WO2018228531A1 - Drx配置方法、终端设备、网络设备和通信系统 - Google Patents

Drx配置方法、终端设备、网络设备和通信系统 Download PDF

Info

Publication number
WO2018228531A1
WO2018228531A1 PCT/CN2018/091494 CN2018091494W WO2018228531A1 WO 2018228531 A1 WO2018228531 A1 WO 2018228531A1 CN 2018091494 W CN2018091494 W CN 2018091494W WO 2018228531 A1 WO2018228531 A1 WO 2018228531A1
Authority
WO
WIPO (PCT)
Prior art keywords
drx
sets
terminal device
configurations
timer
Prior art date
Application number
PCT/CN2018/091494
Other languages
English (en)
French (fr)
Inventor
于海凤
熊新
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP18817732.3A priority Critical patent/EP3609243B1/en
Publication of WO2018228531A1 publication Critical patent/WO2018228531A1/zh
Priority to US16/714,402 priority patent/US11432237B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0078Timing of allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0212Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave
    • H04W52/0216Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave using a pre-established activity schedule, e.g. traffic indication frame
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0203Power saving arrangements in the radio access network or backbone network of wireless communication networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0096Indication of changes in allocation
    • H04L5/0098Signalling of the activation or deactivation of component carriers, subcarriers or frequency bands
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0212Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave
    • H04W52/0219Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave where the power saving management affects multiple terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/542Allocation or scheduling criteria for wireless resources based on quality criteria using measured or perceived quality
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/28Discontinuous transmission [DTX]; Discontinuous reception [DRX]

Definitions

  • the present application relates to the field of mobile communications technologies, and in particular, to a discontinuous reception (DRX) configuration method, a terminal device, a network device, and a communication system.
  • DRX discontinuous reception
  • the DRX is a user equipment (UE) that turns on the receiver to enter an active state only when necessary to receive downlink data and signaling, and turns off the receiver to enter a sleep state at other times, and stops.
  • UE user equipment
  • An operating mode that saves user terminal power consumption by receiving downlink data and signaling.
  • DRX is divided into idle state DRX and connected state DRX.
  • the idle state DRX is implemented by listening to the paging channel because there is no RRC connection and the UE dedicated bearer, and the connected state DRX is the DRX characteristic when the user terminal is in the radio resource control (RRC) connected state. It is implemented by monitoring a physical downlink control channel (PDCCH).
  • RRC radio resource control
  • DRX long term evolution
  • LTE long term evolution
  • DRX short-cycle DRX
  • long-period DRX International Standard Long drx
  • the common application scenarios of DRX are business scenarios that are insensitive to delay and have data to be received and sent in a few moments, such as browsing web pages, sending and receiving emails, etc., or for generating business scenarios with rare packets.
  • VoIP voice over internet protocol
  • the embodiment of the present application provides a DRX configuration method, a terminal device, a network device, and a communication system, which are used to solve the problem that the DRX working mechanism in the prior art cannot meet the 5G application environment with diverse service requirements.
  • a first aspect of the embodiments of the present application provides a DRX configuration method, where the method includes:
  • the terminal device receives N sets of discontinuous receiving DRX configurations sent by the network device, where the N sets of DRX configurations respectively correspond to N sets of carriers, and N is an integer greater than or equal to 2;
  • the M group carriers in the N groups of carriers are activated carriers, and the terminal device monitors on a specified carrier according to the M sets of DRX configurations corresponding to the M group carriers.
  • a physical downlink control channel where the designated carrier is a partial group or a total group of the M group carriers, and M is a positive integer equal to or less than N.
  • the terminal device monitors the physical downlink control channel on the carrier corresponding to the multiple sets of DRX configurations that are enabled/activated based on the multiple sets of DRX configurations sent by the network device, so that the terminal device is satisfied when the DRX state of the terminal device is the active state.
  • the terminal device can reduce the unnecessary physical downlink control channel monitoring in the process of monitoring the physical downlink control channel by using multiple sets of DRX configurations, thereby reducing the energy consumption of the terminal device.
  • the M sets of DRX configurations are used in an overlay.
  • the DRX cycle period in different DRX configurations is a different integer multiple of the minimum DRX cycle period, the minimum DRX cycle period being preset;
  • the plurality of DRX starting position offset values of the N sets of DRX configurations are the same; and/or
  • the activation timer in each set of DRX configurations has different parameter values from the DRX inactivity timer and the DRX retransmission timer.
  • a set of DRX configurations includes a timer, and the timer includes at least one of an activation timer, a DRX inactivity timer, a DRX retransmission timer, and a DRX uplink retransmission timer.
  • the method also includes:
  • the DRX state of the terminal device includes the activated state or the inactive state
  • any one of the timers included in any one of the M sets of DRX configurations is in an operating state, and the DRX state of the terminal device is the activated state.
  • the DRX state of the terminal device is an active state
  • the activated state is a state in which multiple sets of DRX configurations are superimposed together.
  • the parameters configured in each DRX configuration include at least one of the following: an activation timer, a DRX cycle, a DRX inactivity timer, a DRX retransmission timer, and a DRX uplink retransmission timing. And DRX start position offset values.
  • the terminal device monitors the physical downlink control channel on the M group of carriers according to the M sets of DRX configurations corresponding to the M groups of carriers, including:
  • the first downlink data is detected in the physical downlink control channel on the corresponding carrier of any one of the M sets of DRX configurations, and the start or Restart the inactive timer of the other DRX configuration, or start or restart the inactive timer corresponding to any DRX configuration in the M DRX configuration.
  • the terminal device starts or restarts another set of DRX configurations when the first downlink data belonging to the terminal device is successfully demodulated in the physical downlink control channel during monitoring of the inactive timer of the DRX configuration.
  • the inactive timer, or the corresponding inactive timer can avoid unnecessary monitoring of the physical downlink control channel, thereby saving energy consumption of the terminal device.
  • the method further includes:
  • the N sets of the DRX configurations correspond to the same or different physical resource usage attributes, and the physical resource usage attributes and the number of carriers or N sets in a group of carriers corresponding to each of the N sets of DRX configurations Any of the timers in the DRX configuration;
  • the physical resource usage attribute includes at least one of the following: a resource period, a transmission time interval, a subcarrier spacing, and an encoding manner.
  • the terminal device before receiving, by the network device, the N sets of discontinuous receiving DRX configurations sent by the network device, the terminal device further includes:
  • the terminal device sends the indication information to the access network device, where the indication information is used to indicate whether the terminal device supports receiving multiple sets of discontinuous reception DRX configurations.
  • the method further includes:
  • the terminal device adjusts the N sets of the DRX configuration by using the indication information of adjusting multiple sets of DRX configurations based on the control message.
  • the terminal device after receiving the control message actively sent by the network device, the terminal device adjusts multiple sets of DRX configurations based on the control message, and can quickly complete adjustment of multiple sets of DRX configurations used for superposition, and further satisfy the terminal device. Send business service quality requirements for different services. Similarly, the purpose of reducing the energy consumption of the terminal device can also be achieved.
  • the method before the terminal device receives the control indication sent by the network device, the method further includes:
  • the terminal device sends an adjustment request message to the network device, where the adjustment request message includes DRX configuration indication information that the terminal device requests to adjust;
  • the terminal device receives a control message sent by the network device, where the control message is sent by the network device in response to the adjustment request message.
  • the terminal device reports the adjustment request message to the network device based on the service requirement, and based on the control message sent by the network device in response to the adjustment request message, a certain set or a plurality of sets of DRX configurations used for simultaneous superposition The set, even the multiple sets of DRX configurations currently being superimposed for simultaneous activation or deactivation adjustments.
  • the adjustment of multiple sets of DRX configurations used for superposition can be quickly completed when the service quality requirements of the service are improved or new services are sent, and the service quality requirements of the terminal devices for sending different services are further satisfied.
  • the purpose of reducing the energy consumption of the terminal device can also be achieved.
  • the terminal device receives a control message sent by the network device, where the control message is a radio resource control RRC reconfiguration message, or the control message is a discontinuous reception medium access control command.
  • the control message is a preset downlink control command, and the downlink control command has a correspondence relationship with a group of the DRX configurations; the group of DRX configurations includes one or more DRX configurations.
  • a second aspect of the embodiments of the present application provides a DRX configuration method, where the method includes:
  • the network device is configured with N sets of discontinuous receiving DRX configurations, where the N sets of DRX configurations respectively correspond to N sets of carriers, and N is an integer greater than or equal to 2;
  • the M group of carriers in the N sets of carriers are the activated carriers, and the network device sends a physical downlink control channel to the terminal device by using the specified carrier according to the M sets of DRX configurations, where the specified carrier is the M group.
  • a partial or all group in the carrier, M is a positive integer less than or equal to N.
  • the network device configures the parameters in the multiple DRX configurations, and sends the obtained multiple DRX configurations to the terminal device, so that the terminal device activates/enables multiple sets of the DRX when the DRX state is the active state.
  • the physical carrier control channel is monitored on the corresponding carrier to meet the service quality requirement for the terminal device to send different services.
  • the terminal device can reduce the unnecessary physical downlink control channel monitoring in the process of monitoring the physical downlink control channel by using multiple sets of DRX configurations, thereby reducing the energy consumption of the terminal device.
  • the DRX cycle period in different DRX configurations is a different integer multiple of the minimum DRX cycle period, the minimum DRX cycle period being a preset setting;
  • the plurality of DRX starting position offset values of the N sets of DRX configurations are the same; and/or
  • the activation timer in each set of DRX configurations has different parameter values from the DRX inactivity timer and the DRX retransmission timer.
  • a set of DRX configurations includes a timer, and the timer includes at least one of an activation timer, a DRX inactivity timer, a DRX retransmission timer, and a DRX uplink retransmission timer.
  • the method also includes:
  • the network device determines that the DRX state of the terminal device is the active state according to any one of the timers included in any one of the M sets of DRX configurations.
  • the parameters configured in each DRX configuration include at least one of the following: an activation timer, a DRX cycle, a DRX inactivity timer, a DRX retransmission timer, and a DRX start position offset. Move the value.
  • the network device sends a downlink on a corresponding one of the M sets of DRX configurations during an inactivity timer operation of any one of the M sets of DRX configurations. data.
  • the method further includes:
  • the N sets of the DRX configurations correspond to the same or different physical resource usage attributes, and the physical resource usage attributes and the number of carriers or N sets in a group of carriers corresponding to each of the N sets of DRX configurations Any of the timers in the DRX configuration;
  • the physical resource usage attribute includes at least one of the following: a resource period, a transmission time interval, a subcarrier spacing, and an encoding manner.
  • the method further includes: the network device sending a control message to the terminal device, where the control message includes indication information for adjusting multiple sets of DRX configurations, so that the terminal device utilizes the adjustment Multiple sets of DRX configuration instructions adjust multiple sets of the DRX configuration.
  • the network device actively sends a control message to the terminal device, so that the terminal device adjusts multiple sets of DRX configurations based on the control message, and can quickly complete the adjustment of multiple sets of DRX configurations used for superposition, and further satisfies the terminal device sending.
  • the purpose of reducing the energy consumption of the terminal device can also be achieved.
  • the method further includes: receiving, by the network device, an adjustment request message sent by the terminal device, where the adjustment request message includes DRX configuration indication information that the terminal device requests to be adjusted;
  • the network device responds to the adjustment request message, and generates a corresponding control message, and sends the message to the terminal device.
  • the network device receives the adjustment request message reported by the terminal device based on the service requirement, and generates a corresponding control message to be sent to the terminal device in response to the adjustment request message, so that the terminal device is in the multiple sets of DRX configurations used for simultaneous superposition.
  • a set or sets of even multiple sets of DRX configurations currently superimposed at the same time are activated or deactivated.
  • the adjustment of multiple sets of DRX configurations used for superposition can be quickly completed when the service quality requirements of the service are improved or new services are sent, and the service quality requirements of the terminal devices for sending different services are further satisfied.
  • the purpose of reducing the energy consumption of the terminal device can also be achieved.
  • the network device sends a control message to the terminal device, where the control message is a radio resource control RRC reconfiguration message; or the control message is discontinuously received media access control.
  • the control message is a preset downlink control command, and the downlink control command has a correspondence relationship with a group of the DRX configurations; the set of discontinuous reception DRX configurations includes one or more discontinuous commands. Receive the DRX configuration.
  • a third aspect of the embodiment of the present application provides a terminal device, where the terminal device includes:
  • a receiving unit configured to receive N sets of discontinuous receiving DRX configurations sent by the network device, where the N sets of DRX configurations respectively correspond to N sets of carriers, and N is an integer greater than or equal to 2;
  • a processing unit when the DRX state of the terminal device is an active state, the M group carriers in the N groups of carriers are activated carriers, and the processing unit is configured according to the M sets of DRX corresponding to the M group carriers.
  • the specified carrier is configured to listen to a physical downlink control channel, where the designated carrier is a partial group or a total group of the M group carriers, and M is a positive integer equal to or less than N.
  • the processing unit is configured to superimpose the M sets of DRX configurations when the DRX state of the terminal device is an active state.
  • the receiving unit is configured to receive N sets of discontinuous receiving DRX configurations sent by the network device, where DRX cycle periods in different DRX configurations are different integer multiples of a minimum DRX cycle period, the minimum DRX The cycle period is preset; and/or, the plurality of DRX start position offset values of the N sets of DRX configurations are the same; and/or the activation timer and the DRX inactive timing in each set of DRX configurations And the DRX retransmission timer has different parameter values.
  • the receiving unit is configured to receive N sets of discontinuous receiving DRX configurations sent by the network device, where the DRX configuration includes a timer, where the timer includes an activation timer and a DRX inactive timing. At least one of a DRX retransmission timer and a DRX uplink retransmission timer;
  • the processing unit is further configured to determine a DRX state of the terminal device, where the DRX state of the terminal device includes the activated state or an inactive state; wherein any one of the M sets of DRX configurations If any one of the included timers is in an active state, the DRX state of the terminal device is the active state.
  • the receiving unit is configured to receive N sets of discontinuous receiving DRX configurations sent by the network device, where the parameters configured in each DRX configuration include at least one of the following: an activation timer, DRX Loop cycle, DRX inactivity timer, DRX retransmission timer, DRX uplink retransmission timer and DRX start position offset value.
  • the processing unit that listens to the physical downlink control channel on the specified carrier according to the M sets of DRX configurations corresponding to the M groups of carriers is specifically used in the M set of DRX configurations.
  • the first downlink data is monitored in the physical downlink control channel, and the inactive timing of other DRX configurations is started or restarted. Or, start or restart the inactive timer corresponding to the M sets of DRX configurations.
  • the receiving unit is further configured to receive N sets of discontinuous receiving DRX configurations sent by the network device, where the N sets of the DRX configurations correspond to the same or different physical resource usage attributes, the physical The resource usage attribute is related to any one of a set of carriers or a set of N sets of DRX configurations corresponding to each set of the N sets of DRX configurations;
  • the physical resource usage attribute includes at least one of the following: a resource period, a transmission time interval, a subcarrier spacing, and an encoding manner.
  • the receiving unit is further configured to receive a control message that is sent by the network device, where the control message includes indication information for adjusting multiple sets of DRX configurations;
  • the processing unit is further configured to adjust multiple sets of the DRX configurations by using the indication information of adjusting multiple sets of DRX configurations based on the control message.
  • the sending unit in the terminal device is configured to send, after the receiving unit receives the control indication sent by the network device, an adjustment request message, the adjustment request message, to the network device. Including the DRX configuration indication information that the terminal device requests adjustment;
  • the receiving unit is configured to receive a control message sent by the network device, where the control message is sent by the network device in response to the adjustment request message.
  • the receiving unit receives a control message sent by a network device, where the control message is a radio resource control RRC reconfiguration message; or the control message is a discontinuous receiving medium access. Controlling the command; or, the control message is a preset downlink control command, and the downlink control command has a correspondence relationship with a group of the DRX configurations; and the set of DRX configurations includes one or more DRX configurations.
  • the control message is a radio resource control RRC reconfiguration message
  • the control message is a discontinuous receiving medium access. Controlling the command; or, the control message is a preset downlink control command, and the downlink control command has a correspondence relationship with a group of the DRX configurations; and the set of DRX configurations includes one or more DRX configurations.
  • a fourth aspect of the embodiments of the present application provides a network device, where the network device includes:
  • a processing unit configured to configure N sets of discontinuous receiving DRX configurations, where the N sets of DRX configurations respectively correspond to N sets of carriers, N is an integer greater than or equal to 2, and the M sets of carriers in the N sets of carriers are activated carriers;
  • a sending unit configured to send the N sets of DRX configurations to the terminal device, and send a physical downlink control channel to the terminal device by using a specified carrier according to the M sets of DRX configurations, where the specified carrier is the M A partial or all group of the group carriers, where M is a positive integer less than or equal to N.
  • the N sets of processing units for discontinuous reception of the DRX configuration are configured to configure the DRX cycle period of the different DRX configurations to be an integer multiple of the minimum DRX cycle period; and/or,
  • the processing unit is configured to configure a plurality of DRX start position offset values of the set of the DRX configurations to be the same; and/or,
  • the processing unit is configured to configure an activation timer in each set of DRX configurations to have different parameter values from the DRX inactivity timer and the DRX retransmission timer.
  • the processing unit that configures N sets of discontinuous reception DRX configurations is configured to configure parameters including at least one of the following DRX configurations, the parameters include: an activation timer , DRX cycle period, DRX inactivity timer, DRX retransmission timer, DRX uplink retransmission timer and DRX start position offset value.
  • the processing unit is further configured to configure the same or different physical resource usage attributes for the N sets of the DRX configurations, where the physical resource usage attributes are in the N sets of DRX configurations
  • Each of the corresponding set of carriers is associated with any one of the N sets of DRX configurations; wherein the physical resource usage attribute includes at least one of the following: a resource period, a transmission time interval, and a subcarrier. Interval and encoding.
  • the sending unit is further configured to send a control message to the terminal device, where the control message includes indication information for adjusting multiple sets of DRX configurations, so that the terminal device utilizes the adjustment multiple sets.
  • the DRX configuration indication adjusts multiple sets of the DRX configuration.
  • the receiving unit of the network device is configured to receive an adjustment request message sent by the terminal device, where the adjustment request message includes DRX configuration indication information that the terminal device requests to adjust;
  • the processing unit is configured to respond to the adjustment request message, and generate a corresponding control message, and send the signal to the terminal device by using the sending unit.
  • the sending unit sends a control message to the terminal device, where the control message is a radio resource control RRC reconfiguration message; or the control message is discontinuously received media access control.
  • the control message is a preset downlink control command, and the downlink control command has a correspondence relationship with a group of the DRX configurations; the set of discontinuous reception DRX configurations includes one or more discontinuous commands. Receive the DRX configuration.
  • a fifth aspect of the present application provides a communication system, which is characterized in that: the communication system includes: the third aspect of the embodiment of the present application, the terminal device in any possible design of the third aspect, and the present application Embodiment 4 of the network device in any of the possible aspects of the fourth aspect.
  • a sixth aspect of the embodiments of the present application provides a computer readable storage medium for storing a computer program, the computer program comprising any of the possible designs or the first aspect, the second aspect, the first aspect The instructions of the method in any of the possible aspects of the two aspects.
  • a seventh aspect of an embodiment of the present application provides a computer program product comprising instructions which, when run on a computer, cause the computer to perform the methods described in the above aspects.
  • An eighth aspect of the embodiments of the present application provides a chip system, including a processor, for supporting a network device and a terminal device to implement the functions involved in the foregoing aspects, such as, for example, generating or processing the method involved in the foregoing method. Data and / or information.
  • the chip system further includes a memory for storing network device and program instructions and data necessary for the terminal device.
  • the chip system can be composed of chips, and can also include chips and other discrete devices.
  • FIG. 1 is a schematic diagram of a long and short cycle period DRX disclosed in an embodiment of the present application
  • FIG. 2 is a schematic diagram of operations of each timer related to a DRX cycle period disclosed in an embodiment of the present application
  • FIG. 3 is a schematic diagram of an application scenario of a communication system according to an embodiment of the present disclosure.
  • FIG. 4 is a schematic flowchart of a DRX configuration method according to an embodiment of the present disclosure
  • FIG. 5 is a schematic diagram of a process of simultaneously superimposing and using three sets of DRX configurations activated by a terminal device according to an embodiment of the present disclosure
  • FIG. 6 is a schematic diagram of a process of three sets of DRX configurations corresponding to a numerology that are simultaneously superimposed and used by a terminal device according to an embodiment of the present disclosure
  • FIG. 7 is a schematic flowchart diagram of another DRX configuration method according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic flowchart diagram of another DRX configuration method according to an embodiment of the present disclosure.
  • FIG. 9 is a schematic structural diagram of a network device according to an embodiment of the present disclosure.
  • FIG. 10 is a schematic structural diagram of another network device according to an embodiment of the present disclosure.
  • FIG. 11 is a schematic structural diagram of a terminal device according to an embodiment of the present disclosure.
  • FIG. 12 is a schematic structural diagram of another terminal device according to an embodiment of the present disclosure.
  • FIG. 13 is a schematic structural diagram of a communication system according to an embodiment of the present application.
  • the embodiment of the present application provides a DRX configuration method, a terminal device, a network device, and a communication system, and is configured to monitor a physical medium on a carrier corresponding to multiple sets of DRX configurations that are enabled/activated when the DRX state of the terminal device is the active state ON.
  • Downlink control channel so as to meet the service quality requirements of the terminal equipment to send different services.
  • DRX is discontinuous reception, which means that the terminal device turns on the receiver to enter the active state only when necessary to receive downlink data and signaling, and turns off the receiver to enter the sleep state at other times, and stops receiving downlink data and signaling.
  • DRX is divided into idle state DRX and connected state DRX.
  • the connected state DRX refers to the DRX feature when the UE is in the RRC connected state, and is implemented by listening to the physical downlink control channel.
  • DRX cycle that is, the period in which the reception is not connected. During each DRX cycle, the UE will wake up periodically for receiving data.
  • the DRX cycle period includes two types of long period and short period, wherein the length of the long cycle (DRX) is an integral multiple of the length of the short drx-cycle (DRX).
  • FIG. 1 it is a schematic diagram of the long and short cycle period DRX.
  • the activation timer (on duration timer) can be understood as a continuous number of downlink subframes, indicating the time that the UE can maintain after waking up.
  • the UE needs to listen to the physical downlink control channel within the consecutive downlink subframes of the segment, that is, during the timing period in which the timer is activated. As shown in Figure 1, the activation timer is started at the beginning of each DRX cycle.
  • the DRX-inactivity timer can also be understood as a continuous number of downlink subframes.
  • the DRX inactivity timer starts or restarts when the terminal device successfully demodulates the physical downlink control channel of the first transmission data of the terminal device, and also needs to continue to listen during the time period of the DRX inactivity timer.
  • Physical downlink control channel As shown in Figure 2, it is a schematic diagram of the operation of each timer associated with the DRX cycle. In Figure 2, both points A and B indicate the physical downlink control channel at which the first transmission data is received at the current time.
  • the process of starting and restarting the DRX inactivity timer is specifically: in the long cycle period DRX, when the terminal device listens within the time period of the activation timer (the timing period in which the activation timer is indicated by C in FIG. 2) In the physical downlink control channel, when the physical downlink control channel of a first transmission data belonging to the terminal device is successfully demodulated at point A, the DRX inactivity timer is started (the timing of the DRX inactivity timer is indicated by D in FIG. 2). period). The terminal device continues to listen to the physical downlink control channel during the timing period of the DRX inactivity timer, and restarts when the terminal device successfully demodulates the physical downlink control channel of another first-pass data belonging to the terminal device at point B. The DRX inactivity timer (E indicates the restart timing period of the DRX inactivity timer), and then the terminal device continues to listen to the physical downlink control channel within the timing period of the DRX inactivity timer.
  • Hybrid automatic repeat request (HARQ) round trip time (RTT) timer (Timer), which can be understood as the minimum retransmission scheduling interval.
  • the hybrid automatic repeat request round-trip delay timer indicates how many downlink subframes the next downlink hybrid automatic repeat request retransmission appears after.
  • the hybrid automatic repeat request round-trip delay timer is started under the following conditions:
  • the DRX retransmission timer (drx-RetransmissionTimer) can be understood as the waiting time for receiving the downlink retransmission schedule. That is, the DRX retransmission timer indicates the maximum time that the terminal device waits for downlink retransmission data due to the active state.
  • the DRX retransmission timer starts when the hybrid automatic repeat request round-trip delay timer expires and the terminal device does not correctly demodulate the corresponding downlink data.
  • drx-ULRetransmission timer it can be understood as the waiting time for receiving the uplink retransmission, which is similar to the DRX retransmission timer.
  • DRX media intervention control command (drx command mac ce), can be understood as the terminal device immediately enters the sleep period of MAC signaling. When the terminal device receives this DRX media intervention control command, it will immediately stop the activation timer and the DRX Inactivity Timer.
  • DRX short cycle timer which can be understood as the life cycle of short cycle DRX. When this DRX short cycle timer expires, a long period is required. In the case of a short cycle DRX configuration, the DRX short cycle timer will start or restart in two cases:
  • Startoffset is the starting subframe in the LTE system, but in the 5G system, because the time units of different DRX may be different, it may not necessarily be measured by subframe. of. It may be milliseconds, or the length of the transmission interval or other time units; therefore, in a 5G system, the StartOffset can be understood as the starting position or starting position offset or starting position offset value.
  • the quality of service (QoS) requirements such as: delay, reliability, rate, etc.
  • Business service quality requirements mainly the quality of service (QoS) requirements, such as: delay, reliability, rate, etc.
  • the embodiment of the present application provides a corresponding DRX configuration method, a related device, and a communication system to meet the service quality requirement of the terminal device to send different services in the 5G application environment.
  • FIG. 3 is a schematic diagram of an application scenario of a communication system including a terminal device and a network device disclosed in the embodiment of the present application.
  • the application scenario includes: a terminal device 30 and a network device 31.
  • the terminal device 30 accesses the communication network 32 through the network device 31.
  • the terminal device 30 and the network device 31 communicate via wireless signals.
  • the terminal device may be a wired device or a wireless device.
  • the wireless device may be a handheld device having a wireless connection function, or another processing device connected to the wireless modem, and a mobile terminal that communicates with one or more core networks via the wireless access network.
  • the wireless terminal can be a mobile phone, a mobile phone, a computer, a tablet, a personal digital assistant (PDA), a mobile internet device (MID), a wearable device, an e-book reader, and the like.
  • the wireless terminal can also be a portable, pocket, handheld, computer built-in or in-vehicle mobile device.
  • the wireless terminal can be a mobile station or an access point.
  • the UE is also a type of terminal device, and is usually referred to as a terminal device in the LTE system.
  • the foregoing network device may be a base station, or may be another device that sends a control channel.
  • the base station may include various forms of macro base stations, micro base stations, relay stations, access point base station controllers, transmission and reception points, and the like. In systems using different radio access technologies, the specific name of the base station may vary.
  • the terminal device involved in the embodiment of the present application may be specifically a UE, and the access network device involved in the embodiment of the present application may specifically be a base station.
  • the base station is configured to receive data, request messages, and the like reported by the UE, and send synchronization, broadcast, control commands, and the like to the UE, and send multiple sets of DRX configurations for the UE, and send and activate or deactivate or replace one or more sets. Control message for DRX configuration.
  • the UE is configured to receive synchronization, broadcast, control commands, and the like of the base station, and according to the multiple sets of DRXs sent by the base station, in an active state, and simultaneously use multiple sets of DRX configurations to monitor the physical downlink control channel, and according to the control message sent by the base station. Activate or deactivate or replace one or more DRX configurations.
  • the present application is not limited thereto.
  • the above communication system may also include other numbers of wireless communication devices than the terminal device 30 within its coverage.
  • the communication system shown in FIG. 3 may further include other network devices and the like, which is not limited in this embodiment of the present application.
  • the terminal device and the access network device disclosed in the embodiments of the present application include a hardware device and software running on the hardware device.
  • the DRX configuration method disclosed in the embodiment of the present application configures multiple sets of DRX configurations by the network device, and sends multiple sets of DRX configurations to the terminal device.
  • the multiple physical DRX configurations are used to monitor the physical downlink control channel to meet the service quality requirements of the terminal equipment for sending different services.
  • the terminal device can reduce the unnecessary physical downlink control channel monitoring in the process of monitoring the physical downlink control channel by using multiple sets of DRX configurations, thereby reducing the energy consumption of the terminal device.
  • the network device configures N sets of discontinuous receiving DRX configurations, where the N sets of DRX configurations respectively correspond to N sets of carriers, and N is an integer greater than or equal to 2.
  • the network device configures parameters in the N sets of DRX configurations.
  • the parameters configured in each DRX configuration include at least one of the following: an activation timer, a DRX cycle. , DRX inactivity timer, DRX retransmission timer and DRX start position offset value.
  • the network device when configuring the DRX cycle of multiple sets of different DRX configurations, uses the minimum DRX cycle period as the base, and uses different integer multiples of the minimum DRX cycle as the DRX cycle of different DRX configurations. That is, the DRX cycle period for different DRX configurations is a different integer multiple of the minimum DRX cycle period.
  • the minimum DRX cycle period may be preset according to the service requirements of the terminal device in the 5G application environment, and may also be fixed by a corresponding standard protocol.
  • the minimum DRX cycle may take a value of 2. If there are 4 sets of DRX configurations, the DRX cycle of different DRX configurations may be 4, 6, or 8; the unit may be a subframe or a transmission interval length. (TTI length).
  • the network device can adopt the same DRX cycle period value range when configuring multiple DRX cycle periods of different DRX configurations, and different DRX cycle periods in the value range are integer multiples of each other. Therefore, the network device can select and configure from the value range when configuring different DRX cycle configuration.
  • the DRX cycle period may take the range of ⁇ 2, 4, 6, 8, 10, 16, 20, 32, 40, 64, 80, 128, 160, 256, 320, 512, 640 ⁇ .
  • the value range can be set uniformly or non-uniformly; its unit can be the length of the subframe or transmission interval; assuming that there are 4 sets of DRX configurations, the DRX cycle of different DRX configurations can be 4, 16, or 128.
  • each of the foregoing DRX configurations may further include a hybrid automatic repeat request round-trip delay timer and an uplink hybrid automatic repeat request round-trip delay timer, where the setting units of the timers may be subframes or transmission time intervals. Length or milliseconds or other.
  • the DRX cycle period in each set of DRX configurations may be further divided into a short cycle period DRX and a long cycle period DRX, and a setting method of the short cycle period DRX and the long cycle period DRX is the same as the configuration of the DRX cycle period described above; Narration.
  • a DRX short cycle timer (DRX short cycle timer) is set accordingly, which can be understood as a short cycle life cycle.
  • DRX short cycle timer expires, a long period is required.
  • settings for these timers may also be included.
  • the multiple DRX starting position offset values of the multiple DRX configurations are configured to be the same.
  • the network device when configuring the timer in each DRX configuration, can configure different parameter values for different timers, so that different timers in each DRX configuration have different parameter values. It is also possible to configure the same parameter values for different timers.
  • each of the foregoing DRX configurations may include at least one of an activation timer, a DRX inactivity timer, a DRX retransmission timer, and a DRX uplink retransmission timer.
  • the network device determines that the DRX state of the terminal device is the active state according to any one of the timers included in any one of the M sets of DRX configurations.
  • the network device may set different parameter values for the activation timer, the DRX inactivity timer, and the DRX retransmission timer. .
  • the network device can also set the same parameter value for the activation timer, the DRX inactivity timer and the DRX retransmission timer.
  • the network device may also set the same parameter value for the activation timer and the DRX inactivity timer, and set a parameter value different from the activation timer and the DRX inactivation timer for the DRX retransmission timer. That is, different timers in each DRX configuration have the same or different parameter values.
  • the activation timer, the unit set by the DRX inactivity timer and the DRX retransmission timer may be a subframe or a transmission interval length or a millisecond; or, in units of listening physical downlink channel time, such as PDCCH subframe, or PDCCH TTI or PDCCH ms; in addition, other forms of time are not excluded as the basic unit of the above timer.
  • the DRX configuration with two timers is also applicable.
  • the above configuration is also applicable.
  • the network device sends downlink data on a carrier corresponding to any one of the M sets of DRX configurations.
  • the N sets of the DRX configurations correspond to the same or different physical resource usage attributes, and the physical resource usage attributes and the number of carriers in a group of carriers corresponding to each of the N sets of DRX configurations Or any one of the N sets of DRX configurations; wherein the physical resource usage attribute includes at least one of the following: a resource period, a transmission time interval, a subcarrier spacing, and an encoding manner.
  • the M group carriers in the N groups of carriers are the activated carriers, and the network device sends the physical downlink control channel to the terminal device through the M group carrier according to the M sets of DRX configurations, where M is a positive integer equal to or less than N.
  • the network device establishes a correspondence relationship with different carriers for different DRX configurations for multiple sets of DRX configurations, so that each DRX configuration corresponds to a group of carriers.
  • the terminal device whether there is data to be received or scheduled to be transmitted in a certain transmission time unit on the carrier used by it depends on whether it can detect the downlink control message containing the scheduling information.
  • the downlink control message is carried via a physical downlink control channel.
  • the carrier is used by the terminal device to monitor the physical downlink control channel on the carrier corresponding to multiple sets of DRX configurations when the DRX state of the terminal device is the active state, and the DRX state is activated. Multiple sets of DRX configurations are superimposed together. The case where the DRX state is the active state will be described in detail later.
  • the network device sends N sets of DRX configurations to the terminal device.
  • the terminal device may indicate to the access network device whether it supports multiple sets of DRX configurations, so that the network device may configure multiple sets of DRX according to whether the UE supports multiple
  • the gain that can be brought by the DRX configuration (such as energy saving, etc.) determines whether to configure and send multiple sets of DRX configurations to the terminal device. How the network device is determined depends on the network device implementation or based on a certain algorithm.
  • the terminal device receives N sets of DRX configurations sent by the network device.
  • the terminal device receives the N sets of DRX configurations for storage. Based on the foregoing description, each set of DRX configurations received by the terminal device corresponds to a group of carriers.
  • Each DRX configuration includes at least one of the following parameters: activation timer, DRX cycle period, DRX inactivity timer, DRX retransmission timer, and DRX start position offset value.
  • the DRX cycle period of different DRX configurations is a different integer multiple of the minimum DRX cycle period.
  • the minimum DRX cycle period may be preset for the network device according to the service requirements of the terminal device in the 5G application environment, and may also be fixed by a corresponding standard protocol.
  • multiple DRX start position offset values of the N sets of DRX configurations are the same.
  • timers have the same or different parameter values in each DRX configuration.
  • different timers have the same or different parameter values in each DRX configuration.
  • the terminal device is in the active state when the DRX state is the active state, where the M group carriers in the N groups of carriers are the activated carriers, and the terminal device monitors the physical downlink control channel on the specified carrier according to the M sets of DRX configurations corresponding to the M group carriers.
  • the specified carrier is a partial group or all groups of the M group carriers, and M is a positive integer equal to or less than N.
  • the premise that the terminal device monitors the physical downlink control channel on the M carrier corresponding to the activated M sets of DRX configurations is that the DRX state of the terminal device is an active state.
  • the DRX state includes an active state, or an inactive state.
  • the active state is a state in which the N sets of DRX configurations are superimposed together, and specifically, the DRX state of the terminal device is considered to be superimposed and used in the DRX configuration corresponding to all activated carriers. It is active. On the other hand, when all the timers in the DRX configuration corresponding to all activated carriers are in the non-operation state, the DRX state of the terminal device is considered to be inactive.
  • Figure 5 illustrates a process in which a terminal device simultaneously superimposes the use of three sets of activated DRX configurations.
  • the DRX cycle period of the first set of DRX configurations is T, and the operation period of the activation timer is represented by F1.
  • the DRX cycle of the second DRX configuration is 2T, and the running period of the activation timer is represented by F2.
  • the DRX cycle of the third DRX configuration is 3T, and the running period of the activation timer is represented by F3.
  • "ON" is used in FIG. 5 to indicate the duration in which the terminal device is in the active state.
  • the manner in which the terminal device determines the DRX state of the terminal device is also applicable.
  • the terminal device monitors the physical downlink control channel on the specified carrier according to the M sets of DRX configurations corresponding to the M group carriers, and the M set is in the inactive timer running of any one of the M sets of DRX configurations.
  • the physical downlink control channel is monitored on the corresponding carrier of any one of the DRX configurations.
  • the terminal device successfully demodulates the first transmission data belonging to the terminal device, the other inactive timers of the DRX configuration are started or restarted.
  • the terminal device when the terminal device monitors the physical downlink control channel on the carrier corresponding to the activated multiple sets of DRX configurations, optionally, the terminal device determines the maximum activation timer and the minimum DRX cycle period from multiple sets of DRX configurations, and then The terminal device uses the corresponding carrier to monitor whether there is data in the physical downlink control channel during the running time period of the maximum activation timer and the minimum DRX cycle period, and monitors the physical downlink control channel during the operation of any DRX-configured DRX inactivity timer.
  • the first transmission data belonging to the terminal device is successfully demodulated in the downlink control channel, and the DRX inactivity timer configured in other DRXs is started or restarted.
  • the inactive timer corresponding to any one of the DRX configurations may be started or restarted.
  • the terminal device may select a maximum activation timer and a minimum DRX cycle period by comparing multiple sets of DRX configurations.
  • the terminal device can also know the maximum activation timer and the minimum DRX cycle period by other means.
  • the terminal device receives multiple sets of DRX configurations, and when the DRX state of the terminal device is the active state ON, the physical downlink control channel is monitored on the carrier corresponding to the multiple sets of DRX configurations that are enabled by the overlay, thereby satisfying the terminal device.
  • the terminal device can reduce the unnecessary physical downlink control channel monitoring in the process of monitoring the physical downlink control channel by using multiple sets of DRX configurations, thereby reducing the energy consumption of the terminal device.
  • the network device configures multiple sets of DRX configurations based on the first attribute, and each set of DRX configurations in the multiple sets of DRX configurations has the same or similar attribute values of the first attribute.
  • the first attribute can be a business related attribute.
  • the network device may further perform DRX configuration according to the second attribute, where the second attribute is a specific attribute other than the service attribute, such as an actual network condition, or a capability of the wireless network device. No specific limitation is given in the present application.
  • the new air interface of the new wireless communication system includes high reliability and low delay.
  • Ultra-reliable and Low Latency Communications (URLLC), Enhanced Mobile Broadband (eMBB), and Massive Machine Type Communications (mMTC) services are examples of ultra-reliable and Low Latency Communications (URLLC), Enhanced Mobile Broadband (eMBB), and Massive Machine Type Communications (mMTC) services.
  • URLLC requires more delay and reliability, and requires a transmission delay of less than 0.5ms, while eMBB and mMTC have relatively loose requirements for transmission delay.
  • the network device can configure the DRX according to the requirements of the transmission delay requirement. For URLLC, you can configure a shorter DRX cycle, longer activation duration, and so on.
  • the network device can configure DRX and a large number of carrier correspondences for high data rate requirements.
  • the network device may also determine more priorities according to the service attributes to determine to obtain multiple DRX configurations.
  • the service attribute may also be a combination of a plurality of different requirements, which is not limited in this application.
  • the first attribute may also be an identifier of a physical resource attribute or a physical resource attribute, the numerology profile, which refers to a physical layer resource usage attribute of the network device. It should be noted that, as an example, in a 5G application environment, for a single numerology profile, the maximum number of subcarriers per new air interface carrier may be 3300 or 6600.
  • the network device When the first attribute is a physical layer resource usage attribute, the network device establishes a corresponding relationship between the DRX configuration and the numerology profile, determines a numerology profile for each DRX configuration, and sets a multiple DRX configuration corresponding to the numerology profile. Send to the terminal device.
  • the numerology profile is used to limit the number of carriers or other carrier attributes in a group of carriers corresponding to each set of DRX configurations.
  • the numerology profile herein may include a resource period (eg, a period of 1 ms, 2 ms, 5 ms, 1 TTI length, 2 TTI lengths, etc.), and a transmission time interval (TTI) length (eg, 1 ms TTI, 0.5msTTI, TTI length of 2 OFDM symbols, TTI length of 1 OFDM symbol, etc.), subcarrier spacing (such as 15KHz, 60KHz, etc.), coding mode (such as using Turbo code, or low-density parity check (low-density) Parity-check (LDPC) code, or polarization Polar code, etc.), multiple access methods (such as OFDM, code division multiple access (CDMA), etc.), the number of carriers occupied by the frequency domain (such as 12) Whether subcarriers, 15 subcarriers, etc.), whether to perform repeated transmission in the frequency domain (if it also includes the number of repeated transmissions in the frequency domain), whether to perform at least one of time domain repeated transmission
  • TTI
  • the network device can also establish a correspondence between each DRX configuration and a set of numerology profiles.
  • One set of numerology profiles includes one or more numerology profiles.
  • FIG. 6 shows a process of three sets of DRX configurations corresponding to a numerology profile that are simultaneously superimposed by the terminal device.
  • the first set of DRX configurations corresponds to numerology1
  • the DRX cycle period is T
  • the running period of the activation timer is represented by F1.
  • the second set of DRX configuration corresponds to numerology2, and its DRX cycle period is 2T
  • the running period of the activation timer is represented by F2.
  • the third set of DRX configuration corresponds to numerology3, and its DRX cycle period is 3T
  • the running period of its activation timer is represented by F3.
  • "ON" is used in FIG. 6 to indicate the duration in which the terminal device is in the active state.
  • FIG. 7 is a schematic flowchart diagram of another DRX configuration method disclosed in the embodiment of the present application. Based on the DRX configuration method disclosed in the foregoing application, the DRX configuration method includes:
  • the network device sends a control message to the terminal device.
  • control message includes indication information for adjusting multiple sets of DRX configurations.
  • control message may be an RRC reconfiguration message.
  • the control message may also be a preset downlink control command.
  • the control message can also be a DRX media intervention control command.
  • the terminal device when the control message received by the terminal device is an RRC reconfiguration message, the terminal device needs to adjust one or N sets of DRX configurations based on the RRC reconfiguration message when the activation condition is met.
  • the activation condition that the terminal device satisfies is that the terminal device currently enables the use of a set or N sets of DRXs that are not suitable for the service quality of the transmitted service or the new service to be sent.
  • the downlink control command has a correspondence with a set of DRX configurations, and the set of DRX configurations includes one set or N sets of DRX configurations.
  • each set of DRX configurations corresponds to one type of DRX media intervention control command indication, and each type of DRX media intervention control command indicates a corresponding one.
  • Logical channel identity LCID
  • the terminal device simultaneously superimposes the requirement of using the N sets of DRX configurations, and in the existing LTE, the long-period DRX and DRX commands in the downlink logical channel identifier are used (drx Command) performs different values to obtain a new logical channel identifier, which is used to indicate DRX media intervention control commands for different DRX configurations.
  • drx Command the long-period DRX and DRX commands in the downlink logical channel identifier.
  • S702 The terminal device receives a control message sent by the network device.
  • the terminal device adjusts multiple sets of DRX configurations by using the indication information of the multiple sets of DRX configurations included in the control message based on the control message.
  • the terminal device when the terminal device simultaneously uses multiple sets of DRX configurations to monitor the physical downlink control channel, if the terminal device receives the control message sent by the network device, the terminal device uses the indication information of adjusting multiple sets of DRX configurations. One or more sets of DRX configurations in the DRX configuration are adjusted by activation or deactivation.
  • the terminal device shown in FIG. 5 simultaneously superimposes the process of using three sets of DRX configurations.
  • the terminal receives the control message sent by the network device, if the control message includes the indication information of adjusting multiple sets of DRX configurations:
  • the terminal device deactivates the second set of DRX configurations being used, and the terminal device deactivates the second DRX configuration based on the control message, and stops using the second set of DRX configurations.
  • the terminal device receives the control message sent by the network device, and may adjust one set or some of the multiple sets of DRX configurations used for simultaneous superimposition based on the indication information of the multiple sets of DRX configurations included in the control message. The set, even the multiple sets of DRX configurations currently being superimposed for simultaneous activation or deactivation adjustments.
  • the terminal device dynamically adjusts multiple sets of DRX based on control messages sent by the network device, and can quickly complete adjustment of multiple sets of DRX configurations used for superposition when the service quality requirements are improved or new services are sent, and further satisfy the terminal device sending. Business service quality requirements for different businesses. Similarly, the purpose of reducing the energy consumption of the terminal device can also be achieved.
  • FIG. 8 is a schematic flowchart diagram of another DRX configuration method disclosed in the embodiment of the present application. Based on the DRX configuration method disclosed in the foregoing embodiment of the present application, the DRX configuration method includes:
  • S801 The terminal device sends an adjustment request message to the network device.
  • the adjustment request message includes DRX configuration indication information that the terminal device requests to adjust.
  • the terminal device reports the DRX configuration that it wants to adjust or replace according to the current service requirement.
  • S803 The network device sends a control message to the terminal device according to the adjustment request message.
  • control message is a response message of the adjustment request message, and includes indication information of the adjusted multiple sets of DRX configurations corresponding to the adjustment request message.
  • the control message in S803 is the same as the content defined by the control message described in S702 shown in FIG. 7, and can be referred to, and will not be described again here.
  • S804 The terminal device receives a control message sent by the network device.
  • the terminal device adjusts multiple sets of DRX configurations by using the indication information of the multiple sets of DRX configurations included in the control message based on the control message.
  • the terminal device when the terminal device simultaneously uses the multiple sets of DRX configurations to monitor the physical downlink control channel, if the terminal device receives the control message sent by the network device in response to the adjustment request message, the indication of adjusting multiple sets of DRX configurations is utilized. Information is adjusted for one or more sets of DRX configurations in multiple DRX configurations, either by activation or deactivation.
  • the terminal device continuously receives multiple sets of DRX configurations sent by the network device, and when a plurality of sets of DRX configurations are superimposed at the same time (including at least two sets of DRX configurations are used in combination) to monitor the physical downlink control channel, when a new service arrives at the terminal, If the device or the currently running service meets the new service quality requirement, the terminal device sends an adjustment request message to the network device, and the network device responds to the adjustment request message, and sends a control message to the terminal device, where the terminal device uses the control message, One or more sets of multiple DRX configurations currently being superimposed for activation or deactivation, or even multiple sets of DRX configurations over the current overlay are overwritten with new sets of DRX configurations, and multiple sets of newly scheduled ones are superimposed.
  • the DRX configuration listens to the physical downlink control channel.
  • the terminal device reports the adjustment request message to the network device based on the service requirement, and based on the control message sent by the network device in response to the adjustment request message, a set of multiple DRX configurations used for simultaneous superposition Or a few sets, or even multiple sets of DRX configurations currently superimposed for activation or deactivation.
  • the adjustment of multiple sets of DRX configurations used for superposition can be quickly completed when the service quality requirements of the service are improved or new services are sent, and the service quality requirements of the terminal devices for sending different services are further satisfied.
  • the purpose of reducing the energy consumption of the terminal device can also be achieved.
  • the embodiment of the present application further discloses a terminal device and a network device that perform the DRX configuration method.
  • the terminal device may be the terminal device shown in FIG. 3, which may be the network device shown in FIG.
  • FIG. 9 it is a schematic structural diagram of a network device 900 according to an embodiment of the present application.
  • the network device 900 includes:
  • the processing unit 901 is configured to configure N sets of discontinuous receiving DRX configurations, where the N sets of DRX configurations respectively correspond to N sets of carriers, N is an integer greater than or equal to 2, and the M sets of carriers in the N sets of carriers are activated. Carrier.
  • the sending unit 902 is configured to send the N sets of DRX configurations to the terminal device, and send a physical downlink control channel to the terminal device by using a specified carrier according to the M sets of DRX configurations, where the designated carrier is an M group carrier In some or all of the groups, M is a positive integer less than or equal to N.
  • the mapping between the N sets of DRX configurations and the carriers is: the N sets of DRX configurations respectively correspond to N sets of carriers, that is, each set of DRX configurations corresponds to a set of carriers.
  • the DRX state of the terminal device is the active state
  • the M group carriers in the N groups of carriers are activated carriers, and the terminal device monitors the physical downlink control channel on the M group carriers according to the M sets of DRX configurations corresponding to the M group carriers.
  • M is a positive integer less than or equal to N.
  • the processing unit 901 is configured to configure each DRX configuration including at least one of the following parameters: an activation timer, a DRX cycle, a DRX inactivity timer, and a DRX. Retransmission timer and DRX start position offset value.
  • the processing unit 901 is configured to configure a DRX cycle period of different DRX configurations to be an integer multiple of a minimum DRX cycle period; or, the multiple DRX start position offset values used to configure the N sets of DRX configurations are the same; or
  • the configuration activation timer has different parameter values from the DRX inactivity timer and the DRX retransmission timer.
  • the activation timer may be configured to have the same parameter value as the DRX inactivity timer and the DRX retransmission timer.
  • the processing unit 901 is further configured to determine, according to the first attribute, multiple sets of DRX configurations, each set of DRX configurations in the N sets of DRX configurations having the same or similar attribute values of the first attribute.
  • the first attribute can be a business related attribute.
  • the first attribute may also be a numerology profile, which is a physical layer resource usage attribute of the network device. The specific content of the first attribute is referred to in the foregoing DRX method in the embodiment of the present application, and details are not described herein.
  • the processing unit 901 may further perform DRX configuration according to the second attribute, where the second attribute is a specific attribute other than the service attribute, such as an actual network condition, or a capability of the wireless network device. No specific limitation is given in the present application.
  • the processing unit 901 can also generate a control message.
  • the control message may be an RRC reconfiguration message.
  • the control message may also be a preset downlink control command.
  • the control message can also be a DRX media intervention control command.
  • the downlink control command has a correspondence with a set of DRX configurations, where the one set of DRX configurations includes one or more sets of DRX configurations.
  • the sending unit 902 sends the control message to the terminal device.
  • the network device 900 includes a receiving unit, where the receiving unit is configured to receive an adjustment request message reported by the terminal device, where the adjustment request message includes DRX configuration indication information that the terminal device requests to adjust.
  • the processing unit 901 is configured to respond to the adjustment request message and generate a corresponding control message.
  • the sending unit 902 is configured to send the control message to the terminal device.
  • the network device disclosed in the embodiment of the present application may also be directly implemented by hardware, a memory executed by a processor, or a combination of the two, in combination with the DRX configuration method disclosed in the embodiment of the present application.
  • the network device 1000 includes a processor 1001 and a memory 1002.
  • the network device 1000 further includes a network interface 1003.
  • the processor 1001 is coupled to the memory 1002 via a bus.
  • the processor 1002 is coupled to the network interface 1003 via a bus.
  • the processor 1001 may be a central processing unit (CPU), a network processor (NP), an application-specific integrated circuit (ASIC), or a programmable logic device (PLD). ).
  • the PLD may be a complex programmable logic device (CPLD), a field-programmable gate array (FPGA) or a general array logic (GAL).
  • the memory 1002 may specifically be a content-addressable memory (CAM) or a random-access memory (RAM).
  • CAM can be a tri-state content addressing memory (TCAM).
  • the network interface 1003 can be a wired interface, such as a fiber distributed data interface (FDDI) or an ethernet interface.
  • FDDI fiber distributed data interface
  • ethernet interface an ethernet interface
  • the memory 1002 can also be integrated in the processor 1001. If the memory 1002 and the processor 1001 are mutually independent devices, the memory 1002 is coupled to the processor 1001, for example, the memory 1002 and the processor 1001 can communicate over a bus.
  • the network interface 1003 and the processor 1001 can communicate via a bus, and the network interface 1003 can also be directly connected to the processor 1001.
  • the memory 1002 is configured to store an operating program, code or instruction that processes the DRX configuration.
  • the memory 1002 includes an operating system and an application for storing operating programs, codes, or instructions that process the DRX configuration.
  • Figure 10 only shows a simplified design of the network device.
  • the network device may include any number of interfaces, processors, memories, etc., and all the network devices that can implement the embodiments of the present application are within the protection scope of the embodiments of the present application.
  • the embodiment of the present application further discloses a terminal device that performs a DRX configuration method.
  • the terminal device communicates with the network device shown in FIG. 9 of the embodiment of the present application by using a wireless signal.
  • FIG. 11 it is a schematic structural diagram of a terminal device 1100 according to an embodiment of the present application.
  • the terminal device 1100 includes:
  • the receiving unit 1101 is configured to receive N sets of discontinuous receiving DRX configurations sent by the network device, where the N sets of DRX configurations respectively correspond to N sets of carriers, and N is an integer greater than or equal to 2;
  • the receiving unit 1101 receives multiple sets of DRX configurations sent by the network device, where the DRX configuration includes at least one of the following parameters: the activation timer, the DRX cycle period, and the DRX inactivity timing. , DRX retransmission timer and DRX start position offset value.
  • the processing unit 1102 is configured to: when the DRX state of the terminal device is an active state, the M group carriers in the N groups of carriers are activated carriers, and the processing unit is configured according to the M sets of DRXs corresponding to the M group carriers.
  • the physical downlink control channel is monitored on the designated carrier, where the designated carrier is a partial group or a total group of the M group carriers, and M is a positive integer equal to or less than N.
  • the processing unit 1102 is further configured to: determine a DRX state of the terminal device 1100, where the DRX state includes an active state or an inactive state; wherein, the activation timer, the DRX inactivity timer, and the DRX weight If any one of the transmission timers is in the running state, it is determined that the DRX state of the terminal device 1100 is the active state.
  • the processing unit 1102 uses the M sets of DRX configurations in a superposition when the DRX state of the terminal device is an active state.
  • the processing unit 1102 monitors the physical downlink control channel on the carrier corresponding to the multiple sets of DRX configurations, specifically, the maximum activation timer and the minimum DRX cycle period are determined from the M sets of DRX configurations, and the maximum activation timer is used.
  • the downlink data is monitored on the corresponding carrier during the operation of the DRX inactive timer of any DRX configuration, and the DRX inactive timer of the other DRX configuration is restarted. .
  • the receiving unit 1101 is further configured to receive a control message that is sent by the network device.
  • the control message includes indication information for adjusting multiple sets of DRX configurations.
  • control message may be an RRC reconfiguration message.
  • the control message may also be a preset downlink control command.
  • the control message can also be a DRX media intervention control command.
  • the processing unit 1102 is configured to adjust multiple sets of DRX configurations by using the indication information of the adjusted multiple sets of DRX configurations included in the control message based on the control message.
  • the processing unit 1102 in the terminal device 1100 is further configured to generate an adjustment request message according to the current service requirement, and use the control message sent by the network device to use the indication of adjusting multiple sets of DRX configurations included in the control message.
  • Information is adjusted for multiple sets of discontinuous reception DRX configurations.
  • the adjustment request message includes DRX configuration indication information that the terminal device requests adjustment.
  • the sending unit included in the terminal device 1100 sends the adjustment request message to the network device.
  • the receiving unit 1101 is further configured to receive a control message that is sent by the network device in response to the adjustment request message.
  • the terminal device 1200 includes a processor 1201 and a memory 1202.
  • the terminal device 1200 further includes a network interface 1203.
  • the processor 1201 is coupled to the memory 1202 via a bus.
  • the processor 1202 is coupled to the network interface 1203 via a bus.
  • the processor 1201 may be a central processing unit (CPU), a network processor (NP), an application-specific integrated circuit (ASIC), or a programmable logic device (PLD). ).
  • the above PLD may be a complex programmable logic device (CPLD), a field-programmable gate array (FPGA) or a general array logic (GAL).
  • the memory 1202 may specifically be a content-addressable memory (CAM) or a random-access memory (RAM).
  • CAM can be a tri-state content addressing memory (TCAM).
  • the network interface 1203 can be a wired interface or an Ethernet interface.
  • the memory 1202 can also be integrated in the processor 1201. If the memory 1202 and the processor 1201 are mutually independent devices, the memory 1202 is coupled to the processor 1201, for example, the memory 1202 and the processor 1201 can communicate over a bus. Network interface 1203 and processor 1201 may communicate over a bus, and network interface 1203 may also be directly coupled to processor 1201.
  • the memory 1202 is configured to store an operating program, code or instruction that processes the DRX configuration.
  • the memory 1202 includes an operating system and an application for storing operating programs, code or instructions that process the DRX configuration.
  • Figure 12 only shows a simplified design of the terminal device.
  • the terminal device may include any number of interfaces, processors, memories, etc., and all the terminal devices that can implement the embodiments of the present application are within the protection scope of the embodiments of the present application.
  • FIG. 13 is a communication system 1300 according to an embodiment of the present disclosure, including a network device 1301 and a terminal device 1302.
  • the network device 1301 and the terminal device 1302 communicate by using a wireless signal.
  • the network device 1301 is configured to configure multiple sets of DRX configurations, and send the same to the terminal device 1302, and send an adjustment request message generation control message reported by the active or responding terminal device 1302 to the terminal device 1302.
  • the terminal device 1302 is configured to receive multiple sets of DRX configurations sent by the network device 1301, and monitor the physical downlink control channel on the carrier corresponding to the multiple sets of DRX configurations that are enabled/activated when the DRX state is the active state, and actively according to the network device 1301.
  • the issued control message adjusts the multiple sets of DRX configurations, or sends an adjustment request message to the network device 1301 according to the current service requirement, and adjusts multiple sets of DRX configurations based on the control message delivered by the network device 1301 in response to the adjustment request message.
  • the number of the network device 1301 and the terminal device 1302 is not limited.
  • the network device 1301 may be specifically the network device disclosed in FIG. 9 and FIG. 10 for performing the corresponding operations performed by the network device in FIG. 4, FIG. 7 and FIG. 8 of the embodiment of the present application.
  • the terminal device 1302 may be specifically the terminal device disclosed in FIG. 11 and FIG. 12, and is configured to perform corresponding operations performed by the terminal device in FIG. 4, FIG. 7 and FIG. 8 of the embodiment of the present application.
  • Computer readable media includes both computer storage media and communication media including any medium that facilitates transfer of a computer program from one location to another.
  • a storage medium may be any available media that can be accessed by a general purpose or special purpose computer.

Abstract

本申请提供了一种DRX配置方法、终端设备、网络设备和通信系统,该DRX配置方法包括:终端设备接收网络设备发送的N套非连续接收DRX配置,N套DRX配置分别对应N组载波;终端设备的DRX状态为激活态时,N组载波中的M组载波为被激活的载波,终端设备根据所述M组载波对应的M套DRX配置在指定的载波上监听物理下行控制信道。通过上述DRX配置方式,终端设备通过同时叠加使用多套DRX配置,从而满足终端设备发送不同业务的业务服务质量需求。同时,终端设备通过同时叠加使用多套DRX配置,在监听物理下行控制信道的过程中,也可以减少不必要的物理下行控制信道监听,从而达到降低终端设备能耗的目的。

Description

DRX配置方法、终端设备、网络设备和通信系统
本申请要求于2017年06月16日提交中国专利局、申请号为201710459796.0、申请名称为“DRX配置方法、终端设备、网络设备和通信系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及移动通信技术领域,尤其是,涉及一种非连续接收(discontinuous reception,DRX)配置方法、终端设备、网络设备和通信系统。
背景技术
随着4G(第四代移动通信)技术进入规模商用阶段,面向未来的,业务需求呈现更多样化的5G(第五代移动通信)技术也随之成为研究热点。在现有的4G技术中,DRX是用户终端(user equipment,UE)仅在必要的时间打开接收机进入激活态,以接收下行数据和信令,而在其他时间关闭接收机进入休眠态,停止接收下行数据和信令的一种节省用户终端电力消耗的工作模式。DRX分为空闲态DRX和连接态DRX。其中,空闲态DRX由于没有RRC连接和UE专用承载,所以是通过侦听寻呼信道实现的;连接态DRX是指用户终端处于无线资源控制(radio resource control,RRC)连接态时的DRX特性,通过监听物理下行控制信道(physical downlink control channel,PDCCH)来实现。
目前,在现有的长期演进(long term evolution,LTE)系统中仅有两套DRX配置,即短周期DRX(short drx)和长周期DRX(英文:long drx),且每一时刻只能激活其中一套DRX配置。在现有的4G应用环境,DRX常用的应用场景为对时延不敏感、少数时刻都有数据需要接收和发送的业务场景,例如浏览网页、邮件收发等;或者为产生稀少小包的业务场景,例如Presence业务场景;或者为周期性连续小包的业务场景,如网络电话(voice over internet protocol,VoIP)业务场景。因此,在现有的DRX工作机制中只激活一套DRX配置也可以满足用户终端的多种业务需求。
但是,当现有的DRX工作机制面向5G环境时,一套DRX配置则无法满足具有更多样化业务需求的5G应用环境。
发明内容
有鉴于此,本申请实施例提供一种DRX配置方法、终端设备、网络设备和通信系统,用于解决现有技术中的DRX工作机制无法满足具有多样化业务需求的5G应用环境的问题。
本申请实施例提供如下技术方案:
本申请实施例的第一方面提供了一种DRX配置方法,所述方法包括:
终端设备接收网络设备发送的N套非连续接收DRX配置,所述N套DRX配置分别对 应N组载波,N为大于等于2的整数;
所述终端设备的DRX状态为激活态时,所述N组载波中的M组载波为被激活的载波,所述终端设备根据所述M组载波对应的M套DRX配置在指定的载波上监听物理下行控制信道,所述指定的载波为所述M组载波中的部分组或全部组,M为小于等于N的正整数。
上述方案,终端设备基于网络设备发送的多套DRX配置,在在终端设备的DRX状态为激活态时,在启用/激活的多套DRX配置对应的载波上监听物理下行控制信道,从而满足终端设备发送不同业务的业务服务质量需求。同时,终端设备通过同时叠加使用多套DRX配置,在监听物理下行控制信道的过程中,也可以减少不必要的物理下行控制信道监听,从而达到降低终端设备能耗的目的。
在一种可能的设计中,所述终端设备的DRX状态为激活态时,所述M套DRX配置是叠加使用的。
在一种可能的设计中,不同DRX配置中的DRX循环周期为最小DRX循环周期的不同整数倍,所述最小DRX循环周期为预先设置;和/或
所述N套DRX配置的多个DRX起始位置偏移值相同;和/或
所述每套DRX配置中的激活定时器与所述DRX非激活定时器以及所述DRX重传定时器具有不同的参数值。
在一种可能的设计中,一套DRX配置中包括定时器,所述定时器包括激活定时器、DRX非激活定时器、DRX重传定时器和DRX上行重传定时器中的至少一个,所述方法还包括:
所述终端设备的DRX状态包括所述激活态或非激活状态;
其中,所述M套DRX配置中的任一套包括的定时器中的任意一个处于运行状态,则所述终端设备的DRX状态为所述激活态。
上述方案,终端设备的DRX状态为激活态,该激活态是多套DRX配置叠加到一起的状态。
在一种可能的设计中,所述每套DRX配置中进行配置的参数至少包括以下一项:激活定时器,DRX循环周期,DRX非激活定时器,DRX重传定时器,DRX上行重传定时器和DRX起始位置偏移值。
在一种可能的设计中,所述终端设备根据所述M组载波对应的M套DRX配置在所述M组载波上监听物理下行控制信道,包括:
在所述M套DRX配置中的任一套的非激活定时器运行期间,在所述M套DRX配置中的任一套对应的载波上监听到物理下行控制信道中有首传数据,启动或重启其他套DRX配置的非激活定时器,或者,启动或重启所述M套DRX配置中任一套DRX配置对应的非激活定时器。
上述方案,终端设备在任一套DRX配置的非激活定时器运行期间在对应的载波上监听物理下行控制信道中成功解调出属于所述终端设备的首传数据时,启动或重启其他套DRX配置的非激活定时器,或者自身对应的非激活定时器,可以避免对物理下行 控制信道不必要的监听,从而节省终端设备的能耗。
在一种可能的设计中,所述方法还包括:
所述N套所述DRX配置对应相同或不同的物理资源使用属性,所述物理资源使用属性与所述N套DRX配置中的每一套所对应的一组载波中的载波个数或N套DRX配置中的任一定时器相关;
其中,所述物理资源使用属性至少包括以下一项:资源周期,传输时间间隔,子载波间隔和编码方式。
在一种可能的设计中,所述终端设备接收网络设备发送的N套非连续接收DRX配置之前,还包括:
所述终端设备向接入网设备发送指示信息,所述指示信息用于指示所述终端设备是否支持接收多套非连续接收DRX配置。
在一种可能的设计中,所述方法还包括:
所述终端设备接收所述网络设备发送的控制消息,所述控制消息包括调整N套DRX配置的指示信息;
所述终端设备基于所述控制消息,利用所述调整多套DRX配置的指示信息调整N套所述DRX配置。
上述方案中,终端设备在接收到网络设备主动发送的控制消息后,基于该控制消息对多套DRX配置进行调整,能够快速完成对叠加使用的多套DRX配置的调整,更进一步的满足终端设备发送不同业务的业务服务质量需求。同样,也能够达到降低终端设备能耗的目的。
在一种可能的设计中,在所述终端设备接收所述网络设备发送的控制指示之前,所述方法还包括:
所述终端设备向所述网络设备发送调整请求消息,所述调整请求消息包括所述终端设备请求调整的DRX配置指示信息;
所述终端设备接收所述网络设备发送的控制消息,所述控制消息为所述网络设备响应于所述调整请求消息而发送的。
上述方案中,终端设备基于业务需求向网络设备上报调整请求消息,并基于网络设备响应该调整请求消息而下发的控制消息,对同时叠加使用的多套DRX配置中的某一套或某几套,甚至当前同时叠加使用的多套DRX配置进行激活或去激活调整。可以在业务服务质量需求提高或者发送新业务的时候,快速完成对叠加使用的多套DRX配置的调整,更进一步的满足终端设备发送不同业务的业务服务质量需求。同样,也能够达到降低终端设备能耗的目的。
在一种可能的设计中,所述终端设备接收网络设备发送的控制消息,其中,所述控制消息为无线资源控制RRC重配置消息,或者,所述控制消息为非连续接收媒体接入控制命令;或者,所述控制消息为预先设置的下行控制命令,所述下行控制命令与一组所述DRX配置之间存在对应关系;所述一组DRX配置包括一个或多个DRX配置。
本申请实施例的第二方面提供了一种DRX配置方法,所述方法包括:
网络设备配置N套非连续接收DRX配置,所述N套DRX配置分别对应N组载波,N为大于等于2的整数;
所述网络设备向所述终端设备发送所述N套DRX配置;
所述N组载波中的M组载波为被激活的载波,所述网络设备根据所述M套DRX配置通过指定的载波向所述终端设备发送物理下行控制信道,所述指定的载波为M组载波中的部分组或全部组,M为小于等于N的正整数。
上述方案,网络设备对多套DRX配置中的参数进行配置,并将得到的多套DRX配置发送给终端设备,使终端设备在DRX状态为激活态时,在激活/启用的多套所述DRX配置对应的载波上监听物理下行控制信道;从而满足终端设备发送不同业务的业务服务质量需求。同时,终端设备通过同时叠加使用多套DRX配置,在监听物理下行控制信道的过程中,也可以减少不必要的物理下行控制信道监听,从而达到降低终端设备能耗的目的。
在一种可能的设计中,不同DRX配置中的DRX循环周期为最小DRX循环周期的不同整数倍,所述最小DRX循环周期是预设设置;和/或
所述N套DRX配置的多个DRX起始位置偏移值相同;和/或
所述每套DRX配置中的激活定时器与DRX非激活定时器以及DRX重传定时器具有不同的参数值。
在一种可能的设计中,一套DRX配置中包括定时器,所述定时器包括激活定时器、DRX非激活定时器、DRX重传定时器和DRX上行重传定时器中的至少一个,所述方法还包括:
所述网络设备根据所述M套DRX配置中的任一套包括的定时器中的任意一个处于运行状态,确定所述终端设备的DRX状态为所述激活态。
在一种可能的设计中,所述每套DRX配置中进行配置的参数至少包括以下一项:激活定时器,DRX循环周期,DRX非激活定时器,DRX重传定时器和DRX起始位置偏移值。
在一种可能的设计中,所述网络设备在所述M套DRX配置中的任一套的非激活定时器运行期间,在所述M套DRX配置中的任一套对应的载波上发送下行数据。
在一种可能的设计中,其特征在于,所述方法还包括:
所述N套所述DRX配置对应相同或不同的物理资源使用属性,所述物理资源使用属性与所述N套DRX配置中的每一套所对应的一组载波中的载波个数或N套DRX配置中的任一定时器相关;
其中,所述物理资源使用属性至少包括以下一项:资源周期,传输时间间隔,子载波间隔和编码方式。
在一种可能的设计中,所述方法还包括:所述网络设备向所述终端设备发送控制消息,所述控制消息包括调整多套DRX配置的指示信息,使所述终端设备利用所述调整多套DRX配置的指示信息调整多套所述DRX配置。
上述方案中,网络设备主动向终端设备发送控制消息,使终端设备基于该控制消 息对多套DRX配置进行调整,能够快速完成对叠加使用的多套DRX配置的调整,更进一步的满足终端设备发送不同业务的业务服务质量需求。同样,也能够达到降低终端设备能耗的目的。
在一种可能的设计中,所述方法还包括:所述网络设备接收所述终端设备发送的调整请求消息,所述调整请求消息包括所述终端设备请求调整的DRX配置指示信息;
所述网络设备响应所述调整请求消息,并生成对应的控制消息,发送给所述终端设备。
上述方案中,网络设备接收终端设备基于业务需求上报的调整请求消息,并响应该调整请求消息,生成对应的控制消息下发给终端设备,使终端设备对同时叠加使用的多套DRX配置中的某一套或某几套,甚至当前同时叠加使用的多套DRX配置进行激活或去激活调整。可以在业务服务质量需求提高或者发送新业务的时候,快速完成对叠加使用的多套DRX配置的调整,更进一步的满足终端设备发送不同业务的业务服务质量需求。同样,也能够达到降低终端设备能耗的目的。
在一种可能的设计中,所述网络设备发送给所述终端设备的控制消息,其中,所述控制消息为无线资源控制RRC重配置消息;或者,所述控制消息非连续接收媒体接入控制命令;或者,所述控制消息为预先设置的下行控制命令,所述下行控制命令与一组所述DRX配置之间存在对应关系;所述一组非连续接收DRX配置包括一个或多个非连续接收DRX配置。
本申请实施例的第三方面提供了一种终端设备,所述终端设备包括:
接收单元,用于接收网络设备发送的N套非连续接收DRX配置,所述N套DRX配置分别对应N组载波,N为大于等于2的整数;
处理单元,用于所述终端设备的DRX状态为激活态时,所述N组载波中的M组载波为被激活的载波,所述处理单元根据所述M组载波对应的M套DRX配置在指定的载波上监听物理下行控制信道,所述指定的载波为所述M组载波中的部分组或全部组,M为小于等于N的正整数。
在一种可能的设计中,所述处理单元,用于所述终端设备的DRX状态为激活态时,叠加使用所述M套DRX配置。
在一种可能的设计中,所述接收单元,用于接收网络设备发送的N套非连续接收DRX配置,不同DRX配置中的DRX循环周期为最小DRX循环周期的不同整数倍,所述最小DRX循环周期为预先设置;和/或,所述N套DRX配置的多个DRX起始位置偏移值相同;和/或,所述每套DRX配置中的激活定时器与所述DRX非激活定时器以及所述DRX重传定时器具有不同的参数值。
在一种可能的设计中,所述接收单元,用于接收网络设备发送的N套非连续接收DRX配置,一套DRX配置中包括定时器,所述定时器包括激活定时器、DRX非激活定时器、DRX重传定时器和DRX上行重传定时器中的至少一个;
相应地,所述处理单元,还用于确定所述终端设备的DRX状态,所述终端设备的DRX状态包括所述激活态或非激活状态;其中,所述M套DRX配置中的任一套包括的 定时器中的任意一个处于运行状态,则所述终端设备的DRX状态为所述激活态。
在一种可能的设计中,所述接收单元,用于接收网络设备发送的N套非连续接收DRX配置,所述每套DRX配置中进行配置的参数至少包括以下一项:激活定时器,DRX循环周期,DRX非激活定时器,DRX重传定时器,DRX上行重传定时器和DRX起始位置偏移值。
在一种可能的设计中,所述根据所述M组载波对应的M套DRX配置在指定的载波上监听物理下行控制信道的所述处理单元,具体用于在所述M套DRX配置中的任一套的非激活定时器运行期间,在所述M套DRX配置中的任一套对应的载波上监听到物理下行控制信道中有首传数据,启动或重启其他套DRX配置的非激活定时器,或者,启动或重启所述M套DRX配置对应的非激活定时器。
在一种可能的设计中,所述接收单元,还用于接收网络设备发送的N套非连续接收DRX配置,所述N套所述DRX配置对应相同或不同的物理资源使用属性,所述物理资源使用属性与所述N套DRX配置中的每一套所对应的一组载波中的载波个数或N套DRX配置中的任一定时器相关;
其中,所述物理资源使用属性至少包括以下一项:资源周期,传输时间间隔,子载波间隔和编码方式。
在一种可能的设计中,所述接收单元,还用于接收网络设备下发的控制消息,所述控制消息包括调整多套DRX配置的指示信息;
相应地,所述处理单元,还用于基于所述控制消息,利用所述调整多套DRX配置的指示信息调整多套所述DRX配置。
在一种可能的设计中,所述终端设备中的发送单元,用于在所述接收单元接收所述网络设备发送的控制指示之前,向所述网络设备发送调整请求消息,所述调整请求消息包括所述终端设备请求调整的DRX配置指示信息;
相应地,所述接收单元,用于接收所述网络设备发送的控制消息,所述控制消息为所述网络设备响应于所述调整请求消息而发送的。
在一种可能的设计中,所述接收单元接收到的网络设备发送的控制消息,其中,所述控制消息为无线资源控制RRC重配置消息;或者,所述控制消息为非连续接收媒体接入控制命令;或者,所述控制消息为预先设置的下行控制命令,所述下行控制命令与一组所述DRX配置之间存在对应关系;所述一组DRX配置包括一个或多个DRX配置。
本申请实施例的第四方面提供了一种网络设备,其特征在于,所述网络设备包括:
处理单元,用于配置N套非连续接收DRX配置,所述N套DRX配置分别对应N组载波,N为大于等于2的整数,所述N组载波中的M组载波为被激活的载波;
发送单元,用于向所述终端设备发送所述N套DRX配置,以及根据所述M套DRX配置通过指定的载波向所述终端设备发送物理下行控制信道,所述指定的载波为所述M组载波中的部分组或全部组,M为小于等于N的正整数。
在一种可能的设计中,所述配置N套非连续接收DRX配置的处理单元,用于配置不 同DRX配置的DRX循环周期为最小DRX循环周期的整数倍;和/或,
所述处理单元,用于配置N套所述DRX配置的多个DRX起始位置偏移值相同;和/或,
所述处理单元,用于配置所述每套DRX配置中的激活定时器与DRX非激活定时器以及DRX重传定时器具有不同的参数值。
在一种可能的设计中,所述配置N套非连续接收DRX配置的处理单元,用于对所述每套DRX配置中至少包括以下一项的参数进行配置,所述参数包括:激活定时器,DRX循环周期,DRX非激活定时器,DRX重传定时器,DRX上行重传定时器和DRX起始位置偏移值。
在一种可能的设计中,所述处理单元,还用于为所述N套所述DRX配置对应相同或不同的物理资源使用属性,所述物理资源使用属性与所述N套DRX配置中的每一套所对应的一组载波中的载波个数或N套DRX配置中的任一定时器相关;其中,所述物理资源使用属性至少包括以下一项:资源周期,传输时间间隔,子载波间隔和编码方式。
在一种可能的设计中,所述发送单元,还用于向所述终端设备发送控制消息,所述控制消息包括调整多套DRX配置的指示信息,使所述终端设备利用所述调整多套DRX配置的指示信息调整多套所述DRX配置。
在一种可能的设计中,所述网络设备的接收单元,用于接收所述终端设备发送的调整请求消息,所述调整请求消息包括所述终端设备请求调整的DRX配置指示信息;
相应地,所述处理单元,用于响应所述调整请求消息,并生成对应的控制消息,通过所述发送单元发送给所述终端设备。
在一种可能的设计中,所述发送单元发送给所述终端设备的控制消息,其中,所述控制消息为无线资源控制RRC重配置消息;或者,所述控制消息非连续接收媒体接入控制命令;或者,所述控制消息为预先设置的下行控制命令,所述下行控制命令与一组所述DRX配置之间存在对应关系;所述一组非连续接收DRX配置包括一个或多个非连续接收DRX配置。
本申请实施例的第五方面提供了一种通信系统,其特征在于,所述通信系统包括:本申请实施例第三方面、第三方面的任一可能的设计中的终端设备,以及本申请实施例第四方面、第四方面的任一可能的设计中的网络设备。
本申请实施例的第六方面提供了一种计算机可读存储介质,用于存储计算机程序,该计算机程序包括用于执行第一方面、第二方面、第一方面的任一可能的设计或第二方面的任一可能的设计中的方法的指令。
本申请实施例的第七方面提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述各方面所述的方法。
本申请实施例的第八方面提供了一种芯片系统,该芯片系统包括处理器,用于支持网络设备以及终端设备实现上述方面中所涉及的功能,例如,例如生成或处理上述方法中所涉及的数据和/或信息。在一种可能的设计中,所述芯片系统还包括存储器,所述存储器,用于保存网络设备以及终端设备必要的程序指令和数据。该芯片系统, 可以由芯片构成,也可以包含芯片和其他分立器件。
附图说明
图1为本申请实施例公开的长短循环周期DRX的示意图;
图2为本申请实施例公开的与DRX循环周期相关的各个定时器的工作示意图;
图3为本申请实施例公开的一种通信系统的应用场景图;
图4为本申请实施例公开的一种DRX配置方法的流程示意图;
图5为本申请实施例公开的终端设备同时叠加使用激活的三套DRX配置的过程示意图;
图6为本申请实施例公开的终端设备同时叠加使用的与numerology具有对应关系的三套DRX配置的过程示意图;
图7为本申请实施例公开的另一种DRX配置方法的流程示意图;
图8为本申请实施例公开的另一种DRX配置方法的流程示意图;
图9为本申请实施例公开的网络设备的结构示意图;
图10为本申请实施例公开的另一网络设备的结构示意图;
图11为本申请实施例公开的终端设备的结构示意图;
图12为本申请实施例公开的另一终端设备的结构示意图;
图13为本申请实施例公开的一种通信系统的结构示意图。
具体实施方式
本申请实施例提供了一种DRX配置方法、终端设备、网络设备和通信系统,用于在终端设备的DRX状态为激活态ON时,在启用/激活的多套DRX配置对应的载波上监听物理下行控制信道,从而满足终端设备发送不同业务的业务服务质量需求。
本申请实施例和权利要求书及附图中的术语“第一”和“第二”等是用于区别不同对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”不是排他的。例如,包括了一系列步骤或单元的过程、方法、系统、产品或设备没有限定于已列出的步骤或单元,还可以包括没有列出的步骤或单元。
DRX即非连续接收,是指终端设备仅在必要的时间打开接收机进入激活态,以接收下行数据和信令,而在其他时间关闭接收机进入休眠态,停止接收下行数据和信令的一种节省UE电力消耗的工作模式。DRX分为空闲态DRX和连接态DRX。其中,连接态DRX是指UE处于RRC连接态时的DRX特性,通过监听物理下行控制信道来实现。
在DRX配置中主要包括以下几个参数:
1.DRX循环周期(drx-cycle),即不连接接收的周期。在每个DRX循环周期内UE会定时醒来一段时间用于接收数据。在LTE系统中,DRX循环周期包括长周期和短周期两个类型,其中,长循环周期DRX(long drx-cycle)的长度是短循环周期DRX(short drx-cycle)的长度的整数倍。如图1所示,为长短循环周期DRX的示意图。
2.激活定时器(on duration timer),可以理解为一段连续的下行子帧数,表示UE 在醒来后所能维持的时间。在该段连续的下行子帧数内,也就是在激活定时器的定时时间段,UE需要侦听物理下行控制信道。如图1所示,该激活定时器在每个DRX循环周期开始时刻启动。
3.DRX非激活定时器(drx-inactivity timer),同样可以理解为一段连续的下行子帧数。该DRX非激活定时器在终端设备成功解调出属于该终端设备的首传数据的物理下行控制信道时启动或重启,同样,在该DRX非激活定时器的定时时间段内也需要继续侦听物理下行控制信道。如图2所示,为与DRX循环周期相关的各个定时器的工作示意图。图2中,A点和B点均指示当前时刻收到首传数据的物理下行控制信道。
DRX非激活定时器的启动和重启的过程具体为:在长循环周期DRX内,当终端设备在激活定时器的定时时间段(图2中用C标示激活定时器的定时时间段)内侦听物理下行控制信道时,在A点成功解调出属于该终端设备的一首传数据的物理下行控制信道时,该DRX非激活定时器启动(图2中用D标示DRX非激活定时器的定时时间段)。终端设备在该DRX非激活定时器的定时时间段内继续侦听物理下行控制信道,当终端设备在B点成功解调出属于该终端设备的另一首传数据的物理下行控制信道时,重启该DRX非激活定时器(图2中用E标示DRX非激活定时器的重启定时时间段),然后,终端设备继续在该DRX非激活定时器的定时时间段内侦听物理下行控制信道。
4.混合自动重传请求(hybrid automatic repeat request,HARQ)往返时延(round trip time,RTT)定时器(Timer),可以理解为最小的重传调度间隔。该混合自动重传请求往返时延定时器指出下一个下行混合自动重传请求重传最早在多少个下行子帧后出现。该混合自动重传请求往返时延定时器在下列情况下进行启动:
a.下行首传数据出现且数据没有正确解调时。
b.下行重传数据出现时。
5.DRX重传定时器(drx-RetransmissionTimer),可以理解为接收下行重传调度的等待时间。即,该DRX重传定时器表示终端设备出于激活状态等待下行重传数据的最长时间。该DRX重传定时器在混合自动重传请求往返时延定时器超时,且终端设备没有正确解调出相应下行数据时启动。对应的,当还有DRX上行重传定时器(drx-ULRetransmission timer),可以理解为接收上行重传的等待时间,作用与DRX重传定时器相似。
6.DRX媒体介入控制命令(drx command mac ce),可以理解为让终端设备立即进入休眠期的MAC信令。当终端设备收到此DRX媒体介入控制命令会立刻停止激活定时器和DRX Inactivity Timer。
7.DRX短循环周期定时器(drx short cycle timer),可以理解为短循环周期DRX的生命周期。当此DRX短循环周期定时器超时后,需要使用长周期。在短循环周期DRX配置的情况下,该DRX短循环周期定时器在两种情况下会进行启动或重启:
a.当DRX非激活定时器超时。
b.当终端设备收到DRX媒体介入控制命令。
8.DRX起始位置偏移值(drxstartoffset),Startoffset在LTE系统中为起始子帧,但在 5G系统中,因为不同的DRX的时间单位可能不同,可能并不一定是用子帧进行衡量的。可能是毫秒,或者是传输时间间隔长度或者其他时间单位;因此,在5G系统中,该StartOffset可以理解为起始位置或起始位置偏移量或起始位置偏移值。
在5G系统中,考虑到5G的新空口(New Radio,NR)的多业务特性和多业务需求,主要为业务服务质量(quality of service,QoS)需求,例如:时延、可靠性、速率等业务服务质量需求。
由背景技术可知,现有的LTE中只有两套DRX配置的工作机制,终端设备每一时刻只能激活其中一套既可以满足终端设备的多种业务需求。但是,在5G系统下,基于新空口的多业务特性和多业务需求,现有的两套DRX配置已经不能满足5G系统下终端设备的多种业务需求。因此,如何满足5G应用环境下终端设备所具有的多样化业务需求是目前需要解决的问题。
为此,本申请实施例提供了相应的DRX配置方法、相关设备以及通信系统,以满足终端设备在5G应用环境中发送不同业务的业务服务质量需求。
该相关设备包括终端设备和网络设备。如图3所示,为本申请实施例公开的包含终端设备和网络设备一种通信系统的应用场景示意图。该应用场景中包括:终端设备30和网络设备31。终端设备30通过网络设备31接入通信网络32。终端设备30和网络设备31之间通过无线信号进行通信。
上述终端设备可以为有线设备,也可以为无线设备。其中,无线设备可以为具有无线连接功能的手持式设备、或连接到无线调制解调器的其他处理设备,经无线接入网与一个或多个核心网进行通信的移动终端。例如,无线终端可以为移动电话、手机、计算机、平板电脑、个人数码助理(personal digital assistant,PDA)、移动互联网设备(mobile internet device,MID)、可穿戴设备和电子书阅读器等。又如,无线终端也可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动设备。再如,无线终端可以为移动站或接入点。另外,UE也是终端设备的一种,通常为LTE系统中终端设备的称谓。
上述网络设备可以为基站,也可以为其他发送控制信道的设备。该基站可以包括各种形式的宏基站,微基站,中继站,接入点基站控制器,发送和接收点等等。在采用不同的无线接入技术的系统中,基站的具体名称可能会有所不同。
在本申请实施例中所涉及的终端设备具体可以为UE,本申请实施例中所涉及到的接入网络设备具体可以为基站。
该基站用于接收UE上报的数据和请求消息等,以及发送同步、广播、控制命令等给UE,以及为UE发送多套DRX配置,以及下发包括激活或去激活或替换一套或多套DRX配置的控制消息。
该UE用于接收基站的同步、广播、控制命令等,以及根据基站发送的多套DRX配置在激活态下,同时叠加使用多套DRX配置监听物理下行控制信道,以及根据基站下发的控制消息激活或去激活或替换一套或多套DRX配置。
需要说明的是,图3所示的通信系统的应用场景中,仅示出了一个终端设备30和一 个网络设备31的情况,当本申请并不限于此。上述通信系统在其覆盖范围内还可以包括除终端设备30以外的其他数量的无线通信设。可选的,图3所示出的通信系统还可以包含其他网络设备等,本申请实施例对此不做限定。
本申请实施例所公开的终端设备和接入网络设备包括硬件设备和运行于该硬件设备上的软件。
相较于现有技术,本申请实施例公开的DRX配置方法,由网络设备配置多套DRX配置,并将多套DRX配置发送给终端设备,终端设备在终端设备的DRX状态为激活态时,使用多套DRX配置监听物理下行控制信道,从而满足终端设备发送不同业务的业务服务质量需求。同时,终端设备通过同时叠加使用多套DRX配置,在监听物理下行控制信道的过程中,也可以减少不必要的物理下行控制信道监听,从而达到降低终端设备能耗的目的。
本申请实施例所公开的DRX配置的技术方案的具体实现过程,通过以下实施例进行详细说明。
基于图3示出的通信系统的应用场景示意图。如图4所示,为本申请实施例公开的一种DRX配置方法的流程示意图,包括:
S401:网络设备配置N套非连续接收DRX配置,所述N套DRX配置分别对应N组载波,N为大于等于2的整数。
在具体实现中,该网络设备对N套DRX配置中的参数进行配置,所配置的N套DRX配置中,每套DRX配置中进行配置的参数至少包括以下一项:激活定时器,DRX循环周期,DRX非激活定时器,DRX重传定时器和DRX起始位置偏移值。
可选的,该网络设备在配置多套不同DRX配置的DRX循环周期时,以得到的最小DRX循环周期为基数,将不同整数倍的最小DRX循环周期作为不同的DRX配置的DRX循环周期。也就是说,不同DRX配置的DRX循环周期为最小DRX循环周期的不同整数倍。
作为举例,该最小DRX循环周期可以按照5G应用环境下终端设备的业务需求进行预先设置,还可以通过相应的标准协议固定。
例如:最小的DRX循环周期可能取值为2,假设有4套DRX配置,则不同DRX配置的DRX循环周期可以是4、6、8;其单位可以是子帧(subframe)或者传输时间间隔长度(TTI length)。
可选地,该网络设备在配置多套不同DRX配置的DRX循环周期时,可以采用相同的DRX循环周期取值范围,而在该取值范围内不同的DRX循环周期取值是彼此的整数倍;从而,网络设备在配置不同的DRX循环周期配置时,可以从该取值范围中选取并配置。
示例性地,DRX循环周期取值范围可为{2,4,6,8,10,16,20,32,40,64,80,128,160,256,320,512,640},该取值范围取值可均匀或非均匀设置;其单位可以是子帧或者传输时间间隔长度;假设有4套DRX配置,则不同DRX配置的DRX循环周期可以是4、16、128。
可选地,上述每套DRX配置中还可以包括混合自动重传请求往返时延定时器和上行混合自动重传请求往返时延定时器,这些定时器的设置单位可为子帧或者传输时间间隔长度或者毫秒或者其他。可选地,上述每套DRX配置中的DRX循环周期可以进一步分成短循环周期DRX和长循环周期DRX,短循环周期DRX和长循环周期DRX的设置方法同上述DRX循环周期的配置;这里不再赘述。
另外,当每套DRX配置设置短循环周期DRX和长循环周期DRX两种循环周期时,会相应设置一个DRX短周期的定时器(DRX short cycle timer),可以理解为短周期的生命周期。当此DRX短周期的定时器超时后,需要使用长周期。
可选地,上述多套DRX配置中,可能还包括对这些定时器的设置。
可选的,该网络设备在配置N套DRX配置的DRX起始位置偏移值的时,配置多套DRX配置的多个DRX起始位置偏移值相同。
可选的,该网络设备在配置每套DRX配置中的定时器时,可以为不同的定时器配置不同的参数值,使每套DRX配置中不同的定时器具有不同的参数值。也可以为不同的定时器配置相同的参数值。
可选地,上述每套DRX配置中可以包括激活定时器、DRX非激活定时器、DRX重传定时器和DRX上行重传定时器中的至少一个。网络设备根据所述M套DRX配置中的任一套包括的定时器中的任意一个处于运行状态,确定所述终端设备的DRX状态为所述激活态。
作为举例,当一DRX配置中包括激活定时器,DRX非激活定时器和DRX重传定时器时,网络设备可以为激活定时器,DRX非激活定时器和DRX重传定时器设置不同的参数值。网络设备也可以为激活定时器,DRX非激活定时器和DRX重传定时器设置相同的参数值。网络设备也可以为激活定时器和DRX非激活定时器设置相同的参数值,为DRX重传定时器设置不同于激活定时器和DRX非激活定时器的参数值。也就是说,每套DRX配置中的不同定时器具有相同或不同的参数值。
可选地,激活定时器,DRX非激活定时器和DRX重传定时器设置的单位可以是子帧或者传输时间间隔长度或毫秒;或者以监听物理下行信道时间为单位,如PDCCH subframe,或者PDCCH TTI或者PDCCH ms;此外,也不排除以其他形式的时间量作为上述定时器的基本单位。
进一步的,针对具有两个定时器的DRX配置同样适用。或者,随着通信系统的演变和新业务场景的出现,DRX配置中可以包括更多定时器时,上述配置方式也同样适用。
进一步的,网络设备在所述M套DRX配置中的任一套的非激活定时器运行期间,在所述M套DRX配置中的任一套对应的载波上发送下行数据。
进一步的,所述N套所述DRX配置对应相同或者不同的物理资源使用属性,所述物理资源使用属性与所述N套DRX配置中的每一套所对应的一组载波中的载波个数或N套DRX配置中的任一定时器相关;其中,所述物理资源使用属性至少包括以下一项:资源周期,传输时间间隔,子载波间隔和编码方式。
在具体实现中,N组载波中的M组载波为被激活的载波,网络设备根据M套DRX配置通过M组载波向终端设备发送物理下行控制信道,M为小于等于N的正整数。
因为不同载波的工作独立,相互之间也不干扰。在具体实现中,可以基于载波聚合技术或多载波技术,网络设备针对多套DRX配置,为不同的DRX配置建立与不同载波的对应关系,使每套DRX配置对应一组载波。
对于终端设备而言,在其所使用的载波上,在某个传输时间单元内是否有数据需要接收或者被调度传输,取决于其是否能检测到含调度信息的下行控制消息。该下行控制消息经由物理下行控制信道承载。
因此,在本申请实施例中,载波用于终端设备在终端设备的DRX状态为激活态“ON”时,在多套DRX配置对应的载波上监听物理下行控制信道,该DRX状态为激活态包括多套DRX配置叠加到一起的状态。对于该DRX状态为激活态的情况在后续进行详细说明。
S402:网络设备向终端设备发送N套DRX配置。
可选地,接入网设备向终端设备发送多套DRX配置之前,终端设备可向接入网设备指示自己是否支持多套DRX配置,从而,网络设备可以根据UE是否支持多套DRX配置以及多套DRX配置可以带来的增益(如节省能耗等)决定是否给终端设备配置并发送多套DRX配置,网络设备具体如何决定取决于网络设备实现或者基于一定的算法。
S403:终端设备接收网络设备发送的N套DRX配置。
在具体实现中,终端设备将接收到N套DRX配置进行存储,基于上述说明,终端设备所接收的N套DRX配置中,每套DRX配置对应一组载波。每套DRX配置至少包括以下一项参数:激活定时器,DRX循环周期,DRX非激活定时器,DRX重传定时器和DRX起始位置偏移值。
可选的,不同DRX配置的DRX循环周期为最小DRX循环周期的不同整数倍。
作为举例,该最小DRX循环周期可以为网络设备按照5G应用环境下终端设备的业务需求进行预先设置,还可以通过相应的标准协议固定。
可选的,N套DRX配置的多个DRX起始位置偏移值均相同。
可选的,每套DRX配置中,不同定时器具有相同或不同的参数值。具体配置可以参见上述网络设备中有关的描述,这里不再进行赘述。
S404:终端设备在DRX状态为激活态时,其中,N组载波中的M组载波为被激活的载波,终端设备根据M组载波对应的M套DRX配置在指定的载波上监听物理下行控制信道,该指定的载波为M组载波中的部分组或全部组,M为小于等于N的正整数。
在具体实现中,终端设备在激活的M套DRX配置对应的M载波上监听物理下行控制信道的前提为终端设备的DRX状态为激活态。该DRX状态包括激活态,或者,非激活态。
该激活态为N套DRX配置叠加到一起的状态,具体是指:在终端设备同时叠加使用所有激活的载波对应的DRX配置中,任意一个定时器处于运行状态时,则认为终端设备的DRX状态为激活态。反之,当所有激活的载波对应的DRX配置中所有定时器均处 于不运行状态时,则认为终端设备的DRX状态为非激活态。
作为举例,图5示出了终端设备同时叠加使用激活的三套DRX配置的过程。在图5中,第一套DRX配置的DRX循环周期为T,其激活定时器的运行时段用F1表示。第二套DRX配置的DRX循环周期为2T,其激活定时器的运行时段用F2表示。第三套DRX配置的DRX循环周期为3T,其激活定时器的运行时段用F3表示。基于上述对终端设备的DRX状态为激活态的记载,图5中用“ON”标示终端设备处于激活态的时长。
进一步的,随着通信系统的演变和新业务场景的出现,当DRX配置中出现更多的其他类型的定时器时,上述终端设备确定终端设备的DRX状态的方式也同样适用。
可选的,终端设备根据M组载波对应的M套DRX配置在指定的载波上监听物理下行控制信道,在所述M套DRX配置中的任一套的非激活定时器运行期间,在M套DRX配置中的任一套对应的载波上监听到物理下行控制信道,当所述终端设备成功解调出属于所述终端设备的首传数据,启动或重启其他套DRX配置的非激活定时器。可选的,也可以启动或重启M套DRX配置中任一套DRX配置对应的非激活定时器。
在具体实现中,终端设备在激活的多套DRX配置对应的载波上监听物理下行控制信道时,可选的,终端设备从多套DRX配置中,确定最大激活定时器和最小DRX循环周期,然后,终端设备在最大激活定时器和最小DRX循环周期的运行时间段内,在任一套DRX配置的DRX非激活定时器运行期间使用对应的载波监听物理下行控制信道中是否有数据,一旦监听到物理下行控制信道中成功解调出属于终端设备的首传数据,则其他DRX配置的DRX非激活定时器启动或重启。
上述具体实现中可选的,一旦监听到物理下行控制信道中成功解调出属于终端设备的首传数据,也可以启动或重启M套DRX配置后中任一套DRX配置对应的非激活定时器。
作为举例,该终端设备可以通过比较多套DRX配置的方式,选取最大激活定时器和最小DRX循环周期。该终端设备也可以通过其他方式获知最大激活定时器和最小DRX循环周期。
在本申请实施例中,终端设备接收多套DRX配置,并在终端设备的DRX状态为激活态ON时,在叠加启用的多套DRX配置对应的载波上监听物理下行控制信道,从而满足终端设备发送不同业务的业务服务质量需求。同时,终端设备通过同时叠加使用多套DRX配置,在监听物理下行控制信道的过程中,也可以减少不必要的物理下行控制信道监听,从而达到降低终端设备能耗的目的。
进一步可选的,在本申请实施例中,网络设备基于第一属性配置多套DRX配置,多套DRX配置中的每套DRX配置具有相同或相近的第一属性的属性值。该第一属性可以为业务有关的属性。
除上述第一属性之外,该网络设备还可以根据第二属性进行DRX配置,该第二属性为除业务属性之外的特定属性,如实际的网络状况,或者无线网络设备的能力等。在本申请中不做具体限定。
当第一属性为业务属性时,基于业务属性的差异可以得到多个DRX配置,例如, 当该业务属性为传输时延要求时,新的无线通信系统新空口中同时包含高可靠性低时延通信(Ultra-reliable and Low Latency Communications,URLLC)、增强移动宽带(Enhanced Mobile Broadband,eMBB)以及海量物联网通信(Massive Machine Type Communications,mMTC)业务。其中,URLLC对时延和可靠性要求较为苛刻,要求传输时延小于0.5ms,而eMBB和mMTC对于传输时延的要求相对宽松。
因此,该业务属性为传输时延要求时,网络设备可以根据传输时延要求要求的不同,来配置DRX。针对URLLC,可配置DRX周期较短、激活持续时间较长等。该业务属性为是数据速率要求时,网络设备可以针对高数据率要求,配置DRX和数量较大的载波对应等。
进一步地,网络设备还可以根据业务属性确定更多优先级用以确定得到多个DRX配置。该业务属性也可以是多个不同要求的组合,本申请不作限制。
该第一属性也可以为物理资源属性或物理资源属性的标识numerology profile,该numerology profile指网络设备的物理层资源使用属性。需要说明的是,作为举例,在5G应用环境中,针对单个numerology profile的情况,每个新空口载波的最大子载波数可以为3300或者6600。
当第一属性为物理层资源使用属性时,网络设备建立多套DRX配置与numerology profile的对应关系,确定每套DRX配置对应一种numerology profile,并将与numerology profile建立对应关系的多套DRX配置发送给终端设备。该numerology profile用于限制所述每套DRX配置所对应的一组载波中的载波个数或者其他载波属性。作为举例,这里的numerology profile具体可以包括资源周期(如周期为1ms,2ms,5ms,1个TTI长度,2个TTI长度等)、传输时间间隔(transmission time interval,TTI)长度(如1ms TTI,0.5msTTI,2个OFDM符号的TTI长度,1个OFDM符号的TTI长度等)、子载波间隔(如15KHz,60KHz等),编码方式(如使用Turbo码,还是低密度奇偶校验(low-density parity-check,LDPC)码,还是极化Polar码等),多址方式(如OFDM,码分多址接入(code division multiple Access,CDMA)等)、频域占用的载波个数(如12个子载波,15个子载波等)、是否进行频域重复传输(是的话,还包含频域重复传输次数),是否进行时域重复传输(是的话,还包含时域重复传输次数)中的至少一个。
可选的,网络设备也可以建立每套DRX配置与一组numerology profile之间的对应关系。其中,一组numerology profile中包括一种或多种numerology profile。
作为举例,结合图5,图6示出的为终端设备同时叠加使用的与numerology profile具有对应关系的三套DRX配置的过程。在图6中,第一套DRX配置对应numerology1,其DRX循环周期为T,其激活定时器的运行时段用F1表示。第二套DRX配置对应numerology2,其DRX循环周期为2T,其激活定时器的运行时段用F2表示。第三套DRX配置对应numerology3,其DRX循环周期为3T,其激活定时器的运行时段用F3表示。基于上述对终端设备的DRX状态为激活态的记载,图6中用“ON”标示终端设备处于激活态的时长。
可以理解的,上述划分多套DRX配置的方式只是示例性描述,网络设备或运营商 可根据实际需要,设计不同的划分规则,本申请不作限制。
如图7所示,为本申请实施例公开的另一种DRX配置方法的流程示意图。基于上述本申请实施例公开的DRX配置方法,该DRX配置方法包括:
S701:网络设备向终端设备下发控制消息。
在具体实现中,该控制消息包括调整多套DRX配置的指示信息。
可选的,该控制消息可以为RRC重配置消息。该控制消息也可以为预先设置的下行控制命令。该控制消息也可以为DRX媒体介入控制命令。
在具体实现中,针对RRC重配置消息,当终端设备接收到的控制消息为RRC重配置消息,则需要当终端设备满足激活条件时,基于该RRC重配置消息调整一套或N套DRX配置。这里的,终端设备所满足的激活条件为:终端设备当前启用叠加使用一套或N套DRX不适用于发送的业务的服务质量或待发送的新业务。
在具体实现中,该下行控制命令与一组DRX配置之间存在对应关系,该一组DRX配置包括一套或N套DRX配置。
在具体实现中,针对DRX媒体介入控制命令,网络设备在配置N套DRX配置时,使每套DRX配置对应一个类型的DRX媒体介入控制命令指示,每一类型的DRX媒体介入控制命令指示对应一个逻辑信道标识(logical channel identity,LCID)。
在本申请实施例中,基于5G的应用环境中,终端设备同时叠加使用N套DRX配置的需求,在现有的LTE中,利用对下行逻辑信道标识的中的长周期DRX和DRX命令(drx command)进行不同的取值,得到新的逻辑信道标识,用来表示不同DRX配置的DRX媒体介入控制命令。
S702:终端设备接收网络设备发送的控制消息。
S703:终端设备基于该控制消息,利用该控制消息包括的调整多套DRX配置的指示信息调整多套DRX配置。
在具体实现中,在终端设备同时叠加使用多套DRX配置监听物理下行控制信道的过程中,若终端设备接收到网络设备发送的控制消息,终端设备则利用调整多套DRX配置的指示信息对多套DRX配置中的某一套或那几套DRX配置进行调整,该调整的方式为激活或去激活。
作为举例,在图5中示出的终端设备同时叠加使用三套DRX配置的过程,当终端接收到网络设备发送的控制消息,若该控制消息包括的调整多套DRX配置的指示信息为:指示终端设备去激活正在使用的第二套DRX配置,则终端设备基于该控制消息去激活第二DRX配置,停止使用第二套DRX配置。
在本申请实施例中,终端设备接收网络设备下发的控制消息,可以基于控制消息包括的调整多套DRX配置的指示信息,对同时叠加使用的多套DRX配置中的某一套或某几套,甚至当前同时叠加使用的多套DRX配置进行激活或去激活调整。终端设备基于网络设备下发的控制消息动态调整多套DRX,可以在业务服务质量需求提高或者发送新业务的时候,快速完成对叠加使用的多套DRX配置的调整,更进一步的满足终端设备发送不同业务的业务服务质量需求。同样,也能够达到降低终端设备能耗的目的。
如图8所示,为本申请实施例公开的另一种DRX配置方法的流程示意图。基于上述本申请实施例公开的DRX配置方法,在终端设备将接收到多套DRX配置存储的基础上,该DRX配置方法包括:
S801:终端设备向网络设备发送调整请求消息。
在具体应用中,该调整请求消息包括终端设备请求调整的DRX配置指示信息。
可以理解为,终端设备根据当前业务需求向网络设备上报自己想要调整或者替换的DRX配置。
S802:网络设备接收该调整请求消息。
S803:网络设备基于该调整请求消息,向终端设备发送控制消息。
在具体实现中,该控制消息为调整请求消息的响应消息,包括对应于调整请求消息的调整多套DRX配置的指示信息。该S803中的控制消息与上述图7中示出的S702中记载的控制消息所限定的内容相同,可进行参照,这里不再进行赘述。
S804:终端设备接收网络设备发送的控制消息。
S805:终端设备基于该控制消息,利用该控制消息包括的调整多套DRX配置的指示信息调整多套DRX配置。
在具体实现中,在终端设备同时叠加使用多套DRX配置监听物理下行控制信道的过程中,若终端设备接收到网络设备响应调整请求消息而发送的控制消息,则利用调整多套DRX配置的指示信息对多套DRX配置中的某一套或那几套DRX配置进行调整,该调整的方式为激活或去激活。
作为举例,终端设备不断接收网络设备发送的多套DRX配置,在同时叠加使用的多套DRX配置(至少包括叠加使用两套DRX配置)监听物理下行控制信道的过程中,当有新业务到达终端设备或者当前运行的业务达到了新的服务质量需求,则终端设备向网络设备发送调整请求消息,网络设备响应该调整请求消息,并向终端设备发送控制消息,由终端设备利用该控制消息,对当前同时叠加使用的多套DRX配置中的某一套或某几套进行激活或去激活,甚至利用新的多套DRX配置覆盖掉当前叠加使用的多套DRX配置,同时叠加新调度的多套DRX配置监听物理下行控制信道。
在本申请实施例中,终端设备基于业务需求向网络设备上报调整请求消息,并基于网络设备响应该调整请求消息而下发的控制消息,对同时叠加使用的多套DRX配置中的某一套或某几套,甚至当前同时叠加使用的多套DRX配置进行激活或去激活调整。可以在业务服务质量需求提高或者发送新业务的时候,快速完成对叠加使用的多套DRX配置的调整,更进一步的满足终端设备发送不同业务的业务服务质量需求。同样,也能够达到降低终端设备能耗的目的。
基于上述本申请实施例公开的DRX配置方法,本申请实施例还公开了执行该DRX配置方法的终端设备和网络设备。作为举例,该终端设备可以为图3中示出的终端设备,该网络设备可以为图3中示出的网络设备。
如图9所示,为本申请实施例公开的网络设备900的结构示意图,该网络设备900包括:
处理单元901,用于用于配置N套非连续接收DRX配置,所述N套DRX配置分别对应N组载波,N为大于等于2的整数,所述N组载波中的M组载波为被激活的载波。
发送单元902,用于向所述终端设备发送所述N套DRX配置,以及根据所述M套DRX配置通过指定的载波向所述终端设备发送物理下行控制信道,该指定的载波为M组载波中的部分组或全部组,M为小于等于N的正整数。
在具体实现中,N套DRX配置与载波的对应关系为:所述N套DRX配置分别对应N组载波,即每套DRX配置对应一组载波。在终端设备的DRX状态为激活态时,N组载波中的M组载波为被激活的载波,由终端设备根据M组载波对应的M套DRX配置在所述M组载波上监听物理下行控制信道,M为小于等于N的正整数。
在具体实现中,可选的,该处理单元901,用于对至少包括以下一项参数的每套DRX配置进行配置,该参数包括:激活定时器,DRX循环周期,DRX非激活定时器,DRX重传定时器和DRX起始位置偏移值。
可选的,该处理单元901用于配置不同DRX配置的DRX循环周期为最小DRX循环周期的整数倍;或,用于配置N套DRX配置的多个DRX起始位置偏移值相同;或,用于配置激活定时器与DRX非激活定时器以及DRX重传定时器具有不同的参数值;或,也可以配置激活定时器与DRX非激活定时器以及DRX重传定时器具有相同的参数值。
可选的,该处理单元901,还用于基于第一属性确定多套DRX配置,N套DRX配置中的每套DRX配置具有相同或相近的第一属性的属性值。该第一属性可以为业务有关的属性。该第一属性也可以为numerology profile,该numerology profile为网络设备的物理层资源使用属性。其中,该第一属性的具体的内容参见上述本申请实施例DRX方法中涉及的地方,这里不再进行赘述。
可选的,该处理单元901还可以根据第二属性进行DRX配置,该第二属性为除业务属性之外的特定属性,如实际的网络状况,或者无线网络设备的能力等。在本申请中不做具体限定。
进一步可选的,该处理单元901还可以生成控制消息。可选的,该控制消息可以为RRC重配置消息。该控制消息也可以为预先设置的下行控制命令。该控制消息也可以为DRX媒体介入控制命令。可选的,该下行控制命令与一组DRX配置之间存在对应关系,该一组DRX配置包括一套或多套DRX配置。
相应的,发送单元902则向终端设备发送该控制消息。
进一步可选的,该网络设备900中包括接收单元,该接收单元用于接收终端设备上报的调整请求消息,该调整请求消息包括终端设备请求调整的DRX配置指示信息。
相应地,该处理单元901用于响应该调整请求消息,并生成相应的控制消息。
相应地,该发送单元902用于向终端设备发送该控制消息。
以上本申请实施例公开的网络设备中的各个单元中所涉及的相应操作,可以参照上述本申请实施例图4、图7和图8中网络设备执行的相应操作,这里不再进行赘述。
结合本申请实施例公开的DRX配置方法,本申请实施例所公开的网络设备也可以直接用硬件、处理器执行的存储器,或者二者的结合来实施。
如图10所示,该网络设备1000包括:处理器1001和存储器1002。可选的,该网络设备1000还包括网络接口1003。
该处理器1001通过总线与存储器1002耦合。处理器1002通过总线与该网络接口1003耦合。
处理器1001具体可以是中央处理器(central processing unit,CPU),网络处理器(network processor,NP),专用集成电路(application-specific integrated circuit,ASIC)或者可编程逻辑器件(programmable logic device,PLD)。上述PLD可以是复杂可编程逻辑器件(complex programmable logic device,CPLD),现场可编程逻辑门阵列(field-programmable gate array,FPGA)或者通用阵列逻辑(generic array logic,GAL)。
存储器1002具体可以是内容寻址存储器(content-addressable memory,CAM)或者随机存取存储器(random-access memory,RAM)。CAM可以是三态内容寻址存储器(ternary cam,TCAM)。
网络接口1003可以是有线接口,例如光纤分布式数据接口(fiber distributed data interface,FDDI)或者以太网(ethernet)接口。
存储器1002也可以集成在处理器1001中。如果存储器1002和处理器1001是相互独立的器件,存储器1002和处理器1001相连,例如存储器1002和处理器1001可以通过总线通信。网络接口1003和处理器1001可以通过总线通信,网络接口1003也可以与处理器1001直接连接。
存储器1002,用于存储处理DRX配置的操作程序、代码或指令。可选的,该存储器1002包括操作系统和应用程序,用于存储处理DRX配置的操作程序、代码或指令。
当处理器1001或硬件设备要进行DRX配置的相关操作时,调用并执行存储器1002中存储的操作程序、代码或指令可以完成图4、图7和图8中涉及的网络设备执行DRX配置的过程。具体过程可参见上述本申请实施例相应的部分,这里不再赘述。
可以理解的是,图10仅仅示出了该网络设备的简化设计。在实际应用中,网络设备可以包含任意数量的接口,处理器,存储器等,而所有可以实现本申请实施例的网络设备都在本申请实施例的保护范围之内。
基于本申请实施例公开的DRX配置方法,本申请实施例还公开了执行DRX配置方法的终端设备。该终端设备与本申请实施例图9示出的网络设备通过无线信号进行通信。
如图11所示,为本申请实施例公开的终端设备1100的结构示意图,该终端设备1100包括:
接收单元1101,用于接收网络设备发送的N套非连续接收DRX配置,所述N套DRX配置分别对应N组载波,N为大于等于2的整数;
在具体实现中,可选的,该接收单元1101接收网络设备发送的多套DRX配置中,该DRX配置至少包括以下一项参数,该参数包括:激活定时器,DRX循环周期,DRX 非激活定时器,DRX重传定时器和DRX起始位置偏移值。
处理单元1102,用于所述终端设备的DRX状态为激活态时,所述N组载波中的M组载波为被激活的载波,所述处理单元根据所述M组载波对应的M套DRX配置在指定的载波上监听物理下行控制信道,该指定的载波为M组载波中的部分组或全部组,M为小于等于N的正整数。
在具体实现中,可选的,该处理单元1102还用于:确定终端设备1100的DRX状态,该DRX状态包括激活态或非激活状态;其中,激活定时器,DRX非激活定时器和DRX重传定时器中任一个处于运行状态,则确定终端设备1100的DRX状态为激活态。
可选的,所述处理单元1102,在所述终端设备的DRX状态为激活态时,叠加使用所述M套DRX配置。
可选的,该处理单元1102在多套DRX配置对应的载波上监听物理下行控制信道时,具体用于从M套DRX配置中,确定最大激活定时器和最小DRX循环周期,在最大激活定时器和最小DRX循环周期的运行时间段内,在任一套DRX配置的DRX非激活定时器运行期间在对应的载波上监听物理下行控制信道中有下行数据,其他套DRX配置的DRX非激活定时器重启。
进一步可选的,该接收单元1101还用于接收网络设备下发的控制消息。该控制消息包括调整多套DRX配置的指示信息。
可选的,该控制消息可以为RRC重配置消息。该控制消息也可以为预先设置的下行控制命令。该控制消息也可以为DRX媒体介入控制命令。
相应地,该处理单元1102则用于基于该控制消息,利用该控制消息包括的调整多套DRX配置的指示信息调整多套DRX配置。
进一步可选的,该终端设备1100中的处理单元1102,还用于根据当前业务需求生成调整请求消息,以及基于网络设备下发的控制消息,利用该控制消息包括的调整多套DRX配置的指示信息调整多套非连续接收DRX配置。该调整请求消息包括终端设备请求调整的DRX配置指示信息。
相应地,该终端设备1100中包括的发送单元,则向网络设备发送该调整请求消息。
相应地,该接收单元1101还用于接收网络设备响应该调整请求消息下发的控制消息。
以上本申请实施例公开的终端设备中的各个单元中所涉及的相应操作,可以参照上述本申请实施例图4、图7和图8中终端设备执行的相应操作,这里不再进行赘述。
如图12所示,该终端设备1200包括:处理器1201和存储器1202。可选的,该终端设备1200还包括网络接口1203。
该处理器1201通过总线与存储器1202耦合。处理器1202通过总线与该网络接口1203耦合。
处理器1201具体可以是中央处理器(central processing unit,CPU),网络处理器(network processor,NP),专用集成电路(application-specific integrated circuit,ASIC)或者可编程逻辑器件(programmable logic device,PLD)。上述PLD可以是复杂可编程 逻辑器件(complex programmable logic device,CPLD),现场可编程逻辑门阵列(field-programmable gate array,FPGA)或者通用阵列逻辑(generic array logic,GAL)。
存储器1202具体可以是内容寻址存储器(content-addressable memory,CAM)或者随机存取存储器(random-access memory,RAM)。CAM可以是三态内容寻址存储器(ternary cam,TCAM)。
网络接口1203可以是有线接口或者以太网接口。
存储器1202也可以集成在处理器1201中。如果存储器1202和处理器1201是相互独立的器件,存储器1202和处理器1201相连,例如存储器1202和处理器1201可以通过总线通信。网络接口1203和处理器1201可以通过总线通信,网络接口1203也可以与处理器1201直接连接。
存储器1202,用于存储处理DRX配置的操作程序、代码或指令。可选的,该存储器1202包括操作系统和应用程序,用于存储处理DRX配置的操作程序、代码或指令。
当处理器1201或硬件设备要进行DRX配置的相关操作时,调用并执行存储器1202中存储的操作程序、代码或指令可以完成图4、图7和图8中涉及的终端设备执行DRX配置的过程。具体过程可参见上述本申请实施例相应的部分,这里不再赘述。
可以理解的是,图12仅仅示出了该终端设备的简化设计。在实际应用中,终端设备可以包含任意数量的接口,处理器,存储器等,而所有可以实现本申请实施例的终端设备都在本申请实施例的保护范围之内。
图13为本申请实施例公开的一种通信系统1300,包括网络设备1301和终端设备1302,该网络设备1301和终端设备1302通过无线信号进行通信。
网络设备1301,用于配置多套DRX配置,并发送给终端设备1302,以及将主动或者响应终端设备1302上报的调整请求消息生成控制消息发送给终端设备1302。
终端设备1302,用于接收网络设备1301发送的多套DRX配置,在DRX状态为激活态时,在启用/激活的多套DRX配置对应的载波上监控物理下行控制信道,以及根据网络设备1301主动下发的控制消息调整多套DRX配置,或者,根据当前业务需求向网络设备1301发送调整请求消息,并基于网络设备1301响应调整请求消息而下发的控制消息调整多套DRX配置。
以上本申请实施例公开的通信系统中,网络设备1301和终端设备1302的个数并不进行限定。该网络设备1301可以具体为图9和图10中公开的网络设备,用于执行本申请实施例图4、图7和图8中网络设备执行的相应操作。终端设备1302可以具体为图11和图12中公开的终端设备,用于执行本申请实施例图4、图7和图8中终端设备执行的相应操作。具体过程以及执行原理可以参照上述说明,这里不再进行赘述。
本领域技术人员应该可以意识到,在上述一个或多个示例中,本申请所描述的功能可以用硬件、软件、固件或它们的任意组合来实现。当使用软件实现时,可以将这些功能存储在计算机可读介质中或者作为计算机可读介质中的一个或多个指令或代码进行传输。计算机可读介质包括计算机存储介质和通信介质,其中,通信介质包括便于从一个地方向另一个地方传送计算机程序的任何介质。存储介质可以是通用或专用 计算机能够存取的任何可用介质。
本说明书的各个部分均采用递进的方式进行描述,各个实施例之间相同相似的部分互相参见即可,每个实施例重点介绍的都是与其他实施例不同之处。尤其,对于装置和系统实施例而言,由于其基本相似于方法实施例,所以描述的比较简单,相关之处参见方法实施例部分的说明即可。
最后应说明的是:以上实施例仅用以示例性说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请及本申请带来的有益效果进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请权利要求的范围。

Claims (30)

  1. 一种非连续接收DRX配置方法,其特征在于,所述方法包括:
    终端设备接收网络设备发送的N套非连续接收DRX配置,所述N套DRX配置分别对应N组载波,N为大于等于2的整数;
    所述终端设备的DRX状态为激活态时,所述N组载波中的M组载波为被激活的载波,所述终端设备根据所述M组载波对应的M套DRX配置在所述M组载波上监听物理下行控制信道,M为小于等于N的正整数。
  2. 根据权利要求1所述的方法,其特征在于,所述终端设备的DRX状态为激活态时,所述M套DRX配置是叠加使用的。
  3. 根据权利要求1或2所述的方法,其特征在于,不同DRX配置中的DRX循环周期为最小DRX循环周期的不同整数倍,所述最小DRX循环周期为预先设置;和/或
    所述N套DRX配置的多个DRX起始位置偏移值相同;和/或
    所述每套DRX配置中的激活定时器与所述DRX非激活定时器以及所述DRX重传定时器具有不同的参数值。
  4. 根据权利要求1-3中任一项所述的方法,其特征在于,一套DRX配置中包括定时器,所述定时器包括激活定时器、DRX非激活定时器、DRX重传定时器和DRX上行重传定时器中的至少一个,所述方法还包括:
    所述终端设备的DRX状态包括所述激活态或非激活状态;
    其中,所述M套DRX配置中的任一套包括的定时器中的任意一个处于运行状态,则所述终端设备的DRX状态为所述激活态。
  5. 根据权利要求1-3中任意一项所述的方法,其特征在于,所述每套DRX配置中进行配置的参数至少包括以下一项:激活定时器,DRX循环周期,DRX非激活定时器,DRX重传定时器,DRX上行重传定时器和DRX起始位置偏移值。
  6. 根据权利要求1-4中任意一项所述的方法,其特征在于,所述终端设备根据所述M组载波对应的M套DRX配置在所述M组载波上监听物理下行控制信道,包括:
    在所述M套DRX配置中的任一套的非激活定时器运行期间,在所述M套DRX配置中的任一套对应的载波上监听到物理下行控制信道中有首传数据,启动或重启其他套DRX配置的非激活定时器,或者,启动或重启所述M套DRX配置中任一套DRX配置对应的非激活定时器。
  7. 根据权利要求1-6中任意一项所述的方法,其特征在于,所述方法还包括:
    所述N套所述DRX配置对应相同或者不同的物理资源使用属性,所述物理资源使用属性与所述N套DRX配置中的每一套所对应的一组载波中的载波个数或N套DRX配置中的任一定时器相关;
    其中,所述物理资源使用属性至少包括以下一项:资源周期,传输时间间隔,子载波间隔和编码方式。
  8. 根据权利要求1-6中任意一项所述的方法,其特征在于,所述终端设备接收网络设备发送的N套非连续接收DRX配置之前,还包括:
    所述终端设备向接入网设备发送指示信息,所述指示信息用于指示所述终端设备是否支持接收多套非连续接收DRX配置。
  9. 一种非连续接收DRX配置方法,其特征在于,所述方法包括:
    网络设备配置N套非连续接收DRX配置,所述N套DRX配置分别对应N组载波,N为大于等于2的整数;
    所述网络设备向所述终端设备发送所述N套DRX配置;
    所述N组载波中的M组载波为被激活的载波,所述网络设备根据所述M套DRX配置通过向所述终端设备发送物理下行控制信道,M为小于等于N的正整数。
  10. 根据权利要求9所述的方法,其特征在于,
    不同DRX配置中的DRX循环周期为最小DRX循环周期的不同整数倍,所述最小DRX循环周期是预设设置;和/或
    所述N套DRX配置的多个DRX起始位置偏移值相同;和/或
    所述每套DRX配置中的激活定时器与DRX非激活定时器以及DRX重传定时器具有不同的参数值。
  11. 根据权利要求9或10所述的方法,其特征在于,一套DRX配置中包括定时器,所述定时器包括激活定时器、DRX非激活定时器、DRX重传定时器和DRX上行重传定时器中的至少一个,所述方法还包括:
    所述网络设备根据所述M套DRX配置中的任一套包括的定时器中的任意一个处于运行状态,确定所述终端设备的DRX状态为所述激活态。
  12. 根据权利要求9或10所述的方法,其特征在于,所述每套DRX配置中进行配置的参数至少包括以下一项:激活定时器,DRX循环周期,DRX非激活定时器,DRX重传定时器,DRX上行重传定时器和DRX起始位置偏移值。
  13. 根据权利要求9-12中任意一项所述的方法,其特征在于,所述网络设备在所述M套DRX配置中的任一套的非激活定时器运行期间,在所述M套DRX配置中的任一套对应的载波上发送下行数据。
  14. 根据权利要求9-13中任意一项所述的方法,其特征在于,所述方法还包括:
    所述N套所述DRX配置对应相同或不同的物理资源使用属性,所述物理资源使用属性与所述N套DRX配置中的每一套所对应的一组载波中的载波个数或N套DRX配置中的任一定时器相关;
    其中,所述物理资源使用属性至少包括以下一项:资源周期,传输时间间隔,子载波间隔和编码方式。
  15. 一种终端设备,其特征在于,所述终端设备包括:
    接收单元,用于接收网络设备发送的N套非连续接收DRX配置,所述N套DRX配置分别对应N组载波,N为大于等于2的整数;
    处理单元,用于所述终端设备的DRX状态为激活态时,所述N组载波中的M组载波为被激活的载波,所述处理单元根据所述M组载波对应的M套DRX配置在载波上监听物理下行控制信道,M为小于等于N的正整数。
  16. 根据权利要求15所述的终端设备,其特征在于,所述处理单元,用于所述终端设备的DRX状态为激活态时,叠加使用所述M套DRX配置。
  17. 根据权利要求15或16所述的终端设备,其特征在于,所述接收单元,用于接收网络设备发送的N套非连续接收DRX配置,不同DRX配置中的DRX循环周期为最小DRX循环周期的不同整数倍,所述最小DRX循环周期为预先设置;和/或,所述N套DRX配置的多个DRX起始位置偏移值相同;和/或,所述每套DRX配置中的激活定时器与所述DRX非激活定时器以及所述DRX重传定时器具有不同的参数值。
  18. 根据权利要求15-16中任意一项所述的终端设备,其特征在于,所述接收单元,用于接收网络设备发送的N套非连续接收DRX配置,一套DRX配置中包括定时器,所述定时器包括激活定时器、DRX非激活定时器、DRX重传定时器和DRX上行重传定时器中的至少一个;
    相应地,所述处理单元,还用于确定所述终端设备的DRX状态,所述终端设备的DRX状态包括所述激活态或非激活状态;其中,所述M套DRX配置中的任一套包括的定时器中的任意一个处于运行状态,则所述终端设备的DRX状态为所述激活态。
  19. 根据权利要求15-16中任意一项所述的终端设备,其特征在于,所述接收单元,用于接收网络设备发送的N套非连续接收DRX配置,所述每套DRX配置中进行配置的参数至少包括以下一项:激活定时器,DRX循环周期,DRX非激活定时器,DRX重传定时器,DRX上行重传定时器和DRX起始位置偏移值。
  20. 根据权利要求15-16中任意一项所述的终端设备,其特征在于,所述根据所述M组载波对应的M套DRX配置在所述M组载波上监听物理下行控制信道的所述处理单元,具体用于在所述M套DRX配置中的任一套的非激活定时器运行期间,在所述M套DRX配置中的任一套对应的载波上监听到物理下行控制信道中有首传数据,启动或重启其他套DRX配置的非激活定时器,或者,启动或重启所述M套DRX配置中任一套DRX配置对应的非激活定时器。
  21. 根据权利要求15-20中任意一项所述的终端设备,其特征在于,所述接收单元,还用于接收网络设备发送的N套非连续接收DRX配置,所述N套所述DRX配置对应相同或不同的物理资源使用属性,所述物理资源使用属性与所述N套DRX配置中的每一套所对应的一组载波中的载波个数或N套DRX配置中的任一定时器相关;其中,所述物理资源使用属性至少包括以下一项:资源周期,传输时间间隔,子载波间隔和编码方式。
  22. 一种网络设备,其特征在于,所述网络设备包括:
    处理单元,用于配置N套非连续接收DRX配置,所述N套DRX配置分别对应N组载波,N为大于等于2的整数,所述N组载波中的M组载波为被激活的载波;
    发送单元,用于向所述终端设备发送所述N套DRX配置,以及根据所述M套DRX配置通过向所述终端设备发送物理下行控制信道,M为小于等于N的正整数。
  23. 根据权利要求22所述的网络设备,其特征在于,所述配置N套非连续接收DRX配置的处理单元,用于配置不同DRX配置的DRX循环周期为最小DRX循环周期的整数倍;和/或,
    所述处理单元,用于配置N套所述DRX配置的多个DRX起始位置偏移值相同;和/或,
    所述处理单元,用于配置所述每套DRX配置中的激活定时器与DRX非激活定时器以及DRX重传定时器具有不同的参数值。
  24. 根据权利要求22或23所述的网络设备,其特征在于,所述配置N套非连续接收DRX配置的处理单元,用于对所述每套DRX配置中至少包括以下一项的参数进行配置,所述参数包括:激活定时器,DRX循环周期,DRX非激活定时器,DRX重传定时器,DRX上行重传定时器和DRX起始位置偏移值。
  25. 根据权利要求22-24中任意一项所述的网络设备,其特征在于,所述处理单元,还用于为所述N套所述DRX配置对应相同或不同的物理资源使用属性,所述物理资源使用属性与所述N套DRX配置中的每一套所对应的一组载波中的载波个数或N套DRX配置中的任一定时器相关;其中,所述物理资源使用属性至少包括以下一项:资源周期,传输时间间隔,子载波间隔和编码方式。
  26. 一种通信系统,其特征在于,所述通信系统包括:权利要求14-20中任意一项所述的终端设备,以及权利要求22-25中任意一项所述的网络设备。
  27. 一种计算机可读存储介质,其特征在于,用于存储计算机程序,所述计算机程序包括用于执行如权利要求1-14中任意一项所述的方法。
  28. 一种计算机程序产品,其特征在于,包括指令,当其在计算机上运行时,使得计算机执行如权利要求1-14中任意一项所述的方法。
  29. 一种芯片系统,其特征在于,所述芯片系统包括处理器,用于支持网络设备实现上述权利要求22-25中任一项所述网络设备所涉及的功能,以及用于支持终端设备实现上述权利要求15-24中任一项所述终端设备所涉及的功能。
  30. 根据权利要求29所述的芯片系统,其特征在于,所述芯片系统还包括存储器,所述存储器,用于保存网络设备以及终端设备必要的程序指令和数据。
PCT/CN2018/091494 2017-06-16 2018-06-15 Drx配置方法、终端设备、网络设备和通信系统 WO2018228531A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP18817732.3A EP3609243B1 (en) 2017-06-16 2018-06-15 Drx configuration method, terminal device, network device and communication system
US16/714,402 US11432237B2 (en) 2017-06-16 2019-12-13 DRX configuration method, terminal device, network device, and communications system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710459796.0A CN109246826B (zh) 2017-06-16 2017-06-16 Drx配置方法、终端设备、网络设备和通信系统
CN201710459796.0 2017-06-16

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/714,402 Continuation US11432237B2 (en) 2017-06-16 2019-12-13 DRX configuration method, terminal device, network device, and communications system

Publications (1)

Publication Number Publication Date
WO2018228531A1 true WO2018228531A1 (zh) 2018-12-20

Family

ID=64659660

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/091494 WO2018228531A1 (zh) 2017-06-16 2018-06-15 Drx配置方法、终端设备、网络设备和通信系统

Country Status (4)

Country Link
US (1) US11432237B2 (zh)
EP (1) EP3609243B1 (zh)
CN (2) CN109246826B (zh)
WO (1) WO2018228531A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110945921A (zh) * 2019-11-07 2020-03-31 北京小米移动软件有限公司 被调度载波的激活时刻确定方法及装置、设备及介质
US20210211982A1 (en) * 2018-09-20 2021-07-08 Huawei Technologies Co., Ltd. Communication method and device
EP4061029A4 (en) * 2019-11-12 2023-12-20 LG Electronics Inc. SIDELINK-DRX ASSOCIATED OPERATING METHOD FOR A USER DEVICE IN A WIRELESS COMMUNICATIONS SYSTEM

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3840483B1 (en) * 2018-08-17 2023-08-02 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Discontinuous transmission method and device
CN110536434A (zh) * 2019-01-21 2019-12-03 中兴通讯股份有限公司 信息发送、接收方法、装置、基站、终端及通信系统
CN111278171B (zh) * 2019-01-31 2022-05-17 维沃移动通信有限公司 一种非连续接收drx配置方法及终端
CN112868264B (zh) * 2019-02-13 2023-03-24 Oppo广东移动通信有限公司 状态转移的方法和设备
JP7383033B2 (ja) * 2019-02-13 2023-11-17 北京小米移動軟件有限公司 省電力信号パターンの使用方法、装置及び端末
CN111698776A (zh) * 2019-03-11 2020-09-22 中国移动通信有限公司研究院 一种配置方法及设备
CN111726851A (zh) * 2019-03-18 2020-09-29 华为技术有限公司 一种非连续接收的配置方法和装置
CN111107615B (zh) * 2019-03-26 2022-12-23 维沃移动通信有限公司 控制非连续接收drx的方法和设备
CN111436165B (zh) * 2019-03-27 2022-06-03 维沃移动通信有限公司 一种信息配置方法、网络设备和终端设备
CN111757431B (zh) * 2019-03-28 2023-01-13 华为技术有限公司 一种通信方法及装置
US11871476B2 (en) * 2019-10-02 2024-01-09 Qualcomm Incorporated Configuring discontinuous reception for different groups of cells
CN112887066B (zh) * 2019-11-29 2023-03-31 中国移动通信有限公司研究院 Cdrx参数的配置方法及装置
WO2021120014A1 (zh) * 2019-12-17 2021-06-24 Oppo广东移动通信有限公司 激活时段确认方法及装置
CN113163413B (zh) * 2020-01-22 2023-09-01 华为技术有限公司 无线通信方法、终端设备和网络设备
CN111699723B (zh) * 2020-02-13 2022-12-09 北京小米移动软件有限公司 通信处理方法及装置、存储介质
CN113596963B (zh) * 2020-04-30 2024-02-02 华为技术有限公司 通信方法及装置
CN114071699B (zh) * 2020-08-05 2023-06-23 维沃移动通信有限公司 定位方法、装置及相关设备
CN114286429B (zh) * 2020-09-27 2024-04-16 华为技术有限公司 一种通信方法及设备
WO2022067729A1 (zh) * 2020-09-30 2022-04-07 Oppo广东移动通信有限公司 非连续接收的方法、终端设备和网络设备
CN114980284A (zh) * 2021-02-24 2022-08-30 华为技术有限公司 一种通信方法及设备
US11523460B2 (en) 2021-05-10 2022-12-06 Nokia Technologies Oy Method and apparatus for adaptive discontinous reception configuration
WO2023000201A1 (zh) * 2021-07-21 2023-01-26 Oppo广东移动通信有限公司 一种drx配置方法及装置、终端设备、网络设备
US20230033440A1 (en) * 2021-07-29 2023-02-02 Qualcomm Incorporated Wake up signal for multicast group notification
CN115696224A (zh) * 2021-07-30 2023-02-03 展讯通信(上海)有限公司 数据传输方法、装置、终端及存储介质
CN115734320A (zh) * 2021-09-01 2023-03-03 荣耀终端有限公司 终端节能方法、装置及系统
WO2023108427A1 (en) * 2021-12-14 2023-06-22 Nec Corporation Method, device and computer readable medium for communication
CN117015079A (zh) * 2022-04-27 2023-11-07 北京三星通信技术研究有限公司 通信方法和用户设备
WO2024017094A1 (zh) * 2022-07-21 2024-01-25 华为技术有限公司 非连续接收的管理方法、通信系统及装置
WO2024035047A1 (ko) * 2022-08-11 2024-02-15 엘지전자 주식회사 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
WO2024055325A1 (zh) * 2022-09-16 2024-03-21 北京小米移动软件有限公司 Drx周期配置方法以及装置、通信设备及存储介质
CN115529334B (zh) * 2022-10-12 2023-05-16 山东省地质矿产勘查开发局第八地质大队(山东省第八地质矿产勘查院) 一种具备报警功能的水文地质勘探用水位监测装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009120124A1 (en) * 2008-03-25 2009-10-01 Telefonaktiebolaget L M Ericsson (Publ) Drx functionality in multi-carrier wireless networks
CN101827426A (zh) * 2009-03-04 2010-09-08 大唐移动通信设备有限公司 多载波系统中监听控制信道的方法及装置
CN101841897A (zh) * 2009-03-17 2010-09-22 宏达国际电子股份有限公司 管理多分量载波不连续接收功能的方法及相关通讯装置
CN101841823A (zh) * 2009-03-16 2010-09-22 大唐移动通信设备有限公司 多载波系统中非连续监听控制信道的方法及装置
CN102036347A (zh) * 2009-09-29 2011-04-27 华为技术有限公司 不连续接收配置的实现方法、网元及用户设备
CN102098735A (zh) * 2009-12-09 2011-06-15 中兴通讯股份有限公司 一种多载波上的不连续接收的优化方法和装置

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101642309B1 (ko) 2008-11-06 2016-07-25 엘지전자 주식회사 단말의 하향링크 제어채널 모니터링 방법
US20100130137A1 (en) * 2008-11-21 2010-05-27 Interdigital Patent Holdings, Inc. Method and apparatus for multiple carrier utilization in wireless communications
US20110002281A1 (en) * 2008-12-30 2011-01-06 Interdigital Patent Holdings, Inc. Discontinuous reception for carrier aggregation
US8295240B2 (en) * 2009-02-02 2012-10-23 Research In Motion Limited Discontinuous reception start offset coordinated with semi-persistent scheduling system and method
US8620334B2 (en) * 2009-03-13 2013-12-31 Interdigital Patent Holdings, Inc. Method and apparatus for carrier assignment, configuration and switching for multicarrier wireless communications
EP2410670A4 (en) * 2009-03-16 2016-12-28 Lg Electronics Inc METHOD AND DEVICE FOR SUPPORTING CARRIER AGGREGATION
CN101998525B (zh) * 2009-08-13 2014-11-05 中兴通讯股份有限公司 多载波上的不连续接收实现方法及系统
CN102036348B (zh) * 2009-09-30 2014-01-01 中兴通讯股份有限公司 一种不连续接收配置方法及系统
WO2011040791A2 (ko) * 2009-10-01 2011-04-07 한국전자통신연구원 멀티 캐리어 구조를 사용하는 이동통신 시스템에서의 단말기 전력소모 감소 방법
KR102107500B1 (ko) * 2009-10-02 2020-05-07 닛본 덴끼 가부시끼가이샤 무선 통신 시스템, 무선 단말, 무선 기지국, 및 무선 통신 방법
CN102123447B (zh) * 2010-01-08 2015-12-16 中兴通讯股份有限公司 一种不连续接收方法及系统
WO2011082545A1 (zh) * 2010-01-08 2011-07-14 富士通株式会社 载波聚合系统中载波管理的方法和装置
KR101646789B1 (ko) * 2010-01-19 2016-08-08 삼성전자주식회사 이동통신 시스템에서 캐리어 활성화 방법 및 장치
KR101664279B1 (ko) * 2010-02-16 2016-10-12 삼성전자주식회사 무선 통신 시스템에서 불연속 수신을 위한 제어 방법 및 장치
CN102907060B (zh) * 2010-05-25 2015-10-21 交互数字专利控股公司 在不连续接收中重调谐间隙以及调度间隙
WO2012149322A1 (en) * 2011-04-29 2012-11-01 Research In Motion Limited Managing group messages for lte wakeup
CN102932884B (zh) * 2011-08-12 2019-08-13 中兴通讯股份有限公司 一种实现drx的方法和系统
US9066261B2 (en) * 2012-01-10 2015-06-23 Apple Inc. Methods and apparatus for managing radio measurements during discontinuous reception
TW201507524A (zh) * 2013-04-15 2015-02-16 Interdigital Patent Holdings 毫米波長(mmw)雙連接性不連續接收(drx)方案
CN104219738B (zh) * 2013-05-29 2018-05-11 华为技术有限公司 非连续接收参数配置方法及装置
US20160081020A1 (en) * 2014-09-16 2016-03-17 Telefonaktiebolaget L M Ericsson (Publ) Drx cycle configuration in dual connectivity
EP3235334B1 (en) * 2014-12-17 2019-02-20 Telefonaktiebolaget LM Ericsson (publ) Handling interruptions during drx on durations
WO2016119174A1 (zh) * 2015-01-29 2016-08-04 华为技术有限公司 多载波聚合通信方法和设备
CN105992320A (zh) * 2015-02-15 2016-10-05 中兴通讯股份有限公司 一种非连续接收的方法及无线接入网节点、终端
CN108307547A (zh) * 2016-09-30 2018-07-20 中兴通讯股份有限公司 一种确定非连续接收配置信息的方法及装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009120124A1 (en) * 2008-03-25 2009-10-01 Telefonaktiebolaget L M Ericsson (Publ) Drx functionality in multi-carrier wireless networks
CN101827426A (zh) * 2009-03-04 2010-09-08 大唐移动通信设备有限公司 多载波系统中监听控制信道的方法及装置
CN101841823A (zh) * 2009-03-16 2010-09-22 大唐移动通信设备有限公司 多载波系统中非连续监听控制信道的方法及装置
CN101841897A (zh) * 2009-03-17 2010-09-22 宏达国际电子股份有限公司 管理多分量载波不连续接收功能的方法及相关通讯装置
CN102036347A (zh) * 2009-09-29 2011-04-27 华为技术有限公司 不连续接收配置的实现方法、网元及用户设备
CN102098735A (zh) * 2009-12-09 2011-06-15 中兴通讯股份有限公司 一种多载波上的不连续接收的优化方法和装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3609243A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210211982A1 (en) * 2018-09-20 2021-07-08 Huawei Technologies Co., Ltd. Communication method and device
CN110945921A (zh) * 2019-11-07 2020-03-31 北京小米移动软件有限公司 被调度载波的激活时刻确定方法及装置、设备及介质
CN110945921B (zh) * 2019-11-07 2023-10-03 北京小米移动软件有限公司 被调度载波的激活时刻确定方法及装置、设备及介质
EP4061029A4 (en) * 2019-11-12 2023-12-20 LG Electronics Inc. SIDELINK-DRX ASSOCIATED OPERATING METHOD FOR A USER DEVICE IN A WIRELESS COMMUNICATIONS SYSTEM

Also Published As

Publication number Publication date
EP3609243A4 (en) 2020-05-06
CN109246826B (zh) 2021-06-22
EP3609243A1 (en) 2020-02-12
CN109246826A (zh) 2019-01-18
US11432237B2 (en) 2022-08-30
CN113541904A (zh) 2021-10-22
EP3609243B1 (en) 2021-12-29
US20200120596A1 (en) 2020-04-16

Similar Documents

Publication Publication Date Title
WO2018228531A1 (zh) Drx配置方法、终端设备、网络设备和通信系统
WO2020029738A1 (zh) 一种信号发送、接收方法、网络设备及终端
JP2022516601A (ja) 省電力メカニズム
WO2020200075A1 (zh) 通信方法和装置
WO2018127217A1 (zh) 一种监听指示及监听方法、装置
US11659411B2 (en) Single radio switching between multiple wireless links
WO2018059020A1 (zh) 一种非连续接收的方法及相关装置
WO2013020417A1 (zh) 一种非连续接收方法及系统
WO2011038696A1 (zh) 一种调度信息传输的方法及系统
WO2010126409A1 (en) Notifying user equipment of an upcoming change of system information in a radio communication network
WO2020042783A1 (zh) 指示信令的传输、接收方法、装置、网络侧设备及终端
WO2013023484A1 (zh) 一种实现drx的方法和系统
WO2020043139A1 (zh) 通信方法、装置及存储介质
WO2021056136A1 (zh) 监听wus的方法、发送信息的方法及设备
US20170325102A1 (en) Single radio serving multiple wireless links
US20210337477A1 (en) Communication method and apparatus
WO2022037564A1 (zh) 传输控制方法、装置及相关设备
CN110574444B (zh) 省电信号的参数动态变更方法、装置、终端和介质
US20210243835A1 (en) Early activation of discontinuous reception
WO2020164143A1 (zh) 非连续接收的方法、终端设备和网络设备
CN116367191A (zh) 一种通信方法及装置
CN114745677B (zh) 路径处理方法、装置、终端、网络设备和存储介质
WO2022160289A1 (en) Apparatuses and methods for downlink notification monitoring
WO2016152806A1 (ja) 無線通信システム、無線通信ネットワーク、無線端末及び無線通信方法
WO2019206249A1 (zh) 一种降低数据接收时延的方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18817732

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018817732

Country of ref document: EP

Effective date: 20191106

NENP Non-entry into the national phase

Ref country code: DE