WO2018228544A1 - 一种功率确定方法、设备及系统 - Google Patents

一种功率确定方法、设备及系统 Download PDF

Info

Publication number
WO2018228544A1
WO2018228544A1 PCT/CN2018/091550 CN2018091550W WO2018228544A1 WO 2018228544 A1 WO2018228544 A1 WO 2018228544A1 CN 2018091550 W CN2018091550 W CN 2018091550W WO 2018228544 A1 WO2018228544 A1 WO 2018228544A1
Authority
WO
WIPO (PCT)
Prior art keywords
carrier
terminal
power
path loss
offset value
Prior art date
Application number
PCT/CN2018/091550
Other languages
English (en)
French (fr)
Inventor
孙伟
郭志恒
谢信乾
费永强
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP18817491.6A priority Critical patent/EP3592048B1/en
Publication of WO2018228544A1 publication Critical patent/WO2018228544A1/zh
Priority to US16/716,421 priority patent/US20200120612A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • H04W52/146Uplink power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/242TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account path loss
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/245TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account received signal strength
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/36TPC using constraints in the total amount of available transmission power with a discrete range or set of values, e.g. step size, ramping or offsets

Definitions

  • the embodiments of the present invention relate to the field of communications technologies, and in particular, to a power determining method, device, and system.
  • the 5th generation (5th-generation, 5G) (also known as the next generation wireless (NR)) system uses the most advanced mobile communication technology, which can provide mobile users with higher bandwidth and more secure communication.
  • the 5G system can share the same frequency band resources with the LTE system, for example, as shown in FIG. 1 , the terminal in the LTE system (user Equipment, UE) uses LTE frequency division duplexing (FDD) downlink (DL) carrier F2 for downlink transmission, and UE in 5G system uses downlink time division duplexing (TDD) carrier F3 for downlink transmission.
  • FDD frequency division duplexing
  • DL downlink
  • TDD downlink time division duplexing
  • the user equipment (UE) in the 5G system and the UE in the LTE system can jointly use the LTE FDD uplink (UL) carrier F1 for uplink transmission, thereby realizing the sharing of the frequency band resources.
  • the LTE UE can measure the path loss of F3 by using the LTE downlink reference signal carried in F3, and the path loss can be used for F1.
  • the UE in the 5G system since the F3 is only used to transmit the LTE signal, the UE of the 5G system cannot recognize the F3, so the path loss of the F1 cannot be measured by the reference signal on the F3; although, the F2 carries the downlink of the 5G.
  • the reference information indicates that the UE in the 5G system can measure the path loss of F2 through the downlink reference information carried in F2.
  • Embodiments of the present invention provide a power determining method, device, and system, which solve the problem of how to determine the power of transmitting an uplink signal in a 5G system.
  • the embodiment of the present invention adopts the following technical solutions:
  • an embodiment of the present invention provides a power determining method, including:
  • the terminal receives the first offset value from the network device, and determines, according to the received power of the downlink signal received on the second carrier, and the first offset value, the power of transmitting the uplink signal on the first carrier;
  • the first offset value is determined according to the penetration loss of the first carrier and the penetration loss of the second carrier, where the first carrier is the uplink carrier of the terminal, and the second carrier is the TDD carrier or the downlink carrier of the terminal.
  • the downlink signal includes a downlink reference signal, and the received power of the downlink signal includes a reference signal received power (RSRP).
  • RSRP reference signal received power
  • the downlink signal may also include a downlink data signal.
  • the power of the uplink signal is determined according to the offset value related to the penetration loss, and thus, the calculation and transmission are determined according to the transmission environment of the terminal.
  • the power of the uplink signal solves the problem that the power of the uplink signal cannot be calculated in the existing 5G system.
  • the first offset value may be a difference between a penetration loss of the first carrier and a penetration loss of the second carrier;
  • the uplink carrier may be: the bearer terminal sends the network device to the network device.
  • the carrier of the signaling or the data the downlink carrier may be: a carrier carrying data or signaling sent by the network device to the terminal, and the TDD carrier may be: data or signaling sent by the bearer terminal to the network device in different time slots, and the network The carrier of data or signaling sent by the device to the terminal.
  • the first carrier may include multiple subcarriers, and when the first carrier includes multiple subcarriers, the first offset value determined according to the penetration loss of the first carrier and the penetration loss of the second carrier. It is also possible to include a plurality of values that correspond one-to-one with the subcarriers.
  • the terminal determines to send on the first carrier according to the received power and the first offset value of receiving the downlink signal on the second carrier in the following cases:
  • the power of the uplink signal such as:
  • the terminal determines to send the uplink on the first carrier according to the received power of the downlink signal received on the second carrier and the first offset value.
  • the power of the signal or
  • the terminal determines to send the uplink on the first carrier according to the received power of the downlink signal received on the second carrier and the first offset value.
  • the power of the signal or
  • the terminal determines to send the uplink signal on the first carrier according to the received power and the first offset value of the downlink signal received on the second carrier. Power.
  • the specific value of the first threshold value, the second threshold value, and the third threshold value may be set as needed, which is not limited in this embodiment of the present invention.
  • the first threshold, the second threshold, and the third threshold may be configured by the network device to the terminal.
  • the first threshold unit corresponds to the downlink signal receiving power unit.
  • the transmission condition between the terminal and the access network device is compared. Poor, the terminal is an indoor user
  • the second threshold corresponds to the path loss unit, and when the terminal receives the downlink signal on the second carrier, the path loss is less than or equal to the second threshold, indicating that the terminal and the access network device transmit
  • the terminal is an indoor user
  • the third threshold unit corresponds to the RSRP unit of the downlink reference signal.
  • the network device may receive power according to the reference signal reported by the terminal, determine that the terminal is an indoor terminal or an outdoor terminal, and determine The result is notified to the terminal, so that the terminal determines, according to the result of the notification, the power of transmitting the uplink signal on the first carrier according to the path loss of the second carrier and the first offset value.
  • the terminal determines to send on the first carrier according to a received power that receives a downlink signal on the second carrier and the first offset value.
  • the power of the uplink signal can include:
  • the terminal determines, according to the path loss of the second carrier, the first offset value, the power of transmitting the uplink signal on the first carrier; the path loss of the second carrier is determined by the terminal according to the received power of receiving the downlink signal on the second carrier.
  • determining, by the terminal, the power of transmitting the uplink signal on the first carrier according to the path loss of the second carrier and the first offset value may include:
  • the terminal determines the path loss of the first carrier according to the path loss of the second carrier and the first offset value, and determines the power of transmitting the uplink signal on the first carrier according to the path loss of the first carrier.
  • the terminal can calculate the path loss of the first carrier by using the following two methods:
  • the result of adding the path loss of the second carrier, the first offset value, and the second offset value is used as the path loss of the first carrier;
  • the second offset value is the path loss of the first carrier and the path of the second carrier The difference in loss; or,
  • the terminal When the second offset value is used to configure the uplink power control parameter of the first carrier, the terminal directly adds the path loss of the second carrier to the first offset value as the path loss of the first carrier.
  • the terminal may determine the power of the uplink signal sent on the first carrier according to the path loss of the first carrier and the power control parameter configured by the network device according to the existing power control calculation formula, and the power is taken.
  • the value unit is dBm.
  • the terminal can calculate the transmit power of the uplink signal by using the existing power control formula and the determined uplink path loss, wherein the existing power control formula is as described in the specific implementation section.
  • determining, by the terminal, the power of transmitting the uplink signal on the first carrier according to the path loss of the second carrier and the first offset value may further include:
  • the terminal determines the power P of the uplink signal sent on the first carrier according to the following formula 1 or formula 2:
  • offset is the first offset value
  • the PL determines, according to the path loss of the second carrier, that PL is the path loss of the second carrier, or PL is the result of adding the path loss of the second carrier and the second offset value, and the path loss of the second carrier is based on the terminal. Determined by the received power of the downlink signal received on the second carrier, where the second offset value is determined according to a path loss of the first carrier and a path loss of the second carrier;
  • P max is the maximum transmit power of the terminal on the first carrier
  • is the power control parameter related to the path loss compensation obtained by the terminal from the network device.
  • the terminal can directly calculate the power for transmitting the uplink signal according to the first offset value, and does not need to calculate the uplink path loss first, and then calculates the power of transmitting the uplink signal according to the uplink path loss, thereby reducing the computational complexity of the terminal.
  • the functions FUNCTION(M, P 0 , ⁇ , f) are different for different uplink signals, for example, for a physical uplink shared channel (PUSCH).
  • FUNCTION(M, P 0 , ⁇ , f) is:
  • i is the subframe number
  • c is the carrier number
  • P CMAX,c (i) is the maximum transmit power of gNB
  • M PUSCH,c (i)) is the c-th carrier of the i-th subframe.
  • the number of PUSCHs, P O_PUSCH, c (j) is the target received power
  • ⁇ TF, c (i) is the adjustment amount related to the modulation scheme
  • f c (i) is the power control factor.
  • the method may further include:
  • the terminal determines the power of transmitting the uplink signal on the first carrier according to the path loss of the second carrier.
  • the path loss is greater than the second threshold, or when the terminal receives the downlink signal on the second carrier, the path loss is greater than the second threshold, or when the terminal When the RSRP of the downlink signal received on the second carrier is greater than the third threshold, it indicates that the transmission condition between the terminal and the access network device is good, and the terminal is an outdoor terminal, and the power of the uplink signal is not required to be considered and penetrated.
  • the first offset value associated with the loss increases the accuracy of the power to transmit the upstream signal.
  • determining, by the terminal, the power of transmitting the uplink signal on the first carrier according to the path loss of the second carrier may include:
  • the terminal determines the path loss of the first carrier according to the path loss of the second carrier, and determines the power of the uplink signal sent on the first carrier according to the path loss of the first carrier.
  • the terminal may add the path loss of the second carrier and the second offset value as the path loss of the first carrier;
  • the path loss of the second carrier is directly used as the path loss of the first carrier.
  • the terminal may determine the power of the uplink signal sent on the first carrier according to the existing power control calculation formula according to the path loss of the first carrier and the power control parameter configured by the network device.
  • the terminal when the terminal is an outdoor terminal, since there is no impact of the penetration loss on the uplink path loss, the terminal only considers the factors that affect the uplink path loss: path loss, according to the downlink carrier path loss, and between the uplink carrier and the downlink carrier.
  • path loss path loss
  • the difference between the factors calculates the uplink path loss, improves the accuracy of the uplink path loss calculation, and improves the accuracy of the uplink signal power.
  • an embodiment of the present invention provides a power determining method, including:
  • the network device configures a first offset value for the terminal; the first offset value is determined according to a penetration loss of the first carrier and a penetration loss of the second carrier, where the first carrier is an uplink carrier of the terminal, where The second carrier is a time division duplex TDD carrier or a downlink carrier of the terminal.
  • the network device is an offset value related to the penetration loss of the terminal, so that the terminal calculates the power of the uplink signal sent by the terminal according to the offset value.
  • the method may further include:
  • the network device configures, for the terminal, a first threshold or a second threshold or a third threshold, where the first threshold, the second threshold, and the third threshold are used by the terminal according to the location
  • the received power of the downlink signal received on the second carrier and the first offset value determine the power of transmitting the uplink signal on the first carrier.
  • the terminal compares the received power of the received downlink signal on the second carrier to be less than or equal to the first threshold, and determines whether the power of the uplink signal is determined according to the first offset value.
  • the method may further include:
  • the network device configures the first offset value for the terminal by using a system message or radio resource control (RRC) signaling; or
  • RRC radio resource control
  • the network device configures the terminal with a first threshold or a second threshold or a third threshold through system messages or RRC signaling.
  • the first offset value and any one of the first threshold, the second threshold, and the third threshold may be in the same message or signaling.
  • the network device can place the first offset value and the first threshold or the second threshold or the third threshold in the same message and configure the terminal, which greatly reduces the signal consumption of the network device.
  • the first offset value and any of the first threshold, the second threshold, and the third threshold may be in different messages or signaling.
  • the network device may configure the first offset value and the first threshold value or the second threshold value or the third threshold value to be allocated to the terminal separately in different messages or signaling, thereby reducing the configuration first offset.
  • the interference between the value shift and the first threshold or the second threshold or the third threshold improves the accuracy of terminal message or signaling analysis.
  • a third aspect of the embodiments of the present invention provides a terminal, including:
  • a receiving unit configured to receive, by the network device, a first offset value determined according to a penetration loss of the first carrier and a penetration loss of the second carrier;
  • the first carrier is an uplink carrier of the terminal, and the second carrier is a time division double of the terminal Working as a TDD carrier or a downlink carrier;
  • a determining unit configured to determine, according to the received power of the downlink signal received on the second carrier, and the first offset value, the power of transmitting the uplink signal on the first carrier.
  • the terminal provided by the third aspect can achieve the same advantageous effects as the first aspect.
  • a fourth aspect of the embodiments of the present invention provides a terminal, where the terminal can implement the functions performed by the terminal in the foregoing method, where the function can be implemented by using hardware or by executing corresponding software by hardware.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • the structure of the terminal includes a processor and a transceiver configured to support the terminal to perform corresponding functions in the above methods.
  • the transceiver is used to support communication between the terminal and other network elements.
  • the terminal can also include a memory, a display for coupling with the processor, which stores program instructions and data necessary for the terminal, and the display can be used for interaction between the terminal and the user.
  • a fifth aspect of the embodiments of the present invention provides a computer storage medium for storing computer software instructions for use in the terminal, including a program designed to perform the above aspects.
  • a computer program product is stored, the computer program product storing computer software instructions for use in the terminal, comprising a program designed to perform the above aspects.
  • a seventh aspect of the embodiments of the present invention provides a network device, including:
  • a configuration unit configured to configure, for the terminal, a first offset value determined according to a penetration loss of the first carrier and a penetration loss of the second carrier, where the first carrier is an uplink carrier of the terminal, and the second carrier It is a time division duplex TDD carrier or a downlink carrier of the terminal.
  • the specific implementation manner of the seventh aspect may refer to the behavior function of the network device in the power determining method provided by the second aspect or the possible implementation manner of the second aspect, and details are not repeatedly described herein. Therefore, the terminal provided by the seventh aspect can achieve the same advantageous effects as the second aspect.
  • An eighth aspect of the embodiments of the present invention provides a network device, where the network device can implement the functions performed by the network device in the foregoing method, where the function can be implemented by using hardware or by executing corresponding software through hardware.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • the structure of the terminal includes a processor and a transceiver configured to support the terminal to perform corresponding functions in the above methods.
  • the transceiver is used to support communication between the terminal and other network elements.
  • the terminal can also include a memory, a display for coupling with the processor, which stores program instructions and data necessary for the terminal, and the display can be used for interaction between the terminal and the user.
  • a computer storage medium for storing computer software instructions for use in the network device, comprising a program designed to perform the above aspects.
  • a computer program product storing computer software instructions for use in the network device, comprising a program designed to perform the above aspects.
  • a path loss determining system comprising the terminal according to any of the above aspects, and the network device of any of the foregoing aspects.
  • FIG. 1 is a schematic diagram of a scenario in which an existing 5G system and an LTE system share an uplink carrier;
  • FIG. 2 is a schematic structural diagram of a system according to an embodiment of the present invention.
  • FIG. 3 is a schematic structural diagram of a gNB according to an embodiment of the present disclosure.
  • FIG. 4 is a schematic structural diagram of a UE according to an embodiment of the present disclosure.
  • FIG. 5 is a flowchart of a power determining method according to an embodiment of the present invention.
  • FIG. 6 is a flowchart of a power determining method according to an embodiment of the present invention.
  • FIG. 7 is a schematic structural diagram of a UE according to an embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of a UE according to an embodiment of the present disclosure.
  • FIG. 9 is a schematic diagram of a composition of a gNB according to an embodiment of the present invention.
  • FIG. 10 is a schematic structural diagram of a gNB according to an embodiment of the present invention.
  • the power determining method provided by the embodiment of the present invention may be applied to a communication environment in which the carrier frequency of the uplink carrier and the carrier frequency of the downlink carrier are greatly different.
  • the power determining method provided by the embodiment of the present invention may be applied to the 5G system shown in FIG. 2 .
  • the 5G system may include: at least one terminal, and a network device, where the terminal is within the coverage of the network device, and the network device may cover the terminals in the multiple cells.
  • the terminal may be a UE, such as a cellular phone, a cordless phone, a session initiation protocol (SIP) phone, a smart phone, a wireless local loop (WLL) station, Personal digital assistant (PDA), laptop, handheld communication device, handheld computing device, satellite wireless device, wireless modem card, and/or other processing device for communicating over a wireless system.
  • the network device can be: an access point, a node, a next generation base station (gNB), a transmission receive point (TRP), a transmission point (TP), or some other network device.
  • gNB next generation base station
  • TRP transmission receive point
  • TP transmission point
  • FIG. 2 is only an exemplary architecture diagram.
  • the 5G system may further include other functional entities, which are not limited in this embodiment of the present invention.
  • the UE can communicate with the network device through the uplink carrier and the downlink carrier, and the carrier frequencies of the uplink carrier and the downlink carrier are different.
  • the uplink carrier in FIG. 2 may be: UE in the UE and the LTE system.
  • the shared uplink carrier may also be a carrier decoupled from the downlink carrier, that is, the duplex distance of the uplink carrier and the downlink carrier may be flexibly configured, for example, the uplink carrier may be a low frequency carrier (for example, the center frequency point is 1.8).
  • the downlink carrier can be a high-frequency carrier (for example, a carrier with a center frequency of 3.5G); the downlink carrier can be used only for transmitting the carrier of the NR downlink signal of the 5G system, or for transmitting the 5G system.
  • Time division duplex carrier of NR uplink signal and downlink signal can be understood that, in the embodiment of the present invention, the low frequency carrier and the high frequency carrier are relative concepts, the low frequency carrier is a carrier with a relatively low frequency band among the two carriers, and the high frequency carrier is a carrier with a relatively high frequency band among the two carriers.
  • the following provides an introduction to the solution provided by the embodiment of the present invention by using the terminal as the UE and the network device as the gNB as an example.
  • FIG. 3 is a schematic diagram of a composition of a gNB according to an embodiment of the present invention.
  • the gNB may include at least one processor 31, a memory 32, a communication interface 33, and a communication bus 34.
  • the processor 31 is a control center of the gNB, and may be a processor or a collective name of a plurality of processing elements.
  • the processor 31 is a central processing unit (CPU), may be an application specific integrated circuit (ASIC), or one or more integrated circuits configured to implement embodiments of the present invention.
  • ASIC application specific integrated circuit
  • DSPs digital signal processors
  • FPGAs field programmable gate arrays
  • the processor 31 can perform various functions of the gNB by running or executing a software program stored in the memory 32 and calling data stored in the memory 32.
  • processor 31 may include one or more CPUs, such as CPU0 and CPU1 shown in FIG.
  • the gNB can include multiple processors, such as processor 31 and processor 35 shown in FIG.
  • processors can be a single core processor (CPU) or a multi-core processor (multi-CPU).
  • a processor herein may refer to one or more devices, circuits, and/or processing cores for processing data, such as computer program instructions.
  • the memory 32 can be a read-only memory (ROM) or other type of static storage device that can store static information and instructions, a random access memory (RAM) or other type that can store information and instructions.
  • the dynamic storage device can also be an electrically erasable programmable read-only memory (EEPROM), a compact disc read-only memory (CD-ROM) or other optical disc storage, and a disc storage device. (including compact discs, laser discs, optical discs, digital versatile discs, Blu-ray discs, etc.), magnetic disk storage media or other magnetic storage devices, or can be used to carry or store desired program code in the form of instructions or data structures and can be Any other media accessed, but not limited to this.
  • the memory 32 can exist independently and is coupled to the processor 31 via a communication bus 34.
  • the memory 32 can also be integrated with the processor 31.
  • the memory 32 is used to store a software program for executing the solution provided by the embodiment of the present invention, and is controlled by the processor 31 for execution.
  • the communication interface 33 is configured to communicate with other devices or communication networks, such as an Ethernet, a radio access network (RAN), a wireless local area network (WLAN), and the like.
  • the communication interface 33 may include a receiving unit that implements a receiving function, and a transmitting unit that implements a transmitting function.
  • the communication bus 34 may be an industry standard architecture (ISA) bus, a peripheral component (PCI) bus, or an extended industry standard architecture (EISA) bus.
  • ISA industry standard architecture
  • PCI peripheral component
  • EISA extended industry standard architecture
  • the bus can be divided into an address bus, a data bus, a control bus, and the like. For ease of representation, only one thick line is shown in Figure 3, but it does not mean that there is only one bus or one type of bus.
  • the network device in FIG. 3 can perform the operations performed by the network device in the path determining method provided by the embodiment of the present application, for example, the first offset value can be configured for the terminal.
  • FIG. 4 is a schematic diagram of a composition of a UE according to an embodiment of the present invention.
  • the UE may include at least one processor 41, a memory 42, and a transceiver 43.
  • the processor 41 is a control center of the UE, and may be a processor or a collective name of a plurality of processing elements.
  • processor 41 is a CPU, which may be an ASIC, or one or more integrated circuits configured to implement embodiments of the present invention, such as one or more DSPs, or one or more FPGAs.
  • the processor 41 can perform various functions of the UE by running or executing a software program stored in the memory 42, and calling data stored in the memory 42.
  • processor 41 may include one or more CPUs, such as CPU0 and CPU1 shown in FIG.
  • the UE may include multiple processors, such as processor 41 and processor 44 shown in FIG.
  • processors can be a single-CPU processor or a multi-CPU processor.
  • a processor herein may refer to one or more devices, circuits, and/or processing cores for processing data, such as computer program instructions.
  • the memory 42 can be a ROM or other type of static storage device that can store static information and instructions, RAM or other types of dynamic storage devices that can store information and instructions, and can also be EEPROM, CD-ROM or other optical disk storage, optical disk storage. (including compact discs, laser discs, optical discs, digital versatile discs, Blu-ray discs, etc.), magnetic disk storage media or other magnetic storage devices, or can be used to carry or store desired program code in the form of instructions or data structures and can be Any other media accessed, but not limited to this.
  • Memory 42 may be present independently and coupled to processor 41 via communication bus 44.
  • the memory 42 can also be integrated with the processor 41.
  • the memory 42 is used to store a software program that executes the solution of the present invention, and is controlled by the processor 41 for execution.
  • the transceiver 43 is configured to communicate with other devices or communication networks, such as Ethernet, RAN, WLAN, and the like.
  • the transceiver 43 may include a receiving unit to implement a receiving function, and a transmitting unit to implement a transmitting function.
  • the device structure shown in FIG. 4 does not constitute a limitation to the UE, and may include more or less components than those illustrated, or some components may be combined, or different component arrangements.
  • the UE may further include a battery, a camera, a Bluetooth module, a global positioning system (GPS) module, and the like, and details are not described herein.
  • GPS global positioning system
  • the UE shown in FIG. 4 can perform the operations performed by the UE in the path determining method provided by the embodiment of the present application.
  • the first offset value may be received from the network device, and when the UE is an indoor UE, the power of the uplink signal on the uplink carrier is determined according to the first offset value.
  • FIG. 5 is a flowchart of a power determining method according to an embodiment of the present invention.
  • the UE shown in FIG. 4 and the gNB shown in FIG. 3 are mutually executed.
  • the method may include the following steps:
  • Step 501 The gNB configures a first offset value for the UE.
  • the first offset value is determined according to the penetration loss of the first carrier and the penetration loss of the second carrier.
  • the first offset value may be: a penetration loss of the first carrier and a penetration of the second carrier.
  • the difference between the loss, the first carrier is the uplink carrier of the UE, and the second carrier is the TDD carrier or the downlink carrier of the UE.
  • the penetration loss refers to the ratio (in DB) of the signal strength outside the building and the signal strength in the building when the signal is outside the building when the signal is transmitted.
  • Penetration loss is related to the structure of the building, the material of the building, the location of the signal source, and so on.
  • the penetration loss is also a function of the carrier frequency, the frequency is low, the loss is small, and the frequency is high and the loss is large.
  • the penetration loss of the first carrier refers to the penetration loss of the UE and the gNB when transmitting signals on the first carrier.
  • the penetration loss of the second carrier refers to the penetration loss of the UE and the gNB when transmitting signals on the second carrier.
  • the penetration loss PL tw of any carrier can be calculated according to the following formula:
  • the penetration loss calculation formula for a typical low-loss penetration loss model in existing modeling is:
  • the penetration loss calculation formula for the high-loss penetration loss model is:
  • Step 502 The UE receives the first offset value from the gNB.
  • Step 503 The UE determines, according to the received power of the downlink signal received on the second carrier, and the first offset value, the power of transmitting the uplink signal on the first carrier.
  • the UE may obtain the first threshold or the second threshold or the third threshold from the gNB, when the UE receives the received power of the downlink signal on the second carrier.
  • the first threshold is less than or equal to, or when the path loss of the downlink signal received by the UE on the second carrier is less than or equal to the second threshold, or when the UE receives the downlink signal on the second carrier, the RSRP is less than or equal to
  • the third threshold the UE determines, according to the first threshold, that the UE determines the power of transmitting the uplink signal on the first carrier according to the received power and the first offset value of the downlink signal received on the second carrier; otherwise, the UE The power of transmitting the uplink signal on the first carrier is determined according to the received power of the downlink signal received on the second carrier.
  • the first threshold value, the second threshold value, and the third threshold value are as described in the above description, and the details are not repeated herein.
  • the UE obtains the first threshold from the gNB, and determines whether to determine the power of the uplink signal according to the first threshold value according to the first threshold value, and further describes and introduces the technical method shown in FIG. 5:
  • FIG. 6 is a flowchart of still another method for determining power according to an embodiment of the present invention.
  • the UE and the gNB perform interaction. As shown in FIG. 6, the method may include the following steps:
  • Step 601 The gNB configures the first offset value and the first threshold value for the UE.
  • the gNB may configure the first offset value for the UE by using a system message or RRC signaling, and configure the first threshold value for the UE by using a system message or RRC signaling.
  • the first offset value and the first threshold value may be in the same message or signaling, or may be in different messages or signaling.
  • Step 602 The UE receives the first offset value and the first threshold value from the gNB.
  • Step 603 The UE compares the received power of the received downlink signal on the second carrier to be smaller than the first threshold, and when the received power of the downlink signal received by the UE on the second carrier is less than or equal to the first threshold, step 604 is performed; When the received power of the downlink signal received by the UE on the second carrier is greater than the first threshold, step 605 is performed.
  • Step 604 The UE determines, according to the received power of the downlink signal received on the second carrier and the first offset value, the power of transmitting the uplink signal on the first carrier.
  • determining, by the UE, the power of transmitting the uplink signal on the first carrier according to the received power and the first offset value of the downlink signal received on the second carrier may include:
  • the path loss of the second carrier is determined by the UE according to the received power of receiving the downlink signal on the second carrier.
  • the path loss is a ratio of the power of the signal received by the receiving end to the power of the signal transmitted by the transmitting end, including path loss, shadow fading, penetration loss, antenna gain, and the like.
  • the path loss can be measured according to the received signal or calculated based on the relevant parameters.
  • the determining, by the UE, the power of transmitting the uplink signal on the first carrier according to the path loss and the first offset value of the second carrier may include the following manner 1 or mode 2:
  • Manner 1 The UE determines the path loss of the first carrier according to the path loss and the first offset value of the second carrier, and determines the power of transmitting the uplink signal on the first carrier according to the path loss of the first carrier;
  • determining, by the UE, the path loss of the first carrier according to the path loss of the second carrier and the first offset value may include:
  • Taking the path loss of the second carrier, the first offset value, and the second offset value as the path loss of the first carrier; for example, calculating the path loss of the first carrier according to the formula PL1 PL2+offset1+offset2 PL1;
  • the second offset value is used to configure an uplink power control parameter of the first carrier
  • PL2 is the path loss of the second carrier
  • offset1 is the second offset value
  • offset2 is the first offset value
  • the second offset value is the difference between the path loss of the first carrier and the path loss of the second carrier.
  • the path loss refers to the loss caused by the propagation of the radio wave in space, which is caused by the radiation spread of the transmission power and the propagation characteristics of the channel, and reflects the received signal in the macro range.
  • the power average varies with the distance of the transceiver.
  • the penetration loss is related to the transmission medium of the signal, the signal transmission environment, and the distance between the receiving end and the transmitting end.
  • the path loss is also a function of the carrier frequency, the frequency is low, the loss is small, and the frequency is high and the loss is large.
  • the path loss of the first carrier refers to the path loss when the UE and the gNB transmit signals on the first carrier.
  • the path loss of the second carrier refers to the path loss of the UE and the gNB when the second carrier transmits a signal.
  • path loss PL of any carrier can be calculated according to the following formula:
  • PL 32.4 + 21log 10 (d ) + 20log 10 (f) where, d is the distance of the receiving end and transmitting end, f is the carrier frequency of the carrier.
  • the UE may calculate the transmit power of the uplink signal by using the existing power control formula and the determined uplink path loss, where the existing power control formula is as part of the specific implementation.
  • the UE may determine, according to the path loss of the first carrier and the power control parameter configured by the network device, the power of the uplink signal sent by the first carrier according to the power control calculation formula, where the power is in dBm.
  • the power control calculation formula in the embodiment of the present invention may refer to the existing power control calculation formula.
  • the power control formula of the physical uplink shared channel (PUSCH) may be:
  • the power control formula of the sounding reference signal (SRS) can be:
  • the power control formula of the physical uplink control channel may be:
  • i is the subframe number
  • c is the carrier number
  • P CMAX,c (i) is the maximum transmit power of gNB
  • M PUSCH,c (i)) is the c-th carrier of the i-th subframe.
  • the number of PUSCH, P O_PUSCH, c (j) is the target received power
  • ⁇ c (j) is the path loss compensation factor
  • PL c is the path loss
  • c (i) is the adjustment amount related to the modulation mode
  • f c (i) is the power control factor.
  • the UE may determine the power P of the uplink signal sent on the first carrier according to the following formula 1 or formula 2:
  • offset is the first offset value
  • the PL determines, according to the path loss of the second carrier, that PL is the path loss of the second carrier, or PL is the result of adding the path loss of the second carrier and the second offset value, and the path loss of the second carrier is based on the UE. Determined by the received power of the downlink signal received on the second carrier, where the second offset value is determined according to a path loss of the first carrier and a path loss of the second carrier;
  • P max is the maximum transmit power of the UE on the first carrier
  • the power control parameter related to the target received power obtained from the network device ⁇ is a power control parameter related to the coded modulation mode acquired by the UE from the network device, and f is a power control parameter related to the power command acquired by the UE from the network device;
  • is the power control parameter related to the path loss compensation acquired by the UE from the network device.
  • the UE can directly calculate the power for transmitting the uplink signal according to the first offset value, and does not need to calculate the uplink path loss first, and then calculates the power of transmitting the uplink signal according to the uplink path loss, thereby reducing the computational complexity of the UE.
  • the functions FUNCTION(M, P 0 , ⁇ , f) are different for different uplink signals, for example, for a physical uplink shared channel (PUSCH).
  • FUNCTION(M, P 0 , ⁇ , f) is:
  • SRS Sounding reference signal
  • PUCCH Physical uplink control channel
  • i is the subframe number
  • c is the carrier number
  • P CMAX,c (i) is the maximum transmit power of gNB
  • M PUSCH,c (i)) is the c-th carrier of the i-th subframe.
  • the number of PUSCHs, P O_PUSCH, c (j) is the target received power
  • ⁇ TF, c (i) is the adjustment amount related to the modulation scheme
  • f c (i) is the power control factor.
  • Step 605 The UE determines, according to the received power of the downlink signal received on the second carrier, the power of transmitting the uplink signal on the first carrier.
  • determining, by the UE, the power of sending the uplink signal on the first carrier according to the received power of the downlink signal received on the second carrier may include:
  • the path loss of the second carrier Determining, according to the path loss of the second carrier, the power of transmitting the uplink signal on the first carrier; the path loss of the second carrier is determined by the UE according to the received power of receiving the downlink signal on the second carrier.
  • determining, by the UE, the power of transmitting the uplink signal on the first carrier according to the path loss of the second carrier may include: determining, by the UE, the path loss of the first carrier according to the path loss of the second carrier, determining, according to the path loss of the first carrier The power of the uplink signal is transmitted on the first carrier.
  • the determining, by the UE, the path loss of the first carrier according to the path loss of the second carrier may include:
  • the UE obtains the second threshold value or the second threshold value from the gNB, and determines, according to the second threshold value or the third threshold value, whether the power of sending the uplink signal is determined according to the first offset value.
  • the terminal may compare the path loss and the second threshold of the downlink signal received on the second carrier. When the terminal receives the path loss of the downlink signal on the second carrier is less than or equal to the second threshold, step 604 is performed.
  • step 605 When the terminal receives the path loss of the downlink signal on the second carrier that is greater than the second threshold, step 605 is performed; or, comparing the RSRP and the third threshold of receiving the downlink signal on the second carrier; when the terminal is in the second carrier When the RSRP of the downlink signal is less than or equal to the third threshold, step 604 is performed. When the RSRP of the downlink signal received by the terminal on the second carrier is greater than the third threshold, step 605 is performed.
  • the uplink signal transmission power is determined according to the offset value related to the penetration loss, and the uplink signal transmission is improved. The accuracy of the power.
  • each network element such as the UE and the gNB, in order to implement the above functions, includes corresponding hardware structures and/or software modules for performing the respective functions.
  • the present invention can be implemented in a combination of hardware or hardware and computer software in combination with the algorithm steps of the various examples described in the embodiments disclosed herein. Whether a function is implemented in hardware or computer software to drive hardware depends on the specific application and design constraints of the solution. A person skilled in the art can use different methods for implementing the described functions for each particular application, but such implementation should not be considered to be beyond the scope of the present invention.
  • the embodiment of the present invention may divide the function module into the UE according to the foregoing method example.
  • each function module may be divided according to each function, or two or more functions may be integrated into one processing module.
  • the above integrated modules can be implemented in the form of hardware or in the form of software functional modules. It should be noted that the division of the module in the embodiment of the present invention is schematic, and is only a logical function division, and the actual implementation may have another division manner.
  • FIG. 7 is a schematic diagram showing a possible composition of the UE involved in the foregoing embodiment.
  • the UE may include: a receiving unit 71, determining Unit 72.
  • the receiving unit 71 is configured to support the UE to perform step 502 in the power determining method shown in FIG. 5, and step 602 in the power determining method shown in FIG. 6.
  • the determining unit 72 is configured to support steps 503-605 in the power determining method shown in FIG. 6 for supporting the UE to perform step 503 in the power determining method shown in FIG.
  • the UE provided by the embodiment of the present invention is configured to perform the foregoing power determining method, so that the same effect as the foregoing power determining method can be achieved.
  • FIG. 8 shows another possible composition diagram of the UE involved in the above embodiment.
  • the UE may include a processing module 81 and a communication module 82.
  • the processing module 81 is configured to perform control management on the actions of the UE.
  • the processing module 81 is configured to support the UE to perform step 503 in FIG. 5, and steps 603-606 in FIG. 6, and/or for the techniques described herein.
  • Communication module 82 is used to support communication between the UE and other network entities, such as with the functional modules or network entities illustrated in FIG.
  • the UE may also include a storage module 83 for storing program code and data of the server.
  • the processing module 81 can be a processor or a controller. It is possible to implement or carry out the various illustrative logical blocks, modules and circuits described in connection with the present disclosure.
  • the processor can also be a combination of computing functions, for example, including one or more microprocessor combinations, a combination of a DSP and a microprocessor, and the like.
  • the communication module 82 can be a transceiver, a transceiver circuit, a communication interface, or the like.
  • the storage module 83 can be a memory.
  • the server involved in the embodiment of the present invention may be the UE shown in FIG.
  • FIG. 9 shows a possible composition diagram of the gNB involved in the foregoing and the embodiment.
  • the gNB may include: a configuration unit 91.
  • the configuration unit 91 is configured to support the gNB to perform step 501 in the power determining method shown in FIG. 5, and step 601 in the power determining method shown in FIG. 6.
  • the gNB provided by the embodiment of the present invention is used to perform the above power determination method, so that the same effect as the above power determination method can be achieved.
  • Fig. 10 shows another possible composition diagram of the gNB involved in the above embodiment.
  • the gNB may include a processing module 101 and a communication module 102.
  • the processing module 101 is configured to perform control management on the actions of the gNB.
  • the processing module 101 is configured to support the UE to perform step 501 in FIG. 5, and step 601 in FIG. 6 and/or other processes for the techniques described herein.
  • the communication module 102 is configured to support communication of the gNB with other network entities, such as with the functional modules or network entities illustrated in FIG.
  • the gNB may also include a storage module 103 for storing program code and data of the server.
  • the processing module 101 can be a processor or a controller. It is possible to implement or carry out the various illustrative logical blocks, modules and circuits described in connection with the present disclosure.
  • the processor can also be a combination of computing functions, for example, including one or more microprocessor combinations, a combination of a DSP and a microprocessor, and the like.
  • the communication module 102 can be a transceiver, a transceiver circuit, a communication interface, or the like.
  • the storage module 103 can be a memory.
  • the server involved in the embodiment of the present invention may be the gNB shown in FIG.
  • the disclosed apparatus and method may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the modules or units is only a logical function division.
  • there may be another division manner for example, multiple units or components may be used.
  • the combination may be integrated into another device, or some features may be ignored or not performed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may be one physical unit or multiple physical units, that is, may be located in one place, or may be distributed to multiple different places. . Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as a standalone product, may be stored in a readable storage medium.
  • the technical solution of the embodiments of the present invention may contribute to the prior art or all or part of the technical solution may be embodied in the form of a software product stored in a storage medium.
  • a number of instructions are included to cause a device (which may be a microcontroller, chip, etc.) or a processor to perform all or part of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes various media that can store program codes, such as a USB flash drive, a mobile hard disk, a ROM, a RAM, a magnetic disk, or an optical disk.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例公开了一种功率确定方法、设备及系统,涉及通信技术领域,解决了5G系统中如何确定上行路损的问题。具体方案为:终端从网络设备接收第一偏移值,根据在第二载波上接收下行信号的接收功率和第一偏移值确定在第一载波上发送上行信号的功率;第一偏移值根据第一载波的穿透损耗与第二载波的穿透损耗确定,第一载波为终端的上行载波,第二载波为终端的时分双工TDD载波或下行载波。本发明实施例用于功率确定的过程。

Description

一种功率确定方法、设备及系统
本申请要求于2017年06月16日提交中国专利局、申请号为201710459417.8、申请名称为“一种功率确定方法、设备及系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明实施例涉及通信技术领域,尤其涉及一种功率确定方法、设备及系统。
背景技术
第五代移动通信(5th-generation,5G)(又称下一代无线(generation radio,NR))系统采用最为先进的移动通信技术,它能够为移动用户提供更高的带宽和更安全的通信。为了能够与上一代通信系统(如:长期演进(long term evolution,LTE)系统)共存,5G系统可以与LTE系统共享相同的频段资源,例如,如图1所示,LTE系统中的终端(user equipment,UE)利用LTE频分多址(frequency division duplexing,FDD)下行(downlink,DL)载波F2进行下行传输,5G系统中的UE利用时分双工(time division duplexing,TDD)载波F3进行下行传输,而对于上行传输,5G系统中的终端(user equipment,UE)和LTE系统中的UE可以共同利用LTE FDD上行(uplink,UL)载波F1进行上行传输,以此实现频带资源的共享。
但是,由于F1和F3是LTE FDD的一对成对频谱,LTE的UE可以通过承载在F3的LTE下行参考信号测量得到F3的路损,且该路损可以用于F1。而对于5G系统中的UE而言,由于F3只用于传输LTE的信号,5G系统的UE不能识别F3,所以不能通过F3上的参考信号测量得到F1的路损;虽然,F2承载5G的下行参考信息,5G系统中的UE可以通过承载在F2的下行参考信息测量得到F2的路损,但是,由于在5G系统中F1和F2的载频相差较远,F1和F2的路径损耗、穿透损耗不同,所以在F2上测量的路损不能直接用于F1,因此,5G系统中的UE无法获得上行载波F1的路损,进而无法计算出发送上行信号的功率。
发明内容
本发明实施例提供一种功率确定方法、设备及系统,解决了5G系统中如何确定发送上行信号的功率的问题。
为达到上述目的,本发明实施例采用如下技术方案:
第一方面,本发明实施例提供了一种功率确定方法,包括:
终端从网络设备接收第一偏移值,根据在第二载波上接收下行信号的接收功率和第一偏移值确定在第一载波上发送上行信号的功率;
其中,第一偏移值根据第一载波的穿透损耗与第二载波的穿透损耗确定,第一载波为终端的上行载波,第二载波为终端的TDD载波或下行载波。
下行信号包括下行参考信号,下行信号的接收功率包括参考信号接收功率(reference signal received power,RSRP)。下行信号还可以包括下行数据信号。
如此,当终端发送上行信号时,考虑到穿透损耗对上行信号的功率的影响,根据与穿透损耗相关的偏移值确定发送上行信号的功率,如此,根据终端的传输环境确定出计算发送上行信号的功率,解决了现有5G系统中无法计算出发送上行信号的功率的问题。
需要说明的是,在本发明实施例中,第一偏移值可以为第一载波的穿透损耗与第二载波的穿透损耗的差值;上行载波可以为:承载终端向网络设备发送的信令或数据的载波,下行载波可以为:承载网络设备向终端发送的数据或信令的载波,TDD载波可以为:在不同的时隙承载终端向网络设备发送的数据或信令、以及网络设备向终端发送的数据或信令的载波。
在本发明实施例中,第一载波可以包含多个子载波,当第一载波包含多个子载波时,根据第一载波的穿透损耗与第二载波的穿透损耗确定出的第一偏移值也可以包含多个与子载波一一对应的值。
结合第一方面,在一种可能的实现方式中,终端在下述几种情况下,终端才根据根据在第二载波上接收下行信号的接收功率和第一偏移值确定在第一载波上发送上行信号的功率,如:
当终端在第二载波上接收下行信号的接收功率小于或等于第一门限值时,终端根据在第二载波上接收下行信号的接收功率和第一偏移值确定在第一载波上发送上行信号的功率;或者
当终端在第二载波上接收下行信号的路损小于或等于第二门限值时,终端根据在第二载波上接收下行信号的接收功率和第一偏移值确定在第一载波上发送上行信号的功率;或者
当终端在第二载波上接收下行信号的RSRP小于或等于第三门限值时,终端根据在第二载波上接收下行信号的接收功率和第一偏移值确定在第一载波上发送上行信号的功率。
其中,第一门限值、第二门限值、第三门限值的具体取值可以根据需要进行设置,本发明实施例对此不进行限定。可选的,第一门限值、第二门限值、第三门限值可以由网络设备配置给终端。
第一门限值单位与下行信号接收功率单位对应,当终端测量到的第二载波上接收下行信号的接收功率小于或等于第一门限值时,表示终端和接入网设备间传输条件较差,终端为室内用户;第二门限值与路损单位对应,当终端在第二载波上接收下行信号的路损小于或等于第二门限值时,表示终端和接入网设备间传输条件较差,终端为室内用户;第三门限值单位与下行参考信号的RSRP单位对应,当终端在第二载波上接收下行信号的RSRP小于或等于第三门限值时,表示终端和接入网设备间传输条件较差,终端为室内用户。
此外,在确定终端为室内终端时,包括但不限于上述方式,还可以参照其他实现方式,如:网络设备可以根据终端上报的参考信号接收功率,确定终端为室内终端或室外终端,并将确定结果通知给终端,以便终端根据该通知结果确定根据第二载波的路损、第一偏移值确定在第一载波上发送上行信号的功率。
结合上述可能的实现方式,在一种可能的实现方式中,所述终端根据在所述第二 载波上接收下行信号的接收功率和所述第一偏移值确定在所述第一载波上发送上行信号的功率可以包括:
终端根据第二载波的路损、第一偏移值确定在第一载波上发送上行信号的功率;第二载波的路损为终端根据在第二载波上接收下行信号的接收功率确定的。
结合上述可能的实现方式,在一种可能的实现方式中,终端根据第二载波的路损、第一偏移值确定在第一载波上发送上行信号的功率可以包括:
终端根据第二载波的路损、第一偏移值确定第一载波的路损,并根据第一载波的路损确定在第一载波上发送上行信号的功率。
其中,终端可以通过下述两个方式计算第一载波的路损:
将第二载波的路损、第一偏移值以及第二偏移值相加后的结果作为第一载波的路损;第二偏移值为第一载波的路径损耗和第二载波的路径损耗的差值;或者,
在第二偏移值用于配置第一载波的上行功率控制参数的情况下,终端直接将第二载波的路损和第一偏移值相加后的结果作为第一载波的路损。
在计算出第一载波的路损后,终端可以根据第一载波的路损、网络设备配置的功率控制参数,按照现有功率控制计算公式确定第一载波上发送上行信号的功率,功率的取值单位为dBm。
如此,终端可以参照现有功率控制公式,结合确定出的上行路损计算出上行信号的发送功率,其中,现有功率控制公式如具体实施方式部分所述。
结合第一方面和上述可能的实现方式,在一种可能的实现方式中,终端根据第二载波的路损、第一偏移值确定在第一载波上发送上行信号的功率还可以包括:
终端根据下述公式一或者公式二确定在第一载波上发送上行信号的功率P:
公式一:P=min{P max,FUNCTION(M,P 0,△,f)+α·PL+offset},
公式二:P=min{P max,FUNCTION(M,P 0,△,f)+α·PL+α·offset},
其中,在公式一和公式二中,offset为第一偏移值;
PL根据第二载波的路损确定,PL为第二载波的路损,或者,PL为第二载波的路损和第二偏移值相加后的结果,第二载波的路损为终端根据在第二载波上接收下行信号的接收功率确定的,第二偏移值为根据第一载波的路径损耗和第二载波的路径损耗确定的;
P max为终端在第一载波的最大发射功率;
FUNCTION(M,P 0,△,f)为上行功率控制中与M,P 0,△,f有关的函数,M为终端在第一载波上发送上行信号占用的资源块数目,P 0为终端从网络设备获取的目标接收功率相关的功率控制参数,△为终端从网络设备获取的编码调制方式相关的功率控制参数,f为终端从网络设备获取的功率命令相关的功率控制参数;
α为终端从网络设备获取的路损补偿相关的功率控制参数。
如此,可以终端可以直接根据第一偏移值计算出发送上行信号的功率,不需要先计算出上行路损,再根据上行路损计算出发送上行信号的功率,降低了终端的计算复杂度。
可选的,在本发明实施例中,针对不同的上行信号,函数FUNCTION(M,P 0,△,f)的表现形式是不同的,例如:对于物理上行共享信道(physical uplink shared channel, PUSCH),FUNCTION(M,P 0,△,f)为:
10log 10(M PUSCH,c(i))+P O_PUSCH,c(j)+△ TF,c(i)+f c(i)
对于探测参考信号(sounding reference signal,SRS)FUNCTION(M,P 0,△,f)为:
10log 10(M SRS,c)+P O_SRS,c(m)+f SRS,c(i)或者
10log 10(M SRS,c)+P O_PUSCH,c(j)+f c(i)
对于物理上行链路控制信道(physical uplink control channel,PUCCH)FUNCTION(M,P 0,△,f)为:
P 0_PUCCH+h(n CQI,n HARQ,n SR)+△ F_PUCCH(F)+△ TxD(F')+g(i)
其中,上述公式中的i为子帧编号,c为载波编号,P CMAX,c(i),为gNB的最大发射功率,M PUSCH,c(i))为第i个子帧第c个载波上PUSCH的数目,P O_PUSCH,c(j)为目标接收功率,△ TF,c(i)为与调制方式相关的调整量,f c(i)为功率控制因子。
结合第一方面,在一种可能的实现方式中,所述方法还可以包括:
当终端在第二载波上接收下行信号的接收功率大于第一门限值时,或者当终端在第二载波上接收下行信号的路损大于第二门限值时,或者当终端在第二载波上接收下行信号的RSRP大于第三门限值时,终端根据第二载波的路损确定在第一载波上发送上行信号的功率。
如此,当终端测量到的第二载波上接收下行信号的接收功率大于第一门限值时,或者当终端在第二载波上接收下行信号的路损大于第二门限值时,或者当终端在第二载波上接收下行信号的RSRP大于第三门限值时,表示终端和接入网设备间传输条件较好,该终端为室外终端,在计算上行信号的功率时不需要考虑与穿透损耗相关的第一偏移值,提高了发送上行信号的功率的准确性。
结合第一方面和上述可能的实现方式,在一种可能的实现方式中,终端根据第二载波的路损确定在第一载波上发送上行信号的功率可以包括:
终端根据第二载波的路损确定第一载波的路损,并根据第一载波的路损确定第一载波上发送上行信号的功率。
可选的,终端可以将第二载波的路损和第二偏移值相加后的结果作为第一载波的路损;
或者,在第二偏移值用于配置第一载波的上行功率控制参数的情况下,直接将第二载波的路损作为第一载波的路损。
在计算出第一载波的路损后,终端可以根据第一载波的路损、网络设备配置的功率控制参数,按照现有功率控制计算公式确定第一载波上发送上行信号的功率。
如此,当终端为室外终端时,因没有穿透损耗对上行路损的影响,因此,终端仅考虑到影响上行路损的因素:路径损耗,根据下行载波路损、以及上行载波和下行载波间该因素的差值计算出上行路损,提高了上行路损计算的准确性,进而提高了上行信号的功率的准确性。
第二方面,本发明实施例了一种功率确定方法,包括:
网络设备为终端配置第一偏移值;所述第一偏移值根据第一载波的穿透损耗与第二载波的穿透损耗确定,所述第一载波为所述终端的上行载波,所述第二载波为所述终端的时分双工TDD载波或下行载波。
如此,网络设备为终端与穿透损耗的相关的偏移值,以便终端根据该偏移值计算出终端发送上行信号的功率。
结合第二方面,在一种可能的实现方式中,所述方法还可以包括:
网络设备为终端配置第一门限值或者第二门限值或者第三门限值,所述第一门限值、第二门限值、第三门限值用于所述终端根据在所述第二载波上接收下行信号的接收功率和所述第一偏移值确定在所述第一载波上发送上行信号的功率。
如此,可以使终端在接收到第一门限值后,比较第二载波上接收下行信号的接收功率小于或等于第一门限值,确定是否根据第一偏移值确定发送上行信号的功率。
结合上述可能的实现方式,在一种可能的实现方式中,所述方法还可以包括:
网络设备通过系统消息或无线资源控制(radio resource control,RRC)信令为终端配置第一偏移值;或者
网络设备通过系统消息或RRC信令为终端配置第一门限值或者第二门限值或者第三门限值。
结合上述可能的实现方式,在一种可能的实现方式中,
第一偏移值和第一门限值、第二门限值、第三门限值中的任一门限值可以在同一条消息或信令。
如此,网络设备可以将第一偏移值和第一门限值或者第二门限值或者第三门限值放置在同一条消息中配置给终端,大大降低了网络设备的信号消耗。
结合上述可能的实现方式,在一种可能的实现方式中,
第一偏移值和第一门限值、第二门限值、第三门限值中的任一门限值可以在不同消息或信令。
如此,网络设备可以将第一偏移值和第一门限值或者第二门限值或者第三门限值放置在不同消息或信令中分开来配置给给终端,降低了配置第一偏移值和第一门限值或者第二门限值或者第三门限值时的干扰,提高了终端消息或信令解析的准确性。
本发明实施例的第三方面,提供了一种终端,包括:
接收单元,用于从网络设备接收根据第一载波的穿透损耗与第二载波的穿透损耗确定的第一偏移值;第一载波为终端的上行载波,第二载波为终端的时分双工TDD载波或下行载波;
确定单元,用于根据在所述第二载波上接收下行信号的接收功率和所述第一偏移值确定在所述第一载波上发送上行信号的功率。
其中,第三方面的具体实现方式可以参考第一方面或第一方面的可能的实现方式提供的功率确定方法中终端的行为功能,在此不再重复赘述。因此,第三方面提供的终端可以达到与第一方面相同的有益效果。
本发明实施例的第四方面,提供了一种终端,该终端可以实现上述方法实施例中终端所执行的功能,所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个上述功能相应的模块。
在一种可能的设计中,该终端的结构中包括处理器和收发器,该处理器被配置为支持该终端执行上述方法中相应的功能。该收发器用于支持该终端与其他网元之间的通信。该终端还可以包括存储器、显示器,该存储器用于与处理器耦合,其保存该终 端必要的程序指令和数据,该显示器可以用于终端与用户间进行交互。
本发明实施例的第五方面,提供了一种计算机存储介质,用于储存为上述终端所用的计算机软件指令,其包含用于执行上述方面所设计的程序。
本发明实施例的第六方面,提供了一种计算机程序产品,该计算机程序产品存储有为上述终端所用的计算机软件指令,其包含用于执行上述方面所设计的程序。
本发明实施例的第七方面,提供了一种网络设备,包括:
配置单元,用于为终端配置根据第一载波的穿透损耗与第二载波的穿透损耗确定的第一偏移值,所述第一载波为所述终端的上行载波,所述第二载波为所述终端的时分双工TDD载波或下行载波。
其中,第七方面的具体实现方式可以参考第二方面或第二方面的可能的实现方式提供的功率确定方法中网络设备的行为功能,在此不再重复赘述。因此,第七方面提供的终端可以达到与第二方面相同的有益效果。
本发明实施例的第八方面,提供了一种网络设备,该网络设备可以实现上述方法实施例中网络设备所执行的功能,所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个上述功能相应的模块。
在一种可能的设计中,该终端的结构中包括处理器和收发器,该处理器被配置为支持该终端执行上述方法中相应的功能。该收发器用于支持该终端与其他网元之间的通信。该终端还可以包括存储器、显示器,该存储器用于与处理器耦合,其保存该终端必要的程序指令和数据,该显示器可以用于终端与用户间进行交互。
本发明实施例的第九方面,提供了一种计算机存储介质,用于储存为上述网络设备所用的计算机软件指令,其包含用于执行上述方面所设计的程序。
本发明实施例的第十方面,提供了一种计算机程序产品,该计算机程序产品存储有为上述网络设备所用的计算机软件指令,其包含用于执行上述方面所设计的程序。
本发明实施例的第十一方面,提供了一种路损确定系统,该系统包括上述任一方面所述的终端和上述任一方面所述的网络设备。
附图说明
图1为现有5G系统和LTE系统共享上行载波的场景示意图;
图2为本发明实施例提供的一种系统架构示意图;
图3为本发明实施例提供的一种gNB的组成示意图;
图4为本发明实施例提供的一种UE的组成示意图;
图5为本发明实施例提供的一种功率确定方法流程图;
图6为本发明实施例提供的一种功率确定方法流程图;
图7为本发明实施例提供的一种UE的组成示意图
图8为本发明实施例提供的一种UE的组成示意图;
图9为本发明实施例提供的一种gNB的组成示意图;
图10为本发明实施例提供的一种gNB的组成示意图。
具体实施方式
下面将结合附图对本发明实施例的实施方式进行详细描述。
本发明实施例提供的功率确定方法可以应用上行载波的载频和下行载波的载频相 差较大的通信环境,如:本发明实施例提供的功率确定方法可以应用于图2所示的5G系统,如图2所示,该5G系统可以包括:至少一个终端、以及网络设备,终端在网络设备的覆盖范围内,网络设备可以覆盖多个小区内的终端。在本发明实施例中,终端可以为UE,如:可以为蜂窝电话、无绳电话、会话发起协议(session initiation protocol,SIP)电话、智能电话、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、膝上型计算机、手持式通信设备、手持式计算设备、卫星无线设备、无线调制解调器卡和/或用于在无线系统上进行通信的其它处理设备。网络设备可以为:接入点、节点、下一代基站(gNB)、收发点(transmission receive point,TRP)、传输点(transmission point,TP)或某种其它网络设备。可理解的是,图2仅为示例性架构图,除图2所示功能实体之外,该5G系统还可以包括其他功能实体,本发明实施例对此不进行限定。
在图2中,UE可以通过上行载波和下行载波与网络设备相互通信,且上行载波和下行载波的载频相差较大;其中,图2中的上行载波可以为:UE与LTE系统中的UE共享的上行载波,也可以为与下行载波解耦的载波,即该上行载波和下行载波的双工间距(duplex distance)可以灵活配置,如:上行载波可以为低频载波(如中心频点为1.8GHz的载波),下行载波可以为高频载波(如:中心频点为3.5G的载波);下行载波可以仅用于传输5G系统的NR下行信号的载波,也可以为用于传输5G系统的NR上行信号和下行信号的时分双工载波。可理解的是,本发明实施例中,低频载波和高频载波为相对概念,低频载波为两个载波中频段相对较低的载波,高频载波为两个载波中频段相对较高的载波。
下面仅以终端为UE、网络设备为gNB为例,对本发明实施例提供的方案进行介绍。
图3为本发明实施例提供的一种gNB的组成示意图,如图3所示,gNB可以包括至少一个处理器31,存储器32、通信接口33、通信总线34。下面结合图3对gNB的各个构成部件进行具体的介绍:
处理器31是gNB的控制中心,可以是一个处理器,也可以是多个处理元件的统称。例如,处理器31是一个中央处理器(central processing unit,CPU),也可以是特定集成电路(application specific integrated circuit,ASIC),或者是被配置成实施本发明实施例的一个或多个集成电路,例如:一个或多个微处理器(digital signal processor,DSP),或,一个或者多个现场可编程门阵列(field programmable gate array,FPGA)。其中,处理器31可以通过运行或执行存储在存储器32内的软件程序,以及调用存储在存储器32内的数据,执行gNB的各种功能。
在具体的实现中,作为一种实施例,处理器31可以包括一个或多个CPU,例如图3中所示的CPU0和CPU1。在具体实现中,作为一种实施例,gNB可以包括多个处理器,例如图3中所示的处理器31和处理器35。这些处理器中的每一个可以是一个单核处理器(single-CPU),也可以是一个多核处理器(multi-CPU)。这里的处理器可以指一个或多个设备、电路、和/或用于处理数据(例如计算机程序指令)的处理核。
存储器32可以是只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)或 者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(electrically erasable programmable read-only memory,EEPROM)、只读光盘(compact disc read-only memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。存储器32可以独立存在,通过通信总线34与处理器31相连接。存储器32也可以和处理器31集成在一起。其中,所述存储器32用于存储执行本发明实施例提供的方案的软件程序,并由处理器31来控制执行。
通信接口33,用于与其他设备或通信网络通信,如以太网,无线接入网(radio access network,RAN),无线局域网(wireless local area networks,WLAN)等。通信接口33可以包括接收单元实现接收功能,以及发送单元实现发送功能。
通信总线34,可以是工业标准体系结构(industry standard architecture,ISA)总线、外部设备互连(peripheral component,PCI)总线或扩展工业标准体系结构(extended industry standard architecture,EISA)总线等。该总线可以分为地址总线、数据总线、控制总线等。为便于表示,图3中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
图3中的网络设备可以执行本申请实施例提供的路径确定方法网络设备执行的操作,如:可以给终端配置第一偏移值。
图4为本发明实施例提供的一种UE的组成示意图,如图4所示,该UE可以包括至少一个处理器41、存储器42、收发器43。下面结合图4对UE的各个构成部件进行具体的介绍:
处理器41是UE的控制中心,可以是一个处理器,也可以是多个处理元件的统称。例如,处理器41是一个CPU,也可以是ASIC,或者是被配置成实施本发明实施例的一个或多个集成电路,例如:一个或多个DSP,或,一个或者多个FPGA。其中,处理器41可以通过运行或执行存储在存储器42内的软件程序,以及调用存储在存储器42内的数据,执行UE的各种功能。
在具体的实现中,作为一种实施例,处理器41可以包括一个或多个CPU,例如图4中所示的CPU0和CPU1。在具体实现中,作为一种实施例,UE可以包括多个处理器,例如图4中所示的处理器41和处理器44。这些处理器中的每一个可以是一个single-CPU处理器,也可以是一个multi-CPU处理器。这里的处理器可以指一个或多个设备、电路、和/或用于处理数据(例如计算机程序指令)的处理核。
存储器42可以是ROM或可存储静态信息和指令的其他类型的静态存储设备,RAM或者可存储信息和指令的其他类型的动态存储设备,也可以是EEPROM、CD-ROM或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。存储器42可以是独立存在,通过通信总线44与处理器41相连接。存储器42也可以和处理器41集成在一起。其中,所述存储器42用于存储执行本发明方案的软件程序,并由处理器41来控制执行。
收发器43,用于与其他设备或通信网络通信,如以太网,RAN,WLAN等。收发器43可以包括接收单元实现接收功能,以及发送单元实现发送功能。
图4中示出的设备结构并不构成对UE的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。尽管未示出,UE还可以包括电池、摄像头、蓝牙模块、全球定位系统(global positioning system,GPS)模块等,在此不再赘述。
图4所示的UE可以执行本申请实施例提供的路径确定方法中UE执行的操作。如:可以从网络设备接收第一偏移值,并在UE为室内UE时,根据第一偏移值确定上行载波上的上行信号的功率。
下面结合图2所示的5G系统,对本发明实施例提供的功率确定方法进行详细描述。此外,需要说明的是,虽然在下述方法流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤。
图5为本发明实施例提供的一种功率确定方法流程图,由如图4所示的UE和图3所示的gNB交互执行,如图5所示,该方法可以包括以下步骤:
步骤501:gNB为UE配置第一偏移值。
其中,第一偏移值根据第一载波的穿透损耗与第二载波的穿透损耗确定,优选的,第一偏移值可以为:第一载波的穿透损耗与第二载波的穿透损耗的差值,第一载波为UE的上行载波,第二载波为UE的TDD载波或下行载波。
在本发明实施例中,穿透损耗(penetration loss)是指信号在传输时,当信号源在建筑物外,建筑物外的信号强度与建筑物内的信号强度的比值(单位DB)。穿透损耗与建筑物的结构,建筑物材质,信号源位置等有关。穿透损耗还是载波频率的函数,频率低损耗小,频率高损耗大。第一载波的穿透损耗是指UE和gNB在第一载波传输信号时的穿透损耗。第二载波的穿透损耗是指UE和gNB在第二载波传输信号时的穿透损耗。
可选的,可以根据下述公式计算出任一载波的穿透损耗PL tw
Figure PCTCN2018091550-appb-000001
PL tw是多种材质的穿透损耗的一个加权值,每种材质用i表示,其中,PL npi是一个常数,p i是不同材质的比例,且
Figure PCTCN2018091550-appb-000002
L material_i=a material_i+b material_i·f为材质i的穿透损耗,其中a material_i为材质i的穿透损耗的常数值,b material_i为材质i的穿透损耗与载频相关的参数,f为载波的载频。如下表1所示,不同的材质其穿透损耗是不同的:
表1
Figure PCTCN2018091550-appb-000003
例如,现有建模中典型的低损耗(Low-loss)穿透损耗模型的穿透损耗计算公式为:
Figure PCTCN2018091550-appb-000004
高损耗(High-loss)穿透损耗模型的穿透损耗计算公式为:
Figure PCTCN2018091550-appb-000005
步骤502:UE从gNB接收第一偏移值。
步骤503:UE根据在第二载波上接收下行信号的接收功率和第一偏移值确定在第一载波上发送上行信号的功率。
如此,在发送上行信号时,根据UE的传输环境,考虑到穿透损耗对上行路损的影响,根据与穿透损耗相关的偏移值确定出发送上行信号的功率,提高了上行信号发送功率的准确性。
可选的,在图5所示的技术方案中,UE可以从gNB获取第一门限值或者第二门限值或者第三门限值,当UE在第二载波上接收下行信号的接收功率小于或等于第一门限值时,或者当UE在第二载波上接收下行信号的路损小于或等于第二门限值时,或者当UE在第二载波上接收下行信号的RSRP小于或等于第三门限值时,UE才根据第一门限值确定UE是根据在第二载波上接收下行信号的接收功率和第一偏移值确定在第一载波上发送上行信号的功率;否则UE根据在第二载波上接收下行信号的接收功率确定在第一载波上发送上行信号的功率。
其中,第一门限值、第二门限值、第三门限值如发明内容所述,在此不再重复赘述。
下面仅以UE从gNB获取第一门限值,根据第一门限值确定是否根据第一偏移值确定发送上行信号的功率为例,对图5所示的技术方法进一步说明和介绍:
图6为本发明实施例提供的又一种功率确定方法流程图,由UE和gNB交互执行,如图6所示,该方法可以包括以下步骤:
步骤601:gNB为UE配置第一偏移值和第一门限值。
可选的,gNB可以通过系统消息或RRC信令为UE配置第一偏移值、以及通过系统消息或RRC信令为UE配置第一门限值。第一偏移值和第一门限值可以在同一条消息或信令,也可以在不同的消息或信令。
步骤602:UE从gNB接收第一偏移值和第一门限值。
步骤603:UE比较第二载波上接收下行信号的接收功率小于和第一门限值,当UE在第二载波上接收下行信号的接收功率小于或等于第一门限值时,执行步骤604;当UE在第二载波上接收下行信号的接收功率大于第一门限值时,执行步骤605。
步骤604:UE根据在第二载波上接收下行信号的接收功率和第一偏移值确定在第一载波上发送上行信号的功率。
可选的,UE根据在第二载波上接收下行信号的接收功率和第一偏移值确定在第一载波上发送上行信号的功率具体可以包括:
根据第二载波的路损、第一偏移值确定在第一载波上发送上行信号的功率;第二载波的路损为UE根据在第二载波上接收下行信号的接收功率确定的。
在本发明实施例中,路损是接收端接收信号的功率与发射端发射信号的功率的比值,包括路径损耗,阴影衰落,穿透损耗,天线增益等。路损可以是根据接收信号测量得到的,也可以是根据相关参数计算得到的。
其中,UE根据第二载波的路损、第一偏移值确定在第一载波上发送上行信号的功率具体可以包括下述方式1或方式2:
方式1:UE根据第二载波的路损、第一偏移值确定第一载波的路损,并根据第一载波的路损确定在第一载波上发送上行信号的功率;
可选的,UE根据第二载波的路损、第一偏移值确定第一载波的路损可以包括:
将第二载波的路损、第一偏移值以及第二偏移值相加后的结果作为第一载波的路损;例如:根据公式PL1=PL2+offset1+offset2计算第一载波的路损PL1;
或者,在第二偏移值用于配置第一载波的上行功率控制参数的情况下,将第二载波的路损和第一偏移值相加后的结果作为第一载波的路损;例如,根据公式PL1=PL2+offset2计算第一载波的路损PL1,
其中,PL2为第二载波的路损,offset1为第二偏移值,offset2为第一偏移值,第二偏移值为第一载波的路径损耗和第二载波的路径损耗的差值。
在本发明实施例中,路径损耗(path loss),或称传播损耗,指电波在空间传播所产生的损耗,是由发射功率的辐射扩散及信道的传播特性造成的,反映宏观范围内接收信号功率均值随收发信机的距离的变化。穿透损耗与信号的传输介质,信号传输环境,接收端和发射端的距离有关。路径损耗还是载波频率的函数,频率低损耗小,频率高损耗大。第一载波的路径损耗是指UE和gNB在第一载波传输信号时的路径损耗。第二载波的路径损耗是指UE和gNB在第二载波传输信号时的路径损耗。
可选的,可以根据下述公式计算出任一载波的路径损耗PL:
PL=32.4+21log 10(d)+20log 10(f)其中,d为接收端和发射端的距离,f为载波的载频。
在计算出第一载波的路损后,UE可以参照现有功率控制公式,结合确定出的上行路损计算出上行信号的发送功率,其中,现有功率控制公式如具体实施方式部分。
可选的,UE可以根据第一载波的路损、网络设备配置的功率控制参数,按照功率控制计算公式确定第一载波上发送上行信号的功率,功率的取值单位为dBm。
需要说明的是,本发明实施例中的功率控制计算公式可以参照现有功率控制计算公式,如:物理上行共享信道(physical uplink shared channel,PUSCH)的功率控制公式可以为:
Figure PCTCN2018091550-appb-000006
探测参考信号(sounding reference signal,SRS)的功率控制公式可以为:
P SRS,c(i)=min{P CMAX,c(i),10log 10(M SRS,c)+P O_SRS,c(m)+α SRS,c·PL c+f SRS,c(i)}或者
P SRS,c(i)=min{P CMAX,c(i),P SRS_OFFSET,c(m)+10log 10(M SRS,c)+P O_PUSCH,c(j)+α c(j)·PL c+f c(i)}
物理上行链路控制信道(physical uplink control channel,PUCCH)的功率控制公 式可以为:
Figure PCTCN2018091550-appb-000007
其中,上述公式中的i为子帧编号,c为载波编号,P CMAX,c(i),为gNB的最大发射功率,M PUSCH,c(i))为第i个子帧第c个载波上PUSCH的数目,P O_PUSCH,c(j)为目标接收功率,α c(j)为路损补偿因子,PL c为路损,△ TF,c(i)为与调制方式相关的调整量,f c(i)为功率控制因子。
方式2:UE可以根据下述公式一或者公式二确定在第一载波上发送上行信号的功率P:
公式一:P=min{P max,FUNCTION(M,P 0,△,f)+α·PL+offset},
公式二:P=min{P max,FUNCTION(M,P 0,△,f)+α·PL+α·offset},
其中,在公式一和公式二中,offset为第一偏移值;
PL根据第二载波的路损确定,PL为第二载波的路损,或者,PL为第二载波的路损和第二偏移值相加后的结果,第二载波的路损为UE根据在第二载波上接收下行信号的接收功率确定的,第二偏移值为根据第一载波的路径损耗和第二载波的路径损耗确定的;
P max为UE在第一载波的最大发射功率;
FUNCTION(M,P 0,△,f)为上行功率控制中与M,P 0,△,f有关的函数,M为UE在第一载波上发送上行信号占用的资源块数目,P 0为UE从网络设备获取的目标接收功率相关的功率控制参数,△为UE从网络设备获取的编码调制方式相关的功率控制参数,f为UE从网络设备获取的功率命令相关的功率控制参数;
α为UE从网络设备获取的路损补偿相关的功率控制参数。
如此,可以UE可以直接根据第一偏移值计算出发送上行信号的功率,不需要先计算出上行路损,再根据上行路损计算出发送上行信号的功率,降低了UE的计算复杂度。
可选的,在本发明实施例中,针对不同的上行信号,函数FUNCTION(M,P 0,△,f)的表现形式是不同的,例如:对于物理上行共享信道(physical uplink shared channel,PUSCH),FUNCTION(M,P 0,△,f)为:
10log 10(M PUSCH,c(i))+P O_PUSCH,c(j)+△ TF,c(i)+f c(i)
探测参考信号(sounding reference signal,SRS):
10log 10(M SRS,c)+P O_SRS,c(m)+f SRS,c(i)或者
10log 10(M SRS,c)+P O_PUSCH,c(j)+f c(i)
物理上行链路控制信道(physical uplink control channel,PUCCH):
P 0_PUCCH+h(n CQI,n HARQ,n SR)+△ F_PUCCH(F)+△ TxD(F')+g(i)
其中,上述公式中的i为子帧编号,c为载波编号,P CMAX,c(i),为gNB的最大发射功率,M PUSCH,c(i))为第i个子帧第c个载波上PUSCH的数目,P O_PUSCH,c(j)为目标接收功率,△ TF,c(i)为与调制方式相关的调整量,f c(i)为功率控制因子。
步骤605:UE根据第二载波上接收下行信号的接收功率确定在第一载波上发送上行信号的功率。
可选的,UE根据第二载波上接收下行信号的接收功率确定在第一载波上发送上行信号的功率可以包括:
根据第二载波的路损确定在第一载波上发送上行信号的功率;第二载波的路损为UE根据在第二载波上接收下行信号的接收功率确定的。
可选的,UE根据第二载波的路损确定在第一载波上发送上行信号的功率可以包括:UE根据第二载波的路损确定第一载波的路损,根据第一载波的路损确定在第一载波上发送上行信号的功率。
其中,UE根据第二载波的路损确定第一载波的路损可以包括:
UE将第二载波的路损和第二偏移值相加后的结果作为第一载波的路损;第二偏移值为第一载波的路径损耗和第二载波的路径损耗的差值;例如:根据公式PL1=PL2+offset1计算第一载波的路损PL1;
或者,在第二偏移值用于配置第一载波的上行功率控制参数的情况下,将第二载波的路损作为第一载波的路损;例如:根据公式PL1=PL2计算第一载波的路损PL1。
可以理解的是,UE从gNB获取第二门限值或者第二门限值,根据第二门限值或者第三门限值确定是否根据第一偏移值确定发送上行信号的功率的方式可以参照图5所示方案,在此不再重复赘述。例如:终端可以比较第二载波上接收下行信号的路损和第二门限值,当终端在第二载波上接收下行信号的路损小于或等于第二门限值时,执行步骤604,当终端在第二载波上接收下行信号的路损大于第二门限值时,执行步骤605;或者,比较在第二载波上接收下行信号的RSRP和第三门限值;当终端在第二载波上接收下行信号的RSRP小于或等于第三门限值时,执行步骤604,当终端在第二载波上接收下行信号的RSRP大于第三门限值时,执行步骤605。
如此,当UE发送上行信号时,根据UE所处传输环境,考虑到穿透损耗对上行路损的影响,根据与穿透损耗相关的偏移值确定出上行信号发送功率,提高了上行信号发送功率的准确性。
上述主要从UE和gNB交互的角度对本发明实施例提供的方案进行了介绍。可以理解的是,各个网元,例如UE和gNB为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的算法步骤,本发明能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
本发明实施例可以根据上述方法示例对UE进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本发明实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
在采用对应各个功能划分各个功能模块的情况下,图7示出了上述和实施例中涉及的UE的一种可能的组成示意图,如图7所示,该UE可以包括:接收单元71、确定单元72。
其中,接收单元71,用于支持UE执行图5所示的功率确定方法中的步骤502,图6所示的功率确定方法中的步骤602。
确定单元72,用于支持支持UE执行图5所示的功率确定方法中的步骤503,图6所示的功率确定方法中的步骤603-605。
需要说明的是,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。本发明实施例提供的UE,用于执行上述功率确定方法,因此可以达到与上述功率确定方法相同的效果。
在采用集成的单元的情况下,图8示出了上述实施例中所涉及的UE的另一种可能的组成示意图。如图8所示,该UE可以包括:处理模块81和通信模块82。
处理模块81用于对UE的动作进行控制管理,例如,处理模块81用于支持UE执行图5中的步骤503、以及图6中的步骤603-606,和/或用于本文所描述的技术的其它过程。通信模块82用于支持UE与其他网络实体的通信,例如与图2示出的功能模块或网络实体之间的通信。UE还可以包括存储模块83,用于存储服务器的程序代码和数据。
其中,处理模块81可以是处理器或控制器。其可以实现或执行结合本发明公开内容所描述的各种示例性的逻辑方框,模块和电路。处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,DSP和微处理器的组合等等。通信模块82可以是收发器、收发电路或通信接口等。存储模块83可以是存储器。
当处理模块81为处理器,通信模块82为通信接口,存储模块83为存储器时,本发明实施例所涉及的服务器可以为图4所示的UE。
在采用对应各个功能划分各个功能模块的情况下,图9示出了上述和实施例中涉及的gNB的一种可能的组成示意图,如图9所示,该gNB可以包括:配置单元91。
其中,配置单元91用于支持gNB执行图5所示的功率确定方法中的步骤501,图6所示的功率确定方法中的步骤601。
需要说明的是,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。本发明实施例提供的gNB,用于执行上述功率确定方法,因此可以达到与上述功率确定方法相同的效果。
在采用集成的单元的情况下,图10示出了上述实施例中所涉及的gNB的另一种可能的组成示意图。如图10所示,该gNB可以包括:处理模块101和通信模块102。
处理模块101用于对gNB的动作进行控制管理,例如,处理模块101用于支持UE执行图5中的步骤501、以及图6中的步骤601和/或用于本文所描述的技术的其它过程。通信模块102用于支持gNB与其他网络实体的通信,例如与图2示出的功能模块或网络实体之间的通信。gNB还可以包括存储模块103,用于存储服务器的程序代码和数据。
其中,处理模块101可以是处理器或控制器。其可以实现或执行结合本发明公开内容所描述的各种示例性的逻辑方框,模块和电路。处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,DSP和微处理器的组合等等。通信模块102可以是收发器、收发电路或通信接口等。存储模块103可以是存储器。
当处理模块101为处理器,通信模块102为通信接口,存储模块103为存储器时, 本发明实施例所涉及的服务器可以为图3所示的gNB。
通过以上的实施方式的描述,所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将装置的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。
在本申请所提供的几个实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个装置,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是一个物理单元或多个物理单元,即可以位于一个地方,或者也可以分布到多个不同地方。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个可读取存储介质中。基于这样的理解,本发明实施例的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该软件产品存储在一个存储介质中,包括若干指令用以使得一个设备(可以是单片机,芯片等)或处理器(processor)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何在本发明揭露的技术范围内的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。

Claims (27)

  1. 一种功率确定方法,其特征在于,包括:
    终端从网络设备接收第一偏移值;所述第一偏移值根据第一载波的穿透损耗与第二载波的穿透损耗确定,所述第一载波为所述终端的上行载波,所述第二载波为所述终端的时分双工TDD载波或下行载波;
    所述终端根据在所述第二载波上接收下行信号的接收功率和所述第一偏移值确定在所述第一载波上发送上行信号的功率。
  2. 根据权利要求1所述的功率确定方法,其特征在于,
    当所述终端在所述第二载波上接收下行信号的接收功率小于或等于第一门限值时,所述终端根据在所述第二载波上接收下行信号的接收功率和所述第一偏移值确定在所述第一载波上发送上行信号的功率;或者
    当所述终端在所述第二载波上接收下行信号的路损小于或等于第二门限值时,所述终端根据在所述第二载波上接收下行信号的接收功率和所述第一偏移值确定在所述第一载波上发送上行信号的功率;或者
    当所述终端在所述第二载波上接收下行信号的参考信号接收功率RSRP小于或等于第三门限值时,所述终端根据在所述第二载波上接收下行信号的接收功率和所述第一偏移值确定在所述第一载波上发送上行信号的功率。
  3. 根据权利要求1或2所述的功率确定方法,其特征在于,所述终端根据在所述第二载波上接收下行信号的接收功率和所述第一偏移值确定在所述第一载波上发送上行信号的功率包括:
    所述终端根据所述第二载波的路损、所述第一偏移值确定在所述第一载波上发送上行信号的功率;所述第二载波的路损为所述终端根据在所述第二载波上接收下行信号的接收功率确定的。
  4. 根据权利要求3所述的功率确定方法,其特征在于,所述终端根据所述第二载波的路损、所述第一偏移值确定在所述第一载波上发送上行信号的功率包括:
    所述终端根据所述第二载波的路损、所述第一偏移值确定所述第一载波的路损,并根据所述第一载波的路损确定在所述第一载波上发送上行信号的功率。
  5. 根据权利要求4所述的功率确定方法,其特征在于,所述终端根据所述第二载波的路损、所述第一偏移值确定所述第一载波的路损包括:
    所述终端将所述第二载波的路损、所述第一偏移值以及第二偏移值相加后的结果作为所述第一载波的路损;
    所述第二偏移值根据所述第一载波的路径损耗和所述第二载波的路径损耗确定。
  6. 根据权利要求4所述的功率确定方法,其特征在于,所述终端根据所述第二载波的路损、所述第一偏移值确定所述第一载波的路损包括:
    所述终端将所述第二载波的路损和所述第一偏移值相加后的结果作为所述第一载波的路损。
  7. 根据权利要求3所述的功率确定方法,其特征在于,所述终端根据所述第二载波的路损、所述第一偏移值确定在所述第一载波上发送上行信号的功率,包括:
    所述终端在所述第一载波上发送上行信号的功率P满足公式:
    P=min{P max,FUNCTION(M,P 0,△,f)+α·PL+offset},
    其中,所述offset为所述第一偏移值;
    所述PL根据所述第二载波的路损确定,所述PL为所述第二载波的路损,或者,所述PL为所述第二载波的路损和第二偏移值相加后的结果,所述第二载波的路损为所述终端根据在所述第二载波上接收下行信号的接收功率确定的,所述第二偏移值为根据所述第一载波的路径损耗和所述第二载波的路径损耗确定的;
    所述P max为所述终端在所述第一载波的最大发射功率;
    所述FUNCTION(M,P 0,△,f)为上行功率控制中与M,P 0,△,f有关的函数,所述M为所述终端在所述第一载波上发送上行信号占用的资源块数目,所述P 0为所述终端从所述网络设备获取的目标接收功率相关的功率控制参数,所述△为所述终端从所述网络设备获取的编码调制方式相关的功率控制参数,所述f为所述终端从所述网络设备获取的功率命令相关的功率控制参数;
    所述α为所述终端从所述网络设备获取的路损补偿相关的功率控制参数。
  8. 根据权利要求3所述的功率确定方法,其特征在于,所述终端根据所述第二载波的路损、所述第一偏移值确定在所述第一载波上发送上行信号的功率,包括:
    所述终端在所述第一载波上发送上行信号的功率P满足公式:
    P=min{P max,FUNCTION(M,P 0,△,f)+α·PL+α·offset},
    其中,所述offset为所述第一偏移值;
    所述PL根据所述第二载波的路损确定,所述PL为所述第二载波的路损,或者,所述PL为所述第二载波的路损和第二偏移值相加后的结果,所述第二载波的路损为所述终端根据在所述第二载波上接收下行信号的接收功率确定的,所述第二偏移值为根据所述第一载波的路径损耗和所述第二载波的路径损耗确定的;
    所述P max为所述终端在所述第一载波的最大发射功率;
    所述FUNCTION(M,P 0,△,f)为上行功率控制中与M,P 0,△,f有关的函数,所述M为所述终端在所述第一载波上发送上行信号占用的资源块数目,所述P 0为所述终端从所述网络设备获取的目标接收功率相关的功率控制参数,所述△为所述终端从所述网络设备获取的编码调制方式相关的功率控制参数,所述f为所述终端从所述网络设备获取的功率命令相关的功率控制参数;
    所述α为所述终端从所述网络设备获取的路损补偿相关的功率控制参数。
  9. 根据权利要求1-8任一项所述的功率确定方法,其特征在于,还包括:
    所述终端从所述网络设备获取第一门限值、或者第二门限值、或者第三门限值。
  10. 一种功率确定方法,其特征在于,包括:
    网络设备为终端配置第一偏移值;所述第一偏移值根据第一载波的穿透损耗与第二载波的穿透损耗确定,所述第一载波为所述终端的上行载波,所述第二载波为所述终端的时分双工TDD载波或下行载波。
  11. 根据权利要求10所述的功率确定方法,其特征在于,所述方法还包括:
    所述网络设备为所述终端配置第一门限值、或者第二门限值、或者第三门限值;
    所述第一门限值、所述第二门限值、所述第三门限值用于所述终端根据在所述第二载波上接收下行信号的接收功率和所述第一偏移值确定在所述第一载波上发送上行 信号的功率。
  12. 根据权利要求11所述的功率确定方法,其特征在于,
    所述网络设备通过系统消息或无线资源控制RRC信令为所述终端配置所述第一偏移值;或者
    所述网络设备通过系统消息或无线资源控制RRC信令为所述终端配置所述第一门限值或者所述第二门限值或者所述第三门限值。
  13. 根据权利要求11或12所述的功率确定方法,其特征在于,
    所述第一偏移值和所述第一门限值在同一条消息或信令;或者
    所述第一偏移值和所述第二门限值在同一条消息或信令;或者
    所述第一偏移值和所述第三门限值在同一条消息或信令。
  14. 一种终端,其特征在于,包括:
    接收单元,用于从网络设备接收第一偏移值;所述第一偏移值根据第一载波的穿透损耗与第二载波的穿透损耗确定,所述第一载波为所述终端的上行载波,所述第二载波为所述终端的时分双工TDD载波或下行载波;
    确定单元,用于根据在所述第二载波上接收下行信号的接收功率和所述第一偏移值确定在所述第一载波上发送上行信号的功率。
  15. 根据权利要求14所述的终端,其特征在于,
    当所述终端在所述第二载波上接收下行信号的接收功率小于或等于第一门限值时,所述确定单元用于根据在所述第二载波上接收下行信号的接收功率和所述第一偏移值确定在所述第一载波上发送上行信号的功率;或者
    当所述终端在所述第二载波上接收下行信号的路损小于或等于第二门限值时,所述确定单元用于根据在所述第二载波上接收下行信号的接收功率和所述第一偏移值确定在所述第一载波上发送上行信号的功率;或者
    当所述终端在所述第二载波上接收下行信号的参考信号接收功率RSRP小于或等于第三门限值时,所述确定单元用于根据在所述第二载波上接收下行信号的接收功率和所述第一偏移值确定在所述第一载波上发送上行信号的功率。
  16. 根据权利要求14或15所述的终端,其特征在于,
    所述确定单元,具体用于根据所述第二载波的路损、所述第一偏移值确定在所述第一载波上发送上行信号的功率;所述第二载波的路损为所述终端根据在所述第二载波上接收下行信号的接收功率确定的。
  17. 根据权利要求16所述的终端,其特征在于,
    所述确定单元,具体用于根据所述第二载波的路损、所述第一偏移值确定所述第一载波的路损,并根据所述第一载波的路损确定在所述第一载波上发送上行信号的功率。
  18. 根据权利要求17所述的终端,其特征在于,
    所述确定单元,具体用于将所述第二载波的路损、所述第一偏移值以及第二偏移值相加后的结果作为所述第一载波的路损;
    所述第二偏移值为根据所述第一载波的路径损耗和所述第二载波的路径损耗确定的。
  19. 根据权利要求17所述的终端,其特征在于,
    所述确定单元,具体用于将所述第二载波的路损和所述第一偏移值相加后的结果作为所述第一载波的路损。
  20. 根据权利要求14或15所述的终端,其特征在于,
    所述确定单元,具体用于根据下述公式确定发送上行信号的功率:
    P=min{P max,FUNCTION(M,P 0,△,f)+α·PL+offset},
    其中,所述offset为所述第一偏移值;
    所述PL根据所述第二载波的路损确定,所述PL为所述第二载波的路损,或者,所述PL为所述第二载波的路损和第二偏移值相加后的结果,所述第二载波的路损为所述终端根据在所述第二载波上接收下行信号的接收功率确定的,所述第二偏移值为根据所述第一载波的路径损耗和所述第二载波的路径损耗确定的;
    所述P max为所述终端在所述第一载波的最大发射功率;
    所述FUNCTION(M,P 0,△,f)为上行功率控制中与M,P 0,△,f有关的函数,所述M为所述终端在所述第一载波上发送上行信号占用的资源块数目,所述P 0为所述终端从所述网络设备获取的目标接收功率相关的功率控制参数,所述△为所述终端从所述网络设备获取的编码调制方式相关的功率控制参数,所述f为所述终端从所述网络设备获取的功率命令相关的功率控制参数;
    所述α为所述终端从所述网络设备获取的路损补偿相关的功率控制参数。
  21. 根据权利要求14或15所述的终端,其特征在于,
    所述确定单元,具体用于根据下述公式确定发送上行信号的功率:
    P=min{P max,FUNCTION(M,P 0,△,f)+α·PL+α·offset},
    其中,所述offset为所述第一偏移值;
    所述PL根据所述第二载波的路损确定,所述PL为所述第二载波的路损,或者,所述PL为所述第二载波的路损和第二偏移值相加后的结果,所述第二载波的路损为所述终端根据在所述第二载波上接收下行信号的接收功率确定的,所述第二偏移值为根据所述第一载波的路径损耗和所述第二载波的路径损耗确定的;
    所述P max为所述终端在所述第一载波的最大发射功率;
    所述FUNCTION(M,P 0,△,f)为上行功率控制中与M,P 0,△,f有关的函数,所述M为所述终端在所述第一载波上发送上行信号占用的资源块数目,所述P 0为所述终端从所述网络设备获取的目标接收功率相关的功率控制参数,所述△为所述终端从所述网络设备获取的编码调制方式相关的功率控制参数,所述f为所述终端从所述网络设备获取的功率命令相关的功率控制参数;
    所述α为所述终端从所述网络设备获取的路损补偿相关的功率控制参数。
  22. 根据权利要求14-21任一项所述的终端,其特征在于,
    所述接收单元,还用于从所述网络设备获取第一门限值、第二门限值、第三门限值。
  23. 一种网络设备,其特征在于,包括:
    配置单元,用于为终端配置第一偏移值;所述第一偏移值根据第一载波的穿透损耗与第二载波的穿透损耗确定,所述第一载波为所述终端的上行载波,所述第二载波 为所述终端的时分双工TDD载波或下行载波。
  24. 根据权利要求23所述的网络设备,其特征在于,
    所述配置单元,还用于为所述终端配置第一门限值、或者第二门限值、或者第三门限值;
    所述第一门限值、所述第二门限值、所述第三门限值用于所述终端根据在所述第二载波上接收下行信号的接收功率和所述第一偏移值确定在所述第一载波上发送上行信号的功率。
  25. 根据权利要求24所述的网络设备,其特征在于,
    所述配置单元通过系统消息或无线资源控制RRC信令为所述终端配置所述第一偏移值;或者
    所述配置单元通过系统消息或无线资源控制RRC信令为所述终端配置所述第一门限值、或者所述第二门限值、或者所述第三门限值。
  26. 根据权利要求24或25所述的网络设备,其特征在于,
    所述第一偏移值和所述第一门限值在同一条消息或信令;或者
    所述第一偏移值和所述第二门限值在同一条消息或信令;或者
    所述第一偏移值和所述第三门限值在同一条消息或信令。
  27. 一种功率确定系统,其特征在于,包括如权利要求14-22任一项所述的终端、以及权利要求23-26任一项所述的网络设备。
PCT/CN2018/091550 2017-06-16 2018-06-15 一种功率确定方法、设备及系统 WO2018228544A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP18817491.6A EP3592048B1 (en) 2017-06-16 2018-06-15 Power determination method, device, and system
US16/716,421 US20200120612A1 (en) 2017-06-16 2019-12-16 Power determining method, device, and system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710459417.8A CN109151968B (zh) 2017-06-16 2017-06-16 一种功率确定方法、设备及系统
CN201710459417.8 2017-06-16

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/716,421 Continuation US20200120612A1 (en) 2017-06-16 2019-12-16 Power determining method, device, and system

Publications (1)

Publication Number Publication Date
WO2018228544A1 true WO2018228544A1 (zh) 2018-12-20

Family

ID=64660671

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/091550 WO2018228544A1 (zh) 2017-06-16 2018-06-15 一种功率确定方法、设备及系统

Country Status (4)

Country Link
US (1) US20200120612A1 (zh)
EP (1) EP3592048B1 (zh)
CN (1) CN109151968B (zh)
WO (1) WO2018228544A1 (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109842927B (zh) * 2017-11-24 2021-01-29 华为技术有限公司 上行控制的方法、装置和系统
JP7047705B2 (ja) * 2018-10-29 2022-04-05 日本電信電話株式会社 無線通信の伝搬損失を利用した混雑度の推定方法、推定装置および推定プログラム
CN110708751B (zh) * 2019-09-17 2022-04-26 中国联合网络通信集团有限公司 一种上行功控计算方法和设备
EP4075876A4 (en) * 2020-01-17 2023-01-04 Huawei Technologies Co., Ltd. COMMUNICATION METHOD AND DEVICE
CN113541762B (zh) * 2020-04-22 2022-10-04 华为技术有限公司 功率调整方法、装置及系统
CN114007257A (zh) * 2020-07-28 2022-02-01 华为技术有限公司 确定传输功率的方法及装置
US11412458B2 (en) * 2020-12-07 2022-08-09 Qualcomm Incorporated Power control techniques for ultra-wide bandwidth beamforming systems
CN112788721B (zh) * 2021-02-23 2022-07-29 湖南斯北图科技有限公司 一种卫星物联网终端的功率控制方法
US20230062814A1 (en) * 2021-08-25 2023-03-02 At&T Intellectual Property I, L.P. Apparatuses and methods for enhancing device radio performance with various protective covers
CN118102427A (zh) * 2022-11-15 2024-05-28 中国移动通信有限公司研究院 功率控制方法及设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101399579A (zh) * 2007-11-26 2009-04-01 北京邮电大学 一种无线通信系统上行(反向)链路功率控制方法
CN102083189A (zh) * 2010-12-27 2011-06-01 中兴通讯股份有限公司 一种物理上行控制信道的功率控制方法及装置
US20140094214A1 (en) * 2012-09-28 2014-04-03 Telefonaktiebolaget L M Ericsson (Publ) Adapting output power of a radio transmitter
CN106102150A (zh) * 2011-08-17 2016-11-09 华为技术有限公司 终端发射上行信号的方法和终端

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102577530B (zh) * 2009-10-05 2015-07-08 奥普蒂斯蜂窝技术有限责任公司 移动电信网络中的方法和装置
CN111615199B (zh) * 2011-10-28 2023-10-24 华为技术有限公司 上行功率控制的方法、用户设备和接入点
US9642114B2 (en) * 2011-11-04 2017-05-02 Intel Corporation Path-loss estimation for uplink power control in a carrier aggregation environment
CN103298091B (zh) * 2012-03-01 2018-08-24 中兴通讯股份有限公司 上行发射功率确定方法及装置
US11382081B2 (en) * 2015-10-16 2022-07-05 Samsung Electronics Co., Ltd. Method and apparatus for system information acquisition in wireless communication system
US20190124604A1 (en) * 2016-04-28 2019-04-25 Ntt Docomo, Inc. User equipment, base station, and communication method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101399579A (zh) * 2007-11-26 2009-04-01 北京邮电大学 一种无线通信系统上行(反向)链路功率控制方法
CN102083189A (zh) * 2010-12-27 2011-06-01 中兴通讯股份有限公司 一种物理上行控制信道的功率控制方法及装置
CN106102150A (zh) * 2011-08-17 2016-11-09 华为技术有限公司 终端发射上行信号的方法和终端
US20140094214A1 (en) * 2012-09-28 2014-04-03 Telefonaktiebolaget L M Ericsson (Publ) Adapting output power of a radio transmitter

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
HUAWEI ET AL.: "Overview of NR UL for LTE-NR Coexistence", 3GPP TSG RAN WG1 MEETING #89 R1-1709383, 19 May 2017 (2017-05-19), XP051285096 *
HUAWEI ET AL.: "UL Power Control for Cross-link Interference Mitigation", 3GPP TSG RAN WG1 MEETING #89 R1-1706912, 19 May 2017 (2017-05-19), XP051272142 *
SAMSUNG: "UL Power Control Aspects", 3GPP TSG RAN WG1 MEETING #88BIS R1-1705363, 7 April 2017 (2017-04-07), XP051243493 *
See also references of EP3592048A4

Also Published As

Publication number Publication date
US20200120612A1 (en) 2020-04-16
CN109151968A (zh) 2019-01-04
CN109151968B (zh) 2021-02-23
EP3592048A1 (en) 2020-01-08
EP3592048A4 (en) 2020-04-15
EP3592048B1 (en) 2021-11-10

Similar Documents

Publication Publication Date Title
WO2018228544A1 (zh) 一种功率确定方法、设备及系统
TWI754075B (zh) 用於傳輸信號的方法、終端設備和網絡設備
US20160007355A1 (en) Apparatus, system and method of establishing a wireless beamformed link
WO2018202215A1 (zh) 配置上行信号的方法及装置、确定上行信号的方法及装置
WO2018228504A1 (zh) 功率控制方法及装置
EP3911031A1 (en) Reference signal management method, apparatus and system
WO2019029354A1 (zh) 功率控制方法、接收方法、功率分配方法、移动通信终端以及网络设备
CN103155658B (zh) 上行链路功率控制机制的方法
JP7259066B2 (ja) 電力制御方法および電力制御装置
WO2019157895A1 (zh) 一种多波束传输时pucch功率的控制方法及装置
CN112867129B (zh) 功率余量上报发送方法和装置
WO2021017893A1 (zh) 波束测量方法及装置
WO2020030159A1 (zh) 功率控制方法和装置、接收设备及存储介质
JP2023517032A (ja) ネットワーク装置、端末装置、及び方法
WO2017092383A1 (zh) 一种共小区网络下的多天线传输方法及基站
WO2018201941A1 (zh) 配置参数的方法及装置
WO2019007256A1 (zh) 一种功率调整方法和系统
WO2020192719A1 (zh) 更新波束的方法与通信装置
WO2020034969A1 (zh) 信号传输方法、波束确定方法及其装置
US20230171704A1 (en) Communication method and apparatus
WO2019056278A1 (zh) 无线通信方法和设备
EP3117646B1 (en) Apparatus and method of simultaneous wireless transmissions
TW202019210A (zh) 無線通訊方法和終端設備
WO2015168930A1 (zh) 控制载波信号的功率的方法、用户设备和基站
WO2019028923A1 (zh) 一种功率控制方法及相关设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18817491

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018817491

Country of ref document: EP

Effective date: 20191004

NENP Non-entry into the national phase

Ref country code: DE