal form. Generally, untreated graphite is scaly and is distinguished from this. That is, the present invention requires the use of graphite that has been subjected to at least spheroidizing treatment. The spheroidization treatment includes a simple treatment method such as pulverization of scale-like natural graphite, but a treatment method in which pressure is isotropically applied to graphite is preferable. The treatment can be performed by a method of isotropically applying pressure to graphite using a pressure medium such as a gas (inert gas such as argon) or a liquid (for example, water). Depending on the presence or absence of heating, a distinction is made between hot isostatic pressing and cold isostatic pressing. Either may be used. By performing this treatment, it is possible to obtain spherical graphite having an isotropic high conductivity whose outer shape is spherical and whose inner empty wall (scale layer) is reduced.
 上記球状化処理された球状黒鉛は、他の側面から、ベーサル面を褶曲させた構造を有する球状黒鉛として特定される。ここで、「ベーサル面」とは、黒鉛結晶(六方晶系)のC軸に直交する面をいう。即ち、本発明の球状黒鉛は、天然黒鉛の結晶系に歪みが生じているものであることが好ましい。この歪みは、X線回折パターンを測定し、天然黒鉛と比較して、ピークのブロード化の有無又は2θ値のシフトの有無を確認することで把握できる。又、導電性発泡体が、球状黒鉛を含有するか否かの確認は、原料黒鉛のX線回折パターンを測定することで確認する他、導電性発泡体の任意の2以上の断面を顕微鏡観察し、黒鉛相当部分の形状が円様であるか否かによって確認することもできる。具体的には、導電性発泡体の互いに直交する面を顕微鏡観察し、いずれの画像にも黒鉛相当部分の形状が、短径/長径の比が1/2未満の円様の形状であれば、当該導電性発泡体は球状黒鉛を含んでいると言える。 The above spheroidized spherical graphite is specified as spherical graphite having a structure in which the basal surface is bent from the other side. Here, the “basal plane” means a plane orthogonal to the C axis of the graphite crystal (hexagonal system). That is, it is preferable that the spherical graphite of the present invention has a distortion in the crystal system of natural graphite. This distortion can be grasped by measuring the X-ray diffraction pattern and confirming the presence or absence of peak broadening or 2θ value shift as compared with natural graphite. In addition to confirming whether or not the conductive foam contains spherical graphite, it is confirmed by measuring the X-ray diffraction pattern of the raw graphite, and any two or more cross sections of the conductive foam are observed with a microscope. However, it can also be confirmed by checking whether or not the shape of the graphite equivalent portion is circular. Specifically, the surfaces of the conductive foam that are orthogonal to each other are observed with a microscope, and the shape of the graphite-corresponding portion in any image is a circular shape with a minor axis / major axis ratio of less than 1/2. It can be said that the conductive foam contains spherical graphite.
 本発明に使用可能な球状黒鉛の例には、ハイブリダイゼーションシステムを用いた高速気流中衝撃法等によって鱗片状黒鉛などの非球状の黒鉛微粉を球状化処理したもの;及び石油系又は石油系のピッチを結晶化させた球状のカーボン粒子や熱硬化性樹脂を硬化させて粉末を得、該粉末を黒鉛化して得られたもの;などが挙げられる。等方的な導電性の観点から、前者が好ましい。 Examples of spherical graphite that can be used in the present invention include those obtained by spheroidizing non-spherical graphite powder such as flake graphite by a high-speed airflow impact method using a hybridization system; and petroleum-based or petroleum-based graphite And the like obtained by curing spherical carbon particles having crystallized pitch and thermosetting resin to obtain a powder, and graphitizing the powder. The former is preferable from the viewpoint of isotropic conductivity.
 球状黒鉛としては市販品も好適に用いることができ、その具体例としては、日本黒鉛工業社製の球状黒鉛などが挙げられる。本発明に用いる球状黒鉛の平均粒径(メジアン径)は、1~100μm程度である。好ましくは、5~80μm、より好ましくは、8~80μmである。導電性発泡体の導電性確保と、その柔軟性を確保することは、一方を改善すると他方が低下するという傾向があるが、比較的平均粒径の小さい球状黒鉛を用いると、双方の性質をバランスよく改善できるので好ましい。導電性発泡体の最終形状によって、好ましい平均粒径範囲は変動するが、厚さ0.1~1.0mm程度のシート状の形態では、5~30μm程度であることが好ましく、10~20μmであることがより好ましい。 As the spherical graphite, a commercially available product can be suitably used, and specific examples thereof include spherical graphite manufactured by Nippon Graphite Industries Co., Ltd. The average particle diameter (median diameter) of the spherical graphite used in the present invention is about 1 to 100 μm. The thickness is preferably 5 to 80 μm, more preferably 8 to 80 μm. Ensuring the conductivity of the conductive foam and ensuring its flexibility tends to decrease when one is improved. However, when spherical graphite with a relatively small average particle size is used, both properties are reduced. It is preferable because it can improve the balance. The preferred average particle size range varies depending on the final shape of the conductive foam, but in the sheet-like form having a thickness of about 0.1 to 1.0 mm, it is preferably about 5 to 30 μm, and 10 to 20 μm. More preferably.
1-1-2-2.導電性フィラー
 本発明の導電性発泡体を製造するに際して使用される球状黒鉛に、さらに加える導電フィラー(ベーサル面を褶曲させた構造を有する球状黒鉛以外の導電性フィラー)としては、発泡体の導電性を向上させる性質を有する限り特に限定されず、一般的な金属系材料や導電性カーボン、イオン導電性材料等を例示可能であるが、導電性カーボンであることが好適である。導電性カーボンとしては、例えば、カーボンナノチューブ、カーボンブラック(例えば、アセチレンブラック等)、グラフェン等のナノサイズの導電性カーボンや、グラファイト、炭素繊維、黒鉛(ベーサル面を褶曲させた構造を有する球状黒鉛以外の黒鉛)及び活性炭等が挙げられる。これら導電性カーボンは、同サイズの金属製フィラーと比較して、比重が軽く、添加量を増やしても導電性発泡体の重量が増え難いという点で効果的である。又、前記導電性カーボンは、金属フィラーと比較して、柔軟性に富む、即ち低弾性であるため、導電性発泡体を柔軟に、即ち低硬度とすることが可能となる。さらに価格が安いという点でも優れている。これらの導電性材料は、単独又は2種以上を組み合わせて使用することができる。
1-1-2-2. Conductive filler The conductive filler added to the spherical graphite used in the production of the conductive foam of the present invention (conductive filler other than the spherical graphite having a structure in which the basal surface is curved) is used as the conductive material of the foam. The material is not particularly limited as long as it has the property of improving the properties, and general metal materials, conductive carbon, ion conductive materials, and the like can be exemplified, but conductive carbon is preferable. Examples of the conductive carbon include nano-sized conductive carbon such as carbon nanotube, carbon black (for example, acetylene black), graphene, and the like, graphite, carbon fiber, and graphite (spherical graphite having a structure in which a basal surface is curved) And graphite) and activated carbon. These conductive carbons are effective in that the specific gravity is light compared to a metal filler of the same size, and the weight of the conductive foam is difficult to increase even if the amount added is increased. In addition, the conductive carbon is rich in flexibility, that is, has low elasticity as compared with the metal filler, so that the conductive foam can be made flexible, that is, low in hardness. It is also excellent in that the price is low. These conductive materials can be used alone or in combination of two or more.
 又、前記導電性フィラーの平均長(略球形状の場合は平均径)は、1nm~100nmが好ましく、5nm~50nmがより好ましい。このような導電性フィラーを用いることで、前記球状黒鉛間に散在することが可能となり、導電性発泡体の導電性が向上する。
 さらに、前記導電性フィラーは、そのアスペクト比が好ましくは5以下、より好ましくは3以下、さらに好ましくは2以下である。アスペクト比が5を超えると、導電性発泡体の導電性能に異方性が現れるおそれがある。
 ここで、「アスペクト比」の値は、導電性フィラーの平均長を平均径で除した値である。「平均長」と「平均径」とは、導電性フィラーをSEM観察し、少なくとも100個の粒子を観察測定し、その平均値から求めた値である。より詳細には「平均径」とは、SEM観察で撮像された粒子の長さ方向中心付近における垂直断面に基づき粒子の断面積を算出し、当該断面積と同一面積を有する円の直径を算出することにより導かれた面積径の平均値である。平均径と平均長は100粒子の測定平均である。
The average length of the conductive filler (average diameter in the case of a substantially spherical shape) is preferably 1 nm to 100 nm, and more preferably 5 nm to 50 nm. By using such a conductive filler, it becomes possible to interspersed between the spherical graphite, and the conductivity of the conductive foam is improved.
Furthermore, the conductive filler preferably has an aspect ratio of 5 or less, more preferably 3 or less, and even more preferably 2 or less. When the aspect ratio exceeds 5, anisotropy may appear in the conductive performance of the conductive foam.
Here, the value of “aspect ratio” is a value obtained by dividing the average length of the conductive filler by the average diameter. The “average length” and “average diameter” are values obtained by observing and measuring at least 100 particles of the conductive filler and measuring the average value. More specifically, the “average diameter” is a particle cross-sectional area calculated based on a vertical cross section in the vicinity of the center in the length direction of the particle imaged by SEM observation, and a diameter of a circle having the same area as the cross-sectional area is calculated. It is the average value of the area diameter derived | led by doing. The average diameter and average length are measured averages of 100 particles.
1-1-3.添加剤
1-1-3-1.起泡剤
 本発明の導電性発泡体を製造するに際して使用可能な起泡剤は、原料混合物に気体を混入させ、気泡を安定化できる物質であり、アニオン性の起泡剤を例示可能である。
1-1-3. Additive 1-1-3-1. Foaming agent The foaming agent that can be used in the production of the conductive foam of the present invention is a substance capable of stabilizing gas bubbles by mixing gas into the raw material mixture, and anionic foaming agents can be exemplified. .
 アニオン性界面活性剤の具体例としては、特に制限されるものではなく、ラウリン酸ナトリウム、ミリスチン酸ナトリウム、ステアリン酸ナトリウム、ステアリン酸アンモニウム、オレイン酸ナトリウム、オレイン酸カリウム石鹸、ひまし油カリウム石鹸、やし油カリウム石鹸、ラウロイルサルコシンナトリウム、ミリストイルサルコシンナトリウム、オレイルサルコシンナトリウム、ココイルサルコシンナトリウム、やし油アルコール硫酸ナトリウム、ポリオキシエチレンラウリルエーテル硫酸ナトリウム、アルキルスルホコハク酸ナトリウム、ジアルキルスルホコハク酸ナトリウム、ラウリルスルホ酢酸ナトリウム、アルキルベンゼンスルホン酸ナトリウム、α-オレフィンスルホン酸ナトリウム等が挙げられる。 Specific examples of the anionic surfactant are not particularly limited. Sodium laurate, sodium myristate, sodium stearate, ammonium stearate, sodium oleate, potassium oleate soap, castor oil potassium soap, palm Oil potassium soap, sodium lauroyl sarcosine, sodium myristoyl sarcosine, sodium oleyl sarcosine, sodium cocoyl sarcosine, palm oil alcohol sodium sulfate, sodium polyoxyethylene lauryl ether sulfate, sodium alkylsulfosuccinate, sodium dialkylsulfosuccinate, sodium lauryl sulfoacetate, Examples include sodium alkylbenzene sulfonate and sodium α-olefin sulfonate.
 ここで、本形態に用いられるアニオン性界面活性剤は、エマルジョン組成物に分散しやすくするため、HLBが、10以上であることが好適であり、20以上であることがより好適であり、30以上であることが特に好適である。 Here, the anionic surfactant used in this embodiment is preferably 10 or more, more preferably 20 or more, in order to facilitate dispersion in the emulsion composition. The above is particularly preferable.
・HLB
 尚、本発明において、HLB値とは、親水性-疎水性バランス(HLB)値を意味し、小田法により求められる。小田法によるHLBの求め方は、「新・界面活性剤入門」第195~196頁及び1957年3月20日槙書店発行 小田良平外1名著「界面活性剤の合成と其応用」第492~502頁に記載されており、HLB=(無機性の数値/有機性の数値)×10で求めることができる。ここで、無機性および有機性の数値は、上記「新・界面活性剤入門」第3・3・11表に示す値から計算される。
・ HLB
In the present invention, the HLB value means a hydrophilic-hydrophobic balance (HLB) value, and is determined by the Oda method. The method of obtaining HLB by the Oda method is "Introduction to New Surfactants", pages 195 to 196, published by Sakai Shoten on March 20, 1957, "Synthesis and Applications of Surfactants" 492- It is described on page 502, and can be obtained by HLB = (inorganic numerical value / organic numerical value) × 10. Here, the inorganic and organic numerical values are calculated from the values shown in Tables 3, 3 and 11 of the above “Introduction to New Surfactant”.
 又、本発明に係る起泡剤として、両性界面活性剤を用いてもよい。特にアニオン系界面活性剤と両性界面活性剤を併用した場合、アニオン系界面活性剤の分子同士の親水基の電荷が反発し、アニオン系界面活性剤の分子同士がある程度の距離を保っている間に、電気的に中性である両面活性剤がアニオン系界面活性剤の分子の間に入り込むことによって、気泡をより安定化し、気泡のサイズを小さくすることができる。このため、層間剥離強度を向上させることができる。よって、アニオン系界面活性剤と両性界面活性剤を併用することが好ましい。 Moreover, an amphoteric surfactant may be used as the foaming agent according to the present invention. Especially when an anionic surfactant and an amphoteric surfactant are used in combination, the charge of the hydrophilic group between the molecules of the anionic surfactant is repelled, and the molecules of the anionic surfactant are kept at a certain distance from each other. In addition, since the electrically neutral double-sided surfactant enters between the molecules of the anionic surfactant, the bubbles can be further stabilized and the size of the bubbles can be reduced. For this reason, delamination strength can be improved. Therefore, it is preferable to use an anionic surfactant and an amphoteric surfactant in combination.
 両性界面活性剤としては、特に制限されるものではなく、アミノ酸型、ベタイン型、アミンオキシド型等の両性界面活性剤を例示可能であり、ベタイン型の両性界面活性剤は、前述の効果がより高いことから、好適である。 The amphoteric surfactant is not particularly limited, and examples include amphoteric surfactants such as amino acid type, betaine type, and amine oxide type. Betaine type amphoteric surfactants have the above-mentioned effects. Since it is high, it is preferable.
 アミノ酸型の両性界面活性剤としては、例えば、N-アルキル若しくはアルケニルアミノ酸又はその塩等が挙げられる。N-アルキル若しくはアルケニルアミノ酸は、チッ素原子にアルキル基又はアルケニル基が結合し、更に1つ又は2つの「-R-COOH」(式中、Rは2価の炭化水素基を示し、好ましくはアルキレン基であり、特に炭素数1~2であることが好ましい。)で表される基が結合した構造を有する。「-R-COOH」が1つ結合した化合物においては、チッ素原子には更に水素原子が結合している。「-R-COOH」が1つのものをモノ体、2つのものをジ体という。本発明に係る両性界面活性剤としては、これらモノ体、ジ体のいずれも用いることができる。N-アルキル若しくはアルケニルアミノ酸において、アルキル基、アルケニル基は直鎖状でも分岐鎖状であってもよい。具体的には、アミノ酸型の両性界面活性剤として、ラウリルジアミノエチルグリシンナトリウム、トリメチルグリシンナトリウム、ココイルタウリンナトリウム、ココイルメチルタウリンナトリウム、ラウロイルグルタミン酸ナトリウム、ラウロイルグルタミン酸カリウム、ラウロイルメチル-β-アラニン等が挙げられる。 Examples of amino acid-type amphoteric surfactants include N-alkyl or alkenyl amino acids or salts thereof. In the N-alkyl or alkenyl amino acid, an alkyl group or an alkenyl group is bonded to a nitrogen atom, and one or two “—R—COOH” (wherein R represents a divalent hydrocarbon group, preferably An alkylene group, particularly preferably having 1 to 2 carbon atoms.). In a compound in which one “—R—COOH” is bonded, a hydrogen atom is further bonded to the nitrogen atom. One “—R—COOH” is called a mono form, and two are called a di form. As the amphoteric surfactant according to the present invention, any of these mono- and di-forms can be used. In the N-alkyl or alkenyl amino acid, the alkyl group or alkenyl group may be linear or branched. Specifically, examples of the amino acid type amphoteric surfactant include sodium lauryldiaminoethylglycine, sodium trimethylglycine, sodium cocoyl taurine, sodium cocoyl methyl taurine, sodium lauroyl glutamate, potassium lauroyl glutamate, lauroyl methyl-β-alanine and the like. It is done.
 ベタイン型の両性界面活性剤としては、例えば、アルキルベタイン、イミダゾリニウムベタイン、カルボベタイン、アミドカルボベタイン、アミドベタイン、アルキルアミドベタイン、スルホベタイン、アミドスルホベタイン、ホスホベタイン等がある。具体的には、ベタイン型の両性界面活性剤として、ラウリルベタイン、ステアリルベタイン、ラウリルジメチルアミノ酢酸ベタイン、ステアリルジメチルアミノ酢酸ベタイン、ラウリン酸アミドプロピルジメチルアミノ酢酸ベタイン、イソステアリン酸アミドエチルジメチルアミノ酢酸ベタイン、イソステアリン酸アミドプロピルジメチルアミノ酢酸ベタイン、イソステアリン酸アミドエチルジエチルアミノ酢酸ベタイン、イソステアリン酸アミドプロピルジエチルアミノ酢酸ベタイン、イソステアリン酸アミドエチルジメチルアミノヒドロキシスルホベタイン、イソステアリン酸アミドプロピルジメチルアミノヒドロキシスルホベタイン、イソステアリン酸アミドエチルジエチルアミノヒドロキシスルホベタイン、イソステアリン酸アミドプロピルジエチルアミノヒドロキシスルホベタイン、N-ラウリル-N,N-ジメチルアンモニウム-N-プロピルスルホベタイン、N-ラウリル-N,N-ジメチルアンモニウム-N-(2-ヒドロキシプロピル)スルホベタイン、N-ラウリル-N,N-ジメチル-N-(2-ヒドロキシ-1-スルホプロピル)アンモニウムスルホベタイン、ラウリルヒドロキシスルホベタイン、ドデシルアミノメチルジメチルスルホプロピルベタイン、オクタデシルアミノメチルジメチルスルホプロピルベタイン、2-アルキル-N-カルボキシメチル-N-ヒドロキシエチルイミダゾリニウムベタイン(2-ラウリル-N-カルボキシメチル-N-ヒドロキシエチルイミダゾリニウムベタイン、2-ステアリル-N-カルボキシメチル-N-ヒドロキシエチルイミダゾリニウムベタイン等)、ヤシ油脂肪酸アミドプロピルベタイン、ヤシ油脂肪酸アミドプロピルヒドロキシスルタイン等が挙げられる。 Examples of betaine-type amphoteric surfactants include alkyl betaines, imidazolinium betaines, carbobetaines, amide carbobetaines, amide betaines, alkylamide betaines, sulfobetaines, amide sulfobetaines, and phosphobetaines. Specifically, as a betaine type amphoteric surfactant, lauryl betaine, stearyl betaine, lauryl dimethylaminoacetic acid betaine, stearyl dimethylaminoacetic acid betaine, lauric acid amidopropyl dimethylaminoacetic acid betaine, isostearic acid amidoethyl dimethylaminoacetic acid betaine, Isostearic acid amidopropyl dimethylaminoacetic acid betaine, isostearic acid amidoethyl diethylaminoacetic acid betaine, isostearic acid amidopropyl diethylaminoacetic acid betaine, isostearic acid amidoethyl dimethylaminohydroxysulfobetaine, isostearic acid amidopropyl dimethylaminohydroxysulfobetaine, isostearic acid amidoethyl diethylamino Hydroxysulfobetaine, isostearamide Lopyldiethylaminohydroxysulfobetaine, N-lauryl-N, N-dimethylammonium-N-propylsulfobetaine, N-lauryl-N, N-dimethylammonium-N- (2-hydroxypropyl) sulfobetaine, N-lauryl- N, N-dimethyl-N- (2-hydroxy-1-sulfopropyl) ammonium sulfobetaine, lauryl hydroxysulfobetaine, dodecylaminomethyldimethylsulfopropylbetaine, octadecylaminomethyldimethylsulfopropylbetaine, 2-alkyl-N-carboxy Methyl-N-hydroxyethylimidazolinium betaine (2-lauryl-N-carboxymethyl-N-hydroxyethylimidazolinium betaine, 2-stearyl-N-carboxymethyl-N-hydro Shi betaine, etc.), coconut oil fatty acid amidopropyl betaine, coconut oil fatty acid amide propyl hydroxy sultaine and the like.
 アミンオキシド型の両性界面活性剤としては、例えば、ラウリルジメチルアミン-N-オキシド、オレイルジメチルアミン-N-オキシド等が挙げられる。 Examples of the amine oxide type amphoteric surfactants include lauryl dimethylamine-N-oxide and oleyldimethylamine-N-oxide.
 上述した両性界面活性剤のうち、ベタイン型の両性界面活性剤を使用することが好ましく、ベタイン型の中でも、アルキルベタイン、イミダゾリニウムベタイン、カルボベタインが特に好ましい。本発明で使用可能なアルキルベタインとしては、ステアリルベタイン、ラウリルベタイン等が例示され、イミダゾリニウムベタインとしては、2-アルキル-N-カルボキシメチル-N-ヒドロキシエチルイミダゾリニウムベタイン等が例示される。 Among the amphoteric surfactants mentioned above, it is preferable to use a betaine type amphoteric surfactant, and among the betaine types, alkylbetaine, imidazolinium betaine, and carbobetaine are particularly preferable. Examples of alkylbetaines that can be used in the present invention include stearyl betaine and lauryl betaine. Examples of imidazolinium betaines include 2-alkyl-N-carboxymethyl-N-hydroxyethylimidazolinium betaine. .
 さらに、本発明に係る起泡剤として、非イオン界面活性剤を用いてもよい。非イオン界面活性剤としては、特に制限されるものではなく、脂肪酸アルカミノールアミド、エーテル、エステル系等の非イオン界面活性剤が例示可能である。 Furthermore, a nonionic surfactant may be used as the foaming agent according to the present invention. The nonionic surfactant is not particularly limited, and nonionic surfactants such as fatty acid alkaminolamide, ether, ester, and the like can be exemplified.
1-1-3-2.架橋剤
 本発明の導電性発泡体を製造するに際して使用される架橋剤は、特に限定されず、用途等に応じて、必要量添加すればよく、具体的な架橋方法は、水分散性樹脂の種類に応じて選択することができる。架橋剤としては、公知の架橋剤を使用可能であり、エポキシ系架橋剤、メラミン系架橋剤、イソシアネート系架橋剤、カルボジイミド系架橋剤、オキサゾリン系架橋剤などを、使用する樹脂配合系が含有する官能基の種類及び、官能基量に応じて適量使用することができる。
1-1-3-2. Cross-linking agent The cross-linking agent used in the production of the conductive foam of the present invention is not particularly limited, and a necessary amount may be added depending on the application and the like. It can be selected according to the type. As the crosslinking agent, a known crosslinking agent can be used, and the resin compounding system used includes an epoxy crosslinking agent, a melamine crosslinking agent, an isocyanate crosslinking agent, a carbodiimide crosslinking agent, an oxazoline crosslinking agent, and the like. An appropriate amount can be used according to the kind of the functional group and the amount of the functional group.
1-1-3-3.その他
 その他、増粘剤、気泡核剤、可塑剤、滑剤、着色剤、酸化防止剤、充填剤、補強剤、難燃剤、帯電防止剤、表面処理剤等の公知の添加成分を使用してもよい。
1-1-3-3. Others Other known additives such as thickeners, cell nucleating agents, plasticizers, lubricants, colorants, antioxidants, fillers, reinforcing agents, flame retardants, antistatic agents, surface treatment agents, etc. Good.
1-2.導電性発泡体の製造方法
 本発明の導電性発泡体の製造方法は、導電性材料を分散させたエマルジョン組成物である原料組成物をメカニカルフロス法にて発泡(機械発泡)させる発泡工程と、前記発泡させた原料組成物を硬化させる工程とを含む。
 この方法によれば、本発明の導電性発泡体を安定的に製造することができる。
1-2. Method for Producing Conductive Foam A method for producing a conductive foam of the present invention comprises a foaming step of foaming (mechanical foaming) a raw material composition, which is an emulsion composition in which a conductive material is dispersed, by a mechanical floss method, Curing the foamed raw material composition.
According to this method, the conductive foam of the present invention can be stably produced.
1-2-1.原料組成物の各成分
 本発明の導電性発泡体の製造方法に用いる原料組成物は、少なくとも、ベーサル面を褶曲させた構造を有する球状黒鉛を含有する導電性材料と前記エマルジョン組成物を含む。さらに、前記エマルジョンの樹脂成分の硬化に寄与する多官能性化合物、即ち架橋剤や起泡剤を含んでいてもよい。起泡剤及び架橋剤のそれぞれの好ましい例等については、上記導電性発泡体について説明した各成分の好ましい例等と同様である。
1-2-1. Each component of the raw material composition The raw material composition used in the method for producing a conductive foam according to the present invention includes at least a conductive material containing spherical graphite having a structure with a curved basal surface and the emulsion composition. Further, it may contain a polyfunctional compound that contributes to the curing of the resin component of the emulsion, that is, a crosslinking agent or a foaming agent. Preferred examples of the foaming agent and the crosslinking agent are the same as the preferred examples of the respective components described for the conductive foam.
 原料組成物として調製するために、さらに溶媒を含んでいるのが好ましい。使用可能な溶媒の例には、水、有機溶媒(例えば、メチルアルコール、エチルアルコール、イソプロピルアルコール、エチルカルビトール、エチルセロソルブ、ブチルセロソルブ等のアルコール類、N-メチルピロリドン等の極性溶剤の1種又は2種以上)が含まれるが、本発明では、水のみを用いるのが好ましい。有機溶媒を用いると、原料組成物の粘度が水を使用した場合と比較して低くなり、気泡が消泡するおそれがある。したがって有機溶媒を含まないのが好ましいが、気泡形成安定性に影響を与えない程度(例えば成形性を害する程度に粘度が低下しない程度)の割合で含んでいてもよい。 In order to prepare as a raw material composition, it is preferable to further contain a solvent. Examples of solvents that can be used include water, organic solvents (for example, alcohols such as methyl alcohol, ethyl alcohol, isopropyl alcohol, ethyl carbitol, ethyl cellosolve, butyl cellosolve, one kind of polar solvent such as N-methylpyrrolidone, or In the present invention, it is preferable to use only water. When an organic solvent is used, the viscosity of the raw material composition is lower than when water is used, and there is a possibility that bubbles are defoamed. Therefore, it is preferable not to include an organic solvent, but it may be included at a ratio that does not affect the bubble formation stability (for example, the viscosity does not decrease to such an extent that the moldability is impaired).
1-2-2.原料組成物の調製方法
 前記原料組成物は、前記樹脂の水系エマルジョン、前記球状黒鉛等の導電性材料の水系分散液をそれぞれ調製して、これらを混合して調製すると、前記球状黒鉛等の導電性材料の凝集等を生じさせずに原料組成物を調製できるので好ましい。前記樹脂の水系エマルジョン中の樹脂の固形分濃度、及び前記導電性材料の水系分散液中の前記導電性材料の固形分濃度については特に制限はないが、一般的には、50質量%~90質量%程度である。前記導電性材料の水系分散液中にあらかじめ起泡剤となる界面活性剤を混合しておくと、樹脂の水系エマルジョンと混合した際の樹脂中への前記導電性材料の分散安定性がより向上するので好ましい。特に、起泡剤として、湿潤性が良好な界面活性剤の少なくとも1種を用いると、前記導電性材料の樹脂中への分散安定性がより改善するので好ましい。中でも、気泡形成安定性及び湿潤性が良好な上記アニオン界面活性剤から選ばれる少なくとも1種を用いるのが好ましく、さらに湿潤性が良好な上記ノニオン性界面活性剤から選ばれる少なくとも1種を用いるのがより好ましい。例えば、前記導電性材料の水系分散液は、固形分20~60質量%程度の界面活性剤(起泡剤)の水溶液ないし水懸濁液に、導電性材料を混合することで調製できる。なお、架橋剤、他の熱伝導性材料等、他の添加剤を使用する態様では、前記導電性材料の水系分散液中に他の添加剤を添加して、樹脂の水系エマルジョンと混合して、原料組成物を調製するのが好ましい。
1-2-2. Preparation method of raw material composition The raw material composition is prepared by preparing an aqueous dispersion of the resin, an aqueous dispersion of a conductive material such as the spherical graphite, and mixing them to prepare a conductive material such as the spherical graphite. This is preferable because the raw material composition can be prepared without causing aggregation of the functional material. There are no particular restrictions on the solid content concentration of the resin in the aqueous emulsion of the resin and the solid content concentration of the conductive material in the aqueous dispersion of the conductive material, but generally 50% by mass to 90%. It is about mass%. If a surfactant as a foaming agent is mixed in advance in the aqueous dispersion of the conductive material, the dispersion stability of the conductive material in the resin when mixed with the aqueous emulsion of the resin is further improved. Therefore, it is preferable. In particular, it is preferable to use at least one surfactant having good wettability as the foaming agent because the dispersion stability of the conductive material in the resin is further improved. Among them, it is preferable to use at least one selected from the above-mentioned anionic surfactants having good bubble formation stability and wettability, and to use at least one selected from the above-mentioned nonionic surfactants having good wettability. Is more preferable. For example, the aqueous dispersion of the conductive material can be prepared by mixing the conductive material with an aqueous solution or suspension of a surfactant (foaming agent) having a solid content of about 20 to 60% by mass. In an embodiment using other additives such as a cross-linking agent and other heat conductive materials, other additives are added to the aqueous dispersion of the conductive material and mixed with an aqueous emulsion of the resin. It is preferable to prepare a raw material composition.
1-2-3.原料組成物の組成・性質
 前記原料組成物の全固形分濃度は、40~80質量%程度であり、50~70質量%であることが好ましい。一般的には、原料組成物の全固形分中、樹脂(及び所望により添加される架橋剤)及び前記導電性材料の合計質量が95%以上になり、起泡剤(具体的には界面活性剤)等の他の添加剤の合計質量は5%以下になる。但し、用いる材料の種類等に応じて固形分中の各材料の好ましい質量割合も変動する。又、原料組成物の粘度は、以下の発泡工程において安定的に気泡を形成するために、10000~200000mPa・s程度であることが適切である。
1-2-3. Composition and Properties of Raw Material Composition The total solid content concentration of the raw material composition is about 40 to 80% by mass, and preferably 50 to 70% by mass. Generally, in the total solid content of the raw material composition, the total mass of the resin (and optionally added crosslinking agent) and the conductive material is 95% or more, and the foaming agent (specifically, surface active agent) The total mass of other additives such as (agent) is 5% or less. However, the preferred mass ratio of each material in the solid content varies depending on the type of material used. In addition, the viscosity of the raw material composition is suitably about 10,000 to 200,000 mPa · s in order to stably form bubbles in the following foaming step.
1-2-4.発泡工程
 発泡工程では、前記原料組成物を攪拌して、気泡を発生させる、機械発泡を実施する。機械発泡(メカニカルフロス)法は、原料組成物を攪拌羽根等で攪拌することにより、大気中の空気等の気体をエマルジョン組成物に混入させて発泡させる方法である。撹拌装置としては、機械発泡法に一般に用いられる撹拌装置を特に制限なく使用可能であるが、例えば、ホモジナイザー、ディゾルバー、メカニカルフロス発泡機等を使用することができる。本発明では、機械発泡法により発泡工程を実施することで、独立気泡の形成を抑制し、連続気泡の形成を支配的にして、硬化後の発泡体の密度が大きくなるのを防止し、柔軟性の高い多孔体を得ている。
1-2-4. Foaming step In the foaming step, mechanical foaming is performed in which the raw material composition is stirred to generate bubbles. The mechanical foaming (mechanical flossing) method is a method in which a raw material composition is stirred with a stirring blade or the like, and a gas such as air in the atmosphere is mixed into the emulsion composition and foamed. As the stirring device, a stirring device generally used in the mechanical foaming method can be used without particular limitation. For example, a homogenizer, a dissolver, a mechanical floss foaming machine, or the like can be used. In the present invention, by performing the foaming process by the mechanical foaming method, the formation of closed cells is suppressed, the formation of open cells is dominant, and the density of the foam after curing is prevented from being increased. A highly porous material is obtained.
 攪拌条件については特に制限はないが、攪拌時間は、通常は1~10分、好ましくは2~6分である。又、上記の混合における攪拌速度は、気泡を細かくするために200rpm以上が好ましく(500rpm以上がより好ましく)、発泡機からの発泡物の吐出をスムーズにするために2000rpm以下が好ましい(800rpm以下がより好ましい)。発泡工程の温度条件についても特に制限はないが、通常は常温である。発泡と同時に後述の硬化工程も実施する場合は、官能基の反応を進行させるために加熱してもよい。 The stirring conditions are not particularly limited, but the stirring time is usually 1 to 10 minutes, preferably 2 to 6 minutes. In addition, the stirring speed in the above mixing is preferably 200 rpm or more in order to make bubbles fine (more preferably 500 rpm or more), and preferably 2000 rpm or less (800 rpm or less for smooth discharge of foam from the foaming machine). More preferred). There is no particular limitation on the temperature condition of the foaming process, but it is usually room temperature. When the curing step described later is also performed simultaneously with foaming, heating may be performed to advance the reaction of the functional group.
1-2-5.硬化工程
 硬化工程では、樹脂成分を硬化させる。この工程により、前記原料組成物が、導電性発泡体としての構造体になる。硬化工程は、発泡工程後に実施する。原料組成物中の溶媒(水)を蒸発させるため、及び架橋反応を進行させるために、加熱するのが好ましい。加熱温度及び加熱時間も、原料を架橋(硬化)させることができる温度及び時間であればよく、例えば、80~150℃(特に、120℃程度が好適)で1時間程度とすればよい。
1-2-5. Curing step In the curing step, the resin component is cured. By this step, the raw material composition becomes a structure as a conductive foam. The curing process is performed after the foaming process. Heating is preferably performed in order to evaporate the solvent (water) in the raw material composition and to advance the crosslinking reaction. The heating temperature and heating time may be any temperature and time at which the raw material can be crosslinked (cured). For example, the heating temperature and heating time may be about 80 to 150 ° C. (especially about 120 ° C. is preferable) for about 1 hour.
 又、硬化工程は、得られる導電性発泡体を所望の形状にするための成形加工の一工程として実施されてもよい。例えば、シート状の導電性発泡体を製造する態様では、硬化工程を、キャスティング法の一工程として実施してもよい。具体的には、「(4)発泡工程」を実施した原料組成物を、基材表面に所望の厚みに流延し、加熱して溶媒(水)を蒸発させつつ、架橋反応を進行させて硬化させ、基材表面にシートを製造することができる。 Further, the curing step may be performed as one step of a molding process for making the obtained conductive foam into a desired shape. For example, in an embodiment in which a sheet-like conductive foam is produced, the curing step may be performed as one step of the casting method. Specifically, the raw material composition subjected to “(4) foaming step” is cast to a desired thickness on the surface of the base material, and heated to evaporate the solvent (water), while allowing the crosslinking reaction to proceed. It can be cured to produce a sheet on the substrate surface.
1-2-6.成形方法
 本発明の導電性発泡体を所望の形状にするために、従来公知の種々の方法により、成形加工することができる。所望の最終形状に応じて適切な成形加工方法を選択することができる。シート状の導電性発泡体を製造する場合は、キャスティング法を利用することができる。気泡の導入処理(発泡処理)は、成形加工の前に行うのが好ましい。又、エマルジョン組成物が架橋構造を有する態様では、架橋構造の形成、即ち架橋反応の進行は、成形加工と同時に行ってもよい。
1-2-6. Molding Method In order to make the conductive foam of the present invention into a desired shape, it can be molded by various conventionally known methods. An appropriate molding method can be selected according to the desired final shape. When manufacturing a sheet-like conductive foam, a casting method can be used. The bubble introduction process (foaming process) is preferably performed before the molding process. In the embodiment where the emulsion composition has a crosslinked structure, the formation of the crosslinked structure, that is, the progress of the crosslinking reaction may be performed simultaneously with the molding process.
1-3.導電性発泡体の用途
 本発明に係る導電性発泡体によれば、導電性や導電性の保持性(導電性材料の脱落防止性)を有するのみならず、優れたクッション性(柔軟性)を有するため、相手部材への追従性に優れ、導電性発泡体自体の反力(復元力)を小さくすることが可能となる。このため、部材間に挟んで使用する際に、十分な導電性を確保しつつ、相手部材(ICチップや基板の配線、基板の反り等)に対して、故障させたり、配線を断線する等のダメージを与えることなく、使用することができる。特に、近年は、電子機器が薄肉化、軽量化、小型化しており、電子機器内部のスペースがより無くなる傾向にあり、又、内部構造が煩雑化しており、今まで以上に、薄く優れたクッション性(柔軟性)を持つ導電性発泡体への要望が高まっている。部材間に挟み込む以外にも、その適用方法や使用環境を問わずに種々の用途(例えば、電子部品や機器類における、グラウンディング材、シールディング材、緩衝材、保護材、基板の挿間材等)に用いることが可能となる。又、本発明に係る導電性発泡体では、シリコーンを含有せずとも優れた特性を有する導電性発泡体とすることが可能であり、シリコーンを含有しない場合、電子部品や機器類等へのシリコーン汚染を気にすることなく用いることができる。
1-3. Use of conductive foam The conductive foam according to the present invention not only has conductivity and conductivity retention (prevention of falling off of conductive material), but also has excellent cushioning properties (flexibility). Therefore, the followability to the mating member is excellent, and the reaction force (restoring force) of the conductive foam itself can be reduced. For this reason, when sandwiched between the members, while securing sufficient conductivity, the mating member (IC chip or substrate wiring, substrate warpage, etc.) is damaged or the wiring is disconnected. Can be used without causing any damage. In particular, in recent years, electronic devices have become thinner, lighter, and smaller, and there is a tendency for the space inside the electronic devices to be reduced, and the internal structure has become complicated, making the cushions thinner and better than ever. There is an increasing demand for conductive foams having properties (flexibility). In addition to being sandwiched between members, it can be used for various purposes regardless of its application method and usage environment (for example, grounding materials, shielding materials, cushioning materials, protective materials, and substrate insertion materials in electronic parts and devices). Etc.). In addition, the conductive foam according to the present invention can be made into a conductive foam having excellent characteristics without containing silicone. If silicone is not contained, silicone for electronic parts and devices can be obtained. It can be used without worrying about contamination.
≪製造例≫
<原料>
・アクリルエマルジョン :アクリルニトリル-アクリル酸アルキルエステル-イタコン酸共重合体(固形分60質量%)
・ウレタンエマルジョン :ポリエーテルカーボネート系ウレタンエマルジョン(固形分60%)
・アニオン界面活性剤1 :ステアリン酸アンモニウム(固形分30%)
・アニオン界面活性剤2 :アルキルスルホコハク酸ナトリウム(固形分35%)
・両性界面活性剤1   :ラウリルジメチルアミノ酢酸ベタイン(固形分30%)
・両性界面活性剤2   :ラウリルベタイン(固形分36%)
・非イオン界面活性剤1 :脂肪酸アルカノールアミド(固形分50%)
・架橋剤1       :疎水系HDIイソシアヌレート(固形分100%)
・黒鉛1        :ベーサル面を褶曲させた構造を有する球状黒鉛(平均粒径20μm)
・黒鉛2        :ベーサル面を褶曲させた構造を有する球状黒鉛(平均粒径10μm)
・黒鉛3        :鱗片状黒鉛(平均粒径20μm)
・導電性フィラー1   :導電性カーボン(三菱化学社製、品番:#3230B、平均粒径20nm、pH6.0)
・導電性フィラー2   :導電性カーボン(三菱化学社製、品番:#3040B、平均粒径50nm、pH6.0)
・基材1        :離型処理されているPETフィルム
≪Production example≫
<Raw material>
Acrylic emulsion: Acrylic nitrile-acrylic acid alkyl ester-itaconic acid copolymer (solid content 60% by mass)
-Urethane emulsion: Polyether carbonate urethane emulsion (solid content 60%)
Anionic surfactant 1: ammonium stearate (solid content 30%)
Anionic surfactant 2: sodium alkylsulfosuccinate (solid content 35%)
Amphoteric surfactant 1: lauryldimethylaminoacetic acid betaine (solid content 30%)
-Amphoteric surfactant 2: Lauryl betaine (solid content 36%)
Nonionic surfactant 1: Fatty acid alkanolamide (solid content 50%)
Crosslinking agent 1: Hydrophobic HDI isocyanurate (solid content 100%)
Graphite 1: Spherical graphite having a structure in which the basal surface is bent (average particle size 20 μm)
Graphite 2: Spherical graphite having a structure in which the basal surface is bent (average particle size: 10 μm)
Graphite 3: scale-like graphite (average particle size 20 μm)
Conductive filler 1: conductive carbon (Mitsubishi Chemical Corporation, product number: # 3230B, average particle size 20 nm, pH 6.0)
Conductive filler 2: Conductive carbon (Mitsubishi Chemical Corporation, product number: # 3040B, average particle size 50 nm, pH 6.0)
Substrate 1: PET film that has been subjected to mold release treatment
<導電性発泡体の調製>
(実施例1)
 エマルジョンとしてアクリルエマルジョンを主剤とし、エマルジョンの全量を基準(固形分量及び非固形分量の合計を100質量部とする。)として、5質量部のアニオン界面活性剤1、3質量部のアニオン界面活性剤2、2質量部の両性界面活性剤1、1.5質量部の両性界面活性剤2、0.5質量部の非イオン界面活性剤1に、23.5質量部の黒鉛1、2.6質量部の導電性フィラー1、3質量部の架橋剤1を混合して発泡体原料とした。原料にエアーを加えて発泡させ成形した後、加熱処理することで、実施例1に係る発泡体を得た。
<Preparation of conductive foam>
(Example 1)
As an emulsion, an acrylic emulsion is used as a main ingredient, and 5 parts by weight of an anionic surfactant 1 or 3 parts by weight of an anionic surfactant based on the total amount of the emulsion (the total amount of solids and non-solids is 100 parts by weight). 2, 2 parts by weight of amphoteric surfactant 1, 1.5 parts by weight of amphoteric surfactant 2, 0.5 parts by weight of nonionic surfactant 1, 23.5 parts by weight of graphite 1, 2.6 The foam raw material was prepared by mixing 1 part by mass of the conductive filler 1 and 3 parts by mass of the crosslinking agent 1. After foaming by adding air to the raw material, the foam according to Example 1 was obtained by heat treatment.
(実施例2~31、比較例1~10)
 実施例2~22、比較例1~10は黒鉛又導電カーボンの種類、添加量を下記表1~3,5に記載の通りに変更した以外は実施例1と同様にして発泡体を得た。実施例23、24は実施例1、実施例2の主剤をアクリルエマルジョンからウレタンエマルジョンに変更したもので、同様に実施例25、26は実施例1、2の主剤をアクリル、ウレタンエマルジョンの50質量部ずつに変更して発泡体を得た。実施例27~31は実施例1の厚み、密度を調整し作製した発泡体である。
≪発泡体評価方法≫
<厚み>
 厚さをシックネスゲージによって測定した。
<密度>
 単位体積当たりの重さを計算することによって測定した。
<外観>
 目視にて、セルの状態及び発泡体の表面を評価した。セルが均一かつ表面が荒れていない場合を「○」、若干セルが荒れている場合を「△」、セルが非常に粗い、又は、セルが形成されていない、若しくは表面状態が酷い場合を「×」と評価した。
(Examples 2 to 31, Comparative Examples 1 to 10)
In Examples 2 to 22 and Comparative Examples 1 to 10, foams were obtained in the same manner as in Example 1 except that the types and addition amounts of graphite or conductive carbon were changed as shown in Tables 1 to 3 and 5 below. . In Examples 23 and 24, the main agent in Examples 1 and 2 was changed from acrylic emulsion to urethane emulsion. Similarly, in Examples 25 and 26, the main agent in Examples 1 and 2 was acrylic and 50 masses of urethane emulsion. The foam was obtained by changing into parts. Examples 27 to 31 are foams prepared by adjusting the thickness and density of Example 1.
≪Foam evaluation method≫
<Thickness>
The thickness was measured with a thickness gauge.
<Density>
It was measured by calculating the weight per unit volume.
<Appearance>
The state of the cell and the surface of the foam were evaluated visually. “○” when the cell is uniform and the surface is not rough, “△” when the cell is slightly rough, “when the cell is very rough, or the cell is not formed, or the surface state is severe” “×”.
<導電性能>
 JIS K 6911に準拠し、各発泡体をΦ100mmに打ち抜き、株式会社エーディーシー製直流電圧・電流源(6243)を用いて印加電圧1Vの時の電流値から体積抵抗値と表面抵抗値を算出した。
(体積抵抗値)
 体積抵抗値が1.0×10Ωcm未満の場合を「○」、体積抵抗値が1.0×10Ωcm以上、1.0×10Ωcm未満の場合を「△」、体積抵抗値が1.0×10Ωcm以上の場合を「×」と評価した。
(異方性評価)
 体積抵抗値と表面抵抗値とを常用対数に変換し、表面抵抗値から体積抵抗値を引いた差の絶対値から導電性能の異方性について評価した。
 表面抵抗値から体積抵抗値を引いた差の絶対値が1.5未満の場合を「○」、1.5以上、2.00未満の場合を「△」、2.00以上の場合を「×」とした。体積抵抗値評価と異方性評価の結果から、どちらか一方でも「×」がないものを低電圧下で高い導電性・等方性を有する導電発泡体であると評価した。
<Conductive performance>
In accordance with JIS K 6911, each foam was punched to Φ100 mm, and the volume resistance value and the surface resistance value were calculated from the current value at an applied voltage of 1 V using a DC voltage / current source (6243) manufactured by ADC Co., Ltd. .
(Volume resistance value)
The case where the volume resistivity is less than 1.0 × 10 3 Ωcm "○", volume resistivity 1.0 × 10 3 Ωcm or more, the case of less than 1.0 × 10 5 Ωcm "△", volume resistivity Was evaluated as “×” when 1.0 × 10 5 Ωcm or more.
(Anisotropy evaluation)
The volume resistance value and the surface resistance value were converted into common logarithms, and the anisotropy of the conductive performance was evaluated from the absolute value of the difference obtained by subtracting the volume resistance value from the surface resistance value.
The case where the absolute value of the difference obtained by subtracting the volume resistance value from the surface resistance value is less than 1.5 is “◯”, 1.5 or more, less than 2.00 is “△”, and 2.00 or more is “ × ”. From the results of volume resistance evaluation and anisotropy evaluation, those having no “x” were evaluated as conductive foams having high conductivity / isotropy under low voltage.
<硬度>
 JIS K 6254に準拠して測定した。具体的には、直径50φに打ち抜いたサンプルをオートグラフを用いて1mm/minの速度で厚さの25%を押しつぶした際の反発応力の大きさを測定した(100φの圧縮板でサンプルを全面圧縮し、測定)。25%CLD硬度が100kPa未満の場合を「○」、25%CLD硬度が100kPa以上、200kPa未満の場合を「△」、25%CLD硬度が200kPa以上の場合を「×」と評価した。
<Hardness>
The measurement was performed according to JIS K 6254. Specifically, the magnitude of the repulsive stress was measured when crushing 25% of the thickness of a sample punched out to a diameter of 50φ using an autograph at a speed of 1 mm / min (the sample was entirely covered with a 100φ compression plate). Compress and measure). The case where the 25% CLD hardness was less than 100 kPa was evaluated as “◯”, the case where the 25% CLD hardness was 100 kPa or more and less than 200 kPa was evaluated as “Δ”, and the case where the 25% CLD hardness was 200 kPa or more was evaluated as “x”.
≪発泡体評価結果≫
 実施例及び比較例に係る発泡体の評価結果を、表1~5に示す。結果から本発明による導電性発泡体は1Vという低い印加電圧で、導電性(体積抵抗値)を発現することが理解でき、導電性の異方性が低いということが理解できる。又、導電性フィラーとして導電性カーボンを、さらに追加した実施例では、著しく導電性が向上していることも理解できる。
≪Foam evaluation result≫
The evaluation results of the foams according to Examples and Comparative Examples are shown in Tables 1 to 5. From the results, it can be understood that the conductive foam according to the present invention exhibits conductivity (volume resistance value) at an applied voltage as low as 1 V, and that the conductivity anisotropy is low. It can also be understood that the conductivity is remarkably improved in the embodiment in which conductive carbon is further added as the conductive filler.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 本発明を特定の態様を参照して詳細に説明したが、本発明の精神と範囲を離れることなく様々な変更および修正が可能であることは、当業者にとって明らかである。
 なお、本出願は、2017年6月13日付で出願された日本国特許出願(特願2017-116157)に基づいており、その全体が引用により援用される。また、ここに引用されるすべての参照は全体として取り込まれる。
Although the invention has been described in detail with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention.
This application is based on a Japanese patent application filed on June 13, 2017 (Japanese Patent Application No. 2017-116157), which is incorporated by reference in its entirety. Also, all references cited herein are incorporated as a whole.

Claims (8)

  1.  導電性材料を分散させたエマルジョン組成物を、メカニカルフロス法にて発泡させた後に硬化することにより得られる導電性発泡体であって、前記導電性材料が、少なくとも、ベーサル面を褶曲させた構造を有する球状黒鉛を、含有することを特徴とする導電性発泡体。 A conductive foam obtained by foaming an emulsion composition in which a conductive material is dispersed by a mechanical froth method and then curing, wherein the conductive material has at least a basal surface curved A conductive foam comprising spherical graphite having the following.
  2.  前記導電性発泡体の全質量を基準として、前記導電性材料を30質量%~50質量%含有する、請求項1に記載の導電性発泡体。 2. The conductive foam according to claim 1, comprising 30% by mass to 50% by mass of the conductive material based on the total mass of the conductive foam.
  3.  前記導電性材料として、前記球状黒鉛とは異なる導電性フィラーをさらに含有する、請求項1又は2に記載の導電性発泡体。 The conductive foam according to claim 1 or 2, further comprising a conductive filler different from the spherical graphite as the conductive material.
  4.  前記導電性材料として、前記球状黒鉛と導電性フィラーとを配合比率(質量比)9:1~5:5で含有する、請求項3に記載の導電性発泡体。 4. The conductive foam according to claim 3, wherein the conductive material contains the spherical graphite and a conductive filler in a blending ratio (mass ratio) of 9: 1 to 5: 5.
  5.  前記導電性フィラーが、導電性カーボンである、請求項3又は4に記載の導電性発泡体。 The conductive foam according to claim 3 or 4, wherein the conductive filler is conductive carbon.
  6.  前記エマルジョン組成物が、ウレタン系樹脂及びアクリル系樹脂のうちの少なくとも1つの樹脂材料を含む請求項1から5のいずれか1項に記載の導電性発泡体。 The conductive foam according to any one of claims 1 to 5, wherein the emulsion composition contains at least one resin material of urethane resin and acrylic resin.
  7.  シート状である請求項1から6のいずれか1項に記載の導電性発泡体。 The conductive foam according to any one of claims 1 to 6, wherein the conductive foam is in a sheet form.
  8.  基材上に積層されたものである請求項1から7のいずれか1項に記載の導電性発泡体。 The conductive foam according to any one of claims 1 to 7, wherein the conductive foam is laminated on a substrate.
PCT/JP2018/022255 2017-06-13 2018-06-11 Electrically conductive foam WO2018230508A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020197034551A KR102338096B1 (en) 2017-06-13 2018-06-11 conductive foam
CN201880038459.7A CN110730799B (en) 2017-06-13 2018-06-11 Conductive foam

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-116157 2017-06-13
JP2017116157 2017-06-13

Publications (1)

Publication Number Publication Date
WO2018230508A1 true WO2018230508A1 (en) 2018-12-20

Family

ID=64659278

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/022255 WO2018230508A1 (en) 2017-06-13 2018-06-11 Electrically conductive foam

Country Status (4)

Country Link
JP (1) JP7239277B2 (en)
KR (1) KR102338096B1 (en)
CN (1) CN110730799B (en)
WO (1) WO2018230508A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113651994A (en) * 2021-08-09 2021-11-16 哈尔滨工业大学(威海) Porous elastic conductive composite film and preparation method thereof
CN115678091B (en) * 2022-02-08 2024-02-27 广东思泉新材料股份有限公司 Acrylic foam and preparation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002348110A (en) * 2001-05-28 2002-12-04 Mitsui Mining Co Ltd Graphite particle and method for producing the same
JP2005015737A (en) * 2003-06-30 2005-01-20 Nippon Zeon Co Ltd Conductive self-sticking foamed sheet
JP2016171062A (en) * 2015-03-10 2016-09-23 大日本印刷株式会社 Gas diffusion layer, laminate and method of manufacturing same
WO2018105578A1 (en) * 2016-12-07 2018-06-14 株式会社イノアック技術研究所 Cell porous body and method for producing same

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2979428B2 (en) * 1990-09-28 1999-11-15 株式会社ブリヂストン Electrophotographic roller
JP2601782B2 (en) * 1992-03-09 1997-04-16 株式会社ブリヂストン Conductive polyurethane foam
JP2004202989A (en) 2002-12-26 2004-07-22 Sumitomo Rubber Ind Ltd Method for manufacturing conductive expanded material, and conductive expanded material
CN101309859B (en) * 2005-12-14 2011-03-09 日本焦化工业株式会社 Graphite particle, carbon-graphite composite particle and their production process
JP2008042182A (en) 2006-07-11 2008-02-21 Power System:Kk Electric double layer capacitor having positive electrode containing graphite particles and negative electrode containing active carbon-carbon composite particles
CN101511536A (en) * 2006-09-08 2009-08-19 东洋橡胶工业株式会社 Method for production of polishing pad
EP2683763A1 (en) 2011-06-27 2014-01-15 Total Research & Technology Feluy Expandable graphite - containing vinyl aromatic polymers
WO2013042611A1 (en) 2011-09-20 2013-03-28 東海ゴム工業株式会社 Urethane foam molding and method for manufacturing same
JP5894813B2 (en) 2012-02-10 2016-03-30 日東電工株式会社 Conductive substrate, current collector sheet, fuel cell, method for producing conductive substrate, and method for producing current collector sheet
JP5692174B2 (en) 2012-06-29 2015-04-01 トヨタ自動車株式会社 Non-aqueous electrolyte secondary battery and method for producing non-aqueous electrolyte secondary battery
NL2009320C2 (en) 2012-08-14 2014-02-18 Synbra Tech Bv PARTICULATE, EXPANDABLE POLYMER, METHOD OF MANUFACTURE, AND APPLICATION.
US9646735B2 (en) 2014-05-30 2017-05-09 University Of Connecticut Graphene/graphite polymer composite foam derived from emulsions stabilized by graphene/graphite kinetic trapping

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002348110A (en) * 2001-05-28 2002-12-04 Mitsui Mining Co Ltd Graphite particle and method for producing the same
JP2005015737A (en) * 2003-06-30 2005-01-20 Nippon Zeon Co Ltd Conductive self-sticking foamed sheet
JP2016171062A (en) * 2015-03-10 2016-09-23 大日本印刷株式会社 Gas diffusion layer, laminate and method of manufacturing same
WO2018105578A1 (en) * 2016-12-07 2018-06-14 株式会社イノアック技術研究所 Cell porous body and method for producing same

Also Published As

Publication number Publication date
JP7239277B2 (en) 2023-03-14
TW201906928A (en) 2019-02-16
CN110730799B (en) 2022-06-14
KR102338096B1 (en) 2021-12-10
JP2019001999A (en) 2019-01-10
KR20200016221A (en) 2020-02-14
CN110730799A (en) 2020-01-24

Similar Documents

Publication Publication Date Title
JP7274302B2 (en) Airgel composite material and its manufacturing method
JP7469408B2 (en) Porous cell body and method for producing same
JP5933114B2 (en) Polyurethane foam and method for producing the same
Chen et al. Dielectric, mechanical and electro-stimulus response properties studies of polyurethane dielectric elastomer modified by carbon nanotube-graphene nanosheet hybrid fillers
WO2018230508A1 (en) Electrically conductive foam
WO2014083890A1 (en) Heat-conducting foam sheet for electronic instruments and heat-conducting laminate for electronic instruments
US20180233250A1 (en) Conductive film and method for producing the same
JP6366776B1 (en) Foam sheet
JP2023017860A (en) foam sheet
TWI837091B (en) conductive foam
Quan et al. Functional and mechanical properties of acrylate elastomer/expanded graphite nanocomposites
JP2023171393A (en) thermal conductive sheet
JP6704248B2 (en) Conductive foam and method for producing the same
Lu et al. Mechanical properties and morphology of nylon 12 composites reinforced with graphene flake
Peng et al. Effect of surface modifications of carbon black (CB) on the properties of CB/polyurethane foams
JP2019044130A (en) Porous body, and method for producing the same
JP2007269944A (en) Flame retardant sheet and electronic equipment using the flame retardant sheet
Asai et al. Functional polymethacrylate composite elastomer filled with multilayer graphene and silica particles
Lv et al. Preparation and characterization of in situ nanocomposites of graphene nanosheets/polyurethane
JP2018053018A (en) Heat-radiation foamed sheet and adhesive tape
JP2019131776A (en) Elastomer composition, and method for producing the same
JP2019119783A (en) Porous body, and method for producing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18817837

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197034551

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18817837

Country of ref document: EP

Kind code of ref document: A1