JP2005229657A - Method for determining consignment electric energy - Google Patents

Method for determining consignment electric energy Download PDF

Info

Publication number
JP2005229657A
JP2005229657A JP2004032876A JP2004032876A JP2005229657A JP 2005229657 A JP2005229657 A JP 2005229657A JP 2004032876 A JP2004032876 A JP 2004032876A JP 2004032876 A JP2004032876 A JP 2004032876A JP 2005229657 A JP2005229657 A JP 2005229657A
Authority
JP
Japan
Prior art keywords
amount
plant
power
load
consignment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004032876A
Other languages
Japanese (ja)
Inventor
Shinji Kitagawa
慎治 北川
Yoshikazu Fukuyama
良和 福山
Haruki Kou
東輝 項
Toru Kawamori
亨 川森
Iwao Akaida
巌 赤井田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Toyota Motor Corp
Original Assignee
Fuji Electric Systems Co Ltd
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Systems Co Ltd, Toyota Motor Corp filed Critical Fuji Electric Systems Co Ltd
Priority to JP2004032876A priority Critical patent/JP2005229657A/en
Publication of JP2005229657A publication Critical patent/JP2005229657A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/14Combined heat and power generation [CHP]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To determine a consignment electric energy pattern for maximizing the consignment electric energy under an optimal operating state of a plant satisfying a principle of same time same amount. <P>SOLUTION: The method for determining a consignment electric energy comprises an optimal operation means 20 for solving an optimization problem having the start/stop state and the fuel injection quantity of a constitutive apparatus as state variables for an objective function including minimization in the operation cost of schedule period and the amount of gas discharge; and a simulator 30 for calculating the amount of fuel used, the amount of gas discharge, and the like, on the basis of the start/stop state, or the like, of each apparatus and outputting the calculation results. The simulator 30 delivers a consignable electric energy to the optimal operation means 20 where one of a plurality of patterns given beforehand closest to the onsignable electric energy is determined as a scheduled value of consignment electric energy. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、コージェネレーションプラント等において、余剰電力を託送する場合に最適な託送電力量パターンを決定するための託送電力量決定方法に関するものである。   The present invention relates to a consignment power amount determination method for determining an optimum consignment power amount pattern when surplus power is consigned in a cogeneration plant or the like.

従来、託送電力量の決定方法としては、プラントの負荷電力量変動パターンを予め記録しておき、前日の負荷電力量変動パターンや過去の月別の負荷電力量変動パターンを基準にして当日の負荷電力量変動パターンを想定し、これに基づいて当日の託送電力量パターンを決定する方法(第1の従来技術)がある。   Conventionally, as a method of determining consignment power consumption, the plant load power fluctuation pattern is recorded in advance, and the load power of the current day is based on the previous day's load power fluctuation pattern or the past monthly load power fluctuation pattern. There is a method (first prior art) that assumes a quantity variation pattern and determines a consignment power amount pattern of the day based on this.

一方、電力の託送に当たっては、いわゆる同時同量の原則により、需要家の電力需要量の合計値と発電量の合計値とを、一定の単位時間(30分や1時間など)内では一致させる必要がある。
このため、発電所から需要家に電力託送を行う際に、電力需要の変動が大きい場合にも需給バランス誤差をできるだけ小さくするように発電機出力指令値を調整する託送電力の同時同量制御方法(第2の従来技術)が、下記の特許文献1に記載されている。
また、同じく同時同量の原則遵守を目的として、特定規模電気事業者の需給調整システムが、各需要家の合計の負荷状況と各発電機の合計の発電状況とを通信手段を介して受信し、これらのデータの実績値、計画値の双方を画面に表示して的確な発電量制御指令を生成するようにした電力需給方法(第3の従来技術)が、下記の特許文献2に記載されている。
On the other hand, in the consignment of power, the total value of power demand of consumers and the total value of power generation are matched within a certain unit time (30 minutes, 1 hour, etc.) according to the so-called principle of the same amount. There is a need.
For this reason, when consigning power from a power station to a consumer, even when there is a large fluctuation in power demand, a simultaneous power control method for consigned power that adjusts the generator output command value so as to minimize the supply-demand balance error. (Second prior art) is described in Patent Document 1 below.
Similarly, for the purpose of observing the principle of the same amount at the same time, the supply and demand adjustment system of a specific scale electric power company receives the total load status of each consumer and the total power generation status of each generator via communication means. An electric power supply and demand method (third prior art) in which both the actual value and the planned value of these data are displayed on the screen to generate an accurate power generation amount control command is described in Patent Document 2 below. ing.

特開2003−87971号公報(請求項1、[0012]〜[0018]、図2、図3等)JP 2003-87971 A (Claim 1, [0012] to [0018], FIG. 2, FIG. 3, etc.) 特開2002−345154号公報(請求項1〜請求項7、[0033]〜[0044]、図10〜図12等)JP-A-2002-345154 (Claims 1 to 7, [0033] to [0044], FIGS. 10 to 12, etc.)

前述した第1の従来技術では、基準パターンとして用いる過去の負荷電力量パターンが異常気象等の各種の原因に基づく特異データである場合には、これに基づいて想定した当日の負荷電力量パターンも信頼性の低いものとなり、実際の当日の負荷電力量パターンと大きく異なる結果、同時同量原則を逸脱したり、発電設備の発電能力を有効利用できなくなるといった問題を生じる。
また、プラントの総合効率を考慮した場合、単に負荷電力量だけでなく、熱負荷等も考慮してプラントの最適運用状態を決定し、その運用状態のもとで最適な託送電力量パターンを決定することも望まれている。
In the first prior art described above, when the past load power amount pattern used as the reference pattern is unique data based on various causes such as abnormal weather, the load power amount pattern of the day assumed based on this is also obtained. As a result, the reliability becomes low, and the actual load power amount pattern on the current day is greatly different. As a result, problems such as deviating from the simultaneous amount principle and the inability to effectively use the power generation capacity of the power generation facility arise.
In addition, when considering the overall efficiency of the plant, the optimum operating state of the plant is determined in consideration of not only the load power amount but also the heat load, etc., and the optimum entrusted power amount pattern is determined based on the operating state It is also desirable to do.

更に、前述した第2、第3の従来技術では、発電機の出力を調整して需給バランスを制御することにより同時同量の要請を満たすことは可能であるが、託送電力量を最大化しつつプラントの運用コストを最小化するための最適運用手段を提供するものではない。   Furthermore, in the second and third prior arts described above, it is possible to satisfy the demand of the same amount by adjusting the output of the generator and controlling the balance between supply and demand, but while maximizing the amount of power for consignment. It does not provide an optimal operation means for minimizing plant operation costs.

そこで、本発明の課題は、運転計画期間の運用コストやガス排出量を最小化するようなプラントの最適運用状態を最適運用手段及び定常プラントシミュレータの相互作用により決定し、その運用状態における発電電力量内で、同時同量原則を満たす最適な託送電力量パターンを選択可能とした託送電力量決定方法を提供することにある。   Therefore, an object of the present invention is to determine the optimum operation state of the plant that minimizes the operation cost and gas emission amount during the operation plan period by the interaction between the optimum operation means and the steady plant simulator, and the generated power in the operation state. It is an object of the present invention to provide a consignment power amount determination method that enables selection of an optimum consignment power amount pattern that satisfies the simultaneous equal amount principle.

上記課題を解決するため、請求項1に記載した発明は、運転計画期間におけるプラントの電力負荷、熱負荷、空気負荷等の各種負荷を予測する負荷予測手段と、
各種負荷予測値に対する同時同量の需給バランス及び各プラント構成機器の運用条件を満足すると共に託送電力量を最大化する条件のもとで、運転計画期間におけるプラントの運用コスト及びガス排出量の最小化を含む目的関数に対し、各プラント構成機器の起動停止状態及び各プラント構成機器への燃料注入量を状態変数とする最適化問題を解いてプラントの最適運用方法を決定する最適運用手段と、
各プラント構成機器の起動停止状態、各プラント構成機器への燃料注入量、託送電力計画値、及び各種負荷予測値が前記最適運用手段から与えられたときに、プラントの受電電力量、燃料使用量、ガス排出量、各プラント構成機器の定常的な入出力状態量等を逐次計算して前記最適運用手段に出力する定常プラントシミュレータと、を備え、
前記定常プラントシミュレータは、発電設備による発電電力量と前記負荷予測値に基づく負荷電力量予測値との差から託送可能電力量を算出し、この託送可能電力量を前記最適運用手段に送出し、
前記最適運用手段は、予め与えられた複数の託送電力量パターンの中で、前記託送可能電力量に最も近いパターンを託送電力量計画値として決定するものである。
In order to solve the above problems, the invention described in claim 1 is a load predicting means for predicting various loads such as a power load, a thermal load, and an air load of a plant in an operation plan period;
Minimize plant operating costs and gas emissions during the operation planning period, satisfying the same supply and demand balance for various load forecast values and operating conditions of each plant component and maximizing consignment power consumption An optimal operation means for determining an optimal operation method of the plant by solving an optimization problem with the start / stop state of each plant component device and the fuel injection amount to each plant component device as a state variable for an objective function including optimization,
When the optimal operation means gives the start / stop state of each plant component device, the amount of fuel injected into each plant component device, the planned power transmission value, and various load prediction values, the received power amount and fuel consumption amount of the plant A steady plant simulator for sequentially calculating the gas discharge amount, the steady input / output state amount of each plant component device, and the like and outputting it to the optimum operation means,
The steady plant simulator calculates a consignable power amount from a difference between a power generation amount generated by a power generation facility and a load power amount predicted value based on the predicted load value, and sends the consignable power amount to the optimum operation means.
The optimum operation means determines a pattern closest to the consignable power amount among a plurality of consignment power amount patterns given in advance as a consignment power amount plan value.

本発明によれば、計画期間の運用コストやガス排出量を最小化するようなプラントの最適運用状態における発電電力量内で、同時同量による需給バランスを満たしながら託送電力量を最大化することができ、その託送電力パターンに基づいて余剰電力を需要家に託送することが可能になる。   According to the present invention, the amount of consigned power is maximized while satisfying the supply and demand balance of the same amount within the power generation amount in the optimum operation state of the plant that minimizes the operation cost and gas emission amount in the planning period. And surplus power can be consigned to the customer based on the consigned power pattern.

以下、図に沿って本発明の実施形態を説明する。
図1は、この実施形態の概略的な構成を示す図であり、まず、本実施形態では、電力の託送元となるコージェネレーションプラントにおいて、図1の負荷予測手段10により、一定の計画期間における電力負荷、熱負荷、空気負荷等の各種負荷を予測してこれらを総合した負荷電力量を予測する。この予測には、例えば特開2003−84805号公報に記載されたプラント負荷の予測方法を用いることができる。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a diagram showing a schematic configuration of this embodiment. First, in this embodiment, in a cogeneration plant serving as a power consignment source, the load prediction unit 10 in FIG. Various loads such as a power load, a heat load, and an air load are predicted, and a load power amount obtained by combining them is predicted. For this prediction, for example, a plant load prediction method described in JP-A-2003-84805 can be used.

ここで、図3はコージェネレーションプラントの一例を示す構成図であり、このプラントはガスタービン41、排ガスボイラ42、スチームタービン43、コンプレッサ44、ボイラ45、吸収式冷凍機46、ガス焚冷凍機47、蓄熱層48から構成され、空気負荷、電力負荷、蒸気負荷、熱(空調)負荷を得るためのエネルギープラントである。この構成において、上記各種負荷を予測することによりプラント全体の負荷電力量を予測することができ、後述する定常プラントシミュレータ30により算出したガスタービン41の発電電力量と前記負荷電力量との差が託送可能電力量となる。
なお、図3の構成はあくまで例示的なものであり、本発明が適用されるプラントは何ら図3の例に限定されるものではない。
Here, FIG. 3 is a configuration diagram showing an example of a cogeneration plant. This plant includes a gas turbine 41, an exhaust gas boiler 42, a steam turbine 43, a compressor 44, a boiler 45, an absorption refrigerator 46, and a gas fired refrigerator 47. This is an energy plant that is composed of a heat storage layer 48 and obtains an air load, an electric power load, a steam load, and a heat (air conditioning) load. In this configuration, the load power amount of the entire plant can be predicted by predicting the various loads, and the difference between the generated power amount of the gas turbine 41 calculated by the steady plant simulator 30 described later and the load power amount is The amount of power that can be entrusted.
3 is merely an example, and the plant to which the present invention is applied is not limited to the example of FIG. 3 at all.

図2は、例えばプラントの熱負荷を予測するための予測モデルの構成図である。この予測モデルは、全ての入力層素子と結合している全結合部分11と、一部の入力層素子と結合している疎結合部分12とからなる階層型ニューラルネットワークである。   FIG. 2 is a configuration diagram of a prediction model for predicting the thermal load of a plant, for example. This prediction model is a hierarchical neural network including a fully coupled portion 11 coupled to all input layer elements and a loosely coupled portion 12 coupled to some input layer elements.

学習時に予測モデルに入力される入力因子としては、出力である熱負荷と関連がある因子、例えば、予測対象日の毎時気温、最高気温、最低気温、最小湿度、天候、日射量などの気象条件に関する因子、及び、曜日や平日・休日(土曜日は平日・休日の何れかに含まれる)の区別、イベントなどの有無及び種別、プラントの操業状態、プラント構成機器の運転パターンのごとく熱負荷パターンを大まかに決定付ける因子の全部または一部を用いる。これらの入力データには実績値が用いられる。
また、出力には熱負荷の実績値を用いることとし、上記入力因子及び出力をニューラルネットワークに与えて学習させ、予測モデルを構築する。
Input factors that are input to the prediction model during learning include factors related to the output heat load, for example, weather conditions such as hourly temperature, maximum temperature, minimum temperature, minimum humidity, weather, and amount of solar radiation on the target date Factors, and whether the day of the week or weekday / holiday (Saturday is included in either weekday / holiday), the presence / absence and type of an event, the operating state of the plant, the operation pattern of the plant components, etc. Use all or some of the factors that determine it roughly. Actual values are used for these input data.
In addition, the actual value of the thermal load is used for the output, and the input factor and the output are given to the neural network for learning to construct a prediction model.

図2の例では、入力層に与える入力因子を最高気温、最小湿度、曜日とし、翌日の熱負荷を予測して出力する構成となっている。
また、中間層は、最高気温が入力される入力層素子のみに結合して気温成分を出力する素子と、最小湿度が入力される入力層素子のみに結合して湿度成分を出力する素子と、曜日が入力される入力層素子のみに結合して曜日成分を出力する素子と、すべての入力層素子に結合して相互作用成分を出力する素子とからなっている。ここで、出力層素子は単一である。
In the example of FIG. 2, the input factors given to the input layer are the maximum temperature, the minimum humidity, and the day of the week, and the heat load of the next day is predicted and output.
Further, the intermediate layer is coupled to only the input layer element to which the maximum temperature is input and outputs the temperature component, and the element is coupled to only the input layer element to which the minimum humidity is input and outputs the humidity component, It consists of an element that outputs only the day component by coupling only to the input layer element to which the day of the week is input, and an element that outputs the interaction component by coupling to all the input layer elements. Here, the output layer element is single.

上記の予測モデルを用い、計画期間として例えば翌日の熱負荷の予測計算を実行する場合、入力因子としての最高気温、最小湿度等の気象条件に関する入力データには、翌日の予報値を用いる。また、プラントの操業状態、プラント構成機器の運転パターン等を入力する場合には、それらの計画値を用いれば良い。
なお、計画期間の電力負荷、蒸気負荷等についても同様の予測モデルを用いて負荷予測手段10により予測し、これらの負荷予測値は図1の最適運用手段20に入力される。
When the above prediction model is used and, for example, the prediction calculation of the heat load for the next day is executed as the planning period, the forecast value for the next day is used as input data regarding weather conditions such as the maximum temperature and minimum humidity as input factors. Moreover, what is necessary is just to use those plan values, when inputting the operation state of a plant, the operation pattern of a plant component apparatus, etc.
It should be noted that power load, steam load, etc. during the planning period are also predicted by the load prediction means 10 using the same prediction model, and these load prediction values are input to the optimum operation means 20 in FIG.

次に、最適運用手段20及び定常プラントシミュレータ30は、何れも計算機のハードウェア及びソフトウェアにより実現されるものであり、例えば特開2003−84805号公報に記載されたプラントの最適運用方法及び定常プラントシミュレータにより実現することができる。   Next, the optimum operation means 20 and the steady plant simulator 30 are both realized by computer hardware and software. For example, the optimum operation method and the steady plant of the plant described in JP-A-2003-84805 are disclosed. It can be realized by a simulator.

まず、最適運用手段20は、各種の負荷予測値が得られたら、各負荷種別毎の負荷予測値に対する同時同量の需給バランスを満足し、各機器の運用条件(起動停止の優先順位の如く機器の特性に基づく制約)に合致することを制約条件として、例えば翌日のプラントの運用コスト(燃料費、受電(購入)電力料金、電力託送電力料金を含む)及びガス排出量(例えばCO排出量)を最小化し、各種負荷の需給バランス制約逸脱量をペナルティとする目的関数のもとで、各プラント構成機器の起動停止状態及び燃料注入量を状態変数とする最適化問題を解く。これにより、各プラント構成機器の起動停止状態及び燃料注入量を運転計画値とするプラントの最適運用方法を決定する。 First, when various load prediction values are obtained, the optimum operation means 20 satisfies the simultaneous supply and demand balance of the same amount with respect to the load prediction values for each load type, and the operation conditions of each device (such as the priority order of starting and stopping). As a constraint condition, for example, the operation cost of the next day plant (including fuel cost, power received (purchased) power charge, power consignment power charge) and gas emissions (eg CO 2 emissions) The optimization problem with the start / stop state of each plant component and the fuel injection amount as the state variables is solved based on the objective function that minimizes the amount of deviation between supply and demand balance of various loads. Thereby, the optimal operation method of the plant which uses the start stop state of each plant component apparatus and the fuel injection amount as an operation plan value is determined.

なお、上記最適化問題は、Particle Swarm Optimization(PSO)や遺伝的アルゴリズム(GA)、タブサーチ(TS)等の最適化手法を用いて解くことができる。
また、前記運用コストの一部である託送電力料金については、後述する託送電力量計画値に基づいて算出する。
The above optimization problem can be solved using optimization techniques such as Particle Swarm Optimization (PSO), genetic algorithm (GA), and tab search (TS).
Further, the consignment power charge that is a part of the operation cost is calculated based on a planned consignment power amount plan value to be described later.

各機器の起動停止状態及び燃料注入量は、運転計画値として定常プラントシミュレータ30に送られると共に、負荷予測手段10による負荷予測値も定常プラントシミュレータ30に送られる。
また、定常プラントシミュレータ30により算出された発電設備による発電電力量(発電設備の定格による発電電力量、またはプラントの最適運用状態における発電設備の発電電力量)と、前記負荷予測手段10により予測した各種負荷予測値に基づく負荷電力量予測値とを比較し、両者の差を託送可能電力量として最適運用手段20に送出する。
The start / stop state and fuel injection amount of each device are sent to the steady plant simulator 30 as operation plan values, and the predicted load value by the load prediction means 10 is also sent to the steady plant simulator 30.
Further, the amount of power generated by the power generation facility calculated by the steady plant simulator 30 (the amount of power generated by the rating of the power generation facility, or the amount of power generated by the power generation facility in the optimum operation state of the plant) and the load prediction means 10 are used for prediction. The load electric energy prediction value based on various load prediction values is compared, and the difference between the two is sent to the optimum operation means 20 as the entrustable electric energy.

更に、定常プラントシミュレータ30では、前記運転計画値に基づいて、各プラント構成機器の定常的な入出力状態(プラント動特性)を模擬し、その状態量に基づいて演算した燃料使用量、ガス排出量を出力する。
なお、定常プラントシミュレータ30からは、最適運用手段20における目的関数(運用コストの最小化)を算出するために、受電(購入)電力量等のデータも出力される。
Further, the steady plant simulator 30 simulates a steady input / output state (plant dynamic characteristic) of each plant constituent device based on the operation plan value, and calculates the fuel usage amount and gas discharge calculated based on the state amount. Output quantity.
The steady plant simulator 30 also outputs data such as the amount of received (purchased) power in order to calculate the objective function (minimization of operation costs) in the optimum operation means 20.

最適運用手段20では、電力会社との契約によって予め与えられている託送電力量パターンの中から、前記託送可能電力量に最も近いパターンを選択し、そのパターンを託送電力量計画値として定常プラントシミュレータ30に出力する。この託送電力量計画値の決定方法が本発明の要旨であり、その決定方法については後述する。   The optimum operation means 20 selects a pattern closest to the consignable power amount from among the consignment power amount patterns given in advance by a contract with the electric power company, and uses the pattern as a consignment power amount plan value as a steady plant simulator. Output to 30. This method of determining the planned power transmission amount is the gist of the present invention, and the determination method will be described later.

上述した託送電力量計画値の決定方法を、以下に説明する。
図4は、この決定方法を説明するための図である。図中、実線で示した部分は電力会社との契約により予め与えられている託送電力量パターンであり、最適運用手段20は、複数の託送電力量パターンの中から、定常プラントシミュレータ30より入力された託送可能電力量(図中、破線で示す最大託送可能電力量)に最も近い託送電力量パターンを選択する。
但し、託送可能電力量が電力会社との契約による託送電力量パターンよりも小さい場合には、不足分として算出し、この不足分の合計値が最も小さく、かつ全体の偏差が最も小さいパターンを選択することとする。
The method for determining the planned power transmission amount described above will be described below.
FIG. 4 is a diagram for explaining this determination method. In the figure, the part indicated by a solid line is a consignment power amount pattern given in advance by a contract with an electric power company, and the optimum operation means 20 is input from the steady plant simulator 30 from a plurality of consignment power amount patterns. The consignment power amount pattern closest to the consignable power amount (the maximum consignable power amount indicated by a broken line in the figure) is selected.
However, if the consignable power amount is smaller than the consigned power amount pattern based on the contract with the power company, the shortage is calculated, and the pattern with the smallest total value and the smallest overall deviation is selected. I decided to.

すなわち、上記不足分Pdiを数式2によって表すものとすると、数式3で表される不足分の合計値Eが最も小さく、かつ、数式1で表される偏差の合計値Eが最も小さくなるような託送電力量パターンを選択し、これを託送電力量計画値として決定する。 That is, if the shortage P di is expressed by Equation 2, the shortage total value E 2 expressed by Equation 3 is the smallest, and the total deviation E 1 expressed by Equation 1 is the smallest. Such a consignment power amount pattern is selected and determined as a consignment power amount plan value.

Figure 2005229657
Figure 2005229657

Figure 2005229657
Figure 2005229657

Figure 2005229657
Figure 2005229657

なお、上記各数式において、
i:託送期間における制御時点を示すインデックス(i=1〜Tであり、Tは最終制御時点を示す)
:最大託送可能電力量
pn:電力会社との契約による託送電力量パターン
である。
In the above equations,
i: Index indicating the control time in the consignment period (i = 1 to T, where T indicates the final control time)
P f : Maximum consignable electric energy P pn : Consigned electric energy pattern based on a contract with an electric power company.

このようにして最終的な託送電力量計画値が決定されたら、この計画値(つまり託送電力量パターン)を定常プラントシミュレータ30に送ってプラントの動特性を演算すると共に、再度、託送可能電力量や燃料使用量、ガス排出量等を演算して最適運用手段20に入力する。最適運用手段20では前記同様の処理によって状態変数であるプラント構成機器の起動停止状態の演算、託送電力量計画値の演算等を行い、以後、同様の処理を繰り返していく。そして、最終的には最適運用手段20によって得られた状態変数と目的関数値とを出力し、プラントの最適運用状態を決定するものである。   When the final planned power transmission amount is determined in this way, this planned value (that is, the power transfer amount pattern) is sent to the steady plant simulator 30 to calculate the plant dynamics, and again the power that can be transferred. And the amount of fuel used, the amount of gas discharged, etc. are calculated and input to the optimum operation means 20. The optimum operation means 20 performs the calculation of the start / stop state of the plant component equipment, which is the state variable, the calculation of the consignment power amount plan value, and the like by the same processing as described above, and thereafter repeats the same processing. Finally, the state variables and objective function values obtained by the optimum operation means 20 are output, and the optimum operation state of the plant is determined.

なお、本実施形態の変形例として、上記のように電力を託送する場合の運用コストと託送を行わない場合の運用コストとを比較し、その結果に応じて託送を実施するか否かの判定する手段を付加しても良い。   As a modification of the present embodiment, the operation cost when power is consigned as described above is compared with the operation cost when power is not consigned, and determination is made as to whether or not consignment is performed according to the result. Means to do this may be added.

本発明の実施形態の概略的な構成図である。1 is a schematic configuration diagram of an embodiment of the present invention. 本発明の実施形態が適用される予測モデル(階層型ニューラルネットワーク)の構成図である。It is a block diagram of the prediction model (hierarchical neural network) to which the embodiment of the present invention is applied. エネルギープラントの一例を示す構成図である。It is a block diagram which shows an example of an energy plant. 本発明の実施形態における最終的な託送電力量パターンの決定方法を説明する図である。It is a figure explaining the determination method of the final consignment electric energy pattern in embodiment of this invention.

符号の説明Explanation of symbols

10:負荷予測手段
11:全結合部分
12:疎結合部分
20:最適運用手段
30:定常プラントシミュレータ
41:ガスタービン
42:排ガスボイラ
43:スチームタービン
44:コンプレッサ
45:ボイラ
46:吸収式冷凍機
47:ガス焚冷凍機
48:蓄熱層
10: Load prediction means 11: Fully coupled part 12: Loosely coupled part 20: Optimal operation means 30: Steady plant simulator 41: Gas turbine 42: Exhaust gas boiler 43: Steam turbine 44: Compressor 45: Boiler 46: Absorption refrigeration machine 47 : Gas fired refrigerator 48: Thermal storage layer

Claims (1)

運転計画期間におけるプラントの電力負荷、熱負荷、空気負荷等の各種負荷を予測する負荷予測手段と、
各種負荷予測値に対する同時同量の需給バランス及び各プラント構成機器の運用条件を満足すると共に託送電力量を最大化する条件のもとで、運転計画期間におけるプラントの運用コスト及びガス排出量の最小化を含む目的関数に対し、各プラント構成機器の起動停止状態及び各プラント構成機器への燃料注入量を状態変数とする最適化問題を解いてプラントの最適運用方法を決定する最適運用手段と、
各プラント構成機器の起動停止状態、各プラント構成機器への燃料注入量、託送電力計画値、及び各種負荷予測値が前記最適運用手段から与えられたときに、プラントの受電電力量、燃料使用量、ガス排出量、各プラント構成機器の定常的な入出力状態量等を逐次計算して前記最適運用手段に出力する定常プラントシミュレータと、を備え、
前記定常プラントシミュレータは、発電設備による発電電力量と前記負荷予測値に基づく負荷電力量予測値との差から託送可能電力量を算出し、この託送可能電力量を前記最適運用手段に送出し、
前記最適運用手段は、予め与えられた複数の託送電力量パターンの中で、前記託送可能電力量に最も近いパターンを託送電力量計画値として決定することを特徴とする託送電力量決定方法。
Load prediction means for predicting various loads such as power load, heat load, air load, etc. of the plant during the operation plan period;
Minimize plant operating costs and gas emissions during the operation planning period, satisfying the same supply and demand balance for various load forecast values and operating conditions of each plant component and maximizing consignment power consumption An optimal operation means for determining an optimal operation method of the plant by solving an optimization problem with the start / stop state of each plant component device and the fuel injection amount to each plant component device as a state variable for an objective function including optimization,
When the optimal operation means gives the start / stop state of each plant component device, the amount of fuel injected into each plant component device, the planned power transmission value, and various load prediction values, the received power amount and fuel consumption amount of the plant A steady plant simulator for sequentially calculating the gas discharge amount, the steady input / output state amount of each plant component device, and the like and outputting it to the optimum operation means,
The steady plant simulator calculates a consignable power amount from a difference between a power generation amount generated by a power generation facility and a load power amount predicted value based on the predicted load value, and sends the consignable power amount to the optimum operation means.
The optimum operation means determines a pattern closest to the consignable power amount among a plurality of consignment power amount patterns given in advance as a consignment power amount plan value.
JP2004032876A 2004-02-10 2004-02-10 Method for determining consignment electric energy Pending JP2005229657A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004032876A JP2005229657A (en) 2004-02-10 2004-02-10 Method for determining consignment electric energy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004032876A JP2005229657A (en) 2004-02-10 2004-02-10 Method for determining consignment electric energy

Publications (1)

Publication Number Publication Date
JP2005229657A true JP2005229657A (en) 2005-08-25

Family

ID=35003952

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004032876A Pending JP2005229657A (en) 2004-02-10 2004-02-10 Method for determining consignment electric energy

Country Status (1)

Country Link
JP (1) JP2005229657A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103259258A (en) * 2012-02-16 2013-08-21 国家电网公司 Micro-grid, micro-grid control method and control device
JP2015017713A (en) * 2013-07-08 2015-01-29 有限会社庄野環境デザインラボ Heat medium supplying method, heat medium production method, cogeneration device introduction method and cogeneration system
CN110546842A (en) * 2017-06-14 2019-12-06 株式会社日立制作所 energy management device and method, energy management system, and operation planning method for energy management system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103259258A (en) * 2012-02-16 2013-08-21 国家电网公司 Micro-grid, micro-grid control method and control device
JP2015017713A (en) * 2013-07-08 2015-01-29 有限会社庄野環境デザインラボ Heat medium supplying method, heat medium production method, cogeneration device introduction method and cogeneration system
CN110546842A (en) * 2017-06-14 2019-12-06 株式会社日立制作所 energy management device and method, energy management system, and operation planning method for energy management system

Similar Documents

Publication Publication Date Title
Hua et al. Representing operational flexibility in generation expansion planning through convex relaxation of unit commitment
JP3980541B2 (en) Distributed energy community control system, central controller, distributed controller, and control method thereof
US9335748B2 (en) Energy management system
CN107077704B (en) Systems, methods, and apparatus for capacity determination for a microgrid, and tangible computer-readable media
US9946242B2 (en) Operation schedule optimizing device, method, and program with determination of whether to request user approval
JP5981313B2 (en) Power suppression type storage energy storage optimization device, optimization method, and optimization program
US7310572B2 (en) Predictive contract system and method
JP3753113B2 (en) Generator control device
CA2510839C (en) Method and apparatus for providing economic analysis of power generation and distribution
TWI397864B (en) Method of making operation plan for an energy storage equipment and operation plan making equipment
JP6420912B2 (en) Management server, management method and management system
JP4527092B2 (en) System stabilization device
JP4550914B2 (en) Energy system operation plan creation device and method
WO2020153443A1 (en) Energy management system and method for controlling same
CN116324834A (en) Method for controlling the exchange of current and heat between a plurality of energy systems by means of a central control platform
Pei et al. Industrial multi‐energy and production management scheme in cyber‐physical environments: a case study in a battery manufacturing plant
JP5242355B2 (en) Electric heat cogeneration energy system
JP2021013231A (en) Information processing device, information processing method, and program
JP3763767B2 (en) Operation planning system for energy supply equipment
JP2005229657A (en) Method for determining consignment electric energy
JP2005333701A (en) Operation scheduling method, system and program of distributed energy community system
US20190072920A1 (en) Optimization/Modeling-Free Economic Load Dispatcher for Energy Generating Units
JP2017028816A (en) Plan establishment apparatus, plan establishment method, and program
JP4617290B2 (en) Power generation planning system
Kaczorowska et al. Smart control of energy storage system in residential photovoltaic systems for economic and technical efficiency

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060508

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070809

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070920

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080226