WO2018228572A1 - 信道质量反馈方法及装置 - Google Patents

信道质量反馈方法及装置 Download PDF

Info

Publication number
WO2018228572A1
WO2018228572A1 PCT/CN2018/091681 CN2018091681W WO2018228572A1 WO 2018228572 A1 WO2018228572 A1 WO 2018228572A1 CN 2018091681 W CN2018091681 W CN 2018091681W WO 2018228572 A1 WO2018228572 A1 WO 2018228572A1
Authority
WO
WIPO (PCT)
Prior art keywords
channel quality
value
bler
modulation
code rate
Prior art date
Application number
PCT/CN2018/091681
Other languages
English (en)
French (fr)
Inventor
吕永霞
王景男
马蕊香
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201710687964.1A external-priority patent/CN109150478B/zh
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP18816567.4A priority Critical patent/EP3627746A4/en
Priority to KR1020207000158A priority patent/KR20200013041A/ko
Priority to JP2019569491A priority patent/JP2020523913A/ja
Priority to BR112019026670-4A priority patent/BR112019026670A2/pt
Publication of WO2018228572A1 publication Critical patent/WO2018228572A1/zh
Priority to US16/712,671 priority patent/US11177905B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path

Definitions

  • the present application relates to the field of communications technologies, and in particular, to a channel quality feedback method and apparatus.
  • URLLC Ultra-Reliable and Low-Latency Communications
  • Channel Quality Indicator is a typical feedback technique for channel quality information.
  • each CQI index value corresponds to a modulation coding strategy under a specific channel quality, and after the network device learns the CQI index value corresponding to the current channel quality, the modulation code corresponding to the CQI index value may be adopted.
  • the policy is transmitted.
  • the feedback of the CQI index value in the industry includes two methods: absolute indication value feedback and differential indication value feedback.
  • the absolute indication value feedback is that after the terminal device measures the current channel quality, a feedback information is fed back, and the feedback information corresponds to the CQI index value corresponding to the current channel quality.
  • a kind of feedback information corresponds to an index value of a CQI.
  • the index value of the CQI includes 16 types, feedback information of 4 bits is needed for feedback.
  • the type of the CQI index value is usually limited, and only reflects the typical channel quality. For deep fading channels, the channel quality cannot be accurately reflected.
  • the differential indication value feedback is to first determine a reference index value of a CQI, and then the index values of other CQIs are calculated based on the reference index value, and the offset information is calculated by the terminal device to feed back the offset information corresponding to the offset. .
  • the terminal device can feed back the four offsets with two bits of feedback information.
  • the CQI differential indication value set is uniformly defined in the industry. For example, when the offset is 2, the feedback information fed back by the terminal device is 11, and when the offset is 5, the feedback information fed back by the terminal device is still 11, the terminal device The current channel quality of the channel cannot be indicated more accurately.
  • the channel quality of each terminal cannot be accurately indicated regardless of whether the absolute indication value or the differential indication value is used.
  • the embodiment of the present invention provides a channel quality feedback method and device, which can determine a channel quality indicator set that is specific to a terminal device, which not only saves overhead, but also improves the accuracy of channel quality feedback as much as possible.
  • the embodiment of the present application provides a channel quality feedback manner, where the network device determines a channel quality indicator set of the terminal device, where the channel quality indicator set includes a channel quality indicator value, and the channel quality indicator value is used to indicate channel quality.
  • the channel quality indicator set may include at least one channel quality indicator value.
  • the network device transmits the determined channel quality indication set to the terminal device.
  • the network device may be configured by the high-level signaling configuration to indicate the channel quality indicator set, or the network device may also indicate the channel quality indicator set by using MAC CE signaling. Further, the channel quality indicator set may also be a user. Exclusive signaling instructions.
  • the network device sends an indication message to the terminal device to indicate the channel quality indicator set, and the indication message includes the at least one channel quality indicator value.
  • the channel quality indicator value may include a differential indicator value of the channel quality, and the differential indicator value of the channel quality is used to indicate an offset between the measured value of the channel quality and the reference value of the channel quality.
  • the measured value of the channel quality is the index value of the measured CQI
  • the reference value of the channel quality is the index value of the reference CQI.
  • the channel quality here includes but is not limited to CQI, MCS and BLER.
  • the reference value of the channel quality includes the value of the channel quality of the aperiodic feedback that is closest to the reference time corresponding to the measured value;
  • the reference time corresponding to the measured value includes the reference measurement time corresponding to the measured value or the measurement reporting time corresponding to the measured value; the measurement reporting time corresponding to the measured value is the time at which the terminal device sends the feedback information for the measured value, and the feedback information is the terminal device.
  • the information of the channel quality indication set feedback channel quality refer to the preset time interval before the measurement time is measured.
  • the network device determines, for the terminal device, a first channel quality indicator set and a second channel quality indicator set, where the first channel quality indicator set corresponds to the interval of the first time interval, and the second channel quality indicator set corresponds to the The interval of two time intervals.
  • the interval of the interval of the first time interval and the interval of the second time interval may be an interval of any two of the time intervals of the plurality of time intervals determined by the network device for the terminal device, and the intervals of the multiple time intervals are not between each other.
  • the network device sends a plurality of channel quality indicator sets corresponding to the determined intervals of the plurality of time intervals to the terminal device.
  • the network device receives the feedback information sent by the terminal device, where the feedback information is used to indicate a target differential indication value in the first target channel quality indicator set, where the first target channel quality indicator set is a measured value a channel quality indicator set corresponding to a time difference between a reference time and a reference time corresponding to the reference value, where the target difference indicator value is used to indicate an offset between a current measured value of the channel quality and a reference value of the channel quality,
  • a target channel quality indicator set is a first channel quality indicator set or a second channel quality indicator set.
  • the network device determines, for the terminal device, a third channel quality indicator set and a fourth channel quality indicator set, where the third channel quality indicator set corresponds to a third block error rate difference interval, and the fourth channel quality indicator The interval corresponding to the fourth error block rate difference is set.
  • the network device receives feedback information sent by the terminal device, where the feedback information is used to indicate a target differential indication value in the second target channel quality indicator set, where the second target channel quality indicator set is a channel quality indicator set corresponding to a difference between a block error rate corresponding to the measured value and a block error rate corresponding to the reference value, where the target difference indicator value is used to indicate a current measured value of the channel quality and a reference value of the channel quality.
  • the offset between the second target channel quality indicator sets is a third channel quality indicator set or a fourth channel quality indicator set.
  • the channel quality indicator value in the channel quality indicator set includes an absolute indicator value of the channel quality, the absolute indicator value being used to represent a measure of channel quality.
  • the absolute indicator value is an index value of the CQI.
  • the channel quality indicator set determined by the network device for the terminal device is a subset or a complete set of the preset set; the preset set may be a set specified by the protocol, that is, a preset set in the network device and the terminal device.
  • the preset indicator includes the number of absolute indication values greater than or equal to the number of absolute indication values included in the channel quality indicator set determined by the network device for the terminal device.
  • the number of absolute indication values included in the channel quality indication set determined by the network device for the terminal device determines the number of bits required by the terminal device to send feedback information to the network device. For example, if the number of absolute indication values included in the channel quality indication set determined by the network device for the terminal device is 16, the number of bits required for the feedback information is 4.
  • the number of bits of the limited feedback information can be used to feed back the absolute indication value included in the channel quality indicator set of the terminal device, and the feedback is more accurate.
  • the number of absolute indication values included in the channel quality indication set determined by the network device for different terminal devices may be different, and the number of bits required by the terminal device to send feedback information to the network device may also be different.
  • the absolute indication value included in the channel quality indicator set determined by the network device for the terminal device may be continuously selected from the preset set, or may be non-continuously selected. If the absolute indicator value included in the channel quality indicator set may be consecutively selected, or the absolute indicator value included in the channel quality indicator set is a value extracted at equal intervals, when the network device indicates the channel quality indicator set to the terminal device, The number of elements included in the start element and the track quality indicator set of the channel quality indicator set may be indicated only, or the network device only indicates the start element, and the number of elements included in the track quality indicator set is a protocol agreement. Value. It should be noted that the meaning of continuous selection herein may be selected one by one according to the number size of the absolute indication value.
  • the bitmap may be used in the form of a bitmap.
  • the terminal device performs an indication or the network device respectively indicates the sequence number corresponding to the absolute indication value in the preset set.
  • the absolute indication value included in the channel quality indicator set determined by the network device for the terminal device is part or all of the channel quality indicator values in the at least one of the plurality of preset sets.
  • at least two of the plurality of preset sets have different numbers of absolute indication values.
  • the preset set may be a preset set in the network device and the terminal device.
  • the embodiment of the present application provides a network device, where the network device has a function of implementing network device behavior in the method in the first aspect.
  • the functions may be implemented by hardware or by corresponding software implemented by hardware.
  • the hardware or software includes one or more modules corresponding to the functions described above.
  • the network device includes a processing unit and a transceiver unit, where the processing unit is configured to determine a channel quality indicator set of the terminal device, where the channel quality indicator set includes at least one channel quality indicator value, The channel quality indicator value is used to indicate channel quality, and the transceiver unit is configured to send the channel quality indicator set to the terminal device.
  • the network device includes a processor and a transceiver, where the processor is configured to determine a channel quality indicator set of the terminal device, where the channel quality indicator set includes at least one channel quality indicator value, The channel quality indicator is used to indicate channel quality, and the transceiver is configured to send the channel quality indicator set to the terminal device.
  • the principle and the beneficial effects of the network device for solving the problem can be referred to the method and the beneficial effects of the first aspect.
  • the network device refer to the network device side method of the first aspect. The implementation, repetitions will not be repeated.
  • the embodiment of the present application provides a channel quality feedback method, including: acquiring, by a terminal device, a channel quality indicator set determined by the network device for the terminal device, where the channel quality indicator set includes at least one channel quality indicator value, where The channel quality indicator value is used to indicate channel quality.
  • the terminal device sends feedback information to the network device, where the feedback information is used to indicate a target channel quality indicator value, and the target channel quality indicator value is a channel quality indicator value in the channel quality indicator set, where the target channel quality indicator value is used. Determine the current channel quality of the channel.
  • the channel quality indicator value includes a differential indication value of channel quality, the difference indication value being used to indicate an offset between a measured value of channel quality and a reference value of channel quality.
  • the reference values of the channel quality include:
  • the terminal device acquires a channel quality indication set determined by the network device for the terminal device, including:
  • the terminal device acquires a first channel quality indicator set and a second channel quality indicator set, where the first channel quality indicator set corresponds to a first time interval interval, and the second channel quality indicator set corresponds to a second time interval interval.
  • the first time interval and the second time interval are time differences between a reference time corresponding to the measured value and a reference time corresponding to the reference value, and the interval of the first time interval and the second time interval The interval of the time interval is different;
  • the terminal device sends feedback information to the network device, including:
  • a first target difference set Determining, by the terminal device, a first target difference set, where the first target difference set is a channel corresponding to a time difference between a measurement time corresponding to the measured value of the channel quality and a feedback time corresponding to the reference value of the channel quality a quality indicator set, where the first target difference set is the first channel quality indicator set or the second channel quality indicator set;
  • the terminal device sends feedback information to the network device for indicating a target differential indication value in the first target difference set.
  • the terminal device acquires a channel quality indication set determined by the network device for the terminal device, including:
  • the terminal device acquires a third channel quality indicator set and a fourth channel quality indicator set, where the third channel quality indicator set corresponds to a third block error rate difference interval, and the fourth channel quality indicator set corresponds to a fourth error block a section of the rate difference, the third block error rate difference and the fourth block error rate difference being between a block error rate corresponding to the channel quality measurement value and a block error rate corresponding to the channel quality reference value
  • the difference between the third block error rate difference and the fourth block error rate difference is different;
  • the terminal device sends feedback information to the network device, including:
  • a second target difference set is a difference between a block error rate corresponding to the channel quality measurement value and a block error rate corresponding to the channel quality reference value
  • Corresponding channel quality indicator set where the second target difference set is the third channel quality indicator set or the fourth channel quality indicator set;
  • the terminal device sends feedback information for indicating a target differential indication value in the second target difference set to the network device.
  • the channel quality indicator value includes an absolute indication value of channel quality, and the absolute indicator value is used to indicate a measured value of channel quality
  • the channel quality indicator set is a subset or a complete set of the preset set; or the channel quality set is at least one set of the plurality of preset sets.
  • the channel quality indicator set determined by the network device for the terminal device is a subset or a complete set of the preset set; the preset set may be a set specified by the protocol, that is, a preset set in the network device and the terminal device.
  • the absolute indicator value included in the channel quality indicator set determined by the network device for the terminal device may be continuously selected from the preset set, or the absolute indicator value included in the channel quality indicator set may be preset. Non-continuous selection in the collection.
  • the absolute indication value included in the channel quality indicator set determined by the network device for the terminal device is part or all of the channel quality indicator values in the at least one of the plurality of preset sets.
  • the plurality of preset sets may be a preset set in the network device and the terminal device.
  • the embodiment of the present application provides a terminal device, where the terminal device has a function of implementing a behavior of a terminal device in the method in the third aspect.
  • the functions may be implemented by hardware or by corresponding software implemented by hardware.
  • the hardware or software includes one or more modules corresponding to the functions described above.
  • the terminal device includes a transceiver unit and a processing unit, and the processing unit is configured to acquire a channel quality indicator set determined by the network device for the terminal device, where the channel quality indicator set includes at least a channel quality indicator value, the channel quality indicator value being used to indicate channel quality;
  • the transceiver unit is further configured to send feedback information, where the feedback information is used to indicate a target channel quality indicator value, where the target channel quality indicator value is a channel quality indicator value in the channel quality indicator set, the target channel The quality indicator value is used to determine the current channel quality of the channel.
  • the terminal device includes a processor and a transceiver, where the processor is configured to acquire, by the network device, a channel quality indicator set determined by the network device, where the channel quality indicator set includes at least A channel quality indicator value, the channel quality indicator value being used to indicate channel quality.
  • the transceiver is configured to send feedback information, where the feedback information is used to indicate a target channel quality indicator value, where the target channel quality indicator value is a channel quality indicator value in the channel quality indicator set, the target channel quality
  • the indication value is used to determine the current channel quality of the channel.
  • the principle and the beneficial effects of the terminal device for solving the problem can be referred to the method and the beneficial effects of the third aspect.
  • the terminal device refer to the terminal device side method of the third aspect. The implementation, repetitions will not be repeated.
  • the embodiment of the present application provides a modulation and coding policy indication manner, where the network device determines a modulation coding MCS level indication set of the terminal device, where the MCS level indication set includes an MCS level indication value, and the MCS level indication The value is used to indicate a modulation coding strategy;
  • the network device sends the MCS level indication set to the terminal device.
  • the network device sends indication information to the terminal device, where the indication information is used to indicate a target MCS level indication value in the MCS level indication set, and the target MCS level indication value is used to A modulation coding strategy used by the network device is indicated.
  • the MCS level indication set is a subset or a complete set of the preset set; or the MCS level indication set is at least one set of the plurality of preset sets.
  • the MCS level indication set determined by the network device for the terminal device is a subset or a complete set of the preset set; the preset set may be a set specified by the protocol, that is, a preset set in the network device and the terminal device.
  • the MCS level indication value included in the MCS level indication set determined by the network device for the terminal device may be continuously selected from the preset set, or the MCS level indication value included in the MCS level indication set may be Non-continuously selected from a preset set.
  • the network device indicates to the terminal device
  • the MCS level indicates the set
  • the number of elements included in the start element of the MCS level indication set and the MCS level indication set may be indicated only, or the network device only indicates the start element, and the MCS level indicates that the set is included in the set.
  • the number of elements is the agreed value of the agreement.
  • the network device indicates the MCS level indication set to the terminal device,
  • the terminal device is instructed in the form of a bitmap.
  • the MCS level indication value included in the MCS level indication set determined by the network device for the terminal device may be part or all of the MCS level indication values in the at least one of the plurality of preset sets.
  • the plurality of preset sets may be a preset set in the network device and the terminal device.
  • the embodiment of the present application provides a network device, where the network device has a function of implementing network device behavior in the method in the fifth aspect.
  • the functions may be implemented by hardware or by corresponding software implemented by hardware.
  • the hardware or software includes one or more modules corresponding to the functions described above.
  • the network device includes a processing unit and a transceiver unit, where the processing unit is configured to determine a modulation and coding MCS level indication set of the terminal device, where the MCS level indication set includes an MCS level indication value, The MCS level indication value is used to indicate a modulation and coding strategy;
  • the transceiver unit is configured to send the MCS level indication set to the terminal device. .
  • the network device includes a processor and a transceiver, where the processor is configured to determine a modulation and coding MCS level indication set of the terminal device, where the MCS level indication set includes an MCS level indication value, The MCS level indication value is used to indicate a modulation and coding strategy;
  • the transceiver is configured to send the MCS level indication set to the terminal device.
  • the principle and the beneficial effects of the network device for solving the problem can be referred to the method and the beneficial effects of the fifth aspect.
  • the network device refer to the network device side method according to the fifth aspect. The implementation, repetitions will not be repeated.
  • the embodiment of the present application provides a modulation coding policy indication method, including:
  • an MCS level indication set determined by the terminal device receives, by the terminal device, an MCS level indication set determined by the terminal device, where the MCS level indication set includes at least one MCS level indication value, where the MCS level indication value is used to indicate a modulation and coding policy;
  • the terminal device stores the MCS level indication set.
  • the terminal device receives indication information that is sent by the network device, where the indication information is used to indicate a target MCS level indication value in the MCS level indication set, where the target MCS level indication value is used. And indicating a modulation and coding strategy used by the network device.
  • the MCS level indication set is a subset or a complete set of the preset set; or the MCS level indication set is one set of the multiple preset sets.
  • an embodiment of the present application provides a terminal device, where the terminal device has a function of implementing a behavior of a terminal device in the method in the seventh aspect.
  • the functions may be implemented by hardware or by corresponding software implemented by hardware.
  • the hardware or software includes one or more modules corresponding to the functions described above.
  • the terminal device includes a transceiver unit and a processing unit, where the transceiver unit is configured to receive an MCS level indication set determined by the terminal device, where the MCS level indication set includes an MCS level indication a value, the MCS level indication value is used to indicate a modulation and coding strategy;
  • the processing unit is configured to store the MCS level indication set.
  • the terminal device includes a processor and a transceiver, where the transceiver is configured to receive an MCS level indication set determined by the terminal device, where the MCS level indication set includes an MCS level indication a value, the MCS level indication value is used to indicate a modulation and coding strategy;
  • the processor is further configured to store the MCS level indication set.
  • the principle and the beneficial effects of the terminal device for solving the problem can be referred to the method and the beneficial effects of the seventh aspect.
  • the terminal device refer to the terminal device side method according to the seventh aspect. The implementation, repetitions will not be repeated.
  • the embodiment of the present application provides a computer readable storage medium, comprising instructions, when executed on a computer, causing a computer to perform the method of the network device according to the first aspect.
  • an embodiment of the present application provides a computer readable storage medium, including instructions, when executed on a computer, causing a computer to perform the method on the terminal device side according to the third aspect.
  • the embodiment of the present application provides a computer readable storage medium, comprising instructions, when executed on a computer, causing a computer to execute the method of the network device according to the fifth aspect.
  • the embodiment of the present application provides a computer readable storage medium, including instructions, when executed on a computer, causing a computer to perform the method on the terminal device side according to the seventh aspect.
  • the network device configures, for each terminal device, a channel quality indicator set that is specific to the terminal device, where the channel quality indicator set includes a channel quality indicator value, where the channel quality indicator value is used to indicate channel quality, the channel The quality indicator value is set for the channel quality of the terminal device. Therefore, when the channel device is fed back, the terminal device can accurately feed back the channel quality to the network device, and improve the accuracy of the channel quality feedback.
  • the embodiment of the present application provides a method for determining channel quality, where the method is applied to a system supporting at least one block error rate BLER set, where a first BLER set in the at least one BLER set includes a first BLER a subset and a second BLER subset, the first BLER subset including at least one BLER, the second BLER subset including at least one BLER, the method comprising: the network device receiving each of the first BLER subsets sent by the terminal device Channel quality parameter corresponding to the BLER, the channel quality parameter is used to indicate channel quality between the terminal device and the network device; the network device according to at least one channel quality parameter difference and at least one BLER in the first BLER subset Determining, by the corresponding channel quality parameter, a channel quality parameter corresponding to the at least one BLER in the second BLER subset, where the at least one channel quality parameter difference includes a channel quality parameter corresponding to the at least one BLER in the second BLER subset and the first The difference in channel quality parameters
  • the network device may receive the channel quality parameter corresponding to the BLER in the first BLER subset in the first BLER set sent by the terminal device, and according to the channel quality parameter corresponding to the partial BLER in the first BLER subset and the second BLER subset
  • a channel quality parameter difference between a channel quality parameter corresponding to each BLER and a channel quality parameter corresponding to at least one BLER in the first BELR subset determines a channel quality parameter corresponding to all BLERs in the second BLER subset, that is, the network device can Determining channel quality parameters corresponding to all BLERs in the first BLER set, without requiring the terminal device to send channel quality parameters corresponding to all BLERs in the first BLER set, thereby saving signaling overhead.
  • the method further includes: the network device sending a channel quality parameter request to the terminal device, where the channel quality parameter request is used to request at least one of the second BLER subset in the first BLER set At least one channel quality parameter difference of a channel quality parameter corresponding to the BLER corresponding channel quality parameter and at least one BLER in the first BLER subset in the first BLER set; the network device receiving the second in the first BLER set At least one channel quality parameter of the channel quality parameter corresponding to the at least one BLER in the BLER subset and the channel quality parameter corresponding to the at least one BLER in the first BLER subset in the first BLER set.
  • the network device sends a channel quality parameter request to the terminal device when the channel quality parameter difference is required, and requests the channel quality parameter difference requested by the network device by using the channel quality parameter request, so as to prevent the terminal device from reporting the excess channel quality parameter difference value. , which further saves signaling overhead.
  • the method further includes: the network device sending a channel quality parameter request to the terminal device, where the channel quality parameter request is used to request a second BLER in each BLER set in the at least one BLER set a channel quality parameter difference between a channel quality parameter corresponding to at least one BLER of the subset and a channel quality parameter corresponding to at least one BLER in the first BLER subset; the network device receiving the first of each BLER set in the at least one BLER set A channel quality parameter difference between a channel quality parameter corresponding to at least one BLER in the second BLER subset and a channel quality parameter corresponding to at least one BLER in the second BLER subset.
  • the network device can request all channel quality parameter differences, and then can determine channel quality parameters corresponding to all BLERs, thereby improving channel quality reliability.
  • any two BLER sets in the at least two BLER sets have different CQI levels.
  • the network device can receive the channel quality parameter difference between the channel quality parameters corresponding to the BLER in the case of different CQI levels reported by the terminal device, thereby improving the channel quality parameter accuracy rate corresponding to the BLER in the second BLER subset.
  • the transmission methods corresponding to any two BLER sets in the at least two BLER sets are different.
  • the transmission method includes an antenna port configuration and/or a multiple input multiple output MIMO preprocessing manner.
  • the network device can receive the channel quality parameter difference between the channel quality parameters corresponding to the BLER in the case of different antenna port configurations and/or multiple input multiple output MIMO preprocessing modes reported by the terminal device, thereby further improving the second BLER.
  • the accuracy of the channel quality parameter corresponding to the BLER in the subset can be received.
  • a method for determining channel quality is provided, the method being applied to a system supporting at least one block error rate BLER set, each BLER set in the at least one BLER set including a first BLER sub And a second BLER subset, the first BLER subset including at least one BLER, the second BLER subset including at least one BLER, the method comprising: the terminal device determining each BLER in the first BLER subset Corresponding channel quality parameter, the channel quality parameter is used to indicate channel quality between the terminal device and the network device; the terminal device sends, to the network device, each BLER corresponding to the first BLER subset a channel quality parameter, to enable the network device to determine a channel quality parameter corresponding to at least one BLER in the second BLER subset according to the at least one channel quality parameter difference value and the channel quality parameter corresponding to the at least one BLER in the first BLER subset
  • the at least one channel quality parameter difference value includes a channel quality parameter corresponding to at least one BLER in the second BLER subset
  • the channel quality parameter difference between the channel quality parameter and the channel quality parameter corresponding to the at least one BLER in the first BELR subset determines a channel quality parameter corresponding to all BLERs in the second BLER subset, that is, the network device can determine the first BLER
  • the channel quality parameter corresponding to all the BLERs in the set does not require the terminal device to send the channel quality parameters corresponding to all the BLERs in the first BLER set, which saves signaling overhead.
  • the method further includes: receiving, by the terminal device, a channel quality parameter request sent by a network device, where the channel quality parameter request is used to request a second BLER subset in the first BLER set At least one channel quality parameter of at least one BLER corresponding channel quality parameter and at least one channel quality parameter corresponding to at least one BLER of the first BLER subset in the first BLER set; the terminal device according to the channel quality Transmitting, to the network device, a channel quality parameter corresponding to at least one BLER in the second BLER subset in the first BLER set and at least one BLER in the first BLER subset in the first BLER set At least one channel quality parameter difference of the channel quality parameter.
  • the terminal device receives a channel quality parameter request sent by the network device to the terminal device when the channel quality parameter difference is required, and feeds back the channel quality parameter difference required by the network device, so as to prevent the terminal device from reporting the excess channel quality parameter difference, thereby further One step saves on signaling overhead.
  • the method further includes: receiving, by the terminal device, a channel quality parameter request sent by a network device, where the channel quality parameter request is used to request each BLER set in the at least one BLER set a channel quality parameter difference between a channel quality parameter corresponding to at least one BLER in the second BLER subset and a channel quality parameter corresponding to at least one BLER in the first BLER subset; the terminal device requests the location according to the channel quality parameter Transmitting, by the network device, a channel quality parameter of a channel quality parameter corresponding to at least one BLER in a second BLER subset in each of the at least one BLER set and a channel quality parameter corresponding to at least one BLER in the second BLER subset Difference.
  • the terminal device may send all channel quality parameter differences requested by the network device to the network device, and then determine channel quality parameters corresponding to all BLERs, thereby improving channel reliability.
  • the method further includes: if the method is applied to a system supporting at least two BLER sets, any two BLER sets of the at least two BLER sets have different CQI levels.
  • the terminal device may send the channel quality parameter difference between the channel quality parameters corresponding to the BLER in the case of different CQI levels requested by the network device to the network device, thereby improving the channel quality parameter accuracy rate corresponding to the BLER in the second BLER subset.
  • the transmission methods corresponding to any two BLER sets in the at least two BLER sets are different.
  • the transmission method includes an antenna port configuration and/or a multiple input multiple output MIMO preprocessing method.
  • the terminal device may send the difference between the channel quality parameters between the channel quality parameters corresponding to the BLER in different antenna port configurations and/or multiple input multiple output MIMO preprocessing modes requested by the network device to the network device, thereby further improving the The channel quality parameter accuracy rate corresponding to the BLER in the two BLER subsets.
  • the fifteenth aspect provides a communication method, including: determining, by the terminal device, indication information according to the correspondence relationship table, where the indication information is used to indicate at least one channel quality indication CQI index value, where the correspondence relationship table includes N CQI index values. And M coding modes and K code rate parameters, and at least one CQI index value of the N CQI index values corresponds to one modulation mode, and K CQI index values of the N CQI index values are in one-to-one correspondence
  • the terminal device determines the indication information according to the correspondence relationship table, where the indication information is used to indicate at least one channel quality indicator CQI index value, where the correspondence relationship table includes N CQI index values, M modulation modes, and K a rate parameter, and at least one of the N CQI index values corresponds to a modulation mode, and the K CQI index values of the N CQI index values correspond to the K code rate parameters one by one.
  • the K code rate parameters include values greater than 0 and less than 40.
  • the N CQI index values in the correspondence table are arranged in a descending order, and each of the first P CQI index values in the N CQI index values is indexed.
  • the product of the modulation order of the modulation mode corresponding to the value and the corresponding code rate is arranged in descending order, and the product of the modulation order of the P+h CQI index value and the corresponding code rate is smaller than the Pth.
  • the product of the modulation order of the modulation mode corresponding to the CQI index value and the corresponding code rate, N>P+h, and h takes from 1 to NX, X>P.
  • the spectral efficiency of less than 0.0781 corresponding to the CQI index value may be sorted after the maximum spectral efficiency, so that the terminal device can determine the number of bits included in the channel quality indication information according to requirements.
  • a communication method including: receiving, by a network device, indication information, where the indication information is used to indicate at least one channel quality indication CQI index value; and determining, by the network device, the at least one CQI according to the correspondence relationship table a modulation coding mode corresponding to the index value, the correspondence table includes N CQI index values, M modulation modes, and K code rate parameters, and at least one CQI index value of the N CQI index values corresponds to a modulation mode
  • the K CQI index values of the N CQI index values are one-to-one corresponding to the K code rate parameters
  • the code rate parameter corresponding to the first CQI index value of the N CQI index values is the first
  • the network device receives the indication information, and determines, according to the correspondence table, a modulation mode corresponding to the at least one CQI index value, where the correspondence relationship table includes N CQI index values, M modulation modes, and K code rates.
  • the present application can be applied to a system with a spectral efficiency requirement lower than 0.0781, that is, covering a bad channel condition area, and ensuring that the user communicates under the deep fading channel.
  • the K code rate parameters include values greater than 0 and less than 40.
  • the N CQI index values in the correspondence table are arranged in a descending order, and each of the first P CQI index values in the N CQI index values is indexed.
  • the product of the modulation order of the modulation mode corresponding to the value and the corresponding code rate parameter are arranged in descending order, and the product of the modulation order of the P+h CQI index value and the corresponding code rate parameter is smaller than the product of the corresponding code rate parameter.
  • the product of the modulation order of the modulation mode corresponding to the Pth CQI index value and the corresponding code rate parameter, N>P+h, and h is taken from 1 to NX, X>P.
  • the spectral efficiency of less than 0.0781 corresponding to the CQI index value may be sorted after the maximum spectral efficiency, so that the terminal device can determine the number of bits included in the channel quality indication information according to requirements.
  • the network device determines, according to the corresponding relationship table, indication information, where the indication information is used to indicate at least one channel quality indicator MCS index value, where the correspondence relationship table includes N MCS index values, M modulation modes, and K a rate parameter, and at least one of the N MCS index values corresponds to a modulation mode, and the K MCS index values of the N MCS index values correspond to the K code rate parameters one by one.
  • the K code rates include values greater than 0 and less than 40, N ⁇ K, and K is a positive integer.
  • the N MCS index values in the correspondence table are arranged in a descending order, and each of the first P MCS index values in the N MCS index values is indexed.
  • the product of the modulation order of the modulation mode corresponding to the value and the corresponding code rate parameter are arranged in descending order, and the product of the modulation order of the P+h MCS index value and the corresponding code rate parameter is smaller than the product of the corresponding code rate parameter.
  • the product of the modulation order of the modulation mode corresponding to the Pth MCS index value and the corresponding code rate parameter, N>P+h, and h is taken from 1 to NX, X>P.
  • a communication method includes: receiving, by the terminal device, indication information, where the indication information is used to indicate at least one modulation and coding scheme MCS index value; and determining, by the terminal device, the At least one MCS index value corresponding to the modulation coding mode, the correspondence table includes N MCS index values, M modulation modes, and K code rate parameters, and at least one of the N MCS index values corresponds to one
  • the modulation mode, the K MCS index values of the N MCS index values correspond to the K code rate parameters, and the code rate parameters corresponding to the first CQI index value of the N MCS index values
  • the K code rate parameters include values greater than 0 and less than 40.
  • the N MCS index values in the correspondence table are arranged in a descending order, and each of the first P MCS index values in the N MCS index values is indexed.
  • the product of the modulation order of the modulation mode corresponding to the value and the corresponding code rate parameter are arranged in descending order, and the product of the modulation order of the P+h MCS index value and the corresponding code rate parameter is smaller than the product of the corresponding code rate parameter.
  • the product of the modulation order of the modulation mode corresponding to the Pth MCS index value and the corresponding code rate parameter, N>P+h, and h is taken from 1 to NX, X>P.
  • a network device comprising: a processor, a memory, and a communication interface.
  • the processor is coupled to the memory and communication interface.
  • the memory is for storing instructions for the processor to execute, and the communication interface is for communicating with other network elements under the control of the processor.
  • the processor executes the instructions stored by the memory, the execution causes the processor to perform the method of the thirteenth aspect or any of the possible implementations of the thirteenth aspect.
  • a terminal device comprising: a processor, a memory, and a communication interface.
  • the processor is coupled to the memory and communication interface.
  • the memory is for storing instructions for the processor to execute, and the communication interface is for communicating with other network elements under the control of the processor.
  • the processor executes the instructions stored by the memory, the execution causes the processor to perform the method of any of the fourteenth or fourteenth aspects.
  • a twenty-first aspect a computer storage medium storing program code for indicating execution of any of the possible implementations of the thirteenth aspect or the thirteenth aspect The instructions of the method.
  • a twenty-second aspect a computer storage medium storing program code for indicating execution of any of the possible implementations of the fourteenth aspect or the fourteenth aspect, The instructions of the method.
  • a twenty-third aspect a network device is provided, the network device comprising means for performing the method of any of the thirteenth aspect or the thirteenth aspect.
  • a terminal device comprising means for performing the method of any of the fourteenth or fourteenth aspects of the fourteenth aspect.
  • a system comprising:
  • the network device of the twenty-third aspect, and the terminal device of the twenty-fourth aspect are identical to the network device of the twenty-third aspect, and the terminal device of the twenty-fourth aspect.
  • a terminal device comprising: a processor, a memory, and a communication interface.
  • the processor is coupled to the memory and communication interface.
  • the memory is for storing instructions for the processor to execute, and the communication interface is for communicating with other network elements under the control of the processor.
  • the processor executes the instructions stored by the memory, the execution causes the processor to perform the method of the fifteenth aspect or any of the possible implementations of the fifteenth aspect.
  • a network device including: a processor, a memory, and a communication interface.
  • the processor is coupled to the memory and communication interface.
  • the memory is for storing instructions for the processor to execute, and the communication interface is for communicating with other network elements under the control of the processor.
  • the processor executes the instructions stored by the memory, the execution causes the processor to perform the method of any of the sixteenth or sixteenth aspects.
  • a twenty-eighth aspect a computer storage medium storing program code for indicating execution of any of the possible implementations of the fifteenth aspect or the fifteenth aspect, The instructions of the method.
  • a twenty-ninth aspect a computer storage medium storing program code for indicating execution of any of the possible implementations of the sixteenth aspect or the sixteenth aspect The instructions of the method.
  • a terminal device comprising means for performing the method of any of the fifteenth aspect or the fifteenth aspect of the fifteenth aspect.
  • a thirty-first aspect a network device is provided, the network device comprising means for performing the method of any of the sixteenth or sixteenth aspects of the sixteenth aspect.
  • a system comprising:
  • the terminal device of the thirtieth aspect, and the network device of the above-mentioned thirty-first aspect are the terminal device of the thirtieth aspect, and the network device of the above-mentioned thirty-first aspect.
  • a network device including: a processor, a memory, and a communication interface.
  • the processor is coupled to the memory and communication interface.
  • the memory is for storing instructions for the processor to execute, and the communication interface is for communicating with other network elements under the control of the processor.
  • the processor executes the instructions stored by the memory, the execution causes the processor to perform the method of any of the seventeenth or seventeenth aspects.
  • a terminal device comprising: a processor, a memory, and a communication interface.
  • the processor is coupled to the memory and communication interface.
  • the memory is for storing instructions for the processor to execute, and the communication interface is for communicating with other network elements under the control of the processor.
  • the processor executes the instructions stored by the memory, the execution causes the processor to perform the method of any of the eighteenth or eighteenth aspects.
  • a thirty-fifth aspect a computer storage medium storing program code for indicating execution of any of the possible implementations of the seventeenth aspect or the seventeenth aspect, The instructions of the method.
  • a thirty-six aspect a computer storage medium storing program code for indicating execution of any of the possible implementations of the eighteenth aspect or the eighteenth aspect The instructions of the method.
  • a thirty-seventh aspect a network device is provided, the network device comprising means for performing the method of any of the seventeenth or seventeenth aspects.
  • a terminal device comprising means for performing the method of any of the eighteenth or eighteenth aspects of the eighteenth aspect.
  • a system comprising:
  • the network device of the thirty-seventh aspect and the terminal device of the thirty-eighth aspect.
  • the network device in the embodiment of the present application may receive the channel quality parameter corresponding to the BLER in the first BLER subset in the first BLER set sent by the terminal device, and according to the channel quality corresponding to the partial BLER in the first BLER subset.
  • the channel quality parameter difference between the parameter and the channel quality parameter corresponding to each BLER in the second BLER subset and the channel quality parameter corresponding to the at least one BLER in the first BELR subset determines the total BLER corresponding to the second BLER subset
  • the channel quality parameter that is, the network device can determine the channel quality parameter corresponding to all the BLERs in the first BLER set, without requiring the terminal device to send the channel quality parameter corresponding to all the BLERs in the first BLER set, thereby saving signaling overhead.
  • FIG. 1 is a schematic diagram of an application scenario of an embodiment of the present application
  • FIG. 5 is a schematic diagram of SINR fluctuations provided by an embodiment of the present application.
  • FIG. 6 is a simulation diagram of time correlation provided by an embodiment of the present application.
  • FIG. 7 is a schematic diagram of a reference time provided by an embodiment of the present application.
  • FIG. 8 is a schematic diagram of another reference time improved by an embodiment of the present application.
  • FIG. 9 is a schematic diagram of a CQI table provided by an embodiment of the present application.
  • FIG. 10 is an interaction diagram of a modulation coding policy indication method according to an embodiment of the present application.
  • FIG. 11 is a schematic diagram of an MCS table provided by an embodiment of the present application.
  • FIG. 12 is a schematic diagram of a logical structure of a network device according to an embodiment of the present application.
  • FIG. 13 is a schematic structural diagram of a physical structure of a network device according to an embodiment of the present application.
  • FIG. 14 is a schematic diagram of a logical structure of a terminal device according to an embodiment of the present application.
  • FIG. 15 is a schematic diagram of a physical structure of a terminal device according to an embodiment of the present application.
  • FIG. 16 is a schematic diagram of a logical structure of a network device according to an embodiment of the present application.
  • FIG. 17 is a schematic structural diagram of a physical structure of a network device according to an embodiment of the present application.
  • FIG. 18 is a schematic diagram showing the logical structure of a terminal device according to an embodiment of the present application.
  • FIG. 19 is a schematic structural diagram of a physical structure of a terminal device according to an embodiment of the present disclosure.
  • 21 is a schematic flowchart of channel quality parameter difference values of different terminal devices
  • FIG. 22 is a schematic flowchart of a communication method according to an embodiment of the present application.
  • FIG. 24 is a schematic block diagram of a network device according to an embodiment of the present application.
  • 25 is a schematic structural diagram of a network device according to an embodiment of the present application.
  • 26 is a schematic block diagram of a terminal device according to an embodiment of the present application.
  • FIG. 27 is a schematic structural diagram of a terminal device according to an embodiment of the present application.
  • 29 is a schematic structural diagram of a terminal device according to an embodiment of the present application.
  • FIG. 30 is a schematic structural diagram of a terminal device according to an embodiment of the present application.
  • FIG. 31 is a schematic block diagram of a network device according to an embodiment of the present application.
  • FIG. 32 is a schematic structural diagram of a network device according to an embodiment of the present application.
  • Figure 33 is a schematic block diagram of a system in accordance with an embodiment of the present application.
  • the preset set involved in the embodiment of the present application may be a set that is preset in the network device and the terminal device.
  • the embodiment of the present application can be applied to a wireless communication system, where a wireless communication system usually consists of a cell, and each cell includes a base station (BS), and the base station provides communication services to multiple terminal devices, where the base station is connected to the core network device.
  • the base station includes a baseband unit (BBU) and a remote radio unit (RRU).
  • BBU baseband unit
  • RRU remote radio unit
  • the BBU and the RRU can be placed in different places, for example, the RRU is pulled away, placed in an open area from high traffic, and the BBU is placed in the central computer room.
  • BBUs and RRUs can also be placed in the same room.
  • the BBU and RRU can also be different parts under one rack.
  • the wireless communication system mentioned in the embodiments of the present application includes, but is not limited to, a Narrow Band-Internet of Things (NB-IoT), and a Global System for Mobile Communications (GSM) system.
  • NB-IoT Narrow Band-Internet of Things
  • GSM Global System for Mobile Communications
  • EDGE Enhanced Data Rate for GSM Evolution
  • WCDMA Wideband Code Division Multiple Access
  • CDMA Code Division Multiple Access
  • TD-SCDMA Time Division-Synchronization Code Division Multiple Access
  • LTE Long Term Evolution
  • 5G systems and future mobile communication systems.
  • the base station is a device deployed in a radio access network to provide a wireless communication function for the terminal device.
  • the base station may include various forms of macro base stations, micro base stations (also referred to as small stations), relay stations, access points, transmission access point (TRP), and the like.
  • TRP transmission access point
  • the name of a device having a base station function may be different, for example, in an LTE system, an evolved Node B (evolved NodeB, eNB or eNodeB), in the third In a 3rd generation (3G) system, it is called a Node B (NB).
  • a network device for example, in an LTE system, an evolved Node B (evolved NodeB, eNB or eNodeB), in the third In a 3rd generation (3G) system, it is called a Node B (NB).
  • the terminal devices involved in the embodiments of the present application may include various handheld devices having wireless communication functions, vehicle-mounted devices, wearable devices, computing devices, or other processing devices connected to the wireless modem.
  • the terminal device may also be referred to as a mobile station (MS), a terminal (Terminal), and may also include a subscriber unit, a cellular phone, a smart phone, a wireless data card, Personal Digital Assistant (PDA) computers, tablet computers, wireless modems, handsets, laptop computers, Machine Type Communication (MTC) terminals, and the like.
  • MS mobile station
  • Terminal Terminal
  • PDA Personal Digital Assistant
  • MTC Machine Type Communication
  • the system will support multiple service types, different deployment scenarios, and a wider spectrum range.
  • various types of services include, but are not limited to, enhanced mobile broadband (eMBB), Massive Machine Type Communication (mMTC), and ultra-reliable and low latency communications (Ultra-reliable and low latency communications, URLLC), Multimedia Broadcast Multicast Service (MBMS), positioning service, and the like.
  • eMBB enhanced mobile broadband
  • mMTC Massive Machine Type Communication
  • URLLC ultra-reliable and low latency communications
  • MBMS Multimedia Broadcast Multicast Service
  • the wider spectrum range means that 5G will support a spectrum range up to 100 GHz, which includes both low frequency parts below 6 GHz and high frequency parts up to 100 GHz above 6 GHz.
  • a major feature of the 5G communication system over the 4G communication system is the increased support for the URLLC service.
  • URLLC services There are many types of URLLC services, and typical use cases include industrial control, industrial production process automation, human-computer interaction, and telemedicine.
  • the 3GPP RAN and RAN1 working groups define the performance indicators of the URLLC service as follows:
  • the user plane delay requirement of the URLLC service is 0.5 ms for both uplink and downlink. The above requirements are only applicable when the base station and the terminal are not in the discontinuous reception state. It should be noted that the 0.5 ms delay performance requirement here refers to the average delay of the data packet.
  • Reliability The probability of successful transmission of X bits from the sender to the receiver within a certain time (L seconds) under the given channel quality conditions.
  • the above time is still defined as the user application layer packet from the sender wireless protocol.
  • a typical requirement is to achieve 99.999% reliability in 1ms.
  • the above performance indicators need to be pointed out as typical values.
  • the specific URLLC service may have different requirements for reliability. For example, some extremely demanding industries need to control the end-to-end delay within 0.25ms and achieve 99.9999999% transmission success. Probability.
  • System capacity The maximum throughput of a cell that can be achieved by a system that satisfies a certain percentage of interrupted users.
  • the interruption of the user here means that the system cannot meet the reliability requirements within a time delay range.
  • CQI feedback technology is a typical channel quality feedback technique.
  • the CQI feedback technology includes absolute indication value feedback and differential indication value feedback.
  • the absolute indication value of the CQI is shown in the table of Figure 2. As shown, the index value of each CQI corresponds to the modulation and code rate under a particular channel condition.
  • the absolute indicator value of the CQI in a table constitutes a set of channel quality indicators for a CQI.
  • the absolute indication value feedback of the CQI is that after the terminal device measures the current channel quality, a feedback information is fed back, and the feedback information corresponds to the index value of the CQI corresponding to the current channel quality. That is, a kind of feedback information corresponds to an index value of a CQI. For example, if the index value of the CQI includes 16 types, feedback information of 4 bits is needed for feedback. In order to save feedback overhead, usually the CQI index value type setting will be less, for example, only 16 types are set, and the indication is relatively rough and the accuracy is not high.
  • the differential indication value feedback is to first determine a CQI reference index value, and then the other CQI index values are The offset is calculated based on the reference index value, and the terminal device feeds back the feedback information corresponding to the offset.
  • determine a plurality of optional offsets to form a CQI channel quality indicator set, and a feedback information corresponding to an offset, such as a CQI channel quality indicator set including ⁇ -1, 0, 1, 2 ⁇ the terminal device can feed back the four offsets with two bits of feedback information.
  • the channel quality indicator set of the CQI is uniformly defined in the industry, such as the channel quality indicator set of the CQI shown in the table of FIG.
  • the reference index values are different in different feedback scenarios, and the definition of the offset is also different.
  • the offset between the wideband CQI index value of codeword 0 and the wideband CQI index value of codeword 1 is calculated with the wideband CQI index value of codeword 1 as the reference index value.
  • the offset value between the CQI index value of the subband and the wideband CQI index value is calculated by using the wideband CQI index value as a reference index value.
  • the wideband CQI index value is used as a reference index value, and an offset between the selected M-signal quality best sub-band CQI index value and the wideband CQI index value is calculated.
  • all terminal devices use the same channel quality indicator set, which may result in inaccurate channel quality indication.
  • the channel quality indicator set of FIG. 3 when the offset is 2, the terminal device feeds back The feedback information is 10, and when the offset is 5, the feedback information fed back by the terminal device is still 10, and the terminal device cannot accurately indicate the current channel quality of the channel.
  • the embodiment of the present application separately sets a channel quality indicator set for each terminal device.
  • the channel quality indicator value included in the channel quality indicator set may be the above-mentioned absolute indicator value or differential indication value.
  • the number of the channel quality indicator values included in the channel quality indicator set configured for the terminal device is not limited, and may be one or more.
  • the channel quality indicator value is used to indicate channel quality.
  • the channel quality indicator set contains an absolute indication value of the channel quality (for example, an index value of the CQI).
  • the network device configures, for each terminal device, a channel quality indicator set, where the channel quality indicator set may be a subset or a complete set of the preset set specified by the protocol, where the absolute preset value included in the preset set specified by the protocol is relatively large.
  • the granularity of the partitioning is relatively small, and each absolute indicator value corresponds to a modulation and coding strategy under a specific channel condition.
  • the channel quality indicator set is different for each channel device, and the selected subset of the channel quality is different.
  • the channel quality indicator set configured by the network device for each terminal device may be at least one of a plurality of preset sets specified by the protocol, for example, the network device configures multiple channel quality indicator sets for one terminal device, and one channel quality The indication set corresponds to a service type, and the terminal device uses different channel quality indicator sets for feedback when feeding back different service types.
  • the number of absolute indication values in the at least two preset sets in the multiple preset sets is different.
  • the channel quality indicator set includes a differential indication value (eg, an offset of a CQI index value).
  • the network device configures, for each terminal device, a channel quality indication set that is adapted to the channel quality variation of the terminal device. For example, if the terminal device is an intermediate user, the channel quality of the terminal device is relatively good, and the SINR fluctuation is small. The fluctuation of the differential indication value in the channel quality indicator set is relatively small. If the terminal device is an edge user, The channel quality of the terminal device is relatively poor, and the SINR fluctuation is large, and the fluctuation of the differential indication value in the channel quality indicator set is relatively large.
  • Each terminal device can indicate the channel quality of the terminal device more accurately through feedback information.
  • the terminal device can accurately feed back the current channel quality.
  • FIG. 4 is a schematic flowchart of a channel quality feedback method according to an embodiment of the present disclosure, which is introduced from the perspective of interaction between a network device and a terminal device, and the method may include, but is not limited to, the following steps:
  • Step S10 The network device determines a channel quality indicator set of the terminal device, where the channel quality indicator set includes a channel quality indicator value, where the channel quality indicator value is used to indicate channel quality.
  • Step S11 The network device sends the channel quality indication set to the terminal device.
  • Step S12 The terminal device acquires a channel quality indicator set determined by the network device for the terminal device, where the channel quality indicator set includes a channel quality indicator value, where the channel quality indicator value is used to indicate channel quality.
  • Step S13 The terminal device sends feedback information to the network device, where the feedback information is used to indicate a target channel quality indicator value, and the target channel quality indicator value is a channel quality indicator value in the channel quality indicator set, The target channel quality indicator value is used to determine the current channel quality of the channel.
  • Step S14 The network device receives the feedback information to determine the channel quality.
  • the network device separately determines the channel quality indicator set for the terminal device, and sends the determined channel quality indicator set to the terminal device, and the terminal device subsequently feeds back the channel quality to the network device according to the channel quality indicator set.
  • the network device separately determines the channel quality indicator set for the terminal device, where the network device configures the channel quality indicator set for the terminal device.
  • the channel quality indicator set includes at least one channel quality indicator value, where the channel quality indicator value is used to indicate the quality of the channel.
  • the channel quality indicator value may be a differential indication value of the channel quality or an absolute indication value of the channel quality, wherein the difference indication value of the channel quality is used to indicate an offset between the measured value of the channel quality and the reference value of the channel quality, the channel The absolute indicator value of the quality is used to represent the measured value of the channel quality.
  • the channel quality may be CQI, MCS, or BLER. This application does not limit this. Here, only CQI, MCS, and BLER are used as an example.
  • the measured value of the channel quality may be an index value of the CQI under the current channel quality condition
  • the reference value of the channel quality may be an index value of the CQI of the feedback that is closest to the reference time corresponding to the measured value.
  • It may be the index value of the CQI of the periodic feedback that is the closest to the reference time corresponding to the measured value, or may be the index value of the CQI of the non-periodic feedback that is the closest to the reference time corresponding to the measured value, or may be The value of the channel quality of the most recent feedback of the reference time corresponding to the distance measurement value in the specific channel quality report set).
  • the reference time corresponding to the measured value may be a reference measurement time corresponding to the measured value or a measurement reporting time corresponding to the measured value.
  • the measurement reporting time corresponding to the measured value refers to the time when the terminal device sends feedback information for the measured value of the channel quality (the feedback information is used to indicate the channel quality to the network device according to the measured value of the channel quality), and the reference measurement time is usually defined in the measurement report.
  • the preset time interval before the time (for example, two sub-frames before the measurement report time).
  • the terminal device measures the channel quality to obtain the measured value of the channel quality, and the measurement time of the terminal device to measure the channel quality overlaps with the reference measurement time, or the measurement time includes multiple, and the reference measurement time is one of the measurement times. As shown in FIG.
  • t3 represents the measurement reporting time
  • t2 represents the reference measurement time
  • t1 represents the measurement time
  • the interval between t2 and t3 is 1 sub-frame
  • t1 overlaps with t2.
  • t3 represents the measurement reporting time
  • t2 represents the reference measurement time
  • t1 represents the measurement time.
  • the interval between t2 and t3 is 1 subframe
  • t1 spans three subframes (that is, the terminal device).
  • the channel quality is measured in all three subframes, and finally the mean of the channel quality is fed back.
  • t2 is one subframe in t1.
  • the size of the interval between t2 and t3 is usually agreed by the protocol.
  • the measured value of the channel quality may be an MCS level that matches the target block quality rate and the current channel quality condition, and the reference value of the channel quality may be the MCS level used by the current transmission.
  • the measured value of the channel quality may be the BLER level corresponding to the MCS used in the current channel quality condition, and the reference value of the channel quality may be the target BLER level expected for the current transmission.
  • the BLER level division may include ⁇ 1, 2, 3, 4, 5 ⁇ , and the BLER corresponding to each BLER level is ⁇ 10 ⁇ -1, 10 ⁇ -2, 10 ⁇ -3, 10 ⁇ -4, 10 ⁇ -5, respectively. ⁇ .
  • the channel quality indicator value in the channel quality indicator set is a differential indication value of the channel quality, that is, the channel quality indicator value is an offset between the channel quality measurement value and the channel quality reference value. . Because the channel quality changes of different terminal devices are different, a channel quality indicator set needs to be separately configured for each terminal device, and the channel quality indicator value in the channel quality indicator set is set according to the channel quality change of the terminal device, and can be accurately Reflecting the channel quality change of the terminal device.
  • the received signal to interference plus noise ratio (SINR) of the terminal device at the edge of the cell or in the middle of the cell is different with time fluctuation.
  • the solid line is the intermediate user of the cell, and the SINR fluctuation and the cumulative distribution function (CDF) distribution curve with an interval of 10 ms, 50%, 80%, and 95% corresponding SINR fluctuations are 0.8 dB, respectively. 1.2dB, 1.7dB.
  • the dotted line in Figure 5 is the cell edge user, the SINR fluctuation and CDF distribution curve with interval of 10ms, 50%, 80%, 95% corresponding SINR fluctuations are 0.9dB, 2dB, 4.3dB, respectively, as shown in the following table:
  • the network device can separately configure the channel quality indicator set for the edge user and the intermediate user.
  • the channel quality is CQI as an example.
  • the measured value of the channel quality is the index value of the measured CQI
  • the reference value of the channel quality is the index value of the reference CQI.
  • the differential indication value is the offset between the measured index value of the CQI and the index value of the reference CQI.
  • the intermediate user is configured with a channel quality indicator set of ⁇ -1.2 - 0.8 0 0.8 ⁇ ;
  • the edge user is configured with a channel quality indicator set of ⁇ -3 - 1.3 0 1.3 ⁇ .
  • the fluctuation between the channel quality indicator values in the channel quality indicator set configured for the intermediate user is small, and the fluctuation between the channel quality indicator values in the channel quality indicator set configured for the edge user is large, which is mainly In order to adapt to the channel quality changes of intermediate users and edge users.
  • the channel quality indicator set has only four differential indication values, and the corresponding UCI signaling is 2 bits, each user can accurately indicate the fluctuation of the current channel quality because the user-specific channel quality indicator set is adopted.
  • the first value is too large for the intermediate user to offset downward (the subsequent transmission adopts a lower one) MCS level), resulting in wasted transmission resources.
  • the first value is insufficient for the edge user to offset downwards, and the base station configures a higher MCS level to the terminal, causing a transmission error.
  • the configuration may be performed according to the historical value of the channel quality reported by the terminal device. For example, if the CQI index value reported by the terminal device is low or fluctuating, the channel quality indicator set is set to a larger channel quality indicator value. Otherwise, set a smaller value.
  • the value of the differential indication value in the channel quality indicator set may be an integer and/or a fraction, for example, the channel quality indicator set is ⁇ -0.3, 0, 0.3, 0.6 ⁇ .
  • the value of the differential indicator value in the channel quality indicator set may be non-uniformly distributed.
  • the channel quality indicator set is ⁇ -5, -1, 0, 1, 5 ⁇ .
  • FIG. 6 is a simulation diagram of the relationship between the time interval size and the SINR of the channel provided by the embodiment of the present application.
  • the abscissa is the time interval, the unit is millisecond, and the ordinate is the correlation coefficient of SINR.
  • the larger the time interval the smaller the SINR correlation of the channel, and the difference of the channel quality in the corresponding channel quality indicator set.
  • the fluctuation of the indicated value is also greater.
  • the smaller the time interval the greater the SINR correlation of the channel, and the smaller the fluctuation of the differential indication value of the channel quality in the corresponding channel quality indicator set.
  • the difference indication value of the channel quality in the channel quality indicator set is used to indicate an offset between the measured value of the channel quality and the reference value of the channel quality, that is, the reference time corresponding to the measured value of the channel quality.
  • the size of the time interval between reference times corresponding to the channel quality reference value determines the magnitude of the fluctuation of the differential indicator value in the channel quality indicator set.
  • the reference time corresponding to the reference value of the channel quality is the reference measurement time corresponding to the reference value of the channel quality or the measurement reporting time corresponding to the reference value of the channel quality, where the reference measurement time corresponding to the channel quality reference value is The reference measurement time corresponding to the measured value is the same.
  • the measurement reporting time corresponding to the reference value of the channel quality is the same as the measurement reporting time corresponding to the measured value, and is not described here.
  • the interval of the multiple time intervals in the embodiment of the present application respectively corresponds to multiple channel quality indication sets, and the intervals of the multiple time intervals do not overlap, and the time interval is the reference time and channel quality corresponding to the measured values.
  • the interval of the first time interval and the interval of the second time interval in the embodiment of the present application may be any two time interval intervals in the interval of the plurality of time intervals.
  • the interval of the first time interval corresponds to the first channel quality indicator set
  • the interval of the second time interval corresponds to the second channel quality indicator set.
  • the fluctuation of the differential indication value in the first channel quality indicator set is smaller than that in the second channel quality indicator set.
  • the difference indicates the fluctuation of the value.
  • the variance of the differential indication value in the first channel quality indicator set may be smaller than the variance of the differential indication value in the second channel quality indicator set.
  • the corresponding channel quality indicator set when the interval of the network device setting interval is less than 5 ms, the corresponding channel quality indicator set is ⁇ -0.5, 0, 0.5, 1 ⁇ ; when the interval of the network device setting interval is greater than 5 ms and less than 10 ms, the corresponding channel quality indicator The set is ⁇ -1, 0, 1, 2 ⁇ ; when the interval of the network device setting interval is greater than 10 ms, the corresponding channel quality indicator set is ⁇ -2, 0, 2, 4 ⁇ .
  • the channel quality change is related to the size of the referenced BLER. For example, if the BLER corresponding to the measured value is the same as the BLER corresponding to the reference value, the SINR is relatively small, and correspondingly, the channel in the channel quality indicator set The fluctuation of the quality differential indication value is small. If the BLER corresponding to the measured value is different from the BLER corresponding to the reference value, the SINR has a large difference, and correspondingly, the fluctuation of the difference indication value of the channel quality in the channel quality indicator set is large. Moreover, if the BLER corresponding to the measured value is greater than the BLER corresponding to the reference value, the differential indication value in the channel quality indicator set is greater than 0 or equal to 0. If the BLER corresponding to the measured value is smaller than the BLER corresponding to the reference value, the differential indication value in the channel quality indicator set is less than 0 or equal to 0.
  • the interval in which the multiple BLER differences are set in the embodiment of the present application respectively corresponds to multiple channel quality indicator sets, and the multiple BLER difference intervals do not overlap, and the BLER difference is the reference of the BLER and channel quality corresponding to the measured value.
  • the interval in which the first BLER difference interval and the second BLER difference in the embodiment of the present application may be an interval of any two BLER differences in the plurality of BLER difference intervals.
  • the interval of the first BLER difference corresponds to the first channel quality indicator set, and the interval of the second BLER difference corresponds to the second channel quality indicator set.
  • the fluctuation of the differential indication value in the first channel quality indicator set is smaller than The second channel quality indicates a fluctuation of the differential indication value in the set.
  • the variance of the differential indication value in the first channel quality indicator set may be smaller than the variance of the differential indication value in the second channel quality indicator set.
  • the network device sends the configured channel quality indicator set to the terminal device.
  • the channel quality indicator set may be sent by a high layer signaling configuration, or the channel quality indicator set may also be sent by using a MAC CE signaling configuration. Further, the channel quality indicator set may also be sent by using a user-specific signaling configuration.
  • the terminal device acquires a channel quality indicator set determined by the network device for the terminal device, where the channel quality indicator set includes a differential indication value of the channel quality, for example, the channel quality indicator set determined by the network device for the terminal device is ⁇ -1, 0, 1, 2 ⁇ .
  • the following table shows the correspondence between the feedback information and the differential indication value of the CQI.
  • the terminal device transmits the feedback information 10.
  • the network device can calculate the measured value of the channel quality according to the reference value of the channel quality.
  • the measured value of the channel quality is used to indicate the current channel quality, thereby affecting the MCS and/or power configured during subsequent network device scheduling.
  • the intervals of the multiple time intervals respectively correspond to the multiple channel quality indication sets.
  • the corresponding channel quality indicator set is ⁇ -0.5, 0, 0.5, 1 ⁇
  • the corresponding channel quality indicator The set is ⁇ -1, 0, 1, 2 ⁇
  • the corresponding channel quality indicator set is ⁇ -2, 0, 2, 4 ⁇ .
  • the time interval between the time t1 and the time t0 is 6 ms, and the corresponding channel quality indication set is ⁇ -1, 0, 1, 2 ⁇ , and the feedback information corresponding to the differential indication value 1 is the terminal 10.
  • the terminal device sends feedback information 10.
  • the network device After receiving the feedback information 10, the network device first needs to determine the first target channel quality indicator set corresponding to the feedback information. Specifically, the network device determines that the reference time corresponding to the measured value is between the reference time corresponding to the reference value. The time interval is determined, and the time interval belongs to a section of the target time interval in the interval of the plurality of time intervals set in advance, and the channel quality indicator set corresponding to the interval of the target time interval is used as the first target channel quality indicator set. For example, the network device determines that the first target channel quality indicator set is a channel quality indicator set ⁇ -1, 0, 1, 2 ⁇ corresponding to a time interval of more than 5 ms and less than 10 ms.
  • the target difference indication value is determined according to the feedback information 10
  • the channel quality measurement value is obtained according to the channel quality reference value, where the channel quality measurement value is used to indicate the current channel quality. In turn, it affects the MCS and/or power configured during subsequent network device scheduling.
  • the multiple BLER difference intervals respectively correspond to the multiple channel quality indicator sets, and the multiple BLER difference intervals do not overlap each other.
  • the section of the third block error rate difference and the section of the fourth block error rate difference in the embodiment of the present application may be a section of any two block error rate differences among the plurality of BLER difference sections.
  • the interval of the third block error rate corresponds to the third channel quality indicator set, and the interval of the fourth block error rate difference corresponds to the fourth channel quality indicator set.
  • the indication set is ⁇ 0, 1, 2, 3 ⁇ ; the BLER difference is ⁇ 0, and the channel quality indicator set is ⁇ -3, -2, -1, 0 ⁇ .
  • the BLER of its reference is 10%, and the time t0 is before the time t1.
  • the terminal device sends feedback information 11.
  • the network device After receiving the feedback information 11, the network device first needs to determine a second target channel quality indicator set corresponding to the feedback information. Specifically, the network device determines a BLER between the BLER corresponding to the measured value and the BLER corresponding to the reference value. The difference is determined, and the BLER difference belongs to a section of the target BLER difference in the interval of the plurality of BLER differences set in advance, and the channel quality indicator set corresponding to the section of the target BLER difference is used as the second target channel quality indicator set. For example, the network device determines that the second target channel quality indicator set is a channel quality indicator set ⁇ -3, -2, -1, 0 ⁇ corresponding to a BLER difference interval. Further, the target difference indication value is determined according to the feedback information 11. The channel quality measurement value is obtained according to the channel quality reference value, and the channel quality measurement value is used to indicate the current channel quality. In turn, it affects the MCS and/or power configured during subsequent network device scheduling.
  • the channel quality indicator value in the channel quality indicator set is an absolute indicator value of the channel quality
  • the channel quality absolute indicator value is used to indicate a channel quality measurement value, such as a measured CQI index value.
  • Different users usually work in different SINR intervals. For example, edge users usually work at lower SINRs, such as -12dB to -2dB; central users operate at higher SINRs, such as 15dB to 25dB. Because the range of CQI index values for different user measurement feedback will also be different.
  • the network device independently configures a channel quality indication set for each terminal device, and the absolute indication value in the channel quality indicator set is set according to the channel quality of the terminal device. The channel quality change of the terminal device can be more accurately reflected.
  • the channel quality indicator set configured by the network device for the terminal device may be a subset or a complete set of the preset set, where the preset set is a set specified by the protocol. As shown in FIG. 9 , it may be a preset set specified by the protocol, where the preset set includes 32 types of absolute indication values.
  • the network device configures the preset set for the terminal device according to the channel quality of each terminal device. A subset or a complete set.
  • the channel quality indicator set configured by the network device to the edge user is a set of the working interval in the range of 0-15
  • the channel quality indicator set configured by the network device to the central user is a set of the working interval in the range of 16-31.
  • the channel quality indicator set configured by the network device for the terminal device may be a set obtained by continuously taking values from a preset set specified by the protocol; or the channel quality indicator set configured by the network device for the terminal device may be a pre-defined by the protocol. Let the non-continuous values in the set get the set.
  • the network device may directly indicate an absolute indication value included in the channel quality indicator set, such as directly indicating an index value of the CQI included in the channel quality indicator set.
  • the channel quality indicator set configured by the network device to the edge device of the edge user is ⁇ 0 2 4 6 8 10 12 ⁇
  • the channel quality indicator set configured by the network device to the terminal device of the central user is ⁇ 14 16 18 20 22 24 ⁇
  • the SINR interval detected by the edge device of the edge user and the terminal device of the center user is different, so CQIs of different intervals are configured.
  • the number of the absolute indicator values in the channel quality indicator set indicated by the network device to the terminal device may be agreed by a protocol (the number of protocols agreed, that is, the number of network devices and terminal devices preset), or configurable . If the number of the absolute indicator values in the channel quality indicator set is configurable, the number of the absolute indicator values in the channel quality indicator set corresponding to the URLLC service is smaller than the absolute indicator value in the channel quality indicator set corresponding to the eMBB service. quantity.
  • the network device is configured according to traffic and/or channel quality fluctuations, for example, a channel quality indicator set with a small number of absolute indication values is configured for a user with a slow moving speed or a static state, and an absolute indicator value is configured for a user with a faster moving speed. More channel quality indicator sets.
  • the channel quality indicator set configured by the network device to the terminal device of the URLLC service is ⁇ 0 2 4 6 8 ... 28 30 ⁇ , that is, an even CQI index value.
  • the channel quality indication set configured by the network device to the terminal device of the eMBB service is ⁇ 0, 1, 2, ... 31 ⁇ or ⁇ 6 8 10 12 14 16 17 ... 31 ⁇ .
  • the URLLC service has limited overhead for CQI indication signaling, it can be uniformly extracted from the preset set, but is not limited to uniform extraction.
  • the terminal device of the eMBB service is insensitive to the CQI indication signaling overhead.
  • the terminal device of the eMBB service can be configured with a larger set, and the entire preset set can be configured for the terminal device of the eMBB service.
  • the default configuration may be on the terminal side without additional signaling indication.
  • the channel quality indicator set configured by the network device for the terminal device is a set obtained by consecutive values in a preset set specified by the protocol, or the channel quality indicator set configured by the network device for the terminal device is a preset interval set by the protocol.
  • the set of elements obtained for example, one element separated by one, the serial number is 3, 5, 7.
  • the signaling when the network device indicates the channel quality indication set to the terminal device may include but is not limited to high layer signaling, MAC CE signaling, user-specific signaling, etc. may only indicate the channel quality indicator set.
  • the channel quality indication set is the absolute indication value in the channel quality indication set.
  • the number of elements in the channel quality indicator set is agreed by the protocol, and the channel quality indicator set configured by the network device for the terminal device is composed of consecutive absolute indication values in the preset set specified by the protocol.
  • the channel quality indicator set configured by the network device to the edge device of the edge user is ⁇ 0 1 2 3 4 5 6 7 8 9 10 11 ⁇ , indicating 0;
  • the channel quality indication set configured by the network device to the terminal device of the central user is ⁇ 10 11 12 13 14 15 16 17 18 19 20 21 ⁇ , then indicate 10.
  • the number of elements in the channel quality indicator set may be bound to the service type (for example, the number of elements included in the channel quality indicator set of the URLLC service is 8, and the elements included in the channel quality indicator set of the eMBB service are included. The number is 16).
  • the number of elements in the channel quality indicator set is agreed by the protocol, and the channel quality indicator set configured by the network device for the terminal device is composed of a preset set medium interval element specified by the protocol, that is, the value is set from the preset set medium interval. Then, only the sequence number of the starting element is indicated (if the channel quality is CQI, the sequence number is the index value of the CQI).
  • the channel quality indicator set configured by the network device to the edge device of the edge user is ⁇ 0 2 4 6 8 10 ⁇ , indicating 0.
  • the channel quality indication set configured by the network device to the central user's terminal device is ⁇ 10 12 14 16 18 20 ⁇ , indicating 10.
  • the number of elements in the channel quality indicator set may be bound to the service type (for example, the number of elements included in the channel quality indicator set of the URLLC service is 8, and the elements included in the channel quality indicator set of the eMBB service are included. The number is 16).
  • the network device may only indicate the starting position (starting position) It may be a sequence number, such as an index value of the CQI, and the number of absolute indicator values included in the channel quality indicator set (eg, the number of CQI index values included).
  • the starting position and the number of absolute indication values may be independently encoded or jointly encoded.
  • the channel quality indicator set configured by the network device to the edge device of the edge user is ⁇ 0 2 4 6 8 10 ⁇ , then ⁇ 0, 6 ⁇ is indicated, where 0 is the starting position and 6 is the channel quality indicator set.
  • two elements 0 and 6 can be jointly coded, for example, 160 calculated according to the tree indication formula.
  • the channel quality indication set configured by the network device to the central user's terminal device is ⁇ 10 11 12 13 14 15 16 17 18 19 20 ⁇ , indicating ⁇ 10, 11 ⁇ , where 10 is the starting position and 11 is the channel quality.
  • jointly encode the 10, 11 elements for example, 331 according to the tree indication formula. Tree shape
  • RIV N CQI (N CQI -L Set +1)+(N CQI -1-Set start )
  • L Set is the number of CQIs in the channel quality indicator set
  • N CQI is the number of elements in the preset set
  • Set start is the starting position
  • the signaling for indicating the channel quality indicator set (the signaling may include However, it is not limited to high-level signaling, MAC CE signaling, user-specific signaling, etc., and may be indicated to the terminal device by using a bitmap.
  • the preset set includes 64 absolute indication values, 64 bits are used for indication, if channel quality If the absolute indication value is included in the indication set, the bit position corresponding to the absolute indication value is set to 1. If the absolute indication value is not included in the channel quality indication set, the bit position corresponding to the absolute indication value is 0.
  • the channel quality indicator set configured by the network device to the edge device of the edge user is ⁇ 0 2 4 6 8 10 12 ⁇
  • the channel quality indicator set configured by the network device to the terminal device of the central user is ⁇ 14 16 18 20 22 24 ⁇ . Then, when the terminal device is instructed to indicate to the terminal device, the terminal device may indicate 10101010101010000...0;
  • the terminal device acquires a channel quality indicator set determined by the network device, where the channel quality indicator set is a subset or a complete set of the preset set, and the channel quality indicator set includes an absolute indication value of the channel quality, and the terminal device measures the channel quality, and The network device transmits feedback information corresponding to the measured value of the channel quality.
  • the number of bits of the feedback information is related to the number of absolute indication values included in the channel quality indication set. For example, as shown in FIG. 9, the preset set includes 32 absolute indication values, and the number of absolute indication values included in the channel quality indication set configured by the network device for the terminal device is 16 (for example, the interval 0-15 or 16-31) ), the terminal device can use 4 bits of feedback information for feedback.
  • the network device After receiving the feedback information sent by the terminal device, the network device needs to determine the absolute indication value corresponding to the feedback information. For example, if the feedback information sent by the terminal device is 1111, the absolute indication value 15 or 31 may be indicated. Therefore, the network device needs to obtain a channel quality indicator set that is configured in advance for the terminal device. For example, if the channel quality indicator set configured by the network device for the terminal device is 16 to 31, the absolute indication value corresponding to the feedback information is 31.
  • the network device configures, for each terminal device, a channel quality indicator set that is specific to the terminal device, where the channel quality indicator set includes a channel quality indicator value, where the channel quality indicator value is used to indicate channel quality, and the channel quality is
  • the indication value is a channel quality setting for the terminal device. Therefore, when the channel device feeds back the channel quality, the terminal device can accurately feed back the channel quality to the network device, and improve the accuracy of the channel quality feedback.
  • FIG. 10 is a schematic flowchart of a method for indicating a modulation and coding policy according to an embodiment of the present disclosure, which is introduced from the perspective of interaction between a network device and a terminal device, and the method may include, but is not limited to, the following steps:
  • Step S20 The network device determines a modulation and coding MCS level indication set of the terminal device, where the MCS level indication set includes an MCS level indication value, where the MCS level indication value is used to indicate a modulation and coding policy;
  • Step S21 The network device sends the MCS level indication set to the terminal device.
  • Step S22 The terminal device receives an MCS level indication set determined by the terminal device, where the MCS level indication set includes an MCS level indication value, where the MCS level indication value is used to indicate a modulation and coding policy.
  • Step S23 the terminal device stores the MCS level indication set.
  • Step S24 The network device sends the indication information to the terminal device, where the indication information is used to indicate a target MCS level indication value in the MCS level indication set, where the target MCS level indication value is used to indicate that the network device uses Modulation coding strategy.
  • step S25 the terminal device receives the indication information sent by the network device, where the indication information is used to indicate a target MCS level indication value in the MCS level indication set, where the target MCS level indication value is used to indicate the network device.
  • different terminal devices usually work in different SINR intervals. For example, when the terminal device is an edge user, it usually works at a lower SINR, such as -12 dB to -2 dB. When the terminal device is a central user, it usually works. At higher SINR, such as 15dB ⁇ 25dB.
  • the MCS level of the network device transmitting data to the edge user or the central user may also be different. For example, the MCS level used by the network device to transmit data to the edge user is relatively low, and the MCS level used by the network device to transmit data to the central user is compared. high. In order to reduce the indication overhead, the network device independently configures the MCS level indication set for each terminal device.
  • the MCS level indication set configured by the network device for the terminal device is a subset or a complete set of the preset set, and the preset set may be a set specified by the protocol. As shown in FIG. 11 , it may be a preset set provided by an embodiment of the present application, where the preset set includes 64 MCS levels.
  • the network device may configure some of the 64 MCS levels or all MCS levels according to the channel quality condition of the terminal device.
  • the MCS level indication set configured by the network device to the terminal device belonging to the edge user is: 0-27, 58-61
  • the MCS level indication set configured by the network device to the terminal device belonging to the central user is: 28-57, 61 -63.
  • the numerical serial numbers herein all represent the MCS level in FIG. 11, wherein the MCS level of 58-63 is used for retransmission.
  • the MCS level indication set configured by the network device for the terminal device may be composed of consecutive MCS level indication values (ie, MCS levels) in the preset set specified by the protocol; or the channel quality indication set configured by the network device for the terminal device may be It is composed of non-contiguous MCS level indication values (ie, MCS levels) in the preset set specified by the protocol.
  • the MCS level indication set configured by the network device for the terminal device is composed of consecutive MCS level indication values in the preset set specified by the protocol, or the MCS level indication set configured by the network device for the terminal device is a preset set specified by the protocol.
  • the interval MCS level indicates the value composition (for example, one value is separated by one element, and the serial number is 3, 5, 7).
  • the signaling of the network device when indicating the MCS level indication set to the terminal device may include but is not limited to high layer signaling, MAC CE signaling, user-specific signaling, etc.), and may only indicate the MCS level indication set.
  • the number of the MCS level indication set is the MCS level indication value in the MCS level indication set.
  • the signaling when the network device indicates the MCS level indication set to the terminal device may also be indicated by a tree indicating method, and the tree indicating method and the tree indicating method in the embodiment of FIG. 4 are This will not be repeated here.
  • the signaling used to indicate the MCS level indication set (the signaling may include However, it is not limited to high-level signaling, MAC CE signaling, user-specific signaling, etc., and may be indicated to the terminal device by using a bitmap. For example, if the preset set includes 64 absolute indication values, 64 bits are used for indication, if the MCS level is used. If the MCS level indication value is included in the indication set, the bit position corresponding to the MCS level indication value is set to 1. If the MCS level indication value is not included in the MCS level indication set, the bit position corresponding to the MCS level indication value is used. 0.
  • the terminal device acquires and stores an MCS level indication set configured by the network device for the terminal device.
  • the network device transmits data to the terminal device, the network device needs to indicate to the terminal device, the used target MCS level indication value, where the target MCS level indication value is used to indicate a modulation and coding policy used by the network device, so that the terminal device can
  • the received data is processed according to the modulation and coding strategy.
  • the network device sends the indication information to the terminal device, where the indication information is used to indicate the target MCS level indication value in the MCS level indication set configured for the terminal device.
  • the network device may send the indication information to the terminal device by using the DCI.
  • the MCS level indication set configured by the network device for the terminal device is: 0-27, 58-61; the indication information may be 5 bits, and one indication information corresponds to an MCS level indication value.
  • the terminal device searches for a target MCS level indication value corresponding to the indication information according to the MCS level indication set configured by the network device, where the target MCS level indication value is used to indicate a modulation and coding policy used by the network device.
  • the network device determines, for the terminal device, the MCS level indication set that is specific to the terminal device, where the MCS level indication set includes an MCS level indication value, where the MCS level indication value is used to indicate a modulation and coding policy, and the terminal device is exclusive.
  • the MCS level indication set may be a set according to the channel quality of the terminal device.
  • FIG. 12 is a schematic diagram of a logical structure of a network device according to an embodiment of the present disclosure.
  • the network device 101 may include a processing unit 1011 and a transceiver unit 1012.
  • the processing unit 1011 is configured to determine a channel quality indicator set of the terminal device, where the channel quality indicator set includes at least one channel quality indicator value, where the channel quality indicator value is used to indicate channel quality;
  • the transceiver unit 1012 is configured to send the channel quality indication set to the terminal device.
  • processing unit 1011 is configured to perform step S10 in the method embodiment shown in FIG. 4, and the transceiver unit 1012 is configured to perform step S11 in the method embodiment shown in FIG.
  • FIG. 13 is a schematic diagram showing the physical structure of a network device according to an embodiment of the present application.
  • the network device 102 includes a processor 1021, a transceiver 1022, and a memory 1023.
  • the processor 1021, the memory 1023, and the transceiver 1022 are connected to each other through a bus.
  • the memory 1023 includes, but is not limited to, a random access memory (RAM), a read-only memory (ROM), an Erasable Programmable Read Only Memory (EPROM), or A Compact Disc Read-Only Memory (CD-ROM) for storing related instructions and data.
  • RAM random access memory
  • ROM read-only memory
  • EPROM Erasable Programmable Read Only Memory
  • CD-ROM Compact Disc Read-Only Memory
  • the transceiver 1022 can be a communication module and a transceiver circuit for transmitting data, signaling, and the like between the network device and the terminal device.
  • the transceiver 1022 is configured to perform step S11 in the method embodiment shown in FIG.
  • the processor 1021 can be a controller, a central processing unit (CPU), a general-purpose processor, a digital signal processor (DSP), an application-specific integrated circuit (ASIC), and an on-site Field Programmable Gate Array (FPGA) or other programmable logic device, transistor logic device, hardware component, or any combination thereof. It is possible to implement or perform various exemplary logical blocks, modules and circuits described in connection with the disclosure of the embodiments of the present application.
  • the processor 1021 can also be a combination of computing functions, for example, including one or more microprocessor combinations, a combination of a DSP and a microprocessor, and the like. In the embodiment of the present application, the processor 1021 is configured to perform step S10 in the embodiment shown in FIG.
  • the processor 1021 is configured to determine a channel quality indicator set of the terminal device, where the channel quality indicator set includes at least one channel quality indicator value, where the channel quality indicator value is used to indicate channel quality.
  • the transceiver 1022 is configured to send the channel quality indication set to the terminal device.
  • FIG. 14 is a schematic diagram of a logical structure of a terminal device according to an embodiment of the present disclosure.
  • the terminal device 201 may include a transceiver unit 2011 and a processing unit 2012.
  • the processing unit 2012 is configured to obtain a channel quality indicator set determined by the network device for the terminal device, where the channel quality indicator set includes at least one channel quality indicator value, where the channel quality indicator value is used to indicate channel quality;
  • the transceiver unit 2011 is configured to send feedback information to the network device, where the feedback information is used to indicate a target channel quality indicator value, and the target channel quality indicator value is a channel quality indicator value in the channel quality indicator set.
  • the target channel quality indicator value is used to determine the current channel quality of the channel.
  • transceiver unit 2011 is configured to perform step S13 in the method embodiment shown in FIG. 4, and the processing unit 2012 is configured to perform step S12 in the method embodiment shown in FIG.
  • FIG. 15 is a terminal device 202 according to an embodiment of the present disclosure.
  • the terminal device 202 includes a processor 2021, a transceiver 2022, and a memory 2023.
  • the processor 2021, the memory 2023, and the transceiver 2022 pass through a bus. Connected to each other.
  • Memory 2023 includes, but is not limited to, a RAM, ROM, EPROM, or CD-ROM for storing associated instructions and data.
  • the transceiver 2022 can be a communication module and a transceiver circuit for transmitting data, signaling, and the like between the network device and the terminal device.
  • the transceiver 2022 is configured to perform step S13 in the method embodiment shown in FIG.
  • the processor 2021 can be a controller, a CPU, a general purpose processor, a DSP, an ASIC, an FPGA or other programmable logic device, a transistor logic device, a hardware component, or any combination thereof. It is possible to implement or perform various exemplary logical blocks, modules and circuits described in connection with the disclosure of the embodiments of the present application. Processor 2021 may also be a combination of computing functions, such as one or more microprocessor combinations, a combination of a DSP and a microprocessor, and the like. In the embodiment of the present application, the processor 2021 is configured to perform step S12 in the embodiment shown in FIG.
  • the processor 2021 is configured to obtain a channel quality indicator set determined by the network device for the terminal device, where the channel quality indicator set includes at least one channel quality indicator value, where the channel quality indicator value is used to indicate channel quality.
  • the transceiver 2022 is configured to send, to the network device, feedback information, where the feedback information is used to indicate a target channel quality indicator value, where the target channel quality indicator value is a channel quality indicator value in the channel quality indicator set, where The target channel quality indicator value is used to determine the current channel quality of the channel.
  • FIG. 16 is a schematic diagram of a logical structure of a network device according to an embodiment of the present disclosure.
  • the network device 301 may include a processing unit 3011 and a transceiver unit 3012.
  • the processing unit 3011 is configured to determine a modulation and coding MCS level indication set of the terminal device, where the MCS level indication set includes at least one MCS level indication value, where the MCS level indication value is used to indicate a modulation and coding policy;
  • the transceiver unit 3012 is configured to send the MCS level indication set to the terminal device.
  • processing unit 3011 is configured to perform step S20 in the method embodiment shown in FIG. 10
  • transceiver unit 3012 is configured to perform step S21 in the method embodiment shown in FIG.
  • FIG. 17 is a schematic diagram showing the physical structure of a network device according to an embodiment of the present disclosure.
  • the network device 302 includes a processor 3021, a transceiver 3022, and a memory 3023.
  • the processor 3021, the memory 3023, and the transceiver The 3022 is connected to each other through a bus.
  • the memory 3023 includes, but is not limited to, a random access memory (RAM), a read-only memory (ROM), an Erasable Programmable Read Only Memory (EPROM), or A Compact Disc Read-Only Memory (CD-ROM) for storing related instructions and data.
  • RAM random access memory
  • ROM read-only memory
  • EPROM Erasable Programmable Read Only Memory
  • CD-ROM Compact Disc Read-Only Memory
  • the transceiver 3022 can be a communication module and a transceiver circuit for transmitting data, signaling, and the like between the network device and the terminal device.
  • the transceiver 3022 is configured to perform step S21 in the method embodiment shown in FIG.
  • the processor 3021 can be a controller, a central processing unit (CPU), a general-purpose processor, a digital signal processor (DSP), an application-specific integrated circuit (ASIC), and an on-site Field Programmable Gate Array (FPGA) or other programmable logic device, transistor logic device, hardware component, or any combination thereof. It is possible to implement or perform various exemplary logical blocks, modules and circuits described in connection with the disclosure of the embodiments of the present application. Processor 3021 may also be a combination of computing functions, such as one or more microprocessor combinations, a combination of a DSP and a microprocessor, and the like. In the embodiment of the present application, the processor 3021 is configured to perform step S20 in the embodiment shown in FIG.
  • the processor 3021 is configured to determine a modulation and coding MCS level indication set of the terminal device, where the MCS level indication set includes at least one MCS level indication value, where the MCS level indication value is used to indicate a modulation and coding policy;
  • the transceiver 3022 is configured to send the MCS level indication set to the terminal device.
  • FIG. 18 is a schematic diagram of a logical structure of a terminal device according to an embodiment of the present disclosure.
  • the terminal device 401 may include a transceiver unit 4011 and a processing unit 4012.
  • the transceiver unit 4011 is configured to receive an MCS level indication set that is determined by the terminal device, where the MCS level indication set includes at least one MCS level indication value, where the MCS level indication value is used to indicate a modulation and coding policy;
  • the processing unit 4012 is configured to store the MCS level indication set.
  • transceiver unit 4011 is configured to perform step S22 in the method embodiment shown in FIG. 10
  • processing unit 4012 is configured to perform step S23 in the method embodiment shown in FIG.
  • FIG. 19 is a terminal device 402 according to an embodiment of the present disclosure.
  • the terminal device 402 includes a processor 4021, a transceiver 4022, and a memory 4023.
  • the processor 4021, the memory 4023, and the transceiver 4022 pass through a bus. Connected to each other.
  • Memory 4023 includes, but is not limited to, a RAM, ROM, EPROM, or CD-ROM for storing associated instructions and data.
  • the transceiver 4022 can be a communication module and a transceiver circuit for transmitting data, signaling, and the like between the network device and the terminal device.
  • the transceiver 4022 is configured to perform step S22 in the method embodiment shown in FIG.
  • the processor 4021 can be a controller, a CPU, a general purpose processor, a DSP, an ASIC, an FPGA or other programmable logic device, a transistor logic device, a hardware component, or any combination thereof. It is possible to implement or perform various exemplary logical blocks, modules and circuits described in connection with the disclosure of the embodiments of the present application.
  • the processor 4021 can also be a combination of computing functions, such as one or more microprocessor combinations, a combination of a DSP and a microprocessor, and the like. In the embodiment of the present application, the processor 4021 is configured to perform step S23 in the embodiment shown in FIG.
  • the transceiver 4022 is configured to receive an MCS level indication set determined by the terminal device, where the MCS level indication set includes at least one MCS level indication value, where the MCS level indication value is used to indicate a modulation and coding policy;
  • the processor 4021 is configured to store the MCS level indication set.
  • each step of the above method may be completed by an integrated logic circuit of hardware in a processor or an instruction in a form of software.
  • the steps of the method disclosed in the embodiments of the present application may be directly implemented as a hardware processor, or may be performed by a combination of hardware and software units in the processor.
  • the software unit can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in a memory, and the processor executes instructions in the memory, in combination with hardware to perform the steps of the above method. To avoid repetition, it will not be described in detail here.
  • the 5G communication system is dedicated to supporting higher system performance, supporting more service types, and supporting different deployment scenarios and a wider spectrum range.
  • the service types mainly include enhanced mobile broadband (eMBB) services, Massive Machine Type Communication (mMTC) services, and Ultra-reliable and low latency communications (URLLC) services.
  • eMBB enhanced mobile broadband
  • mMTC Massive Machine Type Communication
  • URLLC Ultra-reliable and low latency communications
  • MBMS Multimedia Broadcast Multicast Service
  • deployment scenarios include indoor hotspot, dense urban, suburban, urban macro and high-speed rail scenes, etc.
  • the wider spectral range mainly refers to the spectral range up to 100 GHz, that is, the low frequency portion below 6 GHz, and the high frequency portion above 6 GHz up to 100 GHz.
  • a major feature of the 5G communication system compared to the 4G communication system is the increased support for URLLC services.
  • the URLLC business includes a wide variety of services, such as industrial control, industrial production process automation, human-computer interaction and telemedicine.
  • the 5G system actually provides the reference input and evaluation criteria, the 3rd Generation Partnership Project (3GPP) Radio Access Network (RAN) and RAN1
  • 3GPP 3rd Generation Partnership Project
  • RAN Radio Access Network
  • the working group defined the performance indicators of the URLLC service as follows:
  • Delay The transmission time required by the user application layer packet from the Service Data Unit (SDU) of the sender's wireless protocol stack layer 2/3 to the receiver's wireless protocol stack layer 2/3 SDU.
  • SDU Service Data Unit
  • the user plane delay requirement of the URLLC service is 0.5 ms for both uplink and downlink.
  • the above requirements only apply to the case where the base station and the terminal are not in the discontinuous reception state (DRX). It should be pointed out that the performance requirement of 0.5ms here refers to the average delay of the data packet and is not bound to the reliability requirements described below.
  • Reliability The probability of successful transmission of X bits from the sender to the receiver within a certain time (L seconds) under the given channel quality conditions.
  • the above time is still defined as the user application layer packet from the sender wireless protocol.
  • a typical requirement is to achieve 99.999% reliability in 1ms.
  • System capacity The maximum throughput that the system can achieve without interrupting the user.
  • the interruption of the user means that the system cannot meet the reliability requirements within a certain delay range.
  • the terminal device indicates the channel quality between the network device and the terminal device by using a channel quality indicator (CQI) index corresponding to the BLER. Specifically, the CQI index corresponding to all the block error rates is fed back. However, in the case where the channel environment changes, the CQI index corresponding to all the block error rates of the conventional scheme is fed back, so that the signaling overhead of the feedback CQI index is relatively large.
  • CQI channel quality indicator
  • FIG. 20 is a schematic flowchart of a communication method according to an embodiment of the present application.
  • the communication method is applied to a system supporting at least one block error rate BLER set, the first BLER set in the at least one BLER set including a first BLER subset and a second BLER subset, the first BLER subset including at least one BLER, the second BLER subset includes at least one BLER.
  • the BLER in the embodiment of the present application may be of various types such as 10%, 1%, 0.1%, and 0.001%, and may be other types, which is not limited in this application.
  • the first BLER set may be any one of the at least one BLER set, that is, the other BLER sets in the at least one BLER set may also include the first BLER subset and the second BLER subset. This application does not limit this.
  • the terminal device determines, as the first BLER subset, a set of at least one BLER corresponding to the absolute value of the channel quality parameter that needs to be sent to the network device in each BLER set, that is, different
  • the BLERs specifically included in the first BLER subset in the BLER set may be the same or different.
  • the BLERs included in the first BLER set and the BLERs in the other BLER sets in the at least one BLER set may be identical or may be partially the same, or may be all different.
  • the terminal device determines a channel quality parameter corresponding to each BLER in the first BLER subset.
  • the terminal device may be configured to determine a channel quality parameter corresponding to each BLER in the first BLER subset in the first BLER set, or may determine, in each of the first BLER subsets in all BLER sets in the at least one BLER set included in the system.
  • the channel quality parameters corresponding to the BLERs are not limited in this application.
  • the channel quality parameter may be a Signal to Interference plus Noise Ratio (SINR) or a CQI index.
  • SINR Signal to Interference plus Noise Ratio
  • the terminal device sends, to the network device, a channel quality parameter corresponding to each BLER in the first BLER subset.
  • the network device receives the channel quality parameter corresponding to each BLER in the first BLER subset sent by the terminal device.
  • the network device according to the channel quality parameter corresponding to each BLER in the first BLER subset, and the channel quality parameter corresponding to the at least one BLER in the second BLER subset and the channel corresponding to the at least one BLER in the first BLER subset And determining, by the at least one channel quality parameter difference of the quality parameter, a channel quality parameter corresponding to each BLER in the second BLER subset.
  • the network device may only receive the channel quality parameter corresponding to each BLER in the first BLER subset, and then according to the channel quality parameter corresponding to the at least one BLER in the second BLER subset and the at least one BLER in the first BLER subset. At least one channel quality parameter difference of the corresponding channel quality parameter may determine a channel quality parameter corresponding to at least one BLER in the second BLER subset. The channel quality parameter difference between the two BLER corresponding channel quality parameters is substantially consistent under certain conditions.
  • the terminal device when the channel environment changes, can obtain the channel quality parameter corresponding to all the BLERs in the first BLER set by transmitting only the channel quality parameter corresponding to the BLER in the first BLER subset, thereby avoiding the channel quality parameter corresponding to all the BLERs in the first BLER set.
  • the terminal device sends the channel quality parameters corresponding to all BLERs in the first BLER set, which saves signaling overhead.
  • the determined conditions herein may be a transmission mode or a mobile speed or channel environment (eg, an urban environment or a rural environment).
  • the at least one channel quality parameter difference value may be a table or a set or a value.
  • the network device may determine a channel quality parameter corresponding to at least one BLER in the second BLER subset.
  • the BLER of the first BLER subset may be 10%
  • the BLER of the second BLER subset may be 1%, 0.1%, 0.01%, and 0.001%, as shown in Table 1.
  • the network device can receive the 10% corresponding CQI sent by the terminal device, and determine CQI corresponding to each of 1%, 0.1%, 0.01%, and 0.001% according to the value and the CQI level difference in Table 1.
  • the decimal number in the table indicates that the equivalent code rate converted according to the decimal number satisfies the target BLER requirement.
  • the first BLER corresponds to CQI 1
  • the difference between the first BLER corresponding CQI1 and the second BLER corresponding CQI2 is 0.5.
  • CQI 1 corresponds to 16QAM and code rate 1 is 0.5
  • CQI 1 adjacent CQI level corresponds to 16QAM and code rate 2 is 0.75
  • CQI2 corresponds to 16QAM
  • the code rate is 0.5+(0.75-0.5)*0.5 (code rate 1+) (code rate 2 code rate 1) * CQI level difference)
  • the first BLER subset is for convenience to explain the absolute value of the feedback channel quality parameters required by these BLERs, and there is no other limitation.
  • the first BLER set may include only the first BLER and the second BLER, such that the network device according to the channel quality parameter corresponding to the received first BLER, and the channel quality parameter corresponding to the first BLER and the channel quality corresponding to the second BLER
  • the channel quality parameter difference of the parameter may determine a channel quality parameter corresponding to the second BLER.
  • the at least one channel quality parameter difference value may be agreed by the protocol, or may be sent by the terminal device to the network device in advance, which is not limited in this application.
  • the terminal device may report the at least one channel quality parameter difference periodically or in real time.
  • the network device may send a channel quality parameter request to the terminal device to trigger the terminal device to report the channel quality parameter difference, thereby avoiding resource waste.
  • the terminal device may only report one channel quality parameter difference, and other channel quality parameter differences are obtained by interpolation, thereby further saving signaling overhead.
  • the table in the following embodiment only has the channel quality parameter difference corresponding to the two BLERs, the channel quality parameter difference of the multiple groups of BLERs can be obtained by interpolation. To avoid repetition, the following embodiments will not be described again. .
  • the terminal device only reports the CQI level difference of 10% corresponding CQI and 0.001% corresponding CQI in the same channel environment. If the terminal device receives 10% of the corresponding CQI 1, the terminal device can determine 0.001% of the corresponding CQI 2 according to Table 2. The terminal device can also determine the respective CQI level difference values in Table 1 by interpolation according to 10%, 0.001%, CQI 1 and CQI 2 .
  • the CQI levels corresponding to each BLER in the at least two BLER sets may be different from each other.
  • the CQI level difference may be a channel quality parameter difference that is accurate to a certain SINR condition, thereby improving the channel quality parameter accuracy rate corresponding to the BLER in the second BLER subset.
  • the CQI level difference values corresponding to different BLERs may be different according to different transmission methods.
  • the channel quality difference between the channel qualities corresponding to the two BLERs may be different. There are multiple values, and each difference corresponds to one CQI level difference index.
  • the channel quality parameter differences of the channel quality parameters corresponding to the two BLERs respectively.
  • CQI level in the embodiment of the present application may be all CQI levels defined in the protocol, or a partial CQI level.
  • Tables 4 and 5 only use 8 CQI levels as an example, but the application is not limited thereto. .
  • the corresponding BLER set may include 10%, 1%, 0.1%, 0.01%, and 0.001%, such that the CQI level difference may be the CQI 1 in Table 5.
  • the terminal device may only feedback the channel quality parameter difference of the channel quality parameter corresponding to the two BLERs in the case of partial CQI level, thereby saving signaling overhead.
  • the terminal device may only feed back CQI5, CQI6, CQI7, and CQI8, the channel quality parameter difference of 10% of the channel quality parameter and 0.001% of the channel quality parameter.
  • the partial CQI level may be an odd CQI level, an even CQI level, or a large granularity CQI level, or a sampled CQI level or the like.
  • the sampled CQI level may be uniform sampling or non-uniform sampling. As the CQI level increases, the CQI level difference corresponding to the adjacent CQI level becomes larger and larger, and the non-uniform sampling can obtain a uniform CQI level difference, thereby saving signaling overhead.
  • the at least two BLER sets may correspond to a plurality of code rates.
  • the CQI level difference can be more accurate, thereby improving the channel quality parameter accuracy rate corresponding to the BLER in the second BLER subset.
  • the terminal device can also feed back the CQI level difference of the CQI corresponding to the two BLERs under different code rates.
  • the BLER-SINR slope values of different terminal devices are different, as shown in FIG. 21, and therefore, independent channel quality parameter differences may be used for different terminal devices.
  • the BLERs in the at least two BLER sets may correspond to multiple transmission methods.
  • the SINR difference can be the SINR difference in the case of a certain transmission method, thereby improving the accuracy of determining the channel quality parameter corresponding to the BLER in the second BLER subset.
  • the transmission method includes an antenna port configuration and/or a multiple input multiple output (MIMO) preprocessing manner.
  • MIMO multiple input multiple output
  • the antenna port configuration may specifically be 1*1 (ie, one transmit port and one receive port), 1*2 or 2*2, and the like.
  • the preprocessing method may include at least one of transmit diversity, precoding, and beamforming.
  • MIMO includes Single Input Single Output (SISO), Single Input Multiple Output (SIMO), and Multiple Input Single Output (MISO).
  • SISO Single Input Single Output
  • SIMO Single Input Multiple Output
  • MISO Multiple Input Single Output
  • the BLER is a CQI level difference of a CQI level corresponding to 10% of the CQI level and a BLER of 0.001%.
  • the CQI level difference values corresponding to different BLERs may be different according to different transmission methods. For example, as shown in Table 7 and Table 8, the channel quality between the channel qualities corresponding to the two BLERs is poor. There may be multiple values for the value.
  • the network device may select an appropriate CQI level difference value according to the transmission method.
  • the terminal device may further send, to the network device, indication information, where the indication information is used by the network device to determine a CQI level difference value from the plurality of CQI level difference values.
  • the terminal device may send the indication information to determine one of the multiple values. To avoid repetition, the following embodiments are not described again.
  • BLER CQI grade difference 10%-1% 0.5, 2.5, 3.5, 6.5 10%-0.1% 1,3,5,7 10%-0.01% 1.5, 3.5, 5.5, 7.5 10%-0.001% 2,4,6,8
  • the embodiment of the present application may further divide each BLER set in the at least two BLER sets according to a CQI level and a transmission method.
  • transmission method 1 and CQI 1 correspond to one BLER set.
  • the modulation coding difference corresponding to the two BLERs may also be determined by the SINR difference.
  • the SINR difference may also be a plurality of values as shown in Table 12 or Table 13.
  • the embodiment of the present application may further divide each BLER set more specifically. For example, as shown in Table 14, Table 15, and Table 16.
  • SINR difference CQI1 CQI2 CQI3 CQI4 CQI5 CQI6 CQI7 CQI8 10%-1% 0 0 0 0 0 0 0 1 10%-0.1% 0 0 0 1 1 1 2 10%-0.01% 1 1 1 2 2 2 3 10%-0.001% 1 1 1 2 2 3 3
  • SINR difference CQI1 CQI2 CQI3 CQI4 CQI5 CQI6 CQI7 CQI8 10%-1% [0,1] [0,1] [0,1] [0,1] [0,1] [0,1] [1,2] [1,2] [1,2] [2,3] 10%-0.01% [1,2] [1,2] [1,2] [2,3] [2,3] [2,3] [2,3] [2,3] [3,4] 10%-0.001% [1,2] [1,2] [1,2] [2,3] [2,3] [2,3] [2,3] [2,3] [3,4]
  • the BLER set in the at least one BLER set may correspond to multiple transmission methods.
  • Table 17 shows the SINR difference values corresponding to the two BLERs in the case of different transmission methods
  • Table 18 can indicate the SINR difference values corresponding to the two BLERs in the case of other conditions.
  • each BLER set in the at least one BLER set may be partitioned according to a transmission method and a CQI level. For example, as shown in Table 19 and Table 20.
  • the terminal device may further send an index value of the channel quality parameter difference value to the network device, where the index value of the channel quality parameter difference value corresponds to the channel quality parameter difference value.
  • the network device may determine a corresponding channel quality parameter difference according to an index value of the channel quality parameter difference.
  • the network device can learn the difference between the channel quality parameters of the channel quality parameters corresponding to the two BLERs, but cannot specifically know which difference is the difference between the channel quality parameters corresponding to the current two BLERs.
  • the network device may determine, according to an index value of a channel quality parameter difference value sent by the terminal device, that a channel quality parameter difference is specifically a plurality of differences between channel quality parameters corresponding to two BLERs. Which one, so that each BLER corresponding channel quality parameter in the second BLER subset can be accurately determined, and the accuracy of determining the channel quality is improved.
  • the CQI level difference value reported by the terminal device may be represented by a CQI index.
  • the correspondence between the CQI level difference value and the CQI level difference index is as shown in Table 21.
  • the terminal device may send the CQI level difference index to the network device as 3, so that the network device may determine according to the index 3 of the CQI level difference value.
  • the difference between the CBRI levels of the two BELRs is 4.
  • the network device sends a channel quality parameter request to the terminal device, where the channel quality parameter request may be used to request channel quality corresponding to each BLER in the second BLER subset in the BLER set in the at least one BLER set included in the system. At least one channel quality parameter difference of the channel quality parameter corresponding to the at least one BLER in the first BLER subset.
  • the terminal device reports, according to the channel quality parameter request, the at least one channel quality parameter difference requested by the channel quality parameter request to the network device.
  • the network device may carry the channel quality parameter request by using high layer signaling or physical layer signaling.
  • the network device may carry, by using the high layer signaling or the physical layer signaling, at least the channel quality parameter corresponding to each BLER in the second BLER subset in the first BLER set and the channel quality parameter corresponding to the at least one BLER in the first BLER subset.
  • the channel quality parameter request may further request a specific number of channel quality parameter differences corresponding to the at least one BLER.
  • the channel quality parameter request can request 4 SINR values, the CLER level difference corresponding to the BLER.
  • the network device may request a channel quality parameter difference between BLERs in a partial BLER set in the system by using a channel quality parameter request.
  • the network device sends a channel quality parameter request to the terminal device, where the channel quality parameter request may be used to request channel quality corresponding to the at least one BLER in the first BLER subset in each BLER set in the at least one BLER set.
  • the terminal device reports, according to the channel quality parameter request, the at least one channel quality parameter difference requested by the channel quality parameter request to the network device.
  • the network device may carry the channel quality parameter request by using high layer signaling or physical layer signaling, or report all CQI level difference sets by semi-static configuration.
  • the network device may receive the channel quality parameter corresponding to the BLER in the first BLER subset in the first BLER set sent by the terminal device, and according to the first BLER subset.
  • the channel quality parameter corresponding to the partial BLER and the channel quality parameter corresponding to each BLER in the second BLER subset and the channel quality parameter difference of the channel quality parameter corresponding to the at least one BLER in the first BELR subset determine the second BLER
  • the channel quality parameter corresponding to all the BLERs in the subset that is, the network device can determine the channel quality parameters corresponding to all the BLERs in the first BLER set, without the terminal equipment sending the channel quality parameters corresponding to all the BLERs in the first BLER set, saving The signaling overhead.
  • Table 22 shows the correspondence between the CQI index value and the spectral efficiency (Efficiency) in the conventional scheme.
  • the conventional scheme can represent 16 states by 4 bits, and the spectral efficiency corresponding to the CQI index is at least 0.1523, that is, the main channel condition interval of the user can be covered.
  • FIG. 22 is a schematic flowchart of a communication method according to an embodiment of the present application.
  • the terminal device determines, according to the correspondence table, the indication information, where the indication information is used to indicate at least one channel quality indicator CQI index value, where the correspondence relationship table includes N CQI index values, M modulation modes, and K code rate parameters. And at least one CQI index value of the N CQI index values corresponds to a modulation mode, where K CQI index values of the N CQI index values are in one-to-one corresponding to the K code rate parameters, and the N
  • the N CQIs are used. There is a CQI index value in the index value, which is not specific.
  • the correspondence table may be as shown in Table 23, and the CQI index value may correspond to a reserved value.
  • the channel quality indication information may include a bit number greater than 4, that is, the value of the bit may represent a number of states greater than 16.
  • 32 states are represented by 5 bits, which may include a reserved state.
  • spectral efficiency of less than 0.0781 in the embodiment of the present application may also be other values than those in Table 13, which is not limited in this application.
  • the K code rate parameters include values greater than 0 and less than 40.
  • the code rate value may be 16, 8, or 4 or the like. It should be understood that the value of the code rate in the embodiment of the present application is greater than 0, and the value of less than 40 may be other values, which is not limited in this application.
  • the N CQI index values in the correspondence table are arranged in a descending order, and the modulation mode corresponding to each CQI index value of the first P CQI index values in the N CQI index values is The product of the modulation order and the corresponding code rate is arranged in descending order, and the product of the modulation order of the P+h CQI index value and the corresponding code rate is smaller than the Pth CQI index value.
  • the modulation factor of the modulation mode is the product of the corresponding code rate, N>P+h, and h is taken from 1 to NX, X>P.
  • the spectral efficiency of the CQI index value corresponding to less than 0.0781 may be sorted after the maximum spectral efficiency, so that the terminal device may determine the number of bits included in the channel quality indication information according to requirements.
  • the spectral efficiency corresponding to the sequentially arranged CQI index values after the Pth CQI index value may be arranged in order from small to large.
  • the spectral efficiency corresponding to the CQI index value shown in Table 24 is gradually decreasing as the CQI index value increases, that is, from 0.0039 to 0.0781.
  • the correspondence table may also select a part from the above table, that is, the total number of states is reduced, thereby saving signaling overhead. For example, as shown in Table 25 and Table 26.
  • the network device may send the high-level signaling to the terminal device, where the high-level signaling indicates the correspondence table.
  • the terminal device and the network device may agree to form, Table 23, Table 24, Table 25, or Table 26.
  • the device may determine the adopted form according to the service or channel environment, and send the high-level signaling to indicate which corresponding relationship table is adopted.
  • the terminal device and the network device may agree to a default form or a partial correspondence in a table. If the network device determines that the channel quality indication range needs to be changed, that is, only one of the plurality of tables or a certain part of the table is required, the high-level signaling is sent to the terminal device to indicate a certain correspondence in a certain table or table. . In this way, when the terminal device uses the table indicated by the network device, the indication requirement of the current channel environment can be satisfied, and the signaling overhead can also be saved.
  • the terminal device sends the indication information to the network device. Accordingly, the network device receives the indication information. 2203. The network device determines, according to the indication information, a modulation and coding manner corresponding to the at least one CQI index value.
  • the network device may determine, according to the at least one CQI index value indicated by the indication information, and the correspondence table, a modulation code corresponding to the at least one CQI index value.
  • the network device may determine each element in the correspondence table according to the protocol agreement, or determine each element in the correspondence table according to the correspondence table previously configured to the terminal.
  • the at least two CQI index values correspond to at least two modulation modes one by one.
  • the modulation mode corresponding to all CQI indexes of the correspondence table is the most modulated by QPSK, or the modulation mode of 64QAM is the most, or the modulation mode of 256QAM is included.
  • the table 27 covers medium and low SINR (i.e., more QPSK), and can cover 64QAM, and has a wide application range.
  • the table 28 covers the low, medium, and high SINR (i.e., the primary SINR), i.e., has a high CQI level corresponding to a high SINR, and a lower CQI level corresponds to a low SINR. In other words, it can guarantee the transmission efficiency of the user and ensure the robust transmission of the user.
  • the primary SINR i.e., the primary SINR
  • the table 29 covers the 6-high SINR, the CQI level is sparse in the low SINR interval, and the CQI level is rich in the high SINR interval, which is suitable for users with better channel quality and improves transmission efficiency.
  • the network device may determine, according to a protocol agreement, a correspondence between each CQI index value and a modulation mode in Table 27, Table 28, and Table 29; or the network device configures Table 27, Table 28, and Table 29 in advance to the terminal device. The correspondence between each CQI index value and the modulation mode.
  • the modulation method that is, the present application can be applied
  • FIG. 23 is a schematic flowchart of a communication method according to an embodiment of the present application.
  • MCS Modulation and Coding Scheme
  • MCS Index Modulation method Code rate*1024 0 2 4 1 2 8 2 2 16 3 2 32 4 2 78 5 2 193 6 2 449 7 4 378 8 434 9 4 490 10 4 553 11 4 658 12 8 797 13 8 948
  • the K code rate parameters include values greater than 0 and less than 40.
  • the N MCS index values in the correspondence table are arranged in a descending order, and the spectrum efficiency of the first P MCS index values in the N MCS index values is in descending order.
  • MCS Index Modulation method Code rate*1024 0 2 120 1 2 193 2 2 308 3 2 449 4 2 602 5 4 378 6 434 7 4 490 8 4 553 9 4 616 10 4 658 11 6 466 12 6 517
  • the terminal device receives the indication information sent by the network device.
  • the terminal device determines, according to the correspondence table, a modulation and coding manner corresponding to the at least one MCS index value.
  • the network device determines, according to the correspondence table, indication information, where the indication information is used to indicate at least one channel quality indicator MCS index value, where the correspondence relationship table includes N MCS index values, M modulations.
  • Mode and K code rate parameters and at least one of the N MCS index values corresponds to a modulation mode, and K MCS index values of the N MCS index values correspond to the K one-to-one a code rate parameter, a product of a code rate corresponding to a first MCS index value of the N MCS index values and a modulation order of a modulation mode corresponding to the first MCS index value is greater than 0 and less than 0.0781,
  • Corresponding modulation mode that is, the present application can be applied to a system with a spectral efficiency requirement lower than 0.0781, that is, covering a bad channel condition area, and ensuring that the user communicates under the deep fading channel.
  • FIG. 24 shows a schematic block diagram of a network device 2400 in accordance with an embodiment of the present application.
  • the network device 2400 includes:
  • the receiving module 2410 is configured to receive a channel quality parameter corresponding to each BLER in the first BLER subset sent by the terminal device, where the channel quality parameter is used to indicate channel quality between the terminal device and the network device ;
  • the processing module 2420 is configured to determine, according to the at least one channel quality parameter difference value and the channel quality parameter corresponding to the at least one BLER in the first BLER subset, a channel quality parameter corresponding to the at least one BLER in the second BLER subset.
  • the at least one channel quality parameter difference value includes a difference between a channel quality parameter corresponding to at least one BLER in the second BLER subset and a channel quality parameter corresponding to at least one BLER in the first BLER subset.
  • the network device 2400 further includes: a sending module, configured to send a channel quality parameter request to the terminal device, where the channel quality parameter request is used to request a second BLER subset in the first BLER set At least one channel quality parameter of the at least one BLER corresponding channel quality parameter and at least one channel quality parameter of the channel quality parameter corresponding to the at least one BLER in the first BLER subset in the first BLER set; the receiving module 2410 is further configured to: Receiving at least one channel of a channel quality parameter corresponding to at least one BLER in the second BLER subset in the first BLER set and a channel quality parameter corresponding to at least one BLER in the first BLER subset in the first BLER set The difference in quality parameters.
  • a sending module configured to send a channel quality parameter request to the terminal device, where the channel quality parameter request is used to request a second BLER subset in the first BLER set At least one channel quality parameter of the at least one BLER corresponding channel quality parameter and at least one channel quality parameter of the channel quality parameter corresponding
  • the network device 2400 further includes: a sending module, configured to send a channel quality parameter request to the terminal device, where the channel quality parameter request is used to request each BLER set in the at least one BLER set a channel quality parameter difference between a channel quality parameter corresponding to at least one BLER in the second BLER subset and a channel quality parameter corresponding to at least one BLER in the first BLER subset; the receiving module 2410 is further configured to receive the at least A channel quality parameter difference between a channel quality parameter corresponding to at least one BLER in the second BLER subset in each BLER set and a channel quality parameter corresponding to at least one BLER in the second BLER subset.
  • a sending module configured to send a channel quality parameter request to the terminal device, where the channel quality parameter request is used to request each BLER set in the at least one BLER set a channel quality parameter difference between a channel quality parameter corresponding to at least one BLER in the second BLER subset and a channel quality parameter corresponding to at least one BLER in the first BLER subset
  • the transmission methods corresponding to any two BLER sets in the at least two BLER sets are different.
  • the transmission method comprises an antenna port configuration and/or a multiple input multiple output MIMO preprocessing mode.
  • the network device in the embodiment of the present application may receive the channel quality parameter corresponding to the BLER in the first BLER subset in the first BLER set sent by the terminal device, and according to the channel quality parameter corresponding to the partial BLER in the first BLER subset.
  • the quality parameter that is, the network device can determine the channel quality parameter corresponding to all the BLERs in the first BLER set, without requiring the terminal device to send the channel quality parameters corresponding to all BLERs in the first BLER set, thereby saving signaling overhead.
  • the network device 2400 may correspond to the network device in the method 2000 for data transmission of the embodiment of the present application, and the above and other management operations and/or functions of the respective modules in the network device 2400.
  • the network device 2400 may correspond to the network device in the method 2000 for data transmission of the embodiment of the present application, and the above and other management operations and/or functions of the respective modules in the network device 2400.
  • the receiving module 2410 in the embodiment of the present application may be implemented by a transceiver, and the processing module 2420 may be implemented by a processor.
  • network device 2500 can include a transceiver 2510, a processor 2520, and a memory 2530.
  • the memory 2530 can be used to store indication information, and can also be used to store code, instructions, and the like executed by the processor 2520.
  • FIG. 26 shows a schematic block diagram of a terminal device 2600 according to an embodiment of the present application.
  • the terminal device 2600 is applied to a system supporting at least one block error rate BLER set, where each BLER set in the at least one BLER set includes a first BLER subset and a second BLER subset.
  • the first BLER subset includes at least one BLER
  • the second BLER subset includes at least one BLER
  • the terminal device 2600 includes:
  • the processing module 2610 is configured to determine a channel quality parameter corresponding to each BLER in the first BLER subset, where the channel quality parameter is used to indicate channel quality between the terminal device and the network device.
  • the sending module 2620 is configured to send, to the network device, a channel quality parameter corresponding to each BLER in the first BLER subset, so that the network device according to the at least one channel quality parameter difference and the first BLER sub
  • the channel quality parameter corresponding to the at least one BLER in the centralized group determines a channel quality parameter corresponding to the at least one BLER in the second BLER subset, where the at least one channel quality parameter difference value includes a channel corresponding to the at least one BLER in the second BLER subset A difference between a quality parameter and a channel quality parameter corresponding to at least one BLER in the first BLER subset.
  • the terminal device 2600 further includes: a receiving module, configured to receive a channel quality parameter request sent by the network device, where the channel quality parameter request is used to request a second BLER subset in the first BLER set At least one channel quality parameter corresponding to at least one BLER corresponding channel quality parameter and at least one channel quality parameter corresponding to at least one BLER in the first BLER subset in the first BLER set; the processing module 2610 is further configured to perform The channel quality parameter request sends, to the network device, at least one channel quality parameter corresponding to at least one BLER in the second BLER subset in the first BLER set and at least one in the first BLER subset in the first BLER set At least one channel quality parameter difference of the channel quality parameter corresponding to the BLER.
  • a receiving module configured to receive a channel quality parameter request sent by the network device, where the channel quality parameter request is used to request a second BLER subset in the first BLER set At least one channel quality parameter corresponding to at least one BLER corresponding channel quality parameter and at least one channel quality
  • the terminal device 2600 further includes: a receiving module, configured to receive a channel quality parameter request sent by the network device, where the channel quality parameter request is used to request, in each BLER set in the at least one BLER set a channel quality parameter difference between a channel quality parameter corresponding to at least one BLER in the second BLER subset and a channel quality parameter corresponding to at least one BLER in the first BLER subset; the processing module 2610 is further configured to use the channel quality parameter according to the channel quality parameter And transmitting, to the network device, a channel quality parameter corresponding to at least one BLER in a second BLER subset in each BLER set in the at least one BLER set and a channel quality parameter corresponding to at least one BLER in the second BLER subset Channel quality parameter difference.
  • a receiving module configured to receive a channel quality parameter request sent by the network device, where the channel quality parameter request is used to request, in each BLER set in the at least one BLER set a channel quality parameter difference between a channel quality parameter corresponding to at least one B
  • any two BLER sets in the at least two BLER sets have different CQI levels.
  • the transmission methods corresponding to any two BLER sets in the at least two BLER sets are different.
  • the transmission method comprises an antenna port configuration and/or a multiple input multiple output MIMO preprocessing mode.
  • the terminal device in the embodiment of the present application sends the channel quality parameter corresponding to each BLER in the first BLER subset in the first BLER set, and according to the channel quality parameter corresponding to the partial BLER in the first BLER subset and the second BLER.
  • the channel quality parameter difference between the channel quality parameter corresponding to each BLER in the subset and the channel quality parameter corresponding to the at least one BLER in the first BELR subset determines a channel quality parameter corresponding to all BLERs in the second BLER subset, ie
  • the network device can determine the channel quality parameter corresponding to all the BLERs in the first BLER set, and does not need the terminal device to send the channel quality parameter corresponding to all the BLERs in the first BLER set, thereby saving signaling overhead.
  • terminal device 2600 may correspond to the terminal device in the method 2000 for data transmission of the embodiment of the present application, and the above and other management operations and/or other management operations of the respective modules in the terminal device 2600
  • the functions are respectively implemented in order to implement the corresponding steps of the foregoing various methods, and are not described herein for brevity.
  • the sending module 2620 in the embodiment of the present application may be implemented by a transceiver, and the processing module 2610 may be implemented by a processor.
  • the terminal device 2700 may include a transceiver 2710, a processor 2720, and a memory 2730.
  • the memory 2730 can be used to store indication information, and can also be used to store code, instructions, and the like executed by the processor 2720.
  • processor 2520 or processor 2720 can be an integrated circuit chip with signal processing capabilities.
  • each step of the foregoing method embodiment may be completed by an integrated logic circuit of hardware in a processor or an instruction in a form of software.
  • the processor may be a general-purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a Field Programmable Gate Array (FPGA), or the like. Programming logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present invention may be implemented or carried out.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present invention may be directly implemented by the hardware decoding processor, or may be performed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory, and the processor reads the information in the memory and combines the hardware to complete the steps of the above method.
  • the memory 2530 or the memory 2730 in the embodiment of the present invention may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be a read-only memory (ROM), a programmable read only memory (PROM), an erasable programmable read only memory (Erasable PROM, EPROM), or an electric Erase programmable read only memory (EEPROM) or flash memory.
  • the volatile memory can be a Random Access Memory (RAM) that acts as an external cache.
  • RAM Random Access Memory
  • many forms of RAM are available, such as static random access memory (SRAM), dynamic random access memory (DRAM), synchronous dynamic random access memory (Synchronous DRAM). SDRAM), Double Data Rate SDRAM (DDR SDRAM), Enhanced Synchronous Dynamic Random Access Memory (ESDRAM), Synchronous Link DRAM (Synchronous Link DRAM) SLDRAM) and Direct Memory Bus Random Access Memory (DR RAM).
  • memories of the systems and methods described herein are intended to comprise, without being limited to, these and any other suitable types of memory.
  • the embodiment of the present application further provides a system chip, where the system chip includes an input and output interface, at least one processor, at least one memory, and a bus, the at least one memory is configured to store an instruction, and the at least one processor is configured to invoke the at least one
  • the instructions of the memory are operative to perform the methods of the various embodiments described above.
  • FIG. 28 shows a system 2800 for resource allocation in an embodiment of the present application, the system 2800 including:
  • the embodiment of the present application further provides a computer storage medium, which can store program instructions for indicating any of the above methods.
  • the storage medium may be specifically a memory 2530 or 2730.
  • FIG. 29 shows a schematic block diagram of a terminal device 2900 according to an embodiment of the present application.
  • the terminal device 2900 includes:
  • the processing module 2910 is configured to determine, according to the correspondence relationship table, indication information, where the indication information is used to indicate at least one channel quality indicator CQI index value, where the correspondence relationship table includes N CQI index values, M modulation modes, and K code rates.
  • a parameter, and at least one CQI index value of the N CQI index values corresponds to a modulation mode, where K CQI index values of the N CQI index values are in one-to-one corresponding to the K code rate parameters,
  • the sending module 2920 is configured to send the indication information to the network device.
  • the K code rate parameters include values greater than 0 and less than 40.
  • the N CQI index values in the correspondence table are arranged in a descending order, and the modulation mode corresponding to each CQI index value of the first P CQI index values in the N CQI index values is The product of the modulation order and the corresponding code rate is arranged in descending order, and the product of the modulation order of the P+h CQI index value and the corresponding code rate is smaller than the Pth CQI index value.
  • the modulation factor of the modulation mode is the product of the corresponding code rate, N>P+h, and h is taken from 1 to NX, X>P.
  • the terminal device in the embodiment of the present application determines the indication information according to the correspondence relationship table, where the indication information is used to indicate at least one channel quality indicator CQI index value, where the correspondence relationship table includes N CQI index values, M modulation modes, and K a code rate parameter, and at least one CQI index value of the N CQI index values corresponds to a modulation mode, and K CQI index values of the N CQI index values are in one-to-one corresponding to the K code rate parameters
  • the application can be applied to a system with a
  • terminal device 2900 may correspond to the terminal device in the communication method 2200 of the embodiment of the present application, and the foregoing and other management operations and/or functions of the respective modules in the terminal device 2900 are respectively implemented. The corresponding steps of the foregoing various methods are not described herein for brevity.
  • the sending module 2920 in the embodiment of the present application may be implemented by a transceiver, and the processing module 2910 may be implemented by a processor.
  • the terminal device 3000 may include a transceiver 3010, a processor 3020, and a memory 3030.
  • the memory 3030 can be used to store indication information, and can also be used to store code, instructions, and the like executed by the processor 3020.
  • FIG. 31 shows a schematic block diagram of a network device 3100 according to an embodiment of the present application.
  • the network device 3100 includes:
  • the receiving module 3110 is configured to receive indication information, where the indication information is used to indicate at least one channel quality indicator CQI index value;
  • the processing module 3120 is configured to determine, according to the correspondence table, a modulation and coding mode corresponding to the at least one CQI index value, where the correspondence relationship table includes N CQI index values, M modulation modes, and K code rate parameters, and the At least one CQI index value of the N CQI index values corresponds to a modulation mode, and K CQI index values of the N CQI index values are in one-to-one corresponding to the K code rate parameters, and the N CQI index values
  • the K code rate parameters include values greater than 0 and less than 40.
  • the N CQI index values in the correspondence table are arranged in a descending order, and the modulation mode corresponding to each CQI index value of the first P CQI index values in the N CQI index values is
  • the product of the modulation order and the corresponding code rate parameter is arranged in descending order, and the product of the modulation order of the P+h CQI index value and the corresponding code rate parameter is smaller than the Pth CQI index.
  • the product of the modulation order of the modulation mode corresponding to the value and the corresponding code rate parameter, N>P+h, and h is taken from 1 to NX, X>P.
  • the network device in the embodiment of the present application receives the indication information, and determines, according to the correspondence relationship table, a modulation mode corresponding to the at least one CQI index value, where the correspondence relationship table includes N CQI index values, M modulation modes, and K codes.
  • Rate parameter, and at least one CQI index value of the N CQI index values corresponds to a modulation mode, and K CQI index values of the N CQI index values are in one-to-one correspondence with the K code rate parameters.
  • the network device 3100 may correspond to the network device in the communication method 2200 of the embodiment of the present application, and the foregoing and other management operations and/or functions of the respective modules in the network device 3100 respectively implement the foregoing The corresponding steps of each method are not repeated here for brevity.
  • the receiving module 3110 in the embodiment of the present application may be implemented by a transceiver, and the processing module 3120 may be implemented by a processor.
  • network device 3200 can include a transceiver 3210, a processor 3220, and a memory 3230.
  • the memory 3230 can be used to store indication information, and can also be used to store code, instructions, and the like executed by the processor 3220.
  • processor 3020 or processor 3220 can be an integrated circuit chip with signal processing capabilities.
  • each step of the foregoing method embodiment may be completed by an integrated logic circuit of hardware in a processor or an instruction in a form of software.
  • the processor may be a general-purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a Field Programmable Gate Array (FPGA), or the like. Programming logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present invention may be implemented or carried out.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present invention may be directly implemented by the hardware decoding processor, or may be performed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory, and the processor reads the information in the memory and combines the hardware to complete the steps of the above method.
  • the memory 3030 or the memory 3230 in the embodiments of the present invention may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be a read-only memory (ROM), a programmable read only memory (PROM), an erasable programmable read only memory (Erasable PROM, EPROM), or an electric Erase programmable read only memory (EEPROM) or flash memory.
  • the volatile memory can be a Random Access Memory (RAM) that acts as an external cache.
  • RAM Random Access Memory
  • many forms of RAM are available, such as static random access memory (SRAM), dynamic random access memory (DRAM), synchronous dynamic random access memory (Synchronous DRAM). SDRAM), Double Data Rate SDRAM (DDR SDRAM), Enhanced Synchronous Dynamic Random Access Memory (ESDRAM), Synchronous Link DRAM (Synchronous Link DRAM) SLDRAM) and Direct Memory Bus Random Access Memory (DR RAM).
  • memories of the systems and methods described herein are intended to comprise, without being limited to, these and any other suitable types of memory.
  • the embodiment of the present application further provides a system chip, where the system chip includes an input and output interface, at least one processor, at least one memory, and a bus, the at least one memory is configured to store an instruction, and the at least one processor is configured to invoke the at least one
  • the instructions of the memory are operative to perform the methods of the various embodiments described above.
  • FIG. 33 shows a system 3300 for resource allocation according to an embodiment of the present application.
  • the system 3300 includes:
  • the embodiment of the present application further provides a computer storage medium, which can store program instructions for indicating any of the above methods.
  • the storage medium may be specifically a memory 3030 or 3230.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions may be stored in a computer readable storage medium if implemented in the form of a software functional unit and sold or used as a standalone product.
  • the technical solution of the present application which is essential or contributes to the prior art, or a part of the technical solution, may be embodied in the form of a software product, which is stored in a storage medium, including
  • the instructions are used to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present application.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like, which can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种信道质量反馈方法及装置,其中信道质量反馈方法包括如下步骤:网络设备确定终端设备的信道质量指示集合,所述信道质量指示集合包括至少一个信道质量指示值,所述信道质量指示值用于指示信道质量;所述网络设备将所述信道质量指示集合发送至所述终端设备。本申请实施例,可以确定专属于终端设备的信道质量指示集合,不仅节省开销,还可以提高信道质量反馈的精确性。

Description

信道质量反馈方法及装置
本申请要求于2017年6月16日提交中国专利局、申请号为201710459701.5、申请名称为“信道质量反馈方法及装置”,以及于2017年8月11日提交中国专利局、申请号为201710687964.1、申请名称为“信道质量反馈方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种信道质量反馈方法及装置。
背景技术
5G通信系统相比4G通信系统,增加了对超可靠低时延通信(Ultra-Reliable and Low-Latency Communications,URLLC)业务的支持,URLLC业务要求在苛刻的传输时延条件下达到严格的可靠性需求。但仅仅靠鲁棒性地调低调制编码等级,只会导致系统传输低效。因此,需要对信道质量信息的反馈进行增强,使网络设备采用最适合当前信道质量的调制编码策略进行传输,才能既可以保证传输的可靠性,又能避免传输效率过低的调度。
比如,信道质量指示(Channel Quality Indicator,CQI)是一种典型的信道质量信息的反馈技术。在LTE系统,每一个CQI的索引值均对应一种特定信道质量下的调制编码策略,网络设备获知与当前信道质量对应的CQI的索引值后,即可以采用该CQI的索引值对应的调制编码策略进行传输。目前业内对CQI的索引值的反馈包括绝对指示值反馈和差分指示值反馈两种方式。绝对指示值反馈即是,终端设备测量得到当前信道质量后,即反馈一种反馈信息,该反馈信息与当前信道质量对应的CQI的索引值对应。即一种反馈信息对应一种CQI的索引值,比如CQI的索引值包括16种,则需要采用4比特的反馈信息进行反馈。为了节省开销,通常设置CQI的索引值的种类是有限的,仅能反映典型的信道质量情况,对于深衰落信道,无法准确地反映信道质量。
差分指示值反馈即是,首先确定一个CQI的参考索引值,然后其他CQI的索引值均以该参考索引值为基准,计算偏移量,终端设备反馈该偏移量所对应的反馈信息即可。为了节省反馈信息的开销,确定几种可选的偏移量组成一个CQI差分指示值集合,一种反馈信息对应一种偏移量,比如一个CQI差分指示值集合中包括{-1,0,1,2},终端设备可以采用两个比特的反馈信息反馈该四种偏移量。目前业内统一规定了该CQI差分指示值集合,比如,偏移量为2的时候,终端设备反馈的反馈信息为11,偏移量为5时,终端设备反馈的反馈信息仍然为11,终端设备无法较精确的指示信道的当前信道质量。
上述可见,现有技术中无论采用绝对指示值还是差分指示值的方式,均无法精确指示每个终端的信道质量。
发明内容
本申请实施例提供一种信道质量反馈方法及装置,可以确定专属于终端设备的信道质量指示集合,不仅节省开销,还可以尽可能地提高信道质量反馈的精确性。
第一方面,本申请实施例提供了一种信道质量反馈方式,包括:网络设备确定终端设备的信道质量指示集合,该信道质量指示集合包括信道质量指示值,信道质量指示值用于指示信道质量;可选的,该信道质量指示集合可以包括至少一个信道质量指示值。
所述网络设备将所确定的信道质量指示集合发送至所述终端设备。可选的,网络设备可以是由高层信令配置指示该信道质量指示集合,或者网络设备也可以是通过MAC CE信令指示该信道质量指示集合,进一步,该信道质量指示集合还可以是通过用户专属信令指示。
在一种可能的设计中,网络设备向终端设备发送指示消息用于指示该信道质量指示集合,该指示消息包括所述至少一个信道质量指示值。
在一种可能的设计中,信道质量指示值可以包括信道质量的差分指示值,信道质量的差分指示值用于表示信道质量的测量值与信道质量的参考值之间的偏移量。比如,信道质量的测量值为测量得到的CQI的索引值,信道质量的参考值为参考的CQI的索引值。需要说明的是,这里的信道质量包括但不限于CQI,MCS以及BLER。
在一种可能的设计中,信道质量的参考值包括距离测量值对应的参考时间最近的一次非周期性反馈的信道质量的值;或者,
距离测量值对应的参考时间最近的一次周期性反馈的信道质量的值;或者,
特定信道质量上报集合中距离测量值对应的参考时间最近的一次反馈的信道质量的值;
测量值对应的参考时间包括测量值对应的参考测量时间或测量值对应的测量上报时间;测量值对应的测量上报时间为终端设备发送针对所述测量值的反馈信息的时间,反馈信息为终端设备针对所述信道质量指示集合反馈信道质量的信息,参考测量时间在测量上报时间之前的预设时间间隔。
在一种可能的设计中,网络设备为终端设备确定第一信道质量指示集合和第二信道质量指示集合,第一信道质量指示集合对应第一时间间隔的区间,第二信道质量指示集合对应第二时间间隔的区间。该第一时间间隔的区间与第二时间间隔的区间可以是网络设备为终端设备确定的多个时间间隔的区间中的任意两个时间间隔的区间,该多个时间间隔的区间相互之间不重叠,网络设备将所确定的多个时间间隔的区间对应的多个信道质量指示集合发送至终端设备。
在一种可能的设计中,网络设备接收终端设备发送的反馈信息,该反馈信息用于指示第一目标信道质量指示集合中的目标差分指示值,该第一目标信道质量指示集合为与测量值对应的参考时间与参考值对应的参考时间之间的时间差所对应的信道质量指示集合,目标差分指示值用于指示信道质量的当前测量值与信道质量的参考值之间的偏移量,第一目标信道质量指示集合为第一信道质量指示集合或者第二信道质量指示集合。
在一种可能的设计中,网络设备为终端设备确定第三信道质量指示集合和第四信道质量指示集合,该第三信道质量指示集合对应第三误块率差的区间,第四信道质量指示集合对应第四误块率差的区间。该第三误块率差的区间与第四误块率差的区间可以是网络设备为终端设备确定的多个误块率差的区间中的任意两个误块率差的区间,该多个误块率差的 区间相互之间不重叠,网络设备将所确定的多个误块率差的区间对应的多个信道质量指示集合发送至终端设备。
在一种可能的设计中,网络设备接收终端设备发送的反馈信息,该反馈信息用于指示第二目标信道质量指示集合中的目标差分指示值,该第二目标信道质量指示集合为与所述测量值对应的误块率与所述参考值对应的误块率之间的差值所对应的信道质量指示集合,目标差分指示值用于指示信道质量的当前测量值与信道质量的参考值之间的偏移量,第二目标信道质量指示集合为第三信道质量指示集合或者第四信道质量指示集合。
在一种可能的设计中,信道质量指示集合中的信道质量指示值包括信道质量的绝对指示值,该绝对指示值用于表示信道质量的测量值。比如该绝对指示值为CQI的索引值。
可选的,网络设备为终端设备确定的信道质量指示集合为预设集合的子集或者全集;该预设集合可以是协议规定的集合,即网络设备和终端设备中预先设置的集合。该预设集合所包含的绝对指示值的数量大于等于网络设备为终端设备确定的信道质量指示集合中所包含的绝对指示值的数量。网络设备为终端设备确定的信道质量指示集合中所包含的绝对指示值的数量决定了终端设备向网络设备发送反馈信息所需要的比特数量。比如,网络设备为终端设备确定的信道质量指示集合中所包含的绝对指示值的数量为16,则反馈信息所需要的比特数量为4。这样可以采用有限的反馈信息的比特数量反馈专属于该终端设备的信道质量指示集合中所包含的绝对指示值,反馈更加准确。网络设备为不同终端设备确定的信道质量指示集合中所包含的绝对指示值的数量可以不同,进而终端设备向网络设备发送反馈信息所需要的比特数量也可以不同。
可选的,网络设备为终端设备确定的信道质量指示集合中所包含的绝对指示值可以是从预设集合中连续选取的,也可以是非连续选取的。若信道质量指示集合中所包含的绝对指示值可以是连续选取,或者信道质量指示集合中所包含的绝对指示值是等间隔抽取的值,则网络设备向终端设备指示该信道质量指示集合时,可以仅仅指示该信道质量指示集合的起始元素和道质量指示集合中所包含的元素的数量,或者,网络设备仅仅指示起始元素,而道质量指示集合中所包含的元素的数量为协议约定的值。需要说明的是,这里的连续选取的意思可以是根据绝对指示值的编号大小,逐个选取。
可选的,若信道质量指示集合中所包含的绝对指示值为非连续选取的值,且不存在取值规律,则网络设备向终端设备指示该信道质量指示集合时,可以采用bitmap的形式向终端设备进行指示或者,网络设备分别指示预设集合中绝对指示值对应的序号。
可选的,网络设备为终端设备确定的信道质量指示集合中所包含的绝对指示值为多个预设集合中的至少一个集合中的部分或全部信道质量指示值。可选的,该多个预设集合中至少存在两个集合中绝对指示值的数量不同。需要说明的是,预设集合可以是预先设置在网络设备和终端设备的集合。
第二方面,本申请实施例提供一种网络设备,所述网络设备具有实现第一方面所述方法中网络设备行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。
在一种可能实现的方式中,所述网络设备包括处理单元和收发单元,所述处理单元,用于确定终端设备的信道质量指示集合,所述信道质量指示集合包括至少一个信道质量指示值,所述信道质量指示值用于指示信道质量;所述收发单元,用于将所述信道质量指示 集合发送至所述终端设备。
在一种可能实现的方式中,所述网络设备包括处理器和收发器,所述处理器,用于确定终端设备的信道质量指示集合,所述信道质量指示集合包括至少一个信道质量指示值,所述信道质量指示值用于指示信道质量,所述收发器,用于将所述信道质量指示集合发送至所述终端设备。
基于同一发明构思,所述网络设备解决问题的原理以及有益效果可以参见第一方面所述的方法以及所带来的有益效果,所述网络设备的实施可以参见第一方面所述网络设备侧方法的实施,重复之处不再赘述。
第三方面,本申请实施例提供了一种信道质量反馈方法,包括:终端设备获取网络设备针对所述终端设备确定的信道质量指示集合,该信道质量指示集合包括至少一个信道质量指示值,所述信道质量指示值用于指示信道质量。
终端设备向网络设备发送反馈信息,所述反馈信息用于指示目标信道质量指示值,目标信道质量指示值为所述信道质量指示集合中的信道质量指示值,所述目标信道质量指示值用于确定信道的当前信道质量。
在一种可能的设计中,所述信道质量指示值包括信道质量的差分指示值,所述差分指示值用于表示信道质量的测量值与信道质量的参考值之间的偏移量。
在一种可能的设计中,所述信道质量的参考值包括:
距离所述测量值对应的测量时间最近的一次非周期性反馈的信道质量的值;或者,
距离所述测量值对应的测量时间最近的一次周期性反馈的信道质量的值;或者,
特定信道质量上报集合中距离所述测量值对应的测量时间最近的一次反馈的信道质量的值。
在一种可能的设计中,所述终端设备获取网络设备针对所述终端设备确定的信道质量指示集合,包括:
所述终端设备获取第一信道质量指示集合和第二信道质量指示集合,所述第一信道质量指示集合对应第一时间间隔的区间,所述第二信道质量指示集合对应第二时间间隔的区间,所述第一时间间隔和所述第二时间间隔为所述测量值对应的参考时间与所述参考值对应的参考时间之间的时间差,所述第一时间间隔的区间与所述第二时间间隔的区间不同;
所述终端设备向网络设备发送反馈信息,包括:
所述终端设备确定第一目标差分集合,所述第一目标差分集合为所述信道质量的测量值对应的测量时间与所述信道质量的参考值对应的反馈时间之间的时间差所对应的信道质量指示集合,所述第一目标差分集合为所述第一信道质量指示集合或者所述第二信道质量指示集合;
所述终端设备向所述网络设备发送用于指示所述第一目标差分集合中目标差分指示值的反馈信息。
在一种可能的设计中,所述终端设备获取网络设备针对所述终端设备确定的信道质量指示集合,包括:
所述终端设备获取第三信道质量指示集合和第四信道质量指示集合,所述第三信道质量指示集合对应第三误块率差的区间,所述第四信道质量指示集合对应第四误块率差的区间,所述第三误块率差和所述第四误块率差为所述信道质量的测量值对应的误块率与所述 信道质量的参考值对应的误块率之间的差值,所示第三误块率差的区间与第四误块率差的区间不同;
所述终端设备向网络设备发送反馈信息,包括:
所述终端设备确定第二目标差分集合,所述第二目标差分集合为所述信道质量的测量值对应的误块率与所述信道质量的参考值对应的误块率之间的差值所对应的信道质量指示集合,所述第二目标差分集合为所述第三信道质量指示集合或者所述第四信道质量指示集合;
所述终端设备向网络设备发送用于指示所述第二目标差分集合中目标差分指示值的反馈信息。
在一种可能的设计中,所述信道质量指示值包括信道质量的绝对指示值,所述绝对指示值用于表示信道质量的测量值;
所述信道质量指示集合为预设集合的子集或者全集;或者,所述信道质量集合为多个预设集合中的至少一个集合。
可选的,网络设备为终端设备确定的信道质量指示集合为预设集合的子集或者全集;该预设集合可以是协议规定的集合,即网络设备和终端设备中预先设置的集合。
可选的,网络设备为终端设备确定的信道质量指示集合中所包含的绝对指示值可以是从预设集合中连续选取的,或者信道质量指示集合中所包含的绝对指示值可以是从预设集合中非连续选取的。
可选的,网络设备为终端设备确定的信道质量指示集合中所包含的绝对指示值为多个预设集合中的至少一个集合中的部分或全部信道质量指示值。该多个预设集合可以是网络设备和终端设备中预先设置的集合。
第四方面,本申请实施例提供一种终端设备,所述终端设备具有实现第三方面所述方法中终端设备行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。
在一种可能实现的方式中,所述终端设备包括收发单元和处理单元,所述处理单元,用于获取网络设备针对所述终端设备确定的信道质量指示集合,所述信道质量指示集合包括至少一个信道质量指示值,所述信道质量指示值用于指示信道质量;
所述收发单元,还用于发送反馈信息,所述反馈信息用于指示目标信道质量指示值,所述目标信道质量指示值为所述信道质量指示集合中的信道质量指示值,所述目标信道质量指示值用于确定信道的当前信道质量。
在一种可能实现的方式中,所述终端设备包括处理器和收发器,所述处理器,用于获取网络设备针对所述终端设备确定的信道质量指示集合,所述信道质量指示集合包括至少一个信道质量指示值,所述信道质量指示值用于指示信道质量。
所述收发器,用于发送反馈信息,所述反馈信息用于指示目标信道质量指示值,所述目标信道质量指示值为所述信道质量指示集合中的信道质量指示值,所述目标信道质量指示值用于确定信道的当前信道质量。
基于同一发明构思,所述终端设备解决问题的原理以及有益效果可以参见第三方面所述的方法以及所带来的有益效果,所述终端设备的实施可以参见第三方面所述终端设备侧方法的实施,重复之处不再赘述。
第五方面,本申请实施例提供了一种调制编码策略指示方式,包括:网络设备确定终端设备的调制编码MCS等级指示集合,所述MCS等级指示集合包括MCS等级指示值,所述MCS等级指示值用于指示调制编码策略;
所述网络设备将所述MCS等级指示集合发送至所述终端设备。
在一种可能实现的方式中,所述网络设备向所述终端设备发送指示信息,所述指示信息用于指示所述MCS等级指示集合中的目标MCS等级指示值,目标MCS等级指示值用于指示所述网络设备使用的调制编码策略。
在一种可能实现的方式中,所述MCS等级指示集合为预设集合的子集或全集;或者,所述MCS等级指示集合为多个预设集合中的至少一个集合。
可选的,网络设备为终端设备确定的MCS等级指示集合为预设集合的子集或者全集;该预设集合可以是协议规定的集合,即网络设备和终端设备中预先设置的集合
可选的,网络设备为终端设备确定的MCS等级指示集合中所包含的MCS等级指示值可以是从预设集合中连续选取的,或者该MCS等级指示集合中所包含的MCS等级指示值可以是从预设集合中非连续选取的。
若MCS等级指示集合中所包含的MCS等级指示值是从预设集合中连续选取的,或者MCS等级指示集合中所包含的MCS等级指示值是等间隔抽取的值,则网络设备向终端设备指示该MCS等级指示集合时,可以仅仅指示该MCS等级指示集合的起始元素和MCS等级指示集合中所包含的元素的数量,或者,网络设备仅仅指示起始元素,而MCS等级指示集合中所包含的元素的数量为协议约定的值。
可选的,若MCS等级指示集合中所包含的MCS等级指示值是从预设集合中非连续选取的,且不存在取值规律,则网络设备向终端设备指示该MCS等级指示集合时,可以采用bitmap的形式向终端设备进行指示。
可选的,网络设备为终端设备确定的MCS等级指示集合中所包含的MCS等级指示值可以为多个预设集合中的至少一个集合中的部分或全部MCS等级指示值。该多个预设集合可以是网络设备和终端设备中预先设置的集合。
第六方面,本申请实施例提供一种网络设备,所述网络设备具有实现第五方面所述方法中网络设备行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。
在一种可能实现的方式中,所述网络设备包括处理单元和收发单元,所述处理单元,用于确定终端设备的调制编码MCS等级指示集合,所述MCS等级指示集合包括MCS等级指示值,所述MCS等级指示值用于指示调制编码策略;
所述收发单元,用于将所述MCS等级指示集合发送至所述终端设备。。
在一种可能实现的方式中,所述网络设备包括处理器和收发器,所述处理器,用于确定终端设备的调制编码MCS等级指示集合,所述MCS等级指示集合包括MCS等级指示值,所述MCS等级指示值用于指示调制编码策略;
所述收发器,用于将所述MCS等级指示集合发送至所述终端设备。
基于同一发明构思,所述网络设备解决问题的原理以及有益效果可以参见第五方面所述的方法以及所带来的有益效果,所述网络设备的实施可以参见第五方面所述网络设备侧方法的实施,重复之处不再赘述。
第七方面,本申请实施例提供了一种调制编码策略指示方法,包括:
终端设备接收为所述终端设备确定的MCS等级指示集合,所述MCS等级指示集合包括至少一个MCS等级指示值,所述MCS等级指示值用于指示调制编码策略;
所述终端设备存储所述MCS等级指示集合。
在一种可能实现的方式中,所述终端设备接收网络设备发送的指示信息,所述指示信息用于指示所述MCS等级指示集合中的目标MCS等级指示值,所述目标MCS等级指示值用于指示所述网络设备使用的调制编码策略。
在一种可能实现的方式中,所述MCS等级指示集合为预设集合的子集或全集;或者,所述MCS等级指示集合为多个预设集合中的一个集合。
第八方面,本申请实施例提供一种终端设备,所述终端设备具有实现第七方面所述方法中终端设备行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。
在一种可能实现的方式中,所述终端设备包括收发单元和处理单元,所述收发单元,用于接收为所述终端设备确定的MCS等级指示集合,所述MCS等级指示集合包括MCS等级指示值,所述MCS等级指示值用于指示调制编码策略;
所述处理单元,用于存储所述MCS等级指示集合。
在一种可能实现的方式中,所述终端设备包括处理器和收发器,所述收发器,用于接收为所述终端设备确定的MCS等级指示集合,所述MCS等级指示集合包括MCS等级指示值,所述MCS等级指示值用于指示调制编码策略;
所述处理器,还用于存储所述MCS等级指示集合。
基于同一发明构思,所述终端设备解决问题的原理以及有益效果可以参见第七方面所述的方法以及所带来的有益效果,所述终端设备的实施可以参见第七方面所述终端设备侧方法的实施,重复之处不再赘述。
第九方面,本申请实施例提供一种计算机可读存储介质,包括指令,当其在计算机上运行时,使得计算机执行如第一方面所述网络设备的方法。
第十方面,本申请实施例提供一种计算机可读存储介质,包括指令,当其在计算机上运行时,使得计算机执行如第三方面所述终端设备侧的方法。
第十一方面,本申请实施例提供一种计算机可读存储介质,包括指令,当其在计算机上运行时,使得计算机执行如第五方面所述网络设备的方法。
第十二方面,本申请实施例提供一种计算机可读存储介质,包括指令,当其在计算机上运行时,使得计算机执行如第七方面所述终端设备侧的方法。
在本申请实施例中,网络设备为每一个终端设备配置专属于该终端设备的信道质量指示集合,该信道质量指示集合包含信道质量指示值,该信道质量指示值用于指示信道质量,该信道质量指示值为针对该终端设备的信道质量设置,因此终端设备在反馈信道质量时,能够较为精确的向网络设备反馈信道质量,提高信道质量反馈的精确性。
第十三方面,本申请实施例提供了用于确定信道质量的方法,该方法应用于支持至少一个误块率BLER集合的系统中,该至少一个BLER集合中的第一BLER集合包括第一BLER子集和第二BLER子集,该第一BLER子集包括至少一个BLER,该第二BLER子集包括至少一个BLER,该方法包括:网络设备接收终端设备发送的该第一BLER子集中 的每个BLER对应的信道质量参数,该信道质量参数用于指示该终端设备和该网络设备之间的信道质量;该网络设备根据至少一个信道质量参数差值以及该第一BLER子集中的至少一个BLER对应的信道质量参数,确定该第二BLER子集中至少一个BLER对应的信道质量参数,该至少一个信道质量参数差值包括该第二BLER子集中的至少一个BLER对应的信道质量参数与该第一BLER子集中的至少一个BLER对应的信道质量参数的差值。
网络设备可以通过接收终端设备发送的第一BLER集合中的第一BLER子集中的BLER对应的信道质量参数,并根据第一BLER子集中的部分BLER对应的信道质量参数和第二BLER子集中的每个BLER对应的信道质量参数与该第一BELR子集中的至少一个BLER对应的信道质量参数的信道质量参数差值确定出第二BLER子集中的全部BLER对应的信道质量参数,即网络设备能够确定第一BLER集合中全部BLER对应的信道质量参数,而不需要终端设备发送第一BLER集合中的全部BLER对应的信道质量参数,节省了信令开销。
在一种可能的实现方式中,该方法还包括:该网络设备向该终端设备发送信道质量参数请求,该信道质量参数请求用于请求该第一BLER集合中的第二BLER子集中的至少一个BLER对应的信道质量参数与该第一BLER集合中的第一BLER子集中的至少一个BLER对应的信道质量参数的至少一个信道质量参数差值;该网络设备接收该第一BLER集合中的第二BLER子集中的至少一个BLER对应的信道质量参数与该第一BLER集合中的第一BLER子集中的至少一个BLER对应的信道质量参数的至少一个信道质量参数差值。
网络设备在需要该信道质量参数差值时向终端设备发送信道质量参数请求,并通过该信道质量参数请求请求该网络设备需求的信道质量参数差值,避免终端设备上报多余的信道质量参数差值,从而更一步节省了信令开销。
在一种可能的实现方式,该方法还包括:该网络设备向该终端设备发送信道质量参数请求,该信道质量参数请求用于请求该至少一个BLER集合中的每个BLER集合中的第二BLER子集中的至少一个BLER对应的信道质量参数与第一BLER子集中的至少一个BLER对应的信道质量参数的信道质量参数差值;该网络设备接收该至少一个BLER集合中每个BLER集合中的第二BLER子集中的至少一个BLER对应的信道质量参数与第二BLER子集中的至少一个BLER对应的信道质量参数的信道质量参数差值。
网络设备可以请求所有的信道质量参数差值,进而可以确定所有的BLER对应的信道质量参数,从而提高了信道质量的可靠性。
在一种可能的实现方式,若所述方法应用于支持至少两个BLER集合的系统中,所述至少两个BLER集合中的任意两个BLER集合对应的CQI等级不同。
网络设备可以接收到终端设备上报的不同CQI等级情况下,BLER对应的信道质量参数之间的信道质量参数差值,从而提高了第二BLER子集中的BLER对应的信道质量参数准确率。
在一种可能的实现方式,若所述方法应用于支持至少两个BLER集合的系统中,所述至少两个BLER集合中的任意两个BLER集合对应的传输方法不同。
网络设备可以接收到终端设备上报的不同传输方法的情况下,BLER对应的信道质量参数之间的信道质量参数差值,从而提高了第二BLER子集中的BLER对应的信道质量参 数准确率。
在一种可能的实现方式,所述传输方法包括天线端口配置和/或多输入多输出MIMO预处理方式。
网络设备可以接收到终端设备上报的不同天线端口配置和/或多输入多输出MIMO预处理方式情况下,BLER对应的信道质量参数之间的信道质量参数差值,从而更进一步提高了第二BLER子集中的BLER对应的信道质量参数准确率。
第十四方面,提供了一种用于确定信道质量的方法,该方法应用于支持至少一个误块率BLER集合的系统中,所述至少一个BLER集合中的每个BLER集合包括第一BLER子集和第二BLER子集,所述第一BLER子集包括至少一个BLER,所述第二BLER子集包括至少一个BLER,所述方法包括:终端设备确定所述第一BLER子集中每个BLER对应的信道质量参数,所述信道质量参数用于指示所述终端设备和网络设备之间的信道质量;所述终端设备向所述网络设备发送所述第一BLER子集中的每个BLER对应的信道质量参数,以使所述网络设备根据至少一个信道质量参数差值以及所述第一BLER子集中的至少一个BLER对应的信道质量参数确定第二BLER子集中的至少一个BLER对应的信道质量参数,所述至少一个信道质量参数差值包括所述第二BLER子集中的至少一个BLER对应的信道质量参数与所述第一BLER子集中的至少一个BLER对应的信道质量参数的差值。
终端设备发送第一BLER集合中的第一BLER子集中的每个BLER对应的信道质量参数,并根据第一BLER子集中的部分BLER对应的信道质量参数和第二BLER子集中的每个BLER对应的信道质量参数与该第一BELR子集中的至少一个BLER对应的信道质量参数的信道质量参数差值确定出第二BLER子集中的全部BLER对应的信道质量参数,即网络设备能够确定第一BLER集合中全部BLER对应的信道质量参数,而不需要终端设备发送第一BLER集合中的全部BLER对应的信道质量参数,节省了信令开销。
在一些可能的实现方式中,所述方法还包括:所述终端设备接收网络设备发送的信道质量参数请求,所述信道质量参数请求用于请求所述第一BLER集合中的第二BLER子集中的至少一个BLER对应的信道质量参数与所述第一BLER集合中的第一BLER子集中的至少一个BLER对应的信道质量参数的至少一个信道质量参数差值;所述终端设备根据所述信道质量参数请求向所述网络设备发送所述第一BLER集合中的第二BLER子集中的至少一个BLER对应的信道质量参数与所述第一BLER集合中的第一BLER子集中的至少一个BLER对应的信道质量参数的至少一个信道质量参数差值。
终端设备接收网络设备在需要该信道质量参数差值时向终端设备发送的信道质量参数请求,反馈该网络设备需求的信道质量参数差值,避免终端设备上报多余的信道质量参数差值,从而更一步节省了信令开销。
在一些可能的实现方式中,所述方法还包括:所述终端设备接收网络设备发送的信道质量参数请求,所述信道质量参数请求用于请求所述至少一个BLER集合中的每个BLER集合中的第二BLER子集中的至少一个BLER对应的信道质量参数与第一BLER子集中的至少一个BLER对应的信道质量参数的信道质量参数差值;所述终端设备根据所述信道质量参数请求向所述网络设备发送所述至少一个BLER集合中每个BLER集合中的第二BLER子集中的至少一个BLER对应的信道质量参数与第二BLER子集中的至少一个 BLER对应的信道质量参数的信道质量参数差值。
终端设备可以向网络设备发送网络设备请求的所有的信道质量参数差值,进而可以确定所有的BLER对应的信道质量参数,从而提高了信道质量的可靠性。
在一些可能的实现方式中,所述方法还包括:若所述方法应用于支持至少两个BLER集合的系统中,所述至少两个BLER集合中的任意两个BLER集合对应的CQI等级不同。
终端设备可以向网络设备发送网络设备请求的不同CQI等级情况下,BLER对应的信道质量参数之间的信道质量参数差值,从而提高了第二BLER子集中的BLER对应的信道质量参数准确率。
在一些可能的实现方式中,若所述方法应用于支持至少两个BLER集合的系统中,所述至少两个BLER集合中的任意两个BLER集合对应的传输方法不同。
终端设备可以向网络设备发送网络设备请求的不同传输方法的情况下,BLER对应的信道质量参数之间的信道质量参数差值,从而提高了第二BLER子集中的BLER对应的信道质量参数准确率。
在一些可能的实现方式中,所述传输方法包括天线端口配置和/或多输入多输出MIMO预处理方式。
终端设备可以向网络设备发送网络设备请求的不同天线端口配置和/或多输入多输出MIMO预处理方式情况下,BLER对应的信道质量参数之间的信道质量参数差值,从而更进一步提高了第二BLER子集中的BLER对应的信道质量参数准确率。
第十五方面,提供了一种通信方法,包括:终端设备根据对应关系表,确定指示信息,该指示信息用于指示至少一个信道质量指示CQI索引值,该对应关系表包括N个CQI索引值、M个调制方式和K个码率参数,且所述N个CQI索引值中的至少一个CQI索引值对应一种调制方式,所述N个CQI索引值中的K个CQI索引值一一对应所述K个码率参数,所述N个CQI索引值中的第一CQI索引值对应的码率与所述第一CQI索引值对应的调制方式的调制阶数的乘积为大于0,且小于0.0781的值,其中,码率参数=码率*1024,N>M,N≥K,且N、K和M均为正整数;所述终端设备向网络设备发送该指示信息。
本申请实施例中,终端设备根据对应关系表,确定指示信息,该指示信息用于指示至少一个信道质量指示CQI索引值,该对应关系表包括N个CQI索引值、M个调制方式和K个码率参数,且所述N个CQI索引值中的至少一个CQI索引值对应一种调制方式,所述N个CQI索引值中的K个CQI索引值一一对应所述K个码率参数,所述N个CQI索引值中的第一CQI索引值对应的码率与所述第一CQI索引值对应的调制方式的调制阶数的乘积为大于0,且小于0.0781的值,其中,码率参数=码率*1024,N>M,N≥K,且N、K和M均为正整数,并发送该指示信息,使得网络设备根据该指示信息确定该至少一个CQI索引值对应的调制方式,也就是说,本申请能够应用于对频谱效率要求低于0.0781的系统,即覆盖恶劣的信道条件区域,保证用户在深衰信道下通信。
在一种可能的实现方式中,该K个码率参数包括大于0,且小于40的值。
在一种可能的实现方式中,所述对应关系表中的N个CQI索引值按从小到大的顺序排列,且所述N个CQI索引值中的前P个CQI索引值中每个CQI索引值对应的调制方式的调制阶数与对应的码率的乘积按从小到大的顺序排列,第P+h个CQI索引值对应的调制方式的调制阶数与对应的码率的乘积小于第P个CQI索引值对应的调制方式的调制阶 数与对应的码率的乘积,N>P+h,且h依次取从1到N-X,X>P。
CQI索引值对应的小于0.0781的频谱效率可以排序在频谱效率最大值的后面,这样终端设备可以根据需求确定信道质量指示信息包括的比特位数。
第十六方面,提供了一种通信方法,包括:网络设备接收指示信息,该指示信息用于指示至少一个信道质量指示CQI索引值;所述网络设备根据对应关系表,确定所述至少一个CQI索引值对应的调制编码方式,该对应关系表包括N个CQI索引值、M个调制方式和K个码率参数,且所述N个CQI索引值中的至少一个CQI索引值对应一种调制方式,所述N个CQI索引值中的K个CQI索引值一一对应所述K个码率参数,所述N个CQI索引值中的第一CQI索引值对应的码率参数与所述第一CQI索引值对应的调制方式的调制阶数的乘积为大于0,且小于0.0781的值,其中,码率参数=码率*1024,N>M,N≥K,且N、K和M均为正整数。
本申请实施例中,网络设备接收指示信息,并根据对应关系表,确定该至少一个CQI索引值对应的调制方式,该对应关系表包括N个CQI索引值、M个调制方式和K个码率参数,且所述N个CQI索引值中的至少一个CQI索引值对应一种调制方式,所述N个CQI索引值中的K个CQI索引值一一对应所述K个码率参数,所述N个CQI索引值中的第一CQI索引值对应的码率与所述第一CQI索引值对应的调制方式的调制阶数的乘积为大于0,且小于0.0781的值,其中,码率参数=码率*1024,N>M,N≥K,且N、K和M均为正整数,并发送该指示信息,使得网络设备根据该指示信息确定该至少一个CQI索引值对应的调制方式,也就是说,本申请能够应用于对频谱效率要求低于0.0781的系统,即覆盖恶劣的信道条件区域,保证用户在深衰信道下通信。
在一种可能的实现方式中,该K个码率参数包括大于0,且小于40的值。
在一种可能的实现方式中,所述对应关系表中的N个CQI索引值按从小到大的顺序排列,且所述N个CQI索引值中的前P个CQI索引值中每个CQI索引值对应的调制方式的调制阶数与对应的码率参数的乘积按从小到大的顺序排列,第P+h个CQI索引值对应的调制方式的调制阶数与对应的码率参数的乘积小于第P个CQI索引值对应的调制方式的调制阶数与对应的码率参数的乘积,N>P+h,且h依次取从1到N-X,X>P。
CQI索引值对应的小于0.0781的频谱效率可以排序在频谱效率最大值的后面,这样终端设备可以根据需求确定信道质量指示信息包括的比特位数。
第十七方面,提供了一种通信方法,该通信方法包括:网络设备根据对应关系表,确定指示信息,该指示信息用于指示至少一个调制编码方式MCS索引值,该对应关系表包括N个MCS索引值、M个调制方式和K个码率参数,且所述N个MCS索引值中的至少一个MCS索引值对应一种调制方式,所述N个MCS索引值中的K个MCS索引值一一对应所述K个码率参数,所述N个MCS索引值中的第一MCS索引值对应的码率与所述第一MCS索引值对应的调制方式的调制阶数的乘积为大于0,且小于0.0781的值,其中,码率参数=码率*1024,N>M,N≥K,且N、K和M均为正整数;该网络设备发送该指示信息。
本申请实施例中,网络设备根据对应关系表,确定指示信息,该指示信息用于指示至少一个信道质量指示MCS索引值,该对应关系表包括N个MCS索引值、M个调制方式和K个码率参数,且所述N个MCS索引值中的至少一个MCS索引值对应一种调制方式, 所述N个MCS索引值中的K个MCS索引值一一对应所述K个码率参数,所述N个MCS索引值中的第一MCS索引值对应的码率与所述第一MCS索引值对应的调制方式的调制阶数的乘积为大于0,且小于0.0781的值,其中,码率参数=码率*1024,N>M,N≥K,且N、K和M均为正整数,并发送该指示信息,使得终端设备根据该指示信息确定该至少一个MCS索引值对应的调制方式,也就是说,本申请能够应用于对频谱效率要求低于0.0781的系统,即覆盖恶劣的信道条件区域,保证用户在深衰信道下通信。
在一种可能的实现方式中,该K个码率包括大于0,且小于40的值,N≥K,K为正整数。
在一种可能的实现方式中,所述对应关系表中的N个MCS索引值按从小到大的顺序排列,且所述N个MCS索引值中的前P个MCS索引值中每个MCS索引值对应的调制方式的调制阶数与对应的码率参数的乘积按从小到大的顺序排列,第P+h个MCS索引值对应的调制方式的调制阶数与对应的码率参数的乘积小于第P个MCS索引值对应的调制方式的调制阶数与对应的码率参数的乘积,N>P+h,且h依次取从1到N-X,X>P。
第十八方面,提供了一种通信方法,该通信方法包括:终端设备接收指示信息,该指示信息用于指示至少一个调制编码方案MCS索引值;所述终端设备根据对应关系表,确定所述至少一个MCS索引值对应的调制编码方式,该对应关系表包括N个MCS索引值、M个调制方式和K个码率参数,且所述N个MCS索引值中的至少一个MCS索引值对应一种调制方式,所述N个MCS索引值中的K个MCS索引值一一对应所述K个码率参数,所述N个MCS索引值中的第一CQI索引值对应的码率参数与所述第一MCS索引值对应的调制方式的调制阶数的乘积为大于0,且小于0.0781的值,其中,码率参数=码率*1024,N>M,N≥K,且N、K和M均为正整数。
在一种可能的实现方式中,该K个码率参数包括大于0,且小于40的值。
在一种可能的实现方式中,所述对应关系表中的N个MCS索引值按从小到大的顺序排列,且所述N个MCS索引值中的前P个MCS索引值中每个MCS索引值对应的调制方式的调制阶数与对应的码率参数的乘积按从小到大的顺序排列,第P+h个MCS索引值对应的调制方式的调制阶数与对应的码率参数的乘积小于第P个MCS索引值对应的调制方式的调制阶数与对应的码率参数的乘积,N>P+h,且h依次取从1到N-X,X>P。
第十九方面,提供了一种网络设备,包括:处理器、存储器和通信接口。处理器与存储器和通信接口连接。存储器用于存储指令,处理器用于执行该指令,通信接口用于在处理器的控制下与其他网元进行通信。该处理器执行该存储器存储的指令时,该执行使得该处理器执行第十三方面或第十三方面的任意可能的实现方式中的方法。
第二十方面,提供了一种终端设备,包括:处理器、存储器和通信接口。处理器与存储器和通信接口连接。存储器用于存储指令,处理器用于执行该指令,通信接口用于在处理器的控制下与其他网元进行通信。该处理器执行该存储器存储的指令时,该执行使得该处理器执行第十四方面或第十四方面的任意可能的实现方式中的方法。
第二十一方面,提供了一种计算机存储介质,该计算机存储介质中存储有程序代码,该程序代码用于指示执行上述第十三方面或第十三方面的任一种可能的实现方式中的方法的指令。
第二十二方面,提供了一种计算机存储介质,该计算机存储介质中存储有程序代码, 该程序代码用于指示执行上述第十四方面或第十四方面的任一种可能的实现方式中的方法的指令。
第二十三方面,提供了一种网络设备,该网络设备包括用于执行第十三方面或第十三方面的任意可能的实现方式中的方法的模块。
第二十四方面,提供了一种终端设备,该终端设备包括执行第十四方面或第十四方面的任意可能的实现方式中的方法的模块。
第二十五方面,提供了一种系统,该系统包括:
上述第二十三方面的网络设备和上述第二十四方面的终端设备。
第二十六方面,提供了一种终端设备,包括:处理器、存储器和通信接口。处理器与存储器和通信接口连接。存储器用于存储指令,处理器用于执行该指令,通信接口用于在处理器的控制下与其他网元进行通信。该处理器执行该存储器存储的指令时,该执行使得该处理器执行第十五方面或第十五方面的任意可能的实现方式中的方法。
第二十七方面,提供了一种网络设备,包括:处理器、存储器和通信接口。处理器与存储器和通信接口连接。存储器用于存储指令,处理器用于执行该指令,通信接口用于在处理器的控制下与其他网元进行通信。该处理器执行该存储器存储的指令时,该执行使得该处理器执行第十六方面或第十六方面的任意可能的实现方式中的方法。
第二十八方面,提供了一种计算机存储介质,该计算机存储介质中存储有程序代码,该程序代码用于指示执行上述第十五方面或第十五方面的任一种可能的实现方式中的方法的指令。
第二十九方面,提供了一种计算机存储介质,该计算机存储介质中存储有程序代码,该程序代码用于指示执行上述第十六方面或第十六方面的任一种可能的实现方式中的方法的指令。
第三十方面,提供了一种终端设备,该终端设备包括用于执行第十五方面或第十五方面的任意可能的实现方式中的方法的模块。
第三十一方面,提供了一种网络设备,该网络设备包括执行第十六方面或第十六方面的任意可能的实现方式中的方法的模块。
第三十二方面,提供了一种系统,该系统包括:
上述第三十方面的终端设备和上述第三十一方面的网络设备。
第三十三方面,提供了一种网络设备,包括:处理器、存储器和通信接口。处理器与存储器和通信接口连接。存储器用于存储指令,处理器用于执行该指令,通信接口用于在处理器的控制下与其他网元进行通信。该处理器执行该存储器存储的指令时,该执行使得该处理器执行第十七方面或第十七方面的任意可能的实现方式中的方法。
第三十四方面,提供了一种终端设备,包括:处理器、存储器和通信接口。处理器与存储器和通信接口连接。存储器用于存储指令,处理器用于执行该指令,通信接口用于在处理器的控制下与其他网元进行通信。该处理器执行该存储器存储的指令时,该执行使得该处理器执行第十八方面或第十八方面的任意可能的实现方式中的方法。
第三十五方面,提供了一种计算机存储介质,该计算机存储介质中存储有程序代码,该程序代码用于指示执行上述第十七方面或第十七方面的任一种可能的实现方式中的方法的指令。
第三十六方面,提供了一种计算机存储介质,该计算机存储介质中存储有程序代码,该程序代码用于指示执行上述第十八方面或第十八方面的任一种可能的实现方式中的方法的指令。
第三十七方面,提供了一种网络设备,该网络设备包括用于执行第十七方面或第十七方面的任意可能的实现方式中的方法的模块。
第三十八方面,提供了一种终端设备,该终端设备包括执行第十八方面或第十八方面的任意可能的实现方式中的方法的模块。
第三十九方面,提供了一种系统,该系统包括:
上述第三十七方面的网络设备和上述第三十八方面的终端设备。
基于上述方案,本申请实施例网络设备可以通过接收终端设备发送的第一BLER集合中的第一BLER子集中的BLER对应的信道质量参数,并根据第一BLER子集中的部分BLER对应的信道质量参数和第二BLER子集中的每个BLER对应的信道质量参数与该第一BELR子集中的至少一个BLER对应的信道质量参数的信道质量参数差值确定出第二BLER子集中的全部BLER对应的信道质量参数,即网络设备能够确定第一BLER集合中全部BLER对应的信道质量参数,而不需要终端设备发送第一BLER集合中的全部BLER对应的信道质量参数,节省了信令开销。
附图说明
图1是本申请实施例的应用场景示意图;
图2是现有技术的CQI绝对指示值的取值表格;
图3是现有技术的CQI差分指示值的取值表格;
图4是本申请实施例提供的一种信道质量反馈方法的交互流程图;
图5是本申请实施例提供的一种SINR波动示意图;
图6是本申请实施例提供的一种时间相关性的仿真图;
图7是本申请实施例提供的一种参考时间示意图;
图8是本申请实施例提高的另一种参考时间示意图;
图9是本申请实施例提供的一种CQI表格示意图;
图10是本申请实施例提供的一种调制编码策略指示方法的交互图;
图11是本申请实施例提供的一种MCS表格示意图;
图12是本申请实施例提供的网络设备的逻辑结构示意图;
图13是本申请实施例提供的网络设备的实体结构示意图;
图14是本申请实施例提供的终端设备的逻辑结构示意图;
图15是本申请实施例提供的终端设备的实体结构示意图;
图16是本申请实施例提供的网络设备的逻辑结构示意图;
图17是本申请实施例提供的网络设备的实体结构示意图;
图18是本申请实施例提供的终端设备的逻辑结构示意图;
图19是本申请实施例提供的终端设备的实体结构示意图;
图20是本申请实施例的通信方法的示意性流程图;
图21是不同终端设备的信道质量参数差值的示意性流程图;
图22是本申请实施例的通信方法的示意性流程图;
图23是本申请实施例的通信方法的示意性流程图;
图24是本申请实施例的网络设备的示意性框图;
图25是本申请实施例的网络设备的示意性结构图;
图26是本申请实施例的终端设备的示意性框图;
图27是本申请实施例的终端设备的示意性结构图;
图28是本申请实施例的系统的示意性框图;
图29是本申请实施例的终端设备示意性结构图;
图30是本申请实施例的终端设备的示意性结构图;
图31是本申请实施例的网络设备的示意性框图;
图32是本申请实施例的网络设备的示意性结构图;
图33是本申请实施例的系统的示意性框图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
下面结合本申请实施例中的附图对本申请实施例进行描述。
本申请实施例中所涉及的预设集合可以是预先设置在网络设备和终端设备的集合。
本申请实施例可以应用于无线通信系统,无线通信系统通常由小区组成,每个小区包含一个基站(Base Station,BS),基站向多个终端设备提供通信服务,其中基站连接到核心网设备,如图1所示。其中,基站包含基带单元(Baseband Unit,BBU)和远端射频单元(Remote Radio Unit,RRU)。BBU和RRU可以放置在不同的地方,例如:RRU拉远,放置于离高话务量的开阔区域,BBU放置于中心机房。BBU和RRU也可以放置在同一机房。BBU和RRU也可以为一个机架下的不同部件。
需要说明的是,本申请实施例提及的无线通信系统包括但不限于:窄带物联网系统(Narrow Band-Internet of Things,NB-IoT)、全球移动通信系统(Global System for Mobile Communications,GSM)、增强型数据速率GSM演进系统(Enhanced Data rate for GSM Evolution,EDGE)、宽带码分多址系统(Wideband Code Division Multiple Access,WCDMA)、码分多址2000系统(Code Division Multiple Access,CDMA2000)、时分同步码分多址系统(Time Division-Synchronization Code Division Multiple Access,TD-SCDMA),长期演进系统(Long Term Evolution,LTE)、5G系统以及未来移动通信系统。
本申请实施例中,所述基站是一种部署在无线接入网中用以为终端设备提供无线通信功能的装置。所述基站可以包括各种形式的宏基站,微基站(也称为小站),中继站,接入点,传输接入点(Transmission Receiver point,TRP)等。在采用不同的无线接入技术的系统中,具备基站功能的设备的名称可能会有所不同,例如,在LTE系统中,称为演进的节点B(evolved NodeB,eNB或者eNodeB),在第三代(3rd Generation,3G)系统中,称为节点B(Node B,NB)等。为方便描述,本申请所有实施例中,上述为终端设备提供无线通信功能的装置统称为网络设备。
本申请实施例中所涉及到的终端设备可以包括各种具有无线通信功能的手持设备、车 载设备、可穿戴设备、计算设备或连接到无线调制解调器的其它处理设备。所述终端设备也可以称为移动台(Mobile Station,MS)、终端(Terminal),还可以包括用户单元(subscriber unit)、蜂窝电话(cellular phone)、智能手机(smart phone)、无线数据卡、个人数字助理(Personal Digital Assistant,PDA)电脑、平板型电脑、无线调制解调器(modem)、手持设备(handset)、膝上型电脑(laptop computer)、机器类型通信(Machine Type Communication,MTC)终端等。为方便描述,本申请所有实施例中,上面提到的设备统称为终端设备。
比如,对于5G通信系统,该系统将支持多种业务类型、不同部署场景以及更宽的频谱范围。其中,上述的多种业务类型包括但不限于增强移动宽带(enhanced Mobile Broadband,eMBB),海量机器类型通信(Massive Machine Type Communication,mMTC),超可靠低延迟通信(Ultra-reliable and low latency communications,URLLC),多媒体广播多播业务(Multimedia Broadcast Multicast Service,MBMS)和定位业务等等。上述不同部署场景包括但不限于室内热点(Indoor hotspot),密集城区(dense urban),郊区,城区宏覆盖(Urban Macro)及高铁场景等。更宽的频谱范围是指5G将支持高达100GHz的频谱范围,这既包括6GHz以下的低频部分,也包括6GHz以上最高到100GHz的高频部分。
5G通信系统相比于4G通信系统的一大特征就是增加了对URLLC业务的支持。URLLC业务种类包括很多种,典型的用例包括工业控制,工业生产流程自动化,人机交互和远程医疗等。为更好的量化URLLC业务的性能指标,从而给5G系统设计提供基准输入和评估准则,3GPP RAN和RAN1工作组对URLLC业务的性能指标做了如下定义:
时延:用户应用层数据包从发送端无线协议栈层2/3的服务数据单元(Service Data Unit,SDU)到达接收端无线协议栈层2/3的SDU所需的传输时间。URLLC业务的用户面时延要求对于上下行均为0.5ms,上述要求仅适用于基站和终端都不处于非连续接收态时。需要指出的是,这里0.5ms的时延性能要求是指数据包的平均时延。
可靠性:在给定的信道质量条件下,从发送端到接收端在一定时间内(L秒)正确传输X比特的成功概率,上述的时间仍定义为用户应用层数据包从发送端无线协议栈层2/3的SDU到达接收端无线协议栈层2/3SDU所需的时间。对于URLLC业务,一个典型需求是在1ms内达到99.999%的可靠性。需要指出的上述性能指标仅是个典型值,具体URLLC业务可能对可靠性有不同的需求,比如某些极端苛刻的工业需要将端到端时延控制在0.25ms内,并且达到99.9999999%的传输成功概率。
系统容量:在满足一定比例中断用户前提下的系统所能达到的小区最大吞吐量,这里中断用户是指系统无法满足其在一定时延范围内的可靠性需求。
由此可见,在苛刻的传输时延条件下达到严格的可靠性需求,要求每次传输都要尽可能正确,尤其是重传。但仅仅靠鲁棒性地调低调制编码等级,也会导致系统低效。因此,需要对信道质量反馈进行增强,既可以保证传输的可靠性,又能避免传输效果过低的调度。
比如,CQI反馈技术是一种典型的信道质量反馈技术。在长期演进(Long Term Evolution,LTE)系统,CQI反馈技术包括绝对指示值反馈和差分指示值反馈两种方式。CQI的绝对指示值取值如图2的表格所示,如图所示,每一个CQI的索引值对应一种特定信道条件下的调制和码率。一个表格中CQI的绝对指示值即构成一个CQI的信道质量指 示集合。
CQI的绝对指示值反馈即是,终端设备测量得到当前信道质量后,即反馈一种反馈信息,该反馈信息与当前信道质量对应的CQI的索引值对应。即一种反馈信息对应一种CQI的索引值,比如CQI的索引值包括16种,则需要采用4比特的反馈信息进行反馈。为了节省反馈开销,通常CQI的索引值的种类设置会比较少,比如仅仅设置16种,这种指示会比较粗略,精准度不高。
进一步,采用绝对指示值反馈的方式会导致开销比较大,业内逐渐采用差分指示值反馈的方式反馈CQI,差分指示值反馈即是,首先确定一个CQI的参考索引值,然后其他CQI的索引值均以该参考索引值为基准,计算偏移量,终端设备反馈该偏移量所对应的反馈信息即可。为了节省反馈信息的开销,确定几种可选的偏移量组成一个CQI的信道质量指示集合,一种反馈信息对应一种偏移量,比如一个CQI的信道质量指示集合中包括{-1,0,1,2},终端设备可以采用两个比特的反馈信息反馈该四种偏移量。目前业内统一规定了CQI的信道质量指示集合,如图3的表格所示的CQI的信道质量指示集合。不同反馈场景下参考索引值不同,并且偏移量的定义也不同。比如,以码字1的宽带CQI索引值为参考索引值,计算码字0的宽带CQI索引值与码字1的宽带CQI索引值之间的偏移量。比如,以宽带CQI索引值为参考索引值,计算子带的CQI索引值与该宽带CQI索引值之间的偏移量。比如,以宽带CQI索引值为参考索引值,计算选择的M个信号质量最好的子带CQI索引值与该宽带CQI索引值之间的偏移量。
对于一种特定的反馈场景,所有终端设备均采用相同信道质量指示集合,会导致信道质量指示不准确,比如,对于图3的信道质量指示集合,偏移量为2的时候,终端设备反馈的反馈信息为10,偏移量为5时,终端设备反馈的反馈信息仍然为10,终端设备无法较精确的指示信道的当前信道质量。
无论上述绝对指示值反馈还是差分指示值反馈均存在由于所有终端设备采用相同的集合进行反馈,导致反馈不够精确的问题。为了解决上述问题,本申请实施例为每一个终端设备单独设置信道质量指示集合,需要说明的是,该信道质量指示集合中包括的信道质量指示值可以是上述的绝对指示值或者差分指示值。
需要说明的是,为终端设备配置的该信道质量指示集合所包含的信道质量指示值的数量本申请实施例不作限定,可以是一个或者多个。该信道质量指示值用于指示信道质量。
比如,该信道质量指示集合包含的是信道质量的绝对指示值(比如,CQI的索引值)。网络设备为每一个终端设备配置一个信道质量指示集合,该信道质量指示集合可以是协议规定的预设集合的子集或者全集,其中,协议规定的预设集合中包括的绝对指示值比较多,划分粒度比较细,每一个绝对指示值对应一种特定信道条件下的调制编码策略。针对每个终端设备的信道质量变化不同,所配置的信道质量指示集合也是不同的,即从预设集合中所选择的子集不同。或者,网络设备为每一个终端设备配置的信道质量指示集合可以是协议规定的多个预设集合中的至少一个集合,比如,网络设备为一个终端设备配置多个信道质量指示集合,一个信道质量指示集合对应一种业务类型,该终端设备在对不同的业务类型反馈时,采用不同的信道质量指示集合进行反馈。可选的,该多个预设集合中存在至少两个预设集合中的绝对指示值的数量不同。
又比如,该信道质量指示集合包含的是差分指示值(比如,CQI索引值的偏移量)。 网络设备为每一个终端设备配置一个信道质量指示集合,该信道质量指示集合为与该终端设备的信道质量变化相适应。比如,该终端设备为中间用户,则说明该终端设备的信道质量比较好,SINR波动较小,该信道质量指示集合中的差分指示值的波动比较小,若该终端设备为边缘用户,则说明该终端设备的信道质量比较差,SINR波动较大,该信道质量指示集合中的差分指示值的波动比较大。每个终端设备都可以通过反馈信息较精确的指示该终端设备的信道质量。
用上述为终端设备配置专属的信道质量指示集合,可以使得该终端设备较为精确的反馈当前信道质量。
下面将对本申请实施例提供的信道质量反馈方法进行详细介绍。
请参见图4,图4是本申请实施例提供的一种信道质量反馈方法的流程示意图,从网络设备与终端设备交互的角度进行介绍,该方法可以包括但不限于如下步骤:
步骤S10:网络设备确定终端设备的信道质量指示集合,所述信道质量指示集合包括信道质量指示值,所述信道质量指示值用于指示信道质量;
步骤S11:所述网络设备将所述信道质量指示集合发送至所述终端设备。
步骤S12:终端设备获取网络设备针对所述终端设备确定的信道质量指示集合,所述信道质量指示集合包括信道质量指示值,所述信道质量指示值用于指示信道质量;
步骤S13:所述终端设备向网络设备发送反馈信息,所述反馈信息用于指示目标信道质量指示值,所述目标信道质量指示值为所述信道质量指示集合中的信道质量指示值,所述目标信道质量指示值用于确定信道的当前信道质量。
步骤S14:网络设备接收反馈信息,确定信道质量。
本申请实施例中,网络设备为终端设备单独确定信道质量指示集合,并将所确定的信道质量指示集合发送至该终端设备,该终端设备后续根据该信道质量指示集合向网络设备反馈信道质量。可选的,网络设备为终端设备单独确定信道质量指示集合可以是网络设备为终端设备配置信道质量指示集合。
可选的,信道质量指示集合中包括至少一个信道质量指示值,该信道质量指示值用于指示信道质量的优劣。信道质量指示值可以是信道质量的差分指示值或者信道质量的绝对指示值,其中,信道质量的差分指示值用于表示信道质量的测量值与信道质量的参考值之间的偏移量,信道质量的绝对指示值用于表示信道质量的测量值。可选的,信道质量可以是CQI,MCS或BLER,本申请对此不作限定,在此仅以CQI,MCS和BLER作为举例说明。
可选的,若信道质量是CQI,信道质量的测量值可以是当前信道质量条件下CQI的索引值,信道质量的参考值可以是距离测量值对应的参考时间最近的一次反馈的CQI的索引值(可以是距离测量值对应的参考时间最近的一次周期性反馈的CQI的索引值,或者也可以是距离测量值对应的参考时间最近的一次非周期性反馈的CQI的索引值,或者也可以是特定信道质量上报集合中距离测量值对应的参考时间最近的一次反馈的信道质量的值)。
其中,该测量值对应的参考时间可以是该测量值对应的参考测量时间或者该测量值对应的测量上报时间。该测量值对应的测量上报时间指终端设备针对该信道质量的测量值发送反馈信息的时间(反馈信息用于根据信道质量的测量值向网络设备指示信道质量),通常定义参考测量时间在测量上报时间之前的预设时间间隔(比如在测量上报时间之前的两 个子帧)。终端设备测量信道质量以获得该信道质量的测量值,终端设备测量信道质量的测量时间与参考测量时间重叠,或者,该测量时间包括多个,该参考测量时间为该测量时间中的一个。如图7所示,t3表示测量上报时间,t2表示参考测量时间,t1表示测量时间,在图7中,t2与t3之间相差1个子帧的间隔,t1与t2重叠。如图8所示,t3表示测量上报时间,t2表示参考测量时间,t1表示测量时间,在图7中,t2与t3之间相差1个子帧的间隔,t1跨越三个子帧(即是终端设备在三个子帧均测量信道质量,最后反馈的是信道质量的均值),则t2是t1中的一个子帧。t2与t3之间相差的间隔大小通常由协议约定。
可选的,若信道质量是MCS,信道质量的测量值可以是为了达到目标误块率与当前信道质量条件匹配的MCS等级,信道质量的参考值可以是当前传输所采用的MCS等级。
可选的,若信道质量是BLER,信道质量的测量值可以是当前信道质量条件下本次传输所采用的MCS对应的BLER等级,信道质量的参考值可以是本次传输期望的目标BLER等级。BLER等级划分可以包括{1,2,3,4,5},各个BLER等级分别对应的BLER为{10^-1,10^-2,10^-3,10^-4,10^-5}。
作为一种可选的实施方式,信道质量指示集合中的信道质量指示值为信道质量的差分指示值,即信道质量指示值为信道质量的测量值与信道质量的参考值之间的偏移量。由于不同终端设备的信道质量变化不同,因此需要为每一个终端设备单独配置信道质量指示集合,该信道质量指示集合中的信道质量指示值为根据该终端设备的信道质量变化设置的,能够较精确反映出该终端设备的信道质量变化。
比如处于小区边缘或者处于小区中间的终端设备的接收信号与干扰加噪声比(Signal to Interference plus Noise Ratio,SINR)随时间波动情况不同。如图5所示,实线是小区中间用户,间隔为10ms的SINR波动与累积分布函数(cumulative distribution function,CDF)分布曲线,50%,80%,95%对应的SINR波动分别为0.8dB,1.2dB,1.7dB。图5的虚线是小区边缘用户,间隔为10ms的SINR波动与CDF分布曲线,50%,80%,95%对应的SINR波动分别为0.9dB,2dB,4.3dB,如下表所示:
  50% 80% 95%
中间用户 0.8dB 1.2dB 1.7dB
边缘用户 0.9dB 2dB 4.3dB
由上表可见,小区边缘用户的SINR波动较中间用户明显。网络设备可以给边缘用户和中间用户分别配置信道质量指示集合,下面以信道质量为CQI作为举例说明。信道质量的测量值为测量得到的CQI的索引值,信道质量的参考值为参考CQI的索引值。差分指示值即是测量得到的CQI的索引值与参考CQI的索引值之间的偏移量。
比如,给中间用户配置信道质量指示集合为{-1.2 -0.8 0 0.8};给边缘用户配置信道质量指示集合为{-3 -1.3 0 1.3}。其中,给中间用户配置的信道质量指示集合中的信道质量指示值之间的波动较小,而给边缘用户配置的信道质量指示集合中的信道质量指示值之间的波动较大,这主要是为了适应中间用户和边缘用户的信道质量变化特点。
上述可见,虽然信道质量指示集合只有4个差分指示值,对应UCI信令是2bit,但由于采用用户专属的信道质量指示集合,每个用户都能较精确的指示当前信道质量的波动。
现有技术中,在一种场景下只有一个信道质量指示集合{-2 -1 0 1},譬如,第一个值对于中间用户来说,向下偏移过大(后续传输采用较低的MCS等级),造成传输资源浪 费。第一个值对于边缘用户来说,向下偏移不足,基站配置较高的MCS等级给终端,造成传输错误。
除了上述根据终端设备的中间用户或者边缘用户的小区属性确定信道质量指示集合中差分指示值外,还可以根据终端设备上报的信道质量的历史值进行配置。比如,该终端设备历史上报的CQI索引值较低或者波动较大,则信道质量指示集合中设置较大的信道质量指示值。否则,设置较小的值。
可选的,信道质量指示集合中差分指示值的取值可以是整数和/或分数,比如,信道质量指示集合为{-0.3,0,0.3,0.6}。
可选的,信道质量指示集合中差分指示值的取值可以是非均匀分布的,比如,信道质量指示集合为{-5,-1,0,1,5}。
进一步可选的,信道质量变化与时间间隔的大小也存在相关性,如图6所示,即是本申请实施例提供的一种时间间隔大小与信道的SINR相关性的仿真图,该仿真图的横坐标为时间间隔,单位是毫秒,纵坐标是SINR的相关性系数,如图所示,时间间隔越大,信道的SINR相关性越小,相应的信道质量指示集合中的信道质量的差分指示值的波动也越大。相反,时间间隔越小,信道的SINR相关性越大,相应的信道质量指示集合中的信道质量的差分指示值的波动也越小。
本申请实施例中,信道质量指示集合中的信道质量的差分指示值用于表示信道质量的测量值与信道质量的参考值之间的偏移量,即是信道质量的测量值对应的参考时间与信道质量的参考值对应的参考时间之间的时间间隔大小决定了信道质量指示集合中差分指示值的波动大小。需要说明的是,信道质量的参考值对应的参考时间即是信道质量的参考值对应的参考测量时间或者信道质量的参考值对应的测量上报时间,这里信道质量的参考值对应的参考测量时间与测量值对应的参考测量时间定义相同,这里信道质量的参考值对应的测量上报时间与测量值对应的测量上报时间定义相同,在此不再赘述。
对于同一个终端设备,本申请实施例设置多个时间间隔的区间分别对应多个信道质量指示集合,该多个时间间隔的区间不重叠,时间间隔即是测量值对应的参考时间与信道质量的参考值对应的参考时间之间的时间差。本申请实施例的第一时间间隔的区间与第二时间间隔的区间可以是该多个时间间隔的区间中的任意两个时间间隔区间。第一时间间隔的区间对应第一信道质量指示集合,第二时间间隔的区间对应第二信道质量指示集合。
可选的,若第一时间间隔的区间中的时间间隔小于第二时间间隔的区间中的时间间隔,则第一信道质量指示集合中的差分指示值的波动小于第二信道质量指示集合中的差分指示值的波动。比如,可以是第一信道质量指示集合中的差分指示值的方差小于第二信道质量指示集合中的差分指示值的方差。
比如,网络设备设置时间间隔的区间小于5ms时,对应的信道质量指示集合为{-0.5,0,0.5,1};网络设备设置时间间隔的区间为大于5ms小于10ms时,对应的信道质量指示集合为{-1,0,1,2};网络设备设置时间间隔的区间大于10ms时,对应的信道质量指示集合为{-2,0,2,4}。
进一步可选的,信道质量变化与所参考的BLER的大小也存在相关性,比如,测量值对应的BLER与参考值对应的BLER相同,则SINR相差较小,相应的,信道质量指示集合中信道质量的差分指示值的波动较小。若测量值对应的BLER与参考值对应的BLER不 同,则SINR相差较大,相应的,信道质量指示集合中信道质量的差分指示值的波动较大。并且,若测量值对应的BLER大于参考值对应的BLER,信道质量指示集合中的差分指示值大于0或者等于0。若测量值对应的BLER小于参考值对应的BLER,信道质量指示集合中的差分指示值小于0或者等于0。
对于同一个终端设备,本申请实施例设置多个BLER差的区间分别对应多个信道质量指示集合,该多个BLER差的区间不重叠,BLER差即是测量值对应的BLER与信道质量的参考值对应的BLER之间的误块率差。本申请实施例的第一BLER差的区间与第二BLER差的区间可以是该多个BLER差的区间中的任意两个BLER差的区间。第一BLER差的区间对应第一信道质量指示集合,第二BLER差的区间对应第二信道质量指示集合。
可选的,若第一BLER差的区间中的BLER差的绝对指示值小于第二BLER差的区间中的BLER差的绝对指示值,则第一信道质量指示集合中的差分指示值的波动小于第二信道质量指示集合中的差分指示值的波动。比如,可以是第一信道质量指示集合中的差分指示值的方差小于第二信道质量指示集合中的差分指示值的方差。
可选的,还可以根据BLER差的区间中的BLER差与0的比较结果,确定不同的信道质量指示集合,比如,BLER差=0,信道质量指示集合为{-0.5,0,0.5,1};BLER差>0,信道质量指示集合为{0,1,2,3};BLER差<0,信道质量指示集合为{-3,-2,-1,0}。
网络设备将所配置的信道质量指示集合发送至终端设备,可选的,该信道质量指示集合可以是由高层信令配置发送,或者该信道质量指示集合也可以是通过MAC CE信令配置发送,进一步,该信道质量指示集合还可以是通过用户专属信令配置发送。
终端设备获取网络设备为该终端设备确定的信道质量指示集合,该信道质量指示集合包含信道质量的差分指示值,比如网络设备为终端设备确定的信道质量指示集合为{-1,0,1,2}。终端设备测量信道,并进行信道质量的反馈。比如终端设备在t1时刻测量信道,并获得信道质量的测量值CQI=3,以t0时刻反馈的CQI索引值作为参考值,假设t0时刻反馈的CQI索引值为2,t0时刻在t1时刻之前。信道质量的测量值与信道质量的参考值之间的差为3-2=1。
下表为反馈信息与CQI的差分指示值之间的对应关系,从下表可以看出,终端设备发送反馈信息10。
UCI比特 CQI的差分指示值
00 -1
01 0
10 1
11 2
网络设备接收到反馈信息后,根据信道质量的参考值,可以计算得到信道质量的测量值。该信道质量的测量值用于表示当前信道质量,进而影响后续网络设备调度时配置的MCS和/或功率等。
可选的,对于同一个终端设备,若网络设备配置的信道质量指示集合为,多个时间间隔的区间分别对应多个信道质量指示集合。比如,网络设备设置时间间隔的区间小于5ms时,对应的信道质量指示集合为{-0.5,0,0.5,1};网络设备设置时间间隔的区间为大于5ms小于10ms时,对应的信道质量指示集合为{-1,0,1,2};网络设备设置时间间隔的 区间大于10ms时,对应的信道质量指示集合为{-2,0,2,4}。
终端设备在t1时刻测量信道,并获得信道质量的测量值CQI=3,以t0时刻反馈的CQI索引值作为参考值,假设t0时刻反馈的CQI索引值为2,t0时刻在t1时刻之前。信道质量的测量值与信道质量的参考值之间的差为3-2=1。t1时刻与t0时刻之间的时间间隔为6ms,则对应的信道质量指示集合为{-1,0,1,2},差分指示值1对应的反馈信息为终端10。终端设备发送反馈信息10。
网络设备接收到反馈信息10后,首先需要确定该反馈信息所对应的第一目标信道质量指示集合,具体可选的,网络设备确定该测量值对应的参考时间与参考值对应的参考时间之间的时间间隔,并确定该时间间隔属于预先设置的多个时间间隔的区间中的目标时间间隔的区间,将该目标时间间隔的区间所对应的信道质量指示集合作为第一目标信道质量指示集合。比如,网络设备确定第一目标信道质量指示集合为时间间隔的区间为大于5ms小于10ms所对应的信道质量指示集合{-1,0,1,2}。进一步根据反馈信息10确定目标差分指示值为1,再根据信道质量的参考值,得到信道质量的测量值,该信道质量的测量值用于表示当前信道质量。进而影响后续网络设备调度时配置的MCS和/或功率等。
可选的,对于同一个终端设备,若网络设备配置的信道质量指示集合为,多个BLER差的区间分别对应多个信道质量指示集合,该多个BLER差的区间之间相互无重叠。本申请实施例的第三误块率差的区间和第四误块率差的区间可以是该多个BLER差的区间中的任意两个误块率差的区间。第三误块率差的区间对应第三信道质量指示集合,第四误块率差的区间对应第四信道质量指示集合。
比如,网络设备设置的多个BLER差的区间分别对应多个信道质量指示集合为,BLER差=0,信道质量指示集合为{-0.5,0,0.5,1};BLER差>0,信道质量指示集合为{0,1,2,3};BLER差<0,信道质量指示集合为{-3,-2,-1,0}。
终端设备在t1时刻测量信道,并获得信道质量的测量值CQI=2,其参考的BLER=1%,以t0时刻反馈的CQI索引值作为参考值,假设t0时刻反馈的CQI索引值为2,其参考的BLER=10%,t0时刻在t1时刻之前。信道质量的测量值与信道质量的参考值之间的差为2-2=1。测量值对应的BLER与参考值对应的BLER之间的BLER差小于0,则对应的信道质量指示集合为{-3,-2,-1,0},差分指示值0对应的反馈信息为终端11。终端设备发送反馈信息11。
网络设备接收到反馈信息11后,首先需要确定该反馈信息所对应的第二目标信道质量指示集合,具体可选的,网络设备确定该测量值对应的BLER与参考值对应的BLER之间的BLER差,并确定该BLER差属于预先设置的多个BLER差的区间中的目标BLER差的区间,将该目标BLER差的区间所对应的信道质量指示集合作为第二目标信道质量指示集合。比如,网络设备确定第二目标信道质量指示集合为BLER差的区间为小于0所对应的信道质量指示集合{-3,-2,-1,0}。进一步根据反馈信息11确定目标差分指示值为0,再根据信道质量的参考值,得到信道质量的测量值,该信道质量的测量值用于表示当前信道质量。进而影响后续网络设备调度时配置的MCS和/或功率等。
作为一种可选的实施方式,信道质量指示集合中的信道质量指示值为信道质量的绝对指示值,信道质量绝对指示值用于表示信道质量的测量值,比如测量得到的CQI索引值。不同用户通常工作在不同的SINR区间,例如,边缘用户通常工作在较低的SINR,比如 -12dB~-2dB;中心用户工作在较高的SINR,比如15dB~25dB。因为不同用户测量反馈的CQI索引值的范围也会不同。为了降低反馈开销,并且对CQI的种类进行更加细粒度的划分,网络设备为每个终端设备独立配置信道质量指示集合,该信道质量指示集合中的绝对指示值为根据该终端设备的信道质量设置的,能够较精确反映出该终端设备的信道质量变化。
可选的,网络设备为终端设备配置的信道质量指示集合可以是预设集合的子集或者全集,该预设集合为协议规定的集合。如图9所示,可以是协议规定的预设集合,该预设集合包括32种绝对指示值,为了节省开销,网络设备根据每个终端设备的信道质量,为该终端设备配置该预设集合中的子集或者全集。比如,网络设备给边缘用户配置的信道质量指示集合为工作区间在0-15的集合,网络设备给中心用户配置的信道质量指示集合为工作区间在16-31的集合。需要说明的是,UCI中用于指示CQI的反馈信息的有效比特L与RRC配置的CQI集合中绝对指示值的数量S相关,L>=log2(S)。
其中,网络设备为终端设备配置的信道质量指示集合可以是从协议规定的预设集合中连续取值得到的集合;或者,网络设备为终端设备配置的信道质量指示集合可以是由协议规定的预设集合中非连续取值得到集合。
网络设备在向终端设备指示信道质量指示集合时,可以直接指示该信道质量指示集合中所包含的绝对指示值,比如直接指示该信道质量指示集合中所包含的CQI的索引值。比如,网络设备给边缘用户的终端设备配置的信道质量指示集合为{0 2 4 6 8 10 12},网络设备给中心用户的终端设备配置的信道质量指示集合为{14 16 18 20 22 24},边缘用户的终端设备和中心用户的终端设备所检测的SINR区间不同,所以配置不同区间的CQI。
可选的,网络设备向终端设备指示的所述信道质量指示集合中的绝对指示值的数量可以由协议约定(协议约定的数量即预先设置的网络设备和终端设备中的数量),或可配置。若信道质量指示集合中绝对指示值的数量可配置,则可以是根据业务配置,例如,URLLC业务对应的信道质量指示集合中绝对指示值的数量小于eMBB业务对应的信道质量指示集合中绝对指示值的数量。或者网络设备根据业务和/或信道质量波动情况配置,例如,对于移动速度较慢或静止的用户配置绝对指示值数量较少的信道质量指示集合,对于移动速度较快的用户配置绝对指示值数量较多的信道质量指示集合。
比如,网络设备给URLLC业务的终端设备配置的信道质量指示集合为{0 2 4 6 8 … 28 30},即是偶数的CQI索引值。网络设备给eMBB业务的终端设备配置的信道质量指示集合为{0,1,2,…31}或者{6 8 10 12 14 16 17 … 31}。为了指示任何时刻的信道状态,所以需要给URLLC业务的终端设备配置较大范围的SINR区间,即是较大范围的CQI的索引值。但考虑到URLLC业务对于CQI指示信令的开销受限,因此,可以均匀地从预设集合中抽取,但也不限于均匀抽取。eMBB业务的终端设备对CQI指示信令的开销不敏感,可以给eMBB业务的终端设备配置较大的集合,甚至可以将整个预设集合配置给eMBB业务的终端设备。对于将整个预设集合配置给eMBB业务的终端设备的情况,可以是默认配置在终端侧,无需额外的信令指示。
若网络设备为终端设备配置的信道质量指示集合是由协议规定的预设集合中连续取值得到的集合,或者网络设备为终端设备配置的信道质量指示集合是由协议规定的预设集合中等间隔元素取值得到的集合(比如每相隔1个元素,序号为3,5,7)。网络设备在向 该终端设备指示该信道质量指示集合时的信令(该信令可以包括但不限于高层信令、MAC CE信令以及用户专属信令等等)可以仅指示信道质量指示集合的起始元素在预设集合中的序号和信道质量指示集合中所包含的元素个数;或者仅指示信道质量指示集合的起始元素在预设集合中的序号,而信道质量指示集合中元素的个数由协议约定,信道质量指示集合中的元素即是该信道质量指示集合中的绝对指示值。
比如,信道质量指示集合中元素的个数由协议约定,网络设备为终端设备配置的信道质量指示集合是由协议规定的预设集合中连续的绝对指示值组成。网络设备给边缘用户的终端设备配置的信道质量指示集合为{0 1 2 3 4 5 6 7 8 9 10 11},则指示0;网络设备给中心用户的终端设备配置的信道质量指示集合为{10 11 12 13 14 15 16 17 18 19 20 21},则指示10。可选的,信道质量指示集合中元素的个数可以与业务类型绑定(比如URLLC业务的信道质量指示集合中所包含的元素个数为8,eMBB业务的信道质量指示集合中所包含的元素个数为16)。
又比如,信道质量指示集合中元素的个数由协议约定,网络设备为终端设备配置的信道质量指示集合是由协议规定的预设集合中等间隔元素组成,即从预设集合中等间隔取值,则仅指示起始元素的序号(若信道质量为CQI,则序号为CQI的索引值)。网络设备给边缘用户的终端设备配置的信道质量指示集合为{0 2 4 6 8 10},则指示0。网络设备给中心用户的终端设备配置的信道质量指示集合为{10 12 14 16 18 20},则指示10。可选的,信道质量指示集合中元素的个数可以与业务类型绑定(比如URLLC业务的信道质量指示集合中所包含的元素个数为8,eMBB业务的信道质量指示集合中所包含的元素个数为16)。
若网络设备为终端设备配置的信道质量指示集合中信道质量的绝对指示值的取值方式确定(即连续取值,或均匀间隔取值),则网络设备可以仅指示起始位置(起始位置可以是序号,比如CQI的索引值)和该信道质量指示集合中所包含的绝对指示值的数量(比如,所包含的CQI索引值的数量)。起始位置和绝对指示值的数量可以独立编码或联合编码指示。
比如,网络设备给边缘用户的终端设备配置的信道质量指示集合为{0 2 4 6 8 10},则指示{0,6},其中,0是起始位置,6是该信道质量指示集合中所包含的绝对指示值的数量。或者,将0,6两个元素可以联合编码,例如根据树形指示公式计算得到160。网络设备给中心用户的终端设备配置的信道质量指示集合为{10 11 12 13 14 15 16 17 18 19 20},则指示{10,11},其中,10是起始位置,11是该信道质量指示集合中所包含的绝对指示值的数量。或者将10,11两个元素联合编码,例如根据树形指示公式计算得到331。树形
Figure PCTCN2018091681-appb-000001
RIV=N CQI(L Set-1)+Set start
else
RIV=N CQI(N CQI-L Set+1)+(N CQI-1-Set start)
where L Set≥1and shall not exceed N CQI-Set start
其中,L Set为信道质量指示集合中CQI的数量,N CQI为预设集合中元素的个数,Set start为起始位置。
若网络设备为终端设备配置的信道质量指示集合是由协议规定的预设集合中随机选择的元素组成,即不存在规律性,则用于指示信道质量指示集合的信令(该信令可以包括但不限于高层信令、MAC CE信令以及用户专属信令等等)可以采用bitmap形式向终端设备指示,比如预设集合包含64个绝对指示值,则采用64个比特进行指示,若信道质量指示集合中包含该绝对指示值,则将该绝对指示值所对应的比特位置1,若信道质量指示集合中不包含该绝对指示值,则将该绝对指示值所对应的比特位置0。
比如,网络设备给边缘用户的终端设备配置的信道质量指示集合为{0 2 4 6 8 10 12},网络设备给中心用户的终端设备配置的信道质量指示集合为{14 16 18 20 22 24}。则在采用bitmap形式向终端设备指示时,可以是向边缘用户的终端设备指示10101010101010000…0;可以是给中心用户的终端设备指示000000000000001010101010100…0。
终端设备获取网络设备确定的信道质量指示集合,该信道质量指示集合为预设集合的子集或者全集,并且该信道质量指示集合中包含信道质量的绝对指示值,终端设备测量信道质量,并向网络设备发送与信道质量的测量值对应的反馈信息。该反馈信息的比特数量与信道质量指示集合中所包含的绝对指示值的数量相关。比如,如图9所示,预设集合包含32个绝对指示值,网络设备为终端设备配置的信道质量指示集合中所包含的绝对指示值的数量为16(比如区间0~15或者16~31),终端设备可以采用4个比特的反馈信息进行反馈。
网络设备接收到终端设备发送的反馈信息后,需要确定该反馈信息所对应的绝对指示值,比如,终端设备发送的反馈信息为1111,则可能指示的是绝对指示值15,或者31。因此网络设备需要获取预先为该终端设备配置的信道质量指示集合,比如,该网络设备预先为该终端设备配置的信道质量指示集合为16~31,则说明该反馈信息所对应的绝对指示值为31。
本申请实施例中,网络设备为每一个终端设备配置专属于该终端设备的信道质量指示集合,该信道质量指示集合包含信道质量指示值,该信道质量指示值用于指示信道质量,该信道质量指示值为针对该终端设备的信道质量设置,因此终端设备在反馈信道质量时,能够较为精确的向网络设备反馈信道质量,提高信道质量反馈的精确性。
请参照图10,图10是本申请实施例提供的一种调制编码策略指示方法的流程示意图,从网络设备与终端设备交互的角度进行介绍,该方法可以包括但不限于如下步骤:
步骤S20,网络设备确定终端设备的调制编码MCS等级指示集合,所述MCS等级指示集合包括MCS等级指示值,所述MCS等级指示值用于指示调制编码策略;
步骤S21,所述网络设备将所述MCS等级指示集合发送至所述终端设备。
步骤S22,终端设备接收为所述终端设备确定的MCS等级指示集合,所述MCS等级指示集合包括MCS等级指示值,所述MCS等级指示值用于指示调制编码策略;
步骤S23,所述终端设备存储所述MCS等级指示集合。
步骤S24,所述网络设备向所述终端设备发送指示信息,所述指示信息用于指示所述MCS等级指示集合中的目标MCS等级指示值,目标MCS等级指示值用于指示所述网络设备使用的调制编码策略。
步骤S25,所述终端设备接收网络设备发送的指示信息,所述指示信息用于指示所述MCS等级指示集合中的目标MCS等级指示值,所述目标MCS等级指示值用于指示所述 网络设备使用的调制编码策略。
本申请实施例中,不同终端设备通常工作在不同的SINR区间,例如,终端设备为边缘用户时,通常工作在较低的SINR,比如-12dB~-2dB;终端设备为中心用户时,通常工作在较高的SINR,比如15dB~25dB。网络设备在给边缘用户或者中心用户传输数据的MCS等级的范围也会不同,比如网络设备给边缘用户传输数据时采用的MCS等级比较低,而网络设备给中心用户传输数据时采用的MCS等级比较高。为了降低指示开销,网络设备为每个终端设备独立配置MCS等级指示集合。
可选的,网络设备为终端设备配置的MCS等级指示集合为预设集合的子集或者全集,该预设集合可以是协议规定的集合。如图11所示,可以是本申请实施例提供的一种预设集合,该预设集合包括64种MCS等级。网络设备可以根据终端设备的信道质量状况配置该64种MCS等级中的部分MCS等级或者全部MCS等级。
比如,网络设备给属于边缘用户的终端设备配置的MCS等级指示集合为:0-27,58-61,而网络设备给属于中心用户的终端设备配置的MCS等级指示集合为:28-57,61-63。需要说明的是,这里的数字序号均代表图11中的MCS等级,其中,58-63的MCS等级用于重传。DCI中用于指示MCS等级的有效比特L与RRC配置的MCS等级指示集合中MCS等级的数量S相关,L>=log2(S)。
其中,网络设备为终端设备配置的MCS等级指示集合可以是由协议规定的预设集合中连续的MCS等级指示值(即MCS等级)组成;或者,网络设备为终端设备配置的信道质量指示集合可以是由协议规定的预设集合中非连续的MCS等级指示值(即MCS等级)组成。
若网络设备为终端设备配置的MCS等级指示集合是由协议规定的预设集合中连续的MCS等级指示值组成,或者网络设备为终端设备配置的MCS等级指示集合是由协议规定的预设集合中等间隔MCS等级指示值组成(比如每相隔1个元素取一个值,序号为3,5,7)。网络设备在向该终端设备指示该MCS等级指示集合时的信令(该信令可以包括但不限于高层信令、MAC CE信令以及用户专属信令等等),可以仅指示MCS等级指示集合的起始元素在预设集合中的序号和MCS等级指示集合中所包含的元素个数;或者仅指示MCS等级指示集合的起始元素在预设集合中的序号,而MCS等级指示集合中元素的个数由协议约定,MCS等级指示集合中的元素即是该MCS等级指示集合中的MCS等级指示值。进一步可选的,网络设备在向该终端设备指示该MCS等级指示集合时的信令也可以采用树形指示方法进行指示,树形指示方法与同图4实施例中的树形指示方法,在此不再赘述。
若网络设备为终端设备配置的MCS等级指示集合是由协议规定的预设集合中随机选择的元素组成,即不存在规律性,则用于指示MCS等级指示集合的信令(该信令可以包括但不限于高层信令、MAC CE信令以及用户专属信令等等)可以采用bitmap形式向终端设备指示,比如预设集合包含64个绝对指示值,则采用64个比特进行指示,若MCS等级指示集合中包含该MCS等级指示值,则将该MCS等级指示值所对应的比特位置1,若MCS等级指示集合中不包含该MCS等级指示值,则将该MCS等级指示值所对应的比特位置0。
终端设备获取并存储网络设备为该终端设备配置的MCS等级指示集合。当网络设备向终端设备传输数据时,网络设备需要向该终端设备指示所使用的目标MCS等级指示值, 该目标MCS等级指示值用于指示该网络设备所使用的调制编码策略,这样终端设备可以根据该调制编码策略对所接收的数据进行处理。
具体可选的,网络设备向终端设备发送指示信息,该指示信息用于指示为该终端设备配置的MCS等级指示集合中的目标MCS等级指示值。可选的,网络设备可以是通过DCI向终端设备发送指示信息。比如,网络设备为终端设备配置的MCS等级指示集合为:0-27,58-61;则指示信息可以是5个比特,一种指示信息对应一种MCS等级指示值。
终端设备根据网络设备所配置的MCS等级指示集合,查找与指示信息对应的目标MCS等级指示值,该目标MCS等级指示值用于指示网络设备所使用的调制编码策略。
本申请实施例中,网络设备为终端设备确定该终端设备专属的MCS等级指示集合,该MCS等级指示集合包括MCS等级指示值,该MCS等级指示值用于指示调制编码策略,该终端设备专属的MCS等级指示集合可以是根据该终端设备的信道质量设定的集合,网络设备后续在指示调制编码策略时,在节省开销的前提下,可以提高指示的精确度。
上述详细阐述了本申请实施例的方法,下面阐述本申请实施例提供的装置。
请参见图12,图12是本申请实施例提供的一种网络设备的逻辑结构示意图,该网络设备101可以包括处理单元1011和收发单元1012。
所述处理单元1011,用于确定终端设备的信道质量指示集合,所述信道质量指示集合包括至少一个信道质量指示值,所述信道质量指示值用于指示信道质量;
所述收发单元1012,用于将所述信道质量指示集合发送至所述终端设备。
需要说明的是,所述处理单元1011用于执行图4所示的方法实施例中的步骤S10,所述收发单元1012用于执行图4所示的方法实施例中的步骤S11。
体细节,可以参考以上图4方法中网络设备侧的描述,在此不予赘述。
请参见图13,图13是本申请实施例提供的一种网络设备的实体结构示意图,该网络设备102包括处理器1021、收发器1022和存储器1023,所述处理器1021、存储器1023和收发器1022通过总线相互连接。
存储器1023包括但不限于是随机存储记忆体(Random Access Memory,RAM)、只读存储器(Read-Only Memory,ROM)、可擦除可编程只读存储器(Erasable Programmable Read Only Memory,EPROM)、或便携式只读存储器(Compact Disc Read-Only Memory,CD-ROM),该存储器1023用于存储相关指令及数据。
收发器1022可以是通信模块、收发电路,用于实现网络设备与终端设备之间的数据、信令等信息的传输。应用在本申请实施例中,收发器1022用于执行图4所示的方法实施例中的步骤S11。
处理器1021可以是控制器,中央处理器(Central Processing Unit,CPU),通用处理器,数字信号处理器(Digital Signal Processor,DSP),专用集成电路(Application-Specific Integrated Circuit,ASIC),现场可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本申请实施例公开内容所描述的各种示例性的逻辑方框,模块和电路。处理器1021也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,DSP和微处理器的组合等等。应用在本申请实施例中,处理器1021用于执行图4所示实施例中的步骤S10。
比如,所述处理器1021,用于确定终端设备的信道质量指示集合,所述信道质量指示集合包括至少一个信道质量指示值,所述信道质量指示值用于指示信道质量;
所述收发器1022,用于将所述信道质量指示集合发送至所述终端设备。
体细节,可以参考以上图4方法中网络设备侧的描述,在此不予赘述。
请参见图14,图14是本申请实施例提供的一种终端设备的逻辑结构示意图,该终端设备201可以包括收发单元2011和处理单元2012。
所述处理单元2012,用于获取网络设备针对所述终端设备确定的信道质量指示集合,所述信道质量指示集合包括至少一个信道质量指示值,所述信道质量指示值用于指示信道质量;
所述收发单元2011,用于向网络设备发送反馈信息,所述反馈信息用于指示目标信道质量指示值,所述目标信道质量指示值为所述信道质量指示集合中的信道质量指示值,所述目标信道质量指示值用于确定信道的当前信道质量。
需要说明的是,所述收发单元2011用于执行图4所示的方法实施例中的步骤S13,所述处理单元2012用于执行图4所示的方法实施例中的步骤S12。
体细节,可以参考以上图4方法中终端设备侧的描述,在此不予赘述。
请参见图15,图15是本申请实施例提供的一种终端设备202,该终端设备202包括处理器2021、收发器2022和存储器2023,所述处理器2021、存储器2023和收发器2022通过总线相互连接。
存储器2023包括但不限于是RAM、ROM、EPROM或CD-ROM,该存储器2024用于存储相关指令及数据。
收发器2022可以是通信模块、收发电路,用于实现网络设备与终端设备之间的数据、信令等信息的传输。应用在本申请实施例中,收发器2022用于执行图4所示的方法实施例中的步骤S13。
处理器2021可以是控制器,CPU,通用处理器,DSP,ASIC,FPGA或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本申请实施例公开内容所描述的各种示例性的逻辑方框,模块和电路。处理器2021也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,DSP和微处理器的组合等等。应用在本申请实施例中,处理器2021用于执行图4所示实施例中的步骤S12。
比如所述处理器2021,用于获取网络设备针对所述终端设备确定的信道质量指示集合,所述信道质量指示集合包括至少一个信道质量指示值,所述信道质量指示值用于指示信道质量;
所述收发器2022,用于向网络设备发送反馈信息,所述反馈信息用于指示目标信道质量指示值,所述目标信道质量指示值为所述信道质量指示集合中的信道质量指示值,所述目标信道质量指示值用于确定信道的当前信道质量。
体细节,可以参考以上图4方法中终端设备侧的描述,在此不予赘述。
请参见图16,图16是本申请实施例提供的一种网络设备的逻辑结构示意图,该网络设备301可以包括处理单元3011和收发单元3012。
所述处理单元3011,用于确定终端设备的调制编码MCS等级指示集合,所述MCS等级指示集合包括至少一个MCS等级指示值,所述MCS等级指示值用于指示调制编码策 略;
所述收发单元3012,用于将所述MCS等级指示集合发送至所述终端设备。
需要说明的是,所述处理单元3011用于执行图10所示的方法实施例中的步骤S20,所述收发单元3012用于执行图10所示的方法实施例中的步骤S21。
具体细节,可以参考以上图10方法中网络设备侧的描述,在此不予赘述。
请参见图17,图17是本申请实施例提供的一种网络设备的实体结构示意图,该网络设备302包括处理器3021、收发器3022和存储器3023,所述处理器3021、存储器3023和收发器3022通过总线相互连接。
存储器3023包括但不限于是随机存储记忆体(Random Access Memory,RAM)、只读存储器(Read-Only Memory,ROM)、可擦除可编程只读存储器(Erasable Programmable Read Only Memory,EPROM)、或便携式只读存储器(Compact Disc Read-Only Memory,CD-ROM),该存储器3023用于存储相关指令及数据。
收发器3022可以是通信模块、收发电路,用于实现网络设备与终端设备之间的数据、信令等信息的传输。应用在本申请实施例中,收发器3022用于执行图10所示的方法实施例中的步骤S21。
处理器3021可以是控制器,中央处理器(Central Processing Unit,CPU),通用处理器,数字信号处理器(Digital Signal Processor,DSP),专用集成电路(Application-Specific Integrated Circuit,ASIC),现场可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本申请实施例公开内容所描述的各种示例性的逻辑方框,模块和电路。处理器3021也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,DSP和微处理器的组合等等。应用在本申请实施例中,处理器3021用于执行图10所示实施例中的步骤S20。
比如,所述处理器3021,用于确定终端设备的调制编码MCS等级指示集合,所述MCS等级指示集合包括至少一个MCS等级指示值,所述MCS等级指示值用于指示调制编码策略;
所述收发器3022,用于将所述MCS等级指示集合发送至所述终端设备。
体细节,可以参考以上图10方法中网络设备侧的描述,在此不予赘述。
请参见图18,图18是本申请实施例提供的一种终端设备的逻辑结构示意图,该终端设备401可以包括收发单元4011和处理单元4012。
所述收发单元4011,用于接收为所述终端设备确定的MCS等级指示集合,所述MCS等级指示集合包括至少一个MCS等级指示值,所述MCS等级指示值用于指示调制编码策略;
所述处理单元4012,用于存储所述MCS等级指示集合。
需要说明的是,所述收发单元4011用于执行图10所示的方法实施例中的步骤S22,所述处理单元4012用于执行图10所示的方法实施例中的步骤S23。
体细节,可以参考以上图10方法中终端设备侧的描述,在此不予赘述。
请参见图19,图19是本申请实施例提供的一种终端设备402,该终端设备402包括处理器4021、收发器4022和存储器4023,所述处理器4021、存储器4023和收发器4022通过总线相互连接。
存储器4023包括但不限于是RAM、ROM、EPROM或CD-ROM,该存储器4024用于存储相关指令及数据。
收发器4022可以是通信模块、收发电路,用于实现网络设备与终端设备之间的数据、信令等信息的传输。应用在本申请实施例中,收发器4022用于执行图10所示的方法实施例中的步骤S22。
处理器4021可以是控制器,CPU,通用处理器,DSP,ASIC,FPGA或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本申请实施例公开内容所描述的各种示例性的逻辑方框,模块和电路。处理器4021也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,DSP和微处理器的组合等等。应用在本申请实施例中,处理器4021用于执行图10所示实施例中的步骤S23。
比如,所述收发器4022,用于接收为所述终端设备确定的MCS等级指示集合,所述MCS等级指示集合包括至少一个MCS等级指示值,所述MCS等级指示值用于指示调制编码策略;
所述处理器4021,用于存储所述MCS等级指示集合。
具体细节,可以参考以上图10方法中终端设备侧的描述,在此不予赘述。
在实现过程中,上述方法的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件单元组合执行完成。软件单元可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器执行存储器中的指令,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
应理解,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
5G通信系统致力于支持更高系统性能,支持更多业务类型,以及支持不同部署场景和更宽的频谱范围。其中,业务类型主要包括增强移动宽带(enhanced Mobile Broadband,eMBB)业务,海量机器类型通信(Massive Machine Type Communication,mMTC)业务,超可靠低延迟通信(Ultra-reliable and low latency communications,URLLC)业务,多媒体广播多播业务(Multimedia Broadcast Multicast Service,MBMS)和定位业务等等;部署场景主要包括室内热点(Indoor hotspot),密集城区(dense urban),郊区,城区宏覆盖(Urban Macro)及高铁场景等;更宽的频谱范围主要是指高达100GHz的频谱范围,也就是说,既包括6GHz以下的低频部分,也包括6GHz以上最高到100GHz的高频部分。
5G通信系统相比与4G通信系统的一大特征是增加了对URLLC业务的支持。URLLC业务的业务种类包括很多种,例如,工业控制,工业生产流程自动化,人机交互和远程医疗等。为更好的量化URLLC业务的性能指标,从而给5G系统实际提供基准输入和评估准则,第三代合作伙伴项目(3rd Generation Partnership Project,3GPP)无线接入网(Radio Access Network,RAN)和RAN1工作组对URLLC业务的性能指标做了如下定义:
时延:用户应用层数据包从发送端无线协议栈层2/3的服务数据单元(Service Data Unit,SDU)到达接收端无线协议栈层2/3SDU所需的传输时间。URLLC业务的用户面 时延要求对于上下行均为0.5ms,上述要求仅适用于基站和终端都不处于非连续接收态(DRX)的情况。需要指出这里0.5ms的性能要求是指数据包的平均时延,并不与下述的可靠性要求绑定。
可靠性:在给定的信道质量条件下,从发送端到接收端在一定时间内(L秒)正确传输X比特的成功概率,上述的时间仍定义为用户应用层数据包从发送端无线协议栈层2/3的SDU到达接收端无线协议栈层2/3SDU所需的时间。对于URLLC业务,一个典型要求是在1ms内达到99.999%可靠性。
需要说明的是,上述性能指标仅为示例性的,具体URLLC业务对可靠性可以有不同的需求,比如某些极端苛刻的工业控制需要端到端的时延在0.25ms内达到99.9999999%的传输成功概率。
系统容量:在不中断用户的前提下,系统所能达到的最大吞吐量,这里中断用户是指系统无法满足在一定时延范围内的可靠性需求。
传统方案中,终端设备通过BLER对应的信道质量指示(Channel Quality Indicator,CQI)索引指示网络设备和终端设备之间的信道质量,具体可以是通过对全部误块率对应的CQI索引都进行反馈。然而,在信道环境发生变化的情况下,传统的方案的对全部误块率对应的CQI索引都进行反馈的方式,使得反馈CQI索引的信令开销比较大。
图20是本申请实施例的通信方法的示意性流程图。
该通信方法应用于支持至少一个误块率BLER集合的系统中,该至少一个BLER集合中的第一BLER集合包括第一BLER子集和第二BLER子集,该第一BLER子集包括至少一个BLER,该第二BLER子集包括至少一个BLER。
应理解,本申请实施例中的BLER可以是10%、1%、0.1%和0.001%等多种类型,还可以是其他类型,本申请对此不进行限定。
可选地,第一BLER集合可以为该至少一个BLER集合中的任一个BLER集合,也就是说,该至少一个BLER集合中的其他BLER集合也可以包括第一BLER子集和第二BLER子集,本申请对此不进行限定。
需要说明的是,本申请实施例终端设备将每个BLER集合中需要发送给网络设备的信道质量参数绝对值对应的至少一个BLER组成的这一类集合确定为第一BLER子集,即不同的BLER集合中的第一BLER子集中具体包括的BLER可以相同,也可以不同。
可选地,第一BLER集合包括的BLER与至少一个BLER集合中的其他BLER集合包括的BLER可以完全相同,也可以部分相同,或者可以全部不相同,本申请对此不进行限定。
2001,终端设备确定第一BLER子集中每个BLER对应的信道质量参数。
终端设备可以是确定第一BLER集合中的第一BLER子集中每个BLER对应的信道质量参数,也可以是确定系统包括的至少一个BLER集合中的全部BLER集合中所有的第一BLER子集中每个BLER对应的信道质量参数,本申请对此不进行限定。
可选地,信道质量参数可以是信干燥比(Signal to Interference plus Noise Ratio,SINR),也可以是CQI索引。
2002,终端设备向网络设备发送该第一BLER子集中的每个BLER对应的信道质量参数。
相应地,网络设备接收终端设备发送的第一BLER子集中每个BLER对应的信道质量参数。
2003,网络设备根据该第一BLER子集中的每个BLER对应的信道质量参数,以及该第二BLER子集中的至少一个BLER对应的信道质量参数与第一BLER子集中的至少一个BLER对应的信道质量参数的至少一个信道质量参数差值,确定该第二BLER子集中每BLER对应的信道质量参数。
具体地,网络设备可以只接收第一BLER子集中的每个BLER对应的信道质量参数,再根据该第二BLER子集中的至少一个BLER对应的信道质量参数与第一BLER子集中的至少一个BLER对应的信道质量参数的至少一个信道质量参数差值就可以确定出第二BLER子集中的至少一个BLER对应的信道质量参数。由于两个BLER对应信道质量参数之间的信道质量参数差值在确定的条件下基本保持一致。因此,本申请实施例在信道环境发生变化时,终端设备通过仅发送第一BLER子集中的BLER对应的信道质量参数,就可以实现获知第一BLER集合中全部BLER对应的信道质量参数,避免了在信道环境发生变化时终端设备发送第一BLER集合中的全部BLER对应的信道质量参数,节省了信令开销。
应理解,这里的确定的条件可以是传输方式或移动速度或信道环境(例如,城市环境或乡村环境)。
可选地,该至少一个信道质量参数差值可以是一个表格或一个集合或一个值。
例如,若第一BLER子集只包括一个BLER(以第一BLER为例说明),网络设备根据接收到的第一BLER对应的信道质量参数,以及第一BLER对应的信道质量参数和第二BLER子集中的至少一个BLER对应的信道质量参数的信道质量参数差值可以确定出第二BLER子集中的至少一个BLER对应的信道质量参数。
具体地,第一BLER子集包括的BLER可以是10%,第二BLER子集包括的BLER可以是1%、0.1%、0.01%和0.001%,如表1所示。网络设备可以接收终端设备发送的10%对应的CQI,并根据这个值以及表1中CQI等级差值确定1%、0.1%、0.01%和0.001%分别对应的CQI。
表1
BLER CQI等级差值 SINR差值
10%-1% 0.5 0.5
10%-0.1% 1 1
10%-0.01% 1.5 1.5
10%-0.001% 2 2
需要说明的是,表格中的小数表示,根据该小数折算的等效码率满足目标BLER要求。例如,第一BLER对应CQI 1,第一BLER对应CQI1与第二BLER对应CQI2的差值为0.5。其中CQI 1对应16QAM且码率1为0.5,CQI 1相邻的CQI等级对应16QAM且码率2为0.75,则CQI2对应16QAM,码率为0.5+(0.75-0.5)*0.5(码率1+(码率2-码率1)*CQI等级差值)
需要说明的是,第一BLER子集是为了方便说明这些BLER需要反馈信道质量参数的绝对值,没有其他限定。
例如,第一BLER集合可以只包括第一BLER和第二BLER,这样网络设备根据接收到的第一BLER对应的信道质量参数,以及第一BLER对应的信道质量参数和第二BLER对应的信道质量参数的信道质量参数差值,可以确定出第二BLER对应的信道质量参数。
可选地,本申请实施例中,该至少一个信道质量参数差值可以是通过协议约定的,也可以是终端设备提前发送给网络设备的,本申请对此不进行限定。
可选地,终端设备可以周期性,或者实时的上报该至少一个信道质量参数差值。
可选地,网络设备在需要信道质量参数差值时,可以向终端设备发送信道质量参数请求,以触发终端设备上报信道质量参数差值,从而避免资源浪费。
可选地,终端设备可以只上报一个信道质量参数差值,其他信道质量参数差值通过插值方式得到,从而更进一步节省信令开销。下述实施例中的表格只存在两个BLER对应的信道质量参数差值时,都可以通过插值的方法得到多组BLER对应信道质量参数差值,为避免重复,下述实施例不再进行赘述。
例如,如表2所示,终端设备只上报相同信道环境下,10%对应的CQI和0.001%对应CQI的CQI等级差值。若终端设备接收到10%对应的CQI 1,则终端设备根据表2可以确定出0.001%对应的CQI 2。终端设备还可以根据10%、0.001%、CQI 1和CQI 2通过插值的方法确定出表1中的各个CQI等级差值。
表2
BLER CQI等级差值
10%-0.001% 2
可选地,若系统包括超过一个BLER集合的至少两个BLER集合,则该至少两个BLER集合中的每个BLER对应的CQI等级可以互不相同。这样CQI等级差值可以为精确到某种SINR情况下的信道质量参数差值,从而提高了第二BLER子集中的BLER对应的信道质量参数准确率。
可选地,基于在不同的传输方法的情况下,不同的BLER对应的CQI等级差值可能会不同,例如,表3所示,两个BLER对应的信道质量之间的信道质量差值可能会存在多个值,且每个差值对应一个CQI等级差值索引。
表3
Figure PCTCN2018091681-appb-000002
例如,如表4或表5所示,为不同CQI情况下,两两BLER分别对应的信道质量参 数的信道质量参数差值。
表4
CQI等级差值 CQI1 CQI2 CQI3 CQI4 CQI5 CQI6 CQI7 CQI8
10%-0.001% 2 2 2 2 2 3 3.5 4
表5
CQI等级差值 CQI1 CQI2 CQI3 CQI4 CQI5 CQI6 CQI7 CQI8
10%-1% 0.5 0.5 0.5 0.5 0.5 0.8 0.5 0.9
1%-0.1% 0.5 0.5 0.5 0.5 0.5 0.8 0.8 1
0.1%-0.01% 0.5 0.5 0.5 0.5 0.5 0.8 1 1
0.01%-0.001% 0.5 0.5 0.5 0.5 0.5 0.8 1 1
应理解,本申请实施例中的CQI等级可以是协议中定义的所有CQI等级,或部分CQI等级,表4和表5仅以CQI等级为8种为例进行说明,但本申请并不限于此。
还应理解,表5中在CQI等级为CQI 1时,对应的BLER集合可以包括10%、1%、0.1%、0.01%和0.001%,这样CQI等级差值可以是表5中CQI 1所在的一列对应的CQI等级差值。若已知BLER=10%对应CQI1,就可以计算出BLER=1%对应的CQI为:CQI1+(CQI2-CQI1)+0.5)
可选地,终端设备可以仅反馈部分CQI等级情况下,两两BLER对应的信道质量参数的信道质量参数差值,从而节省信令开销。
例如,如表4所示,终端设备可以仅反馈CQI5、CQI6、CQI7和CQI8的情况下,10%的信道质量参数和0.001%的信道质量参数的信道质量参数差值。
可选地,部分CQI等级可以是奇数CQI等级,也可以是偶数CQI等级,或者大粒度的CQI等级,或者抽样的CQI等级等。其中,抽样的CQI等级可以是均匀抽样,也可以是非均匀抽样。由于随着CQI等级增加,相邻CQI等级对应的的CQI等级差值差别越来越大,非均匀抽样可以得到均匀的CQI等级差值,节省信令开销。
可选地,若系统包括超过一个BLER集合的至少两个BLER集合,则该至少两个BLER集合可对应多种码率(coderate)。这样CQI等级差值可以更加精确,从而提高了第二BLER子集中的BLER对应的信道质量参数准确率。
例如,终端设备也可以反馈不同码率情况下,两两BLER对应的CQI的CQI等级差值。其中,Coderate=0.1时,BLER=1对应的CQI与BLER=0.0001对应的CQI之间的SINR差值为2db,即对应的CQI等级差值为1;Coderate=0.9时,BLER=1对应的CQI与BLER=0.0001对应的CQI之间的SINR差值为4dB,对应的CQI等级差值为2。
需要说明的是,事实上,调制和码率和CQI等级具有对应关系,例如,调制为QPSK,Coderate=0.1表示对应的CQI等级为0,调制为QPSK,Coderate=0.2表示对应的CQI等级为1,依次类推。
可选地,不同终端设备的BLER-SINR斜率值不同,如图21所示,因此,对于不同终端设备可以采用独立的信道质量参数差值。
可选地,若系统包括超过一个BLER集合的至少两个BLER集合,则该至少两个BLER 集合中的BLER可对应多种传输方法。这样SINR差值可以为精确到某种传输方法情况下的SINR差值,从而提高了确定第二BLER子集中的BLER对应的信道质量参数的准确率。
可选地,该传输方法包括天线端口配置和/或多输入多输出(Multiple Input Multiple Output,MIMO)预处理方式。
应理解,天线端口配置具体可以是1*1(即一个发射端口一个接收端口),1*2或2*2等多种方式。预处理方式可以包括发送分集,预编码,波束赋形中至少一种。
还应理解,MIMO包括单输入单输出系统(Single Input Single Output,SISO),单输入多输出(Single Input Multiple Output,SIMO),多输入单输出(Multiple Input Single Output,MISO)。
例如,如表6所示,为不同传输方法的情况下,BLER为10%对应的CQI等级与BLER为0.001%对应的CQI等级的CQI等级差值。
表6
CQI等级差值 传输方法1 传输方法2
10%-0.001% 1 3
可选地,基于在不同的传输方法的情况下,不同的BLER对应的CQI等级差值可能会不同,例如,表7和表8所示,两个BLER对应的信道质量之间的信道质量差值可能会存在多个值。
可选地,网络设备可以根据传输方法选择合适的CQI等级差值。
可选地,终端设备还可以向网络设备发送指示信息,该指示信息用于网络设备从多个CQI等级差值中确定一个CQI等级差值。下述实施例中信道质量参数包括多个值时,都可以通过终端设备发送指示信息确定该多个值中的一个值,为避免重复,下述实施例不再赘述。
表7
BLER CQI等级差值
10%-0.001% 1,2,3,4
表8
BLER CQI等级差值
10%-1% 0.5,2.5,3.5,6.5
10%-0.1% 1,3,5,7
10%-0.01% 1.5,3.5,5.5,7.5
10%-0.001% 2,4,6,8
可选地,若系统包括超过一个BLER集合的至少两个BLER集合,本申请实施例还可以对至少两个BLER集合中的每个BLER集合更具体为根据CQI等级和传输方法进行划分。
例如,如表9所示,传输方法1和CQI 1对应一个BLER集合。
表9
Figure PCTCN2018091681-appb-000003
可选地,两两BLER对应的调制编码差别也可以通过SINR差值确定。
例如,如表10或表11所示,BLER=10%对应的SINR与BLER=0.001%对应的SINR的SINR差值为2。
表10
BLER SINR差值
10%-0.001% 4
表11
BLER SINR差值
10%-1% 0
10%-0.1% 1
10%-0.01% 2
10%-0.001% 4
同样地,在不同的传输方法的情况下,SINR差值也可以是多个值,如表12或表13所示。
表12
BLER SINR差值
10%-0.001% 1,2,4,6,8
表13
BLER SINR差值
10%-1% 0,1
10%-0.1% 1,2
10%-0.01% 1,2,3
10%-0.001% 2,3,4
可选地,本申请实施例可以更具体划分每个BLER集合。例如,如表14、表15,和表16所示。
表14
SINR差值 CQI1 CQI2 CQI3 CQI4 CQI5 CQI6 CQI7 CQI8
10%-1% 0 0 0 0 0 0 0 1
1%-0.1% 1 1 1 0 0 1 1 1
0.1%-0.01% 0 0 0 1 1 1 1 1
0.01%-0.001% 1 1 1 1 1 1 1 1
表15
SINR差值 CQI1 CQI2 CQI3 CQI4 CQI5 CQI6 CQI7 CQI8
10%-1% 0 0 0 0 0 0 0 1
10%-0.1% 0 0 0 1 1 1 1 2
10%-0.01% 1 1 1 2 2 2 2 3
10%-0.001% 1 1 1 2 2 2 3 3
表16
SINR差值 CQI1 CQI2 CQI3 CQI4 CQI5 CQI6 CQI7 CQI8
10%-1% [0,1] [0,1] [0,1] [0,1] [0,1] [0,1] [0,1] [1,2]
10%-0.1% [0,1] [0,1] [0,1] [1,2] [1,2] [1,2] [1,2] [2,3]
10%-0.01% [1,2] [1,2] [1,2] [2,3] [2,3] [2,3] [2,3] [3,4]
10%-0.001% [1,2] [1,2] [1,2] [2,3] [2,3] [2,3] [2,3] [3,4]
可选地,至少一个BLER集合中的BLER集合可以对应多种传输方法。例如,表17为不同传输方法情况下两个BLER对应的SINR差值,表18可以表示其他条件影响的情况下,两个BLER对应的SINR差值,。
表17
SINR差值 传输方法1 传输方法2
10%-0.001% 2 5
表18
SINR差值 传输方法1 传输方法2
10%-0.001% 2,4 5,7
可选地,至少一个BLER集合中的每个BLER集合可以是根据传输方法和CQI等级划分。例如,如表19和表20。
表19
Figure PCTCN2018091681-appb-000004
Figure PCTCN2018091681-appb-000005
表20
Figure PCTCN2018091681-appb-000006
可选地,终端设备还可以向网络设备发送信道质量参数差值的索引值,该信道质量参数差值的索引值一一对应信道质量参数差值。网络设备可以根据该信道质量参数差值的索引值确定对应的信道质量参数差值。
具体地,网络设备可以获知两个BLER对应的信道质量参数之间的多个信道质量参数差值,但并不能具体知道哪个差值为当前两个BLER对应的信道质量参数之间的差值。在这样的情况下,网络设备可以根据终端设备发送的信道质量参数差值的索引值确定出某个信道质量参数差值具体为两个BLER对应的信道质量参数之间的多个差值中的哪一个,从而能够准确的确定出第二BLER子集中的每个BLER对应信道质量参数,提高了确定信道质量的准确率。
可选地,信道质量参数为CQI等级时,终端设备上报的CQI等级差值可以是通过CQI索引表示。
具体地,CQI等级差值与CQI等级差值的索引的对应关系如表21所示。例如,若终端设备确定两个BLER对应的CQI等级差值为4,则终端设备可以向网络设备发送CQI等级差值的索引为3,这样网络设备可以根据CQI等级差值的索引3,确定出这两个BELR对应的CQI等级差值为4。
表21
CQI等级差值的索引 0 1 2 3
CQI等级差值 0 1 2 4
可选地,网络设备向终端设备发送信道质量参数请求,该信道质量参数请求可以用于请求系统包括的至少一个BLER集合中的某一个BLER集合中第二BLER子集中每个BLER对应的信道质量参数与第一BLER子集中至少一个BLER对应的信道质量参数的至少一个信道质量参数差值。相应地,终端设备根据该信道质量参数请求向网络设备上报该信道质量参数请求所请求的至少一个信道质量参数差值。
可选地,网络设备可以通过高层信令或物理层信令携带该信道质量参数请求。
例如,网络设备可以通过高层信令或物理层信令携带请求第一BLER集合中第二BLER子集中每个BLER对应的信道质量参数与第一BLER子集中至少一个BLER对应的信道质量参数的至少一个信道质量参数差值的信道质量参数请求。信道质量参数请求可以请求终端设备上报在传输方法1和/或某个SINR的情况下,BLER=10%与BLER=0.001%对应的CQI等级差值。
可选地,该信道质量参数请求还可以请求该至少一个BLER对应的信道质量参数差值的具体数目。
例如,该信道质量参数请求可以请求4个SINR取值的情况下,BLER对应的CQI等级差值。这样终端设备收到上述高层信令或物理层信令后,上报4个BLER=10%与BLER=0.001%对应的CQI等级差值的0,1,2和3,该4个CQI等级差值可以分别对应不同的SINR。
可选地,网络设备通过信道质量参数请求可以请求系统中的部分BLER集合中的BLER之间的信道质量参数差值。
例如,信道质量参数请求可以请求终端设备上报BLER=10%与BLER=0.001%,BLER=10%与BLER=0.01%,BLER=10%与BLER=0.1%,BLER=10%与BLER=1%对应的4个CQI等级差值。
可选地,网络设备向终端设备发送信道质量参数请求,该信道质量参数请求可以用于请求该至少一个BLER集合中的每个BLER集合中的第一BLER子集中的至少一个BLER对应的信道质量参数与第二BLER子集中的每个BLER对应的信道质量参数的信道质量参数差值。相应地,终端设备根据该信道质量参数请求向网络设备上报该信道质量参数请求所请求的至少一个信道质量参数差值。
可选地,网络设备可以通过高层信令或物理层信令携带该信道质量参数请求,也可以半静态配置上报全部CQI等级差值集合。
因此,本申请实施例的用于确定信道质量的方法,网络设备可以通过接收终端设备发送的第一BLER集合中的第一BLER子集中的BLER对应的信道质量参数,并根据第一BLER子集中的部分BLER对应的信道质量参数和第二BLER子集中的每个BLER对应的信道质量参数与该第一BELR子集中的至少一个BLER对应的信道质量参数的信道质量参数差值确定出第二BLER子集中的全部BLER对应的信道质量参数,即网络设备能够确定第一BLER集合中全部BLER对应的信道质量参数,而不需要终端设备发送第一BLER集合中的全部BLER对应的信道质量参数,节省了信令开销。
表22示出了传统方案中CQI索引值与频谱效率(Efficiency)的对应关系。该传统方案可以通过4个比特位表示16种状态,且CQI索引对应的频谱效率最低为0.1523,即能够覆盖用户的主要信道条件区间。
表22
Figure PCTCN2018091681-appb-000007
图22是本申请实施例的通信方法的示意性流程图。
2201,终端设备根据对应关系表,确定指示信息,该指示信息用于指示至少一个信道质量指示CQI索引值,该对应关系表包括N个CQI索引值、M个调制方式和K个码率参数,且所述N个CQI索引值中的至少一个CQI索引值对应一种调制方式,所述N个CQI索引值中的K个CQI索引值一一对应所述K个码率参数,所述N个CQI索引值中的第一CQI索引值对应的码率与所述第一CQI索引值对应的调制方式的调制阶数的乘积为大于0,且小于0.0781的值,其中,码率参数=码率*1024,N>M,N≥K,且N、K和M均为正整数。
需要说明的是,所述N个CQI索引值中的第一CQI索引值对应的码率与所述第一CQI索引值对应的调制方式的调制阶数的乘积为大于0是指该N个CQI索引值中存在某一个CQI索引值,并不是特指具体的哪一个。
具体地,该对应关系表可以如表23所示,CQI索引值可以对应保留值。
可选地,该频谱效率、该调制方式和码率参数满足如下关系式:频谱效率=调制方式的调制阶数*码率。
表23
Figure PCTCN2018091681-appb-000008
可选地,该信道质量指示信息可以包括大于4的比特位数,即比特位的取值可以表示的状态数目大于16。
例如,表23中通过5个比特位表示32种状态,该32种状态可以包括预留(reserved)状态。
应理解,本申请实施例中小于0.0781的频谱效率还可以是除表13中的其他值,本申请对此不进行限定。
可选地,该K个码率参数包括大于0,且小于40的值。
例如,如表25所示,码率值可以是16,8,或4等。应理解,本申请实施例中码率大于0,且小于40的值还可以是其他值,本申请对此不进行限定。
可选地,所述对应关系表中的N个CQI索引值按从小到大的顺序排列,且所述N个CQI索引值中的前P个CQI索引值中每个CQI索引值对应的调制方式的调制阶数与对应的码率的乘积按从小到大的顺序排列,第P+h个CQI索引值对应的调制方式的调制阶数与对应的码率的乘积小于第P个CQI索引值对应的调制方式的调制阶数与对应的码率的乘积,N>P+h,且h依次取从1到N-X,X>P。
具体地,CQI索引值对应的小于0.0781的频谱效率可以排序在频谱效率最大值的后面,这样终端设备可以根据需求确定信道质量指示信息包括的比特位数。
例如,如表24所示,在信道质量指示信息的比特位数受限制时,采用4bit表示16个状态。在用户需要覆盖极端信道条件的情况下,采用5bit覆盖表24中的所有状态。
表24
Figure PCTCN2018091681-appb-000009
可选地,该第P个CQI索引值之后的按照顺序排列的CQI索引值对应的频谱效率可 以是按从小大的顺序排列。
例如,如表24所示的CQI索引值为16-20对应的频谱效率随着CQI索引值的增大逐渐减小,即从0.0039减小到0.0781。
可选地,该对应关系表还可以从上述表格挑选部分,即总的状态数目减少,从而节省信令开销。例如,如表25和表26所示。
表25
Figure PCTCN2018091681-appb-000010
表26
Figure PCTCN2018091681-appb-000011
可选地,网络设备可以向终端设备发送高层信令,该高层信令指示对应关系表具体地,终端设备和网络设备可以约定表23、表24、表25或表26这几种表格,网络设备可以根据业务或信道环境确定采用的表格,并发送高层信令指示采用哪个对应关系表可选地,终端设备和网络设备可以约定默认一种表格或一个表格中的部分对应关系,。若网络设备确定需要改变信道质量指示范围,即仅需要多个表格中某一个表格或者表格中的某一部分对应关系,则向终端设备发送高层信令指示某一个表格或者表格中的某一部分对应关系。这样在终端设备使用网络设备指示的表格时,既可以满足当前信道环境的指示需求,也可以节省信令开销。
2202,该终端设备向网络设备发送该指示信息。相应地,网络设备接收该指示信息。2203,网络设备根据该指示信息,确定该至少一个CQI索引值对应的调制编码方式。
可选地,网络设备根据指示信息指示的至少一个CQI索引值,以及对应关系表可以确定该至少一个CQI索引值对应的调制编码。
可选地,网络设备可以根据协议约定确定出对应关系表中的各个元素,或者根据先前配置给终端的对应关系表确定出对应关系表中的中的各个元素。
可选地,该至少两个CQI索引值一一对应至少两个调制方式。
可选地,该对应关系表的所有CQI索引对应的调制方式中QPSK的调制方式最多,或者64QAM的调制方式最多,或者包括256QAM的调制方式。
例如,如表27所示,该表27覆盖中低SINR(即QPSK较多),且能够覆盖64QAM,应用范围较广。
表27
Figure PCTCN2018091681-appb-000012
再例如,如表28所示,该表28覆盖低中高SINR(即主要SINR),即有高CQI等级对应高SINR,有更低的CQI等级对应低SINR。也就是说,既可以保证用户的传输效率,也能保证用户的稳健传输。
表28
Figure PCTCN2018091681-appb-000013
再例如,如表29所示,该表29覆盖6中高SINR,低SINR区间中CQI等级稀疏,高SINR区间中CQI等级丰富,适用于信道质量较好的用户,提高了传输效率。
表29
Figure PCTCN2018091681-appb-000014
可选地,网络设备可以根据协议约定确定出表27、表28和表29中每个CQI索引值与调制方式的对应关系;或者网络设备预先向终端设备配置表27、表28和表29中每个CQI索引值与调制方式的对应关系。
因此,本申请实施例中,终端设备根据对应关系表,确定指示信息,该指示信息用于指示至少一个信道质量指示CQI索引值,该对应关系表包括N个CQI索引值、M个调制方式和K个码率参数,且所述N个CQI索引值中的至少一个CQI索引值对应一种调制方式,所述N个CQI索引值中的K个CQI索引值一一对应所述K个码率参数,所述N个CQI索引值中的第一CQI索引值对应的码率与所述第一CQI索引值对应的调制方式的调制阶数的乘积为大于0,且小于0.0781的值,其中,码率参数=码率*1024,N>M,N≥K,且N、K和M均为正整数,并发送该指示信息,使得网络设备根据该指示信息确定该至少一个CQI索引值对应的调制方式,也就是说,本申请能够应用于对频谱效率要求低于0.0781的系统,即覆盖恶劣的信道条件区域,保证用户在深衰信道下通信。
图23是本申请实施例的通信方法的示意性流程图。
2301,网络设备根据对应关系表,确定指示信息,该指示信息用于指示至少一个调制编码方案(Modulation and Coding Scheme,MCS)索引值,该对应关系表包括N个MCS索引值、M个调制方式和K个码率参数,且所述N个MCS索引值中的至少一个MCS索引值对应一种调制方式,所述N个MCS索引值中的K个MCS索引值一一对应所述K个码率参数,所述N个MCS索引值中的第一MCS索引值对应的码率与所述第一MCS索引 值对应的调制方式的调制阶数的乘积为大于0,且小于0.0781的值,其中,码率参数=码率*1024,N>M,N≥K,且N、K和M均为正整数。
例如,如表30和表31所示。
表30
Figure PCTCN2018091681-appb-000015
表31
MCS Index 调制方式(Modulation) 码率(code rate)*1024
0 2 4
1 2 8
2 2 16
3 2 32
4 2 78
5 2 193
6 2 449
7 4 378
8 4 434
9 4 490
10 4 553
11 4 658
12 8 797
13 8 948
可选地,该K个码率参数包括大于0,且小于40的值。
可选地,所述对应关系表中的N个MCS索引值按从小到大的顺序排列,且所述N个MCS索引值中的前P个MCS索引值对应的频谱效率按从小到大的顺序排列,第P+h个MCS索引值对应的频谱效率小于第P个MCS索引值对应的频谱效率,N>P+h,且h=1,2,…,如表32所示。
表32
MCS Index 调制方式(Modulation) 码率(code rate)*1024
0 2 120
1 2 193
2 2 308
3 2 449
4 2 602
5 4 378
6 4 434
7 4 490
8 4 553
9 4 616
10 4 658
11 6 466
12 6 517
13 6 567
14 6 616
15 6 666
16 6 719
17 6 772
18 6 822
19 6 873
20 8 683
21 8 711
22 8 754
23 8 797
24 8 841
25 8 885
26 8 917
27 8 948
28 2 reserved
29 4 reserved
30 6 reserved
31 8 reserved
32 2 2
33 2 3
34 2 4
35 2 6
36 2 8
37 2 12
38 2 16
39 2 28
40 2 40
41 2 56
42-63 Reserved  
2302,该终端设备接收网络设备发送的该指示信息。
2303,终端设备根据对应关系表,确定该至少一个MCS索引值对应的调制编码方式。
应理解,本申请实施例的实现方式可以同图22所示的实施例的实现方式类似,为避免重复,在此不进行赘述。
因此,本申请实施例的通信方法,网络设备根据对应关系表,确定指示信息,该指示信息用于指示至少一个信道质量指示MCS索引值,该对应关系表包括N个MCS索引值、M个调制方式和K个码率参数,且所述N个MCS索引值中的至少一个MCS索引值对应 一种调制方式,所述N个MCS索引值中的K个MCS索引值一一对应所述K个码率参数,所述N个MCS索引值中的第一MCS索引值对应的码率与所述第一MCS索引值对应的调制方式的调制阶数的乘积为大于0,且小于0.0781的值,其中,码率参数=码率*1024,N>M,N≥K,且N、K和M均为正整数,并发送该指示信息,使得终端设备根据该指示信息确定该至少一个MCS索引值对应的调制方式,也就是说,本申请能够应用于对频谱效率要求低于0.0781的系统,即覆盖恶劣的信道条件区域,保证用户在深衰信道下通信。
图24示出了本申请实施例网络设备2400的示意性框图。如图24所示,该网络设备2400包括:
接收模块2410,用于接收终端设备发送的所述第一BLER子集中的每个BLER对应的信道质量参数,所述信道质量参数用于指示所述终端设备和所述网络设备之间的信道质量;
处理模块2420,用于根据至少一个信道质量参数差值以及所述第一BLER子集中的至少一个BLER对应的信道质量参数,确定所述第二BLER子集中至少一个BLER对应的信道质量参数,所述至少一个信道质量参数差值包括所述第二BLER子集中的至少一个BLER对应的信道质量参数与所述第一BLER子集中的至少一个BLER对应的信道质量参数的差值。
可选地,所述网络设备2400还包括:发送模块,用于向所述终端设备发送信道质量参数请求,所述信道质量参数请求用于请求所述第一BLER集合中的第二BLER子集中的至少一个BLER对应的信道质量参数与所述第一BLER集合中的第一BLER子集中的至少一个BLER对应的信道质量参数的至少一个信道质量参数差值;所述接收模块2410,还用于接收所述第一BLER集合中的第二BLER子集中的至少一个BLER对应的信道质量参数与所述第一BLER集合中的第一BLER子集中的至少一个BLER对应的信道质量参数的至少一个信道质量参数差值。
可选地,所述网络设备2400还包括:发送模块,用于向所述终端设备发送信道质量参数请求,所述信道质量参数请求用于请求所述至少一个BLER集合中的每个BLER集合中的第二BLER子集中的至少一个BLER对应的信道质量参数与第一BLER子集中的至少一个BLER对应的信道质量参数的信道质量参数差值;所述接收模块2410,还用于接收所述至少一个BLER集合中每个BLER集合中的第二BLER子集中的至少一个BLER对应的信道质量参数与第二BLER子集中的至少一个BLER对应的信道质量参数的信道质量参数差值。
可选地,若所述方法应用于支持至少两个BLER集合的系统中,所述至少两个BLER集合中的任意两个BLER集合对应的传输方法不同。
可选地,所述传输方法包括天线端口配置和/或多输入多输出MIMO预处理方式。
因此,本申请实施例的网络设备可以通过接收终端设备发送的第一BLER集合中的第一BLER子集中的BLER对应的信道质量参数,并根据第一BLER子集中的部分BLER对应的信道质量参数和第二BLER子集中的每个BLER对应的信道质量参数与该第一BELR子集中的至少一个BLER对应的信道质量参数的信道质量参数差值确定出第二BLER子集中的全部BLER对应的信道质量参数,即网络设备能够确定第一BLER集合中全部BLER对应的信道质量参数,而不需要终端设备发送第一BLER集合中的全部BLER 对应的信道质量参数,节省了信令开销。
应理解,根据本申请实施例的网络设备2400可对应于本申请实施例的用于数据传输的方法2000中的网络设备,并且网络设备2400中的各个模块的上述和其它管理操作和/或功能分别为了实现前述各个方法的相应步骤,为了简洁,在此不再赘述。
本申请实施例中的接收模块2410可以由收发器实现,处理模块2420可以由处理器实现。如图25所示,网络设备2500可以包括收发器2510,处理器2520和存储器2530。其中,存储器2530可以用于存储指示信息,还可以用于存储处理器2520执行的代码、指令等。
图26示出了本申请实施例终端设备2600的示意性框图。如图26所示,该终端设备2600应用于支持至少一个误块率BLER集合的系统中,所述至少一个BLER集合中的每个BLER集合包括第一BLER子集和第二BLER子集,所述第一BLER子集包括至少一个BLER,所述第二BLER子集包括至少一个BLER,该终端设备2600包括:
处理模块2610,用于确定所述第一BLER子集中每个BLER对应的信道质量参数,所述信道质量参数用于指示所述终端设备和网络设备之间的信道质量;
发送模块2620,用于向所述网络设备发送所述第一BLER子集中的每个BLER对应的信道质量参数,以使所述网络设备根据至少一个信道质量参数差值以及所述第一BLER子集中的至少一个BLER对应的信道质量参数确定第二BLER子集中的至少一个BLER对应的信道质量参数,所述至少一个信道质量参数差值包括所述第二BLER子集中的至少一个BLER对应的信道质量参数与所述第一BLER子集中的至少一个BLER对应的信道质量参数的差值。
可选地,所述终端设备2600还包括:接收模块,用于接收网络设备发送的信道质量参数请求,所述信道质量参数请求用于请求所述第一BLER集合中的第二BLER子集中的至少一个BLER对应的信道质量参数与所述第一BLER集合中的第一BLER子集中的至少一个BLER对应的信道质量参数的至少一个信道质量参数差值;该处理模块2610,还用于根据所述信道质量参数请求向所述网络设备发送所述第一BLER集合中的第二BLER子集中的至少一个BLER对应的信道质量参数与所述第一BLER集合中的第一BLER子集中的至少一个BLER对应的信道质量参数的至少一个信道质量参数差值。
可选地,所述终端设备2600还包括:接收模块,用于接收网络设备发送的信道质量参数请求,所述信道质量参数请求用于请求所述至少一个BLER集合中的每个BLER集合中的第二BLER子集中的至少一个BLER对应的信道质量参数与第一BLER子集中的至少一个BLER对应的信道质量参数的信道质量参数差值;该处理模块2610,还用于根据所述信道质量参数请求向所述网络设备发送所述至少一个BLER集合中每个BLER集合中的第二BLER子集中的至少一个BLER对应的信道质量参数与第二BLER子集中的至少一个BLER对应的信道质量参数的信道质量参数差值。
可选地,若所述方法应用于支持至少两个BLER集合的系统中,所述至少两个BLER集合中的任意两个BLER集合对应的CQI等级不同。
可选地,若所述方法应用于支持至少两个BLER集合的系统中,所述至少两个BLER集合中的任意两个BLER集合对应的传输方法不同。
可选地,所述传输方法包括天线端口配置和/或多输入多输出MIMO预处理方式。
因此,本申请实施例的终端设备发送第一BLER集合中的第一BLER子集中的每个BLER对应的信道质量参数,并根据第一BLER子集中的部分BLER对应的信道质量参数和第二BLER子集中的每个BLER对应的信道质量参数与该第一BELR子集中的至少一个BLER对应的信道质量参数的信道质量参数差值确定出第二BLER子集中的全部BLER对应的信道质量参数,即网络设备能够确定第一BLER集合中全部BLER对应的信道质量参数,而不需要终端设备发送第一BLER集合中的全部BLER对应的信道质量参数,节省了信令开销。
应理解,根据本申请实施例的终端设备2600可对应于本申请实施例的用于数据传输的方法2000的中的终端设备,并且终端设备2600中的各个模块的上述和其它管理操作和/或功能分别为了实现前述各个方法的相应步骤,为了简洁,在此不再赘述。
本申请实施例中的发送模块2620可以由收发器实现,处理模块2610可以由处理器实现。如图27所示,终端设备2700可以包括收发器2710,处理器2720和存储器2730。其中,存储器2730可以用于存储指示信息,还可以用于存储处理器2720执行的代码、指令等。
应理解,处理器2520或处理器2720可以是集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本发明实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本发明实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本发明实施例中的存储器2530或存储器2730可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchronous link DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。
应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型 的存储器。
本申请实施例还提供了一种系统芯片,该系统芯片包括输入输出接口、至少一个处理器、至少一个存储器和总线,该至少一个存储器用于存储指令,该至少一个处理器用于调用该至少一个存储器的指令,以进行上述各个实施例的方法的操作。
图28示出了本申请实施例的资源分配的系统2800,该系统2800包括:
如图24所示的实施例中的网络设备2400和如图26所示的实施例中的终端设备2600。
本申请实施例还提供一种计算机存储介质,该计算机存储介质可以存储用于指示上述任一种方法的程序指令。
可选地,该存储介质具体可以为存储器2530或2730。
图29示出了本申请实施例终端设备2900的示意性框图。如图29所示,该终端设备2900包括:
处理模块2910,用于根据对应关系表,确定指示信息,该指示信息用于指示至少一个信道质量指示CQI索引值,该对应关系表包括N个CQI索引值、M个调制方式和K个码率参数,且所述N个CQI索引值中的至少一个CQI索引值对应一种调制方式,所述N个CQI索引值中的K个CQI索引值一一对应所述K个码率参数,所述N个CQI索引值中的第一CQI索引值对应的码率与所述第一CQI索引值对应的调制方式的调制阶数的乘积为大于0,且小于0.0781的值,其中,码率参数=码率*1024,N>M,N≥K,且N、K和M均为正整数;
发送模块2920,用于向网络设备发送该指示信息。
可选地,该K个码率参数包括大于0,且小于40的值。
可选地,所述对应关系表中的N个CQI索引值按从小到大的顺序排列,且所述N个CQI索引值中的前P个CQI索引值中每个CQI索引值对应的调制方式的调制阶数与对应的码率的乘积按从小到大的顺序排列,第P+h个CQI索引值对应的调制方式的调制阶数与对应的码率的乘积小于第P个CQI索引值对应的调制方式的调制阶数与对应的码率的乘积,N>P+h,且h依次取从1到N-X,X>P。
因此,本申请实施例的终端设备根据对应关系表,确定指示信息,该指示信息用于指示至少一个信道质量指示CQI索引值,该对应关系表包括N个CQI索引值、M个调制方式和K个码率参数,且所述N个CQI索引值中的至少一个CQI索引值对应一种调制方式,所述N个CQI索引值中的K个CQI索引值一一对应所述K个码率参数,所述N个CQI索引值中的第一CQI索引值对应的码率与所述第一CQI索引值对应的调制方式的调制阶数的乘积为大于0,且小于0.0781的值,其中,码率参数=码率*1024,N>M,N≥K,且N、K和M均为正整数,并发送该指示信息,使得网络设备根据该指示信息确定该至少一个CQI索引值对应的调制方式,也就是说,本申请能够应用于对频谱效率要求低于0.0781的系统,即覆盖恶劣的信道条件区域,保证用户在深衰信道下通信。
应理解,根据本申请实施例的终端设备2900可对应于本申请实施例的通信方法2200的中的终端设备,并且终端设备2900中的各个模块的上述和其它管理操作和/或功能分别为了实现前述各个方法的相应步骤,为了简洁,在此不再赘述。
本申请实施例中的发送模块2920可以由收发器实现,处理模块2910可以由处理器实现。如图30所示,终端设备3000可以包括收发器3010,处理器3020和存储器3030。其 中,存储器3030可以用于存储指示信息,还可以用于存储处理器3020执行的代码、指令等。
图31示出了本申请实施例网络设备3100的示意性框图。如图31所示,该网络设备3100包括:
接收模块3110,用于接收指示信息,该指示信息用于指示至少一个信道质量指示CQI索引值;
处理模块3120,用于根据对应关系表,确定所述至少一个CQI索引值对应的调制编码方式,该对应关系表包括N个CQI索引值、M个调制方式和K个码率参数,且所述N个CQI索引值中的至少一个CQI索引值对应一种调制方式,所述N个CQI索引值中的K个CQI索引值一一对应所述K个码率参数,所述N个CQI索引值中的第一CQI索引值对应的码率参数与所述第一CQI索引值对应的调制方式的调制阶数的乘积为大于0,且小于0.0781的值,其中,码率参数=码率*1024,N>M,N≥K,且N、K和M均为正整数。
可选地,该K个码率参数包括大于0,且小于40的值。
可选地,所述对应关系表中的N个CQI索引值按从小到大的顺序排列,且所述N个CQI索引值中的前P个CQI索引值中每个CQI索引值对应的调制方式的调制阶数与对应的码率参数的乘积按从小到大的顺序排列,第P+h个CQI索引值对应的调制方式的调制阶数与对应的码率参数的乘积小于第P个CQI索引值对应的调制方式的调制阶数与对应的码率参数的乘积,N>P+h,且h依次取从1到N-X,X>P。
因此,本申请实施例的网络设备接收指示信息,并根据对应关系表,确定该至少一个CQI索引值对应的调制方式,该对应关系表包括N个CQI索引值、M个调制方式和K个码率参数,且所述N个CQI索引值中的至少一个CQI索引值对应一种调制方式,所述N个CQI索引值中的K个CQI索引值一一对应所述K个码率参数,所述N个CQI索引值中的第一CQI索引值对应的码率与所述第一CQI索引值对应的调制方式的调制阶数的乘积为大于0,且小于0.0781的值,其中,码率参数=码率*1024,N>M,N≥K,且N、K和M均为正整数,并发送该指示信息,使得网络设备根据该指示信息确定该至少一个CQI索引值对应的调制方式,也就是说,本申请能够应用于对频谱效率要求低于0.0781的系统,即覆盖恶劣的信道条件区域,保证用户在深衰信道下通信。
应理解,根据本申请实施例的网络设备3100可对应于本申请实施例的通信方法2200中的网络设备,并且网络设备3100中的各个模块的上述和其它管理操作和/或功能分别为了实现前述各个方法的相应步骤,为了简洁,在此不再赘述。
本申请实施例中的接收模块3110可以由收发器实现,处理模块3120可以由处理器实现。如图32所示,网络设备3200可以包括收发器3210,处理器3220和存储器3230。其中,存储器3230可以用于存储指示信息,还可以用于存储处理器3220执行的代码、指令等。
应理解,处理器3020或处理器3220可以是集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立 门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本发明实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本发明实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本发明实施例中的存储器3030或存储器3230可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchronous link DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。
应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本申请实施例还提供了一种系统芯片,该系统芯片包括输入输出接口、至少一个处理器、至少一个存储器和总线,该至少一个存储器用于存储指令,该至少一个处理器用于调用该至少一个存储器的指令,以进行上述各个实施例的方法的操作。
图33示出了本申请实施例的资源分配的系统3300,该系统3300包括:
如图29所示的实施例中的网络设备2900和如图31所示的实施例中的终端设备3100。
本申请实施例还提供一种计算机存储介质,该计算机存储介质可以存储用于指示上述任一种方法的程序指令。
可选地,该存储介质具体可以为存储器3030或3230。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组 件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (23)

  1. 一种通信方法,其特征在于,包括:
    根据对应关系表确定指示信息,所述指示信息用于指示至少一个信道质量指示CQI索引值,所述对应关系表包括N个CQI索引值、M个调制方式和K个码率参数,且所述N个CQI索引值中的至少一个CQI索引值对应一种调制方式,所述N个CQI索引值中的K个CQI索引值一一对应所述K个码率参数,所述N个CQI索引值中的第一CQI索引值对应的码率与所述第一CQI索引值对应的调制方式的调制阶数的乘积为大于0且小于0.0781的值,其中,码率参数=码率*1024,N>M,N≥K,且N、K和M均为正整数;
    向网络设备发送所述指示信息。
  2. 根据权利要求1所述的通信方法,其特征在于,所述K个码率参数包括大于0,且小于40的值。
  3. 根据权利要求1或2所述的通信方法,其特征在于,所述N个CQI索引值对应至少三种调制方式,所述至少三种调制方式中QPSK的数量大于所述至少三种调制方式中其他任一种调制方式的数量。
  4. 一种通信方法,其特征在于,包括:
    接收指示信息,所述指示信息用于指示至少一个信道质量指示CQI索引值;
    根据对应关系表确定所述至少一个CQI索引值对应的调制编码方式,所述对应关系表包括N个CQI索引值、M个调制方式和K个码率参数,且所述N个CQI索引值中的至少一个CQI索引值对应一种调制方式,所述N个CQI索引值中的K个CQI索引值一一对应所述K个码率参数,所述N个CQI索引值中的第一CQI索引值对应的码率参数与所述第一CQI索引值对应的调制方式的调制阶数的乘积为大于0且小于0.0781的值,其中,码率参数=码率*1024,N>M,N≥K,且N、K和M均为正整数。
  5. 根据权利要求4所述的通信方法,其特征在于,所述K个码率参数包括大于0,且小于40的值。
  6. 根据权利要求4或5所述的通信方法,其特征在于,所述N个CQI索引值对应至少三种调制方式,所述至少三种调制方式中QPSK的数量大于所述至少三种调制方式中其他任一种调制方式的数量。
  7. 一种通信方法,其特征在于,所述通信方法包括:
    根据对应关系表确定指示信息,所述指示信息用于指示至少一个调制编码方式MCS索引值,所述对应关系表包括N个MCS索引值、M个调制方式和K个码率参数,且所述N个MCS索引值中的至少一个MCS索引值对应一种调制方式,所述N个MCS索引值中的K个MCS索引值一一对应所述K个码率参数,所述N个MCS索引值中的第一MCS索引值对应的码率与所述第一MCS索引值对应的调制方式的调制阶数的乘积为大于0且小于0.0781的值,其中,码率参数=码率*1024,N>M,N≥K,且N、K和M均为正整数;
    发送所述指示信息。
  8. [根据细则91更正 08.10.2018] 
    根据权利要求7所述的通信方法,其特征在于,所述K个码率参数包括大于0,且小 于40的值。
  9. 一种通信方法,其特征在于,包括:
    接收指示信息,所述指示信息用于指示至少一个调制编码方案MCS索引值;
    根据对应关系表确定所述至少一个MCS索引值对应的调制编码方式,所述对应关系表包括N个MCS索引值、M个调制方式和K个码率参数,且所述N个MCS索引值中的至少一个MCS索引值对应一种调制方式,所述N个MCS索引值中的K个MCS索引值一一对应所述K个码率参数,所述N个MCS索引值中的第一CQI索引值对应的码率参数与所述第一MCS索引值对应的调制方式的调制阶数的乘积为大于0且小于0.0781的值,其中,码率参数=码率*1024,N>M,N≥K,且N、K和M均为正整数。
  10. 根据权利要求9所述的通信方法,其特征在于,所述K个码率参数包括大于0,且小于40的值。
  11. 一种通信装置,其特征在于,包括:
    处理模块,用于根据对应关系表确定指示信息,所述指示信息用于指示至少一个信道质量指示CQI索引值,所述对应关系表包括N个CQI索引值、M个调制方式和K个码率参数,且所述N个CQI索引值中的至少一个CQI索引值对应一种调制方式,所述N个CQI索引值中的K个CQI索引值一一对应所述K个码率参数,所述N个CQI索引值中的第一CQI索引值对应的码率与所述第一CQI索引值对应的调制方式的调制阶数的乘积为大于0且小于0.0781的值,其中,码率参数=码率*1024,N>M,N≥K,且N、K和M均为正整数;
    收发模块,用于向网络设备发送所述指示信息。
  12. 根据权利要求11所述的通信装置,其特征在于,所述K个码率参数包括大于0且小于40的值。
  13. 根据权利要求11或12所述的通信装置,其特征在于,所述N个CQI索引值对应至少三种调制方式,所述至少三种调制方式中QPSK的数量大于所述至少三种调制方式中其他任一种调制方式的数量。
  14. 一种通信装置,其特征在于,包括:
    收发模块,用于接收指示信息,所述指示信息用于指示至少一个信道质量指示CQI索引值;
    处理模块,用于根据对应关系表确定所述至少一个CQI索引值对应的调制编码方式,所述对应关系表包括N个CQI索引值、M个调制方式和K个码率参数,且所述N个CQI索引值中的至少一个CQI索引值对应一种调制方式,所述N个CQI索引值中的K个CQI索引值一一对应所述K个码率参数,所述N个CQI索引值中的第一CQI索引值对应的码率参数与所述第一CQI索引值对应的调制方式的调制阶数的乘积为大于0且小于0.0781的值,其中,码率参数=码率*1024,N>M,N≥K,且N、K和M均为正整数。
  15. 根据权利要求14所述的通信装置,其特征在于,所述K个码率参数包括大于0且小于40的值。
  16. 根据权利要求14或15所述的通信装置,其特征在于,所述N个CQI索引值对应至少三种调制方式,所述至少三种调制方式中QPSK的数量大于所述至少三种调制方式中其他任一种调制方式的数量。
  17. 一种通信装置,其特征在于,包括:
    处理模块,用于根据对应关系表确定指示信息,所述指示信息用于指示至少一个调制编码方式MCS索引值,所述对应关系表包括N个MCS索引值、M个调制方式和K个码率参数,且所述N个MCS索引值中的至少一个MCS索引值对应一种调制方式,所述N个MCS索引值中的K个MCS索引值一一对应所述K个码率参数,所述N个MCS索引值中的第一MCS索引值对应的码率与所述第一MCS索引值对应的调制方式的调制阶数的乘积为大于0且小于0.0781的值,其中,码率参数=码率*1024,N>M,N≥K,且N、K和M均为正整数;
    收发模块,用于发送所述指示信息。
  18. [根据细则91更正 08.10.2018] 
    根据权利要求17所述的通信装置,其特征在于,所述K个码率参数包括大于0且小于40的值。
  19. 一种通信装置,其特征在于,包括:
    收发模块,用于接收指示信息,所述指示信息用于指示至少一个调制编码方案MCS索引值;
    处理模块,用于根据对应关系表确定所述至少一个MCS索引值对应的调制编码方式,所述对应关系表包括N个MCS索引值、M个调制方式和K个码率参数,且所述N个MCS索引值中的至少一个MCS索引值对应一种调制方式,所述N个MCS索引值中的K个MCS索引值一一对应所述K个码率参数,所述N个MCS索引值中的第一CQI索引值对应的码率参数与所述第一MCS索引值对应的调制方式的调制阶数的乘积为大于0且小于0.0781的值,其中,码率参数=码率*1024,N>M,N≥K,且N、K和M均为正整数。
  20. 根据权利要求19所述的通信装置,其特征在于,所述K个码率参数包括大于0且小于40的值。
  21. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行权利要求1至10中任一项权利要求所述的方法。
  22. 一种计算机程序产品,其特征在于,当其在计算机上运行时,使得计算机执行权利要求1至10中任一项所述的方法。
  23. 一种芯片系统,其特征在于,包括存储器和处理器,所述存储器用于存储计算机程序,所述处理器用于从所述存储器中调用并运行所述计算机程序,使得设置有所述芯片的通信设备执行如权利要求1-10中任一项所述的方法。
PCT/CN2018/091681 2017-06-16 2018-06-15 信道质量反馈方法及装置 WO2018228572A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP18816567.4A EP3627746A4 (en) 2017-06-16 2018-06-15 CHANNEL QUALITY FEEDBACK METHOD AND DEVICE
KR1020207000158A KR20200013041A (ko) 2017-06-16 2018-06-15 채널 품질 피드백 방법 및 장치
JP2019569491A JP2020523913A (ja) 2017-06-16 2018-06-15 チャネル品質フィードバック方法及び装置
BR112019026670-4A BR112019026670A2 (pt) 2017-06-16 2018-06-15 método e aparelho de feedback de qualidade de canal
US16/712,671 US11177905B2 (en) 2017-06-16 2019-12-12 Channel quality feedback method and apparatus

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201710459701.5 2017-06-16
CN201710459701 2017-06-16
CN201710687964.1A CN109150478B (zh) 2017-06-16 2017-08-11 信道质量反馈方法及装置
CN201710687964.1 2017-08-11

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/712,671 Continuation US11177905B2 (en) 2017-06-16 2019-12-12 Channel quality feedback method and apparatus

Publications (1)

Publication Number Publication Date
WO2018228572A1 true WO2018228572A1 (zh) 2018-12-20

Family

ID=64658967

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/091681 WO2018228572A1 (zh) 2017-06-16 2018-06-15 信道质量反馈方法及装置

Country Status (1)

Country Link
WO (1) WO2018228572A1 (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104184556A (zh) * 2014-09-04 2014-12-03 北京邮电大学 一种兼容高阶调制的链路自适应方法
CN104468027A (zh) * 2013-09-25 2015-03-25 株式会社日立制作所 支持基于高阶调制的数据传输的基站装置及数据通信方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104468027A (zh) * 2013-09-25 2015-03-25 株式会社日立制作所 支持基于高阶调制的数据传输的基站装置及数据通信方法
CN104184556A (zh) * 2014-09-04 2014-12-03 北京邮电大学 一种兼容高阶调制的链路自适应方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ANONYMOUS: "LTE; E-UTRA; Physical layer procedures (version 14.2.0 Release 14", 3GPP TS36. 213, 2017, 30 April 2017 (2017-04-30), XP051291433 *
See also references of EP3627746A4 *

Similar Documents

Publication Publication Date Title
US11177905B2 (en) Channel quality feedback method and apparatus
US10447425B2 (en) Method and apparatus for determining transport block size
WO2020034857A1 (zh) Csi报告配置方法、终端设备和网络设备
US11984977B2 (en) Code block segmentation for new radio
US11172393B2 (en) Channel state indication method and apparatus, and network device
WO2020207269A1 (zh) 干扰测量的方法和装置
WO2018202031A1 (zh) 干扰测量的方法及装置和获得信道状态信息的方法及装置
WO2020155184A1 (zh) 干扰或信号接收功率测量的方法和设备
WO2018228579A1 (zh) 确定传输块大小的方法及装置
WO2019047819A1 (zh) 发送上行控制信道的方法和装置
WO2020259611A1 (zh) 一种通信方法、装置及存储介质
WO2023280051A1 (zh) 通信方法及相关设备
WO2018202041A1 (zh) 信息发送的方法及其装置和信息接收的方法及其装置
WO2017206077A1 (zh) 用于确定数据流支持的传输速率的方法、用户设备和基站
US20150318967A1 (en) Method and device for transmitting information
WO2021088260A1 (zh) 传输反馈信息的方法、终端设备和网络设备
WO2021142774A1 (zh) 通信方法、装置、终端和存储介质
US20220337376A1 (en) Data transmission method and related devices
WO2018228572A1 (zh) 信道质量反馈方法及装置
WO2021189499A1 (zh) 通信方法及相关产品
WO2022077510A1 (zh) 一种解调参考信号dmrs的资源确定方法和通信装置
WO2024060078A1 (zh) 信息收发方法与装置
WO2024207468A1 (zh) 信道状态信息报告的发送和接收方法以及装置
WO2024187462A1 (zh) 反馈信道质量信息的方法和装置
CN115189839A (zh) 一种通信方法和设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18816567

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019569491

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018816567

Country of ref document: EP

Effective date: 20191217

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112019026670

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 20207000158

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 112019026670

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20191213