WO2018229895A1 - Energy management device and method, energy management system, and energy management system operation planning method - Google Patents

Energy management device and method, energy management system, and energy management system operation planning method Download PDF

Info

Publication number
WO2018229895A1
WO2018229895A1 PCT/JP2017/021953 JP2017021953W WO2018229895A1 WO 2018229895 A1 WO2018229895 A1 WO 2018229895A1 JP 2017021953 W JP2017021953 W JP 2017021953W WO 2018229895 A1 WO2018229895 A1 WO 2018229895A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
schedule
demand
self
energy management
Prior art date
Application number
PCT/JP2017/021953
Other languages
French (fr)
Japanese (ja)
Inventor
勉 河村
広考 高橋
亮介 中村
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to JP2019524622A priority Critical patent/JP6893980B2/en
Priority to PCT/JP2017/021953 priority patent/WO2018229895A1/en
Priority to CN201780089900.XA priority patent/CN110546842B/en
Publication of WO2018229895A1 publication Critical patent/WO2018229895A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks

Definitions

  • the present invention relates to an energy management apparatus and method, an energy management system, and an operation planning method for an energy management system for supplying electric power within an organization composed of a plurality of power generation establishments and a plurality of power reception establishments.
  • the present invention relates to an energy management apparatus and method, an energy management system, and an operation management method for an energy management system that can perform power interchange within a business in cooperation with a system that manages a schedule of a process that consumes electric power at an office.
  • a business establishment that has private power generation facilities (power production establishment) that has power generation surplus and has purchased external power (power receiving)
  • power is exchanged from the power generation establishment to the power reception establishment.
  • the entity needs to pay a consignment fee when it makes power interchange via the power system, but there is a cost merit for the entity if the unit price of power generation including the consignment fee is lower than the unit price of external power. is there.
  • the power self-consignment system was started in 2014 as part of the power system reform, and in the case of power interchange within the same business, a low consignment fee was applied. For this reason, it is expected that it will be widely used in business entities that have multiple business establishments, especially companies that have multiple manufacturing factories.
  • the planned value is submitted the day before, and on the day there is an obligation to simultaneously supply the planned value to keep the planned value, and there is a difference (imbalance). If it happens, you need to pay an imbalance fee. Therefore, when creating a plan, it is important to predict the power demand of the power receiving establishment with high accuracy.
  • Patent Document 1 predicts the amount of power of a power receiving establishment (customer) based on the actual data, and calculates the fuel consumption characteristics, transmission loss rate, and consignment fee of the generator of the power generation establishment. A method for determining the amount of self-consigned power transmission in consideration of this is proposed.
  • the power receiving establishment is a manufacturing plant
  • there are multiple uncertain schedules among many production processes so the error in power demand prediction becomes large, and the self-consignment plan becomes uncertain. May cause imbalance.
  • the power receiving establishment also has a risk that the purchased power from the outside exceeds the contracted power.
  • the present invention has been made in view of such problems, and the object of the present invention is to provide a plurality of manufacturing factories in a business entity including a plurality of power receiving establishments including a manufacturing factory and a plurality of power generation establishments.
  • Energy management device and method, energy management system and energy to create a self-consignment plan by taking into account the uncertainties of the production schedule, and to adjust the production schedule to change the power demand to keep the same amount of the planned value It is to provide a management system operation planning method.
  • an energy management apparatus in a business entity having a power generation facility and a power reception facility connected to a power system
  • An EMS Electronicgy Management System
  • An AEMS Area Energy Management System
  • the EMS of the power receiving establishment predicts the power transition for each production line on the scheduled date, classifies the operation schedule of the production line on the scheduled date into a confirmed schedule, an unconfirmed schedule, and an adjustable schedule
  • the AEMS determines the maximum demand in consideration of the classified operation schedule on the scheduled date, the determined demand on the scheduled date from the power transition, and the unconfirmed schedule reported from the EMS of the power receiving establishment, and the maximum demand
  • the energy management apparatus according to claim 1, wherein the EMS of the power generation plant generates power according to a self-consignment plan output determined by the AEMS.
  • an energy management method in an entity having a power generation facility and a power reception facility connected to an electric power system For the power receiving establishment, predict the power transition for each production line on the scheduled date, classify the operation schedule of the production line on the scheduled date into a confirmed schedule, an unconfirmed schedule, an adjustable schedule, Determined the maximum demand in consideration of the undecided schedule and the determined demand on the scheduled date from the classified operation schedule and the power transition on the scheduled date, and the minimum obtained as the difference between the maximum demand and the contracted power of the entire power receiving establishment Set the self-consignment plan output to the power receiving establishment within the range of the self-consignment amount and the fixed demand, The energy management method, wherein the power plant generates power according to the self-consignment plan output.
  • an energy management system in an entity having a power generation facility and a power reception facility connected to an electric power system, Demand fluctuation factor determining means for determining a demand fluctuation factor in the energy demand forecast of the entire power receiving establishment on the scheduled date, and evaluating the demand fluctuation amount on the scheduled date based on the demand fluctuation factor,
  • An energy management system comprising: creation means for creating a purchase / transaction plan; and presentation means for presenting a plurality of plans for the energy production / purchase / transaction plan created by the creation means.
  • an energy management operation planning method in an entity having a power generation facility and a power reception facility connected to a power system In the energy demand forecast for the entire power receiving facility on the scheduled date, the schedule caused by energy demand is classified into a fixed schedule, an undefined schedule, and an adjustable schedule, and the maximum error in demand is evaluated based on the undefined schedule to produce energy production
  • An operation plan method for an energy management system characterized in that, when a purchase / transaction plan is created, the adjustable schedule is changed to match the plan value.
  • the energy cost of the entire business entity can be reduced by maximizing the self-consignment amount while keeping the same amount of plan values.
  • FIG. 1 shows an example of the configuration of a business entity according to an embodiment of the present invention.
  • the business entity 3 includes a plurality of power generation establishments 4 (4a to 4n) and a plurality of power reception establishments 5 (5A to 5M) connected to the power system 1.
  • the power generation establishment 4 includes a power generation facility 9, a load 10, and an energy management system (hereinafter referred to as EMS) 6, and the load 10 of the power generation establishment and other power receiving establishments 5 in the entity 3. Can be powered. If there is a shortage of power, purchase external power from a power company or the like.
  • EMS energy management system
  • the power receiving facility 5 is not provided with the power generation equipment 9, and is composed of the load 10 and the EMS 22, and the other power generation facility 5 and the power company 2 and the like with respect to the load 10 of the power receiving facility. Power is supplied from external power.
  • a manufacturing execution system hereinafter referred to as MES 8 that manages the production process in the power receiving establishment 5 is provided.
  • the MES 8 will be described later.
  • the business entity 3 is provided with a regional energy management system (hereinafter referred to as AEMS) 7 to manage self-consignment between the power generation site 4 and the power receiving site 5 in the business unit 3.
  • AEMS regional energy management system
  • signal transmission using a communication line is performed between the EMS 6 installed in the power generation establishment 4 and the EMS 22 installed in the power receiving establishment 5.
  • FIG. 2 shows an example of a system configuration in the business entity 3 according to the embodiment of the present invention.
  • the business entity 3 has a plurality of power generation establishments 4 (4a to 4n) and a plurality of power reception establishments 5 (5A to 5M), but these are basically the same in configuration.
  • a specific configuration will be described using the power generation establishment 4a and the power reception establishment 5A as representative examples.
  • EMS 6a is installed in the power generation site 4a, and the power generation facility 9 is operated based on the self-consignment plan signal 100 from the AEMS 7.
  • the power receiving establishment 5A in this embodiment, the case where the power receiving establishment 5A is a manufacturing factory is shown.
  • the energy management in the power receiving establishment 5A is performed by the EMS 22A, but in addition to that, a manufacturing execution system (hereinafter referred to as MES) 8A for managing the production process, and the production process schedule are managed.
  • MES manufacturing execution system
  • a production schedule management function 11A and a production / self-consignment plan candidate display function 12A for displaying production / self-consignment plan candidates are provided.
  • the AEMS 7 includes a demand prediction function 13 that evaluates the power demand of the entire business entity 3, a production schedule adjustment function 14 that adjusts the production schedule of each power receiving establishment 5, and a self-consignment plan function 15 that generates a self-consignment plan for the entire business entity 3.
  • the result output function 16 outputs the result of the self-consignment.
  • the self-consignment plan generation procedure will be described below with reference to FIG. 4 showing an example of the self-consignment plan generation flow.
  • the self-consignment plan generation procedure is executed between the plurality of power receiving establishments 5 (5A to 5M), the plurality of power generation establishments 4 (4a to 4n), and the AEMS 7, and the power receiving establishment 5 (5A to 5M) and the power generation Based on the power demand forecast information presented by the establishment 4 (4a to 4n), the AEMS 7 creates a self-consignment plan, and the receiving establishment 5 (5A to 5M) determines whether or not the self-consignment plan is acceptable. That is the flow.
  • processing step S1 to processing step S4 are executed on the power receiving establishment 5 (5A to 5M) side to determine power demand prediction information to be presented to the AEMS 7 side.
  • the MES 8 of each power receiving establishment 5 predicts the power consumption for each production line based on the past results or calculation.
  • the power consumption for each production line is determined by the production schedule management function 11 in each power receiving establishment 5 based on the information input in the MES 8, as shown in FIG. Classify into possible schedules.
  • FIG. 5 shows production line schedules 5AL1S, 5AL2S,... 5ALPS of tomorrow (scheduled date) and their electric power demands 5AL1P, 5AL2P with respect to production lines 5AL1, 5AL2,. ,..., 5ALPP is schematically shown.
  • the production line schedule 5AL1S of the production line 5AL1 of the power receiving establishment 5A it is determined that the scheduled operation time tomorrow (scheduled date) is from 8:00 to 20:00, and various materials, equipment, personnel The unloading schedule is ready, and tomorrow (scheduled date) will be a production line that should operate as planned.
  • the power demand in this case seems to be 5AL1P and peaks between 10:00 and 15:00.
  • the production line schedule 5AL1S is defined as a fixed schedule.
  • the production line schedule 5AL2S of the production line 5AL2 possessed by the power receiving establishment 5A this is from 10:00 to 18:00 as shown by the solid line in the initial operation tomorrow (scheduled date). There is a possibility that it will be earlier than 10:00, and the scheduled start time Ts cannot be specified unless it is tomorrow (scheduled date).
  • a time width dTu from 8 o'clock to 10 o'clock is an indeterminate time interval, and in this case, the production line schedule 5AL2S is defined as an indeterminate schedule.
  • the power demand 5AL2P of tomorrow will change the start and end times of the power demand fluctuation pattern as shown by the dotted line in accordance with the possibility that the operation may be advanced. Become.
  • the operation schedule for tomorrow is from 9:00 to 18:00, but for example, it may be completed during tomorrow (scheduled date).
  • the schedule can be shifted from 11:00 to 20:00.
  • the scheduled start time Ts is moved by an adjustable time width dTc for operation.
  • the production line schedule 5ALPS is defined as an adjustable schedule.
  • the production schedule management function 11 defines and classifies the power consumption for each production line as one of a confirmed schedule, an unconfirmed schedule, and an adjustable schedule based on the information input in the MES 8. .
  • the production schedule management function 11 predicts the indeterminate time width dTu for the indeterminate schedule.
  • the production schedule management function 11 includes an operator input function 17 or a machine learning function 18 as shown in FIG.
  • the operator input function 17 refers to the database 19 regarding the supply chain information of the manufacturing factory and the past uncertain schedule, and outputs the result of the operator estimating and inputting the uncertain time width dTu to the EMS 22.
  • the machine learning function 18 refers to the database 19 to calculate the undetermined time width dTu by machine learning and inputs it to the EMS 22.
  • the EMS 22 in each power receiving establishment 5 performs power demand prediction including an error in each power receiving establishment with the undefined time width dTu as a parameter.
  • the electric power demand 5AL1P, 5AL2P,... 5ALPP determined for each of the production line schedules 5AL1S, 5AL2S,. It is a demand.
  • power demand prediction is performed in a plurality of patterns. Note that the portion corresponding to the total unconfirmed power is the error at the power receiving establishment.
  • the AEMS 7 calculates the power demand of the entire power receiving establishment based on the power demand forecast information of the power receiving establishment 5 reported by each power receiving establishment 5 (5A to 5M).
  • FIG. 6 shows an example of a self-consignment plan created on the day before the scheduled date by AEMS7.
  • the concept of the present invention will be described with reference to FIG.
  • the self-consignment plan shows the power (transition of power) at each time in 24 hours tomorrow (scheduled date).
  • P1 represents each power receiving establishment 5 (5A to 5M) ) Is a fixed demand portion of the power demand of the entire power receiving station calculated based on the power demand forecast information reported by The fixed demand portion P1 is scheduled to operate at all power receiving establishments (5A to 5M) in the fixed schedule and the fixed schedule among the undefined schedules and in the adjustable schedule.
  • the final demand is evaluated, and the total demand is calculated as the final demand at all power receiving establishments. At this stage, it is assumed that the power demand of the power plant has not yet been included. In FIG. 5, the total for each time of the portion with the background color corresponds to the final demand P1.
  • the maximum demand P2 in consideration of the unconfirmed schedule in FIG. 6 is obtained by further adding the amount of fluctuation of the unconfirmed demand for each time to the confirmed demand P1.
  • the maximum demand in consideration of the unconfirmed schedule is a result of power demand prediction including all cases in which the unconfirmed time width dTu is changed as a parameter in all power receiving establishments.
  • the business entity 3 in FIG. 1 needs to cover the maximum demand P2 in consideration of the unconfirmed schedule by the amount of power generated from the power plant 4 (4a to 4n) and the external power from the power company 2, etc.
  • the external power of the power company 2 and the like is limited by the contract power P3 (the total contract power of the power receiving establishment), and power that is equal to or greater than the contract power P3 cannot be obtained from the power company 2.
  • FIG. 6 shows the minimum self-delivery amount P4 that is the difference between the maximum demand P2 (unconfirmed demand maximum value) and the contract power P3 in consideration of the unconfirmed schedule. Since power generation includes consumption of the power demand of the power generation establishment, here, the amount of power generation that covers the demand of the power receiving establishment is distinguished as “self-consigned amount”.
  • the minimum self-consigned amount P4 shown in FIG. 6 is the minimum when the power receiving establishment 5 accepts the same amount of external power as the contracted power P3 of the power receiving establishment, and the rest is self-consigned by private power generation.
  • the self-consignment plan is formulated so that the self-consignment plan value from the power plant 4 is determined so as to fall within the range of the fixed demand P1 and the minimum self-consignment amount P4 for each time zone.
  • the generator operation plan of the power plant in the processing step S7 includes the power demand of the whole power receiving plant in FIG. 6 so as to reduce the power generation cost. Perform optimization. In optimization, the ratio between the amount of electricity purchased and the amount of private power generation is determined in consideration of power generation costs.
  • processing step S14 of FIG. 4 the total power demand prediction result of the power plant evaluated by the EMS 6 of the power plant 4 is added to the power demand of the entire power receiving plant obtained in the processing step S5 to obtain the power of the entire business unit. Demand demand.
  • process step S6 of FIG. 4 the electric power demand part of the whole power receiving establishment is corrected based on the adjustable time dTc of the adjustable schedule from each power receiving establishment using the production schedule adjustment function 14 in AEMS7. As a result of changing the adjustable time dTc of the adjustable schedule, the relationship of each power shown in FIG. 6 is changed.
  • the power generation business is calculated with respect to the power demand of the entire business body, which is the sum of the power demand of the whole power receiving business and the power demand of the power business. Multiple operation plans for power generation facilities throughout the plant.
  • a plurality of operation plans are created under the constraint that the power purchased from the outside by each power generation site and the power reception site is equal to or less than the contract power. If the constraint condition is not satisfied, the adjustable schedule shown in process step S6 is readjusted.
  • a plurality of self-consignment plans are output from AEMS 7 to EMS 22 of each power receiving establishment 5.
  • the operator of each power receiving establishment 5 selects one plan from a plurality of plans.
  • the process returns to the processing step S6 of AEMS7, and the adjustable schedule is readjusted again to correct the power demand of the entire power receiving establishment.
  • the MES 8 outputs the production schedule.
  • AEMS7 outputs a power generation plan to all the power generation establishments.
  • Fig. 7 shows an example of the self-consignment plan and actual results for all power receiving establishments created on AEMS7 on the day.
  • the operation plan for the self-consignment on that day is repeated at intervals of, for example, 30 minutes based on the procedure shown in FIG. Basically, the amount of self-consignment from the power generation site 4 to the power receiving site 5 is less than the demand amount of the power receiving site, and the difference is covered by the purchase of external power.
  • the demand may fall below the self-consigned plan due to a sudden change in the production plan at the power receiving establishment 5. In that case, since imbalance occurs, there is a concern that the operation cost increases in the case where the imbalance fee is high.
  • the demand on the day and the self-consignment plan value are compared every planned time (for example, 30 minutes), and if there is a possibility of imbalance, the adjustable time of the adjustable schedule shown in FIG.
  • the width dTc as a parameter, an operation plan that avoids imbalance is drawn up.
  • the representative adjustable consumer equipment classified into the adjustable schedule is the air conditioning equipment, but even in this case, the entire capacity of the air conditioning equipment is classified into the adjustable schedule. It is desirable that the capacity of surplus air-conditioning equipment be classified into an adjustable schedule on the premise that the comfort of residents is ensured at the minimum.
  • the method of the present invention in an entity composed of a plurality of power receiving establishments including a manufacturing factory and a plurality of power generation establishments, by considering the uncertainty of the plurality of production schedules of the manufacturing factory Providing an operation planning device and method that reduces energy costs by formulating a self-consignment plan, and further adjusting the production schedule to maximize the self-consignment amount while changing the power demand and protecting the same amount of plan values. can do.
  • each production schedule of the receiving power plant is classified into a fixed schedule, an uncertain schedule, and an adjustable schedule, and the power demand based on the undefined schedule Create a self-consignment plan so as not to exceed the contract power in consideration of the maximum error.
  • MES Manufacturing Execution System
  • the present invention can be applied to regional energy management of a business entity composed of a plurality of business establishments composed of buildings, factories, universities, and the like.
  • Power system 2 Power company 3: Business entity 4: Power plant 5: Power plant 6: Energy management system (EMS) of power plant 7: Regional energy management system (AEMS) 8: Manufacturing execution system (MES), 9: Power generation equipment, 10: Load, 11: Production schedule management function, 12: Production / self-consignment plan candidate display function, 13: Demand prediction function, 14: Production schedule adjustment function, 15 : Self-consignment planning function, 16 ... Result output function, 17: Operator input function, 18: Machine learning function, 19: Database, 22: Energy management system (EMS) of the power receiving establishment

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

The purpose of the present invention is to make a self-consignment plan, for an entity comprising a power receiving business establishment and a power generating business establishment, by considering the uncertainty of a plurality of production schedules of a manufacturing facility, and also to keep planned-value balancing by changing the power demand through the adjustment of the production schedules. An energy management device in an entity comprising a power generating business establishment and a power receiving business establishment which are connected to a power system is characterized in that: an EMS is installed in the power generating business establishment and the power receiving business establishment, and an AEMS is installed in the entity; the EMS of the power receiving business establishment predicts the power transition for each production line of the power receiving business establishment on a scheduled date and categorizes the operation schedules of the production lines thereof on the scheduled date into a definite schedule, indefinite schedule, and an adjustable schedule; and the AEMS, on the basis of the categorized operation schedule and the power transition on the scheduled date which have been reported from the EMS of the power receiving business establishment, sets a definite demand and a maximum demand considering the indefinite schedule on the scheduled date, and sets a self-consignment plan output to the power receiving business establishment within the range of the minimum self-consignment amount, which is obtained as the difference between the maximum demand and the contracted power of the power receiving business establishment, and the definite demand; and the EMS of the power generating business establishment generates power according to the self-consignment plan output set by the AEMS.

Description

エネルギー管理装置および方法、エネルギー管理システム並びにエネルギー管理システムの運転計画方法Energy management apparatus and method, energy management system, and operation planning method for energy management system
 本発明は、複数の発電事業所と複数の受電事業所で構成された事業体内で電力供給を行うためのエネルギー管理装置および方法、エネルギー管理システム並びにエネルギー管理システムの運転計画方法に係り、特に受電事業所の電力を消費する工程のスケジュールを管理するシステムと連携して、事業体内で電力融通を行うことができるエネルギー管理装置および方法、エネルギー管理システム並びにエネルギー管理システムの運転計画方法に関する。 The present invention relates to an energy management apparatus and method, an energy management system, and an operation planning method for an energy management system for supplying electric power within an organization composed of a plurality of power generation establishments and a plurality of power reception establishments. The present invention relates to an energy management apparatus and method, an energy management system, and an operation management method for an energy management system that can perform power interchange within a business in cooperation with a system that manages a schedule of a process that consumes electric power at an office.
 近年、エネルギーコスト低減およびCO排出削減を目的として、再生可能エネルギー、コージェネレーション、蓄電池等の分散型エネルギーを組み合わせ、地域内で電力を相互融通するニーズが増大している。 In recent years, for the purpose of reducing energy costs and CO 2 emissions, there has been an increasing need for mutual interchange of electric power within a region by combining distributed energy such as renewable energy, cogeneration, and storage batteries.
 具体的には、例えば、複数の事業所を所有する事業体では、自家発電設備を所有している事業所(発電事業所)で発電余力があり、外部電力を購入している事業所(受電事業所)で電力が不足する場合、発電事業所から受電事業所に電力を融通する。この際、電力系統を経由して電力融通する場合に、事業体は託送料金を支払う必要があるが、託送料金を含めた発電単価が、外部電力の単価より安い場合は事業体にとってコストメリットがある。この点に関し、国内では、2014年に電力システム改革の一環で電力自己託送制度が開始され、同一事業体内の電力融通の場合、低い託送料金が適用されることになった。そのため、今後、複数事業所を所有する事業体、特に複数の製造工場を所有する企業で普及すると予想される。 Specifically, for example, in a business entity that owns multiple business establishments, a business establishment that has private power generation facilities (power production establishment) that has power generation surplus and has purchased external power (power receiving) When power is insufficient at the business establishment), power is exchanged from the power generation establishment to the power reception establishment. In this case, the entity needs to pay a consignment fee when it makes power interchange via the power system, but there is a cost merit for the entity if the unit price of power generation including the consignment fee is lower than the unit price of external power. is there. In this regard, in Japan, the power self-consignment system was started in 2014 as part of the power system reform, and in the case of power interchange within the same business, a low consignment fee was applied. For this reason, it is expected that it will be widely used in business entities that have multiple business establishments, especially companies that have multiple manufacturing factories.
 然るに、電力系統を経由した自己託送を行う場合、例えば前日に計画値を提出し、当日は計画値を守るように電力を供給する計画値同時同量の義務があり、差異(インバランス)が生じた場合にはインバランス料金を支払う必要がある。そのため、計画を作成するときには、受電事業所の電力需要を高精度で予測することが重要である。 However, when carrying out self-consignment via the power system, for example, the planned value is submitted the day before, and on the day there is an obligation to simultaneously supply the planned value to keep the planned value, and there is a difference (imbalance). If it happens, you need to pay an imbalance fee. Therefore, when creating a plan, it is important to predict the power demand of the power receiving establishment with high accuracy.
 従来の電力融通に関する技術として、特許文献1では、実績データに基づき受電事業所(需要家)の電力量の予測を行い、発電事業所の発電機の燃料消費特性、送電損失率、託送料金を考慮して自己託送電力量を決定する方法を提案している。 As a technology related to conventional power interchange, Patent Document 1 predicts the amount of power of a power receiving establishment (customer) based on the actual data, and calculates the fuel consumption characteristics, transmission loss rate, and consignment fee of the generator of the power generation establishment. A method for determining the amount of self-consigned power transmission in consideration of this is proposed.
特開2005-261056号公報Japanese Patent Laying-Open No. 2005-261056
 しかし、受電事業所が製造工場の場合、多数の生産工程のなかにはスケジュールの未確定なものが複数存在するため、電力需要予測の誤差は大きくなり、自己託送計画は不確実なものとなり、結果的にインバランスが発生する可能性がある。また、受電事業所では外部からの購入電力が契約電力を超過するリスクも生じるという課題がある。 However, when the power receiving establishment is a manufacturing plant, there are multiple uncertain schedules among many production processes, so the error in power demand prediction becomes large, and the self-consignment plan becomes uncertain. May cause imbalance. In addition, there is a problem that the power receiving establishment also has a risk that the purchased power from the outside exceeds the contracted power.
 本発明は、係る問題に鑑みてなされたものであって、その目的とするところは、製造工場を含む複数の受電事業所と複数の発電事業所から構成される事業体において、製造工場の複数の生産スケジュールの不確実性を考慮することにより自己託送計画を立案し、さらに生産スケジュールの調整により、電力需要を変更して計画値同時同量を守るエネルギー管理装置および方法、エネルギー管理システム並びにエネルギー管理システムの運転計画方法を提供することにある。 The present invention has been made in view of such problems, and the object of the present invention is to provide a plurality of manufacturing factories in a business entity including a plurality of power receiving establishments including a manufacturing factory and a plurality of power generation establishments. Energy management device and method, energy management system and energy to create a self-consignment plan by taking into account the uncertainties of the production schedule, and to adjust the production schedule to change the power demand to keep the same amount of the planned value It is to provide a management system operation planning method.
 以上のことから本発明においては、「電力系統に接続された発電事業所と受電事業所を備えた事業体におけるエネルギー管理装置であって、
 前記発電事業所と前記受電事業所にはEMS(エネルギー管理装置:Energy Management System)が、前記事業体にはAEMS(地域エネルギー管理装置:Area Energy Management System)が設置され、
 前記受電事業所のEMSは、予定日における自己の生産ラインごとの電力推移を予測し、予定日における自己の生産ラインの運転スケジュールを確定スケジュール、未確定スケジュール、調整可能スケジュールに分類し、
 前記AEMSは、前記受電事業所のEMSから報告された、予定日における分類された運転スケジュールと前記電力推移から予定日における確定需要と、前記未確定スケジュールを考慮した最大需要を定め、前記最大需要と前記受電事業所全体の契約電力の差分として求めた最小自己託送量と前記確定需要の範囲内で前記受電事業所への自己託送計画出力を定め、
 前記発電事業所のEMSは、前記AEMSが定めた自己託送計画出力に従い発電することを特徴とするエネルギー管理装置。」としたものである。
As described above, in the present invention, “an energy management apparatus in a business entity having a power generation facility and a power reception facility connected to a power system,
An EMS (Energy Management System) is installed in the power generation facility and the power receiving facility, and an AEMS (Area Energy Management System) is installed in the entity.
The EMS of the power receiving establishment predicts the power transition for each production line on the scheduled date, classifies the operation schedule of the production line on the scheduled date into a confirmed schedule, an unconfirmed schedule, and an adjustable schedule,
The AEMS determines the maximum demand in consideration of the classified operation schedule on the scheduled date, the determined demand on the scheduled date from the power transition, and the unconfirmed schedule reported from the EMS of the power receiving establishment, and the maximum demand And the self-consignment plan output to the power receiving establishment within the range of the minimum self-consigned amount and the fixed demand obtained as the difference between the contracted power of the whole power receiving establishment,
The energy management apparatus according to claim 1, wherein the EMS of the power generation plant generates power according to a self-consignment plan output determined by the AEMS. ".
 また本発明においては「電力系統に接続された発電事業所と受電事業所を備えた事業体におけるエネルギー管理方法であって、
 前記受電事業所について、予定日における自己の生産ラインごとの電力推移を予測し、予定日における自己の生産ラインの運転スケジュールを確定スケジュール、未確定スケジュール、調整可能スケジュールに分類し、
 予定日における分類された運転スケジュールと前記電力推移から予定日における確定需要と、前記未確定スケジュールを考慮した最大需要を定め、前記最大需要と前記受電事業所全体の契約電力の差分として求めた最小自己託送量と前記確定需要の範囲内で前記受電事業所への自己託送計画出力を定め、
 前記発電事業所は、前記自己託送計画出力に従い発電することを特徴とするエネルギー管理方法。」としたものである。
Further, in the present invention, “an energy management method in an entity having a power generation facility and a power reception facility connected to an electric power system,
For the power receiving establishment, predict the power transition for each production line on the scheduled date, classify the operation schedule of the production line on the scheduled date into a confirmed schedule, an unconfirmed schedule, an adjustable schedule,
Determined the maximum demand in consideration of the undecided schedule and the determined demand on the scheduled date from the classified operation schedule and the power transition on the scheduled date, and the minimum obtained as the difference between the maximum demand and the contracted power of the entire power receiving establishment Set the self-consignment plan output to the power receiving establishment within the range of the self-consignment amount and the fixed demand,
The energy management method, wherein the power plant generates power according to the self-consignment plan output. ".
 また本発明においては「電力系統に接続された発電事業所と受電事業所を備えた事業体におけるエネルギー管理システムであって、
 予定日における前記受電事業所全体のエネルギー需要予測において需要変動要因を定める需要変動要因決定手段と、前記需要変動要因に基づき予定日における需要変動量を評価して、前記受電事業所全体のエネルギー生産・購入・取引計画を作成する作成手段、前記作成手段により作成したエネルギー生産・購入・取引計画についての複数のプランを提示する提示手段を備えることを特徴とするエネルギー管理システム。」としたものである。
Further, in the present invention, “an energy management system in an entity having a power generation facility and a power reception facility connected to an electric power system,
Demand fluctuation factor determining means for determining a demand fluctuation factor in the energy demand forecast of the entire power receiving establishment on the scheduled date, and evaluating the demand fluctuation amount on the scheduled date based on the demand fluctuation factor, An energy management system comprising: creation means for creating a purchase / transaction plan; and presentation means for presenting a plurality of plans for the energy production / purchase / transaction plan created by the creation means. ".
 また本発明においては「電力系統に接続された発電事業所と受電事業所を備えた事業体におけるエネルギー管理の運転計画方法であって、
 予定日における前記受電事業所全体のエネルギー需要予測において、エネルギー需要に起因するスケジュールを確定スケジュール、未確定スケジュール、調整可能スケジュールに分類し、未確定スケジュールに基づき需要の最大誤差を評価し、エネルギー生産・購入・取引計画を作成する場合、計画値に合うように調整可能スケジュールを変更することを特徴とするエネルギー管理システムの運転計画方法。」としたものである。
Further, in the present invention, “an energy management operation planning method in an entity having a power generation facility and a power reception facility connected to a power system,
In the energy demand forecast for the entire power receiving facility on the scheduled date, the schedule caused by energy demand is classified into a fixed schedule, an undefined schedule, and an adjustable schedule, and the maximum error in demand is evaluated based on the undefined schedule to produce energy production An operation plan method for an energy management system characterized in that, when a purchase / transaction plan is created, the adjustable schedule is changed to match the plan value. ".
 本発明によれば、計画値同時同量を守りながら自己託送量を最大化することにより、事業体全体のエネルギーコストを低減できる。 According to the present invention, the energy cost of the entire business entity can be reduced by maximizing the self-consignment amount while keeping the same amount of plan values.
本発明の実施例に係る事業体の構成例を示す図。The figure which shows the structural example of the business entity which concerns on the Example of this invention. 本発明の実施例に係る事業体内のシステム構成の一例を示す図。The figure which shows an example of the system configuration | structure in the business body which concerns on the Example of this invention. 本発明の実施例に係る生産スケジュール管理機能の機能構成の一例を示した図。The figure which showed an example of the function structure of the production schedule management function based on the Example of this invention. 本発明の実施例に係る自己託送の計画生成フローの一例を示した図。The figure which showed an example of the plan production | generation flow of the self-delivery based on the Example of this invention. 本発明の実施例に係る受電事業所内の生産ラインのスケジュールと電力需要の一例を示した図。The figure which showed an example of the schedule of a production line in the power receiving establishment which concerns on the Example of this invention, and electric power demand. 本発明の実施例に係るAEMSで作成した自己託送計画の一例を示した図。The figure which showed an example of the self-delivery plan created by AEMS which concerns on the Example of this invention. 本発明の実施例に係るAEMSで作成した当日の自己託送計画の一例を示した図。The figure which showed an example of the self-delivery plan of the day created with AEMS which concerns on the Example of this invention.
 以下、本発明の実施形態について、図面を参照して説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 図1は、本発明の実施例に係る事業体の構成の一例を示している。事業体3は、電力系統1に接続された複数の発電事業所4(4aから4n)と複数の受電事業所5(5Aから5M)により構成されている。 FIG. 1 shows an example of the configuration of a business entity according to an embodiment of the present invention. The business entity 3 includes a plurality of power generation establishments 4 (4a to 4n) and a plurality of power reception establishments 5 (5A to 5M) connected to the power system 1.
 ここで、発電事業所4は、発電設備9、負荷10、エネルギーマネジメントシステム(以下EMSと称する)6から構成されており、発電事業所の負荷10および事業体3内の他の受電事業所5に電力を供給することができる。また電力が不足する場合は、電力会社などの外部電力を購入する。 Here, the power generation establishment 4 includes a power generation facility 9, a load 10, and an energy management system (hereinafter referred to as EMS) 6, and the load 10 of the power generation establishment and other power receiving establishments 5 in the entity 3. Can be powered. If there is a shortage of power, purchase external power from a power company or the like.
 他方、受電事業所5には、発電設備9が設置されておらず、負荷10とEMS22から構成されており、受電事業所の負荷10に対して、他の発電事業所5および電力会社2等の外部電力から電力が供給される。なお、受電事業所5が製造工場の場合に、受電事業所5内の生産工程を管理する製造実行システム(以下MESという)8を備えている。MES8について後述する。 On the other hand, the power receiving facility 5 is not provided with the power generation equipment 9, and is composed of the load 10 and the EMS 22, and the other power generation facility 5 and the power company 2 and the like with respect to the load 10 of the power receiving facility. Power is supplied from external power. When the power receiving establishment 5 is a manufacturing factory, a manufacturing execution system (hereinafter referred to as MES) 8 that manages the production process in the power receiving establishment 5 is provided. The MES 8 will be described later.
 また事業体3には、地域エネルギーマネジメントシステム(以下AEMSという)7が設置され、事業体3内の発電事業所4と受電事業所5の間の自己託送の管理を実施する。AEMS7については、発電事業所4の中に設置されたEMS6と、受電事業所5の中に設置されたEMS22との間で、通信線を用いた信号伝送が行われる。 In addition, the business entity 3 is provided with a regional energy management system (hereinafter referred to as AEMS) 7 to manage self-consignment between the power generation site 4 and the power receiving site 5 in the business unit 3. As for the AEMS 7, signal transmission using a communication line is performed between the EMS 6 installed in the power generation establishment 4 and the EMS 22 installed in the power receiving establishment 5.
 図2は、本発明の実施例に係る事業体3内のシステム構成の一例を示している。なお、事業体3内には、複数の発電事業所4(4aから4n)と複数の受電事業所5(5Aから5M)を備えているが、これらは基本的に同じ構成とされているので、以下においては発電事業所4aと受電事業所5Aを代表事例として具体的な構成について説明する。 FIG. 2 shows an example of a system configuration in the business entity 3 according to the embodiment of the present invention. The business entity 3 has a plurality of power generation establishments 4 (4a to 4n) and a plurality of power reception establishments 5 (5A to 5M), but these are basically the same in configuration. In the following, a specific configuration will be described using the power generation establishment 4a and the power reception establishment 5A as representative examples.
 発電事業所4aにはEMS6aが設置され、AEMS7からの自己託送計画信号100に基づいて発電設備9の運転を行う。 EMS 6a is installed in the power generation site 4a, and the power generation facility 9 is operated based on the self-consignment plan signal 100 from the AEMS 7.
 他方、受電事業所5Aについて、本実施例では、受電事業所5Aが製造工場である場合を示している。受電事業所5Aが製造工場の場合に、受電事業所5A内のエネルギー管理はEMS22Aが行うが、それ以外に生産工程を管理する製造実行システム(以下MESという)8A、生産工程のスケジュールを管理する生産スケジュール管理機能11A、生産・自己託送計画の候補を表示する生産・自己託送計画候補表示機能12Aが設置されている。 On the other hand, regarding the power receiving establishment 5A, in this embodiment, the case where the power receiving establishment 5A is a manufacturing factory is shown. When the power receiving establishment 5A is a manufacturing factory, the energy management in the power receiving establishment 5A is performed by the EMS 22A, but in addition to that, a manufacturing execution system (hereinafter referred to as MES) 8A for managing the production process, and the production process schedule are managed. A production schedule management function 11A and a production / self-consignment plan candidate display function 12A for displaying production / self-consignment plan candidates are provided.
 AEMS7は、事業体3全体の電力需要を評価する需要予測機能13、各受電事業所5の生産スケジュールを調整する生産スケジュール調整機能14、事業体全体の自己託送計画を生成する自己託送計画機能15、自己託送の結果を出力する結果出力機能16から構成されている。 The AEMS 7 includes a demand prediction function 13 that evaluates the power demand of the entire business entity 3, a production schedule adjustment function 14 that adjusts the production schedule of each power receiving establishment 5, and a self-consignment plan function 15 that generates a self-consignment plan for the entire business entity 3. The result output function 16 outputs the result of the self-consignment.
 以下に、自己託送の計画生成フローの一例を示した図4を用いて、自己託送の計画生成手順を説明する。自己託送の計画生成手順は、複数の受電事業所5(5Aから5M)と複数の発電事業所4(4aから4n)とAEMS7の間で実行され、受電事業所5(5Aから5M)と発電事業所4(4aから4n)側が提示する電力需要予測情報に基づいて、AEMS7側で自己託送計画を作成し、受電事業所5(5Aから5M)で自己託送計画受け入れの可否を判断していくという流れのものである。 The self-consignment plan generation procedure will be described below with reference to FIG. 4 showing an example of the self-consignment plan generation flow. The self-consignment plan generation procedure is executed between the plurality of power receiving establishments 5 (5A to 5M), the plurality of power generation establishments 4 (4a to 4n), and the AEMS 7, and the power receiving establishment 5 (5A to 5M) and the power generation Based on the power demand forecast information presented by the establishment 4 (4a to 4n), the AEMS 7 creates a self-consignment plan, and the receiving establishment 5 (5A to 5M) determines whether or not the self-consignment plan is acceptable. That is the flow.
 最初に受電事業所5(5Aから5M)側において、処理ステップS1から処理ステップS4を実行し、AEMS7側に提示する電力需要予測情報を定める。 First, processing step S1 to processing step S4 are executed on the power receiving establishment 5 (5A to 5M) side to determine power demand prediction information to be presented to the AEMS 7 side.
 具体的には、まず図4の処理ステップS1において、各受電事業所5のMES8で、従来実績または計算により生産ライン毎の電力消費を予測する。処理ステップS2では、各受電事業所5において生産スケジュール管理機能11により、生産ライン毎の電力消費を、MES8で入力された情報に基づき、図5に示すように、確定スケジュール、未確定スケジュール、調整可能スケジュールに分類する。 Specifically, first, in the processing step S1 of FIG. 4, the MES 8 of each power receiving establishment 5 predicts the power consumption for each production line based on the past results or calculation. In processing step S2, the power consumption for each production line is determined by the production schedule management function 11 in each power receiving establishment 5 based on the information input in the MES 8, as shown in FIG. Classify into possible schedules.
 ここで図5は、受電事業所5Aが有する生産ライン5AL1、5AL2、・・・5ALPに関して、明日(予定日)の生産ラインのスケジュール5AL1S、5AL2S、・・・5ALPSと、その電力需要5AL1P、5AL2P、・・・5ALPPの時間変化を模式的に示している。 Here, FIG. 5 shows production line schedules 5AL1S, 5AL2S,... 5ALPS of tomorrow (scheduled date) and their electric power demands 5AL1P, 5AL2P with respect to production lines 5AL1, 5AL2,. ,..., 5ALPP is schematically shown.
 このうち、受電事業所5Aが有する生産ライン5AL1の生産ラインスケジュール5AL1Sについて、これは明日(予定日)の操業予定時刻が8時から20時であることが確定し、各種の材料、機材、人員、搬出手順の予定などが準備完了しており、明日(予定日)は予定通りに稼働すべき生産ラインである。この場合の電力需要は5AL1Pのようであり、10時から15時の間でピークとなる。この場合に、生産ラインスケジュール5AL1Sは、確定スケジュールと定義される。 Among these, regarding the production line schedule 5AL1S of the production line 5AL1 of the power receiving establishment 5A, it is determined that the scheduled operation time tomorrow (scheduled date) is from 8:00 to 20:00, and various materials, equipment, personnel The unloading schedule is ready, and tomorrow (scheduled date) will be a production line that should operate as planned. The power demand in this case seems to be 5AL1P and peaks between 10:00 and 15:00. In this case, the production line schedule 5AL1S is defined as a fixed schedule.
 受電事業所5Aが有する生産ライン5AL2の生産ラインスケジュール5AL2Sについて、これは当初の明日(予定日)の操業予定時刻が実線で示すように10時から18時であるが、予定開始時刻Tsについて、10時よりも早まる可能性があり、明日(予定日)にならないと予定開始時刻Tsを特定できない状態である。今日現在の計画段階において、例えば8時から10時までの時間幅dTuは未確定時間幅であり、この場合に、生産ラインスケジュール5AL2Sは未確定スケジュールと定義される。未確定スケジュールの場合、明日(予定日)の電力需要5AL2Pは、操業が前倒しされる可能性があることに応じて、点線で示すように電力需要変動パターンの開始および終了時刻が変動することになる。 Regarding the production line schedule 5AL2S of the production line 5AL2 possessed by the power receiving establishment 5A, this is from 10:00 to 18:00 as shown by the solid line in the initial operation tomorrow (scheduled date). There is a possibility that it will be earlier than 10:00, and the scheduled start time Ts cannot be specified unless it is tomorrow (scheduled date). In the current planning stage, for example, a time width dTu from 8 o'clock to 10 o'clock is an indeterminate time interval, and in this case, the production line schedule 5AL2S is defined as an indeterminate schedule. In the case of the unconfirmed schedule, the power demand 5AL2P of tomorrow (scheduled date) will change the start and end times of the power demand fluctuation pattern as shown by the dotted line in accordance with the possibility that the operation may be advanced. Become.
 受電事業所5Aが有する生産ライン5ALPの生産ラインスケジュール5ALPSについて、これは明日(予定日)の操業予定が9時から18時であるが、例えば明日(予定日)中に終了すればよいので操業予定を11時から20時に移行して運用することが可能な状態にある。後者の時間帯を選択した場合に、予定開始時刻Tsを調整可能時間幅dTcだけ移動させて運用することになる。この場合に、生産ラインスケジュール5ALPSは調整可能スケジュールと定義される。 As for the production line schedule 5ALPS of the production line 5ALP of the power receiving establishment 5A, the operation schedule for tomorrow (scheduled date) is from 9:00 to 18:00, but for example, it may be completed during tomorrow (scheduled date). The schedule can be shifted from 11:00 to 20:00. When the latter time zone is selected, the scheduled start time Ts is moved by an adjustable time width dTc for operation. In this case, the production line schedule 5ALPS is defined as an adjustable schedule.
 このように処理ステップS2では、生産スケジュール管理機能11により、生産ライン毎の電力消費を、MES8で入力された情報に基づき、確定スケジュール、未確定スケジュール、調整可能スケジュールのいずれかに定義、分類する。 As described above, in the processing step S2, the production schedule management function 11 defines and classifies the power consumption for each production line as one of a confirmed schedule, an unconfirmed schedule, and an adjustable schedule based on the information input in the MES 8. .
 さらに処理ステップS3では、生産スケジュール管理機能11は、未確定スケジュールについて、未確定時間幅dTuを予測する。例えば未確定スケジュールとされた生産ラインスケジュール5AL2Sについて、先の説明では10時の予定を8時に前倒しすることについて説明したが、8時以外の時刻を予定開始時刻Tsとして想定する。ここで、生産スケジュール管理機能11は、図3に示すようにオペレータ入力機能17、または機械学習機能18を備えている。オペレータ入力機能17は、製造工場のサプライチェーン情報および過去の未確定スケジュールに関するデータベース19を参照して、オペレータが未確定時間幅dTuを見積もり入力した結果をEMS22に出力する。または、機械学習機能18は、データベース19を参照して機械学習により未確定時間幅dTuを計算し、EMS22に入力する。 Further, in the processing step S3, the production schedule management function 11 predicts the indeterminate time width dTu for the indeterminate schedule. For example, for the production line schedule 5AL2S that is an unconfirmed schedule, the previous description has been given of bringing the 10 o'clock schedule forward 8 o'clock, but a time other than 8 o'clock is assumed as the scheduled start time Ts. Here, the production schedule management function 11 includes an operator input function 17 or a machine learning function 18 as shown in FIG. The operator input function 17 refers to the database 19 regarding the supply chain information of the manufacturing factory and the past uncertain schedule, and outputs the result of the operator estimating and inputting the uncertain time width dTu to the EMS 22. Alternatively, the machine learning function 18 refers to the database 19 to calculate the undetermined time width dTu by machine learning and inputs it to the EMS 22.
 図4の処理ステップS4において、各受電事業所5におけるEMS22は、未確定時間幅dTuをパラメータとして各受電事業所における誤差を含んだ電力需要予測を行う。このことを、図5の受電事業所5Aの例で示すと、生産ラインのスケジュール5AL1S、5AL2S、・・・5ALPSごとに定まる電力需要5AL1P、5AL2P、・・・5ALPPについて、各時刻の合計の電力需要を求めたものである。この場合に、時刻毎に確定している電力と未確定の電力があるので、確定電力の合計と未確定電力の合計に分けて把握される。かつ未確定時間幅dTuをパラメータとしているので、複数のパターンの電力需要予測を行うことになる。なお、未確定電力の合計に相当する部分が、受電事業所における誤差ということになる。 4, in the processing step S4 of FIG. 4, the EMS 22 in each power receiving establishment 5 performs power demand prediction including an error in each power receiving establishment with the undefined time width dTu as a parameter. When this is shown in the example of the power receiving establishment 5A in FIG. 5, the electric power demand 5AL1P, 5AL2P,... 5ALPP determined for each of the production line schedules 5AL1S, 5AL2S,. It is a demand. In this case, since there are power determined and unconfirmed power for each time, it is grasped by dividing the sum of the determined power and the total of the unconfirmed power. In addition, since the indeterminate time width dTu is used as a parameter, power demand prediction is performed in a plurality of patterns. Note that the portion corresponding to the total unconfirmed power is the error at the power receiving establishment.
 図4の処理ステップS5において、AEMS7では、各受電事業所5(5Aから5M)が報告してきた当該受電事業所5の電力需要予測情報に基づき、受電事業所全体の電力需要を計算する。 4, in the processing step S5 of FIG. 4, the AEMS 7 calculates the power demand of the entire power receiving establishment based on the power demand forecast information of the power receiving establishment 5 reported by each power receiving establishment 5 (5A to 5M).
 図6は、AEMS7で予定日の前日に作成した自己託送計画の一例を示している。図6を用いて本発明の考え方を説明しておく。自己託送計画は明日(予定日)の24時間における時刻ごとの電力(電力の推移)を示しているが、ここに示された電力の特性の内、P1は各受電事業所5(5Aから5M)が報告してきた電力需要予測情報に基づき計算した、受電事業所全体の電力需要の中の確定需要部分である。確定需要部分P1には、全受電事業所(5Aから5M)において、確定スケジュール、未確定スケジュールのうちで確定しているスケジュールのときの電力、調整可能スケジュールのうちで当初操業を予定しているスケジュールのときの電力に基づき、確定需要を評価し、全受電事業所で合計して確定需要として計算したものである。なお、この段階では、まだ発電事業所の電力需要は含んでいないものとしている。図5でいうと、背景色を付した部分の時刻ごとの合計が確定需要P1に相当する。 FIG. 6 shows an example of a self-consignment plan created on the day before the scheduled date by AEMS7. The concept of the present invention will be described with reference to FIG. The self-consignment plan shows the power (transition of power) at each time in 24 hours tomorrow (scheduled date). Of the power characteristics shown here, P1 represents each power receiving establishment 5 (5A to 5M) ) Is a fixed demand portion of the power demand of the entire power receiving station calculated based on the power demand forecast information reported by The fixed demand portion P1 is scheduled to operate at all power receiving establishments (5A to 5M) in the fixed schedule and the fixed schedule among the undefined schedules and in the adjustable schedule. Based on the power at the time of the schedule, the final demand is evaluated, and the total demand is calculated as the final demand at all power receiving establishments. At this stage, it is assumed that the power demand of the power plant has not yet been included. In FIG. 5, the total for each time of the portion with the background color corresponds to the final demand P1.
 確定需要P1に対して未確定需要の時間ごとの変動分をさらに追加して求めたのが、図6の未確定スケジュールを考慮した最大需要P2である。未確定スケジュールを考慮した最大需要は、全受電事業所において未確定時間幅dTuをパラメータとして変化させた全てのケースを含む電力需要予測の結果である。 The maximum demand P2 in consideration of the unconfirmed schedule in FIG. 6 is obtained by further adding the amount of fluctuation of the unconfirmed demand for each time to the confirmed demand P1. The maximum demand in consideration of the unconfirmed schedule is a result of power demand prediction including all cases in which the unconfirmed time width dTu is changed as a parameter in all power receiving establishments.
 ところで、図1の事業体3は未確定スケジュールを考慮した最大需要P2を、発電事業所4(4aから4n)からの発電量と電力会社2等の外部電力により賄う必要があり、この場合に電力会社2等の外部電力は契約電力P3(受電事業所の契約電力の合計)により制限され、契約電力P3以上の電力を電力会社2から得ることができない。図6には、未確定スケジュールを考慮した最大需要P2(未確定需要最大値)と契約電力P3の差分である最小自己託送量P4を記載している。なお、発電は発電事業所の電力需要の消費分を含んでいるので、ここでは、受電事業所の需要をまかなう発電量を「自己託送量」として区別している。 By the way, the business entity 3 in FIG. 1 needs to cover the maximum demand P2 in consideration of the unconfirmed schedule by the amount of power generated from the power plant 4 (4a to 4n) and the external power from the power company 2, etc. The external power of the power company 2 and the like is limited by the contract power P3 (the total contract power of the power receiving establishment), and power that is equal to or greater than the contract power P3 cannot be obtained from the power company 2. FIG. 6 shows the minimum self-delivery amount P4 that is the difference between the maximum demand P2 (unconfirmed demand maximum value) and the contract power P3 in consideration of the unconfirmed schedule. Since power generation includes consumption of the power demand of the power generation establishment, here, the amount of power generation that covers the demand of the power receiving establishment is distinguished as “self-consigned amount”.
 図6に示す最小自己託送量P4は、受電事業所5が受電事業所の契約電力P3と同量の外部電力を受け入れることを前提とし、残りを自家発電で自己託送するという考えの時の最小の自己託送量を意味している。本発明では、時間帯ごとに確定需要P1と最小自己託送量P4の範囲内に入るように発電事業所4からの自己託送計画値を定めるように自己託送計画を立案する。このとき、処理ステップS7での発電事業所の発電機運転計画は、図6における受電事業所全体の電力需要に発電事業所全体の電力需要を含めて、発電コストを低減するように運転計画の最適化を実施する。最適化においては、買電量と自家発電量の割合を、発電コストなどを勘案して定める。 The minimum self-consigned amount P4 shown in FIG. 6 is the minimum when the power receiving establishment 5 accepts the same amount of external power as the contracted power P3 of the power receiving establishment, and the rest is self-consigned by private power generation. Means self-consignment volume. In the present invention, the self-consignment plan is formulated so that the self-consignment plan value from the power plant 4 is determined so as to fall within the range of the fixed demand P1 and the minimum self-consignment amount P4 for each time zone. At this time, the generator operation plan of the power plant in the processing step S7 includes the power demand of the whole power receiving plant in FIG. 6 so as to reduce the power generation cost. Perform optimization. In optimization, the ratio between the amount of electricity purchased and the amount of private power generation is determined in consideration of power generation costs.
 図4の処理ステップS14では、処理ステップS5で求めた受電事業所全体の電力需要に発電事業所4のEMS6で評価した発電事業所の電力需要予測結果の合計を加えて、事業体全体の電力需要を求める。 In processing step S14 of FIG. 4, the total power demand prediction result of the power plant evaluated by the EMS 6 of the power plant 4 is added to the power demand of the entire power receiving plant obtained in the processing step S5 to obtain the power of the entire business unit. Demand demand.
 図4の処理ステップS6では、AEMS7における生産スケジュール調整機能14を用いて、各受電事業所からの調整可能スケジュールの調整可能時間dTcに基づき、受電事業所全体の電力需要部分を修正する。なお調整可能スケジュールの調整可能時間dTcを変更した結果として、図6に示した各電力の関係が変更される。 In process step S6 of FIG. 4, the electric power demand part of the whole power receiving establishment is corrected based on the adjustable time dTc of the adjustable schedule from each power receiving establishment using the production schedule adjustment function 14 in AEMS7. As a result of changing the adjustable time dTc of the adjustable schedule, the relationship of each power shown in FIG. 6 is changed.
 図4の処理ステップS7では、AEMS7における自己託送計画機能15において、修正された受電事業所全体の電力需要と発電事業所全体の電力需要を合計した事業体全体の電力需要に対して、発電事業所全体の発電設備の複数の運転計画を行う。 In the processing step S7 of FIG. 4, in the self-consignment planning function 15 in the AEMS 7, the power generation business is calculated with respect to the power demand of the entire business body, which is the sum of the power demand of the whole power receiving business and the power demand of the power business. Multiple operation plans for power generation facilities throughout the plant.
 図4の処理ステップS8における発電設備の運転計画では、各発電事業所および受電事業所が外部から購入する電力が契約電力以下になる制約条件の下で複数の運転計画を作成する。制約条件を満たさない場合は、処理ステップS6に示す調整可能スケジュールの再調整を行う。 In the operation plan of the power generation facility in the processing step S8 of FIG. 4, a plurality of operation plans are created under the constraint that the power purchased from the outside by each power generation site and the power reception site is equal to or less than the contract power. If the constraint condition is not satisfied, the adjustable schedule shown in process step S6 is readjusted.
 図4の処理ステップS9では、AEMS7から複数の自己託送計画を、各受電事業所5のEMS22に出力する。 In process step S9 of FIG. 4, a plurality of self-consignment plans are output from AEMS 7 to EMS 22 of each power receiving establishment 5.
 図4の処理ステップS10では、AEMS7から受信した自己託送計画について、各受電事業所5のEMS22およびMES8は、オペレータに自己託送計画と生産スケジュール案を複数提示する。 4, regarding the self-consignment plan received from the AEMS 7, the EMS 22 and MES8 of each power receiving establishment 5 present a plurality of self-consignment plans and production schedule proposals to the operator.
 図4の処理ステップS11では、各受電事業所5のオペレータは、複数案から1案を選定する。条件を満たさない場合、AEMS7の処理ステップS6に戻り、再度、調整可能スケジュールの再調整を行い、受電事業所全体の電力需要を修正する。 In the processing step S11 of FIG. 4, the operator of each power receiving establishment 5 selects one plan from a plurality of plans. When the condition is not satisfied, the process returns to the processing step S6 of AEMS7, and the adjustable schedule is readjusted again to correct the power demand of the entire power receiving establishment.
 図4の処理ステップS12では、全受電事業所のオペレータが、自己託送計画と生産スケジュール案を承認した後、MES8は生産スケジュールを出力する。 In the processing step S12 of FIG. 4, after the operators of all the power receiving establishments approve the self-consignment plan and the production schedule plan, the MES 8 outputs the production schedule.
 さらに図4の処理ステップS13では、AEMS7は、全発電事業所に発電計画を出力する。 Furthermore, in process step S13 of FIG. 4, AEMS7 outputs a power generation plan to all the power generation establishments.
 図7にAEMS7で作成した当日の全受電事業所への自己託送計画および実績の一例を示す。当日の自己託送の運転計画は、図4に示す手順に基づき、例えば30分間隔で繰り返す。基本的には、発電事業所4から受電事業所5への自己託送量は、受電事業所の需要量以下であり、差分は外部電力の購入で賄われる。しかし、受電事業所5での生産計画の急な変更等により、需要が自己託送計画値を下回る場合がある。その場合、インバランスが生じるため、インバランス料金が高額なケースでは運転コストが増大することが懸念される。そこで、本実施例では、計画時間毎(例えば30分)に当日の需要と自己託送計画値を比較し、インバランスが発生する可能性がある場合、図5に示す調整可能スケジュールの調整可能時間幅dTcをパラメータとして、インバランスを回避するような運転計画を立案する。 Fig. 7 shows an example of the self-consignment plan and actual results for all power receiving establishments created on AEMS7 on the day. The operation plan for the self-consignment on that day is repeated at intervals of, for example, 30 minutes based on the procedure shown in FIG. Basically, the amount of self-consignment from the power generation site 4 to the power receiving site 5 is less than the demand amount of the power receiving site, and the difference is covered by the purchase of external power. However, the demand may fall below the self-consigned plan due to a sudden change in the production plan at the power receiving establishment 5. In that case, since imbalance occurs, there is a concern that the operation cost increases in the case where the imbalance fee is high. Therefore, in the present embodiment, the demand on the day and the self-consignment plan value are compared every planned time (for example, 30 minutes), and if there is a possibility of imbalance, the adjustable time of the adjustable schedule shown in FIG. Using the width dTc as a parameter, an operation plan that avoids imbalance is drawn up.
 なお、上記実施例の説明において、調整可能スケジュールに区分される代表的な調整可能な需要家設備は空調設備であるが、この場合であっても空調設備の全容量が調整可能スケジュールに区分されるということではなく、最低限居住者の快適性が確保されることを前提とし、そのうえで余剰となる空調設備の容量が調整可能スケジュールに区分されるという利用をされるのが望ましい。 In the description of the above embodiment, the representative adjustable consumer equipment classified into the adjustable schedule is the air conditioning equipment, but even in this case, the entire capacity of the air conditioning equipment is classified into the adjustable schedule. It is desirable that the capacity of surplus air-conditioning equipment be classified into an adjustable schedule on the premise that the comfort of residents is ensured at the minimum.
 以上により、本発明の手法によれば、製造工場を含む複数の受電事業所と複数の発電事業所から構成される事業体において、製造工場の複数の生産スケジュールの不確実性を考慮することにより自己託送計画を立案し、さらに生産スケジュールの調整により、電力需要を変更して計画値同時同量を守りながら自己託送量を最大化することにより、エネルギーコストを低減する運転計画装置および方法を提供することができる。 As described above, according to the method of the present invention, in an entity composed of a plurality of power receiving establishments including a manufacturing factory and a plurality of power generation establishments, by considering the uncertainty of the plurality of production schedules of the manufacturing factory Providing an operation planning device and method that reduces energy costs by formulating a self-consignment plan, and further adjusting the production schedule to maximize the self-consignment amount while changing the power demand and protecting the same amount of plan values. can do.
 以上説明したように本発明においては、予定日の前日の自己託送計画において、オペレータ、またはサプライチェーンの実績情報に基づいた機械学習機能、または生産ラインや労働者の作業を監視・管理する製造実行システム(MES:Manufacturing Execution System)で評価した生産スケジュールの変動情報に基づき、受電事業所の各生産スケジュールを、確定スケジュール、未確定スケジュール、調整可能スケジュールに分類し、未確定スケジュールに基づき電力需要の最大誤差を考慮して契約電力を超過しないように自己託送計画を作成する。当日の自己託送実行時、自己託送計画値と電力需要の実績を比較し、インバランスが発生しないように調整可能スケジュールを変更し、計画周期毎に生産スケジュールと自己託送計画の複数候補をオペレータに提示する地域エネルギー管理装置(AEMS:Area Energy Management System)を提供するものである。 As described above, in the present invention, in the self-consignment plan the day before the scheduled date, the machine learning function based on the performance information of the operator or the supply chain, or the manufacturing execution that monitors and manages the work of the production line and workers Based on the production schedule fluctuation information evaluated by the system (MES: Manufacturing Execution System), each production schedule of the receiving power plant is classified into a fixed schedule, an uncertain schedule, and an adjustable schedule, and the power demand based on the undefined schedule Create a self-consignment plan so as not to exceed the contract power in consideration of the maximum error. When executing self-consignment on the day, compare the self-consigned plan value with the actual power demand, change the adjustable schedule so that imbalance does not occur, and give the operator multiple candidates for the production schedule and self-consignment plan for each plan period It provides the regional energy management system (AEMS: Area Energy Management System) to be presented.
 本発明は、ビル、工場、大学等で構成される複数事業所から構成される事業体の地域エネルギーマネジメントに適用することができる。 The present invention can be applied to regional energy management of a business entity composed of a plurality of business establishments composed of buildings, factories, universities, and the like.
1:電力系統、2:電力会社、3:事業体、4:発電事業所、5:受電事業所、6:発電事業所のエネルギーマネジメントシステム(EMS)、7:地域エネルギーマネジメントシステム(AEMS)、8:製造実行システム(MES)、9:発電設備、10:負荷、11:生産スケジュール管理機能、12:生産・自己託送計画候補表示機能、13:需要予測機能、14:生産スケジュール調整機能、15:自己託送計画機能、16…結果出力機能、17:オペレータ入力機能、18:機械学習機能、19:データベース、22:受電事業所のエネルギーマネジメントシステム(EMS) 1: Power system 2: Power company 3: Business entity 4: Power plant 5: Power plant 6: Energy management system (EMS) of power plant 7: Regional energy management system (AEMS) 8: Manufacturing execution system (MES), 9: Power generation equipment, 10: Load, 11: Production schedule management function, 12: Production / self-consignment plan candidate display function, 13: Demand prediction function, 14: Production schedule adjustment function, 15 : Self-consignment planning function, 16 ... Result output function, 17: Operator input function, 18: Machine learning function, 19: Database, 22: Energy management system (EMS) of the power receiving establishment

Claims (16)

  1.  電力系統に接続された発電事業所と受電事業所を備えた事業体におけるエネルギー管理装置であって、
     前記発電事業所と前記受電事業所にはEMSが、前記事業体にはAEMSが設置され、
     前記受電事業所のEMSは、予定日における自己の生産ラインごとの電力推移を予測し、予定日における自己の生産ラインの運転スケジュールを確定スケジュール、未確定スケジュール、調整可能スケジュールに分類し、
     前記AEMSは、前記受電事業所のEMSから報告された、予定日における分類された運転スケジュールと前記電力推移から予定日における確定需要と、前記未確定スケジュールを考慮した最大需要を定め、前記最大需要と前記受電事業所の契約電力の差分として求めた最小自己託送量と前記確定需要の範囲内で前記受電事業所への自己託送計画出力を定め、
     前記発電事業所のEMSは、前記AEMSが定めた自己託送計画出力に従い発電することを特徴とするエネルギー管理装置。
    An energy management device in an entity having a power generation facility and a power reception facility connected to an electric power system,
    An EMS is installed at the power generation site and the power receiving site, and an AEMS is installed at the business unit.
    The EMS of the power receiving establishment predicts the power transition for each production line on the scheduled date, classifies the operation schedule of the production line on the scheduled date into a confirmed schedule, an unconfirmed schedule, and an adjustable schedule,
    The AEMS determines the maximum demand in consideration of the classified operation schedule on the scheduled date, the determined demand on the scheduled date from the power transition, and the unconfirmed schedule reported from the EMS of the power receiving establishment, and the maximum demand And the self-consignment plan output to the power receiving establishment within the range of the minimum self-consigned amount and the fixed demand obtained as the difference between the contracted power of the power receiving establishment,
    The energy management apparatus according to claim 1, wherein the EMS of the power generation plant generates power according to a self-consignment plan output determined by the AEMS.
  2.  請求項1に記載のエネルギー管理装置であって、
     前記AEMSは、前記最小自己託送量と前記確定需要の範囲内で前記受電事業所への自己託送量を定めることができない場合に、前記調整可能スケジュールに分類された生産ラインの運転時期を調整することを特徴とするエネルギー管理装置。
    The energy management device according to claim 1, wherein
    The AEMS adjusts the operation time of the production line classified in the adjustable schedule when the self-consigned amount to the power receiving establishment cannot be determined within the range of the minimum self-consigned amount and the fixed demand. An energy management device characterized by that.
  3.  請求項1または請求項2に記載のエネルギー管理装置であって、
     前記AEMSは、前記未確定スケジュールを用いて複数の自己託送計画出力を作成し、
     前記受電事業所のEMSは、前記AEMSから提示された複数の自己託送計画出力のうち、承認した自己託送計画出力に従い受電事業所の生産スケジュールとし、
     前記AEMSは、前記受電事業所のEMSが承認した自己託送計画出力を前記AEMSが定めた自己託送計画出力として前記発電事業所のEMSに与えることを特徴とするエネルギー管理装置。
    The energy management device according to claim 1 or claim 2,
    The AEMS creates a plurality of self-consignment plan outputs using the unconfirmed schedule,
    The EMS of the power receiving establishment is set as a production schedule of the power receiving establishment according to the approved self consignment plan output among the plurality of self consignment plan outputs presented from the AEMS,
    The AEMS provides the EMS of the power plant with the self-consignment plan output approved by the EMS of the power receiving establishment as the self-consignment plan output determined by the AEMS.
  4.  請求項1から請求項3のいずれか1項に記載のエネルギー管理装置であって、
     前記AEMSは、前記予定日に計画時間毎(例えば30分)に当日の需要と自己託送計画出力を比較し、インバランスが発生する可能性がある場合に、前記調整可能スケジュールの調整可能時間幅をパラメータとして、インバランスを回避するような運転計画を立案することを特徴とするエネルギー管理装置。
    The energy management device according to any one of claims 1 to 3,
    The AEMS compares the demand on the day and the self-consignment plan output at each scheduled time (for example, 30 minutes) on the scheduled date, and if there is a possibility of imbalance, the adjustable time width of the adjustable schedule An energy management apparatus characterized by formulating an operation plan that avoids imbalances using as a parameter.
  5.  電力系統に接続された発電事業所と受電事業所を備えた事業体におけるエネルギー管理方法であって、
     前記受電事業所について、予定日における自己の生産ラインごとの電力推移を予測し、予定日における自己の生産ラインの運転スケジュールを確定スケジュール、未確定スケジュール、調整可能スケジュールに分類し、
     予定日における分類された運転スケジュールと前記電力推移から予定日における確定需要と、前記未確定スケジュールを考慮した最大需要を定め、前記最大需要と前記受電事業所の契約電力の差分として求めた最小自己託送量と前記確定需要の範囲内で前記受電事業所への自己託送計画出力を定め、
     前記発電事業所は、前記自己託送計画出力に従い発電することを特徴とするエネルギー管理方法。
    An energy management method in an entity having a power generation facility and a power reception facility connected to an electric power system,
    For the power receiving establishment, predict the power transition for each production line on the scheduled date, classify the operation schedule of the production line on the scheduled date into a confirmed schedule, an unconfirmed schedule, an adjustable schedule,
    The minimum self determined as the difference between the maximum demand and the contracted power of the power receiving establishment by determining the determined demand on the scheduled date from the classified operation schedule on the scheduled date and the power transition, and the maximum demand in consideration of the unconfirmed schedule Set the self-consignment plan output to the power receiving establishment within the range of the consignment amount and the fixed demand,
    The energy management method, wherein the power plant generates power according to the self-consignment plan output.
  6.  請求項5に記載のエネルギー管理方法であって、
     前記最小自己託送量と前記確定需要の範囲内で前記受電事業所への自己託送量を定めることができない場合に、前記調整可能スケジュールに分類された生産ラインの運転時期を調整することを特徴とするエネルギー管理方法。
    The energy management method according to claim 5,
    When the self-consigned amount to the power receiving establishment cannot be determined within the range of the minimum self-consigned amount and the fixed demand, the operation time of the production line classified in the adjustable schedule is adjusted. To manage energy.
  7.  請求項5または請求項6に記載のエネルギー管理方法であって、
     前記未確定スケジュールを用いて複数の前記自己託送計画出力を作成し、
     前記複数の自己託送計画出力から選択した自己託送計画出力を前記受電事業所の生産スケジュールとし、
     選択した前記自己託送計画出力に従い前記発電事業所の発電電力を定めることを特徴とするエネルギー管理方法。
    The energy management method according to claim 5 or 6, wherein
    Creating a plurality of self-consignment plan outputs using the unconfirmed schedule;
    The self-consignment plan output selected from the plurality of self-consignment plan outputs is the production schedule of the power receiving establishment,
    An energy management method characterized in that the generated power of the power plant is determined according to the selected self-consignment plan output.
  8.  請求項5から請求項7のいずれか1項に記載のエネルギー管理方法であって、
     前記予定日に計画時間毎(例えば30分)に当日の需要と自己託送計画出力を比較し、インバランスが発生する可能性がある場合に、前記調整可能スケジュールの調整可能時間幅をパラメータとして、インバランスを回避するような運転計画を立案することを特徴とするエネルギー管理方法。
    The energy management method according to any one of claims 5 to 7,
    Compare the demand on the day and the self-consignment plan output for each planned time (for example, 30 minutes) on the scheduled date, and if there is a possibility of imbalance, the adjustable time width of the adjustable schedule as a parameter, An energy management method characterized by formulating an operation plan that avoids imbalance.
  9.  電力系統に接続された発電事業所と受電事業所を備えた事業体におけるエネルギー管理システムであって、
     予定日における前記事業体のエネルギー需要予測において需要変動要因を定める需要変動要因決定手段と、前記需要変動要因に基づき予定日における需要変動量を評価して、前記事業体のエネルギー生産・購入・取引計画を作成する作成手段、前記作成手段により作成したエネルギー生産・購入・取引計画についての複数のプランを提示する提示手段を備えることを特徴とするエネルギー管理システム。
    An energy management system in an entity having a power generation facility and a power reception facility connected to an electric power system,
    Demand fluctuation factor determining means for determining a demand fluctuation factor in the energy demand forecast of the entity on the scheduled date, and evaluating the demand fluctuation amount on the scheduled date based on the demand fluctuation factor, energy production / purchase / transaction of the entity An energy management system comprising: creation means for creating a plan; and presentation means for presenting a plurality of plans for the energy production / purchase / transaction plan created by the creation means.
  10.  請求項9に記載のエネルギー管理システムであって、
     前記事業体のエネルギー需要を予測するに際し、エネルギー需要に起因するスケジュールを確定スケジュール、未確定スケジュール、調整可能スケジュールに分類し、未確定スケジュールに基づき需要の最大誤差を評価することを特徴とするエネルギー管理システム。
    The energy management system according to claim 9,
    When predicting the energy demand of the business entity, the schedule resulting from the energy demand is classified into a fixed schedule, an indeterminate schedule, and an adjustable schedule, and the maximum error of the demand is evaluated based on the indeterminate schedule Management system.
  11.  請求項10に記載のエネルギー管理システムであって、
     前記エネルギー生産・購入・取引計画を作成する場合に、計画値に合うように前記調整可能スケジュールを変更することを特徴とする地域エネルギー管理システム。
    The energy management system according to claim 10,
    When creating the energy production / purchase / transaction plan, the adjustable energy schedule is changed to match the planned value.
  12.  請求項10または請求項11に記載の地域エネルギー管理システムであって、
     前記調整可能スケジュールとして、事前に調整可能な需要家設備およびスケジュールを登録することを特徴とする地域エネルギー管理システム。
    A regional energy management system according to claim 10 or claim 11,
    A local energy management system, wherein customer facilities and schedules that can be adjusted in advance are registered as the adjustable schedules.
  13.  請求項12に記載のエネルギー管理システムであって、
     事前に調整可能な需要家設備は空調設備であり、快適性の範囲内で調整することを特徴とするエネルギー管理システム。
    An energy management system according to claim 12,
    The energy management system is characterized in that the customer equipment that can be adjusted in advance is an air-conditioning system and is adjusted within the range of comfort.
  14.  電力系統に接続された発電事業所と受電事業所を備えた事業体におけるエネルギー管理システムの運転計画方法であって、
     予定日における前記事業体のエネルギー需要予測において、エネルギー需要に起因するスケジュールを確定スケジュール、未確定スケジュール、調整可能スケジュールに分類し、未確定スケジュールに基づき需要の最大誤差を評価し、エネルギー生産・購入・取引計画を作成する場合、計画値に合うように調整可能スケジュールを変更することを特徴とするエネルギー管理システムの運転計画方法。
    An operation plan method for an energy management system in an entity having a power generation facility and a power reception facility connected to an electric power system,
    In the energy demand forecast of the entity on the scheduled date, the schedule due to energy demand is classified into a fixed schedule, an undefined schedule, and an adjustable schedule, and the maximum error in demand is evaluated based on the undefined schedule, and energy production / purchase An operation plan method for an energy management system, characterized in that, when creating a transaction plan, the adjustable schedule is changed to match the plan value.
  15.  電力系統に接続された発電事業所と受電事業所を備えた事業体におけるエネルギー管理システムであって、
     前記受電事業所は、生産スケジュール管理機能からの情報を用いて予定日における自己の生産ラインごとの電力推移を予測し、予定日における自己の生産ラインの運転スケジュールを確定スケジュール、未確定スケジュール、調整可能スケジュールに分類し、
     前記事業体は、前記受電事業所から報告された、予定日における分類された運転スケジュールと前記電力推移から予定日における確定需要と、前記未確定スケジュールを考慮した最大需要を定め、前記最大需要と前記受電事業所の契約電力の差分として求めた最小自己託送量と前記確定需要の範囲内で前記受電事業所への自己託送計画出力を定め、
     前記発電事業所は、前記事業体が定めた自己託送計画出力に従い発電するとともに、
     前記生産スケジュール管理機能は、オペレータ入力機能または機械学習機能を備え、オペレータ入力機能は、製造工場のサプライチェーン情報および過去の未確定スケジュールに関するデータベースを参照して、オペレータが未確定時間幅を見積もり入力した結果を前記生産スケジュール管理機能からの情報とし、または、機械学習機能は、データベースを参照して機械学習により未確定時間幅を計算し、前記生産スケジュール管理機能からの情報とすることを特徴とするエネルギー管理システム。
    An energy management system in an entity having a power generation facility and a power reception facility connected to an electric power system,
    The power receiving establishment predicts the power transition for each production line on the scheduled date using information from the production schedule management function, and confirms the operation schedule of the production line on the scheduled date, the unconfirmed schedule, and the adjustment. Classify them into possible schedules,
    The business entity determines the maximum demand in consideration of the uncertain schedule, the determined demand on the scheduled date from the operation schedule classified on the scheduled date and the power transition reported from the power receiving establishment, and the maximum demand and Determine the self-consignment plan output to the power receiving establishment within the range of the minimum self-consigned amount and the fixed demand obtained as the difference in contract power of the power receiving establishment,
    The power generation facility generates power according to the self-consignment plan output determined by the entity,
    The production schedule management function includes an operator input function or a machine learning function. The operator input function refers to a database relating to supply chain information of a manufacturing factory and a past uncertain schedule, and an operator inputs an estimate of an uncertain time width. Or the machine learning function calculates an undetermined time width by machine learning with reference to a database and uses the result as the information from the production schedule management function. Energy management system.
  16.  電力系統に接続された発電事業所と受電事業所を備えた事業体におけるエネルギー管理システムの運転計画方法であって、
     前記受電事業所は、生産スケジュール管理機能からの情報を用いて予定日における自己の生産ラインごとの電力推移を予測し、予定日における自己の生産ラインの運転スケジュールを確定スケジュール、未確定スケジュール、調整可能スケジュールに分類し、
     前記事業体は、前記受電事業所から報告された、予定日における分類された運転スケジュールと前記電力推移から予定日における確定需要と、前記未確定スケジュールを考慮した最大需要を定め、前記最大需要と前記受電事業所の契約電力の差分として求めた最小自己託送量と前記確定需要の範囲内で前記受電事業所への自己託送計画出力を定め、
     前記発電事業所は、前記事業体が定めた自己託送計画出力に従い発電するとともに、
     前記生産スケジュール管理機能は、製造工場のサプライチェーン情報および過去の未確定スケジュールに関するデータを参照して、オペレータが見積もった未確定時間幅を与え、または、過去の未確定スケジュールに関するデータベースを参照して計算した未確定時間幅を与えることを特徴とするエネルギー管理システムの運転計画方法。
    An operation plan method for an energy management system in an entity having a power generation facility and a power reception facility connected to an electric power system,
    The power receiving establishment predicts the power transition for each production line on the scheduled date using information from the production schedule management function, and confirms the operation schedule of the production line on the scheduled date, the unconfirmed schedule, and the adjustment. Classify them into possible schedules,
    The business entity determines the maximum demand in consideration of the uncertain schedule, the determined demand on the scheduled date from the operation schedule classified on the scheduled date and the power transition reported from the power receiving establishment, and the maximum demand and Determine the self-consignment plan output to the power receiving establishment within the range of the minimum self-consigned amount and the fixed demand obtained as the difference in contract power of the power receiving establishment,
    The power generation facility generates power according to the self-consignment plan output determined by the entity,
    The production schedule management function refers to the supply chain information of the manufacturing plant and the data related to the past uncertain schedule, gives the uncertain time width estimated by the operator, or refers to the database related to the past uncertain schedule. An operation planning method for an energy management system, characterized by giving a calculated indefinite time span.
PCT/JP2017/021953 2017-06-14 2017-06-14 Energy management device and method, energy management system, and energy management system operation planning method WO2018229895A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019524622A JP6893980B2 (en) 2017-06-14 2017-06-14 Energy management equipment and methods, energy management systems and operation planning methods for energy management systems
PCT/JP2017/021953 WO2018229895A1 (en) 2017-06-14 2017-06-14 Energy management device and method, energy management system, and energy management system operation planning method
CN201780089900.XA CN110546842B (en) 2017-06-14 2017-06-14 Energy management device and method, energy management system, and operation planning method for energy management system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/021953 WO2018229895A1 (en) 2017-06-14 2017-06-14 Energy management device and method, energy management system, and energy management system operation planning method

Publications (1)

Publication Number Publication Date
WO2018229895A1 true WO2018229895A1 (en) 2018-12-20

Family

ID=64660587

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/021953 WO2018229895A1 (en) 2017-06-14 2017-06-14 Energy management device and method, energy management system, and energy management system operation planning method

Country Status (3)

Country Link
JP (1) JP6893980B2 (en)
CN (1) CN110546842B (en)
WO (1) WO2018229895A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020256056A1 (en) * 2019-06-19 2020-12-24 京セラ株式会社 Self-consignment system, and self-consignment method
JP2021087278A (en) * 2019-11-27 2021-06-03 京セラ株式会社 Self-consignment system and self-consignment method
CN113346555A (en) * 2021-05-25 2021-09-03 西安交通大学 Intraday rolling scheduling method considering electric quantity coordination

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112270458A (en) * 2020-09-15 2021-01-26 广东韶钢松山股份有限公司 Energy refined management and control method and device, computer equipment and storage medium

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005261056A (en) * 2004-03-10 2005-09-22 Toshiba Corp Generation power controller of self-consignment system
JP2005278335A (en) * 2004-03-25 2005-10-06 Toshiba Corp Support system for creating operation program of power consignment and support program for creating operation program of power consignment
JP2016130928A (en) * 2015-01-14 2016-07-21 株式会社日立製作所 Community management system, and method

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4220007B2 (en) * 1998-02-06 2009-02-04 東京電力株式会社 Production scheduling device
JP2002123578A (en) * 2000-08-10 2002-04-26 Osaka Gas Co Ltd Electric power retail system
JP3631967B2 (en) * 2001-03-14 2005-03-23 株式会社エネット Surplus power management system and control method thereof
JP2002345154A (en) * 2001-05-18 2002-11-29 Hitachi Ltd Power demand and supply method, and display device
JP4050021B2 (en) * 2001-07-21 2008-02-20 株式会社東芝 Power consignment control system and power transaction method
JP2005210833A (en) * 2004-01-22 2005-08-04 Hitachi Ltd Method for simultaneously and equally controlling consigned power
JP2005229657A (en) * 2004-02-10 2005-08-25 Fuji Electric Systems Co Ltd Method for determining consignment electric energy
JP2006081256A (en) * 2004-09-08 2006-03-23 Hitachi Ltd Electrical energy sorting system and method
CN106463959B (en) * 2014-05-19 2019-12-03 杰富意钢铁株式会社 Power supply and demand guiding device and power supply and demand guidance method
CN105633949B (en) * 2015-12-14 2018-07-24 云南电网有限责任公司电力科学研究院 A kind of real-time power generation dispatching of economical operation and control method
CN105761109A (en) * 2016-02-19 2016-07-13 刘隽琦 Smart management system for energy management and electricity transaction in virtual power plant and method for optimizing operation thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005261056A (en) * 2004-03-10 2005-09-22 Toshiba Corp Generation power controller of self-consignment system
JP2005278335A (en) * 2004-03-25 2005-10-06 Toshiba Corp Support system for creating operation program of power consignment and support program for creating operation program of power consignment
JP2016130928A (en) * 2015-01-14 2016-07-21 株式会社日立製作所 Community management system, and method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020256056A1 (en) * 2019-06-19 2020-12-24 京セラ株式会社 Self-consignment system, and self-consignment method
JP7492957B2 (en) 2019-06-19 2024-05-30 京セラ株式会社 Self-delivery system and self-delivery method
JP2021087278A (en) * 2019-11-27 2021-06-03 京セラ株式会社 Self-consignment system and self-consignment method
JP7229901B2 (en) 2019-11-27 2023-02-28 京セラ株式会社 Self-consignment system and self-consignment method
JP7538269B2 (en) 2019-11-27 2024-08-21 京セラ株式会社 Demand side equipment and power generation side equipment
CN113346555A (en) * 2021-05-25 2021-09-03 西安交通大学 Intraday rolling scheduling method considering electric quantity coordination

Also Published As

Publication number Publication date
JPWO2018229895A1 (en) 2019-12-19
JP6893980B2 (en) 2021-06-23
CN110546842B (en) 2023-01-03
CN110546842A (en) 2019-12-06

Similar Documents

Publication Publication Date Title
EP3413421B1 (en) Building energy optimization system with economic load demand response (eldr) optimization
Mohandes et al. A review of power system flexibility with high penetration of renewables
US11036249B2 (en) Building energy storage system with peak load contribution cost optimization
US11068821B2 (en) Building energy optimization system with capacity market program (CMP) participation
EP3358426B1 (en) Building energy cost optimization system with asset sizing
US11061424B2 (en) Building energy storage system with peak load contribution and stochastic cost optimization
Parisio et al. Stochastic model predictive control for economic/environmental operation management of microgrids: An experimental case study
US11238547B2 (en) Building energy cost optimization system with asset sizing
WO2018229895A1 (en) Energy management device and method, energy management system, and energy management system operation planning method
EP3547234A1 (en) Building energy optimization system with capacity market program (cmp) participation
Keller et al. Enabling energy-flexibility of manufacturing systems through new approaches within production planning and control
Sarikprueck et al. Bounds for optimal control of a regional plug-in electric vehicle charging station system
US20200193345A1 (en) Cost optimization of a central energy facility with load-following-block rate structure
CN101640417B (en) Load management method and device
Schultz et al. Method for an energy-oriented production control
Potter et al. Demand response advanced controls framework and assessment of enabling technology costs
Wang Microgrid generation planning considering renewable energy target
Aghamohamadi et al. A block-coordinate-descent robust approach to incentive-based integrated demand response in managing multienergy hubs with must-run processes
Parhizi et al. Investigating the necessity of distribution markets in accomodating high penetration microgrids
Tran et al. Distributed energy resource management system
Wang et al. A hybrid agent-based model predictive control scheme for smart community energy system with uncertain DGs and loads
Heimgaertner et al. A distributed control architecture for a loosely coupled virtual power plant
Ndrio et al. Pricing conditional value at risk-sensitive economic dispatch
Venegas-Zarama et al. A General Description of Virtual Power Plants as Smart Manager in Power Systems
Ilić et al. Dynamic reserves for managing wind power

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17913282

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019524622

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17913282

Country of ref document: EP

Kind code of ref document: A1