WO2018225753A1 - 熱交換装置の制御方法及び熱交換装置並びに水冷式ヒートポンプ装置 - Google Patents
熱交換装置の制御方法及び熱交換装置並びに水冷式ヒートポンプ装置 Download PDFInfo
- Publication number
- WO2018225753A1 WO2018225753A1 PCT/JP2018/021628 JP2018021628W WO2018225753A1 WO 2018225753 A1 WO2018225753 A1 WO 2018225753A1 JP 2018021628 W JP2018021628 W JP 2018021628W WO 2018225753 A1 WO2018225753 A1 WO 2018225753A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- heat
- heat exchange
- heat transfer
- medium liquid
- liquid
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B1/00—Compression machines, plants or systems with non-reversible cycle
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B30/00—Heat pumps
- F25B30/06—Heat pumps characterised by the source of low potential heat
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F27/00—Control arrangements or safety devices specially adapted for heat-exchange or heat-transfer apparatus
Definitions
- the present invention relates to a heat exchange device that can efficiently use a heat source such as underground heat, and also relates to a control method for the heat exchange device. Furthermore, the present invention relates to a water-cooled heat pump device using the heat exchange device.
- Patent Document 1 An example of a heat exchange device that uses underground heat as a heat source is described in Patent Document 1 and Patent Document 2. These heat exchange devices use geothermal heat maintained at a substantially constant temperature throughout the year (for example, about 15 ° C. in Fukui Prefecture) as a heat source, and the heat exchange device a according to Patent Document 1 is b9. As shown in FIG. 2, the heat transfer fluid c is stored in a heat exchange storage tank b formed by covering the inner wall of a hole provided by excavating the ground to a required depth with a bottomed cylindrical casing. ing.
- the first tube body f is connected to one end e of the heat exchanging portion d that can dissipate heat in the heat exchanging region requiring heat dissipation or absorb heat in the heat exchanging region requiring heat absorption, and the heat exchanging portion d.
- a second tube h is connected to the other end g of the first tube f, and the end portion j of the first tube f and the end portion k of the second tube h are both spaced apart from each other.
- the lower end opening m of the first tube body f is located above, and the lower end opening p of the second tube body h is located below.
- the heat transfer fluid c in the heat exchange storage tank b is exchanged with the heat. While being sent to the part d, the heat transfer fluid c is returned from the heat exchange part d into the heat exchange storage tank b.
- a circulation channel r through which the heat medium liquid c circulates between the heat exchange storage tank b and the heat exchange part d is formed, and the heat medium liquid c circulates through the circulation channel r by driving the pump q. It is made to do.
- the direction of the circulation can be switched by a flow path switching device i using a three-way valve, as shown in FIGS.
- the temperature of the heat transfer liquid in the underground heat exchange storage tank b is shown in FIG. 9 in the winter by driving the pump q in view of the fact that the upper part s is high and the lower part t is low.
- the lower end opening m located at the upper side is used as an inlet, and the heat transfer fluid c having a high temperature is supplied to the heat exchanging portion d, and the heat transfer medium c is heated from the lower end opening p located below.
- the heat transfer fluid c having a low temperature in the heat exchange storage tank b is supplied to the heat exchange section d with the lower end opening p positioned below as an inlet.
- the heat transfer fluid c is returned into the heat exchange storage tank b by using the lower end opening m located above as an outlet.
- Patent Document 1 it is described that the heat exchanging section d performs air conditioning of buildings, snow melting / freezing prevention of roads, and the like.
- 9 to 10 show a case where the heat exchanging device a having such a configuration is applied to configure a water-cooled heat pump device (hereinafter also referred to as an air-conditioning device) v for air-conditioning.
- an air-conditioning device hereinafter also referred to as an air-conditioning device
- the heat transfer liquid c obtained by absorbing the underground heat through the wall portion w in the heat exchange storage tank b
- the pump q is conveyed to a first heat exchanger a1 as an evaporation unit of the heat pump y.
- heat is radiated from the conveyed heat medium liquid c to the low-temperature and low-pressure heat pump heat medium that has passed through the expansion valve b1, thereby heating the heat pump heat medium.
- this heat pump heat medium is compressed by the compressor a3 and heated up, in the second heat exchanger d1 as a condensing unit installed on the load side c1, the heat pump heat medium and the air on the load side c1 The heat exchange is performed between the two, and heat is radiated to the load side c1 to heat the load side.
- the annual average temperature of geothermal heat is specified as 15 ° C.
- a predetermined amount is determined for the circulation amount of the heat transfer fluid c that circulates in the circulation flow path r, and when the heat transfer solution less than the predetermined amount is injected, Only passes through a part of the heat exchanging part d, and the predetermined heat exchanging efficiency cannot be exhibited. Therefore, a predetermined amount of the heat transfer fluid c in the heat exchange storage tank b must always be circulated.
- the predetermined circulation amount required by the air conditioner v is now 20 L / minL, and the required liquid temperature at the inlet end f1 of the heat exchange part d is 5 It is assumed that the liquid temperature at the outlet end g1 is 0 ° C. In this case, if the temperature of the heat transfer liquid c in the heat exchange storage tank b heated by the underground heat is 15 ° C., the required liquid temperature is 5 ° C.
- the heat transfer fluid c is supplied to the heat exchange section d, the heat transfer fluid c is returned into the heat exchange storage tank b without using up the heat energy of the heat transfer fluid c. Become. As a result, the temperature of the returned heat medium liquid c becomes 10 ° C. if there is no wasteful release of heat energy while the heat medium liquid c circulates through the circulation channel r.
- the temperature difference between the temperature of the heat transfer fluid c returned to the heat exchange storage tank b and the underground heat is 5 ° C.
- the heat exchange efficiency between the heat transfer liquid c in the heat exchange storage tank b and the underground heat is higher as the temperature difference between the two is larger. If the temperature of the heat transfer fluid in the heat exchange storage tank b is the aforementioned minimum temperature of 0 ° C., the temperature difference from the underground heat is 15 ° C., so the heat in the heat exchange storage tank b
- the heat exchange efficiency between the liquid medium c and the underground heat can be improved, there has been a problem that the heat exchange efficiency is poor.
- the cooling / heating device v is kept at a certain time from the start-up. After passing, since the load side approaches a predetermined temperature, the amount of heat exchange in the heat exchanging part d may be smaller than that at the time of startup. Therefore, the same thing as described above occurred. That is, even when the required liquid temperature in the heat exchange part d is 5 ° C. at the time of start-up, if the load side c1 is warmed to some extent, the amount of heat exchange in the heat exchange part d may be small. It may also occur when the required liquid temperature is 1 ° C.
- the heat medium liquid having a liquid temperature of 5 ° C. is supplied to the place where the required liquid temperature is 1 ° C.
- the temperature of the heat medium liquid c returned to the heat exchange storage tank b and the underground heat
- the temperature difference between the heat transfer medium c and the heat transfer liquid c and the underground heat is reduced.
- the predetermined circulation amount required by the air conditioner v is now 20 L / min, and the required liquid temperature at the inlet end f1 of the heat exchanging part d is set to It is assumed that the liquid temperature at the outlet end g1 is 35 ° C. at 30 ° C. In this case, since the required liquid temperature is 30 ° C., the temperature of the heat transfer liquid c in the heat exchange storage tank b cooled by the underground heat is 15 ° C.
- the heat transfer fluid c is supplied to the heat exchange section d, the heat transfer fluid c is returned into the heat exchange storage tank b without using up the heat energy of the heat transfer fluid c. Become. As a result, the temperature of the returned heat medium liquid c becomes 20 ° C. if there is no wasteful release of heat energy while the heat medium liquid c circulates through the circulation channel r.
- the temperature difference between the temperature of the heat transfer fluid c returned to the heat exchange storage tank b and the underground heat is 5 ° C.
- the heat exchange efficiency between the heat medium liquid c in the heat medium liquid storage tank b and the underground heat is higher as the temperature difference between the two is larger. If the temperature of the heat transfer liquid c in the heat exchange storage tank b is the above-described maximum temperature of 35 ° C., the temperature difference from the underground heat becomes 20 ° C.
- the heat exchange efficiency between the heat transfer fluid c and the underground heat can be improved, there has been a problem that the heat exchange efficiency is poor.
- the cooling / heating device v passes a certain time from the start-up.
- the heat exchange amount in the heat exchanging portion d may be smaller than that at the time of startup. Therefore, the same thing as described above occurred. That is, even when the required liquid temperature in the heat exchange part d is 30 ° C. at the time of start-up, the heat exchange amount in the heat exchange part d may be small when the load side is cooled to some extent. In some cases, the temperature is 34 ° C.
- the heat exchange device a includes a pipe body p1 through which the heat transfer liquid c flows, and a pump for circulating the heat transfer liquid c in the pipe body p1.
- q1 is interposed in the tubular body p1.
- the pipe body p1 includes a underground heat exchanging pipe portion r1 buried in the ground, and a heat absorbing / dissipating pipe portion s1 capable of radiating heat in a heat exchanging area requiring heat dissipation or absorbing heat in a heat exchanging area requiring heat absorption. It is.
- the underground heat exchanging pipe section r1 is configured to have a U-shaped pipe section that is long in the vertical direction, and the U-shaped pipe section is placed in a vertical hole formed by excavating the ground in the vertical direction. It is housed so as to extend in the vertical direction and is buried in the ground.
- the present invention circulates the first heat medium liquid in the heat medium liquid circulation channel having the first heat exchange part for exchanging heat with the second heat exchange part, and By supplying the second heat medium liquid to the heat medium liquid circulation flow path from a heat source having a second heat medium liquid having a temperature difference with the temperature of the medium liquid, the first heat exchange section and the first It is an object of the present invention to provide a control method for a heat exchange device and a heat exchange device configured to be able to effectively use heat energy in the heat source when performing heat exchange with the two heat exchange units.
- the control method of the heat exchange device includes a heat exchange device, that is, a first heat exchange unit in which a flow path through which the heat transfer fluid flows is exchanged with the second heat exchange unit.
- a heat medium liquid circulation channel is provided, and a predetermined amount of the first heat medium liquid is circulated in the heat medium liquid circulation channel, and the heat in the first heat exchanging section is obtained over time.
- the control method has a temperature difference with the temperature of the first heat transfer fluid so that the detected temperature of the first heat transfer fluid at the outlet end of the first heat exchange unit maintains a required set temperature.
- a necessary amount of the second heat transfer fluid that can provide the amount of heat required by the first heat exchange unit is supplied from a heat source that holds the second heat transfer fluid. And the 1st heat transfer fluid of the same quantity as the supplied 2nd heat transfer fluid is discharged on the side where the exit end of the 1st heat exchange part exists.
- 1st of the heat exchange apparatus which concerns on this invention is the heat-medium liquid circulation with which the flow path through which a heat-medium liquid flows has a 1st heat-exchange part which performs heat exchange between 2nd heat-exchange parts
- a supply pipe for connecting the heat source having a second heat medium liquid having a temperature difference with the temperature of the first heat medium liquid and the heat medium liquid circulation flow path,
- the first heat exchange part is connected to the side where the inlet end exists
- the discharge pipe is connected to the side where the outlet end of the first heat exchange part exists.
- a necessary amount of the second heat that can provide the amount of heat required by the first heat exchanging unit so that the detected temperature of the first heat transfer fluid at the outlet end maintains a required set temperature.
- the liquid medium is controlled to be supplied to the side where the inlet end exists through the supply pipe. Further, the same amount of the first heat medium liquid as that of the supplied second heat medium liquid is discharged from the discharge pipe.
- a second heat exchange apparatus is a heat medium liquid circulation in which the flow path through which the heat medium liquid flows has a first heat exchange part that exchanges heat with the second heat exchange part.
- the heat medium liquid circulation flow path is provided such that a fixed amount of the first heat medium liquid circulates by driving a pump attached to the heat medium liquid circulation flow path.
- the heat exchange device is configured such that the amount of heat exchange in the exchange unit varies.
- a supply pipe that communicates the heat source holding the second heat transfer medium having a temperature difference with the temperature of the first heat transfer liquid and the heat transfer medium circulating flow path is provided,
- the first heat exchange part is connected to the side where the inlet end exists, and the discharge pipe is connected to the side where the outlet end of the first heat exchange part exists.
- a mixing three-way valve having first, second, and third connection ports is interposed at a connection portion of the supply pipe with respect to the heat medium liquid circulation channel, and the mixing three-way valve and the inlet end The pump is interposed between them.
- first connection port is connected to an upstream end viewed in the circulation direction of the heat transfer medium circulation flow path
- second connection port is connected to a downstream end viewed in the circulation direction
- first connection port 3 connection ports are connected to the supply end of the supply pipe.
- the second connection port is set to a required opening degree
- the opening degree of the first connection port and the opening degree of the third connection port are a valve body built in the mixing three-way valve. It is made to be controlled by.
- the amount of the first heat transfer fluid flowing from the first connection port into the mixing three-way valve obtained by driving the pump, and the mixing port from the third connection port into the mixing three-way valve is controlled to be equal to the amount of outflow from the second connection port to the heat medium liquid circulation channel, and the total amount is set to the constant amount. Has been.
- the mixing three-way valve the first heat medium liquid and the second heat medium liquid are mixed to form a mixed heat medium liquid, and the mixed heat medium liquid flows out from the second connection port. Has been made.
- the opening degree of the third connection port is the amount of heat required by the first heat exchanging part so that the detected temperature of the first heat transfer fluid at the outlet end maintains a required set temperature.
- the required amount of the second heat transfer fluid that can be applied is controlled to flow into the mixing three-way valve through the supply pipe. Further, the same amount of the heat medium liquid as that of the supplied second heat medium liquid is discharged from the discharge pipe.
- a third aspect of the heat exchange apparatus is a heat medium liquid circulation in which the flow path through which the heat medium liquid flows has a first heat exchange part that exchanges heat with the second heat exchange part.
- a first heat medium liquid is circulated in the heat medium liquid circulation flow path by driving a first pump attached thereto, and the first heat medium liquid is circulated over time.
- It is a heat exchange device configured such that the amount of heat exchange in the heat exchange unit varies.
- the first heat exchange part is connected to the side where the inlet end exists, and the discharge pipe is connected to the side where the outlet end of the first heat exchange part exists.
- the first heat exchanging unit is necessary so that the detected temperature of the first heat transfer fluid at the outlet end maintains the required set temperature by driving the second pump attached to the supply pipe.
- the required amount of the second heat transfer fluid that can provide the amount of heat is controlled so as to be supplied to the side where the inlet end of the first heat exchange section exists via the supply pipe. Further, the same amount of the first heat medium liquid as that of the supplied second heat medium liquid is discharged from the discharge pipe.
- the inner surface of the flow path of the first heat exchange unit may be covered with a water repellent coating film.
- the water-cooled heat pump device according to the present invention is characterized in that any one of the first to third heat exchange devices is used.
- the first heat medium liquid is the heat circulating in the heat medium liquid circulation path in the heat medium liquid.
- the second heat medium liquid refers to a heat medium liquid supplied to the first heat exchange unit in the heat medium liquid.
- the heat exchange device circulates the first heat medium liquid in the heat medium liquid circulation channel having the first heat exchange part that exchanges heat with the second heat exchange part, A required amount of the second heat that can provide the amount of heat required by the first heat exchange unit from a heat source that has a second heat transfer fluid having a temperature difference from the temperature of the first heat transfer fluid.
- heat exchange is performed between the first heat exchange unit and the second heat exchange unit, so that the heat energy in the heat source can be effectively utilized. .
- FIG. 1 shows a heat exchange device 1 that implements the method for controlling a heat exchange device according to the present invention.
- the heat exchange device 1 includes a flow path 3 through which the heat transfer fluid 2 flows, and the flow path 3 is a first heat exchange section that exchanges heat with the second heat exchange section 5.
- the heat medium liquid circulation channel 7 having 6 is provided, and the first heat medium liquid 9 is circulated through the heat medium liquid circulation channel 7.
- a supply pipe 12 is provided to connect the heat source 11 holding the second heat medium liquid 10 having a temperature difference with the temperature of the first heat medium liquid 9 and the heat medium liquid circulation passage 7. ing.
- the supply pipe 12 is connected to a side 15 where the inlet end 13 of the first heat exchanging part 6 exists, and a discharge pipe 19 is connected to the side 17 where the outlet end 16 of the first heat exchanging part 6 exists. It is connected. Then, the required amount of the first heat exchange unit 6 can be applied so that the detected temperature of the first heat transfer fluid 9 at the outlet end 16 maintains the required set temperature.
- the two heat transfer fluids 10 can be supplied to the side 15 where the inlet end 13 exists via the supply pipe 12. Further, the same amount of the first heat medium liquid 9 as that of the supplied second heat medium liquid 10 is discharged from the discharge pipe 19.
- the first heat medium liquid 9 refers to a heat medium liquid that circulates in the heat medium liquid circulation channel 7 in the heat medium liquid 2
- the second heat medium liquid 10 refers to the second heat medium liquid 10.
- the first heat medium liquid 9 is circulated through the heat medium liquid circulation flow path 7 and the same amount of the first heat medium liquid 10 as the supplied second heat medium liquid 10 is used.
- a single pump 20 is attached to the heat transfer fluid circulation path 7.
- a mixing three-way valve 26 having first, second, and third connection ports 22, 23, and 25 is interposed at a connection portion 21 of the supply pipe 12 with respect to the heat medium liquid circulation flow path 7,
- the pump 20 is interposed between the mixing three-way valve 26 and the inlet end 13.
- an electrically controlled mixed three-way valve is used as the mixed three-way valve 26.
- a flow rate adjusting valve 27 is interposed between the pump 20 and the inlet end 13.
- the heat exchange device 1 will be specifically described by taking as an example a case where the heat exchange device 1 is used to configure a water-cooled heat pump device (hereinafter also referred to as an air-conditioning device) 29 for air-conditioning.
- a water-cooled heat pump device hereinafter also referred to as an air-conditioning device 29 for air-conditioning.
- the air conditioner 29 uses geothermal heat that maintains a substantially constant temperature throughout the year (for example, about 15 ° C. in Fukui Prefecture) as a heat source.
- a substantially constant temperature throughout the year for example, about 15 ° C. in Fukui Prefecture
- the annual average temperature of geothermal heat is specified as 15 ° C. for convenience.
- the heat source 11 constituting the heat exchange device 1 is configured using a heat exchange storage tank 30 shown in FIG.
- the heat exchange storage tank 30 is formed by drilling the ground to a required depth (for example, excavating to a depth of 50 to 100 m), and forming an inner wall portion of a hole with a bottomed cylindrical casing.
- the heat transfer fluid 2 is stored in the heat exchange storage tank 30. Then, the heat transfer fluid 2 absorbs underground heat through the wall 31 of the heat exchange storage tank 30, or the amount of heat held by the heat transfer fluid 2 enters the ground through the wall 31. It is configured to dissipate heat.
- the heat exchange storage tank 30 is configured as a sealed water tank 34 in which an upper end opening portion is closed by a lid member 33.
- the first heat exchange unit 6 and the second heat exchange unit 5 are incorporated in, for example, a first heat exchanger 35 as a plate heat exchanger with high thermal efficiency.
- a first heat exchanger 35 causes the first heat exchange part 6 to flow through the first heat exchange unit 6. Heat exchange is performed between the heat transfer fluid 9 and the heat pump heat transfer medium 36 flowing through the second heat exchange section 5.
- the pump 20 is driven to transport to the first heat exchanging unit 6.
- the first heat exchanger 35 the low-temperature and low-pressure heat pump that has passed through the expansion valve 38 in the second heat exchange unit 5 from the heat medium liquid 2 in the first heat exchange unit 6.
- the heat is dissipated to the heat medium 36, whereby the heat pump heat medium 36 is heated.
- the heat pump heat medium 36 exiting the second heat exchanging section 5 is compressed by the compressor 40 and heated, and then condensed by the second heat exchanger 39 provided on the load side 37, Heat exchange is performed between the heat pump heat medium 36 and the air on the load side 37, and heat is radiated to the load side 37 to heat the load side.
- the heat of the air on the load side 37 is absorbed by the heat pump heat medium 36 by the second heat exchanger 39 as shown in FIG.
- the heat pump heat medium 36 is compressed by the compressor 40, the heat pump heat medium 36 is condensed by the first heat exchanger 35 and radiated to the first heat medium liquid 9 in the first heat exchange unit 6.
- the first heat transfer fluid 9 that has absorbed heat is conveyed to the heat exchange storage tank 30 by the pressure of the pump 20.
- the retained heat of the heat transfer fluid 2 is radiated to the surrounding ground 44 of the heat exchange storage tank 30 through the wall portion 31.
- the mixing three-way valve 26 is interposed in the connecting portion 21 of the supply pipe 12 with respect to the heat medium liquid circulation flow path 7, and the first and second And third connection ports 22, 23, 25.
- the first connection port 22 is connected to the upstream end 41 as viewed in the circulation direction F1 of the heat medium liquid circulation channel 7, and the second connection port 23 is the downstream end 42 as viewed in the circulation direction F1.
- the third connection port 25 is connected to the supply end 43 of the supply pipe 12.
- the opening of the first connection port 22 and the opening of the third connection port 25 are set to the required three-way opening, for example, the second connection port 23 is fully opened. It is electrically controlled by a valve body (not shown) built in the valve 26.
- the inflow amount of the first heat transfer fluid 9 from the first connection port 22 into the mixing three-way valve 26 obtained by driving the pump 20 and the mixing three-way from the third connection port 25.
- the total amount of inflow of the second heat medium liquid 10 into the valve 26 is the amount of outflow from the second connection port 23 to the heat medium liquid circulation passage 7 (this example will be described later).
- the flow rate adjustment valve 27 is controlled to be equal to 20 L / min /.
- the mixing three-way valve 26 the first heat medium liquid 9 and the second heat medium liquid 10 are mixed to form a mixed heat medium liquid, and the mixed heat medium liquid is supplied from the second connection port 23. It flows out to the heat medium liquid circulation channel 7.
- the opening degree of the third connection port 25 is electrically controlled so that the required amount of the second heat transfer fluid 10 flows into the mixing three-way valve 26.
- the flow rate adjusting valve 27 is for adjusting the flow rate of the pump 20 to a flow rate required in the heat medium liquid circulation passage 7. Adjusted to min.
- the upper end 47 of the first tube body 46 is connected to the connection end 45 of the supply pipe 12 on the side opposite to the supply end 43, and the first three-way switching valve for switching the flow path. 49.
- the first tubular body 46 extends in the vertical direction, and a lower end opening 50 thereof opens at the upper portion 51 of the heat transfer fluid 2 stored in the heat exchange storage tank 30.
- An upper end 56 of the second tube 55 is connected to the connection end 53 of the discharge pipe 19 opposite to the connection end 52 with respect to the heat medium liquid circulation flow path 7. It is connected via a valve 57.
- the second tubular body 55 extends downward along the outer surface 59 of the heat exchange storage tank 30, and the lower end opening 60 is connected to the lower end 61 of the heat exchange storage tank 30.
- the lower end opening 60 is opened at the lower portion 62 of the heat transfer fluid 2 stored in the heat exchange storage tank 30.
- the remaining connection port 63 of the second three-way switching valve 57 and the upper portion 65 of the first tube 46 are connected by a first switching connecting pipe 66.
- the remaining connection port 58 of the first three-way switching valve 49 and the upper portion 64 of the second pipe body 55 are connected by a second switching connecting pipe 69.
- the first tube body 46 and the second tube 46 are used in the case where the air conditioner 29 is used for heating and the case where it is used for cooling.
- the flow direction of the heat transfer fluid 2 flowing through the tube body 55 can be switched as shown by arrows in FIGS.
- This switching is performed in view of the fact that the temperature of the heat transfer liquid 2 accommodated in the heat exchange storage tank 30 is high in the upper part 51 and low in the lower part 62.
- the cooling / heating device 29 is used for heating by switching the flow path, as shown in FIG. 1, the high-temperature heat medium of the upper portion 51 sucked by the lower end opening 50 of the first tubular body 46 is used.
- the liquid 2 is supplied to the supply end 43 as the second heat medium liquid 10.
- the first heat transfer fluid 9 having a low temperature discharged from the discharge pipe 19 is discharged from the lower end opening 60 of the second pipe body 55 in the lower portion 62.
- the heat transfer fluid 2 having a low temperature in the lower portion 62 sucked through the lower end opening 60 of the second tubular body 55. Is supplied to the supply pipe 12, and the high temperature first heat transfer fluid 9 discharged from the discharge pipe 19 is discharged from the lower end opening 50 of the first pipe body 46 in the upper portion 51.
- the heat medium liquid pushing action of the pump 20 causes the second heat medium liquid 10 to be supplied.
- the same amount of the first heat medium liquid 9 is returned from the heat medium liquid circulation channel 7 into the heat exchange storage tank 30 through the discharge pipe 19.
- the suction of the second heat transfer fluid liquid 10 by driving the pump 20 is performed because the heat exchange storage tank 30 is configured as a sealed water tank 35, so This is performed smoothly due to an increase in pressure in the sealed water tank 34 accompanying the inflow of the heat transfer fluid 9.
- the sucked second heat medium liquid 10 is flown into the mixing three-way valve 26 from the first connection port 22 (FIG. 1B) by the mixing three-way valve 26.
- the mixed heat medium liquid of 20 L / min ⁇ is mixed with the liquid 9 and supplied to the heat medium liquid circulation channel 7 from the second connection port 23 (FIG. 1B).
- the required amount of the second heat transfer fluid 10 is set such that the detected temperature of the first heat transfer fluid 9 at the outlet end 16 of the first heat exchange unit 6 maintains the required set temperature. .
- the necessary amount is set so that the first heat exchanging unit 5 can provide the amount of heat necessary from time to time.
- the mixing three-way valve 26 is electrically controlled by a detection signal from a temperature detector 67 provided at the outlet end 16.
- a predetermined circulation amount required by the air conditioner 29 is 20 L / min /
- the first heat transfer fluid 9 at the outlet end 16 is When the required set temperature is 2 ° C., the necessary amount of the second heat transfer fluid 10 so that the detected temperature of the first heat transfer fluid 9 at the outlet end 16 maintains the required set temperature 2 ° C. Is fed to the inlet end 13.
- the required liquid temperature at the inlet end 13 of the first heat exchanging unit 6 required to maintain the required set temperature 2 ° C. at the outlet end 16 when the air-conditioning apparatus 29 is started is set to 7 ° C.
- the heat medium liquid 2 in the heat exchange storage tank 30 that is warmed by underground heat and has a temperature of 15 ° C. is used as the second heat medium liquid 10, and the heat medium liquid circulation channel 7 is formed. It is supplied to the circulating first heat transfer fluid 9. As a result, a required liquid temperature of 7 ° C. at the inlet end 13 is secured.
- the amount of heat exchange in the first heat exchange unit 6 may be small.
- the second The required amount of the heat transfer fluid 10 may be reduced compared to the initial amount.
- This required amount is automatically set by electrically controlling the mixing three-way valve 26 based on a temperature detection signal from a temperature detector 67 provided at the outlet end 16.
- the electric control of the mixing three-way valve 26 means that the opening degree of the first connection port 22 and the opening degree of the third connection port 25 are electrically controlled by the valve body as described above. Thereafter, the required amount further decreases as the load side 37 approaches the set temperature, but this required amount is similarly set as required by the electric control of the mixing three-way valve.
- the predetermined circulation amount required by the air conditioner 29 is set to 20 L / min /, and the required amount of the first heat transfer fluid 9 at the outlet end 16 is set.
- the set temperature is 35 ° C.
- the required amount of the second heat transfer fluid 10 that is controlled so that the detected temperature of the first heat transfer fluid 9 at the outlet end 16 maintains the required set temperature. Is fed to the inlet end 13.
- the required liquid temperature at the inlet end 13 required to maintain the required set temperature 35 ° C. at the outlet end 16 at the start of the cooling / heating device 29 is 30 ° C.
- the heat medium liquid 2 in the heat exchange storage tank 30 that is cooled by ground heat and has a temperature of 15 ° C. is used as the second heat medium liquid 10 and circulates in the heat medium liquid circulation channel 7. Is supplied to the first heat transfer fluid 9, thereby ensuring a required liquid temperature of 30 ° C. at the inlet end 16. Thereafter, when the load side 37 cools to some extent, the amount of heat exchange in the first heat exchange unit 6 may be small.
- the second heat The required amount of the liquid 10 may be reduced compared to the initial amount.
- This required amount is automatically set by electrically controlling the mixing three-way valve 26 based on a temperature detection signal from a temperature detector 67 provided at the outlet end 16. Thereafter, the required amount further decreases as the load side 37 approaches the set temperature, but this required amount is similarly set as required by electric control of the mixing three-way valve.
- the control method of the heat exchanging device 1 having the above configuration is such that the first heat transfer fluid 9 at the outlet end 16 is supplied by supplying the necessary amount of the second heat transfer fluid 10 to the first heat exchanging unit 6.
- the detected temperature is controlled to maintain the required set temperature, the detected temperature varies slightly. Therefore, if the required set temperature is set to 0 ° C. or 1 ° C., the temperature at the outlet end 16 may fall below 0 ° C. due to this variation.
- the required set temperature is preferably set to 2 ° C. for safety so that the heat transfer fluid 2 flowing out from the first heat exchanging section 6 does not freeze.
- the said required setting temperature can also be set to 0 degrees C or less.
- the first heat transfer fluid 9 discharged from the discharge pipe 19 is returned into the heat exchange storage tank 30.
- the temperature of the heat transfer fluid 2 that is the first heat transfer fluid 9 that has flowed into is low. Therefore, the temperature difference between the temperature of the flowing heat transfer fluid 2 and the underground heat is large, and therefore heat exchange between the heat transfer fluid 2 in the heat exchange storage tank 30 and the underground heat can be performed efficiently. .
- the heat quantity stored in the heat exchange storage tank 30 is consumed, and the low-temperature heat medium liquid returned to the heat exchange storage tank 30 is consumed.
- 2 is gradually heated by the heat transfer of the ground heat through the wall portion 31 of the heat exchange storage tank 30, and the heat medium having a high temperature returned to the heat exchange storage tank 30.
- the manner in which the liquid 2 is gradually cooled by heat transfer to the surrounding ground 44 of the heat exchange storage tank 30 through the wall portion 31 will be described.
- the heat exchanger 1 When the heat exchanger 1 is used as the air conditioner 29 and performs the heating operation, the heat exchange from the surrounding ground 44 having a relatively high temperature, for example, at night, when the air conditioner 29 is in the operation stop state. Heat transfer to the storage tank 30 occurs, and the heat transfer fluid 2 in the heat exchange storage tank 30 is gradually heated. As a result, if the time during which the heat exchanging device 1 is stopped is equal to or longer than a certain time, the temperature of the stored heat transfer fluid 2 can be 15 ° C., which is equal to the underground temperature. As described above, the ground heat is collected as the temperature of the heat transfer liquid 2 returned to the heat exchange storage tank 30 as described above is lower, that is, the temperature of the heat transfer liquid 2 flowing into the heat exchange storage tank 30 and the ground. The larger the temperature difference from the medium heat, the more efficiently.
- a flow is generated in the heat transfer liquid 2 in the heat exchange storage tank 30.
- the amount of heat stored in the heat transfer fluid 2 in the heat exchange storage tank 30 in this way is gradually consumed by the operation of the heat exchange device 1 in the daytime, but the first heat exchange unit 6
- the required amount of the second heat medium liquid 10 supplied to the inlet end 13 of the heat exchanger is such that the detected temperature of the first heat medium liquid 9 at the outlet end 16 of the heat exchange unit 5 maintains the required set temperature. Is set to Therefore, the amount of the second heat medium liquid 10 supplied to the first heat exchange unit 6 per unit time can be small.
- the heat exchange device 1 is the cooling / heating device 29, for example, about 15 minutes after the start of the heating operation, the amount of heat supplied to the load side 37 of the heating is large.
- the amount of the second heat medium liquid 10 sent to one heat exchange unit 6 is large.
- the amount of heat exchange in the first heat exchange unit 6 may be small.
- the required liquid temperature at the inlet end 13 of 7 ° C. was originally required and the required amount was 20 L / min, but when the load side 37 is warmed to some extent, the required amount may be 5 L / min. This means that even smaller amounts are needed.
- the temperature of the heat transfer fluid 2 returned to the heat exchange storage tank 30 is low as described above, and the temperature of the heat transfer fluid 2 flowing in and the temperature of the ground heat The difference is big. Therefore, as described above, heat exchange between the heat transfer fluid 2 flowing into the heat exchange storage tank 30 and the underground heat can be efficiently performed.
- the heat transfer liquid 2 in the heat exchange storage tank 30 takes a long time and takes a round, the heat transfer liquid 2 returned to the heat exchange storage tank 30 at the lower portion 62 is grounded. Long time to extract medium heat. Therefore, when the heat exchanger 1 is used, the stored heat quantity can be used for a long time, and the heat returned to the heat exchange storage tank 30 and heated by the underground heat for a long time.
- the amount of heat of the liquid medium 2 can also be used.
- the amount of heat of the heat medium liquid 2 in the state can be used, and the amount of heat of the heat medium liquid 2 in the heat exchange storage tank 30 can be used for a long time.
- the heat exchanging device 1 is the cooling / heating device 29 and is used for cooling operation, and the heat exchanging device 1 is used as the non-sprinkling snow melting device 70. Is the same.
- the heat exchange device 1 includes a flow path 3 through which the heat transfer fluid 2 flows, and the flow path 3 is a first heat exchange section that exchanges heat with the second heat exchange section 5.
- a heat medium liquid circulation passage 7 having 6 is provided.
- the first heat medium liquid 9 is circulated in the heat medium liquid circulation channel 7 by driving a first pump 75 attached thereto.
- a heat source 11 having a second heat medium liquid 10 having a temperature difference from the temperature of the first heat medium liquid 9 is provided, and the heat source 11 and the heat medium liquid circulation passage 7 are in communication with each other.
- a supply pipe 12 is provided.
- the supply pipe 12 is connected to the side 15 where the inlet end 13 of the first heat exchanging part 6 is present, and the discharge pipe 19 is connected to the side 17 where the outlet end 16 of the first heat exchanging part 6 is present. Are connected.
- the second heat pump 76 attached to the supply pipe 12 is driven so that the detected temperature of the first heat transfer fluid 9 at the outlet end 16 maintains the required set temperature.
- a necessary amount of the second heat transfer fluid 10 capable of providing the amount of heat required by the exchange unit 6 is supplied to the side 15 where the inlet end 13 of the first heat exchange unit 6 exists via the supply pipe 12. Controlled to be possible.
- the same amount of the first heat medium liquid 9 as that of the supplied second heat medium liquid 10 is discharged from the discharge pipe 19.
- the first heat medium liquid 9 refers to a heat medium liquid that circulates in the heat medium liquid circulation channel 7 in the heat medium liquid 2
- the second heat medium liquid 10 refers to the second heat medium liquid 10.
- the mixing three-way valve 26 shown in FIG. This can be implemented by replacing the first pump 75 and the second pump 76 which are controlled. Since the function and effect of the air conditioner 29 having such a configuration is the same as that described in the first embodiment, a specific description thereof will be omitted.
- Reference numeral 80 in FIGS. 3 to 4 denotes a flow rate detector.
- FIG. 5 shows an embodiment in which the present invention is applied to a water-cooled heat pump air conditioner 36 that is generally sold at present.
- this water-cooled heat pump air conditioner 36 is used for heating, in order to maximize its efficiency, the temperature of the heat medium of the heat exchanger installed in the heat pump is lowered below the freezing point, and the external heat source is used. The heat was collected from the heat transfer fluid. Therefore, an antifreeze solution must be used as the heat transfer fluid so that it does not freeze in the heat exchanger. However, since the antifreeze is generally expensive, the amount of use has to be limited.
- the geothermal heat exchanger when a geothermal heat exchanger that uses geothermal heat is adopted as the external heat source, the geothermal heat exchanger must contain a large amount of antifreeze liquid, and thus it has been expensive. There was also a problem that could lead to soil contamination when this leaked into the soil. For this reason, when the underground heat exchanger is used as the external heat source, it is preferable that the heat transfer fluid 2 accommodated therein is water.
- FIG. 5 shows a plate-type heat exchanger with high thermal efficiency between the heat exchanger 1 having the above-described configuration and the water-cooled heat pump air-conditioner 36 in order to perform heating using the conventional water-cooled heat pump air-conditioner 36.
- the attached heat exchanger 81 such as is provided is shown.
- the attached heat exchanger 81 includes a heat exchanging unit 82 disposed in the first heat exchanging unit 6 of the heat exchanging device 1 according to the present invention and a heat exchanger 83 installed in the heat pump.
- the second heat exchanging part 5 forming a part of the antifreeze liquid circulation channel 84 configured to include the first heat exchanging part 6 through which water flows and the second heat exchange part through which the antifreeze liquid flows. Heat exchange is performed with the heat exchange unit 5.
- the heat exchange apparatus 1 using one pump 20 shown in the first embodiment is applied.
- the heat exchange apparatus using two pumps shown in the second embodiment is used. 1 may be applied.
- the heat exchange in this case is performed in the same manner as described in the first embodiment and the second embodiment.
- the detection temperature of the first heat transfer fluid 9 at the outlet end 16 of the first heat exchange unit 6 of the heat exchange device 1 is set to a required setting of 2 ° C., for example, so that the temperature of the antifreeze liquid does not become a negative temperature.
- the necessary amount of the second heat transfer fluid 10 required by the first heat exchange unit 6 is supplied from the heat source 11 so as to maintain the temperature.
- the first heat transfer fluid 9 having the same amount as the supplied second heat transfer fluid 10 is discharged on the side 17 where the outlet end 16 of the first heat exchange section 6 exists. ing.
- the antifreeze is used only for the antifreeze circulation channel 84, the amount of the antifreeze is extremely small. Therefore, it is possible to solve both the problem of cost related to the antifreeze and the problem of soil contamination at the same time.
- the said heat source 11 is comprised with the heat exchange storage tank 30 which uses the pile embed
- the heat transfer fluid tank 2 is configured to store the heat transfer fluid 2 in the bottom hole 77, but the heat exchange storage tank 30 has a bottomed inner wall portion provided by excavating the ground to a required depth.
- the heat exchanger liquid 2 may be stored in the heat exchange storage tank 30 and covered with a cylindrical casing. When configured in this way, the heat transfer fluid 2 absorbs underground heat through the wall 31 of the heat exchange storage tank 30 or the amount of heat held by the heat transfer fluid 2 is changed to the wall 31. Dissipate heat into the ground via
- FIGS. 6 and 7 show an example of the heat exchange device 1 including the heat source 11 provided with the heat exchange storage tank 30 configured as a U-shaped pipe portion 85 that is long in the vertical direction. It is.
- the U-shaped pipe portion 85 is configured to be embedded in a vertical hole formed by excavating the ground in the vertical direction so that its length direction extends in the vertical direction.
- the heat transfer fluid 2 is stored in 85.
- One end 86 of the U-shaped pipe portion 85 is connected to a connecting end 87 of the supply pipe 12 opposite to the supply end 43, and the other end 89 of the U-shaped pipe section 85 is connected to the discharge pipe.
- 19 is connected to a connecting end 90 opposite to the connecting end 52 with respect to the side 17 where the outlet end 16 exists.
- the heat exchange is performed so that the detected temperature of the first heat transfer fluid 9 at the outlet end 16 maintains the required set temperature by driving the pump 20.
- the necessary amount of the heat transfer fluid 2 in the storage tank 30 is configured to be supplied to the inlet end 13 as the second heat transfer fluid 10.
- the detected temperature of the first heat transfer fluid 9 at the outlet end 16 maintains the required set temperature by driving the second pump 76.
- the required amount of the heat transfer fluid 2 in the U-shaped tube portion 85 is supplied to the inlet end 13 as the second heat transfer fluid 10.
- the U-shaped tube portion 85 having such a configuration is in a state of being submerged in the heat transfer liquid stored in the bottomed hole portion 77 provided in the pile embedded in the ground as shown in FIGS. Sometimes. In this case, required heat exchange is performed between the heat transfer fluid in the U-shaped tube portion 85 and the stored heat transfer fluid 2. Since the other configuration of the heat exchange device 1, its use, and effects are the same as those described in the first embodiment and the second embodiment, the specific description thereof is omitted.
- the detected temperature of the first heat transfer fluid 9 at the outlet end 16 of the first heat exchange unit 6 means the detected temperature of the first heat transfer fluid 9 at the outlet end 16. As long as the temperature is the same as the temperature at the outlet end 16, the detected temperature of the first heat transfer fluid 9 at a portion away from the outlet end 16 may be used.
- the heat exchange storage tank 30 constituting the heat exchange device 1 may be configured as a groundwater collection storage tank through which groundwater can always enter and exit.
- the groundwater collection storage tank itself in which groundwater is always stored constitutes the heat source 11, and the stored groundwater is the heat transfer fluid 2 that can become the second heat transfer fluid 10.
- emitted by the side in which the said exit end 16 of the said 1st heat exchange part 6 exists returns to a reduction well, for example, or a water storage tank And can be used as water for melting snow.
- the heat exchange device 1 is configured using the groundwater collection storage tank, the amount of groundwater used can be reduced, and therefore environmental problems such as ground subsidence due to a drop in groundwater are unlikely to occur.
- the heat source constituting the heat exchanging device 1 may be configured by using a storage tank 91 storing wastewater 91 of hot spring drainage, factory wastewater, and sewage as a heat supply source. it can.
- a storage tank 91 storing wastewater 91 of hot spring drainage, factory wastewater, and sewage as a heat supply source. it can.
- the heat transfer fluid 2 in the heat exchange storage tank 30 is the second heat transfer fluid 10 held by the heat source 11.
- a heat supply source constituting the heat source 11 a liquid such as river water, lake water, seawater, snow, ice, gas, etc., solid, as long as it has a temperature difference with the temperature of the first heat transfer fluid 9 Gas or the like may be used. Since the application field of the heat exchange device 1 using such a heat source is the same as that described in the first embodiment and the second embodiment, the detailed description thereof is omitted.
- the first heat installed in the heat pump circuit 29 Reduce the temperature of the heat pump heat medium 36 flowing through the second heat exchanging section 5 provided in the exchanger (for example, plate heat exchanger) 35 to below the freezing point (for example, to ⁇ 14 ° C. to ⁇ 15 ° C.)
- the exchanger for example, plate heat exchanger
- the freezing point for example, to ⁇ 14 ° C. to ⁇ 15 ° C.
- an antifreeze liquid as the heat medium liquid 2.
- the antifreeze is expensive, and if it leaks into the environment such as in the soil, it may cause environmental pollution problems. It is considered that such a problem can be solved by using water as the heating medium liquid 2.
- this water may freeze while flowing through the flow path 3 of the first heat exchange unit 6, and this may clog the flow path 3. For this reason, when water is used as the heat transfer fluid 2, means for preventing the water from freezing in the flow path of the first heat exchange section 6 is required.
- the water-repellent coating film 93 can be formed, for example, by applying a water-repellent resin coating such as a fluorine coating or a hydrophobic silica coating, or by applying a super water-repellent coating that performs nanometer-size plating.
- the temperature of the water (heat transfer fluid 2) flowing through the flow path 3 is from 0 ° C. If a higher temperature (for example, 2 ° C.) is set, even if nuclei for freezing are generated on the surface 94 of the water repellent coating film 93, the nuclei are used as the flow rate of the water and the water repellent coating film 93. It can be easily peeled off from the surface 94 by the water repellency. The peeled nuclei are washed away by water and melted.
- the heat exchanging device 1 that uses water as the heat medium liquid 2 is in a heating operation, the water (heat medium liquid 2) flows through the first heat exchanging unit 6. It is possible to prevent freezing while flowing through the path 3.
- the heat exchanging device configured such that the heat exchanging amount in the first heat exchanging portion varies with the passage of time can be used to configure the above-described water-cooled heat pump device.
- the water-cooled heat pump device can be used to configure the above-described air-conditioning apparatus, and can also be used to configure a water heater, a refrigerator, and a snow melting device.
- the heat exchange device 1 can be used as it is to constitute a snow melting device.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Other Air-Conditioning Systems (AREA)
Abstract
【課題】地中熱が保有する熱エネルギーを有効活用し得る熱交換装置を提供する。 【解決手段】第2の熱交換部5との間で熱交換を行う第1の熱交換部6を有した熱媒液循環流路7を具え、熱媒液循環流路7には一定量の第1の熱媒液9が循環する。第1の熱媒液9の温度と温度差を有する第2の熱媒液10を保有する熱源11と熱媒液循環流路7とを供給管12で連結する。供給管12は、前記第1の熱交換部6の入口端13が存する側に連結すると共に、該第1の熱交換部6の出口端16が存する側には排出管19を連結する。出口端16における第1の熱媒液9の検出温度が所要設定温度を維持するように、必要量の第2の熱媒液10を供給管12を介して、入口端13が存する側に供給する。排出管19から、供給された第2の熱媒液10と同量の第1の熱媒液9を排出させる。
Description
本発明は、地中熱等の熱源を効率的に利用し得る熱交換装置に関するものであり、又該熱交換装置の制御方法に関するものである。更に、該熱交換装置が用いられてなる水冷式ヒートポンプ装置に関するものである。
熱源として地中熱を利用する熱交換装置の一例が特許文献1、特許文献2に記載されている。これらの熱交換装置は、年間を通してほぼ一定温度(例えば、福井県では15℃程度)に保たれている地中熱を熱源として利用するものであり、特許文献1に係る熱交換装置aはb9に示すように、地盤を所要深さに掘削して設けられた孔部の内壁部を、有底の円筒状ケーシングで被覆して形成された熱交換貯留槽bに熱媒液cが貯留されている。そして、放熱を要する熱交換領域において放熱し又は吸熱を要する熱交換領域において吸熱し得る熱交換部dの一方の端部eに第1の管体fが連結されると共に、該熱交換部dの他方の端部gに第2の管体hが連結されており、該第1の管体fの端部分jと該第2の管体hの端部分kは共に、所要間隔を置いて前記熱交換貯留槽b内で配設され、該第1の管体fの下端開口mが上に位置し、該第2の管体hの下端開口pが下に位置している。又、前記第1の管体f又は前記第2の管体hの中間所要部位に配設されたポンプqを駆動することによって、前記熱交換貯留槽b内の熱媒液cが前記熱交換部dに送られると共に、前記熱媒液cが、前記熱交換部dから前記熱交換貯留槽b内に戻されるようになされている。
即ち、熱交換貯留槽bと熱交換部dとを前記熱媒液cが循環する循環流路rが形成され、前記ポンプqの駆動によって、前記熱媒液cが該循環流路rを循環するようになされている。この循環の向きは、図9と図10に示すように、三方弁を用いた流路切り換え装置iによって切り換えることができる。
地下埋設の前記熱交換貯留槽b内の熱媒液の温度は、その上側部分sが高く前記下側部分tが低いことに鑑み、前記ポンプqの駆動によって、冬期においては、図9に示すように、上に位置する前記下端開口mを流入口として、温度の高い熱媒液cを前記熱交換部dに送給すると共に、下に位置する前記下端開口pから熱媒液cを熱交換貯留槽b内に戻す。逆に夏期においては、図10に示すように、下に位置する前記下端開口pを流入口として、熱交換貯留槽b内の、温度の低い熱媒液cを前記熱交換部dに送給すると共に、上に位置する前記下端開口mを流出口として、熱媒液cを熱交換貯留槽b内に戻すようになされている。
そして特許文献1には、前記熱交換部dで、建物の冷暖房や道路の融雪・凍結防止等が行われることが記載されている。図9~10は、かかる構成を有する熱交換装置aを、冷暖房用の水冷式ヒートポンプ装置(以下、冷暖房装置ともいう)vを構成するために応用した場合を示すものである。
該冷暖房装置vによって、負荷側を暖房する際は、図9に示すように、前記熱交換貯留槽bにおいてその壁部wを介して地中熱が吸収されてなる前記熱媒液cが、前記ポンプqの前記駆動によって、ヒートポンプyの蒸発部としての第1の熱交換器a1まで搬送される。該第1の熱交換器a1では、搬送された熱媒液cから、膨張弁b1を通過した低温度且つ低圧のヒートポンプ熱媒体へ放熱され、これによって該ヒートポンプ熱媒体が加温される。このヒートポンプ熱媒体が圧縮機a3で圧縮されて昇温された後、負荷側c1に設置した凝縮部としての第2の熱交換器d1にて、該ヒートポンプ熱媒体と該負荷側c1の空気との間で熱交換が行われ、該負荷側c1に放熱され該負荷側を暖房できる。
逆に、夏期において前記負荷側c1を冷房する際は、図10に示すように、該負荷側c1の空気の熱が前記第2の熱交換器d1の吸熱管の熱媒体に吸熱され、この熱媒体が圧縮機a3で圧縮された後、凝縮部としての第1の熱交換器a1で前記熱媒液cに放熱される。吸熱した熱媒液cは前記ポンプqの圧力によって前記熱交換貯留槽bまで搬送され、該熱交換貯留槽bで、その壁部wを介して地中へ放熱され、その後、前記第1の熱交換器a1に戻る。
次に、該冷暖房装置vの問題点について説明するが、以下の説明においては便宜上、地中熱の年間の平均温度を15℃と特定する。該冷暖房装置vにおいては、前記循環流路rを循環する熱媒液cの循環量は所定量が定められており、その所定量に満たない熱媒液が注入された場合は該熱媒液が前記熱交換部d内の一部を通過するだけとなり、所定の熱交換効率を発揮できないこととなる。そのため、前記熱交換貯留槽b内の熱媒液cは常に所定量を循環させなければならない。
しかしながら、前記熱交換貯留槽b内の熱媒液cが、前記冷暖房装置vが必要とする液温を不必要に上回る温度を有している場合や不必要に下回る温度を有している場合がある。
例えば前記冷暖房装置vを暖房に使用しているときにおいて、今、前記冷暖房装置vが必要とする所定循環量を20L/min とし、且つ前記熱交換部dの入口端f1の必要液温を5℃とし、その出口端g1の液温を0℃と仮定する。この場合は、該必要液温が5℃であるのに対し、地中熱により温められた前記熱交換貯留槽b内の熱媒液cの温度を15℃とすれば、15℃の温度の該熱媒液cが前記熱交換部dに供給されたときは、該熱媒液cの持つ熱エネルギーを使い切らないで、該熱媒液cが前記熱交換貯留槽b内に戻されることとなる。その結果、戻された該熱媒液cの温度は、該熱媒液cが前記循環流路rを循環する間における熱エネルギーの無駄な放出がないとすれば10℃となる。
前記のように地中熱の年間の平均温度は15℃であることから、前記熱交換貯留槽bに戻された熱媒液cの温度と地中熱との温度差は5℃となる。ところで前記熱交換貯留槽b内の熱媒液cと地中熱との熱交換効率は、両者の温度差が大きいほど高い。前記熱交換貯留槽b内の熱媒液の温度が、前記した最低温度0℃であるとすれば、地中熱との温度差が15℃となるため、前記熱交換貯留槽b内の熱媒液cと地中熱との熱交換効率を向上させ得ることとなるのであるが、従来は該熱交換効率が悪い問題があったのである。
加えて、前記のように不必要に高い温度の熱媒液cを前記熱交換部dに供給することは、前記熱交換貯留槽bの熱媒液cに蓄熱されていた熱エネルギーを無駄に放出することにもなっていた。このようなことから従来の冷暖房装置vは、全体として熱効率が悪い不経済な冷暖房装置となっていた。
又、前記熱交換貯留槽b内の熱媒液cの温度が、該熱媒液cの循環が進んで仮に5℃に下降したとしたときも、前記冷暖房装置vは、その起動から一定時間を過ぎると、負荷側が所定の温度に近づくために、起動時に比し、前記熱交換部dでの熱交換量は少なくてもよくなる。そのため、前記したと同様のことが起きていた。即ち、起動時には該熱交換部dでの必要液温が5℃であったとしても、負荷側c1がある程度暖まってくると、該熱交換部dにおける熱交換量は少なくてもよくなるため、前記必要液温が1℃となる場合も生ずる。このように必要液温が1℃であるところへ液温が5℃の熱媒液を供給したとすれば、前記熱交換貯留槽bに戻された熱媒液cの温度と地中熱との温度差はそれだけ小さくなり、該熱媒液cと地中熱との熱交換効率が悪い問題を生じさせることになったのである。
又、前記冷暖房装置vを冷房に使用しているときにおいて、今、該冷暖房装置vが必要とする所定循環量を20L/min とし、且つ前記熱交換部dの入口端f1の必要液温を30℃とし、その出口端g1の液温を35℃と仮定する。この場合は、該必要液温は30℃であるのに対し、地中熱により冷やされた前記熱交換貯留槽b内の熱媒液cの温度が15℃であるので、15℃の温度の該熱媒液cが前記熱交換部dに供給されたときは、該熱媒液cの持つ熱エネルギーを使い切らないで、該熱媒液cが前記熱交換貯留槽b内に戻されることとなる。その結果、該戻された熱媒液cの温度は、該熱媒液cが前記循環流路rを循環する間における熱エネルギーの無駄な放出がないとすれば20℃となる。
前記のように地中熱の年間の平均温度は15℃であることから、前記熱交換貯留槽bに戻された熱媒液cの温度と地中熱との温度差は5℃となる。ところで前記熱媒液貯留槽b内の熱媒液cと地中熱との熱交換効率は、前記したように、両者の温度差が大きいほど高い。前記熱交換貯留槽b内の熱媒液cの温度が、前記した最高温度35℃であるとすれば、地中熱との温度差が20℃となるため、前記熱交換貯留槽b内の熱媒液cと地中熱との熱交換効率の向上を図り得るのであるが、従来は該熱交換効率が悪い問題があったのである。
加えて、前記のように不必要に低い温度の熱媒液cを前記熱交換部dに供給することは、前記熱交換貯留槽bの熱媒液cに蓄熱されていた熱エネルギーを無駄に放出することにもなっていた。このようなことから従来の冷暖房装置vは、全体として熱効率が悪い不経済な冷暖房装置となっていた。
又、前記熱交換貯留槽b内の熱媒液cの温度が、該熱媒液cの循環が進んで仮に30℃に上昇したときも、前記冷暖房装置vは、その起動から一定時間を過ぎると、負荷側が所定の温度に近づくために起動時に比し、前記熱交換部dでの熱交換量は少なくてもよくなる。そのため、前記したと同様のことが起きていた。即ち、起動時には該熱交換部dでの必要液温が30℃であったとしても、負荷側がある程度冷えてくると、該熱交換部dにおける熱交換量は少なくてもよくなるため、前記必要液温が34℃となる場合も生ずる。このように必要液温が34℃であるところへ液温が30℃の熱媒液を供給したとすれば、前記熱交換貯留槽bに戻された熱媒液cの温度と地中熱との温度差はそれだけ小さくなり、該熱媒液cと地中熱との熱交換率が悪い問題を生じさせることになったのである。
又特許文献2に係る熱交換装置aは、例えば図11に示すように、熱媒液cが内部を流れる管体p1を具え、該管体p1内で熱媒液cを循環させるためのポンプq1が該管体p1に介在されている。該管体p1は、地中に埋設される地中熱交換用管部r1と、放熱を要する熱交換領域において放熱し又は吸熱を要する熱交換領域において吸熱し得る吸放熱管部s1とを具えている。該地中熱交換用管部r1は、縦方向に長いU字状管部を具える如く構成され、該U字状管部は、地盤を縦方向に掘削して形成された縦孔内に、縦方向に延長する如く収容され、地中に埋設状態とされている。
かかる熱交換装置aによるときは、冬期にあっては、相対的に温度の高い周辺地中u1から前記地中熱交換用管部r1への熱移動が生じ、該地中熱交換用管部r1を通過する過程で熱媒液が昇温される。そして、放熱を要する熱交換領域において、前記吸放熱管部s1で放熱され、該吸放熱管部s1を流れる熱媒液cが冷却される。又夏期にあっては、吸熱を要する熱交換領域において、前記吸放熱管部s1を流れる熱媒液cが昇温される。又前記地中熱交換用管部r1を通過する過程で、熱媒液の保有熱が周辺地中u1に移動し該熱媒液は冷却される。
本発明は、第2の熱交換部との間で熱交換を行う第1の熱交換部を有した熱媒液循環流路に第1の熱媒液を循環させると共に、該第1の熱媒液の温度と温度差を有する第2の熱媒液を保有する熱源より該第2の熱媒液を前記熱媒液循環流路に供給することによって前記第1の熱交換部と前記第2の熱交換部との間で熱交換を行わせるに際し、該熱源における熱エネルギーを有効活用できるように構成された熱交換装置の制御方法及び熱交換装置の提供を課題とするものである。
前記課題を解決するため本発明は以下の手段を採用する。
即ち本発明に係る熱交換装置の制御方法は、熱交換装置即ち、熱媒液が内部を流れる流路が、第2の熱交換部との間で熱交換を行う第1の熱交換部を有した熱媒液循環流路を具え、該熱媒液循環流路には一定量の第1の熱媒液が循環する如くなされており、時間の経過によって前記第1の熱交換部における熱交換量が変動するように構成された熱交換装置の制御方法である。該制御方法は、前記第1の熱交換部の出口端における前記第1の熱媒液の検出温度が所要設定温度を維持するように、前記第1の熱媒液の温度と温度差を有する第2の熱媒液を保有する熱源より、前記第1の熱交換部が必要とする熱量を付与し得る必要量の前記第2の熱媒液を供給する。そして、前記第1の熱交換部の前記出口端が存する側で、供給された第2の熱媒液と同量の第1の熱媒液を排出させることを特徴とするものである。
即ち本発明に係る熱交換装置の制御方法は、熱交換装置即ち、熱媒液が内部を流れる流路が、第2の熱交換部との間で熱交換を行う第1の熱交換部を有した熱媒液循環流路を具え、該熱媒液循環流路には一定量の第1の熱媒液が循環する如くなされており、時間の経過によって前記第1の熱交換部における熱交換量が変動するように構成された熱交換装置の制御方法である。該制御方法は、前記第1の熱交換部の出口端における前記第1の熱媒液の検出温度が所要設定温度を維持するように、前記第1の熱媒液の温度と温度差を有する第2の熱媒液を保有する熱源より、前記第1の熱交換部が必要とする熱量を付与し得る必要量の前記第2の熱媒液を供給する。そして、前記第1の熱交換部の前記出口端が存する側で、供給された第2の熱媒液と同量の第1の熱媒液を排出させることを特徴とするものである。
本発明に係る熱交換装置の第1は、熱媒液が内部を流れる流路が、第2の熱交換部との間で熱交換を行う第1の熱交換部を有した熱媒液循環流路を具え、該熱媒液循環流路には一定量の第1の熱媒液が循環する如くなされており、時間の経過によって前記第1の熱交換部における熱交換量が変動するように構成された熱交換装置である。そして、前記第1の熱媒液の温度と温度差を有する第2の熱媒液を保有する熱源と前記熱媒液循環流路とを連通状態とする供給管を具え、該供給管は前記第1の熱交換部の入口端が存する側に連結されると共に、該第1の熱交換部の出口端が存する側には排出管が連結されている。又、前記出口端における前記第1の熱媒液の検出温度が所要設定温度を維持するように、前記第1の熱交換部が必要とする熱量を付与し得る必要量の前記第2の熱媒液を、前記供給管を介して前記入口端が存する側に供給するように制御されている。又、前記排出管から、供給された第2の熱媒液と同量の第1の熱媒液が排出されるようになされていることを特徴とするものである。
本発明に係る熱交換装置の第2は、熱媒液が内部を流れる流路は、第2の熱交換部との間で熱交換を行う第1の熱交換部を有した熱媒液循環流路を具え、該熱媒液循環流路には、これに付設されたポンプの駆動によって一定量の第1の熱媒液が循環する如くなされており、時間の経過によって前記第1の熱交換部における熱交換量が変動するように構成された熱交換装置である。又、前記第1の熱媒液の温度と温度差を有する第2の熱媒液を保有する熱源と前記熱媒液循環流路とを連通状態とする供給管を具え、該供給管は前記第1の熱交換部の入口端が存する側に連結されると共に、該第1の熱交換部の出口端が存する側には排出管が連結されている。そして、前記熱媒液循環流路に対する前記供給管の連結部位に、第1、第2、第3の接続口を有する混合三方弁が介在されると共に、該混合三方弁と前記入口端との間に前記ポンプが介在されている。
又、前記第1の接続口が前記熱媒液循環流路の循環方向で見た上流端に接続され、前記第2の接続口が、該循環方向で見た下流端に接続され、前記第3の接続口が前記供給管の供給端に接続されている。又、前記第2の接続口は所要開度に設定されると共に、前記第1の接続口の開度と前記第3の接続口の開度は、前記混合三方弁に内蔵されている弁体によって制御されるようになされている。
又、前記ポンプの駆動によって得られる、前記第1の接続口から前記混合三方弁内への前記第1の熱媒液の流入量と前記第3の接続口から前記混合三方弁内への前記第2の熱媒液の流入量の合計量が、前記第2の接続口からの前記熱媒液循環流路への流出量に等しくなるように制御され、該合計量は前記一定量に設定されている。
又、該混合三方弁内では前記第1の熱媒液と前記第2の熱媒液とが混合されて混合熱媒液となり、該混合熱媒液が前記第2の接続口から流出するようになされている。
又、前記第3の接続口の前記開度は、前記出口端における前記第1の熱媒液の検出温度が所要設定温度を維持するように、前記第1の熱交換部が必要とする熱量を付与し得る必要量の前記第2の熱媒液を前記供給管を介して前記混合三方弁内に流入させるように制御されている。又、前記排出管から、供給された第2の熱媒液と同量の熱媒液が排出されるようになされていることを特徴とするものである。
本発明に係る熱交換装置の第3は、熱媒液が内部を流れる流路は、第2の熱交換部との間で熱交換を行う第1の熱交換部を有した熱媒液循環流路を具え、該熱媒液循環流路には、これに付設された第1のポンプの駆動によって第1の熱媒液が循環するようになされており、時間の経過によって前記第1の熱交換部における熱交換量が変動するように構成された熱交換装置である。そして、前記第1の熱媒液の温度と温度差を有する第2の熱媒液を保有する熱源と前記熱媒液循環流路とを連通状態とする供給管を具え、該供給管は前記第1の熱交換部の入口端が存する側に連結されると共に、該第1の熱交換部の出口端が存する側には排出管が連結されている。又、前記供給管に付設された第2のポンプの駆動によって、前記出口端における前記第1の熱媒液の検出温度が所要設定温度を維持するように、前記第1の熱交換部が必要とする熱量を付与し得る必要量の前記第2の熱媒液を、前記供給管を介して前記第1の熱交換部の入口端が存する側に供給するように制御されている。又、前記排出管から、供給された第2の熱媒液と同量の第1の熱媒液が排出されるようになされていることを特徴とするものである。
前記第1~第3の何れかの熱交換装置において、前記第1の熱交換部の前記流路の内面は撥水コーティング膜で被覆されたものとするのがよい。
本発明に係る水冷式ヒートポンプ装置は、前記第1~第3の何れかの熱交換装置が用いられてなることを特徴とするものである。
本発明において、前記流路を流れるものは全てが前記熱媒液であるが、前記第1の熱媒液とは、前記熱媒液の内の、前記熱媒液循環流路を循環する熱媒液をいい、前記第2の熱媒液とは、前記熱媒液の内の、前記第1の熱交換部に供給される熱媒液をいう。
本発明に係る熱交換装置は、第2の熱交換部との間で熱交換を行う第1の熱交換部を有した熱媒液循環流路に第1の熱媒液を循環させると共に、該第1の熱媒液の温度と温度差を有する第2の熱媒液を保有する熱源より、前記第1の熱交換部が必要とする熱量を付与し得る必要量の該第2の熱媒液を前記熱媒液循環流路に供給することによって前記第1の熱交換部と前記第2の熱交換部との間で熱交換を行わせるため、該熱源における熱エネルギーを有効活用できる。
図1は、本発明に係る熱交換装置の制御方法を実施する熱交換装置1を示すものである。該熱交換装置1は、熱媒液2が内部を流れる流路3を具えており、該流路3は、第2の熱交換部5との間で熱交換を行う第1の熱交換部6を有した熱媒液循環流路7を具え、該熱媒液循環流路7に第1の熱媒液9が循環する如くなされている。又、該第1の熱媒液9の温度と温度差を有する第2の熱媒液10を保有する熱源11と前記熱媒液循環流路7とを連通状態とする供給管12が設けられている。該供給管12は、前記第1の熱交換部6の入口端13が存する側15に連結されると共に、該第1の熱交換部6の出口端16が存する側17には排出管19が連結されている。そして、前記出口端16における前記第1の熱媒液9の検出温度が所要設定温度を維持するように、前記第1の熱交換部6が必要とする熱量を付与し得る必要量の前記第2の熱媒液10を前記供給管12を介して前記入口端13が存する側15に供給可能とされている。又前記排出管19から、供給された第2の熱媒液10と同量の第1の熱媒液9が排出されるようになされている。ここに、該第1の熱媒液9とは、前記熱媒液2の内の、前記熱媒液循環流路7を循環する熱媒液をいい、該第2の熱媒液10とは、前記熱媒液2の内の、前記第1の熱交換部6に供給される熱媒液をいう。
本実施例においては図1に示すように、前記熱媒液循環流路7に第1の熱媒液9を循環させると共に、供給された第2の熱媒液10と同量の第1の熱媒液9を排出させるために、前記熱媒液循環流路7に1台のポンプ20が付設されている。又、前記熱媒液循環流路7に対する前記供給管12の連結部位21に、第1、第2、第3の接続口22,23,25を有する混合三方弁26が介在されると共に、該混合三方弁26と前記入口端13との間に前記ポンプ20が介在されている。本実施例においては、該混合三方弁26として、電動制御の混合三方弁を用いている。又図1に示すように、該ポンプ20と前記入口端13との間に流量調整弁27が介在されている。
以下、前記熱交換装置1を、これが、冷暖房用の水冷式ヒートポンプ装置(以下、冷暖房装置ともいう)29を構成するために用いられた場合を例にとり、具体的に説明する。
該冷暖房装置29は、熱源として、年間を通して略一定温度(例えば、福井県では15℃程度)を保つ地中熱を利用するものである。以下の説明においては便宜上、地中熱の年間の平均温度を15℃と特定する。
該熱交換装置1を構成する前記熱源11は、図1に示す熱交換貯留槽30を用いて構成されている。該熱交換貯留槽30は本実施例においては、地盤を所要深さに掘削して(例えば50~100mの深さに掘削する)設けられた孔部の内壁部を、有底の円筒状ケーシングで被覆して形成されており、該熱交換貯留槽30に熱媒液2が貯留されている。そして、該熱交換貯留槽30の壁部31を介して該熱媒液2が地中熱を吸収し、或いは、該熱媒液2の保有する熱量を該壁部31を介して地中へ放熱するように構成されている。該熱交換貯留槽30は本実施例においては図1に示すように、上端開放部が蓋部材33で閉塞されてなる密閉水槽34として構成されている。
前記第1の熱交換部6と前記第2の熱交換部5は、例えば、熱効率のよいプレート式熱交換器としての第1の熱交換器35に組み込まれている。然して、前記第1の熱媒液9が前記熱媒液循環流路7を循環することにより、該第1の熱交換器35においては、該第1の熱交換部6を流れる該第1の熱媒液9と該第2の熱交換部5を流れるヒートポンプ熱媒体36との間で熱交換が行われる。
前記冷暖房装置29によって負荷側37を暖房する際は、図1に示すように、前記熱交換貯留槽30においてその壁部31を介して地中熱が吸収されてなる前記熱媒液2が、前記ポンプ20の駆動によって、前記第1の熱交換部6まで搬送される。前記第1の熱交換器35では、前記第1の熱交換部6内の熱媒液2から、前記第2の熱交換部5内の、膨張弁38を通過した低温度且つ低圧の前記ヒートポンプ熱媒体36へ放熱され、これによって該ヒートポンプ熱媒体36が加温される。該第2の熱交換部5を出た該ヒートポンプ熱媒体36は、圧縮機40で圧縮されて昇温された後、前記負荷側37に設けた第2の熱交換器39で凝縮され、前記ヒートポンプ熱媒体36と前記負荷側37の空気との間で熱交換が行われ、該負荷側37に放熱されて該負荷側を暖房できる。
逆に夏期において前記負荷側37を冷房する際は、図2に示すように、該負荷側37の空気の熱が前記第2の熱交換器39で、ヒートポンプ熱媒体36に吸熱される。このヒートポンプ熱媒体36が圧縮機40で圧縮された後、前記第1の熱交換器35で凝縮され、前記第1の熱交換部6内の前記第1の熱媒液9に放熱される。吸熱した該第1の熱媒液9は、前記ポンプ20の圧力によって前記熱交換貯留槽30まで搬送される。該熱交換貯留槽30では、該熱媒液2の保有熱が、前記壁部31を介して、該熱交換貯留槽30の周辺地中44へ放熱される。
前記混合三方弁26は図1(A)(B)で示すように、前記熱媒液循環流路7に対する前記供給管12の前記連結部位21に介在されており、前記の第1、第2、第3の接続口22,23,25を有する。該第1の接続口22は、該熱媒液循環流路7の循環方向F1で見た上流端41に接続され、該第2の接続口23は、該循環方向F1で見た下流端42に接続され、前記第3の接続口25は、前記供給管12の供給端43に接続されている。又前記第2の接続口23は全開とされる等、所要開度に設定されると共に、前記第1の接続口22の開度と前記第3の接続口25の開度は、前記混合三方弁26に内蔵されている弁体(図示せず)によって電動制御される。
そして、前記ポンプ20の駆動によって得られる、前記第1の接続口22から前記混合三方弁26内への前記第1の熱媒液9の流入量と前記第3の接続口25から前記混合三方弁26内への前記第2の熱媒液10の流入量の合計量が、前記第2の接続口23からの前記熱媒液循環流路7への流出量(本実施例においては後述のように、前記流量調整弁27によって、20L/min に設定される)に等しくなるように制御される。又、該混合三方弁26内では前記第1の熱媒液9と前記第2の熱媒液10が混合されて混合熱媒液となり、該混合熱媒液が前記第2の接続口23から前記熱媒液循環流路7に流出される。
そして、前記第3の接続口25の前記開度は、前記第2の熱媒液10の前記必要量が前記混合三方弁26内に流入するように電動制御される。
前記流量調整弁27は本実施例においては、前記ポンプ20の供給量を、前記熱媒液循環流路7で要求される流量に流量調整するためのものであり、本実施例においては20L/min に調整される。
そして図1に示すように、前記供給管12の、前記供給端43と反対側の連結端45には、第1の管体46の上端47が、流路切り換え用の第1の三方切換弁49を介して連結されている。該第1の管体46は、上下方向に延長してその下端開口50が、前記熱交換貯留槽30に貯留されている前記熱媒液2の上側部分51で開口する。又前記排出管19の、前記熱媒液循環流路7に対する連結端52と反対側の連結端53には、第2の管体55の上端56が、流路切り換え用の第2の三方切換弁57を介して連結されている。該第2の管体55は、前記熱交換貯留槽30の外面59に沿って下方に延長し、その下端開口60が前記熱交換貯留槽30の下端61に連結されている。これによって、該下端開口60が、前記熱交換貯留槽30内に貯留されている前記熱媒液2の下側部分62で開口した状態とされている。又、該第2の三方切換弁57の残りの接続口63と前記第1の管体46の上部位65とが、第1の切り換え用連結管66で連結されている。且つ、前記第1の三方切換弁49の残りの接続口58と前記第2の管体55の上部位64とが第2の切り換え用連結管69で連結されている。
該第1、第2の三方切換弁49,57による流路の切り換え作用によって、前記冷暖房装置29を暖房に用いる場合と冷房に用いる場合とで、前記第1の管体46と前記第2の管体55を流れる前記熱媒液2の流れ方向を、図1と図2に矢印で示すように切り換えることができる。
この切り換えは、前記熱交換貯留槽30に収容されている前記熱媒液2の温度が、前記上側部分51が高く前記下側部分62が低いことに鑑みて行われるものである。この流路切り換えにより、前記冷暖房装置29を暖房に用いる場合は、図1に示すように、前記第1の管体46の下端開口50で吸引された前記上側部分51の、温度の高い熱媒液2が、前記第2の熱媒液10として前記供給端43に供給される。これと共に、前記排出管19から排出された温度の低い第1の熱媒液9が、前記下側部分62において前記第2の管体55の下端開口60で吐出される。
逆に、前記冷暖房装置29を冷房に用いる場合は、図2に示すように、前記第2の管体55の下端開口60で吸引された、前記下側部分62の温度の低い熱媒液2が前記供給管12に供給されると共に、前記排出管19から排出された温度の高い第1の熱媒液9が、前記上側部分51において前記第1の管体46の下端開口50で吐出される。
このようにして前記第2の熱媒液10が前記熱媒液循環流路7に供給されると、前記ポンプ20の熱媒液押し出し作用によって、供給された該第2の熱媒液10の量と同量の第1の熱媒液9が、前記排出管19を介して、前記熱媒液循環流路7から前記熱交換貯留槽30内に戻される。そして、前記ポンプ20の駆動による前記第2の熱媒液10の吸引は、前記熱交換貯留槽30が密閉水槽35として構成されているために、該熱交換貯留槽30内への該第1の熱媒液9の流入に伴う該密閉水槽34内の圧力上昇もあって円滑に行われる。吸引された該第2の熱媒液10は、前記混合三方弁26によって、前記第1の接続口22(図1(B))から該混合三方弁26内に流入した前記第1の熱媒液9と混合され、20L/min の混合熱媒液が、前記第2の接続口23(図1(B))から前記熱媒液循環流路7に供給される。
前記第2の熱媒液10の前記必要量は、前記第1の熱交換部6の出口端16における前記第1の熱媒液9の検出温度が所要設定温度を維持するように設定される。換言すれば、前記第1の熱交換部5が時々で必要とする熱量を付与できるように前記必要量が設定されるのである。
この必要量を設定するために、前記出口端16に設けた温度検出器67による検出信号により前記混合三方弁26が電動制御される。例えば、前記冷暖房装置29を暖房に使用しているときにおいて、該冷暖房装置29が必要とする所定循環量を20L/min とし、且つ、前記出口端16における前記第1の熱媒液9の前記所要設定温度を2℃としたとき、該出口端16における該第1の熱媒液9の検出温度が該所要設定温度2℃を維持するように、前記第2の熱媒液10の必要量が前記入口端13に供給される。
今、前記冷暖房装置29の起動時において前記出口端16における前記所要設定温度2℃を維持するのに必要な前記第1の熱交換部6の入口端13の必要液温を7℃とする。そのために、地中熱により温められて15℃の温度を有する、前記熱交換貯留槽30内の熱媒液2を、前記第2の熱媒液10として、前記熱媒液循環流路7を循環している前記第1の熱媒液9に供給する。これによって、前記入口端13の必要液温7℃を確保する。
その後、負荷側37がある程度暖まってくると、該第1の熱交換部6における熱交換量は少なくてもよくなる。そのときにおいて、前記出口端16における前記第1の熱媒液9の検出温度が所要設定温度2℃を維持するのに必要な前記入口端13の必要液温を3℃とすると、前記第2の熱媒液10の前記必要量は当初に比べて減少させてよいことになる。この必要量は、前記出口端16に設けた温度検出器67による温度検出信号により前記混合三方弁26が電動制御されることによって自動的に設定される。該混合三方弁26の電動制御は、前記のように、前記第1の接続口22の開度と前記第3の接続口25の開度を前記弁体によって電動で制御することを意味する。その後、負荷側37が設定温度に近づくにつれて前記必要量は更に減少するが、この必要量は、同様に、前記混合三方弁の前記電動制御によって所要に設定される。
又前記冷暖房装置29を冷房に使用しているときにおいて、該冷暖房装置29が必要とする所定循環量を20L/min とし、且つ、前記出口端16における前記第1の熱媒液9の前記所要設定温度を35℃としたときは、該出口端16における該第1の熱媒液9の検出温度が該所要設定温度を維持するように制御された前記第2の熱媒液10の必要量が、前記入口端13に供給される。
今、前記冷暖房装置29の起動時において前記出口端16における前記所要設定温度35℃を維持するのに必要な前記入口端13の必要液温を30℃とする。そのために、地中熱により冷されて15℃の温度を有する、前記熱交換貯留槽30内の熱媒液2を、第2の熱媒液10として、前記熱媒液循環流路7を循環している前記第1の熱媒液9に供給し、これによって、前記入口端16の必要液温30℃を確保する。その後、負荷側37がある程度冷えてくると、前記第1の熱交換部6における熱交換量は少なくてもよくなる。その場合において、前記出口端16における前記第1の熱媒液9の検出温度が所要設定温度を維持するのに必要な前記入口端13の必要液温を34℃とすると、前記第2の熱媒液10の前記必要量は当初に比べて減少させてよいことになる。この必要量は、前記出口端16に設けた温度検出器67による温度検出信号により前記混合三方弁26が電動制御されることによって自動的に設定される。その後、負荷側37が設定温度に近づくにつれて前記必要量は更に減少するが、この必要量は、同様に、前記混合三方弁の電動制御によって所要に設定される。
前記熱交換装置1を、前記のように、前記冷暖房装置29として用いて負荷側を暖房する際において、前記第1の熱媒液9及び前記第2の熱媒液10として水を用いた場合は、前記所要設定温度を2℃に設定するのがよい。前記構成を有する熱交換装置1の前記制御方法は、前記第1の熱交換部6に対する前記第2の熱媒液10の必要量の供給によって前記出口端16における前記第1の熱媒液9の検出温度が所要設定温度を維持するように制御するものではあるが、該検出温度は若干変動する。そのため、前記所要設定温度を0℃や1℃に設定したとすると、この変動によって前記出口端16における温度が0℃を下回る場合も生ずる。このようになると前記第1の熱交換部6内の前記第1の熱媒液9は凍る恐れがある。そのため前記所要設定温度は、前記第1の熱交換部6から流出する熱媒液2が凍らないように安全をみて2℃に設定するのがよい。なお前記熱媒液として不凍液を用いる場合は、前記所要設定温度を0℃以下に設定することもできる。
本実施例においては図1に示すように、前記排出管19から排出された前記第1の熱媒液9は前記熱交換貯留槽30内に戻されるのであるが、該熱交換貯留槽30内に流入した第1の熱媒液9である熱媒液2の温度は低い。そのため、流入した熱媒液2の温度と地中熱との温度差は大きく、従って、該熱交換貯留槽30内の熱媒液2と地中熱との熱交換を効率よく行うことができる。
ここで、前記熱交換貯留槽30内に貯留されている第2の熱媒液10が保有する熱量が消費される様子と、該熱交換貯留槽30内に戻された温度の低い熱媒液2が、該熱交換貯留槽30の壁部31を介しての地中熱の熱移動によって徐々に加温される様子、及び、該熱交換貯留槽30内に戻された温度の高い熱媒液2が、前記壁部31を介しての前記熱交換貯留槽30の周辺地中44への熱移動によって徐々に冷却される様子を説明する。
前記熱交換装置1が前記冷暖房装置29として用いられ、これが暖房運転をする場合、該冷暖房装置29が運転停止状態にある例えば夜間においては、相対的に温度の高い周辺地中44から該熱交換貯留槽30への熱移動が生じ、該熱交換貯留槽30内の熱媒液2は徐々に加温される。その結果、前記熱交換装置1が停止状態にある時間が一定時間以上であれば、貯留されている熱媒液2全体の温度が地中温度に等しい15℃になることができる。この地中熱の採熱は、前記したように、該熱交換貯留槽30内に前記のように戻った熱媒液2の温度が低いほど、即ち、流入した熱媒液2の温度と地中熱との温度差が大きいほど、効率的に行われる。
なお、前記冷暖房装置29が運転停止状態にある夜間において、昼間に使用した熱量を前記周辺地中44より積極的に取り込むためには、前記熱交換貯留槽30内の熱媒液2に流れがあった方がよい。例えば、循環ポンプの駆動によって前記熱媒液2を循環させることにより、該熱媒液2を前記熱交換貯留槽30の内面に極力接触させながら該熱媒液2を上昇させたり下降させたりできる。これによって、貯留されている該熱媒液2への地中熱の移動効率や貯留されている該熱媒液2から周辺地中44への熱移動効率を向上させることができる。
このようにして前記熱交換貯留槽30内の熱媒液2に蓄えられた熱量は、昼間における前記熱交換装置1の稼働によって徐々に消費されるのであるが、前記第1の熱交換部6の入口端13に供給される第2の熱媒液10の必要量は、前記熱交換部5の出口端16での前記第1の熱媒液9の検出温度が所要設定温度を維持するように設定されるものである。従って、該第1の熱交換部6に供給される第2の熱媒液10の単位時間当りの量は少なくて済む。
一例として、前記熱交換装置1が冷暖房装置29である場合において暖房運転開始から例えば15分間程度は、暖房の負荷側37への熱供給量が多いために、前記熱交換貯留槽30から前記第1の熱交換部6に送られる前記第2の熱媒液10の量が多い。しかしその後、負荷側37がある程度暖まってくると、該第1の熱交換部6における熱交換量は少なくてもよくなる。例えば、当初は前記入口端13の必要液温7℃を要して前記必要量が20L/min であったものが、負荷側37がある程度暖まってくると、前記必要量は5L/min で済むということにもなり、更に少ない必要量で済むことにもなる。かかることから、前記熱交換貯留槽30内の熱媒液2を長時間(例えば3~4時間程度)かかって一巡させるということが可能になる。これによって、前記熱交換貯留槽30内の熱媒液2の保有する蓄熱量を長時間かけて消費できることとなるのである。
この蓄熱量は徐々に減少するのであるが、前記熱交換貯留槽30内に戻った熱媒液2の温度は前記のように低く、流入した熱媒液2の温度と地中熱との温度差が大きい。そのため前記のように、該熱交換貯留槽30内に流入した熱媒液2と地中熱との熱交換を効率よく行うことができる。そして前記のように、前記熱交換貯留槽30内の熱媒液2が長時間かかって一巡することから、前記下側部分62で前記熱交換貯留槽30内に戻った熱媒液2が地中熱を採熱できる時間が長い。かかることから前記熱交換装置1によるときは、蓄熱された熱量を長時間に亘って利用できると共に、前記熱交換貯留槽30内に戻って長時間をかけて地中熱で加温された熱媒液2の熱量をも利用できることとなる。
従って、前記熱交換貯留槽30内の蓄熱量が一巡して消費された後は、地中熱で時間をかけて十分に加温された熱媒液、即ち、地中熱を十分に吸収した状態にある該熱媒液2の熱量を利用できることとなり、該熱交換貯留槽30内の熱媒液2の有する熱量を長時間に亘って利用できることとなる。
これらのことは、前記熱交換装置1が前記冷暖房装置29である場合において冷房運転に用いられた場合も同様であり、又、前記熱交換装置1が前記無散水融雪装置70として用いられた場合も同様である。
図3~4は、本発明に係る熱交換装置の制御方法を実施する熱交換装置1の他の実施例を示すものである。該熱交換装置1は、熱媒液2が内部を流れる流路3を具えており、該流路3は、第2の熱交換部5との間で熱交換を行う第1の熱交換部6を有した熱媒液循環流路7を具える。該熱媒液循環流路7には、これに付設された第1のポンプ75の駆動によって前記第1の熱媒液9が循環するようになされている。又、前記第1の熱媒液9の温度と温度差を有する第2の熱媒液10を保有する熱源11を具え、該熱源11と前記熱媒液循環流路7とを連通状態とする供給管12を具えている。そして、該供給管12は前記第1の熱交換部6の入口端13が存する側15に連結されると共に、該第1の熱交換部6の出口端16が存する側17には排出管19が連結されている。
又、前記供給管12に付設された第2のポンプ76の駆動によって、前記出口端16における前記第1の熱媒液9の検出温度が所要設定温度を維持するように、前記第1の熱交換部6が必要とする熱量を付与し得る必要量の第2の熱媒液10が、前記供給管12を介して、前記第1の熱交換部6の入口端13が存する側15に供給可能となるように制御される。又、前記排出管19から、供給された第2の熱媒液10と同量の第1の熱媒液9が排出されるようになされている。ここに、前記第1の熱媒液9とは、前記熱媒液2の内の、前記熱媒液循環流路7を循環する熱媒液をいい、前記第2の熱媒液10とは、前記熱媒液2の内の、前記第1の熱交換部6に供給される熱媒液をいう。
該熱交換装置1が冷暖房用の水冷式ヒートポンプ装置29を構成するために用いられた場合を例にとれば、前記実施例1を説明する図1に示されている混合三方弁26を、インバータ制御された前記第1のポンプ75と前記第2のポンプ76に置き換えて実施できる。かかる構成の冷暖房装置29の作用効果は前記実施例1で説明したところと同様であるため、その具体的な説明は省略する。
なお図3~4においては、図1と共通する部位に同一の符号が付されている。又図3~4においては、図1における場合とは異なり、熱交換貯留槽30の上端79は開放されている。そして、図3~4における符号80は流量検出器である。
図5は、現在一般に販売されている水冷式ヒートポンプ冷暖房装置36に本発明を応用した場合の一実施例を示すものである。該水冷式ヒートポンプ冷暖房装置36は、これを暖房に使用する場合、その効率を最大限に上げるために、ヒートポンプ内に設置した熱交換器の熱媒体の温度を氷点未満に下げて、外部熱源からの熱媒液より採熱していた。そのため、該熱媒液としては、これが該熱交換器の中で凍らないように不凍液を使用しなければならなかった。しかし、一般に不凍液は高価であるためにその使用量は限定せざるを得なかった。又前記外部熱源として、地中熱を利用する地中熱交換器を採用した場合は、該地中熱交換器に大量に不凍液を収容しなければならないために高額のコストを要したばかりか、これが土中に漏洩したときは土壌汚染につながりかねない問題もあった。かかることから、該地中熱交換器を前記外部熱源として用いる場合は、これに収容される熱媒液2は水であることが好ましい。
図5は、従来の水冷式ヒートポンプ冷暖房装置36を使用して暖房を行うために、前記構成の熱交換装置1と該水冷式ヒートポンプ冷暖房装置36との間に、熱効率のよいプレート式熱交換器等の付属熱交換器81を設けた場合を示している。該付属熱交換器81には、本発明に係る前記熱交換装置1の前記第1の熱交換部6と、前記ヒートポンプ内に設置されている熱交換器83に配設された熱交換部82を有して構成されてなる不凍液循環流路84の一部分をなす前記第2の熱交換部5とを配設し、水が流れる該第1の熱交換部6と不凍液が流れる該第2の熱交換部5との間で熱交換が行われるように構成されている。なお図5においては、例えば前記実施例1で示す1台のポンプ20を用いる熱交換装置1を応用して構成されているが、例えば前記実施例2で示す2台のポンプを用いる熱交換装置1を応用して構成してもよい。
この場合における熱交換は、前記実施例1、前記実施例2で説明したと同様に行われる。例えば、前記不凍液の温度がマイナス温度とならないように前記熱交換装置1の前記第1の熱交換部6の出口端16における前記第1の熱媒液9の検出温度が例えば2℃の所要設定温度を維持するように、前記熱源11より、前記第1の熱交換部6が必要とする必要量の前記第2の熱媒液10を供給する。これと共に、前記第1の熱交換部6の前記出口端16が存する側17で、供給された第2の熱媒液10と同量の第1の熱媒液9を排出させるように構成されている。
このように構成する場合は、不凍液は前記不凍液循環流路84にのみ使用されるだけであるために極少量である。従って、前記の不凍液に係るコストの問題点と土壌汚染の問題点の双方を同時に解決できることとなる。
本発明は、前記実施例で示したものに限定されるものでは決してなく、「特許請求の範囲」の記載内で種々の設計変更が可能である。
(1)前記実施例2においては、前記熱源11が、地盤に埋設した杭を用いてなる熱交換貯留槽30を以って構成されており、その杭軸線に沿って設けられている前記有底孔部77に前記熱媒液2を貯留して構成されているが、該熱交換貯留槽30は、地盤を所要深さに掘削して設けられた孔部の内壁部を、有底の円筒状ケーシングで被覆して構成し、該熱交換貯留槽30に熱媒液2を貯留して構成してもよい。このように構成した場合は、該熱交換貯留槽30の壁部31を介して該熱媒液2が地中熱を吸収し、或いは、該熱媒液2の保有する熱量を該壁部31を介して地中へ放熱する。
(2)図6、図7は、縦方向に長いU字状管部85として構成された前記熱交換貯留槽30が設けられてなる前記熱源11を具える熱交換装置1の一例を示すものである。該U字状管部85は、地盤を縦方向に掘削して形成された縦孔内に、その長さ方向が縦方向に延長する如く埋設して構成されており、該U字状管部85内には前記熱媒液2が貯留されている。そして該U字状管部85の一端86は前記供給管12の、前記供給端43と反対側の連結端87に連結されると共に、該U字状管部85の他端89は前記排出管19の、前記出口端16が存する側17に対する連結端52と反対側の連結端90に連結されている。
図6に係る熱交換装置1にあっては、前記ポンプ20の駆動によって、前記出口端16における前記第1の熱媒液9の検出温度が前記所要設定温度を維持するように、該熱交換貯留槽30内の熱媒液2の前記必要量を、前記第2の熱媒液10として前記入口端13に供給するように構成されている。又図7に係る熱交換装置1にあっては、前記第2のポンプ76の駆動によって、前記出口端16における前記第1の熱媒液9の検出温度が前記所要設定温度を維持するように、該U字状管部85内の熱媒液2の前記必要量を前記第2の熱媒液10として前記入口端13に供給するように構成されている。
そして、このように供給された第2の熱媒液10と同量の第1の熱媒液9が前記排出管19を介して前記U字状管部85に戻される。かかる構成のU字状管部85は、例えば図3~4に示すような、地盤に埋設された杭に設けた前記有底孔部77に貯留した熱媒液中に沈めた状態とされることもある。この場合は、該U字状管部85内の熱媒液と、貯留されている前記熱媒液2との間で所要の熱交換が行われることとなる。かかる熱交換装置1のその他の構成及びその用途、作用効果は、前記実施例1、前記実施例2で説明したところと同様であるため、その具体的な説明は省略する。
(3)本発明において「前記第1の熱交換部6の出口端16における前記第1の熱媒液9の検出温度」とは、出口端16における前記第1の熱媒液9の検出温度である他、出口端16における温度と同一の温度を測定できる部位であれば、該出口端16から離れた部位における前記第1の熱媒液9の検出温度であってもよい。
(4)前記熱交換装置1を構成する前記熱交換貯留槽30は、地下水が常時出入りできる地下水採取用貯留槽として構成されることもある。この場合は、地下水が常時貯留状態にある該地下水採取用貯留槽そのものが前記熱源11を構成し、貯留されている地下水が、前記第2の熱媒液10となり得る熱媒液2である。このように構成する場合は、前記第1の熱交換部6の前記出口端16が存する側で排出された前記第1の熱媒液9は、例えば、還元井戸に戻したり、或いは、貯水槽に収容して融雪用の水等として利用することもできる。前記熱交換装置1を該地下水採取用貯留槽を用いて構成する場合は、地下水の使用量を低減できるため、地下水の低下による地盤沈下等の環境問題を生じさせにくい。
(5)前記熱交換装置1を構成する前記熱源は、例えば図8に示すように、温泉排水や工場排水、下水の廃液91を貯留した貯留槽91を熱供給源として用いて構成することもできる。このように構成する場合は、無駄に捨てられていた温泉排水や工場排水、下水の熱量を、例えば、蛇行管部等としての熱交換貯留槽30を介して採熱することによって有効活用できることとなる。この場合は、該熱交換貯留槽30内の熱媒液2が、前記熱源11が保有する第2の熱媒液10である。前記熱源11を構成する熱供給源としては、前記第1の熱媒液9の温度と温度差を有するものであれば、河川水、湖水、海水、雪、氷、ガス等の液体、固体、気体等であってもよい。かかる熱源を用いる熱交換装置1の応用分野は、前記実施例1や前記実施例2で説明したところと同様であるため、その具体的な説明は省略する。
(6)本発明に係る熱交換装置1を暖房に使用する場合において暖房効率を向上させるためには、例えば図1(A)を参照すれば、ヒートポンプ循環路29に設置した前記第1の熱交換器(例えばプレート式熱交換器) 35内に設けられた前記第2の熱交換部5を流れる前記ヒートポンプ熱媒体36の温度を氷点未満に下げて(例えば-14℃~-15℃に下げて)、前記熱源11からの、前記第1の熱交換部6を流れる前記熱媒液2より採熱することになる。そのためには、前記第1の熱交換部6を流れる該熱媒液2が該第1の熱交換部6の中で凍らないようにしなければならない。
そこで、該熱媒液2として不凍液を使用することが考えられる。しかしながら不凍液は高価であり、これが土中等の環境に漏洩した場合は環境汚染の問題を招くことにもなる。かかる問題点は、該熱媒液2として水を用いることによって解消できると考えられる。しかしながら水を熱媒液2として用いる場合は、この水が前記第1の熱交換部6の流路3を流れる間に凍結してこれが該流路3を詰まらせる恐れがある。かかることから、該熱媒液2として水を用いる場合は前記第1の熱交換部6の流路で該水を凍結させない手段が求められる。
その手段の一つとして、例えば図12に示すような、前記第1の熱交換部6の前記流路3の内面92を撥水コーティング膜93で被覆する手段を提供できる。該撥水コーティング膜93は例えば、フッ素コーティングや疎水性シリカコーティング等の撥水性の樹脂コーティングを施すことによって形成したり、ナノメートルサイズのメッキを施す超撥水コーティングを施すことによって形成できる。
このようにして前記第1の熱交換部6の前記流路3の内面92を撥水コーティング膜93で被覆する場合、該流路3を流れる水(熱媒液2)の温度を0℃よりも高い温度(例えば2℃)に設定すれば、前記撥水コーティング膜93の表面94で凍結のための核が生成されたとしても、この核を、該水の流速と該撥水コーティング膜93の撥水性によって該表面94から剥れやすくできる。そして剥がれた核は水流で流し去られて融ける。
これによって、前記熱媒液2として水を用いる前記熱交換装置1が暖房運転をしているときにあっても、この水(熱媒液2)が、前記第1の熱交換部6の流路3を流れる間において凍結するのを防止できることとなる。
(7)時間の経過によって前記第1の熱交換部における熱交換量が変動するように構成された前記熱交換装置は、前記した水冷式ヒートポンプ装置を構成するために用いることができる。該水冷式ヒートポンプ装置は、前記した冷暖房装置の構成に用いることができる他、給湯機や冷凍機、融雪装置を構成するため等に用いることもできる。又前記熱交換装置1は、そのままで、融雪装置を構成するために用いることもできる。
1 熱交換装置
2 熱媒液
3 流路
5 第2の熱交換部
6 第1の熱交換部
7 熱媒液循環流路
9 第1の熱媒液
10 第2の熱媒液
11 熱源
12 供給管
13 入口端
16 出口端
19 排出管
20 ポンプ
21 連結部位
22 第1の接続口
23 第2の接続口
25 第3の接続口
26 混合三方弁
27 流量調整弁
29 冷暖房装置
30 熱交換貯留槽
31 壁部
35 密閉水槽
44 周辺地中
2 熱媒液
3 流路
5 第2の熱交換部
6 第1の熱交換部
7 熱媒液循環流路
9 第1の熱媒液
10 第2の熱媒液
11 熱源
12 供給管
13 入口端
16 出口端
19 排出管
20 ポンプ
21 連結部位
22 第1の接続口
23 第2の接続口
25 第3の接続口
26 混合三方弁
27 流量調整弁
29 冷暖房装置
30 熱交換貯留槽
31 壁部
35 密閉水槽
44 周辺地中
Claims (6)
- 熱媒液が内部を流れる流路が設けられており、該流路は、第2の熱交換部との間で熱交換を行う第1の熱交換部を有した熱媒液循環流路を具え、該熱媒液循環流路には一定量の第1の熱媒液が循環する如くなされており、時間の経過によって前記第1の熱交換部における熱交換量が変動するように構成された熱交換装置において、
前記熱媒液循環流路には、前記第1の熱交換部の入口端が存する側で、前記第1の熱交換部の出口端における前記第1の熱媒液の検出温度が所要設定温度を維持するように、前記第1の熱媒液の温度と温度差を有する第2の熱媒液を保有する熱源より、前記第1の熱交換部が必要とする熱量を付与し得る必要量の前記第2の熱媒液を供給すると共に、前記第1の熱交換部の前記出口端が存する側で、供給された第2の熱媒液と同量の第1の熱媒液を排出させることを特徴とする熱交換装置の制御方法。 - 熱媒液が内部を流れる流路が設けられており、該流路は、第2の熱交換部との間で熱交換を行う第1の熱交換部を有した熱媒液循環流路を具え、該熱媒液循環流路には一定量の第1の熱媒液が循環する如くなされており、時間の経過によって前記第1の熱交換部における熱交換量が変動するように構成された熱交換装置であって、
前記第1の熱媒液の温度と温度差を有する第2の熱媒液を保有する熱源と前記熱媒液循環流路とを連通状態とする供給管を具え、該供給管は前記第1の熱交換部の入口端が存する側に連結されると共に、該第1の熱交換部の出口端が存する側には排出管が連結されており、
前記出口端における前記第1の熱媒液の検出温度が所要設定温度を維持するように、前記第1の熱交換部が必要とする熱量を付与し得る必要量の前記第2の熱媒液を、前記供給管を介して前記入口端が存する側に供給するように制御されており、
前記排出管から、供給された第2の熱媒液と同量の第1の熱媒液が排出されるようになされていることを特徴とする熱交換装置。 - 熱媒液が内部を流れる流路が設けられおり、該流路は、第2の熱交換部との間で熱交換を行う第1の熱交換部を有した熱媒液循環流路を具え、該熱媒液循環流路には、これに付設されたポンプの駆動によって一定量の第1の熱媒液が循環する如くなされており、時間の経過によって前記第1の熱交換部における熱交換量が変動するように構成された熱交換装置であって、
前記第1の熱媒液の温度と温度差を有する第2の熱媒液を保有する熱源と前記熱媒液循環流路とを連通状態とする供給管を具え、該供給管は前記第1の熱交換部の入口端が存する側に連結されると共に、該第1の熱交換部の出口端が存する側には排出管が連結されており、
前記熱媒液循環流路に対する前記供給管の連結部位に、第1、第2、第3の接続口を有する混合三方弁が介在されると共に、該混合三方弁と前記入口端との間に前記ポンプが介在されており、
前記第1の接続口が前記熱媒液循環流路の循環方向で見た上流端に接続され、前記第2の接続口が、該循環方向で見た下流端に接続され、前記第3の接続口が前記供給管の供給端に接続されており、
前記第2の接続口は所要開度に設定されると共に、前記第1の接続口の開度と前記第3の接続口の開度は、前記混合三方弁に内蔵されている弁体によって制御されるようになされており、
前記ポンプの駆動によって得られる、前記第1の接続口から前記混合三方弁内への前記第1の熱媒液の流入量と前記第3の接続口から前記混合三方弁内への前記第2の熱媒液の流入量の合計量が、前記第2の接続口から前記熱媒液循環流路への流出量に等しくなるように制御され、該合計量は前記一定量に設定されており、
又、該混合三方弁内では前記第1の熱媒液と前記第2の熱媒液とが混合されて混合熱媒液となり、該混合熱媒液が前記第2の接続口から流出するようになされており、
且つ、前記第3の接続口の前記開度は、前記出口端における前記第1の熱媒液の検出温度が所要設定温度を維持するように、前記第1の熱交換部が必要とする熱量を付与し得る必要量の前記第2の熱媒液を前記供給管を介して前記混合三方弁内に流入させるように制御されており、
又、前記排出管から、供給された第2の熱媒液と同量の熱媒液が排出されるようになされていることを特徴とする熱交換装置。 - 熱媒液が内部を流れる流路が設けられており、該流路は、第2の熱交換部との間で熱交換を行う第1の熱交換部を有した熱媒液循環流路を具え、該熱媒液循環流路には、これに付設された第1のポンプの駆動によって第1の熱媒液が循環するようになされており、時間の経過によって前記第1の熱交換部における熱交換量が変動するように構成された熱交換装置であって、
前記第1の熱媒液の温度と温度差を有する第2の熱媒液を保有する熱源と前記熱媒液循環流路とを連通状態とする供給管を具え、該供給管は前記第1の熱交換部の入口端が存する側に連結されると共に、該第1の熱交換部の出口端が存する側には排出管が連結されており、
前記供給管に付設された第2のポンプの駆動によって、前記出口端における前記第1の熱媒液の検出温度が所要設定温度を維持するように、前記第1の熱交換部が必要とする熱量を付与し得る必要量の前記第2の熱媒液を、前記供給管を介して前記第1の熱交換部の入口端が存する側に供給するように制御されており、
又、前記排出管から、供給された第2の熱媒液と同量の第1の熱媒液が排出されるようになされていることを特徴とする熱交換装置。 - 前記第1の熱交換部の前記流路の内面は撥水コーティング膜で被覆されていることを特徴とする請求項2~4の何れかに記載の熱交換装置。
- 請求項2~4の何れかに記載の前記熱交換装置が用いられてなることを特徴とする水冷式ヒートポンプ装置。
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017123720 | 2017-06-07 | ||
JP2017-123720 | 2017-06-07 | ||
JP2018-013285 | 2018-01-30 | ||
JP2018013285A JP6443783B2 (ja) | 2017-06-07 | 2018-01-30 | 熱交換装置の制御方法及び熱交換装置並びに水冷式ヒートポンプ冷暖房装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018225753A1 true WO2018225753A1 (ja) | 2018-12-13 |
Family
ID=64567115
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/021628 WO2018225753A1 (ja) | 2017-06-07 | 2018-06-05 | 熱交換装置の制御方法及び熱交換装置並びに水冷式ヒートポンプ装置 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2018225753A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115790016A (zh) * | 2022-11-30 | 2023-03-14 | 珠海格力电器股份有限公司 | 热泵系统及其控制方法和装置、电器设备 |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57169551A (en) * | 1981-04-13 | 1982-10-19 | Shimizu Constr Co Ltd | Feeder for air-conditioning heat source utilizing pipe pile |
JPH06108287A (ja) * | 1992-09-30 | 1994-04-19 | Nippon Zeon Co Ltd | 熱交換器 |
JPH06147653A (ja) * | 1992-11-09 | 1994-05-27 | Agency Of Ind Science & Technol | 地熱利用システムに供給する作動流体あるいは地熱流体の温度調整方法 |
JP2001317817A (ja) * | 2000-05-08 | 2001-11-16 | Toto Ltd | 給湯機 |
JP2002081763A (ja) * | 2000-09-04 | 2002-03-22 | Sekisui Chem Co Ltd | 太陽熱、地中熱利用システム |
JP2010175136A (ja) * | 2009-01-29 | 2010-08-12 | Corona Corp | 地中熱ヒートポンプ装置 |
JP2016109340A (ja) * | 2014-12-04 | 2016-06-20 | 富士電機株式会社 | 雪氷利用空調システム |
JP2016121861A (ja) * | 2014-12-25 | 2016-07-07 | 富士電機株式会社 | 雪氷利用空調システム、その制御装置 |
JP2017032148A (ja) * | 2015-07-29 | 2017-02-09 | ゼネラルヒートポンプ工業株式会社 | ヒートポンプシステム |
JP2017096585A (ja) * | 2015-11-26 | 2017-06-01 | 清水建設株式会社 | 地熱利用空調方法 |
-
2018
- 2018-06-05 WO PCT/JP2018/021628 patent/WO2018225753A1/ja active Application Filing
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57169551A (en) * | 1981-04-13 | 1982-10-19 | Shimizu Constr Co Ltd | Feeder for air-conditioning heat source utilizing pipe pile |
JPH06108287A (ja) * | 1992-09-30 | 1994-04-19 | Nippon Zeon Co Ltd | 熱交換器 |
JPH06147653A (ja) * | 1992-11-09 | 1994-05-27 | Agency Of Ind Science & Technol | 地熱利用システムに供給する作動流体あるいは地熱流体の温度調整方法 |
JP2001317817A (ja) * | 2000-05-08 | 2001-11-16 | Toto Ltd | 給湯機 |
JP2002081763A (ja) * | 2000-09-04 | 2002-03-22 | Sekisui Chem Co Ltd | 太陽熱、地中熱利用システム |
JP2010175136A (ja) * | 2009-01-29 | 2010-08-12 | Corona Corp | 地中熱ヒートポンプ装置 |
JP2016109340A (ja) * | 2014-12-04 | 2016-06-20 | 富士電機株式会社 | 雪氷利用空調システム |
JP2016121861A (ja) * | 2014-12-25 | 2016-07-07 | 富士電機株式会社 | 雪氷利用空調システム、その制御装置 |
JP2017032148A (ja) * | 2015-07-29 | 2017-02-09 | ゼネラルヒートポンプ工業株式会社 | ヒートポンプシステム |
JP2017096585A (ja) * | 2015-11-26 | 2017-06-01 | 清水建設株式会社 | 地熱利用空調方法 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115790016A (zh) * | 2022-11-30 | 2023-03-14 | 珠海格力电器股份有限公司 | 热泵系统及其控制方法和装置、电器设备 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2019151289A1 (ja) | 熱交換装置の制御方法及び熱交換装置並びに水冷式ヒートポンプ冷暖房装置・水冷式ヒートポンプ装置 | |
US8099972B2 (en) | Device for heating, cooling and producing domestic hot water using a heat pump and low-temperature heat store | |
US7451611B2 (en) | Solar air conditioning system | |
US4257239A (en) | Earth coil heating and cooling system | |
US9389008B2 (en) | Solar energy air conditioning system with storage capability | |
EP2212630B1 (en) | Heat pump device | |
US20140026606A1 (en) | Rotational multi vane positive displacement valve for use with a solar air conditioning system | |
US20100236750A1 (en) | Heat exchange system | |
US8468842B2 (en) | DX system having heat to cool valve | |
KR20090110904A (ko) | 지열 직접 교환 냉난방 시스템을 위한 개선된 설계 구조 | |
US20100038052A1 (en) | Geothermal hybrid heat exchange system | |
JP2013181676A (ja) | 冷暖房システム及び冷暖房方法 | |
JP5067958B2 (ja) | 地中熱利用ヒートポンプシステム及び水熱利用ヒートポンプシステム | |
US20200166291A1 (en) | Latent heat storage system having a latent heat storage device and method for operating a latent heat storage system | |
US20210190328A1 (en) | Combined heating and cooling system | |
WO2018225753A1 (ja) | 熱交換装置の制御方法及び熱交換装置並びに水冷式ヒートポンプ装置 | |
JP2012057836A (ja) | 地中熱交換器、及びそれを利用したヒートポンプ | |
KR101579458B1 (ko) | 복합열원을 구비한 하이브리드 냉난방 시스템 | |
CN110869681B (zh) | 热交换装置的控制方法、热交换装置以及水冷式热泵制冷制热装置、水冷式热泵装置 | |
KR101188964B1 (ko) | 수열원 히트펌프의 열교환기 동파방지 제어시스템 | |
JP2010185650A (ja) | 燃料電池排熱利用熱供給システム | |
JP7557872B2 (ja) | 地中熱利用装置及び該地中熱利用装置の使用方法 | |
JP2019211192A (ja) | 水冷式ヒートポンプ空調・給湯装置 | |
WO2013018660A1 (ja) | 熱交換ユニット及びそれを用いた太陽電池パネル吸放熱システム | |
KR101061569B1 (ko) | 태양열 온수시스템 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18813790 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18813790 Country of ref document: EP Kind code of ref document: A1 |