WO2018228355A1 - 发射激光光轴与目标跟踪光轴平行度控制系统 - Google Patents

发射激光光轴与目标跟踪光轴平行度控制系统 Download PDF

Info

Publication number
WO2018228355A1
WO2018228355A1 PCT/CN2018/090746 CN2018090746W WO2018228355A1 WO 2018228355 A1 WO2018228355 A1 WO 2018228355A1 CN 2018090746 W CN2018090746 W CN 2018090746W WO 2018228355 A1 WO2018228355 A1 WO 2018228355A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical axis
unit
target tracking
offset
retroreflector
Prior art date
Application number
PCT/CN2018/090746
Other languages
English (en)
French (fr)
Inventor
廖周
王允乾
张永光
莫德乐图
Original Assignee
成都安的光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 成都安的光电科技有限公司 filed Critical 成都安的光电科技有限公司
Publication of WO2018228355A1 publication Critical patent/WO2018228355A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/26Measuring arrangements characterised by the use of optical techniques for measuring angles or tapers; for testing the alignment of axes
    • G01B11/27Measuring arrangements characterised by the use of optical techniques for measuring angles or tapers; for testing the alignment of axes for testing the alignment of axes
    • G01B11/272Measuring arrangements characterised by the use of optical techniques for measuring angles or tapers; for testing the alignment of axes for testing the alignment of axes using photoelectric detection means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41HARMOUR; ARMOURED TURRETS; ARMOURED OR ARMED VEHICLES; MEANS OF ATTACK OR DEFENCE, e.g. CAMOUFLAGE, IN GENERAL
    • F41H11/00Defence installations; Defence devices
    • F41H11/02Anti-aircraft or anti-guided missile or anti-torpedo defence installations or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41HARMOUR; ARMOURED TURRETS; ARMOURED OR ARMED VEHICLES; MEANS OF ATTACK OR DEFENCE, e.g. CAMOUFLAGE, IN GENERAL
    • F41H13/00Means of attack or defence not otherwise provided for
    • F41H13/0043Directed energy weapons, i.e. devices that direct a beam of high energy content toward a target for incapacitating or destroying the target
    • F41H13/005Directed energy weapons, i.e. devices that direct a beam of high energy content toward a target for incapacitating or destroying the target the high-energy beam being a laser beam
    • F41H13/0062Directed energy weapons, i.e. devices that direct a beam of high energy content toward a target for incapacitating or destroying the target the high-energy beam being a laser beam causing structural damage to the target
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/26Measuring arrangements characterised by the use of optical techniques for measuring angles or tapers; for testing the alignment of axes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/64Imaging systems using optical elements for stabilisation of the lateral and angular position of the image
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/068Stabilisation of laser output parameters
    • H01S5/0683Stabilisation of laser output parameters by monitoring the optical output parameters

Definitions

  • the invention relates to the field of counterfeiting of a drone, in particular to a control system for transmitting laser optical axis and target tracking optical axis parallelism applied to a laser slamming system of an unmanned aerial vehicle.
  • UAVs to sneak shots and steal information, carrying substances that endanger public safety, and, for example, the emergence of drone black-fly events at an airport, resulting in a large number of flights delayed, resulting in significant losses.
  • the UAV laser slamming system is a system that uses a laser to strike a target (unmanned aerial vehicle).
  • the target tracking optical path and the laser emitting optical path can be used to share one optical path, that is, the striking laser along the target tracking path. transmission. Therefore, ensuring that the emitted laser optical axis is parallel to the target tracking optical axis is a prerequisite for achieving a targeted attack.
  • the embodiments of the present invention provide the following technical solutions:
  • a control system for transmitting laser optical axis and target tracking optical axis parallelism comprising an optical axis parallelism detecting unit, a control unit, a target tracking optical axis correcting unit, and a transmitting laser optical axis correcting unit;
  • the optical axis parallelism detecting unit is configured to detect an offset of the target tracking optical axis and an offset of the emitted laser optical axis;
  • the control unit is configured to control the target tracking optical axis correction unit according to the offset of the target tracking optical axis, and control the emission laser optical axis correction unit according to the offset of the emitted laser optical axis;
  • the target tracking optical axis correction unit is configured to adjust a target tracking optical axis
  • the emission laser optical axis correction unit is configured to adjust an emission laser optical axis.
  • Scheme 2 a control system for transmitting laser optical axis and target tracking optical axis parallelism, comprising an optical axis parallelism detecting unit, a control unit and a target tracking optical axis correcting unit;
  • the optical axis parallelism detecting unit is configured to detect an offset of the target tracking optical axis and an offset of the emitted laser optical axis;
  • the control unit is configured to control the target tracking optical axis correction unit according to the offset of the target tracking optical axis and the offset of the emitted laser optical axis;
  • the target tracking optical axis correction unit is configured to adjust the target tracking optical axis such that an angle between the adjusted target tracking optical axis and the emitted laser optical axis is within a set range.
  • a control system for transmitting laser optical axis and target tracking optical axis parallelism comprising an optical axis parallelism detecting unit, a control unit and a transmitting laser optical axis correcting unit;
  • the optical axis parallelism detecting unit is configured to detect an offset of the target tracking optical axis and an offset of the emitted laser optical axis;
  • the control unit is configured to control the emission laser optical axis correction unit according to the offset of the target tracking optical axis and the offset of the emitted laser optical axis;
  • the emission laser optical axis correction unit is configured to adjust an emission laser optical axis such that an angle between the target tracking optical axis and the adjusted emission laser optical axis is within a set range.
  • the embodiment of the invention further provides an optical axis parallelism detecting device, comprising a light splitting unit, a retroreflector unit and an optical axis detecting sensor unit; the light splitting unit transmits a part of the emitted laser light to the retroreflector unit to enter the retroreflection
  • the laser of the unit is reflected back by the retroreflector, reflected by the spectroscopic unit, and then enters the optical axis detecting sensor unit to obtain an offset of the emitted laser optical axis;
  • the tracking light from the target is transmitted through the spectroscopic unit and enters the optical axis.
  • the sensor unit is detected to obtain an offset of the target tracking optical axis.
  • An embodiment of the present invention further provides an optical axis parallelism detecting device of another structure, comprising a beam splitting unit, a retroreflector unit and an optical axis detecting sensor unit; the beam splitting unit transmits the target tracking light to the retroreflector unit, after entering The target tracking light to the reflector unit is reflected back by the retroreflector, reflected by the beam splitting unit, and then enters the optical axis detecting sensor unit to obtain an offset of the target tracking optical axis; the splitting unit transmits a part of the emitted laser light to the optical axis The sensor unit is probed to obtain an offset of the axis of the emitted laser light.
  • the invention has the beneficial effects that the optical axis parallelism detecting unit can detect the angle between the emitted laser optical axis and the target tracking optical axis, and corrects by the correcting unit when the requirements are not met. It can guarantee the parallelism between the emitted laser optical axis and the target tracking optical axis, so that the emitted laser can accurately hit the target.
  • FIG. 1 is a schematic diagram of an optical axis parallelism control system of the structure according to the embodiment of the present invention.
  • FIG. 2 is a schematic diagram of an optical axis parallelism control system of another structure according to the embodiment of the present invention.
  • FIG. 3 is a schematic diagram of an optical axis parallelism control system of still another structure according to the embodiment of the present invention.
  • FIG. 4 is a schematic diagram of an optical axis parallelism detecting unit of the structure according to the embodiment of the present invention.
  • FIG. 5 is a schematic diagram of an optical axis parallelism detecting unit of another structure according to the embodiment of the present invention.
  • 10-optical axis parallelism detecting unit 20-control unit; 30-target tracking optical axis correcting unit; 40-transmitting laser optical axis correcting unit; 50-target tracking light; 60-emitting laser; 101-splitting unit; Retroreflector unit; 103-optical axis detecting sensor unit; 105-signal line; 106-partially-reflecting laser reflected by the splitting unit; 107-partially emitting laser light transmitted by the splitting unit; 108-emitting laser reflected by the retroreflector unit ; 109 - The target tracking light reflected by the retroreflector unit.
  • a parallel laser detecting system for transmitting laser optical axis and target tracking optical axis.
  • the system includes an optical axis parallelism detecting unit 10, a control unit 20, and a target tracking optical axis correcting unit. 30 and/or emit laser optical axis correction unit 40.
  • the optical axis parallelism detecting unit 10 is configured to detect the parallelism between the target tracking optical axis and the emitted laser optical axis, that is, the optical axis angle.
  • the control unit 20 performs data processing and fusion according to the target tracking optical axis offset and the emitted laser optical axis offset output by the optical axis parallelism detecting unit 10, and then controls the target tracking optical axis correcting unit 30 and the emitted laser optical axis, respectively.
  • the correcting unit 40 or one of the target tracking optical axis correcting unit 30 and the emitting laser optical axis correcting unit 40, according to the angle between the target tracking optical axis and the emitted laser optical axis, thereby causing the target tracking optical axis and the emitted laser light
  • the angle of the shaft is within the allowable range, preferably close to zero, ensuring parallelism between the transmitted laser optical axis and the target tracking optical axis.
  • the target tracking optical axis correction unit 30 and the emission laser optical axis correction unit 40 may employ a two-dimensional planar scanning mirror or a two-dimensional scanning mirror system having a two-dimensional planar scanning function, and the control unit issues a control signal to control the target tracking light.
  • the axis correcting unit 30 and/or the emitting laser optical axis correcting unit 40 performs a corresponding angular adjustment such that the angle between the target tracking optical axis and the axis of the emitted laser light is within an allowable range, preferably approaching zero.
  • the emission laser optical axis and target tracking optical axis parallelism control system includes an optical axis parallelism detecting unit 10, a control unit 20, a target tracking optical axis correcting unit 30, and a transmitting laser optical axis correcting unit 40,
  • the optical axis parallelism detecting unit 10 detects the offset of the target tracking optical axis and the offset of the emitted laser optical axis, respectively, and the control unit 20 controls the target tracking optical axis correcting unit 30 according to the offset of the target tracking optical axis.
  • the offset of the adjusted target tracking optical axis is approached to zero, and on the other hand, controlling the emitted laser optical axis correcting unit 40 according to the offset of the emitted laser optical axis to achieve the emission
  • the adjustment of the laser optical axis preferably causes the offset of the modulated laser optical axis to approach zero.
  • the emission laser optical axis and the target tracking optical axis parallelism control system includes an optical axis parallelism detecting unit 10, a control unit 20, a target tracking optical axis correcting unit 30, and an optical axis parallelism detecting unit 10 respectively.
  • the control unit 20 calculates the angle between the two optical axes according to the two offsets, and controls the target tracking optical axis correcting unit 30 to implement
  • the adjustment of the target tracking optical axis is such that the angle between the target tracking optical axis and the emitted laser optical axis is within a set range, preferably approaching zero.
  • the emission laser optical axis and the target tracking optical axis parallelism control system includes an optical axis parallelism detecting unit 10, a control unit 20, a transmitting laser optical axis correcting unit 40, and an optical axis parallelism detecting unit 10, respectively.
  • the control unit 20 calculates an angle between the two optical axes based on the two offsets (ie, the target tracking light and the optical axis of the emitted laser (distance), controlling the emission laser optical axis correction unit 40 to achieve adjustment of the emission laser optical axis such that the angle between the target tracking optical axis and the emission laser optical axis is within a set range, preferably approaching the zero optical axis .
  • the optical axis parallelism detecting unit 10 includes a beam splitting unit 101, a retroreflector unit 102, and an optical axis detecting sensor unit 103.
  • one surface of the light splitting unit 101 is plated with an optical film having a high reflectance for emitting laser light 60 and an optical film having a high transmittance for the target tracking light 50, and the other surface is plated with the emitted laser light 60 and The target tracks the optical film with high transmittance of light 50.
  • a part of the energy that is, a part of the emitted laser light 106 reflected by the light splitting unit is reflected out to strike the target
  • another part of the energy, that is, the partial emitted laser light 107 transmitted by the light splitting unit passes through the light splitting unit 101, and enters the backward reflection.
  • the laser unit 108 that is reflected back from the retroreflector unit 102, that is, reflected by the retroreflector unit, is reflected by the beam splitting unit 101, and then enters the optical axis detecting sensor unit 103 to obtain an optical axis for emitting laser light. Offset; after the target tracking ray 50 is transmitted through the spectroscopic unit 101, it enters the optical axis detecting sensor unit 103 to obtain an offset of the target tracking optical axis.
  • one surface of the light splitting unit 101 is plated with an optical film that transmits the target tracking light 50 and an optical film that emits a high reflectance to the laser light 60, and the other surface is plated with the emitted laser light 60 and the target tracking.
  • the light 50 has a high transmittance optical film.
  • the sensor unit 103 obtains an offset of the optical axis of the emitted laser light; the target tracking light 50 passes through the light splitting unit 101 and enters the retroreflector unit 102, and the target tracking light 50 entering the retroreflector unit 102 is reflected back, that is, The target tracking ray 109 reflected by the reflector unit is reflected by the beam splitting unit 101, and then enters the optical axis detecting sensor unit 103 to obtain an offset of the target tracking optical axis.
  • Retroreflector unit 102 can include a retroreflector or a retroreflector array of multiple retroreflectors.

Abstract

一种发射激光光轴与目标跟踪光轴平行度控制系统,包括光轴平行度检测单元(10)、控制单元(20)、目标跟踪光轴校正单元(30)和发射激光光轴校正单元(40);光轴平行度检测单元(10),用于检测目标跟踪光轴的偏移量和发射激光光轴的偏移量;控制单元(20),用于根据目标跟踪光轴的偏移量控制目标跟踪光轴校正单元(30),根据发射激光光轴的偏移量控制发射激光光轴校正单元(40)。通过光轴平行度检测单元可以检测出发射激光光轴与目标跟踪光轴之间的夹角,在不符合要求时通过校正单元进行校正,可以保障发射激光光轴与目标跟踪光轴的平行度,保障发射激光可以精准击中目标。

Description

发射激光光轴与目标跟踪光轴平行度控制系统 技术领域
本发明涉及无人机反制领域,特别是一种应用于无人机激光狙击系统的发射激光光轴与目标跟踪光轴平行度控制系统。
背景技术
无人机违规飞行会对国家公共安全、飞行安全甚至是空防安全构成威胁。比如,利用无人机进行偷拍和窃取信息,携带危害公共安全的物质,再比如,某机场出现无人机黑飞事件,导致大量航班被延误,产生了重大损失。
无人机激光狙击系统,是一种利用激光打击目标(无人机)的系统,为了实现目标被击中,可以采用目标跟踪光路与激光发射光路共用一个光路,即,打击激光沿目标跟踪路径传输。因此,保障发射激光光轴与目标跟踪光轴平行,是实现目标被精准打击的前提。
发明内容
本发明的目的在于提供一种应用于无人机激光狙击系统的发射激光光轴与目标跟踪光轴平行度控制系统。为此,本发明实施例提供了以下技术方案:
方案一:一种发射激光光轴与目标跟踪光轴平行度控制系统,包括光轴平行度检测单元、控制单元、目标跟踪光轴校正单元和发射激光光轴校正单元;
所述光轴平行度检测单元,用于检测目标跟踪光轴的偏移量和发射激光光轴的偏移量;
所述控制单元,用于根据目标跟踪光轴的偏移量控制目标跟踪光轴校正单元,根据发射激光光轴的偏移量控制发射激光光轴校正单元;
所述目标跟踪光轴校正单元,用于调节目标跟踪光轴;
所述发射激光光轴校正单元,用于调节发射激光光轴。
方案二:一种发射激光光轴与目标跟踪光轴平行度控制系统,包括光轴平行度检测单元、控制单元和目标跟踪光轴校正单元;
所述光轴平行度检测单元,用于检测目标跟踪光轴的偏移量和发射激光光轴的偏移量;
所述控制单元,用于根据目标跟踪光轴的偏移量和发射激光光轴的偏移量,控制目标跟踪光轴校正单元;
所述目标跟踪光轴校正单元,用于调节目标跟踪光轴,使得调节后的目标跟踪光轴与发射激光光轴之间的夹角在设定范围内。
方案三:一种发射激光光轴与目标跟踪光轴平行度控制系统,包括光轴平行度检测单元、控制单元和发射激光光轴校正单元;
所述光轴平行度检测单元,用于检测目标跟踪光轴的偏移量和发射激光光轴的偏移量;
所述控制单元,用于根据目标跟踪光轴的偏移量和发射激光光轴的偏移量,控制发射激光光轴校正单元;
所述发射激光光轴校正单元,用于调节发射激光光轴,使得目标跟踪光轴与调节后的发射激光光轴之间的夹角在设定范围内。
本发明实施例还提供了一种光轴平行度检测装置,包括分光单元、后向反射器单元和光轴探测传感器单元;分光单元将发射激光的一部分透射至后向反射器单元,进入后向反射器单元的激光被后向反射器反射回来,经分光单元反 射后,进入光轴探测传感器单元,得到发射激光光轴的偏移量;来自目标的跟踪光线,经过分光单元透射后,进入光轴探测传感器单元,得到目标跟踪光轴的偏移量。
本发明实施例还提供了另一种结构的光轴平行度检测装置,包括分光单元、后向反射器单元和光轴探测传感器单元;分光单元将目标跟踪光线透射至后向反射器单元,进入后向反射器单元的目标跟踪光线被后向反射器反射回来,经分光单元反射后,进入光轴探测传感器单元,得到目标跟踪光轴的偏移量;分光单元将发射激光的一部分透射至光轴探测传感器单元,,得到发射激光光轴的偏移量。
与现有技术相比,本发明的有益效果:本发明通过光轴平行度检测单元可以检测出发射激光光轴与目标跟踪光轴之间的夹角,在不符合要求时通过校正单元进行校正,可以保障发射激光光轴与目标跟踪光轴的平行度,实现发射激光精准击中目标。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本发明的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1为本发明实施例中所述一种结构的光轴平行度控制系统示意图。
图2为本发明实施例中所述另一种结构的光轴平行度控制系统示意图。
图3为本发明实施例中所述又一种结构的光轴平行度控制系统示意图。
图4为本发明实施例中所述一种结构的光轴平行度检测单元的示意图。
图5为本发明实施例中所述另一种结构的光轴平行度检测单元的示意图
图中标记说明
10-光轴平行度检测单元;20-控制单元;30-目标跟踪光轴校正单元;40-发射激光光轴校正单元;50-目标跟踪光线;60-发射激光;101-分光单元;102-后向反射器单元;103-光轴探测传感器单元;105-信号线;106-分光单元反射的部分发射激光;107-分光单元透射的部分发射激光;108-后向反射器单元反射的发射激光;109-后向反射器单元反射的目标跟踪光线。
具体实施方式
下面将结合本发明实施例中附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。通常在此处附图中描述和示出的本发明实施例的组件可以以各种不同的配置来布置和设计。因此,以下对在附图中提供的本发明的实施例的详细描述并非旨在限制要求保护的本发明的范围,而是仅仅表示本发明的选定实施例。基于本发明的实施例,本领域技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。
请参阅图1-3,本实施例中提供了一种发射激光光轴与目标跟踪光轴平行度检测系统,该系统包括光轴平行度检测单元10、控制单元20、目标跟踪光轴校正单元30和/或发射激光光轴校正单元40。
光轴平行度检测单元10用于检测目标跟踪光轴和发射激光光轴之间的平行度,即光轴夹角。根据光轴平行度检测单元10输出的目标跟踪光轴偏移量和发射激光光轴偏移量,控制单元20进行数据处理和融合,然后分别控制目标跟踪光轴校正单元30和发射激光光轴校正单元40,或者根据目标跟踪光轴和发射激光光轴之间的夹角,控制目标跟踪光轴校正单元30和发射激光光轴校正单元40 之一,从而使目标跟踪光轴与发射激光光轴的夹角在允许的范围内,最好趋近于零,保证发射激光光轴和目标跟踪光轴的平行性。
目标跟踪光轴校正单元30和发射激光光轴校正单元40可以采用二维平面扫描镜,或者两个一维扫描镜组成的具有二维平面扫描功能的系统,控制单元发出控制信号控制目标跟踪光轴校正单元30和/或发射激光光轴校正单元40进行相应角度调整,使得目标跟踪光轴与发射激光光轴的夹角在允许的范围内,最好趋近于零。
在图1所示方案中,发射激光光轴与目标跟踪光轴平行度控制系统包括光轴平行度检测单元10、控制单元20、目标跟踪光轴校正单元30和发射激光光轴校正单元40,光轴平行度检测单元10分别检测目标跟踪光轴的偏移量和发射激光光轴的偏移量,控制单元20一方面根据目标跟踪光轴的偏移量控制目标跟踪光轴校正单元30,实现对目标跟踪光轴的调节,优选使得调节后目标跟踪光轴的偏移量趋近于零,另一方面根据发射激光光轴的偏移量控制发射激光光轴校正单元40,实现对发射激光光轴的调节,优选使得调节后发射激光光轴的偏移量趋近于零。
在图2所示方案中,发射激光光轴与目标跟踪光轴平行度控制系统包括光轴平行度检测单元10、控制单元20、目标跟踪光轴校正单元30,光轴平行度检测单元10分别检测目标跟踪光轴的偏移量和发射激光光轴的偏移量,控制单元20根据这两个偏移量计算两个光轴之间的夹角,控制目标跟踪光轴校正单元30,实现对目标跟踪光轴的调节,使得目标跟踪光轴与发射激光光轴之间的夹角在设定范围内,最好趋近于零。
在图3所示方案中,发射激光光轴与目标跟踪光轴平行度控制系统包括光轴平行度检测单元10、控制单元20、发射激光光轴校正单元40,光轴平行度检 测单元10分别检测目标跟踪光轴的偏移量和发射激光光轴的偏移量,控制单元20根据这两个偏移量计算两个光轴之间的夹角(即目标跟踪光与发射激光光轴的距离),控制发射激光光轴校正单元40,实现对发射激光光轴的调节,使得目标跟踪光轴与发射激光光轴之间的夹角在设定范围内,最好趋近于零光轴。
请参阅图4-5,光轴平行度检测单元10包括分光单元101、后向反射器单元102和光轴探测传感器单元103。
在图4所示结构中,分光单元101的一个表面镀制对发射激光60高反射率的光学膜和对目标跟踪光线50高透过率的光学膜,另外一个表面镀制对发射激光60和目标跟踪光线50都高透过率的光学膜。发射激光60经过分光单元101后,一部分能量,即分光单元反射的部分发射激光106被反射出去打击目标,另一部分能量,即分光单元透射的部分发射激光107透过分光单元101,进入后向反射器单元102,进入后向反射器单元102的激光被反射回来,即后向反射器单元反射的发射激光108,经分光单元101反射后,进入光轴探测传感器单元103,得到发射激光光轴的偏移量;目标跟踪光线50经过分光单元101透射后,进入光轴探测传感器单元103,得到目标跟踪光轴的偏移量。
在图5所示结构中,分光单元101的一个表面镀制对目标跟踪光线50透过的光学膜和对发射激光60高反射率的光学膜,另外一个表面镀制对发射激光60和目标跟踪光线50都高透过率的光学膜。发射激光60经过分光单元101后,一部分能量,即分光单元反射的部分发射激光106被反射出去打击目标,另一部分能量,即分光单元透射的部分发射激光107透过分光单元101,进入光轴探测传感器单元103,得到发射激光光轴的偏移量;目标跟踪光线50透过分光单元101后进入后向反射器单元102,进入后向反射器单元102的目标跟踪光线 50被反射回来,即后向反射器单元反射的目标跟踪光线109,经分光单元101反射后,进入光轴探测传感器单元103,得到目标跟踪光轴的偏移量。
后向反射器单元102可以包括一个后向反射器,或者由多个后向反射器组成的后向反射器阵列。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。

Claims (8)

  1. 一种发射激光光轴与目标跟踪光轴平行度控制系统,其特征在于,包括光轴平行度检测单元、控制单元、目标跟踪光轴校正单元和发射激光光轴校正单元;
    所述光轴平行度检测单元,用于检测目标跟踪光轴的偏移量和发射激光光轴的偏移量;
    所述控制单元,用于根据目标跟踪光轴的偏移量控制目标跟踪光轴校正单元,根据发射激光光轴的偏移量控制发射激光光轴校正单元;
    所述目标跟踪光轴校正单元,用于调节目标跟踪光轴;
    所述发射激光光轴校正单元,用于调节发射激光光轴。
  2. 根据权利要求1所述的发射激光光轴与目标跟踪光轴平行度控制系统,其特征在于,所述光轴平行度检测单元,包括分光单元、后向反射器单元和光轴探测传感器单元;分光单元将发射激光的一部分透射至后向反射器单元,进入后向反射器单元的激光被后向反射器反射回来,经分光单元反射后,进入光轴探测传感器单元,得到发射激光光轴的偏移量;来自目标的跟踪光线,经过分光单元透射后,进入光轴探测传感器单元,得到目标跟踪光轴的偏移量。
  3. 根据权利要求1所述的发射激光光轴与目标跟踪光轴平行度控制系统,其特征在于,所述光轴平行度检测单元,包括分光单元、后向反射器单元和光轴探测传感器单元;分光单元将目标跟踪光线透射至后向反射器单元,进入后向反射器单元的目标跟踪光线被后向反射器反射回来,经分光单元反射后,进入光轴探测传感器单元,得到目标跟踪光轴的偏移量;分光单元将发射激光的一部分透射至光轴探测传感器单元,得到发射激光光轴的偏移量。
  4. 根据权利要求2或3所述的发射激光光轴与目标跟踪光轴平行度控制系统,其特征在于,所述后向反射器单元包括一个后向反射器,或者由多个后向反射器组成的后向反射器阵列。
  5. 一种发射激光光轴与目标跟踪光轴平行度控制系统,其特征在于,包括光轴平行度检测单元、控制单元和目标跟踪光轴校正单元;
    所述光轴平行度检测单元,用于检测目标跟踪光轴的偏移量和发射激光光轴的偏移量;
    所述控制单元,用于根据目标跟踪光轴的偏移量和发射激光光轴的偏移量,控制目标跟踪光轴校正单元;
    所述目标跟踪光轴校正单元,用于调节目标跟踪光轴,使得调节后的目标跟踪光轴与发射激光光轴之间的夹角在设定范围内。
  6. 一种发射激光光轴与目标跟踪光轴平行度控制系统,其特征在于,包括光轴平行度检测单元、控制单元和发射激光光轴校正单元;
    所述光轴平行度检测单元,用于检测目标跟踪光轴的偏移量和发射激光光轴的偏移量;
    所述控制单元,用于根据目标跟踪光轴的偏移量和发射激光光轴的偏移量,控制发射激光光轴校正单元;
    所述发射激光光轴校正单元,用于调节发射激光光轴,使得目标跟踪光轴与调节后的发射激光光轴之间的夹角在设定范围内。
  7. 一种光轴平行度检测装置,其特征在于,包括分光单元、后向反射器单元和光轴探测传感器单元;分光单元将发射激光的一部分透射至后向反射器单 元,进入后向反射器单元的激光被后向反射器反射回来,经分光单元反射后,进入光轴探测传感器单元,得到发射激光光轴的偏移量;来自目标的跟踪光线,经过分光单元透射后,进入光轴探测传感器单元,得到目标跟踪光轴的偏移量。
  8. 一种光轴平行度检测装置,其特征在于,包括分光单元、后向反射器单元和光轴探测传感器单元;分光单元将目标跟踪光线透射至后向反射器单元,进入后向反射器单元的目标跟踪光线被后向反射器反射回来,经分光单元反射后,进入光轴探测传感器单元,得到目标跟踪光轴的偏移量;分光单元将发射激光的一部分透射至光轴探测传感器单元,得到发射激光光轴的偏移量。
PCT/CN2018/090746 2017-06-16 2018-06-12 发射激光光轴与目标跟踪光轴平行度控制系统 WO2018228355A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710458277.2 2017-06-16
CN201710458277.2A CN107101536B (zh) 2017-06-16 2017-06-16 发射激光光轴与目标跟踪光轴平行度控制系统

Publications (1)

Publication Number Publication Date
WO2018228355A1 true WO2018228355A1 (zh) 2018-12-20

Family

ID=59659474

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/090746 WO2018228355A1 (zh) 2017-06-16 2018-06-12 发射激光光轴与目标跟踪光轴平行度控制系统

Country Status (4)

Country Link
US (1) US20180364035A1 (zh)
CN (1) CN107101536B (zh)
GB (1) GB2565881B (zh)
WO (1) WO2018228355A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107101536B (zh) * 2017-06-16 2018-08-21 成都安的光电科技有限公司 发射激光光轴与目标跟踪光轴平行度控制系统
CN111102942B (zh) * 2019-12-28 2021-05-25 中国船舶重工集团公司第七一七研究所 激光发射光轴与跟踪系统光轴平行度实时矫正系统及方法
CN111142574B (zh) * 2019-12-28 2021-08-13 中国船舶重工集团公司第七一七研究所 一种用于光机结构变形补偿的激光发射校正系统及方法
CN111076679A (zh) * 2019-12-28 2020-04-28 中国船舶重工集团公司第七一七研究所 一种激光与视频实时同轴矫正系统及方法
CN112504169A (zh) * 2020-09-15 2021-03-16 中国科学院上海技术物理研究所 一种主动光电系统激光收发同轴度的测试装置及方法
CN112284302B (zh) * 2020-09-15 2022-02-18 中国科学院上海技术物理研究所 扫描法测量主动光电系统激光收发同轴度的装置及方法
CN113048913B (zh) * 2021-03-12 2024-02-02 中国人民解放军火箭军工程大学 一种数字投影系统间光轴平行度调整方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101236304A (zh) * 2008-01-29 2008-08-06 北京理工大学 一种光线平行调整的装置与方法
CN102901467A (zh) * 2012-11-07 2013-01-30 中国科学院长春光学精密机械与物理研究所 一种激光发射光轴和捕获跟踪视轴的平行度校正装置
US8415600B2 (en) * 2009-03-27 2013-04-09 Optical Physics Company Laser beam control system and method
US20160097616A1 (en) * 2011-11-25 2016-04-07 Dr. Adam Mark Weigold Laser Guided and Laser Powered Energy Discharge Device
CN107101536A (zh) * 2017-06-16 2017-08-29 成都安的光电科技有限公司 发射激光光轴与目标跟踪光轴平行度控制系统
CN207300056U (zh) * 2017-06-16 2018-05-01 成都安的光电科技有限公司 发射激光光轴与目标跟踪光轴平行度控制系统

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3526246B2 (ja) * 1999-08-06 2004-05-10 株式会社東芝 目標表示システム
US8927935B1 (en) * 2012-05-21 2015-01-06 The Boeing Company All electro optical based method for deconfliction of multiple, co-located directed energy, high energy laser platforms on multiple, near simultaneous threat targets in the same battle space
CN206077403U (zh) * 2016-09-20 2017-04-05 刘嘉伟 一种反无人机系统
CN106643303B (zh) * 2016-10-20 2018-09-28 上海无线电设备研究所 一种基于多模复合传感机理的区域监测与防卫系统
CN106452658B (zh) * 2016-10-25 2019-06-07 成都紫瑞青云航空宇航技术有限公司 一种低空防御设备
CN106778746A (zh) * 2016-12-23 2017-05-31 成都赫尔墨斯科技有限公司 一种多目标反无人机方法
CN106846922A (zh) * 2017-03-14 2017-06-13 武汉天宇智戎防务科技有限公司 低空近程集群协同防卫系统及防卫方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101236304A (zh) * 2008-01-29 2008-08-06 北京理工大学 一种光线平行调整的装置与方法
US8415600B2 (en) * 2009-03-27 2013-04-09 Optical Physics Company Laser beam control system and method
US20160097616A1 (en) * 2011-11-25 2016-04-07 Dr. Adam Mark Weigold Laser Guided and Laser Powered Energy Discharge Device
CN102901467A (zh) * 2012-11-07 2013-01-30 中国科学院长春光学精密机械与物理研究所 一种激光发射光轴和捕获跟踪视轴的平行度校正装置
CN107101536A (zh) * 2017-06-16 2017-08-29 成都安的光电科技有限公司 发射激光光轴与目标跟踪光轴平行度控制系统
CN207300056U (zh) * 2017-06-16 2018-05-01 成都安的光电科技有限公司 发射激光光轴与目标跟踪光轴平行度控制系统

Also Published As

Publication number Publication date
GB2565881A (en) 2019-02-27
CN107101536A (zh) 2017-08-29
GB2565881B (en) 2020-02-26
GB201809648D0 (en) 2018-08-01
US20180364035A1 (en) 2018-12-20
CN107101536B (zh) 2018-08-21

Similar Documents

Publication Publication Date Title
WO2018228355A1 (zh) 发射激光光轴与目标跟踪光轴平行度控制系统
WO2020151539A1 (zh) 一种激光雷达系统
US10444356B2 (en) Lidar system and method
US10545223B2 (en) Optical scanning object detection device detecting object that invades detection area
CN204044359U (zh) 一种二维扫描式激光测距装置
WO2018082200A1 (zh) 一种二维扫描装置及具有该二维扫描装置的激光雷达装置
US8218589B1 (en) High-energy laser atmospheric compensation and aimpoint maintenance
EP2564147B1 (en) Optical transceiver built-in test (bit)
WO2017012533A1 (zh) 一种智能测距及避障的装置
CN108919289A (zh) 无人机激光中继重定向能量传输装置
CN109945743B (zh) 主动照明式同步监测共口径跟瞄发射系统及方法
US20180011174A1 (en) Position reference sensor
US8588617B2 (en) Optical transceiver assembly with transmission-direction control
US20170299701A1 (en) Scanning Optical System And Radar
EP3514575A3 (en) Light emission apparatus, object information detection apparatus, optical path adjustment method, object information detection method, and light modulation unit
WO2021096328A3 (ko) 타겟의 초기 위치 감지 기능을 구비한 레이저 추적 장치 및 추적 방법
EP3271749B1 (en) Multiple-beam triangulation-based range finder and method
RU2541505C2 (ru) Способ доставки лазерного излучения на движущийся объект и устройство для его осуществления
WO2018228354A1 (zh) 发射激光与目标探测光等焦性控制系统
CN108519591B (zh) 一种激光测距光束指向实时高精度监视的装置
KR101538732B1 (ko) 타겟용 광학계의 레이저광 기구 차단 장치
CN207300056U (zh) 发射激光光轴与目标跟踪光轴平行度控制系统
CN207300055U (zh) 发射激光与目标探测光等焦性控制系统
RU2541494C1 (ru) Комбинированная оптико-электронная система
US9964633B1 (en) Airborne infrared countermeasures systems and method for establishing an infrared communications link between airborne infrared countermeasures systems

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18818414

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 8.05.2020)

122 Ep: pct application non-entry in european phase

Ref document number: 18818414

Country of ref document: EP

Kind code of ref document: A1