WO2018227727A1 - 一种定位方法、设备及系统 - Google Patents

一种定位方法、设备及系统 Download PDF

Info

Publication number
WO2018227727A1
WO2018227727A1 PCT/CN2017/094781 CN2017094781W WO2018227727A1 WO 2018227727 A1 WO2018227727 A1 WO 2018227727A1 CN 2017094781 W CN2017094781 W CN 2017094781W WO 2018227727 A1 WO2018227727 A1 WO 2018227727A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
terminal
access network
network device
calibration data
Prior art date
Application number
PCT/CN2017/094781
Other languages
English (en)
French (fr)
Inventor
龚树强
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP17913152.9A priority Critical patent/EP3617748A4/en
Priority to CN201780012009.6A priority patent/CN108700666A/zh
Priority to US16/621,179 priority patent/US20200174135A1/en
Publication of WO2018227727A1 publication Critical patent/WO2018227727A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/03Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers
    • G01S19/07Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers providing data for correcting measured positioning data, e.g. DGPS [differential GPS] or ionosphere corrections
    • G01S19/071DGPS corrections
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/23Testing, monitoring, correcting or calibrating of receiver elements
    • G01S19/235Calibration of receiver components
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/40Correcting position, velocity or attitude
    • G01S19/41Differential correction, e.g. DGPS [differential GPS]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices

Definitions

  • the embodiments of the present invention relate to the field of wireless communications technologies, and in particular, to a positioning method, device, and system.
  • high-precision positioning mainly uses differential global navigation satellite system (GNSS) positioning technology.
  • GNSS global navigation satellite system
  • the main principle of the differential GNSS positioning technique is that the reference station 11 located at a known location can receive the satellite signal transmitted by the satellite system 12 and calculate the error value based on the position measurement value and the actual position obtained from the satellite signal. And transmitting the error value to the terminal 13, and the terminal 13 can eliminate the main error of the position measurement value obtained according to the satellite signal according to the error value, thereby accurately positioning.
  • Differential GNSS positioning techniques can mainly include real-time dynamic code phase difference (RTD) technology and carrier phase difference (RTK) technology.
  • the positioning accuracy of the differential GNSS technology will be reduced due to environmental factors and the theoretical precision of the algorithm, and the accuracy can not be improved. For example, if the terminal and the reference station are too far apart, the stratospheric error and the ionospheric error of the terminal and the base station are also different, so that the GNSS error value received by the terminal from the reference station is no longer applicable, and the positioning cannot be improved. Precision.
  • the reference stations in the prior art are usually set at a specific location, and the number is small, so the distance between the terminal and the reference station is large, for example, usually several hundred meters to several hundred kilometers, so that the positioning accuracy of the terminal is made. As the distance from the base station changes, it affects the actual use effect.
  • the embodiment of the present invention provides a positioning method, device, and system, which can make the distance between the terminal and the access network device that sends the calibration data shorter, thereby improving the positioning accuracy of the terminal.
  • the embodiment of the present application provides a positioning method, which is applied to an access network device, where the access network device stores first location data of the access network device, where the first location data is used to represent the access network.
  • the exact location of the device includes first: the access network device receives a first satellite signal from a satellite system. Then, the access network device determines the second location data of the access network device according to the first satellite signal. Furthermore, the access network device is based on the first bit Set the data and the second position data to determine the calibration data. The access network device then sends the calibration data to the terminal, which is used by the terminal to determine its exact location.
  • the distance between the terminal and the access network device that sends the calibration data can be made shorter, so that the accuracy of the positioning of the terminal according to the calibration data can be improved, and the positioning error can be reduced.
  • the access network device sends the calibration data to the terminal, where the access network device sends the calibration data to the terminal by using a broadcast transmission manner, where the broadcast transmission mode includes a broadcast message or a multimedia broadcast.
  • Multicast broadcast multicast service (MBMS) Multicast broadcast multicast service
  • the method of transmitting calibration data by means of broadcast transmission is simpler and faster, the delay is smaller, the real-time performance is better, the network capacity is higher, the efficiency is higher, and the connection capacity of the access network device is not limited.
  • the access network device sends the calibration data to the terminal by using a broadcast transmission manner, where the access network device periodically calibrates by using a broadcast transmission manner.
  • the data is sent to the terminal.
  • the terminal within the coverage of the access network device can obtain the calibration data updated in real time, thereby achieving accurate positioning according to the updated calibration data.
  • the access network device sends the calibration data to the terminal, where the access network device sends the calibration data to the terminal by using a point-to-point transmission manner.
  • the transmission reliability and safety of the calibration data can be made higher, so that the accuracy of the positioning of the terminal according to the accurate calibration data is also higher.
  • the calibration data includes differential data of the first location data and the second location data, and the difference data includes a latitude and longitude difference value, a distance difference value, and a code. At least one of a phase difference value and a carrier phase difference value.
  • the calibration data includes first location data and second location data.
  • the first location data is obtained by manual measurement.
  • the first location data thus obtained can accurately represent the location of the access network device.
  • an embodiment of the present application provides a positioning method, where the method includes: first, a terminal receives at least one set of calibration data sent by at least one access network device. Second, the terminal receives the second satellite signal from the satellite system, and the terminal determines the third location data of the terminal based on the second satellite signal. Then, the terminal determines the exact location of the terminal based on the at least one set of calibration data and the third location data.
  • the terminal can receive the calibration data sent by the access network device integrated with the base station function, so that the distance between the terminal and the access network device that sends the calibration data can be shorter; and the calibration data does not need to be transmitted through the core network. Therefore, the transmission data of the calibration data can be made more real-time, thereby improving the accuracy of the positioning of the terminal according to the calibration data and reducing the positioning error.
  • the calibration data includes first location data and second location data of the access network device, where the first location data is used to indicate an accurate location of the access network device, and the second location The data is location data obtained by the access network device based on the first satellite signal.
  • the calibration data includes the first location data And differential data of the second location data, the differential data including at least one of a latitude and longitude difference value, a distance difference value, a code phase difference value, and a carrier phase difference value.
  • the receiving, by the terminal, the at least one set of calibration data sent by the at least one access network device comprises: the terminal receiving, by using a broadcast transmission manner, the at least one access network device At least one set of calibration data transmitted, the broadcast transmission mode including a broadcast message or a multimedia broadcast multicast service MBMS.
  • the terminal adopts the broadcast transmission mode to receive the calibration data in a simpler and faster manner, has smaller delay, better real-time performance, higher network capacity, higher efficiency, and is not limited by the connection capability of the access network device.
  • the receiving, by the terminal, the at least one set of calibration data sent by the at least one access network device comprises: receiving, by the terminal, the at least one access network device by using a point-to-point transmission manner At least one set of calibration data sent.
  • the calibration data received by the point-to-point transmission method has higher reliability and safety.
  • the at least one set of calibration data includes multiple sets of calibration data
  • the terminal determines the accuracy of the terminal according to the at least one set of calibration data and the third location data.
  • the location includes: the terminal determines a set of target calibration data based on the plurality of sets of calibration data.
  • the terminal determines the exact location of the terminal based on the target calibration data and the third location data.
  • a set of target calibration data may be determined, and the exact position of itself is determined according to the determined set of target calibration data.
  • the target calibration data is a set of calibration data sent by the access network device closest to the terminal.
  • the accuracy of the positioning by the terminal according to the calibration data sent by the access network device is higher.
  • the target calibration data is a set of calibration data sent by the access network device with the highest priority.
  • the terminal can select calibration data sent by the access network device with high priority for positioning.
  • each parameter in the target calibration data is an average value of each corresponding parameter in the multiple sets of calibration data.
  • the terminal can obtain a comprehensive target calibration data by combining the calibration data sent by different access network devices, thereby performing precise positioning.
  • the target calibration data includes first location data and second location data
  • the terminal determines the accuracy of the terminal according to the target calibration data and the third location data.
  • the location includes: the terminal determines differential data of the first location data and the second location data in the target calibration data.
  • the terminal determines the exact location of the terminal based on the differential data and the third location data.
  • the terminal side has the ability to calculate the differential data of the first position data and the second position data, so that the differential data obtained by the calculation can be accurately positioned.
  • an embodiment of the present application provides an access network device, including: a storage unit, configured to store first location data of an access network device, where the first location data is used to indicate an accurate location of the access network device. And a receiving unit, configured to receive the first satellite signal from the satellite system. a determining unit, configured to determine an access network according to the first satellite signal Prepared second location data. The determining unit is further configured to determine the calibration data according to the first location data and the second location data. And a sending unit, configured to send calibration data to the terminal, where the calibration data is used by the terminal to determine an accurate location of the terminal.
  • the sending unit is specifically configured to: send the calibration data to the terminal by using a broadcast transmission manner, where the broadcast transmission manner includes a broadcast message or a multimedia broadcast multicast service MBMS.
  • the sending unit is specifically configured to periodically send the calibration data to the terminal by using a broadcast transmission manner.
  • the sending unit is specifically configured to: send the calibration data to the terminal by using a point-to-point transmission manner.
  • the calibration data includes differential data of the first location data and the second location data, and the difference data includes a latitude and longitude difference value, a distance difference value, and a code. At least one of a phase difference value and a carrier phase difference value.
  • the calibration data includes first location data and second location data.
  • the first location data is obtained by manual measurement.
  • the embodiment of the present application provides a terminal, including: a first receiving unit, configured to receive at least one set of calibration data sent by at least one access network device. And a second receiving unit, configured to receive the second satellite signal from the satellite system. And a determining unit, configured to determine third location data of the terminal according to the second satellite signal. The determining unit is further configured to determine an accurate location of the terminal according to the at least one set of calibration data and the third location data.
  • the calibration data includes first location data and second location data of the access network device, where the first location data is used to indicate an accurate location of the access network device, and the second location The data is location data obtained by the access network device based on the first satellite signal.
  • the calibration data includes differential data of the first position data and the second position data, the difference data including at least one of a latitude and longitude difference value, a distance difference value, a code phase difference value, and a carrier phase difference value.
  • the first receiving unit is specifically configured to: receive, by using a broadcast transmission manner, at least one set of calibration data sent by at least one access network device, and broadcast transmission
  • the method includes a broadcast message or a multimedia broadcast multicast service MBMS.
  • the first receiving unit is specifically configured to: receive, by using a point-to-point transmission manner, at least one set of calibration data sent by the at least one access network device.
  • the at least one set of calibration data includes multiple sets of calibration data
  • the determining unit is specifically configured to: determine a set of target calibrations according to the plurality of sets of calibration data Data; determining the exact location of the terminal based on the target calibration data and the third location data.
  • the target calibration data is a set of calibration data sent by the access network device closest to the terminal.
  • the target calibration data is a set of calibration data sent by the access network device with the highest priority.
  • each parameter in the target calibration data is an average value of each corresponding parameter in the multiple sets of calibration data.
  • the target calibration data includes first location data and second location data
  • the determining unit is specifically configured to: determine the first location data in the target calibration data. And differential data of the second location data. Based on the differential data and the third location data, the exact location of the terminal is determined.
  • an embodiment of the present application provides an access network device, including at least one processor, a memory, a communication interface, and a bus, where at least one processor and a memory are connected through a bus.
  • the communication interface is used for data interaction.
  • the memory is configured to store instructions and first location data of the access network device, the first location data being used to indicate an accurate location of the access network device.
  • the processor is configured to: invoke an instruction stored in the memory to: receive the first satellite signal from the satellite system; determine second location data of the access network device according to the first satellite signal; and according to the first location data and the second location data, The calibration data is determined; the calibration data is sent to the terminal, and the calibration data is used by the terminal to determine the exact location of the terminal.
  • an embodiment of the present application provides a terminal, including at least one processor, a memory, a communication interface, and a bus, where at least one processor and a memory are connected through a bus.
  • the communication interface is used for data interaction.
  • the memory is used to store instructions.
  • the processor is configured to: invoke an instruction stored in the memory to: receive at least one set of calibration data sent by the at least one access network device; receive the second satellite signal from the satellite system; and determine the third location data of the terminal according to the second satellite signal Determining the exact location of the terminal based on at least one set of calibration data and third location data.
  • the embodiment of the present application provides a computer readable storage medium, including instructions, when operating on an access network device, causing the access network device to perform any of the foregoing first aspect and the first aspect.
  • the embodiment of the present application provides a computer readable storage medium, including instructions, when executed on a terminal, causing the terminal to perform the positioning method in any of the foregoing second aspect and the second aspect.
  • the embodiment of the present application provides a computer program product, comprising: an instruction, when operating on an access network device, causing the access network device to perform any one of the foregoing first aspect and the first aspect Positioning method.
  • the embodiment of the present application provides a computer program product, including instructions, that when executed on a terminal, causes the terminal to perform the positioning method in any of the second aspect and the second aspect.
  • the embodiment of the present application provides a system, where the system includes an access network device and a terminal, where the access network device stores first location data of the access network device, where the first location data is used to indicate The exact location of the access network device.
  • the access network device is configured to: receive a first satellite signal from a satellite system; determine second location data of the access network device according to the first satellite signal; determine calibration data according to the first location data and the second location data; The data is sent to the terminal.
  • the terminal is configured to: receive at least one set of calibration data sent by the at least one access network device; receive a second satellite signal from the satellite system; determine third location data of the terminal according to the second satellite signal; according to at least one set of calibration data and Three-position data to determine the exact location of the terminal.
  • FIG. 1 is a schematic diagram of a positioning method provided by the prior art
  • FIG. 2 is a schematic diagram of a calibration value sent by a base station according to an embodiment of the present application
  • FIG. 3 is a schematic structural diagram of a reference station according to an embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of an access network device according to an embodiment of the present disclosure.
  • FIG. 5 is a schematic structural diagram of a mobile phone according to an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of an in-vehicle device according to an embodiment of the present disclosure.
  • FIG. 7 is a schematic diagram of a principle of a positioning method according to an embodiment of the present disclosure.
  • FIG. 8 is a flowchart of a positioning method according to an embodiment of the present application.
  • FIG. 9 is a schematic diagram of data flow conversion according to an embodiment of the present application.
  • FIG. 10 is a schematic diagram of a transmission manner of calibration data according to an embodiment of the present application.
  • FIG. 11 is a schematic diagram of another manner of transmitting calibration data according to an embodiment of the present application.
  • FIG. 12 is a schematic diagram of another transmission method of calibration data according to an embodiment of the present application.
  • FIG. 13 is a schematic diagram of another manner of transmitting calibration data according to an embodiment of the present application.
  • FIG. 14 is a schematic diagram of distribution of an access network device according to an embodiment of the present disclosure.
  • FIG. 15 is a flowchart of another positioning method according to an embodiment of the present application.
  • FIG. 16 is a flowchart of another positioning method according to an embodiment of the present application.
  • FIG. 17 is a schematic structural diagram of another access network device according to an embodiment of the present disclosure.
  • FIG. 18 is a schematic structural diagram of a terminal according to an embodiment of the present application.
  • FIG. 19 is a schematic structural diagram of an access network device or a terminal according to an embodiment of the present disclosure.
  • FIG. 20 is a schematic structural diagram of another access network device or terminal according to an embodiment of the present disclosure.
  • FIG. 21 is a schematic structural diagram of a system according to an embodiment of the present application.
  • Broadcast A method of transmitting information, which refers to a technology in which a device in a network simultaneously transmits data to all other devices in the network.
  • Broadcast domain The range that broadcast data can broadcast to, that is, the collection of all devices in the network that can receive the same broadcast data.
  • Point-to-point communication enables the exchange of information between any two users within the network. After receiving the data with the point-to-point communication identification information, the system number and the address code are compared, and when the system number and the address code match the locality, the data is transmitted to the user terminal, otherwise the data is discarded and not transmitted to the user terminal.
  • peer-to-peer only one user can receive the information.
  • the above broadcast communication can have multiple users to postpone information.
  • Pseudorange Due to the error of the satellite clock, the receiver clock, and the delay of the radio signal in the ionosphere and troposphere, the actual measured distance A has a certain difference from the satellite-to-receiver geometric distance B. Therefore, the general weighing The measured distance is a pseudorange.
  • GNSS Global navigation satellite system positioning is based on a set of satellite pseudo-range, ephemeris, satellite launch time and other observations, but also must know the user clock.
  • a global navigation satellite system is a space-based radio navigation and positioning system that provides users with three-dimensional coordinates and speed and time information at any location on the Earth's surface or near-Earth space.
  • the satellite reference station 11 is mainly used to transmit calibration data such as error values obtained according to satellite signals and accurate positions to the terminal 13 through a wired network, a wireless network, or a wireless broadcast, and the terminal 13 Calibration data can also be received via wired networks, wireless networks, or wireless broadcasts, and combined with calibration data and satellite signals obtained through its own GNSS module to determine its exact location.
  • the base station 11 may include an antenna 111, a duplexer 112, a power amplifier 113, a radio frequency (RF) transceiver 114, a processor 115, and a memory 116. And power supply 117 and so on.
  • RF radio frequency
  • the antenna 111 can be used to receive satellite signals from a satellite system, and can also be used to transmit calibration data to a terminal.
  • the antenna 111 may specifically include two sets of antennas, one of which may be used to receive satellite signals and the other set of antennas may be used to transmit calibration data.
  • the differential GNSS positioning solution provided by the embodiment of the present application integrates the function of the base station into the widely distributed access network device in the mobile communication network, determines the calibration data through the access network device, and sends the calibration data to the access network.
  • the terminal within the coverage of the device network signal ensures that the distance between the terminal and the access network device integrated with the reference station function is short, ensuring that the accuracy of the differential GNSS technology calibration data satisfies the algorithm requirements, and the differential GNSS positioning accuracy of the terminal is made. Achieve the desired level and improve positioning accuracy.
  • the access network device may be a relay station or an access point.
  • the access network device may be a base transceiver station (BTS) in a global system for mobile communication (GSM) or a code division multiple access (CDMA) network, or may be
  • BTS base transceiver station
  • GSM global system for mobile communication
  • CDMA code division multiple access
  • the NB (NodeB) in the wideband code division multiple access (WCDMA) may also be an eNB or an eNodeB (evolutional NodeB) in LTE.
  • the access network device may also be a wireless controller in a cloud radio access network (CRAN) scenario.
  • the access network device may also be a network device in a future 5G network or a network device in a public land mobile network (PLMN) that is evolved in the future.
  • PLMN public land mobile network
  • the network equipment in the future 5G network may include a new radio base station (new radio NodeB), a next generation base station (gNB), or a transmission point.
  • the access network device can also be a fixed station in the Internet of Things, the Internet of Vehicles, the V2V technology of the vehicle to the vehicle, and the like.
  • the terminal involved in the embodiment of the present application is a terminal device for positioning, which may be a user equipment (UE), an access terminal, a UE unit, a UE station, a mobile station, a mobile station, a remote station, and a remote terminal.
  • UE user equipment
  • the access terminal may be a cellular phone, a cordless phone, a session initiation protocol (SIP) phone, a wireless local loop (WLL) station, a personal digital assistant (PDA), with wireless communication.
  • it can be a mobile phone, a tablet computer, a laptop computer, Ultra-mobile personal computer (UMPC), netbook, etc.
  • UMPC Ultra-mobile personal computer
  • the access network device can be implemented by the structure shown in FIG.
  • the access network device may include an indoor baseband processing unit (BBU) and a remote radio unit (RRU) and an antenna feeder system (ie, an antenna).
  • BBU indoor baseband processing unit
  • RRU remote radio unit
  • the BBU and the RRU may be configured according to the same. Need to be taken apart.
  • the access network device may also adopt other general hardware architectures, and is not limited to the general hardware architecture shown in FIG.
  • the access network device may further include a GNSS module, configured to receive satellite signals, so that the access network device performs clock synchronization between the access network devices according to the satellite signals, so that the terminal can maintain signal synchronization when switching between access network devices. .
  • the mobile phone 200 may include: a GNSS module 20, a radio frequency (RF) circuit 21, a processor 22, a memory 23, a power source 24, a display screen 25, a gravity sensor 26, an audio circuit 27, a speaker 28, A component such as a microphone 29, which may be connected by a bus or directly connected.
  • RF radio frequency
  • FIG. 2 does not constitute a limitation to the handset, and may include more components than those illustrated, or some components may be combined, or different components may be arranged.
  • the GNSS module 20 is configured to receive satellite signals, and calculate parameters such as pseudorange, latitude and longitude, altitude, and time correction amount according to the satellite signals, so that the mobile phone 10 performs positioning, navigation, speed measurement, time synchronization, and the like according to the parameters.
  • the RF circuit 21 can be used for transmitting and receiving information or during a call, receiving and transmitting signals, and in particular, processing the received information to the processor 22; in addition, transmitting the signal generated by the processor 22.
  • RF circuitry 21 may include, but is not limited to, an antenna, at least one amplifier, a transceiver, a coupler, a low noise amplifier (LNA), a duplexer, and the like.
  • the RF circuit 21 can also communicate with the network and other devices through wireless communication.
  • the processor 22 is the control center of the handset 200, which connects various portions of the entire handset using various interfaces and lines, by running or executing software programs and/or modules stored in the memory 23, and recalling data stored in the memory 23, The various functions and processing data of the mobile phone 200 are executed to perform overall monitoring of the mobile phone 200.
  • processor 22 may include one or more processing units; processor 22 may integrate an application processor and a modem processor.
  • the application processor mainly processes an operating system, a user interface, an application, and the like, and the modem processor mainly processes wireless communication. It will be appreciated that the above described modem processor may also not be integrated into the processor 22.
  • the memory 23 can be used to store data, software programs, and modules, and can be a volatile memory, such as a random-access memory (RAM), or a non-volatile memory.
  • RAM random-access memory
  • non-volatile memory for example, a read-only memory (ROM), a flash memory, a hard disk drive (HDD), or a solid-state drive (SSD); or a combination of the above types of memories.
  • the program code is stored in the memory 23, and the program code is used to enable the processor 22 to execute the positioning method provided by the embodiment of the present application by executing the program code.
  • Display screen 25 may be referred to as a display panel for displaying a user interface.
  • the display screen 25 can also be a touch panel for implementing the input and output functions of the mobile phone 200.
  • the mobile phone 200 may further include other sensors, such as a pressure sensor, a light sensor, a gyroscope, a barometer, a hygrometer, a thermometer, an infrared sensor, and the like, and details are not described herein.
  • sensors such as a pressure sensor, a light sensor, a gyroscope, a barometer, a hygrometer, a thermometer, an infrared sensor, and the like, and details are not described herein.
  • the mobile phone 200 may also include a wireless fidelity (WiFi) module, a Bluetooth module, a camera, and the like, and will not be described again.
  • WiFi wireless fidelity
  • the in-vehicle device 300 may include an information communication unit 31, a microphone 32, one or more buttons or other control inputs 33, an audio system 34, a visual display 35, and a GNSS module 36 and a plurality of in-vehicle device security.
  • the information communication unit 31 utilizes cellular communication according to a global system for mobile communication (GSM) or a code division multiple access (CDMA) standard, and thus includes for voice communication (eg, hands-free calling).
  • GSM global system for mobile communication
  • CDMA code division multiple access
  • the modem can be implemented by software stored in the information communication unit and executed by the processor 52, or it can be a separate hardware component located inside or outside the information communication unit 31.
  • Wireless networking between the in-vehicle device and other networked devices can also be performed using the information communication unit 31.
  • Processor 52 may be any type of device capable of processing electronic instructions, including microprocessors, microcontrollers, host processors, controllers, in-vehicle device communication processors, and application specific integrated circuits. It can be a dedicated processor for the information communication unit 31 only or can be shared with other in-vehicle device systems.
  • the processor 52 executes various types of digital storage instructions, such as software or firmware programs stored in the memory 53, which enables the information communication unit to provide a wide variety of services. For example, processor 52 can execute a program or process data to perform at least a portion of the methods discussed herein.
  • the GNSS module 36 can be used to receive radio satellite signals from a satellite system. Based on the received satellite signals, the GNSS module 36 can determine the location of the in-vehicle device that is used to provide navigational vehicle and other location-associated services to the in-vehicle device driver.
  • the navigation information can be presented on display 35 (or other display within the in-vehicle device) or can be rendered in a language, such as when providing steering navigation.
  • the navigation module (which may be part of the GNSS module 36) within the dedicated in-vehicle device can be used to provide navigation services, or some or all of the navigation services can be completed via the information communication unit 31, where the location information is sent to a remote location to facilitate Provide navigation maps, map annotations, route calculations, etc.
  • the location information can be provided to a call center or other remote computer system, such as a computer, for other purposes, such as fleet management.
  • new or updated map data can be downloaded to the GNSS module 36 via the information communication unit 31.
  • the differential GNSS positioning method provided by the embodiment of the present application will be described below by taking the terminal as a mobile phone or an in-vehicle device as an example.
  • the differential GNSS positioning technology provided by the embodiments of the present application may include an RTD mode and an RTK mode.
  • the differential GNSS positioning method relates to an access network device and a terminal.
  • the access network device stores first location data of the access network device, where the first location data is used to indicate an accurate location of the access network device.
  • the positioning method may include:
  • the access network device receives the first satellite signal from the satellite system.
  • the satellite signal herein refers to a modulated wave sent by the satellite system for navigation and positioning, and specifically includes: a carrier, a ranging code, and a data code.
  • the carrier and ranging codes are used to measure the distance between the satellite and the ground receiver (the device receiving the satellite signal), while the data code provides the parameters needed to calculate the satellite coordinates, from the satellite coordinates and the distance from the satellite to the ground. Find the coordinates of the ground point.
  • the access network device acts as a terrestrial receiver and can receive the first satellite signal transmitted by the satellite system.
  • reference numeral 14 in Fig. 7 denotes an access network device.
  • the access network device determines second location data of the access network device according to the satellite signal.
  • the access network device may determine the one-way time delay or phase delay of the propagation according to the first satellite signal, thereby determining the distance between the access network device and the satellite transmitting the first satellite signal.
  • the access network device can determine the distance between the access network device and the different satellites by receiving the first satellite signal sent by the plurality of satellites in the satellite system, thereby determining the second access network device according to the distance and the like information.
  • Location data For example, the access network device can obtain the second location data by receiving the first satellite signal transmitted by the four satellites, wherein one satellite can be used to synchronize the satellite with the atomic clock of the access network device.
  • the second location data is used to describe the location of the access network device, and may be at least one of latitude and longitude, pseudorange, code phase, and carrier phase, and the location of the access network device may be learned according to the second location data. This is no longer an example.
  • the access network device determines calibration data according to the first location data and the second location data.
  • the first location data used to describe the exact location of the access network device may also be at least one of latitude and longitude, pseudorange, code phase, or carrier phase.
  • the first location data is used to describe the exact location of the access network device, can be obtained by manual measurements, can be manually updated and calibrated, or updated and calibrated by the relevant personnel via the network.
  • the access network device can determine calibration data based on the first location data and the second location data.
  • the first location data and the second location data may comprise the same type of data parameters, for example including latitude and longitude, so that the access network device can more conveniently determine the calibration data according to the same type of data parameters, and the determined calibration
  • the data includes the same type of data parameters as the first location data and the second location data.
  • the access network device may first convert different types of data parameters into data parameters of the same type, thereby determining calibration data according to the same type of data parameters. .
  • the access network device may first convert the second location data and the first location data into data parameters of the same type, and then determine the calibration data.
  • the access network device sends calibration data to the terminal.
  • the terminal here is a terminal within the coverage of the network signal of the access network device.
  • the network signal of the access network device usually covers a few hundred meters to several kilometers.
  • the access network device can determine calibration data and send the calibration data to the terminal, and the calibration data is used to enable the terminal to determine its exact location according to the calibration data.
  • the access network device integrates the functions of the reference station in the prior art.
  • the access network devices are widely distributed and have a large number, which can make the distance between the terminal and the access network device shorter, which is equivalent to making the end The distance between the end and the reference station is short.
  • the terminal receives at least one set of calibration data sent by at least one access network device.
  • the terminal Since the coverage of network signals of different access network devices may have an intersection, the terminal may be within the coverage of multiple access network device network signals. Therefore, referring to FIG. 13, the terminal may receive one or more access network devices respectively.
  • the transmitted calibration data is the calibration data obtained by the different access network devices through steps 801-803, respectively.
  • the terminal receives the second satellite signal from the satellite system.
  • the terminal may also receive the second satellite signal from the satellite system.
  • the second satellite signal in step 806 is used to obtain the location data of the terminal.
  • the terminal determines third location data of the terminal according to the second satellite signal.
  • the third location data is used to describe the location of the terminal, and may specifically be at least one of latitude and longitude, pseudorange, code phase, or carrier phase.
  • the terminal may determine the third location data according to the second satellite signal.
  • step 805 may be specifically before the step 806 and the step 807, and after the step 806 and the step 807, the order of the embodiment of the present application is not specifically limited.
  • the terminal determines an accurate location of the terminal according to the at least one set of calibration data and the third location data.
  • the terminal may determine the exact location of the calibration data and the third location data.
  • the calibration data and the third location data may comprise the same type of data parameters, for example including latitude and longitude, so that the terminal can more easily determine its exact location based on the same type of data parameters.
  • the terminal may first convert different types of data parameters into the same type of data parameters, thereby determining the exact location of the data according to the same type of data parameters.
  • the access network device may first convert the third location data and the calibration data into the same type of data parameters, and then determine according to the calibration data and the third location data. The exact location of itself.
  • the GNSS module not only uses the satellite signal to realize the clock synchronization between the access network devices, but also determines the calibration data according to the satellite signal, so that the access network device can send the calibration data to the terminal. Make precise positioning.
  • the GNSS module may specifically include a processor, and the processor in the GNSS module may receive the calibration data and determine the exact location of the terminal in combination with the third location data; or the processor in the GNSS module may also use the third location.
  • the data is imported into the main processor of the terminal, and the main processor combines the third location data and the received calibration data to determine the exact location of the terminal.
  • the GNSS module can be specifically used to measure the signal phase and can provide the accurate position of the computing power calculation terminal.
  • the reference station function is integrated into the access network device by using the characteristics of the widely distributed and large number of access network devices in the mobile communication network, and the access network is configured.
  • the calibration data is determined, and the calibration data is sent to the terminal within the coverage of the network signal of the access network device.
  • the terminal receives the calibration data sent by the nearby access network device to determine its exact location based on the calibration data. In this way, the distance between the terminal and the access network device that sends the calibration data can be made shorter, so that the accuracy of the positioning of the terminal according to the calibration data can be improved, and the positioning error can be reduced.
  • the maximum distance between the terminal and the access network device that sends the calibration data is also within the range of “several kilometers”, and As in the prior art, there are cases where the distance between the terminal and the reference station is several tens of kilometers or even hundreds of kilometers.
  • the access network devices are widely distributed and have a large number, the coverage of the access network devices is wide, and the terminals at any location may be within the coverage of the network signal of one or several access network devices, thereby The short-distance receives the calibration data sent by the nearby access network device for precise positioning.
  • the real-time communication between the terminal and the base station also has an impact on the actual positioning accuracy.
  • the transmission data of the calibration data is required to have higher real-time performance, and the amount of data of the calibration data is large.
  • the terminal since the distance between the terminal and the reference station is usually far, the terminal usually accesses the access network of the mobile communication network through the access network device, and communicates with the reference station through the access network and the core network, and the reference
  • the calibration data sent by the station can be sent to the terminal through the core network and the access network, that is, the reference station transmits the calibration data to the terminal through the wide area network, so the transmission link is long, the transmission delay is large, and the real-time performance is poor.
  • the data volume of the calibration data is large (for example, in the RTK mode)
  • the bandwidth is occupied, and the core network has a heavy traffic load.
  • the calibration data is also affected. The real-time nature of the transmission.
  • the function of the base station is integrated into the access network device, so that the calibration data is directly measured by the access network device, and the calibration data is directly sent to the terminal in the coverage of the access network device.
  • the access network device can directly transmit the calibration data to the terminal through the internal network, so the transmission delay is small, the real-time performance of the calibration data transmission is good, and the core network service is not affected. Load limit. That is to say, in the embodiment of the present application, the access network device can transmit the measured calibration data to the terminal in the coverage range in real time, so that the terminal can perform accurate positioning according to the calibration data obtained in real time.
  • the prior art also provides a positioning method
  • the main principle is that the mobile communication network sends the ephemeris or approximate location of the location where the terminal is located to the terminal, so as to speed up the star search speed and the positioning speed of the terminal.
  • the positioning method provided by the embodiment of the present application determines the calibration data by using the access network device, and sends the calibration data to the terminal within a short distance to improve the terminal. Positioning accuracy.
  • Another positioning method is also provided in the prior art, mainly based on the 802.11p protocol, using WIFI technology, and combining the wireless positioning principle to achieve high-precision positioning.
  • the frequency band used by the 802.11p technology is the 5.9G frequency band
  • the obstacles for buildings, plants, and the like are not strong enough for bad weather, and usually only work directly under direct vision.
  • the positioning method provided by the embodiment of the present application does not require working in a high frequency band, and thus there is no similar problem.
  • the access network device can continuously refresh the first satellite signal received from the satellite system. For example, in step 801, the access network device can periodically receive the first satellite signal sent by the satellite system to obtain real-time data.
  • the access network device can determine real-time calibration data according to the real-time second location data, thereby transmitting real-time calibration data to terminal.
  • the terminal may periodically receive the second satellite signal sent by the satellite system in step 806 to obtain a second satellite signal in real time, so as to obtain the third location data of the terminal in real time according to the second satellite signal, so that the terminal can More accurate positioning based on real-time third position data and real-time calibration data.
  • the communication mode between the access network device and the terminal may mainly include broadcast and point-to-point transmission.
  • the point-to-point transmission mode only the destination terminal can receive the message sent by the access network device, and in the broadcast transmission mode, the message sent by the access network device is within the coverage of the access network device. All terminals can receive it.
  • the access network device may also send the calibration data to the terminal by means of broadcast or peer-to-peer transmission.
  • the access network device can appoint a communication format with the terminal side for transmitting the calibration data packet, and after receiving the message of the communication format, the terminal side can know that the calibration data is transmitted, so that the calibration data is performed according to the calibration data. Positioning.
  • the specific communication format for transmitting calibration data is not limited in the embodiment of the present application.
  • the foregoing step 804 may include:
  • the access network device sends the calibration data to the terminal by using a broadcast transmission manner, where the broadcast transmission mode includes a broadcast message or a multimedia broadcast multicast service MBMS.
  • step 805 may specifically include:
  • the terminal receives at least one set of calibration data that is sent by the at least one access network device by using a broadcast transmission manner.
  • the terminal is an in-vehicle device, and the scenario of the access network device and the terminal interactively calibrating data through the broadcast transmission mode can be seen in FIG. 10; the terminal is the mobile phone as an example, and the access network device and the terminal are transmitted through the broadcast mode.
  • FIG. 10 A schematic diagram of the scene of the interactive calibration data can be seen in FIG.
  • the access network device may send the calibration data by using a broadcast transmission manner, and all the terminals within the coverage of the network signal of the access network device may receive the calibration data.
  • the broadcast since the broadcast is unidirectional, there is no need to establish a connection, and there is no need to interact with the terminal.
  • the reliability of the transmission can be guaranteed by a higher layer protocol or does not need to ensure the reliability of the transmission.
  • the method of transmitting the calibration data by using the broadcast transmission method is simpler and faster, the delay is smaller, the real-time performance is better, the network capacity is higher, and the efficiency is higher.
  • the access network device and the terminal may exchange calibration data through a broadcast transmission manner such as a broadcast message or a multimedia broadcast multicast service MBMS.
  • a broadcast message in the prior art is generally used to send basic information of the access network device to implement basic functions such as terminal access.
  • the basic information may include configuration information that all terminals have the same, cell selection/heavy Selected information, earthquake tsunami warning information, etc., different from the number of broadcasting services according to.
  • the access network device carries the service data of the calibration data in the broadcast message and sends the data to the terminal, so that the terminal can receive the calibration data in time, thereby performing accurate positioning according to the calibration data.
  • the access network device may also send calibration data to the terminal based on the multimedia broadcast multicast service MBMS.
  • MBMS provides a point-to-multipoint multimedia service model. Resource consumption has nothing to do with the increase in the number of users. It can save air interface resources, transmit resources, etc., and avoid the disadvantages of mobile network capacity.
  • the real-time requirements for calibration data are also accurately positioned. high.
  • the transmission of calibration data by means of broadcast transmission can meet the real-time requirements of the high-speed mobile terminal for calibration data, thereby achieving accurate positioning.
  • the differential GNSS positioning scheme in the prior art generally adopts a point-to-point transmission mode in which the base station and the access network are separated, and the base station transmits the calibration data point-to-point through the data link formed by the access network and the core network. Since the base station and the access network device are not integrated, the point-to-point communication method needs to be transmitted through the core network, and the transmission delay increases due to the increase of the transmission distance and the core network load, and is limited by the number of concurrent connections of the access network device. It also limits the number of terminals that are simultaneously positioned using a differential GNSS positioning scheme.
  • the reference station is integrated with the access network device, and the calibration data is transmitted through the broadcast transmission mode, and does not need to be transmitted through the core network, which not only ensures the real-time transmission, but also is not connected by the access network device.
  • the capability is limited, and all the terminals within the coverage of the access network device can receive the calibration data, so that the number of terminals that can receive the calibration data is more, and the implementation is more efficient and implementable.
  • the access network equipment in order to ensure power supply and network coverage, the access network equipment is usually close to the road and the user, so the distance between the access network equipment and the high-speed mobile terminal in the road is very short, which can well meet the mobile terminal in the road. Requirements for positioning accuracy.
  • the access network device may periodically send the calibration data to the terminal by using a broadcast transmission manner, so that the terminal within the coverage of the access network device can obtain the calibration data that is updated in real time, thereby updating according to the update.
  • the post calibration data enables precise positioning.
  • the period here can be determined according to the moving speed of the terminal and the requirement for positioning accuracy. The greater the speed of the terminal, the higher the accuracy and real-time requirements of the positioning, and the shorter the transmission period of the calibration data.
  • the period here can be 10 s (seconds).
  • the broadcast information and the multimedia broadcast multicast service MBMS and the like can transmit a large amount of information, and the transmission interval can be small. Therefore, the method of transmitting the calibration data by the broadcast transmission method can also realize high-bandwidth communication. .
  • the foregoing step 804 may include:
  • the access network device sends the calibration data to the terminal through a point-to-point transmission mode.
  • step 805 may specifically include:
  • the terminal receives at least one set of calibration data sent by at least one access network device by using a point-to-point transmission manner.
  • the terminal is a mobile phone as an example, and a schematic diagram of a scenario in which an access network device and a terminal exchange data by means of a broadcast transmission mode can be seen in FIG. 12 .
  • the point-to-point transmission mode requires data to be exchanged between the terminal and the access network device. Therefore, compared with the broadcast transmission mode, the transmission reliability and security of the calibration data are higher, but since the connection with the access network device needs to be established, Therefore, the communication cell may cause delay when switching, and thus the real-time performance of the transmission is worse than the broadcast transmission mode. Therefore, the point-to-point transmission method can be applied to the positioning of high reliability and high security terminals. Moreover, since the reliability of the calibration data is higher, the positioning accuracy is also higher.
  • the terminal may interact with the access network device to establish a connection with the access network device, and receive calibration data sent by the access network device after the connection is established. For example, in a connection establishment process, a terminal may send a connection request message to an access network device, and the access network device may send a connection confirmation message to the terminal.
  • the access network device can periodically send calibration data to the terminal, or the terminal can periodically obtain calibration data from the access network device, or the terminal can The calibration data is obtained from the access network device, so that the terminal can achieve accurate positioning according to the acquired new calibration data.
  • the reference station and the access network are separated from the prior art, and the data is transmitted through the core network to perform point-to-point transmission calibration data.
  • the access network device integrates the function of the base station, and the base station sends the calibration data through the internal network of the access network without going through the core network, so the transmission link is shorter and the transmission is shorter than the prior art. Real-time performance is also better.
  • the reference station is integrated with the access network device, and the calibration data is measured in real time and the calibration data is sent to the terminal in the coverage range in real time, thereby ensuring the access of the terminal and the integrated base station function.
  • the distance between the network devices is short and has better real-time performance, ensuring that the accuracy and real-time performance of the differential GNSS technology calibration data meets the algorithm requirements, so that the differential GNSS positioning accuracy of the terminal reaches an ideal level and the positioning accuracy is improved.
  • the terminal determines, according to the at least one set of calibration data and the third location data, that the accurate location of the terminal may include :
  • the 8081 determines a set of target calibration data based on the plurality of sets of calibration data.
  • the terminal determines an accurate location of the terminal according to the target calibration data and the third location data.
  • the target calibration data in step 8081 may be one of a plurality of sets of calibration data received by the terminal, or may be a set of target calibration data obtained by processing the plurality of sets of calibration data by a preference or combination algorithm. That is to say, when the terminal receives the plurality of sets of calibration data, the terminal can determine a set of target calibration data according to the plurality of sets of calibration data, thereby performing precise positioning according to the target calibration data. When the terminal receives a set of calibration data, the set of calibration data is the target calibration data.
  • the target calibration data may be a set of calibration data sent by the access network device nearest to the terminal. Due to the positioning accuracy and the distance between the terminal and the access network device, when the access network device is closer to the terminal, the accuracy of the positioning by the terminal according to the calibration data sent by the access network device is higher.
  • the terminal stores priorities corresponding to different access network devices.
  • the target calibration data may be a set of calibration data sent by the access network device with the highest priority.
  • the priority of the access network device can be set according to actual needs. For example, an access network device that is close to the terminal has a higher priority. For example, when the data is interactively calibrated by the point-to-point transmission method, the access network device with a small number of connected terminals has a higher priority.
  • each parameter in the target calibration data may be the average of each corresponding parameter in the plurality of sets of calibration data.
  • the terminal can obtain a comprehensive target calibration data by combining the calibration data sent by different access network devices, thereby performing precise positioning.
  • step 805 when the calibration data received by the terminal has only one group, the terminal can directly perform accurate positioning according to the calibration data. It can also be understood that when there is only one set of calibration data received by the terminal, the set of calibration data is the target calibration data.
  • the calibration data may specifically include differential data of the first location data and the second location data.
  • the first location data and the second location data may specifically include at least one of latitude and longitude, pseudorange, code phase, and carrier phase, and thus, correspondingly, the difference data of the first location data and the second location data is specific.
  • At least one of a latitude and longitude difference value, a distance difference value, a code phase difference value, and a carrier phase difference value may also be included.
  • the terminal can determine its exact location based on the differential data.
  • the terminal may directly determine the exact position of the calibration data according to the differential data and the third location data, or the terminal may also process the differential data in the calibration data, and then determine the third location data. The exact location of itself.
  • the calibration data may be a latitude and longitude difference value of the first location data and the second location data
  • the terminal may determine the exact location of the third location data and the calibration data based on the difference data. For example, if the first position data is "north latitude N22°38'17.58", east longitude E114°05'53.45”", the second position data is “north latitude N22°38'16.54", east longitude E114°05'51.35”", calibration The data is the difference data between the first location data and the second location data, namely "North latitude +1.04" and east longitude +2.1"", and the third location data is "north latitude N22°35'13.24" and east longitude E114°06'36.70"", Then, the terminal can determine its exact position as the position of the third position data and the difference data "North latitude +1.04", east longitude +2.1”", that is, "north latitude N22°35'14.28", east
  • the calibration data may include first location data and second location data.
  • the terminal may process the first location data and the second location data, and then determine the exact location of the location according to the processed data. For example, the terminal may first calculate differential data of the first location data and the second location data, and then determine an accurate location of itself based on the differential data.
  • the calibration data may include first location data and second location data, and differential data of the first location data and the second location data.
  • the set of target calibration data determined by the terminal according to the multiple sets of calibration data may also include first location data and second location data of the access network device, or include first location data and a second location of the access network device.
  • determining, by the terminal, the accurate location of the terminal according to the target calibration data and the third location data may include: determining, by the terminal, the first location data and the second location data in the target calibration data. Differential data, terminal root Based on the differential data and the third location data, the exact location of the terminal is determined.
  • the access network device in the embodiment of the present application is set. That is, referring to FIG. 14, the function of the base station is integrated in a part of the access network devices with a certain interval.
  • the positioning method provided by the embodiment of the present application is mainly used to determine an accurate location of the terminal, and based on the precise positioning technology, functions such as speed measurement, navigation, and timing can also be implemented.
  • the embodiment of the present application further provides a positioning method, which can be applied to an access network device, where the access network device stores first location data of the access network device, where the first location data is used to indicate the accuracy of the access network device. position.
  • the method can include:
  • the access network device receives the first satellite signal from the satellite system.
  • the access network device determines second location data of the access network device according to the first satellite signal.
  • the access network device determines calibration data according to the first location data and the second location data.
  • the first location data here is obtained by manual measurement and is used to describe the data of the exact location of the access network device.
  • the access network device may first convert the second location data and the first location data into data parameters of the same type, and then determine the calibration data.
  • the access network device sends calibration data to the terminal, where the calibration data is used by the terminal to determine an accurate location of the terminal.
  • the access network device may first convert the third location data and the calibration data into the same type of data parameters, and then determine according to the calibration data and the third location data. The exact location of itself.
  • the GNSS module not only uses the satellite signal to realize the clock synchronization between the access network devices, but also determines the calibration data according to the satellite signal, so that the access network device can send the calibration data to the terminal. Make precise positioning.
  • the reference station function is integrated into the access network device by using the characteristics of the widely distributed and large number of access network devices in the mobile communication network, and the calibration data is determined by the access network device. And transmitting the calibration data to the terminal within the coverage of the network signal of the access network device, so that the terminal can receive the calibration data sent by the nearby access network device, thereby determining its exact location according to the calibration data. In this way, the distance between the terminal and the access network device that sends the calibration data can be made shorter, thereby improving the accuracy of the positioning of the terminal according to the calibration data and reducing the positioning error.
  • the access network devices are widely distributed and have a large number, the coverage of the access network devices is wide, and the terminals at any location may be within the coverage of the network signal of one or several access network devices, thereby The short-distance receives the calibration data sent by the nearby access network device for precise positioning.
  • the calibration data is directly measured by the access network device, and the calibration data is directly sent to the end of the coverage of the access network device.
  • the terminal does not need to transmit through the core network as in the prior art, and the access network device can directly transmit the calibration data to the terminal through the internal network, so the transmission delay is small, the real-time performance of the calibration data transmission is good, and the core is not affected. Network traffic load restrictions. That is to say, in the embodiment of the present application, the access network device can transmit the measured calibration data to the terminal in the coverage range in real time, so that the terminal can perform accurate positioning according to the calibration data obtained in real time.
  • the sending, by the access network device, the calibration data to the terminal may include:
  • the calibration data is sent to the terminal by using a broadcast transmission manner, and the broadcast transmission manner includes a broadcast message or a multimedia broadcast multicast service MBMS.
  • the calibration data is transmitted by means of broadcast transmission, so that all the terminals within the coverage of the network signal of the access network device can receive the calibration data. Moreover, since the broadcast is unidirectional, there is no need to establish a connection, and there is no need to interact with the terminal. The reliability of the transmission can be guaranteed by the upper layer protocol or does not need to ensure the reliability of the transmission, and the terminal can receive and transmit after accessing the network.
  • the data transmitted by the transmission method is therefore simpler and faster to transmit the calibration data by means of broadcast transmission, the delay is smaller, the real-time performance is better, the network capacity is higher, and the efficiency is higher.
  • the access network device transmits the calibration data through the broadcast transmission mode, which not only ensures the real-time performance of the transmission, but also is not limited by the connection capability of the access network device, and the number of terminals that can receive the calibration data is more.
  • the transmission of calibration data by means of broadcast transmission can meet the real-time requirements of the high-speed mobile terminal for calibration data, thereby achieving accurate positioning.
  • the sending, by the access network device, the calibration data to the terminal by using the broadcast transmission manner in the foregoing step 9041 may include: the access network device periodically transmitting the calibration data to the terminal by using a broadcast transmission manner.
  • the access network device can transmit the dynamically changing calibration data to the terminal in real time, so that the terminal can perform accurate positioning according to the received real-time calibration data.
  • the sending, by the access network device, the calibration data to the terminal may include:
  • the access network device sends the calibration data to the terminal through a point-to-point transmission mode.
  • the calibration data transmitted by the point-to-point transmission method has higher reliability and security.
  • the base station performs the point-to-point transmission calibration data through the data link formed by the access network and the core network, and the access network device that sends the calibration data in the embodiment of the present application does not transmit through the core network. Therefore, compared with the prior art, the transmission link is shorter and the transmission real-time performance is better.
  • the calibration data determined by the access network device may include differential data of the first location data and the second location data, and the difference data includes at least one of a latitude and longitude difference value, a distance difference value, a code phase difference value, and a carrier phase difference value.
  • the calibration data may include first location data and second location data.
  • the embodiment of the present application further provides a positioning method, which can be used in a terminal.
  • the method may include:
  • the terminal receives at least one set of calibration data sent by at least one access network device.
  • the terminal may be within the coverage of multiple access network device network signals at the same time, and thus the terminal may receive calibration data sent by one or more access network devices respectively.
  • the calibration data is data obtained by the access network device according to the first location data and the second location data.
  • the first location data is used to represent the exact location of the access network device, typically obtained by manual measurements.
  • Second position number According to the location data obtained by the access network device according to the first satellite signal.
  • the calibration data may include first location data and second location data of the access network device, or the calibration data may include differential data of the first location data and the second location data, the differential data including latitude and longitude difference values, distance difference values At least one of a code phase difference value and a carrier phase difference value.
  • the terminal receives the second satellite signal from the satellite system.
  • the terminal determines third location data of the terminal according to the second satellite signal.
  • the terminal determines an accurate location of the terminal according to the at least one set of calibration data and the third location data.
  • the GNSS module may specifically include a processor, and the processor in the GNSS module may receive the calibration data and determine the exact location of the terminal in combination with the third location data; or the processor in the GNSS module may also The main processor of the three-position data import terminal, the main processor combines the third location data and the received calibration data to determine the exact location of the terminal.
  • the GNSS module can be specifically used to measure the signal phase and can provide the accurate position of the computing power calculation terminal.
  • the terminal may receive the calibration data sent by the access network device integrated with the reference station function, so that the distance between the terminal and the access network device that sends the calibration data is shorter; and the calibration is performed.
  • the data does not need to be transmitted through the core network, so the calibration data can be transmitted in real time better, thereby improving the accuracy of the positioning of the terminal according to the calibration data and reducing the positioning error.
  • the receiving, by the terminal, the at least one set of calibration data sent by the at least one access network device includes: receiving, by the terminal, the at least one set of calibration data sent by the at least one access network device by using a broadcast transmission manner, where the broadcast transmission manner includes a broadcast message or Multimedia Broadcast Multicast Service MBMS.
  • the terminal may periodically receive at least one set of calibration data sent by the at least one access network device by using a broadcast transmission manner.
  • the broadcast Since the broadcast is unidirectional, there is no need to establish a connection, and there is no need to interact with the terminal.
  • the reliability of the transmission can be guaranteed by a higher layer protocol or does not need to ensure the reliability of the transmission.
  • the terminal After the terminal accesses the network, it can receive the broadcast transmission mode. Sending data, so the way to receive calibration data by means of broadcast transmission is simpler, faster, less time delay, better real-time performance, higher network capacity and higher efficiency.
  • the receiving, by the terminal, the at least one set of calibration data sent by the at least one access network device comprises: receiving, by the point-to-point transmission mode, the terminal, the at least one set of calibration data sent by the at least one access network device.
  • the calibration data received by the point-to-point transmission method is more reliable and safer.
  • the terminal in the embodiment of the present application receives the calibration sent by the access network device, and the receiving terminal transmits the calibration data through the point-to-point transmission mode.
  • the data is not forwarded by the core network, so the transmission link is shorter and the transmission real-time performance is better than the prior art.
  • determining, by the terminal, the accurate location of the terminal according to the at least one set of calibration data and the third location data may include: The terminal determines a set of target calibration data according to the plurality of sets of calibration data, and the terminal determines the accurate location of the terminal according to the target calibration data and the third location data.
  • the target calibration data herein may be one of a set of calibration data received by the terminal, or may be a set of target calibration data obtained by processing at least two sets of calibration data by a preference or combination algorithm.
  • the target calibration data may be the closest connection to the terminal. a set of calibration data sent by the network access device; or, the target calibration data may be a set of calibration data sent by the highest priority access network device; or, when the parameters in the target calibration data are multiple sets of calibration data received by the terminal The mean of each corresponding parameter.
  • determining, by the terminal, the accurate location of the terminal according to the target calibration data and the third location data in step 1004 may include: determining, by the terminal, the first location data in the target calibration data and Differential data of the second location data. Then, the terminal determines the exact location of the terminal based on the differential data and the third location data.
  • each network element such as a server and a terminal, in order to implement the above functions, includes hardware structures and/or software modules corresponding to each function.
  • the present application can be implemented in a combination of hardware or hardware and computer software in combination with the algorithmic steps of the various examples described in the embodiments disclosed herein. Whether a function is implemented in hardware or computer software to drive hardware depends on the specific application and design constraints of the solution. A person skilled in the art can use different methods to implement the described functions for each particular application, but such implementation should not be considered to be beyond the scope of the present application.
  • the embodiment of the present application may divide the function module into the server and the terminal according to the foregoing method example.
  • each function module may be divided according to each function, or two or more functions may be integrated into one processing module.
  • the above integrated modules can be implemented in the form of hardware or in the form of software functional modules. It should be noted that the division of the module in the embodiment of the present application is schematic, and is only a logical function division, and the actual implementation may have another division manner.
  • the access network device 1700 includes a storage unit 1701, a receiving unit 1702, a determining unit 1703, and a sending unit 1704.
  • the storage unit 1701 is configured to store first location data of the access network device 1700, where the first location data is used to indicate an accurate location of the access network device.
  • the receiving unit 1702 is configured to support the access network device 1700 to perform step 801 in FIG. 8 and step 901 in FIG.
  • the determining unit 1703 is configured to support the access network device 1700 to perform steps 802 and 803 in FIG. 8, and steps 902 and 903 in FIG.
  • the sending unit 1704 is configured to support the access network device 1700 to perform step 804 in FIG. 8 and step 904 in FIG.
  • each of the above units is also used to support other processes of the techniques described herein.
  • the terminal 1800 includes a first receiving unit 1801, a second receiving unit 1802, and a determining unit 1803.
  • the first receiving unit 1801 is configured to support the terminal 1800 to perform step 805 in FIG. 8 and step 1001 in FIG. 16.
  • the second receiving unit 1802 is configured to support the terminal 1800 to perform step 806 in FIG. 8 and step 1002 in FIG.
  • the determining unit 1803 is configured to support the terminal 1800 to perform steps 807 and 808 in FIG. 8, and steps 1003 and 1004 in FIG.
  • each of the above units is also used to support other processes of the techniques described herein.
  • FIG. 19 shows a possible composition diagram of a device, which may be an access network device or terminal in the above embodiment.
  • the device 1900 can include a processing module 1901, a communication module 1902, and a storage module 1903.
  • the processing module 1901 is configured to control and manage the action of the access network device.
  • the processing module 1901 is configured to support the access network device to perform the steps in the positioning method shown in FIG. 8. 802-803, and steps 902 and 903 in the positioning method illustrated in Figure 15, and/or other processes for the techniques described herein.
  • the communication module 1902 is for supporting communication between the access network device and other network entities, for example, supporting the access network device to perform steps 801 and 804 shown in FIG. 8, and steps 901 and 904 in FIG.
  • the storage module 1903 is configured to store program codes and data of the terminal, such as storing accurate location data of the access network device.
  • the processing module 1901 is configured to perform control management on the action of the terminal.
  • the processing module 1901 is configured to support the terminal to perform steps 807-808 in the positioning method shown in FIG. 8, and FIG. Steps 1003 and 1004 in the positioning method, and/or other processes for the techniques described herein.
  • the communication module 1902 is for supporting communication of the terminal with other network entities, for example, the support terminal performs steps 805 and 806 shown in FIG. 8, and steps 1001 and 1002 in FIG.
  • the storage module 1903 is configured to store program codes and data of the terminal.
  • the processing module 1901 can be a processor or a controller. It is possible to implement or carry out the various illustrative logical blocks, modules and circuits described in connection with the embodiments herein.
  • the processor can also be a combination of computing functions, for example, including one or more microprocessor combinations, a combination of a digital signal processor (DSP) and a microprocessor, and the like.
  • the communication module 1902 can be a transceiver, a transceiver circuit, a communication interface, or the like.
  • the storage module 1903 can be a memory.
  • FIG. 20 is a schematic structural diagram of another device according to an embodiment of the present disclosure, where the device may be an access network device or a terminal.
  • the device 2000 can include a processor 2001, a memory 2002, a bus 2003, and a communication interface 2004.
  • the processor 2001, the memory 2002, and the communication interface 2004 are connected by a system bus 2003.
  • the memory 2002 is used to store computer execution instructions.
  • the processor 2001 executes the computer execution instructions stored in the memory 2002 to enable the terminal to execute the positioning method provided by the embodiment of the present application.
  • the positioning method refer to the related descriptions in the following and the drawings, and details are not described herein again.
  • the processor 2001 may further correspond to the function of the processing module 1901.
  • the memory 2002 may correspond to the function of the storage module 1903, and the communication interface 2004 may correspond to the function of the communication module 1902.
  • the processor 2001 may correspond to the function of the determining unit 1703
  • the memory 2002 may correspond to the function of the storage unit 1701
  • the communication interface 2004 may correspond to the receiving unit 1702 and send The function of unit 1704.
  • the processor 2001 may correspond to the function of the determining unit 1803
  • the communication interface 2004 may correspond to the functions of the first receiving unit 1801 and the second receiving unit 1802.
  • the embodiment of the present application further provides a computer storage medium for storing computer software instructions used by the access network device, and when the device is running on the access network device, the access network device can execute the foregoing embodiment. Positioning method.
  • the storage medium may specifically be the above-described memory 2002.
  • the embodiment of the present application further provides a computer storage medium for storing a computer used by the terminal.
  • the software instructions when run on the terminal, enable the terminal to perform the positioning method in the above embodiment.
  • the embodiment of the present application further provides a computer program product including instructions, which, when running on the access network device, enables the access network device to perform the positioning method in the foregoing embodiment.
  • the embodiment of the present application further provides a computer program product including instructions, which when executed on the terminal, enables the terminal to perform the positioning method in the foregoing embodiment.
  • an embodiment of the present application further provides a system, which may include an access network device and a terminal.
  • the access network device and the terminal in the system can perform the positioning method provided by the foregoing embodiment of the present application.
  • the access network device stores first location data of the access network device, where the first location data is used to indicate an accurate location of the access network device.
  • the access network device may be configured to receive the first satellite signal from the satellite system, determine the second location data of the access network device according to the first satellite signal, determine the calibration data according to the first location data and the second location data, and perform calibration The data is sent to the terminal.
  • the terminal may be configured to receive at least one set of calibration data sent by the at least one access network device, receive a second satellite signal from the satellite system, determine third location data of the terminal according to the second satellite signal, according to at least one set of calibration data and Three-position data to determine the exact location of the terminal.
  • the above embodiments it may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • a software program it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions.
  • the computer program instructions When the computer program instructions are loaded and executed on a computer, the processes or functions in accordance with embodiments of the present application are generated in whole or in part.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions can be stored in a computer readable storage medium or transferred from one computer readable storage medium to another computer readable storage medium, for example, the computer instructions can be wired from a website site, computer, server or data center (eg Coaxial cable, fiber, digital subscriber line (DSL) or wireless (eg infrared, wireless, microwave, etc.) to another website, computer, server or data center.
  • the computer readable storage medium can be any available media that can be accessed by a computer or a data storage device that includes one or more servers, data centers, etc. that can be integrated with the media.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium (for example, a DVD), or a semiconductor medium (for example, a solid state disk (SSD)) or the like.
  • a magnetic medium for example, a floppy disk, a hard disk, a magnetic tape
  • an optical medium for example, a DVD
  • a semiconductor medium for example, a solid state disk (SSD)

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Signal Processing (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

本申请实施例提供一种定位方法、设备及系统,能够提高终端的定位精度,所述方法包括:接入网设备中存储有接入网设备的第一位置数据,第一位置数据用于表示接入网设备的准确位置,接入网设备从卫星系统接收第一卫星信号,根据第一卫星信号确定接入网设备的第二位置数据,根据第一位置数据和第二位置数据,确定校准数据,将校准数据发送给终端,该校准数据用于终端确定自身的准确位置。

Description

一种定位方法、设备及系统
本申请要求于2017年6月16日提交中国专利局、申请号为201710458151.5、申请名称为“一种定位方法和系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及无线通信技术领域,尤其涉及一种定位方法、设备及系统。
背景技术
高精度导航、测速等服务的关键技术在于高精度定位。目前,高精度定位主要采用差分全球导航卫星系统(global navigation satellite system,GNSS)定位技术。
参见图1,差分GNSS定位技术的主要原理为,位于己知位置的基准站11,可以接收卫星系统12发送的卫星信号,并根据从卫星信号中获得的位置测量值和实际位置计算出误差值,并将该误差值发送给终端13,终端13可以根据该误差值,消除根据卫星信号获得的位置测量值的主要误差,从而准确定位。差分GNSS定位技术主要可以包括,实时动态码相位差分(real time differential,RTD)技术和载波相位差分(real time kinematic,RTK)技术。
当终端和基准站距离超过差分GNSS技术适用的距离范围时,由于环境因素差异以及算法理论精度限制等原因,都会降低差分GNSS技术的定位精度,达不到提高精度的效果。例如,若终端和基准站相距太远,则终端和基准站所在地的平流层误差、电离层误差等也相差较大,从而使得终端从基准站接收到的GNSS误差值不再适用,无法提高定位精度。而现有技术中的基准站通常设置在特定的位置,且数量较少,因而终端与基准站之间的距离范围大,例如通常为几百米到几百千米,从而使得终端的定位精度随着与基准站距离变化而变化,影响实际使用效果。
发明内容
本申请实施例提供一种定位方法、设备及系统,能够使得终端与发送校准数据的接入网设备的距离较短,从而能够提高终端的定位精度。
为达到上述目的,本申请实施例采用如下技术方案:
第一方面,本申请实施例提供了一种定位方法,应用于接入网设备,该接入网设备中存储有接入网设备的第一位置数据,第一位置数据用于表示接入网设备的准确位置。该方法包括:首先,接入网设备从卫星系统接收第一卫星信号。而后,接入网设备根据第一卫星信号确定接入网设备的第二位置数据。进而,接入网设备根据第一位 置数据和第二位置数据,确定校准数据。而后,接入网设备将校准数据发送给终端,该校准数据用于终端确定自身的准确位置。
这样,可以使得终端与发送校准数据的接入网设备的距离较短,从而可以提高终端根据校准数据进行定位的精度,降低定位误差。
结合第一方面,在一种可能的实现方式中,接入网设备将校准数据发送给终端包括:接入网设备通过广播传输方式将校准数据发送给终端,广播传输方式包括广播消息或多媒体广播多播业务(multimedia broadcast multicast service,MBMS)。
采用广播传输方式发送校准数据的方式更为简单、快速,时延更小,实时性更好,网络容量更高,效率也更高,且不受接入网设备连接能力的限制。
结合第一方面和上述可能的实现方式,在另一种可能的实现方式中,接入网设备通过广播传输方式将校准数据发送给终端包括:接入网设备通过广播传输方式周期性地将校准数据发送给终端。
这样,可以使得接入网设备覆盖范围内的终端获得实时更新的校准数据,从而根据更新后的校准数据实现精确定位。
结合第一方面和上述可能的实现方式,在另一种可能的实现方式中,接入网设备将校准数据发送给终端包括:接入网设备通过点对点传输方式将校准数据发送给终端。
这样,可以使得校准数据的传输可靠性和安全性更高,从而使得终端根据准确的校准数据进行定位的精度也更高。
结合第一方面和上述可能的实现方式,在另一种可能的实现方式中,所校准数据包括第一位置数据与第二位置数据的差分数据,差分数据包括经纬度差分值、距离差分值、码相位差分值和载波相位差分值中的至少一种。
这样,可以使得校准数据的具体内容更为灵活。
结合第一方面和上述可能的实现方式,在另一种可能的实现方式中,校准数据包括第一位置数据和第二位置数据。
这样,可以使得校准数据的具体内容更为灵活。
结合第一方面和上述可能的实现方式,在另一种可能的实现方式中,第一位置数据通过人工测量获得。
这样获得的第一位置数据可以准确表示接入网设备的位置。
第二方面,本申请实施例提供了一种定位方法,该方法包括:首先,终端接收至少一个接入网设备发送的至少一组校准数据。其次,终端从卫星系统接收第二卫星信号,并且,终端根据第二卫星信号确定终端的第三位置数据。而后,终端根据至少一组校准数据和第三位置数据,确定终端的准确位置。
这样,终端可以接收附近集成有基准站功能的接入网设备发送的校准数据,从而可以使得终端与发送校准数据的接入网设备的距离较短;并且校准数据不需要经过核心网的传输,因而可以使得校准数据的传输实时性更好,从而可以提高终端根据校准数据进行定位的精度,减少定位误差。
结合第二方面,在一种可能的实现方式中,校准数据包括接入网设备的第一位置数据和第二位置数据,第一位置数据用于表示接入网设备的准确位置,第二位置数据为接入网设备根据第一卫星信号获得的位置数据。或者,校准数据包括第一位置数据 和第二位置数据的差分数据,差分数据包括经纬度差分值、距离差分值、码相位差分值和载波相位差分值中的至少一种。
这样,可以使得校准数据的具体内容更为灵活。
结合第二方面和上述可能的实现方式,在另一种可能的实现方式中,终端接收至少一个接入网设备发送的至少一组校准数据包括:终端通过广播传输方式接收至少一个接入网设备发送的至少一组校准数据,广播传输方式包括广播消息或多媒体广播多播业务MBMS。
终端采用广播传输方式接收校准数据的方式更为简单、快速,时延更小,实时性更好,网络容量更高,效率也更高,且不受接入网设备连接能力的限制。
结合第二方面和上述可能的实现方式,在另一种可能的实现方式中,终端接收至少一个接入网设备发送的至少一组校准数据包括:终端通过点对点传输方式接收至少一个接入网设备发送的至少一组校准数据。
其中,采用点对点传输方式接收的校准数据的可靠性和安全性更高。
结合第二方面和上述可能的实现方式,在另一种可能的实现方式中,该至少一组校准数据包括多组校准数据,终端根据至少一组校准数据和第三位置数据,确定终端的准确位置包括:终端根据多组校准数据,确定一组目标校准数据。终端根据目标校准数据和第三位置数据,确定终端的准确位置。
当终端接收到多组校准数据时,可以确定一组目标校准数据,并根据确定的该组目标校准数据确定自身的准确位置。
结合第二方面和上述可能的实现方式,在另一种可能的实现方式中,目标校准数据为距离终端最近的接入网设备发送的一组校准数据。
由于定位精度和终端与接入网设备的距离有关,当接入网设备距离终端更近时,终端根据该接入网设备发送的校准数据进行定位时的精度更高。
结合第二方面和上述可能的实现方式,在另一种可能的实现方式中,目标校准数据为优先级最高的接入网设备发送的一组校准数据。
这样,终端可以选择优先级高的接入网设备发送的校准数据进行定位。
结合第二方面和上述可能的实现方式,在另一种可能的实现方式中,目标校准数据中的各参数为多组校准数据中各对应参数的均值。
这样,终端可以结合不同接入网设备发送的校准数据得到一个综合性的目标校准数据,从而进行精确定位。
结合第二方面和上述可能的实现方式,在另一种可能的实现方式中,目标校准数据包括第一位置数据和第二位置数据,终端根据目标校准数据和第三位置数据,确定终端的准确位置包括:终端确定目标校准数据中第一位置数据和第二位置数据的差分数据。终端根据该差分数据和第三位置数据,确定终端的准确位置。
这样,终端侧具有计算第一位置数据和第二位置数据的差分数据的能力,从而可以根据计算获得的差分数据进行精确定位。
第三方面,本申请实施例提供一种接入网设备,包括:存储单元,用于存储接入网设备的第一位置数据,第一位置数据用于表示接入网设备的准确位置。接收单元,用于从卫星系统接收第一卫星信号。确定单元,用于根据第一卫星信号确定接入网设 备的第二位置数据。确定单元还用于,根据第一位置数据和第二位置数据,确定校准数据。发送单元,用于将校准数据发送给终端,该校准数据用于终端确定终端的准确位置。
结合第三方面,在一种可能的实现方式中,发送单元具体用于:通过广播传输方式将校准数据发送给终端,广播传输方式包括广播消息或多媒体广播多播业务MBMS。
结合第三方面和上述可能的实现方式,在另一种可能的实现方式中,发送单元具体用于:通过广播传输方式周期性地将校准数据发送给终端。
结合第三方面和上述可能的实现方式,在另一种可能的实现方式中,发送单元具体用于:通过点对点传输方式将校准数据发送给终端。
结合第三方面和上述可能的实现方式,在另一种可能的实现方式中,所校准数据包括第一位置数据与第二位置数据的差分数据,差分数据包括经纬度差分值、距离差分值、码相位差分值和载波相位差分值中的至少一种。
结合第三方面和上述可能的实现方式,在另一种可能的实现方式中,校准数据包括第一位置数据和第二位置数据。
结合第三方面和上述可能的实现方式,在另一种可能的实现方式中,第一位置数据通过人工测量获得。
第四方面,本申请实施例提供了一种终端,包括:第一接收单元,用于接收至少一个接入网设备发送的至少一组校准数据。第二接收单元,用于从卫星系统接收第二卫星信号。确定单元,用于根据第二卫星信号确定终端的第三位置数据。确定单元还用于,根据至少一组校准数据和第三位置数据,确定终端的准确位置。
结合第四方面,在一种可能的实现方式中,校准数据包括接入网设备的第一位置数据和第二位置数据,第一位置数据用于表示接入网设备的准确位置,第二位置数据为接入网设备根据第一卫星信号获得的位置数据。或者,校准数据包括第一位置数据和第二位置数据的差分数据,差分数据包括经纬度差分值、距离差分值、码相位差分值和载波相位差分值中的至少一种。
结合第四方面和上述可能的实现方式,在另一种可能的实现方式中,第一接收单元具体用于:通过广播传输方式接收至少一个接入网设备发送的至少一组校准数据,广播传输方式包括广播消息或多媒体广播多播业务MBMS。
结合第四方面和上述可能的实现方式,在另一种可能的实现方式中,第一接收单元具体用于:通过点对点传输方式接收至少一个接入网设备发送的至少一组校准数据。
结合第四方面和上述可能的实现方式,在另一种可能的实现方式中,该至少一组校准数据包括多组校准数据,确定单元具体用于:根据多组校准数据,确定一组目标校准数据;根据目标校准数据和第三位置数据,确定终端的准确位置。
结合第四方面和上述可能的实现方式,在另一种可能的实现方式中,目标校准数据为距离终端最近的接入网设备发送的一组校准数据。
结合第四方面和上述可能的实现方式,在另一种可能的实现方式中,目标校准数据为优先级最高的接入网设备发送的一组校准数据。
结合第四方面和上述可能的实现方式,在另一种可能的实现方式中,目标校准数据中的各参数为多组校准数据中各对应参数的均值。
结合第四方面和上述可能的实现方式,在另一种可能的实现方式中,目标校准数据包括第一位置数据和第二位置数据,确定单元具体用于:确定目标校准数据中第一位置数据和第二位置数据的差分数据。根据差分数据和第三位置数据,确定终端的准确位置。
第五方面,本申请实施例提供了一种接入网设备,包括至少一个处理器、存储器、通信接口和总线,至少一个处理器与存储器通过总线相连。通信接口用于数据交互。存储器用于,存储指令以及接入网设备的第一位置数据,第一位置数据用于表示接入网设备的准确位置。处理器用于,调用存储在存储器中的指令以实现:从卫星系统接收第一卫星信号;根据第一卫星信号确定接入网设备的第二位置数据;根据第一位置数据和第二位置数据,确定校准数据;将校准数据发送给终端,校准数据用于终端确定终端的准确位置。
第六方面,本申请实施例提供了一种终端,包括至少一个处理器、存储器、通信接口和总线,至少一个处理器与存储器通过总线相连。通信接口用于数据交互。存储器用于,存储指令。处理器用于,调用存储在存储器中的指令以实现:接收至少一个接入网设备发送的至少一组校准数据;从卫星系统接收第二卫星信号;根据第二卫星信号确定终端的第三位置数据;根据至少一组校准数据和第三位置数据,确定终端的准确位置。
第七方面,本申请实施例提供了一种计算机可读存储介质,包括指令,当其在接入网设备上运行时,使得接入网设备执行如上述第一方面及第一方面任一项中的定位方法。
第八方面,本申请实施例提供了一种计算机可读存储介质,包括指令,当其在终端上运行时,使得终端执行如上述第二方面及第二方面任一项中的定位方法。
第九方面,本申请实施例提供了一种包含指令的计算机程序产品,当其在接入网设备上运行时,使得接入网设备执行如上述第一方面及第一方面任一项中的定位方法。
第十方面,本申请实施例提供了一种包含指令的计算机程序产品,当其在终端上运行时,使得终端执行上述第二方面及第二方面任一项中的定位方法。
第十一方面,本申请实施例提供了一种系统,该系统包括接入网设备和终端,该接入网设备中存储有接入网设备的第一位置数据,第一位置数据用于表示接入网设备的准确位置。该接入网设备用于:从卫星系统接收第一卫星信号;根据第一卫星信号确定接入网设备的第二位置数据;根据第一位置数据和第二位置数据,确定校准数据;将校准数据发送给终端。该终端用于:接收至少一个接入网设备发送的至少一组校准数据;从卫星系统接收第二卫星信号;根据第二卫星信号确定终端的第三位置数据;根据至少一组校准数据和第三位置数据,确定终端的准确位置。
其中,关于上述第三方面至第十一方面的有益效果,可以参见上述第一方面和第二方面中的相应描述,这里不再赘述。
附图说明
图1为现有技术提供的一种定位方法原理示意图;
图2为本申请实施例提供的一种基准站发送校准值的示意图;
图3为本申请实施例提供的一种基准站的结构示意图;
图4为本申请实施例提供的一种接入网设备的结构示意图;
图5为本申请实施例提供的一种手机的结构示意图;
图6为本申请实施例提供的一种车载设备的结构示意图;
图7为本申请实施例提供的一种定位方法原理示意图;
图8为本申请实施例提供的一种定位方法流程图;
图9为本申请实施例提供的一种数据流转示意图;
图10为本申请实施例提供的一种校准数据的传输方式示意图;
图11为本申请实施例提供的另一种校准数据的传输方式示意图;
图12为本申请实施例提供的另一种校准数据的传输方式示意图;
图13为本申请实施例提供的另一种校准数据的传输方式示意图;
图14为本申请实施例提供的一种接入网设备的分布示意图;
图15为本申请实施例提供的另一种定位方法流程图;
图16为本申请实施例提供的另一种定位方法流程图;
图17为本申请实施例提供的另一种接入网设备的结构示意图;
图18为本申请实施例提供的一种终端的结构示意图;
图19为本申请实施例提供的一种接入网设备或终端的结构示意图;
图20为本申请实施例提供的另一种接入网设备或终端的结构示意图;
图21为本申请实施例提供的一种系统的结构示意图。
具体实施方式
为了便于理解,示例的给出了部分与本申请实施例相关概念的说明以供参考。如下所示:
广播:一种信息的传播方式,指网络中的某一设备同时向网络中所有的其它设备发送数据的技术。
广播域:广播数据所能广播到的范围,即网络中所有能接收到同样广播数据的设备的集合。
点对点:点对点通信实现网内任意两个用户之间的信息交换。在接收到带有点对点通信标识信息的数据后,比较系统号和地址码,系统号和地址码都与本地相符时,将数据传送到用户终端,否则将数据丢掉,不传送到用户终端。点对点通信时,只有1个用户可接收到信息。而上述广播通信则可以有多个用户可节后到信息。
伪距:由于卫星钟、接收机钟的误差以及无线电信号经过电离层和对流层中的延迟,实际测出的距离A与卫星到接收机的几何距离B有一定的差值,因此,一般称量测出的距离为伪距。
GNSS:全球导航卫星系统定位是利用一组卫星的伪距、星历、卫星发射时间等观测量来是的,同时还必须知道用户钟差。全球导航卫星系统是能在地球表面或近地空间的任何地点为用户提供三维坐标和速度以及时间信息的空基无线电导航定位系统。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述。其中,在本申请实施例的描述中,除非另有说明,“/”表示或的意思,例如,A/B可以表 示A或B;本文中的“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,在本申请实施例的描述中,“多个”是指两个或多于两个。
在差分GNSS定位技术中,参见图2,卫星基准站11主要用于将根据卫星信号以及准确位置获得的误差值等校准数据通过有线网络、无线网络或无线广播等方式发送给终端13,终端13也可以通过有线网络、无线网络或无线广播等方式接收校准数据,并结合校准数据和通过自身GNSS模块获得的卫星信号确定自身的准确位置。参见图3,在基准站11的一种组成方式中,基准站11可以包括天线111、双工器112、功率放大器113、射频(radio frequency,RF)接发器114、处理器115、存储器116以及电源117等。其中,天线111可以用于从卫星系统接收卫星信号,还可以用于将校准数据发送给终端。在上述图3中,虽然未示出,但可以理解的是,天线111具体也可以包括两组天线,其中一组天线可以用于接收卫星信号,另一组天线可以用于发送校准数据。
在如图1所示的现有差分GNSS定位方案中,由于基准站通常设置在特定的位置,且数量较少,因而终端与基准站之间的距离通常较远,使得差分GNSS技术无法充分发挥性能,终端定位精度无法达到理想性能。本申请实施例提供的差分GNSS定位方案,通过将基准站的功能集成在移动通信网络中广泛分布的接入网设备中,通过接入网设备测定校准数据,并将校准数据发送给接入网设备网络信号覆盖范围内的终端,从而可以保证终端与集成有基准站功能的接入网设备之间的距离较短,确保差分GNSS技术校准数据准确度满足算法要求,使得终端的差分GNSS定位精度达到理想水平,提高定位精度。
其中,接入网设备可以是中继站或接入点等。接入网设备可以是全球移动通信系统(global system for mobile communication,GSM)或码分多址(code division multiple access,CDMA)网络中的基站收发信台(base transceiver station,BTS),也可以是宽带码分多址(wideband code division multiple access,WCDMA)中的NB(NodeB),还可以是LTE中的eNB或eNodeB(evolutional NodeB)。接入网设备还可以是云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器。接入网设备还可以是未来5G网络中的网络设备或未来演进的公共陆地移动网络(public land mobile network,PLMN)中的网络设备等。其中,未来5G网络中的网络设备可以包括新型无线电基站(new radio NodeB),下一代基站(next generation NodeB,gNB),或者传输点(transmission point)等。接入网设备还可以是物联网、车联网、车对车V2V技术中的固定站等。
本申请实施例中涉及到的终端为用于定位的终端设备,可以是用户设备(user equipment,UE)、接入终端、UE单元、UE站、移动站、移动台、远方站、远程终端、移动设备、UE终端、终端、无线通信设备、UE代理或UE装置等。接入终端可以是蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字处理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备等。例如,具体可以是手机、平板电脑、笔记本电脑、 超级移动个人计算机(ultra-mobile personal computer,UMPC)、上网本等。
在一个示例中,接入网设备可以通过如图4所示的结构实现。如图4所示,接入网设备可以包括室内基带处理单元(building baseband unit,BBU)和远端射频模块(remote radio unit,RRU)和天馈系统(即天线)连接,BBU和RRU可以根据需要拆开使用。应注意,在具体实现过程中,接入网设备还可以采用其他通用硬件架构,而并非仅仅局限于图4所示的通用硬件架构。此外,接入网设备还可以包括GNSS模块,用于接收卫星信号,以便于接入网设备根据卫星信号进行接入网设备间时钟同步,使得终端在接入网设备间切换时可以保持信号同步。
以终端为手机为例,对手机的通用硬件架构进行说明。如图5所示,手机200可以包括:GNSS模块20、射频(radio frequency,RF)电路21、处理器22、存储器23、电源24、显示屏25、重力传感器26、音频电路27、扬声器28、麦克风29等部件,这些部件之间可以以总线连接,也可以直连连接。本领域技术人员可以理解,图2中示出的手机结构并不构成对手机的限定,可以包括比图示更多的部件,或者组合某些部件,或者不同的部件布置。
其中,GNSS模块20用于接收卫星信号,根据卫星信号计算伪距、经纬度、高度和时间修正量等参数,以便于手机10根据这些参数进行定位、导航、测速、时间同步等。
RF电路21可以用于收发信息或通话过程中,信号的接收和发送,特别地,将接收到的信息给处理器22处理;另外,将处理器22生成的信号发送出去。通常,RF电路21可以包括但不限于天线、至少一个放大器、收发信机、耦合器、低噪声放大器(low noise amplifier,LNA)、双工器等。此外,RF电路21还可以通过无线通信与网络和其他设备通信。
处理器22是手机200的控制中心,利用各种接口和线路连接整个手机的各个部分,通过运行或执行存储在存储器23内的软件程序和/或模块,以及调用存储在存储器23内的数据,执行手机200的各种功能和处理数据,从而对手机200进行整体监控。在具体实现中,作为一种实施例,处理器22可包括一个或多个处理单元;处理器22可集成应用处理器和调制解调处理器。其中,应用处理器主要处理操作系统、用户界面和应用程序等,调制解调处理器主要处理无线通信。可以理解的是,上述调制解调处理器也可以不集成到处理器22中。
存储器23可用于存储数据、软件程序以及模块,可以是易失性存储器(volatile memory),例如随机存取存储器(random-access memory,RAM);或者非易失性存储器(non-volatile memory),例如只读存储器(read-only memory,ROM),快闪存储器(flash memory),硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD);或者上述种类的存储器的组合。具体的,存储器23内可存储程序代码,该程序代码用于使处理器22通过执行该程序代码,执行本申请实施例提供的定位方法。
电源24,可以为电池,通过电源管理系统与处理器22逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。显示屏25可以称为显示面板,用于显示用户界面。显示屏25还可以为触控面板,用于实现手机200的输入和输出功能。重力传感器(gravity sensor)26,可以检测手机在各个方向上(一般为三轴)加 速度的大小,静止时可检测出重力的大小及方向,可用于识别手机姿态的应用(比如横竖屏切换、相关游戏、磁力计姿态校准)、振动识别相关功能(比如计步器、敲击)等。需要说明的是,手机200还可以包括其它传感器,比如压力传感器、光传感器、陀螺仪、气压计、湿度计、温度计、红外线传感器等其他传感器,在此不再赘述。
尽管未示出,手机200还可以包括无线保真(wireless fidelity,WiFi)模块、蓝牙模块、摄像头等功能模块,在此不再一一赘述。
以终端为车载设备为例,对车载设备的通用硬件架构进行说明。如图6所示,车载设备300可以包括:信息通讯单元31、麦克风32、一个或多个按钮或者其它控制输入33、音频系统34、可视显示器35、以及GNSS模块36和多个车载设备安全单元(vehicle security module,VSM)37等。
其中,信息通讯单元31根据全球移动通信系统(global system for mobile communication,GSM)或者码分多址(code division multiple access,CDMA)标准利用蜂窝通信,因此包括用于声音通信(例如免提呼叫)的标准蜂窝芯片集51、用于数据传输的无线调制解调器、电子处理设备52、一个或多个数字存储器53以及双天线54。应该明白,调制解调器能够通过存储在信息通讯单元内的软件实施且由处理器52执行,或者它能够是位于信息通讯单元31内部或者外部的分开的硬件部件。车载设备和其它联网设备之间的无线联网也能够使用信息通讯单元31来执行。
处理器52可以是能够处理电子指令的任何类型的设备,包括微处理器、微控制器、主处理器、控制器、车载设备通信处理器、以及专用集成电路。它能够是仅用于信息通讯单元31的专用处理器或者能够与其它车载设备系统共享。处理器52执行各种类型的数字存储指令,例如存储在存储器53中的软件或者固件程序,它能使信息通讯单元提供较宽的多种服务。例如,处理器52能够执行程序或者处理数据,以执行本文讨论的方法的至少一部分。
GNSS模块36可以用于从卫星系统接收无线电卫星信号。根据接收到的卫星信号,GNSS模块36能够确定车载设备的位置,该车载设备的位置被用于给车载设备驾驶者提供导航和其它位置相关联的服务。导航信息能够被呈现在显示器35上(或者车载设备内的其它显示器)或者能够用语言呈现,例如当提供转向导航时完成。能够使用专用的车载设备内的导航模块(可以是GNSS模块36的一部分)来提供导航服务,或者一些或全部导航服务可以经信息通讯单元31来完成,其中位置信息被发送到远程位置,以便于为车载设备提供导航地图、地图标注、路线计算等等。位置信息能够被提供给呼叫中心或者其它远程计算机系统,例如计算机,以用于其它的目的,例如车队管理。并且,新的或者更新的地图数据能够经信息通讯单元31下载至GNSS模块36。
以下将主要以终端为手机或车载设备为例,对本申请实施例提供的差分GNSS定位方法进行描述。本申请实施例提供的差分GNSS定位技术可以包括RTD模式和RTK模式。
本申请实施例提供的差分GNSS定位方法涉及接入网设备和终端,接入网设备中存储有接入网设备的第一位置数据,第一位置数据用于表示接入网设备的准确位置。参见图7及图8,该定位方法可以包括:
801、接入网设备从卫星系统接收第一卫星信号。
其中,这里的卫星信号是指卫星系统发送的用于导航定位的调制波,具体可以包含有:载波、测距码和数据码等信息。其中,载波和测距码用于测量卫星到地面接收机(接收卫星信号的设备)之间的距离,而数据码则提供计算卫星坐标所需的参数,由卫星坐标和卫星到地面间的距离求得地面点的坐标。
接入网设备作为一种地面接收机,可以接收卫星系统发送的第一卫星信号。其中,图7中的标号14表示接入网设备。
802、接入网设备根据卫星信号确定接入网设备的第二位置数据。
接入网设备接收到第一卫星信号后,可以根据第一卫星信号测定传播的单程时间延迟或相位延迟,进而确定接入网设备到发送第一卫星信号的卫星间的距离。接入网设备可以通过接收卫星系统中多个卫星发送的第一卫星信号,来确定接入网设备到不同卫星之间的距离等信息,从而根据该距离等信息确定接入网设备的第二位置数据。例如,接入网设备可以通过接收4颗卫星发送的第一卫星信号来获得第二位置数据,其中一颗卫星可以用于使得卫星与接入网设备的原子钟保持同步。
这里的第二位置数据用于描述接入网设备的位置,具体可以是经纬度、伪距、码相位和载波相位等中的至少一种,根据第二位置数据可以获知接入网设备的位置,这里不再一一例举。
803、接入网设备根据第一位置数据和第二位置数据,确定校准数据。
其中,用于描述接入网设备的准确位置的第一位置数据也可以是经纬度、伪距、码相位或者载波相位等中的至少一种。第一位置数据用于描述接入网设备的准确位置,可以由人工测量获得,可以通过人工进行更新和校准,或者通过相关人员借助网络进行更新和校准。
接入网设备可以根据第一位置数据和第二位置数据确定校准数据。尤其地,第一位置数据、第二位置数据可以包括相同类型的数据参数,例如都包括经纬度,这样接入网设备可以根据相同类型的数据参数,更为方便的确定校准数据,且确定的校准数据与第一位置数据和第二位置数据包括相同类型的数据参数。当第一位置数据和第二位置数据包括的数据参数的类型不同时,接入网设备还可以先将不同类型的数据参数转化成相同类型的数据参数,从而根据相同类型的数据参数确定校准数据。
当第二位置数据与第一位置数据包括的数据参数的类型不同时,接入网设备可以先将第二位置数据和第一位置数据转化成相同类型的数据参数,而后再确定校准数据。
804、接入网设备将校准数据发送给终端。
其中,这里的终端是接入网设备的网络信号覆盖范围内的终端。接入网设备网络信号的覆盖范围通常为几百米到几千米。由步骤801-804可知,在本申请实施例中,接入网设备可以确定校准数据,并将校准数据发送给终端,该校准数据用于使得终端能够根据校准数据确定自身的准确位置。可以理解为,接入网设备集成了现有技术中基准台的功能。而在移动通信网络的组网覆盖中,接入网设备分布广泛、数量较多,可以使得终端与接入网设备的距离较短,相当于可以使得终 端与基准台的距离较短。当终端根据校准数据确定自身准确位置时,可以提高终端定位的精度。
805、终端接收至少一个接入网设备发送的至少一组校准数据。
由于不同接入网设备网络信号的覆盖范围可能有交集,终端可能同时在多个接入网设备网络信号的覆盖范围内,因而,参见图13,终端可以接收一个或多个接入网设备分别发送的校准数据,该校准数据为不同接入网设备分别通过步骤801-803获得的校准数据。
806、终端从卫星系统接收第二卫星信号。
与步骤801中接入网设备接收第一卫星信号类似,终端也可以从卫星系统接收第二卫星信号。但区别于步骤801中用于获得接入网设备的位置数据的第一卫星信号,步骤806中的第二卫星信号用于获得终端的位置数据。
807、终端根据第二卫星信号确定终端的第三位置数据。
其中,第三位置数据用于描述终端的位置,具体可以是经纬度、伪距、码相位或者载波相位等中的至少一种。终端在接收到第二卫星信号后,可以根据第二卫星信号确定第三位置数据。
其中,上述步骤805具体可以在步骤806和步骤807之前,也可以在步骤806和步骤807之后,本申请实施例对其顺序不做具体限定。
808、终端根据至少一组校准数据和第三位置数据,确定终端的准确位置。
在获得接入网设备发送的校准数据和第三位置数据后,终端可以根据校准数据以及第三位置数据,确定自身的准确位置。
尤其地,校准数据和第三位置数据可以包括相同类型的数据参数,例如都包括经纬度,这样终端可以根据相同类型的数据参数,更为方便的确定自身的准确位置。当校准数据和第三位置数据包括的数据参数的类型不同时,终端还可以先将不同类型的数据参数转化成相同类型的数据参数,从而根据相同类型的数据参数确定自身的准确位置。
当校准数据与第三位置数据包括的数据参数的类型不同时,接入网设备可以先将第三位置数据和校准数据转化成相同类型的数据参数,而后再根据校准数据和第三位置数据确定自身的准确位置。
本申请实施例上述步骤801-808对应的一种数据流转示意图可以参见图9。
其中,对于接入网设备来说,GNSS模块通过接收卫星信号不仅用于实现接入网设备间时钟同步,还可以根据卫星信号确定校准数据,以使得接入网设备可以将校准数据发送给终端进行精确定位。
对于终端来说,GNSS模块具体可以包括处理器,GNSS模块中的处理器可以接收校准数据,并结合第三位置数据确定终端的准确位置;或者,GNSS模块中的处理器也可以将第三位置数据导入终端的主处理器,主处理器结合第三位置数据以及接收到的校准数据,确定终端的准确位置。并且,当采用RTK模式时,GNSS模块具体可以用于测量信号相位,并能够提供计算能力计算终端的准确位置。
在本申请实施例提供的定位方法中,通过利用移动通信网络中接入网设备分布广泛、数量较多的特点,将基准台功能集成到接入网设备中,并通过接入网设 备确定校准数据,将校准数据发送给接入网设备网络信号覆盖范围内的终端。终端接收附近的接入网设备发送的校准数据,从而根据校准数据确定自身的准确位置。这样,可以使得终端与发送校准数据的接入网设备的距离较短,从而可以提高终端根据校准数据进行定位的精度,减低定位误差。
其中,由于接入网设备网络信号的覆盖范围通常为几百米到几千米,因而终端与发送校准数据的接入网设备的最大距离也在“几千米”这个范围内,而不会像现有技术那样出现终端与基准站距离几十千米甚至几百千米的情况。
并且,由于接入网设备分布广泛、数量较多,因而接入网设备的覆盖范围广,任意位置的终端都可能在某一个或某几个接入网设备网络信号的覆盖范围内,从而可以短距离接收附近接入网设备发送的校准数据,以进行精确定位。
此外,除了终端与基准站间距离会影响差分GNSS定位方案实际使用效果外,终端与基准站间通信的实时性同样对实际定位精度有影响。尤其是当采用RTK模式时,校准数据的传输实时性要求更高,且校准数据的数据量大。在现有技术中,由于终端与基准站的距离通常较远,因而终端通常通过接入网设备接入移动通信网络的接入网,并通过接入网和核心网与基准站进行通信,基准站发送的校准数据经过核心网和接入网才能发送到终端,即基准站通过广域网将校准数据发送给终端,因而传输链路长,传输时延大,实时性差。尤其是当校准数据的数据量大(例如采用RTK模式)时,会占用较大的带宽,而核心网的业务负载较重,当核心网业务繁忙或网络性能不佳时,也会影响校准数据传输的实时性。
而在本申请实施例中,通过将基准站的功能集成到接入网设备中,从而通过接入网设备直接测定校准数据,并直接将校准数据发送给接入网设备覆盖范围内的终端,而不像现有技术那样需要经过核心网的传输,接入网设备可以直接通过内部网络将校准数据发送给终端,因而传输时延小,校准数据传输的实时性好,且不受核心网业务负载的限制。也就是说,在本申请实施例中,接入网设备可以将测定的校准数据实时地发送给覆盖范围内的终端,从而使得终端可以根据实时获得的校准数据进行精确定位。
此外,现有技术中还提供了一种定位方法,其主要原理是,移动通信网络将终端所处位置的星历或大概位置发送给终端,以加快终端的搜星速度和定位速度。区别于现有技术中为加快终端的定位速度为采用的定位方法,本申请实施例提供的定位方法通过接入网设备确定校准数据,并将校准数据发送给短距离内的终端,以提高终端的定位精度。
现有技术中还提供了另一种定位方法,主要基于802.11p协议,利用WIFI技术,并结合无线定位原理实现高精度定位。在该方法中,由于802.11p技术使用的频段是5.9G频带,由于频率过高,对恶劣天气,建筑物、植物等障碍物穿透能力不强,通常只能有效工作于直视情况下。而本申请实施例提供的定位方法并不要求工作在高频段,因而不存在类似的问题。
在本申请实施例中,由于电离层变化、云层变化、卫星自身的运动等因素的影响,卫星信号是动态变化的,卫星信号经过的路径是动态变化,因而根据卫星信号确定的 位置数据与准确的位置数据之间的误差也随之变化,也就是说,校准数据是动态变化的。因此,接入网设备可以不断刷新从卫星系统接收到的第一卫星信号,例如在上述步骤801中,接入网设备可以周期性地接收卫星系统发送的第一卫星信号,以获得实时的第一卫星信号,从而根据第一卫星信号获得接入网设备实时的第二位置数据,进而,接入网设备可以根据实时的第二位置数据确定实时的校准数据,从而将实时的校准数据发送给终端。并且,终端可以在上述步骤806中周期性地接收卫星系统发送的第二卫星信号,以获得实时的第二卫星信号,从而根据第二卫星信号获得终端实时的第三位置数据,以使得终端可以根据实时的第三位置数据以及实时的校准数据实现更为精确的定位。
在移动通信网络中,根据所采用的传输技术不同,接入网设备与终端之间的通信方式主要可以包括广播和点对点传输。其中,在点对点传输方式中,对于接入网设备发送的消息,只有目的终端这一个用户可以接收到;而在广播传输方式中,对于接入网设备发送的消息,接入网设备覆盖范围内的所有终端都可以接收到。
对应于这两种传输方式,在上述步骤804中,接入网设备也可以通过广播或点对点传输方式,将校准数据发送给终端。具体的,接入网设备可以与终端侧约定一种通信格式,用于传输校准数据包,终端侧在接收到该种通信格式的消息后可以获知其中传输的是校准数据,从而根据校准数据进行定位。本申请实施例对传输校准数据的具体通信格式不做限定。
在第一种实现方式中,上述步骤804可以包括:
8041、接入网设备通过广播传输方式将校准数据发送给终端,广播传输方式包括广播消息或多媒体广播多播业务MBMS。
与步骤8041相对应,上述步骤805具体可以包括:
8051、终端接收至少一个接入网设备通过广播传输方式发送的至少一组校准数据。
示例性的,以终端为车载设备为例,接入网设备和终端通过广播传输方式交互校准数据的场景示意图可以参见图10;以终端为手机为例,接入网设备和终端通过广播传输方式交互校准数据的场景示意图可以参见图11。
在该种实现方式中,接入网设备可以采用广播传输方式发送校准数据,接入网设备网络信号覆盖范围内的所有终端都可以接收到该校准数据。
需要说明的是,由于广播是单向的,不需要建立连接,不需要和终端交互,传输的可靠性可以通过更上层的协议保证或不需要确保传输的可靠性,终端接入网络后即可通过广播接收校准数据,不需要进一步鉴别话费等权限,因而采用广播传输方式发送校准数据的方式更为简单、快速,时延更小,实时性更好,网络容量更高,效率也更高。
具体的,接入网设备和终端可以通过广播消息或多媒体广播多播业务MBMS等广播传输方式交互校准数据。需要强调的是,现有技术中的广播消息通常用来发送接入网设备的基本信息以实现终端接入等基本功能,例如这些基本信息可以包括所有终端都相同的配置信息,小区选择/重选信息,地震海啸告警信息等,而不同于广播业务数 据。而在本申请实施例中,接入网设备将校准数据这一业务数据携带在广播消息中发送给终端,以使得终端能够及时接收到校准数据,从而根据校准数据进行精确定位。
在另一种具体实施方式中,接入网设备还可以基于多媒体广播多播业务MBMS将校准数据发送给终端。在容量方面,MBMS提供点到多点传送多媒体的业务模式,资源消耗与用户数的增长无关,可以节省空口资源、传输资源等,规避移动网络容量的劣势。
对于移动中的终端,尤其是高速移动中的终端,例如道路中高速移动的车载设备以及用户的手机等,由于终端的位置是实时变化的,因而精确定位时对校准数据的实时性要求也更高。采用广播传输方式发送校准数据,可以满足高速移动的终端对校准数据的实时性要求,从而实现精确定位。
此外,现有技术中的差分GNSS定位方案通常采用基准站与接入网分离的点对点的传输方式,基准站通过接入网和核心网组成的数据链路点对点传输校准数据。由于基准站与接入网设备不集成,这种点对点通信方式需要经过核心网的传输,由于传输距离增加和核心网络负载而使传输延时增加,而且受限于接入网设备的并发连接数,也就限制了同时使用差分GNSS定位方案进行定位的终端的数量。
而在本申请实施例中,基准站与接入网设备集成,并通过广播传输方式传输校准数据,不需要经过核心网传输,不仅可以保证传输的实时性,而且不会受到接入网设备连接能力的限制,接入网设备覆盖范围内的所有终端均可以接收到该校准数据,因而可接收校准数据的终端的数量更多,该种实现方式的效率更高,可实施性更强。
值得注意的是,为了保证电源供应和网络覆盖,接入网设备通常靠近道路、用户布置,因而接入网设备与道路中高速移动的终端间的距离很短,可以很好地满足道路中移动终端对定位精度的要求。
具体的,在上述步骤8041中,接入网设备可以通过广播传输方式周期性地将校准数据发送给终端,以使得接入网设备覆盖范围内的终端可以获得实时更新的校准数据,从而根据更新后的校准数据实现精确定位。其中,这里的周期可以根据终端的移动速度以及对定位精度的要求进行确定。终端的移动速度越大,定位的准确性和实时性要求也越高,校准数据的发送周期也就越短。示例性的,这里的周期可以为10s(秒)。
此外,广播消息和多媒体广播多播业务MBMS等广播传输方式可以发送的数据的信息量可以较大,发送间隔也可以较小,因而通过广播传输方式发送校准数据的方式,还可以实现高带宽通信。
在第二种实现方式中,上述步骤804可以包括:
8042、接入网设备通过点对点传输方式将校准数据发送给终端。
与步骤8042相对应,上述步骤805具体可以包括:
8052、终端通过点对点传输方式接收至少一个接入网设备发送的至少一组校准数据。
示例性的,以终端为手机为例,接入网设备和终端通过广播传输方式交互校准数据的场景示意图可以参见图12。
点对点传输方式要求在终端与接入网设备建立连接后才能进行数据交互,因而与广播传输方式相比,校准数据的传输可靠性和安全性更高,但由于需要与接入网设备建立连接,所以通信小区切换时可能造成时延,因而传输的实时性差于广播传输方式。因此,点对点传输方式可以适用于高可靠性和高安全性终端的定位。并且,由于校准数据的可靠性更高,因而定位精度也更高。
具体的,在点对点传输方式中,终端可以与接入网设备进行交互,从而与接入网设备建立连接,并在连接建立后接收接入网设备发送的校准数据。例如,在一种连接建立流程中,终端可以向接入网设备发送连接请求消息,接入网设备可以向终端发送连接确认消息。
由于校准数据是实时变化的,因而在点对点传输方式中,接入网设备可以周期性地向终端发送校准数据,或者终端可以周期性地向接入网设备获取校准数据,或者终端可以在需要时向接入网设备获取校准数据,使得终端可以根据获取的新的校准数据实现精确定位。
此外,在本申请实施例中的该种实现方式中,虽然也采用点对点传输方式,但与现有技术中基准站与接入网分离,并通过核心网组成的数据链路进行点对点传输校准数据不同,本申请实施例中,接入网设备集成基准站功能,基准站通过接入网的内部网络发送校准数据不会经过核心网,因而与现有技术相比,传输链路更短,传输实时性也更好。
因此,在本申请实施例中,通过基准站与接入网设备集成,并实时测定校准数据并将校准数据实时发送给覆盖范围内的终端,从而可以保证终端与集成有基准站功能的接入网设备之间的距离较短并具有更好的实时性能,确保差分GNSS技术校准数据准确度和实时性满足算法要求,使得终端的差分GNSS定位精度达到理想水平,提高定位精度。
其中,当终端在上述步骤805中接收到的至少一组校准数据为多组校准数据时,在上述步骤808中,终端根据至少一组校准数据和第三位置数据,确定终端的准确位置可以包括:
8081、终端根据多组校准数据,确定一组目标校准数据。
8082、终端根据目标校准数据和第三位置数据,确定终端的准确位置。
其中,步骤8081中的目标校准数据,可以是终端接收到的多组校准数据中的其中一组,也可以是通过择优或合并算法对多组校准数据进行处理后获得的一组目标校准数据。也就是说,当终端接收到多组校准数据时,终端可以根据多组校准数据确定一组目标校准数据,从而根据目标校准数据进行精确定位。当终端接收到一组校准数据时,该组校准数据即为目标校准数据。
示例性的,在一种实施方式中,如图13所示,当终端接收到多组校准数据时,目标校准数据可以为距离终端最近的接入网设备发送的一组校准数据。由于定位精度和终端与接入网设备的距离有关,当接入网设备距离终端更近时,终端根据该接入网设备发送的校准数据进行定位时的精度更高。
示例性的,终端存储有不同接入网设备分别对应的优先级,当终端接收到多组校准数据时,目标校准数据可以为优先级最高的接入网设备发送的一组校准数据。 其中,接入网设备的优先级可以根据实际需要进行设定。例如,距离终端近的接入网设备对应的优先级高。再例如,在采用点对点传输方式交互校准数据时,连接的终端数量少的接入网设备对应的优先级高等。
示例性的,当终端接收到多组校准数据时,目标校准数据中的各参数可以为多组校准数据中各对应参数的均值。这样,终端可以结合不同接入网设备发送的校准数据得到一个综合性的目标校准数据,从而进行精确定位。
此外,在上述步骤805中,当终端接收到的校准数据只有一组时,终端可以直接根据该校准数据进行精确定位。也可以理解为,当终端接收到的校准数据只有一组时,该组校准数据即为目标校准数据。
在本申请实施例中,上述校准数据具体可以包括第一位置数据与第二位置数据的差分数据。其中,第一位置数据和第二位置数据具体可以包括经纬度、伪距、码相位和载波相位等中的至少一种,因而,相对应的,第一位置数据与第二位置数据的差分数据具体也可以包括经纬度差分值、距离差分值、码相位差分值和载波相位差分值中的至少一种。终端可以根据该差分数据确定自身的准确位置。
在接收到校准数据后,终端可以直接根据校准数据中的差分数据以及第三位置数据确定自身的准确位置,或者终端也可以对校准数据中的差分数据进行处理后,再结合第三位置数据确定自身的准确位置。
举例来说,在一种简单的实现方式中,校准数据可以为第一位置数据和第二位置数据的经纬度差分值,终端可以根据第三位置数据与校准数据的差分数据确定自身的准确位置。例如,若第一位置数据为“北纬N22°38′17.58″、东经E114°05′53.45″”,第二位置数据为“北纬N22°38′16.54″、东经E114°05′51.35″”,校准数据为第一位置数据与第二位置数据的差分数据即“北纬+1.04″、东经+2.1″”,第三位置数据为“北纬N22°35′13.24″、东经E114°06′36.70″”,则终端可以确定自身的准确位置为第三位置数据与差分数据“北纬+1.04″、东经+2.1″”的和所表示的位置,即“北纬N22°35′14.28″、东经E114°06′38.80″”所表示的位置。
或者,在本申请实施例中,校准数据可以包括第一位置数据和第二位置数据。终端在接收到第一位置数据和第二位置数据后,可以对第一位置数据和第二位置数据进行处理,而后根据处理后的数据确定自身的准确位置。例如,终端可以首先计算第一位置数据和第二位置数据的差分数据,而后根据该差分数据确定自身的准确位置。
或者,在本申请实施例中,校准数据可以包括第一位置数据和第二位置数据,以及第一位置数据和第二位置数据的差分数据。
具体的,终端根据多组校准数据确定的一组目标校准数据也可以包括接入网设备的第一位置数据和第二位置数据,或者,包括接入网设备的第一位置数据和第二位置数据的差分数据,或者,包括第一位置数据和第二位置数据以及第一位置数据和第二位置数据的差分数据。当目标校准数据包括第一位置数据和第二位置数据时,终端根据目标校准数据和第三位置数据,确定终端的准确位置可以包括:终端确定目标校准数据中第一位置数据和第二位置数据的差分数据,终端根 据差分数据和第三位置数据,确定终端的准确位置。
需要说明的是,由于移动通信网络中接入网设备的数量众多且分布广泛,而当终端在接入网设备网络信号覆盖范围内时通常即可满足终端的定位精度;并且,定位精度的要求不同,终端与接入网设备之间的距离要求也不同,因而并不需要移动通信网络中的每个接入网设备都集成有基准站的功能,而具体可以根据实际需要,距离一定的间隔设置本申请实施例中的接入网设备。即参见图14,距离一定间隔的部分接入网设备中集成有基准站的功能。
此外,还需要说明的是,本申请实施例提供的定位方法主要用于确定终端准确的位置,基于该精确定位技术,还可以实现测速、导航、授时等功能。
本申请实施例还提供一种定位方法,可以应用于接入网设备,该接入网设备中存储有接入网设备的第一位置数据,第一位置数据用于表示接入网设备的准确位置。参见图15,该方法可以包括:
901、接入网设备从卫星系统接收第一卫星信号。
902、接入网设备根据第一卫星信号确定接入网设备的第二位置数据。
903、接入网设备根据第一位置数据和第二位置数据,确定校准数据。
其中,这里的第一位置数据是通过人工测量获得的,用于描述接入网设备的准确位置的数据。当第二位置数据与第一位置数据包括的数据参数的类型不同时,接入网设备可以先将第二位置数据和第一位置数据转化成相同类型的数据参数,而后再确定校准数据。
904、接入网设备将校准数据发送给终端,该校准数据用于终端确定终端的准确位置。
当校准数据与第三位置数据包括的数据参数的类型不同时,接入网设备可以先将第三位置数据和校准数据转化成相同类型的数据参数,而后再根据校准数据和第三位置数据确定自身的准确位置。
其中,对于接入网设备来说,GNSS模块通过接收卫星信号不仅用于实现接入网设备间时钟同步,还可以根据卫星信号确定校准数据,以使得接入网设备可以将校准数据发送给终端进行精确定位。
在本申请实施例提供的定位方法中,通过利用移动通信网络中接入网设备分布广泛、数量较多的特点,将基准台功能集成到接入网设备中,通过接入网设备确定校准数据,并将校准数据发送给接入网设备网络信号覆盖范围内的终端,以使得终端可以接收附近的接入网设备发送的校准数据,从而根据校准数据确定自身的准确位置。这样,可以使得终端与发送校准数据的接入网设备的距离较短,从而可以提高终端根据校准数据进行定位的精度,减少定位误差。
并且,由于接入网设备分布广泛、数量较多,因而接入网设备的覆盖范围广,任意位置的终端都可能在某一个或某几个接入网设备网络信号的覆盖范围内,从而可以短距离接收附近接入网设备发送的校准数据,以进行精确定位。
此外,在本申请实施例中,通过将基准站的功能集成到接入网设备中,从而通过接入网设备直接测定校准数据,并直接将校准数据发送给接入网设备覆盖范围内的终 端,而不像现有技术那样需要经过核心网的传输,接入网设备可以直接通过内部网络将校准数据发送给终端,因而传输时延小,校准数据传输的实时性好,且不受核心网业务负载的限制。也就是说,在本申请实施例中,接入网设备可以将测定的校准数据实时地发送给覆盖范围内的终端,从而使得终端可以根据实时获得的校准数据进行精确定位。
其中,在上述步骤904中,接入网设备将校准数据发送给终端可以包括:
9041、通过广播传输方式将校准数据发送给终端,广播传输方式包括广播消息或多媒体广播多播业务MBMS。
通过广播传输方式发送校准数据,可以使得接入网设备网络信号覆盖范围内的所有终端都可以接收到该校准数据。并且,由于广播是单向的,不需要建立连接,不需要和终端交互,传输的可靠性可以通过更上层的协议保证或不需要确保传输的可靠性,终端接入网络后即可接收通过传播传输方式发送的数据,因而采用广播传输方式发送校准数据的方式更为简单、快速,时延更小,实时性更好,网络容量更高,效率也更高。
并且,接入网设备通过广播传输方式传输校准数据,不仅可以保证传输的实时性,而且不会受到接入网设备连接能力的限制,可接收校准数据的终端的数量更多。此外,采用广播传输方式发送校准数据,可以满足高速移动的终端对校准数据的实时性要求,从而实现精确定位。
具体的,接入网设备在上述步骤9041中通过广播传输方式将校准数据发送给终端可以包括:接入网设备通过广播传输方式周期性地将校准数据发送给终端。
这样,接入网设备可以将动态变化的校准数据实时地发送给终端,以使得终端可以根据接收到的实时的校准数据进行精确定位。
其中,在上述步骤904中,接入网设备将校准数据发送给终端可以包括:
9042、接入网设备通过点对点传输方式将校准数据发送给终端。
与广播传输方式相比,采用点对点传输方式发送的校准数据的可靠性和安全性更高。并且,与现有技术中基准站通过接入网和核心网组成的数据链路进行点对点传输校准数据不同,本申请实施例中发送校准数据的接入网设备,且不会经过核心网进行发送,因而与现有技术相比,传输链路更短,传输实时性也更好。
其中,接入网设备确定的校准数据可以包括第一位置数据与第二位置数据的差分数据,差分数据包括经纬度差分值、距离差分值、码相位差分值和载波相位差分值中的至少一种;或者,校准数据可以包括第一位置数据和第二位置数据。
本申请实施例还提供一种定位方法,可以用于终端,参见图16,该方法可以包括:
1001、终端接收至少一个接入网设备发送的至少一组校准数据。
由于不同接入网设备网络信号的覆盖范围可能有交集,终端可能同时在多个接入网设备网络信号的覆盖范围内,因而终端可以接收一个或多个接入网设备分别发送的校准数据。
其中,该校准数据为接入网设备根据第一位置数据和第二位置数据获得的数据。该第一位置数据用于表示接入网设备的准确位置,通常由人工测量获得。第二位置数 据为接入网设备根据第一卫星信号获得的位置数据。该校准数据可以包括接入网设备的第一位置数据和第二位置数据,或者,该校准数据可以包括第一位置数据和第二位置数据的差分数据,差分数据包括经纬度差分值、距离差分值、码相位差分值和载波相位差分值中的至少一种。
1002、终端从卫星系统接收第二卫星信号。
1003、终端根据第二卫星信号确定终端的第三位置数据。
1004、终端根据至少一组校准数据和第三位置数据,确定终端的准确位置。
其中,对于终端来说,GNSS模块具体可以包括处理器,GNSS模块中的处理器可以接收校准数据,并结合第三位置数据确定终端的准确位置;或者,GNSS模块中的处理器也可以将第三位置数据导入终端的主处理器,主处理器结合第三位置数据以及接收到的校准数据,确定终端的准确位置。并且,当采用RTK模式时,GNSS模块具体可以用于测量信号相位,并能够提供计算能力计算终端的准确位置。
在本申请实施例提供的定位方法中,终端可以接收附近集成有基准站功能的接入网设备发送的校准数据,从而可以使得终端与发送校准数据的接入网设备的距离较短;并且校准数据不需要经过核心网的传输,因而可以使得校准数据的传输实时性更好,从而可以提高终端根据校准数据进行定位的精度,减少定位误差。
在上述步骤1001中,终端接收至少一个接入网设备发送的至少一组校准数据包括:终端通过广播传输方式接收至少一个接入网设备发送的至少一组校准数据,广播传输方式包括广播消息或多媒体广播多播业务MBMS。具体的,终端可以通过广播传输方式周期性地接收至少一个接入网设备发送的至少一组校准数据。
由于广播是单向的,不需要建立连接,不需要和终端交互,传输的可靠性可以通过更上层的协议保证或不需要确保传输的可靠性,终端接入网络后即可接收通过广播传输方式发送数据,因而采用广播传输方式接收校准数据的方式更为简单、快速,时延更小,实时性更好,网络容量更高,效率也更高。
或者,在上述步骤1001中,终端接收至少一个接入网设备发送的至少一组校准数据包括:终端通过点对点传输方式接收至少一个接入网设备发送的至少一组校准数据。
与广播传输方式相比,采用点对点传输方式接收的校准数据的可靠性和安全性更高。并且,与现有技术中终端通过接入网和核心网组成的数据链路,接收基准站通过点对点传输方式发送校准数据不同,本申请实施例中的终端接收的是接入网设备发送的校准数据,且不会经过核心网的转发,因而与现有技术相比,传输链路更短,传输实时性也更好。
其中,当终端在上述步骤1001中接收到的至少一组校准数据为多组校准数据时,在上述步骤1004中终端根据至少一组校准数据和第三位置数据,确定终端的准确位置可以包括:终端根据多组校准数据,确定一组目标校准数据,终端根据目标校准数据和第三位置数据,确定终端的准确位置。
这里的目标校准数据,可以是终端接收到的至少一组校准数据中的其中一组校准数据,也可以是通过择优或合并算法对至少两组校准数据进行处理后获得的一组目标校准数据。
具体的,当终端接收到多组校准数据时,目标校准数据可以为距离终端最近的接 入网设备发送的一组校准数据;或者,目标校准数据可以为优先级最高的接入网设备发送的一组校准数据;或者,当目标校准数据中的各参数为终端接收到的多组校准数据中各对应参数的均值。
当目标校准数据包括第一位置数据和第二位置数据时,终端在步骤1004中根据目标校准数据和第三位置数据,确定终端的准确位置可以包括:终端确定目标校准数据中第一位置数据和第二位置数据的差分数据。而后,终端根据差分数据和第三位置数据,确定终端的准确位置。
上述主要从各个网元之间交互的角度对本申请实施例提供的方案进行了介绍。可以理解的是,各个网元,例如服务器、终端为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法示例对服务器、终端进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
本申请实施例还提供了一种接入网设备,参见图17,该接入网设备1700包括存储单元1701、接收单元1702、确定单元1703和发送单元1704。其中,存储单元1701用于,存储接入网设备1700的第一位置数据,第一位置数据用于表示接入网设备的准确位置。接收单元1702用于,支持接入网设备1700执行图8中的步骤801和图15中的步骤901。确定单元1703用于,支持接入网设备1700执行图8中的步骤802和步骤803,以及图15中的步骤902和903。发送单元1704用于,支持接入网设备1700执行图8中的步骤804和图15中的步骤904。并且,上述各单元还用于支持本文所描述的技术的其它过程。
本申请实施例还提供了一种终端,参见图18,该终端1800包括第一接收单元1801、第二接收单元1802和确定单元1803。其中,第一接收单元1801,用于支持终端1800执行图8中的步骤805和图16中的步骤1001。第二接收单元1802,用于支持终端1800执行图8中的步骤806和图16中的步骤1002。确定单元1803,用于支持终端1800执行图8中的步骤807和步骤808,以及图16中的步骤1003和1004。并且,上述各单元还用于支持本文所描述的技术的其它过程。
需要说明的是,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
在采用集成的单元的情况下,图19示出了一种设备可能的组成示意图,该设备可以是上述实施例中的接入网设备或终端。如图19所示,该设备1900可以包括:处理模块1901、通信模块1902和存储模块1903。
当该设备1900为接入网设备时,处理模块1901用于对接入网设备的动作进行控制管理,例如,处理模块1901用于支持接入网设备执行图8所示的定位方法中的步骤802-803,以及图15所示的定位方法中的步骤902和903,和/或用于本文所描述的技术的其它过程。通信模块1902用于支持接入网设备与其他网络实体的通信,例如支持接入网设备执行图8所示的步骤801和804,以及图15中的步骤901和904。存储模块1903用于存储终端的程序代码和数据,例如存储接入网设备的准确的位置数据。
当该设备1900为终端时,处理模块1901用于对终端的动作进行控制管理,例如,处理模块1901用于支持终端执行图8所示的定位方法中的步骤807-808,以及图16所示的定位方法中的步骤1003和1004,和/或用于本文所描述的技术的其它过程。通信模块1902用于支持终端与其他网络实体的通信,例如支持终端执行图8所示的步骤805和806,以及图16中的步骤1001和1002。存储模块1903用于存储终端的程序代码和数据。
其中,处理模块1901可以是处理器或控制器。其可以实现或执行结合本申请实施例所描述的各种示例性的逻辑方框,模块和电路。处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,微处理器(digital signal processor,DSP)和微处理器的组合等等。通信模块1902可以是收发器、收发电路或通信接口等。存储模块1903可以是存储器。
通过以上的实施方式的描述,所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将装置的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。
图20是本申请实施例提供的另一种设备的结构示意图,该设备可以是接入网设备或终端。该设备2000可以包括:处理器2001、存储器2002、总线2003以及通信接口2004。其中,处理器2001、存储器2002以及通信接口2004通过系统总线2003连接。存储器2002用于存储计算机执行指令,当终端运行时,处理器2001执行存储器2002存储的计算机执行指令,以使终端执行本申请实施例提供的定位方法。具体的定位方法可参考下文及附图中的相关描述,此处不再赘述。
具体的,该处理器2001还可以对应上述处理模块1901的功能,该存储器2002可以对应上述存储模块1903的功能,该通信接口2004可以对应上述通信模块1902的功能。
并且,当该设备2000为接入网设备时,该处理器2001可以对应上述确定单元1703的功能,该存储器2002可以对应上述存储单元1701的功能,该通信接口2004可以对应上述接收单元1702和发送单元1704的功能。
当该设备2000为终端时,该处理器2001可以对应上述确定单元1803的功能,该通信接口2004可以对应上述第一接收单元1801和第二接收单元1802的功能。
本申请实施例还提供了一种计算机存储介质,用于储存为上述接入网设备所用的计算机软件指令,当其在接入网设备上运行时,使得接入网设备可以执行上述实施例中的定位方法。例如,该存储介质具体可以为上述存储器2002。
本申请实施例还提供了一种计算机存储介质,用于储存为上述终端所用的计算机 软件指令,当其在终端上运行时,使得终端可以执行上述实施例中的定位方法。
本申请实施例还提供了一种包含指令的计算机程序产品,当其在上述接入网设备上运行时,使得接入网设备可以执行上述实施例中的定位方法。
本申请实施例还提供了一种包含指令的计算机程序产品,当其在上述终端上运行时,使得终端可以执行上述实施例中的定位方法。
参见图21,本申请实施例还提供了一种系统,该系统可以包括接入网设备和终端。该系统中的接入网设备和终端可以执行本申请上述实施例提供的定位方法。
其中,接入网设备中存储有接入网设备的第一位置数据,第一位置数据用于表示接入网设备的准确位置。接入网设备可以用于,从卫星系统接收第一卫星信号,根据第一卫星信号确定接入网设备的第二位置数据,根据第一位置数据和第二位置数据,确定校准数据,将校准数据发送给终端。
终端可以用于,接收至少一个接入网设备发送的至少一组校准数据,从卫星系统接收第二卫星信号,根据第二卫星信号确定终端的第三位置数据,根据至少一组校准数据和第三位置数据,确定终端的准确位置。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件程序实现时,可以全部或部分地以计算机程序产品的形式来实现。该计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行计算机程序指令时,全部或部分地产生按照本申请实施例的流程或功能。计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,计算机指令可以从一个网站站点、计算机、服务器或者数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可以用介质集成的服务器、数据中心等数据存储设备。可用介质可以是磁性介质(例如,软盘、硬盘、磁带),光介质(例如,DVD)、或者半导体介质(例如固态硬盘(solid state disk,SSD))等。
尽管在此结合各实施例对本申请进行了描述,然而,在实施所要求保护的本申请过程中,本领域技术人员通过查看附图、公开内容、以及所附权利要求书,可理解并实现公开实施例的其他变化。在权利要求中,“包括”(comprising)一词不排除其他组成部分或步骤,“一”或“一个”不排除多个的情况。单个处理器或其他单元可以实现权利要求中列举的若干项功能。相互不同的从属权利要求中记载了某些措施,但这并不表示这些措施不能组合起来产生良好的效果。
以上,仅为本申请的具体实施方式,但本申请实施例的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请实施例揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请实施例的保护范围之内。因此,本申请实施例的保护范围应以权利要求的保护范围为准。

Claims (39)

  1. 一种定位方法,应用于接入网设备,其特征在于,所述接入网设备中存储有所述接入网设备的第一位置数据,所述第一位置数据用于表示所述接入网设备的准确位置,所述方法包括:
    所述接入网设备从卫星系统接收第一卫星信号;
    所述接入网设备根据所述第一卫星信号确定所述接入网设备的第二位置数据;
    所述接入网设备根据所述第一位置数据和所述第二位置数据,确定校准数据;
    所述接入网设备将所述校准数据发送给终端,所述校准数据用于所述终端确定所述终端的准确位置。
  2. 根据权利要求1所述的方法,其特征在于,所述接入网设备将所述校准数据发送给终端包括:
    所述接入网设备通过广播传输方式将所述校准数据发送给所述终端,所述广播传输方式包括广播消息或多媒体广播多播业务MBMS。
  3. 根据权利要求2所述的方法,其特征在于,所述接入网设备通过广播传输方式将所述校准数据发送给所述终端包括:
    所述接入网设备通过所述广播传输方式周期性地将所述校准数据发送给所述终端。
  4. 根据权利要求1所述的方法,其特征在于,所述接入网设备将所述校准数据发送给终端包括:
    所述接入网设备通过点对点传输方式将所述校准数据发送给所述终端。
  5. 根据权利要求1-4任一项所述的方法,其特征在于,所校准数据包括所述第一位置数据与所述第二位置数据的差分数据,所述差分数据包括经纬度差分值、距离差分值、码相位差分值和载波相位差分值中的至少一种。
  6. 根据权利要求1-4任一项所述的方法,其特征在于,所述校准数据包括所述第一位置数据和所述第二位置数据。
  7. 根据权利要求1-6任一项所述的方法,其特征在于,所述第一位置数据通过人工测量获得。
  8. 一种定位方法,其特征在于,所述方法包括:
    终端接收至少一个接入网设备发送的至少一组校准数据;
    所述终端从卫星系统接收第二卫星信号;
    所述终端根据所述第二卫星信号确定所述终端的第三位置数据;
    所述终端根据所述至少一组校准数据和所述第三位置数据,确定所述终端的准确位置。
  9. 根据权利要求8所述的方法,其特征在于,所述终端接收至少一个接入网设备发送的至少一组校准数据包括:
    所述终端通过广播传输方式接收所述至少一个接入网设备发送的所述至少一组校准数据,所述广播传输方式包括广播消息或多媒体广播多播业务MBMS。
  10. 根据权利要求8所述的方法,其特征在于,所述终端接收至少一个接入网设备发送的至少一组校准数据包括:
    所述终端通过点对点传输方式接收所述至少一个接入网设备发送的所述至少一组 校准数据。
  11. 根据权利要求8-10任一项所述的方法,其特征在于,所述至少一组校准数据包括多组校准数据,所述终端根据所述至少一组校准数据和所述第三位置数据,确定所述终端的准确位置包括:
    所述终端根据所述多组校准数据,确定一组目标校准数据;
    所述终端根据所述目标校准数据和所述第三位置数据,确定所述终端的准确位置。
  12. 根据权利要求11所述的方法,其特征在于,所述目标校准数据为距离所述终端最近的接入网设备发送的一组校准数据。
  13. 根据权利要求11所述的方法,其特征在于,所述目标校准数据为优先级最高的接入网设备发送的一组校准数据。
  14. 根据权利要求11所述的方法,其特征在于,所述目标校准数据中的各参数为所述多组校准数据中各对应参数的均值。
  15. 根据权利要求11-14任一项所述的方法,其特征在于,所述目标校准数据包括所述接入网设备的第一位置数据和第二位置数据,所述第一位置数据用于表示所述接入网设备的准确位置,所述第二位置数据为所述接入网设备根据第一卫星信号获得的位置数据,所述终端根据所述目标校准数据和所述第三位置数据,确定所述终端的准确位置包括:
    所述终端确定所述目标校准数据中所述第一位置数据和所述第二位置数据的差分数据;
    所述终端根据所述差分数据和所述第三位置数据,确定所述终端的准确位置。
  16. 根据权利要求8-14任一项所述的方法,其特征在于,所述校准数据包括所述接入网设备的第一位置数据和第二位置数据,所述第一位置数据用于表示所述接入网设备的准确位置,所述第二位置数据为所述接入网设备根据第一卫星信号获得的位置数据;
    或者,所述校准数据包括所述第一位置数据和所述第二位置数据的差分数据,所述差分数据包括经纬度差分值、距离差分值、码相位差分值和载波相位差分值中的至少一种。
  17. 一种接入网设备,其特征在于,包括:
    存储单元,用于存储所述接入网设备的第一位置数据,所述第一位置数据用于表示所述接入网设备的准确位置;
    接收单元,用于从卫星系统接收第一卫星信号;
    确定单元,用于根据所述第一卫星信号确定所述接入网设备的第二位置数据;
    所述确定单元还用于,根据所述第一位置数据和所述第二位置数据,确定校准数据;
    发送单元,用于将所述校准数据发送给终端,所述校准数据用于所述终端确定所述终端的准确位置。
  18. 根据权利要求17所述的设备,其特征在于,所述发送单元具体用于:
    通过广播传输方式将所述校准数据发送给所述终端,所述广播传输方式包括广播消息或多媒体广播多播业务MBMS。
  19. 根据权利要求18所述的设备,其特征在于,所述发送单元具体用于:
    通过所述广播传输方式周期性地将所述校准数据发送给所述终端。
  20. 根据权利要求17所述的设备,其特征在于,所述发送单元具体用于:
    通过点对点传输方式将所述校准数据发送给所述终端。
  21. 根据权利要求17-20任一项所述的设备,其特征在于,所校准数据包括所述第一位置数据与所述第二位置数据的差分数据,所述差分数据包括经纬度差分值、距离差分值、码相位差分值和载波相位差分值中的至少一种。
  22. 根据权利要求17-20任一项所述的设备,其特征在于,所述校准数据包括所述第一位置数据和所述第二位置数据。
  23. 根据权利要求17-22任一项所述的设备,其特征在于,所述第一位置数据通过人工测量获得。
  24. 一种终端,其特征在于,包括:
    第一接收单元,用于接收至少一个接入网设备发送的至少一组校准数据;
    第二接收单元,用于从卫星系统接收第二卫星信号;
    确定单元,用于根据所述第二卫星信号确定所述终端的第三位置数据;
    所述确定单元还用于,根据所述至少一组校准数据和所述第三位置数据,确定所述终端的准确位置。
  25. 根据权利要求24所述的终端,其特征在于,所述第一接收单元具体用于:
    通过广播传输方式接收所述至少一个接入网设备发送的所述至少一组校准数据,所述广播传输方式包括广播消息或多媒体广播多播业务MBMS。
  26. 根据权利要求24所述的终端,其特征在于,所述第一接收单元具体用于:
    通过点对点传输方式接收所述至少一个接入网设备发送的所述至少一组校准数据。
  27. 根据权利要求24-26任一项所述的终端,其特征在于,所述至少一组校准数据包括多组校准数据,所述确定单元具体用于:
    根据所述多组校准数据,确定一组目标校准数据;
    根据所述目标校准数据和所述第三位置数据,确定所述终端的准确位置。
  28. 根据权利要求27所述的终端,其特征在于,所述目标校准数据为距离所述终端最近的接入网设备发送的一组校准数据。
  29. 根据权利要求27所述的终端,其特征在于,所述目标校准数据为优先级最高的接入网设备发送的一组校准数据。
  30. 根据权利要求27所述的终端,其特征在于,所述目标校准数据中的各参数为所述多组校准数据中各对应参数的均值。
  31. 根据权利要求27-30任一项所述的终端,其特征在于,所述目标校准数据包括所述接入网设备的第一位置数据和第二位置数据,所述第一位置数据用于表示所述接入网设备的准确位置,所述第二位置数据为所述接入网设备根据第一卫星信号获得的位置数据,所述确定单元具体用于:
    确定所述目标校准数据中所述第一位置数据和所述第二位置数据的差分数据;
    根据所述差分数据和所述第三位置数据,确定所述终端的准确位置。
  32. 根据权利要求24-30任一项所述的终端,其特征在于,所述校准数据包括所 述接入网设备的第一位置数据和第二位置数据,所述第一位置数据用于表示所述接入网设备的准确位置,所述第二位置数据为所述接入网设备根据第一卫星信号获得的位置数据;
    或者,所述校准数据包括所述第一位置数据和所述第二位置数据的差分数据,所述差分数据包括经纬度差分值、距离差分值、码相位差分值和载波相位差分值中的至少一种。
  33. 一种接入网设备,其特征在于,包括至少一个处理器、存储器、通信接口和总线,所述至少一个处理器与所述存储器通过总线相连;
    所述通信接口用于数据交互;
    所述存储器用于,存储指令以及所述接入网设备的第一位置数据,所述第一位置数据用于表示所述接入网设备的准确位置;
    所述处理器用于调用存储在所述存储器中的指令以实现:
    从卫星系统接收第一卫星信号;
    根据所述第一卫星信号确定所述接入网设备的第二位置数据;
    根据所述第一位置数据和所述第二位置数据,确定校准数据;
    将所述校准数据发送给终端,所述校准数据用于所述终端确定所述终端的准确位置。
  34. 一种终端,其特征在于,包括至少一个处理器、存储器、通信接口和总线,所述至少一个处理器与所述存储器通过总线相连;
    所述通信接口用于数据交互;
    所述存储器用于存储指令;
    所述处理器用于调用存储在所述存储器中的指令以实现:
    接收至少一个接入网设备发送的至少一组校准数据;
    从卫星系统接收第二卫星信号;
    根据所述第二卫星信号确定所述终端的第三位置数据;
    根据所述至少一组校准数据和所述第三位置数据,确定所述终端的准确位置。
  35. 一种计算机可读存储介质,其特征在于,包括指令,当其在接入网设备上运行时,使得所述接入网设备执行如权利要求1-7任一项所述的定位方法。
  36. 一种计算机可读存储介质,其特征在于,包括指令,当其在终端上运行时,使得所述终端执行如权利要求8-16任一项所述的定位方法。
  37. 一种包含指令的计算机程序产品,其特征在于,当其在接入网设备上运行时,使得所述接入网设备执行如权利要求1-7任一项所述的定位方法。
  38. 一种包含指令的计算机程序产品,其特征在于,当其在终端上运行时,使得所述终端执行如权利要求8-16任一项所述的定位方法。
  39. 一种系统,其特征在于,所述系统包括接入网设备和终端,所述接入网设备中存储有所述接入网设备的第一位置数据,所述第一位置数据用于表示所述接入网设备的准确位置,所述接入网设备用于:
    从卫星系统接收第一卫星信号;
    根据所述第一卫星信号确定所述接入网设备的第二位置数据;
    根据所述第一位置数据和所述第二位置数据,确定校准数据;
    将所述校准数据发送给终端;
    所述终端用于:
    接收至少一个所述接入网设备发送的至少一组所述校准数据;
    从所述卫星系统接收第二卫星信号;
    根据所述第二卫星信号确定所述终端的第三位置数据;
    根据所述至少一组校准数据和所述第三位置数据,确定所述终端的准确位置。
PCT/CN2017/094781 2017-06-16 2017-07-27 一种定位方法、设备及系统 WO2018227727A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP17913152.9A EP3617748A4 (en) 2017-06-16 2017-07-27 POSITIONING METHOD, DEVICE AND SYSTEM
CN201780012009.6A CN108700666A (zh) 2017-06-16 2017-07-27 一种定位方法、设备及系统
US16/621,179 US20200174135A1 (en) 2017-06-16 2017-07-27 Positioning Method, Device, and System

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710458151.5 2017-06-16
CN201710458151 2017-06-16

Publications (1)

Publication Number Publication Date
WO2018227727A1 true WO2018227727A1 (zh) 2018-12-20

Family

ID=64659374

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/094781 WO2018227727A1 (zh) 2017-06-16 2017-07-27 一种定位方法、设备及系统

Country Status (3)

Country Link
US (1) US20200174135A1 (zh)
EP (1) EP3617748A4 (zh)
WO (1) WO2018227727A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3792664A1 (en) * 2019-09-11 2021-03-17 Korea Expressway Corp. Apparatus and method for precise position correction using positioning difference

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11112507B2 (en) * 2016-10-27 2021-09-07 United States Of America As Represented By The Administrator Of Nasa Location correction through differential networks system
US11119223B2 (en) * 2018-02-02 2021-09-14 United States Of America As Represented By The Administrator Of Nasa Device and method for improving geographic position accuracy of a global positioning system-based mobile device
CN111751859B (zh) * 2020-06-23 2023-07-28 国汽(北京)智能网联汽车研究院有限公司 定位终端的定位信息与地图匹配方法、装置及系统
CN113923770B (zh) * 2020-07-10 2023-05-30 北京紫光展锐通信技术有限公司 终端设备的定位校准方法及设备
CN113115440B (zh) * 2021-06-15 2021-09-03 中国电力科学研究院有限公司 一种5g nr定位校准方法及系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0574009A2 (en) * 1992-06-12 1993-12-15 Tokyo Cosmos Electric Co., Ltd. DGPS positioning method, DGPS reference station and DGPS positioning apparatus for moving object
EP1215508A1 (en) * 2000-12-06 2002-06-19 Lucent Technologies Inc. Wireless position location system and method using differential global system information and general packet radio switching technology
CN105824037A (zh) * 2015-11-29 2016-08-03 黄润芳 一种用于智能交通的行驶车辆精确定位的方法
CN106324645A (zh) * 2016-08-19 2017-01-11 付寅飞 一种基于惯性导航和卫星差分定位的车辆精准定位方法
CN106556853A (zh) * 2015-09-28 2017-04-05 大唐半导体设计有限公司 一种多模差分定位方法和系统

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2861957B2 (ja) * 1996-07-31 1999-02-24 トヨタ自動車株式会社 測位システム及びこのシステムに用いられる固定局側装置及び測位装置
US9405010B2 (en) * 2012-05-02 2016-08-02 Raven Industries, Inc. Geospatial positioning using correction information provided over cellular control channels
CN105722023A (zh) * 2014-12-04 2016-06-29 中国电信股份有限公司 一种进行移动终端定位的设备、移动终端、系统及方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0574009A2 (en) * 1992-06-12 1993-12-15 Tokyo Cosmos Electric Co., Ltd. DGPS positioning method, DGPS reference station and DGPS positioning apparatus for moving object
EP1215508A1 (en) * 2000-12-06 2002-06-19 Lucent Technologies Inc. Wireless position location system and method using differential global system information and general packet radio switching technology
CN106556853A (zh) * 2015-09-28 2017-04-05 大唐半导体设计有限公司 一种多模差分定位方法和系统
CN105824037A (zh) * 2015-11-29 2016-08-03 黄润芳 一种用于智能交通的行驶车辆精确定位的方法
CN106324645A (zh) * 2016-08-19 2017-01-11 付寅飞 一种基于惯性导航和卫星差分定位的车辆精准定位方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3617748A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3792664A1 (en) * 2019-09-11 2021-03-17 Korea Expressway Corp. Apparatus and method for precise position correction using positioning difference
JP2021043175A (ja) * 2019-09-11 2021-03-18 コリア エクスプレスウェイ コーポレーション 測位差を利用した精密位置補正装置およびその方法
US11175408B2 (en) 2019-09-11 2021-11-16 Korea Expressway Corp. Apparatus and method for precise position correction using positioning difference

Also Published As

Publication number Publication date
EP3617748A1 (en) 2020-03-04
EP3617748A4 (en) 2020-05-13
US20200174135A1 (en) 2020-06-04

Similar Documents

Publication Publication Date Title
WO2018227727A1 (zh) 一种定位方法、设备及系统
EP3332264B1 (en) Enhanced passive positioning with adaptive active positioning
US9578459B2 (en) Hybrid positioning techniques based on RTT and TOA/TDOA
WO2018036297A1 (zh) 室内定位和基于其的信息推送系统、方法、设备及终端
US8164515B2 (en) Methods and apparatus to locate a wireless device
CN105979479B (zh) 在拥挤室内环境中的设备位置的确定
WO2022143746A1 (zh) 非陆地网络定位方法、装置、设备及存储介质
CN108700666A (zh) 一种定位方法、设备及系统
WO2021233059A1 (zh) 卫星网络中定位的方法和通信装置
CN105052215A (zh) 移动装置功率管理同时提供位置服务
US20220256631A1 (en) Methods and apparatus to switch between wireless networks
US20100039323A1 (en) Method and system for global position reference map (gprm) for agps
EP3200520B1 (en) Cooperative locating method and wireless terminal
EP2901781B1 (en) Methods and arrangements to communicate environmental information for localization
WO2020177041A1 (zh) 信息处理的方法和终端设备
WO2023273783A1 (zh) 定位方法、装置及系统
CN114731529A (zh) 用户设备位置信息上报的方法、用户设备及网络设备
US9661452B2 (en) Apparatus, system and method of estimating a location of a mobile device
WO2023226680A1 (zh) 定位方法、装置、设备、存储介质及程序产品
WO2022173715A1 (en) Methods and apparatus to switch between wireless networks
WO2014056159A1 (en) System and method of wsn-assisted location services
WO2016082496A1 (zh) 室内定位方法、无线接收装置、无线发射装置及存储介质
WO2014063617A1 (zh) 电离层延迟修正参数的配置方法、装置及系统
WO2024109342A1 (zh) 定位方法、通信方法及相关装置、系统
WO2023116273A1 (zh) 定位方法及装置、存储介质、程序产品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17913152

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017913152

Country of ref document: EP

Effective date: 20191126

NENP Non-entry into the national phase

Ref country code: DE