WO2018225686A1 - Hydrated silicic acid for rubber reinforcement filling and method for producing same - Google Patents

Hydrated silicic acid for rubber reinforcement filling and method for producing same Download PDF

Info

Publication number
WO2018225686A1
WO2018225686A1 PCT/JP2018/021369 JP2018021369W WO2018225686A1 WO 2018225686 A1 WO2018225686 A1 WO 2018225686A1 JP 2018021369 W JP2018021369 W JP 2018021369W WO 2018225686 A1 WO2018225686 A1 WO 2018225686A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicic acid
hydrous silicic
rubber
acid
surfactant
Prior art date
Application number
PCT/JP2018/021369
Other languages
French (fr)
Japanese (ja)
Inventor
大祐 古城
英伸 米井
勇太 今別府
Original Assignee
東ソー・シリカ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東ソー・シリカ株式会社 filed Critical 東ソー・シリカ株式会社
Priority to CN201880038041.6A priority Critical patent/CN110719892B/en
Priority to KR1020207000252A priority patent/KR102278120B1/en
Publication of WO2018225686A1 publication Critical patent/WO2018225686A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/18Preparation of finely divided silica neither in sol nor in gel form; After-treatment thereof
    • C01B33/187Preparation of finely divided silica neither in sol nor in gel form; After-treatment thereof by acidic treatment of silicates
    • C01B33/193Preparation of finely divided silica neither in sol nor in gel form; After-treatment thereof by acidic treatment of silicates of aqueous solutions of silicates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/541Silicon-containing compounds containing oxygen
    • C08K5/5415Silicon-containing compounds containing oxygen containing at least one Si—O bond
    • C08K5/5419Silicon-containing compounds containing oxygen containing at least one Si—O bond containing at least one Si—C bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/10Solid density
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area

Definitions

  • the present invention relates to hydrous silicic acid for rubber reinforcement filling. Specifically, it is a hydrous silicic acid for filling a rubber that is effective for improving the reinforcing property of a diene rubber using a silane coupling agent.
  • the hydrous silicic acid of the present invention is useful for reinforcing industrial rubber products such as tire treads and belts that require rubber reinforcement (particularly wear resistance).
  • hydrous silicic acid is known as white carbon and has been used as a rubber reinforcing filler for a long time along with carbon black.
  • Hydrous silicic acid is excellent in the heat aging resistance, tear resistance, flex crack resistance, adhesion and the like of the vulcanized rubber.
  • the dispersibility is poor compared to carbon black, the viscosity of the compound is high and the processability is inferior at the time of high filling compounding, and the reinforcing property (especially abrasion resistance) is inferior among the general rubber properties.
  • a silane coupling agent and other organic compounds are used in combination.
  • hydrous silicic acid that can provide satisfactory rubber properties has not yet been obtained. Therefore, further improvement of hydrous silicic acid is strongly desired along with research on rubber compounding recipes.
  • Patent Documents 1 and 2 disclose hydrous silicic acid that can improve the wear resistance of rubber.
  • Patent Document 1 Japanese Patent Laid-Open No. 2000-302912
  • Patent Document 2 Japanese Laid-Open Patent Publication No. 11-236208
  • Patent Document 3 Japanese Patent Laid-Open No. 2017-002210
  • Patent Document 4 WO 2013/168424
  • An object of the present invention is to provide a water-containing silicic acid for reinforcing and filling a rubber capable of providing a rubber composition having improved wear resistance as compared with the prior art.
  • the present inventors pay attention to the reactivity of the silane coupling agent and the hydrous silicic acid, and efficiently perform the bonding between the hydrous silicic acid and the rubber molecule, and further improve the dispersibility, thereby improving the reinforcement.
  • the solid acid density on the surface of the hydrous silicic acid is important for the bonding between the hydrous silicic acid surface and the rubber molecules via the silane coupling agent.
  • the wear resistance cannot be remarkably improved, and by adding a predetermined surfactant, the diene rubber combined with the silane coupling agent is used. It has been found that a hydrous silicic acid that can be significantly improved can be provided.
  • the present inventors have given a predetermined surfactant to hydrous silicic acid having a surface solid acid density within a predetermined range for imparting abrasion resistance to a rubber composition in combination with a hydrous silicic acid silane coupling agent.
  • a predetermined surfactant to hydrous silicic acid having a surface solid acid density within a predetermined range for imparting abrasion resistance to a rubber composition in combination with a hydrous silicic acid silane coupling agent.
  • the present invention is a hydrous silicic acid characterized in that the surface solid acid density is in the range of 1.8 to 2.4 m-mol / m 2 and contains a predetermined surfactant.
  • the present inventors have succeeded in obtaining a rubber composition with significantly improved wear resistance compared to the conventional one.
  • the hydrous silicic acid for rubber reinforcement filling of the present invention has a surface solid acid density in an effective range for promoting chemical bonding with rubber molecules via a silane coupling agent in order to improve wear resistance.
  • the greatest feature is that the wear resistance of the rubber composition is remarkably improved by containing a predetermined surfactant.
  • the present invention is as follows.
  • a hydrous silicic acid for rubber reinforcement filling characterized by having a surface solid acid density in a range of 1.8 to 2.4 m-mol / m 2 and containing a cationic or nonionic surfactant.
  • the hydrous silicic acid for reinforcing and filling a rubber according to [1] which is used for reinforcing and filling a diene rubber composition in combination with a silane coupling agent.
  • the step of producing the hydrous silicic acid includes any one of a step of adding an acid after completion of the addition of the alkali silicate aqueous solution, a step of washing with filtered water, and a step of drying, and in any of these steps
  • the production method according to [5] wherein aluminate is added, and then a surfactant is added.
  • the aluminate is sodium aluminate, the sodium aluminate has a Na 2 O / Al 2 O 3 molar ratio of 1.8 to 20.0, and an Al 2 O 3 concentration of 1.0 to 16.0 wt% [5] or [ [6]
  • the neutralization reaction is carried out while controlling the addition amount (ratio) of the alkali silicate aqueous solution and sulfuric acid so that the pH of the reaction solution is in the range of 10 to 11, and the SiO 2 concentration is 50 to 50 ° C.
  • the production method according to any one of [5] to [8], comprising performing the addition until the amount is in a range of 80 g / L.
  • the hydrous silicic acid for filling and reinforcing rubber according to the present invention can improve the rubber reinforcement (particularly the wear resistance) when blended with natural rubber and synthetic rubber, for example, diene rubber, and therefore is resistant to wear resistance. It can be usefully used as a reinforcing filler for rubber industrial products such as tires and belts that are highly demanded.
  • the hydrous silicic acid for rubber reinforcement filling of the present invention is (A) The surface solid acid density is in the range of 1.8 to 2.4 m-mol / m 2 , and (B) It contains a surfactant.
  • the hydrous silicic acid of the present invention is highly reactive with a silane coupling agent, and is added to the rubber composition together with the silane coupling agent to provide a rubber composition having excellent reinforcing properties (particularly abrasion resistance).
  • the solid acid amount is not in the predetermined range, but the surface solid acid density is in the predetermined range (1.8 to 2.4 m-mol / m 2 ).
  • silane coupling agents have been widely used when blending hydrous silicic acid.
  • the hydrolyzable group of the silane coupling agent undergoes a hydrolysis reaction to produce a silanol group (-SiOH).
  • the silanol group of the silane coupling agent and the hydrous silicic acid Silanol groups present on the surface bind to the hydrous silicic acid surface through a dehydration condensation reaction. It is known that these reactions are generally promoted under acidic or alkaline conditions.
  • the surface solid acid is expected to exhibit a catalytic action on the surface of the hydrous silicic acid and promote the reaction between the hydrous silicic acid and the silane coupling agent.
  • the catalytic action is expected to promote the binding of hydrous silicic acid and silane coupling agent when a solid acid is present at a constant density on the hydrous silicic acid surface, and to exert a reinforcing effect when rubber is compounded. did.
  • a surfactant was used in combination for the purpose of improving the dispersibility of hydrous silicic acid when blended with rubber.
  • a sufficient dispersibility improvement effect was not obtained under the conditions of Reference Example 2, and a reinforcement improvement effect was not obtained.
  • the addition of surfactants is widely known as a method for inhibiting and preventing the aggregation of hydrous silicic acid, and the surfactant is added during rubber kneading, or added in advance to hydrous silicic acid.
  • Patent Document 4 An aluminum compound that strengthens aggregation and a surfactant that is used for the purpose of improving dispersibility have not been used at the same time.
  • the present inventors use these in a suitable method for the production of hydrous silicic acid, thereby controlling the surface solid acid density within a predetermined range and using a predetermined surfactant to obtain a silane of hydrous silicic acid. It has been found that the reactivity with the coupling agent and the dispersibility with respect to the rubber composition are improved, and a greater effect of improving the rubber reinforcement and wear resistance can be obtained.
  • the surfactant is adsorbed on the surface in advance, when dispersed in the rubber, the maximum aggregation suppression effect or the dispersion effect can be exhibited with the minimum necessary addition amount. I can do it. As a result, the characteristics of the surfactant (the dispersion effect of the hydrous silicic acid) can be used more efficiently compared to the conventional method of adding a surfactant during rubber compounding.
  • the surface solid acid density of the hydrous silicic acid in the present invention can be determined from the surface solid acid amount and the CTAB specific surface area as follows.
  • the hydrous silicic acid of the present invention has a predetermined surface solid acid density, depending on the CTAB specific surface area, the amount of solid acid is suitably in the range of 300 to 500 m-mol / g, for example. is there.
  • CTAB specific surface area measurement Performed according to JIS K6430 (rubber compounding agent-silica-test method).
  • the CTAB specific surface area is a value (m 2 / g) calculated from the amount adsorbed on hydrous silicic acid with the cross-section area of CTAB molecules as 35 2 .
  • CTAB specific surface area is preferably 130 ⁇ 300m 2 / g, more preferably 0.99 ⁇ 290 m 2 / g, more preferably in the range of 170 to 280 m 2 / g.
  • Al, Ti, Mg, and the like as metal ions that create a solid acid point by being incorporated into hydrous silicic acid, but aluminum is preferable in consideration of availability and stability.
  • aluminum source used for hydrous silicic acid production it is preferable that it is alkaline, because it erodes the hydrous silicic acid surface and is taken in efficiently, aluminate is preferred, and sodium aluminate is most preferably used. Has been.
  • the surface solid acid density is less than 1.8 m-mol / m 2
  • the effect of accelerating the reaction with the silane coupling agent is insufficient, so that the effect of improving the wear resistance over the prior art cannot be obtained.
  • it exceeds 2.4 m-mol / m 2 the reactivity becomes too high and the silane coupling agent may react locally, which is not preferable.
  • the surface solid acid density is preferably in the range of 1.8 m-mol / m 2 or more and 2.35 m-mol / m 2 or less.
  • surfactants are limited to cationic and / or nonionic surfactants added to the hydrous silicic acid of the present invention.
  • Cationic surfactants and nonionic surfactants can be used alone or in combination.
  • the cationic surfactant is a surfactant having a positive charge when dissolved in water, such as a quaternary ammonium salt, a tertiary ammonium salt, a secondary ammonium salt, a primary ammonium salt, Examples include pyridinium salts and amine salts.
  • Examples of commercially available cationic surfactants include coatamine (manufactured by Kao Corporation) and cationogen (manufactured by Daiichi Kogyo Seiyaku Co., Ltd.). However, it is not the intention limited to this.
  • the nonionic surfactant is a surfactant having a hydrophilic group that does not ionize when dissolved in water, for example, polyethylene glycol alkyl ether, polyethylene glycol fatty acid ester, alkyl glycoside, fatty acid alkanolamide, glycerin fatty acid ester, alkyl glyceryl.
  • Ether sorbitan fatty acid ester, polyethylene glycol sorbitan fatty acid ester, sucrose fatty acid ester, polyoxyethylene tridecyl ether, polyoxyethylene oleyl ether, polyoxyethylene alkyl ether, polyvinyl pyrrolidone, polyoxyalkylene lauryl ether, polyoxyethylene phenyl ether Etc.
  • nonionic surfactants examples include Emulgen (manufactured by Kao Corporation) and Neugen (manufactured by Daiichi Kogyo Seiyaku Co., Ltd.). However, it is not the intention limited to this.
  • the amount of the surfactant in the hydrous silicic acid of the present invention is not a problem as long as the dispersibility can be ensured without interfering with the reaction with the silane coupling agent by the surface solid acid, and the surface activity with respect to 100 parts by mass of the hydrous silicic acid.
  • the ratio of the amount of the agent based on the solid content (parts by mass / 100 SiO 2 parts by mass) and the CTAB specific surface area (m 2 / g) can be in the range of 0.001 to 0.010, for example, in the range of 0.002 to 0.009. Is preferred.
  • the type of surfactant it must be a cationic or nonionic surfactant in order to adsorb efficiently on the surface of the hydrous silicate, and an anionic surfactant has not found a sufficient dispersion effect.
  • the surfactant is preferably wet-treated by a method described later.
  • a dry treatment in which a surfactant is directly mixed with a hydrous silicate dry powder, not only does not have an effect of preventing aggregation due to drying, but also a non-uniform treatment tends to occur and a dispersibility improvement effect cannot be sufficiently obtained.
  • the hydrous silicic acid of the present invention exhibits a particularly excellent effect for reinforcing and filling a diene rubber composition using a silane coupling agent in combination. Examples of the silane coupling agent and the diene rubber composition will be described later.
  • the hydrous silicic acid of the present invention is produced by a method comprising adding an aluminate and then adding a cationic or nonionic surfactant at any stage of the process of producing the hydrous silicic acid.
  • the aluminate is preferably sodium aluminate from the viewpoint of easy availability.
  • the step of producing the hydrous silicic acid includes, for example, any one of a step of adding an acid after the addition of the alkali silicate aqueous solution, a step of washing with filtered water, and a step of drying, and any of these steps.
  • the aluminate preferably sodium aluminate
  • the surfactant can be added.
  • the sodium aluminate preferably has a Na 2 O / Al 2 O 3 molar ratio of 1.8 to 20.0 and an Al 2 O 3 concentration of 1.0 to 16.0 wt%.
  • the surfactant is preferably added as an aqueous solution in the range of 20 to 90 wt% based on the solid content.
  • the step of forming hydrous silicic acid in the aqueous solution in the production process includes, for example, an alkali silicate aqueous solution and an alkali silicate aqueous solution heated to 70 to 90 ° C. having a SiO 2 concentration of 5 to 50 g / L and a pH of 10 to 12.
  • Sulfuric acid is added at a temperature of 70 to 90 ° C, and the neutralization reaction is performed while controlling the addition amount (ratio) of the alkali silicate aqueous solution and sulfuric acid so that the pH of the reaction solution is in the range of 10 to 11.
  • the addition may be performed until the SiO 2 concentration is in the range of 50 to 80 g / L.
  • the wet manufacturing method of hydrous silicic acid of the present invention is generally performed by reacting an aqueous alkali silicate solution with a mineral acid (generally sulfuric acid).
  • the method for producing hydrous silicic acid according to the present invention is also basically based on this method.
  • the sulfuric acid excess method in which the pH is gradually lowered from the start to the end of the reaction is easy to obtain hydrous silicic acid having excellent dispersibility and a high CTAB surface area, but is not limited to this method.
  • a method for adding aluminum and a method for adding a surfactant are also important. Specific examples of each process are as follows.
  • An alkali silicate aqueous solution and sulfuric acid are added to an alkali silicate aqueous solution heated to 70 to 90 ° C. having a SiO 2 concentration of 5 to 50 g / L and pH 10 to 12 at a temperature of 70 to 90 ° C. to react.
  • Performing the addition to form silicic acid in the aqueous solution is performed.
  • (A) A step of stopping the addition of the alkali silicate aqueous solution and continuing the addition of sulfuric acid until the pH of the reaction solution becomes 5 or less to obtain a precipitate.
  • Aluminum and surfactant are added during any of steps (i) to (d).
  • the agglomerated structure of the hydrous silicic acid may change and the dispersibility of the hydrous silicic acid may deteriorate. It is preferable.
  • the addition of the surfactant is more preferably performed at least before the drying of (e), since aggregation during drying can also be prevented.
  • Aluminates are preferred as the aluminum source, with sodium aluminate being most suitable.
  • Hydrous silicic acid dissolves in a slight amount in weakly alkaline solutions.
  • an alkaline Al 2 O 3 solution such as sodium aluminate, only the surface of hydrous silicic acid dissolves and aluminum is easily taken up. Become.
  • Addition of sodium aluminate prepared to a Na 2 O / Al 2 O 3 molar ratio of 1.8 to 20.0 and an Al 2 O 3 concentration of 1.0 to 16.0 wt% is most preferable for the reason described later, and is uniformly applied to the surface of the hydrous silicate.
  • it is desirable that the addition is performed in a wet manner, and the mixture is stirred for 5 minutes or more and added to the surface of the hydrous silicic acid.
  • Al 2 O 3 concentration of sodium aluminate is 1.0 wt% or more, aluminum will be sufficiently taken into the surface of the hydrous silicate, and if it is 16.0 wt% or less, aggregation of the hydrated silicic acid may be caused at the time of addition. Absent.
  • sodium aluminate depending on the concentration of Al 2 O 3 and Na 2 O / Al 2 O 3 molar ratio in an aqueous solution, it and causing hydrolysis, it is known to crystallize, Al 2 O 3 If the Na 2 O / Al 2 O 3 molar ratio is 1.8 or more at a concentration of 1.0 wt% to 16.0 wt%, a stable sodium aluminate aqueous solution can be obtained. The higher the molar ratio, the easier it is to obtain a stable solution, but the higher the molar ratio, the stronger the alkali. If the Na 2 O / Al 2 O 3 molar ratio is 20.0 or less, there is no worry of causing aggregation of hydrous silicic acid. The molar ratio is preferably low as long as stable sodium aluminate can be obtained.
  • the surfactant is added after the aluminate is added. It is preferable to add a surfactant having a solid content reference concentration adjusted to a range of 20 to 90 wt%. In order to uniformly treat the surface of the hydrous silicic acid, it is desirable that the surfactant is always added to the slurry (wet treatment) and stirred for 5 minutes or more after the addition to uniformly treat the surface of the hydrous silicic acid.
  • the solid content standard concentration of the surfactant is 20 wt% or more, the surfactant is satisfactorily adsorbed on the hydrous silicate surface, and if it is 90 wt% or less, it is uniformly treated on the hydrous silicate surface and agglomerates.
  • the inhibitory effect can be sufficiently exerted.
  • the concentration can be added without causing a phenomenon such as gelation. After the addition, it is desirable that the surfactant be placed almost evenly on the surface of the hydrous silicic acid and stirred for 5 minutes or more so as to suppress aggregation of the hydrous silicic acid.
  • the order and method of adding aluminate (for example, soda) and surfactant are important.
  • aluminate for example, soda
  • surfactant causes the aluminum to be taken into the hydrous silicic acid surface to form a solid acid. Since it is inhibited, a hydrous silicic acid having a desired effect of improving wear resistance cannot be obtained.
  • the hydrous silicic acid of the present invention can be applied for reinforcing and filling various rubber compositions, but is preferably used for reinforcing and filling diene rubbers.
  • the use of the rubber composition can be widely used in the industrial rubber field where wear resistance is required, such as tires and belts.
  • the rubber composition in which the hydrous silicic acid of the present invention can be used is not particularly limited, but the rubber is a rubber composition containing natural rubber (NR) or diene synthetic rubber alone or blended with them. Can do.
  • the synthetic rubber include synthetic polyisoprene rubber (IR), polybutadiene rubber (BR), styrene butadiene rubber (SBR), acrylonitrile butadiene rubber (NBR), and the like.
  • the hydrous silicic acid of the present invention has a remarkable effect of improving wear resistance, particularly in a rubber composition containing a diene synthetic rubber used in combination with a silane coupling agent.
  • the hydrous silicic acid of the present invention can be blended, for example, 5 to 100 parts by mass with respect to 100 parts by mass of natural rubber and / or diene synthetic rubber. However, it is not intended to limit to this range.
  • the rubber composition may be one to which a silane coupling agent is added.
  • silane coupling agent examples include those used in rubber compositions, and examples include at least one of the following formulas (I) to (III).
  • X represents an alkyl group having 1 to 3 carbon atoms or a chlorine atom
  • n represents an integer of 1 to 3
  • m represents an integer of 1 to 3
  • p represents an integer of 1 to 9
  • q represents an integer of 1 or more.
  • X is an alkyl group having 1 to 3 carbon atoms or chlorine atom
  • Y is a mercapto group, vinyl group, amino group, imide group, glycidoxy group, methacryloxy group or epoxy group
  • n is an integer of 1 to 3
  • m is an integer from 1 to 3
  • p is an integer from 1 to 9.
  • X is an alkyl group having 1 to 3 carbon atoms or chlorine atom
  • Z is a benzothiazolyl group, N, N-dimethylthiocarbamoyl group or methacrylate group
  • n is an integer of 1 to 3
  • m is an integer of 1 to 3
  • P represents an integer of 1 to 9
  • q may be an integer of 1 or more and have a distribution.
  • silane coupling agent examples include bis (3-triethoxysilylpropyl) polysulfide, ⁇ -mercaptopropyltrimethoxysilane, ⁇ -mercaptopropyltriethoxysilane, ⁇ -aminopropyltrimethoxysilane, and ⁇ -aminopropyl.
  • the compounding amount of the silane coupling agent is, for example, 1 to 20% by mass, preferably 2 to 15% by mass, with respect to the mass of the hydrous silicic acid. However, it is not intended to limit to this range.
  • the hydrous silicic acid of the present invention is used in a rubber composition
  • carbon black, softening agent (wax, oil), anti-aging agent, vulcanizing agent may be used as necessary.
  • Compounding agents usually used in the rubber industry such as vulcanization accelerators and vulcanization accelerators, can be appropriately blended.
  • the rubber composition can be prepared by using a kneader such as a Banbury mixer with the rubber component, the hydrous silicic acid of the present invention, a silane coupling agent, the carbon black blended as necessary, the rubber compounding agent, and the like.
  • the rubber composition containing the hydrous silicic acid of the present invention can be suitably applied to rubber products such as tires and conveyor belts, and rubber products such as tires and conveyor belts are excellent in reinforcing properties, wear resistance, etc. It will be.
  • CTAB specific surface area JIS K6430 rubber compounding agent-silica-test method
  • a rubber test sample was prepared by the following kneading procedure.
  • Add the compound B shown in Table 1 and knead for about 1 minute then take it out (the temperature at the time of taking out is 100 ° C. or less), perform sheeting with an 8-inch open roll, and unvulcanize The product and vulcanizate properties were measured.
  • the dispersibility index is 100 or more and the wear index is 150 or more, it is set as A, the dispersibility index is 100 or more, and the wear index is 180.
  • the above case was designated as S.
  • those with a dispersibility index of 100 or more and an abrasion resistance index of 100 or more and less than 140 are those where either B, dispersibility index, or wear resistance index is less than 100 because the improvement effect is insufficient. It was set as C because the improvement effect was not seen.
  • Example 1 In a 240 L jacketed stainless steel vessel equipped with a stirrer, 80 L of water and 14 L of sodium silicate aqueous solution (SiO 2 150 g / L, SiO 2 / Na 2 O mass ratio 3.3) were charged and heated to a temperature of 82 ° C. . At this time, the SiO 2 concentration was 22 g / L and the pH was 11.5.
  • cation A cationic surfactant: polydiallyldimethylammonium chloride
  • surfactant / SiO 2 mass ratio (Solid content basis) was added to 1.4% and stirred for 10 minutes. Then, it dried and manufactured hydrous silicic acid, and evaluated.
  • Example 2 In a 240 L jacketed stainless steel vessel equipped with a stirrer, 80 L of water and 3.5 L of sodium silicate aqueous solution (SiO 2 150 g / L, SiO 2 / Na 2 O mass ratio 3.3) are charged and heated to a temperature of 72 ° C. did. At this time, the SiO 2 concentration was 6.0 g / L, and the pH was 10.9.
  • cation B (cationic surfactant: stearylamine acetate) prepared to a solid content of 40 wt% was added to the surfactant / SiO 2 mass ratio (based on solid content) ) was added to 1.5% and stirred for 5 minutes. Then, it dried and manufactured hydrous silicic acid, and evaluated.
  • Example 3 The reaction was carried out in the same manner as in Example 2, and only the addition of sodium silicate was stopped in 100 minutes. While adding the same sulfuric acid, the sodium aluminate aqueous solution prepared to a Na 2 O / Al 2 O 3 molar ratio of 3.0 and an Al 2 O 3 concentration of 10.0 wt% becomes 0.8% by mass ratio of Al 2 O 3 / SiO 2. Was added as follows. After stirring for 5 minutes to incorporate aluminum into the surface of the hydrous silicate, cation A prepared to a solid content of 50 wt% was added to a surfactant / SiO 2 mass ratio (solid content basis) of 0.5%, Stir for 5 minutes or more.
  • Example 4 In a 240 L jacketed stainless steel container equipped with a stirrer, 85 L of water and 6.0 L of sodium silicate aqueous solution (SiO 2 150 g / L, SiO 2 / Na 2 O mass ratio 3.3) are charged and heated to a temperature of 90 ° C. did. At this time, the SiO 2 concentration was 10.0 g / L, and the pH was 11.2.
  • the same sodium silicate aqueous solution and sulfuric acid (18.4 mol / L) as above are maintained at a temperature of 90 ° C. ⁇ 1 ° C. and pH 10.9 so that the SiO 2 concentration becomes 60 g / L in 100 minutes. In 100 minutes, only the addition of sodium silicate was stopped.
  • Example 5 The obtained cake was emulsified, and an aqueous sodium aluminate solution prepared to have a Na 2 O / Al 2 O 3 molar ratio of 2.2 and an Al 2 O 3 concentration of 15.0 wt% was added to this emulsified slurry as Al 2 O 3 / SiO 2. It was added over a sufficient amount of time so that the mass ratio was 1.5%. After stirring for 5 minutes to incorporate aluminum into the hydrous silicate surface, cation C (cationic surfactant: distearyldimethylammonium chloride) prepared to a solid content of 75 wt% was added to the surfactant / SiO 2 mass ratio (solid (Based on minute) to be 1.5%, and stirred for 5 minutes. Except for this operation, hydrous silicic acid was produced in the same manner as in Example 3 and evaluated.
  • aqueous sodium aluminate solution prepared to have a Na 2 O / Al 2 O 3 molar ratio of 2.2 and an Al 2 O 3 concentration of 15.0
  • Example 6 The obtained cake was emulsified, and an aqueous sodium aluminate solution prepared to have a Na 2 O / Al 2 O 3 molar ratio of 2.2 and an Al 2 O 3 concentration of 15.0 wt% was added to this emulsified slurry as Al 2 O 3 / SiO 2. It was added over a sufficient amount of time so that the mass ratio was 1.5%. After stirring for 5 minutes to incorporate aluminum into the surface of the hydrous silicate, nonionic (nonionic surfactant: polyoxyethylene oleyl ether) prepared to a solid content of 80 wt% was added to the surfactant / SiO 2 mass ratio (solid content (Standard) to be 1.5%, and stirred for 5 minutes. Except for this operation, hydrous silicic acid was produced in the same manner as in Example 3 and evaluated.
  • nonionic surfactant polyoxyethylene oleyl ether
  • Comparative Example 1 is N ipsil AQ (manufactured by Tosoh Silica).
  • Nipsil AQ is a hydrous silicic acid that is widely used as a rubber reinforcing filler. As shown in Table 2, the hydrous silicic acids of Examples 1 to 6 were equivalent to or higher in dispersibility than Comparative Example 1, and a remarkable improvement effect in wear resistance was observed.
  • Example 2 The reaction was carried out in the same manner as in Example 2, and only the addition of sodium silicate was stopped in 100 minutes. While adding the same sulfuric acid, the cation A prepared to a solid content of 40 wt% was added to a surfactant / SiO 2 mass ratio (solid content basis) of 1.5% and stirred for 5 minutes or more.
  • Examples 1 to 6 are significantly more effective in improving the wear resistance than Comparative Example 1.
  • the wear resistance is improved compared to Comparative Example 1, but the dispersibility is lowered.
  • the significant improvement in wear resistance obtained in Examples 1 to 6 cannot be obtained.
  • the same cation A as that used in Examples 1, 3, and 4 has the same surface solid acid density as in Reference Example 1 and is kneaded with rubber. Even when kneaded together, the wear resistance and dispersibility are almost the same as in Reference Example 1.
  • the hydrous silicic acid of Comparative Example 2 is equivalent to Examples 10 and 16 of Patent Document 4, and contains the same cation A as used in Examples 1, 3, and 4.
  • the surface solid acid density is outside the scope of the present invention, and no significant improvement in wear resistance like the hydrous silicic acid of Examples 1 to 6 is observed.
  • the hydrous silicic acid of Examples 1 to 6 and the hydrous silicic acid of Comparative Example 2 are substantially the same in dispersibility, or the hydrous silicic acid of Examples 3 and 6 is the hydrous silicic acid of Comparative Example 2. Somewhat inferior. However, in spite of this, the effect of improving the abrasion resistance of the hydrous silicic acids of Examples 1 to 6 is significantly higher than that of the hydrous silicic acid of Comparative Example 2.
  • the effect of improving the wear resistance of the diene rubber composition used in combination with the silane coupling agent obtained by the hydrous silicic acid of the present invention is that the surface solid acid density is in a predetermined range, and the predetermined surface activity. This is a synergistic effect obtained by loading the agent on hydrous silicic acid, and simply adjusting the surface solid acid density to a predetermined range, or adjusting the surface solid acid density to a predetermined range and a predetermined surfactant. This is an unexpected effect that cannot be obtained only by kneading into a rubber composition together with hydrous silicic acid.
  • the water-containing silicic acid for reinforcing and filling rubber according to the present invention is capable of providing a useful rubber composition in the industrial rubber field that requires particularly abrasion resistance, such as tire treads and belts.

Abstract

The present invention relates to a hydrated silicic acid for rubber reinforcement filling, which has a surface solid acid density within the range of from 1.8 m-mol/m2 to 2.4 m-mol/m2, while containing a cationic or nonionic surfactant. The present invention also relates to a method for producing the above-described hydrated silicic acid for rubber reinforcement filling, which comprises addition of an aluminate salt and subsequent addition of a cationic or nonionic surfactant in a step during the production process of the hydrated silicic acid. The present invention is able to provide a hydrated silicic acid for rubber reinforcement filling, which enables the achievement of a rubber composition that is more improved than ever before in terms of wear resistance.

Description

ゴム補強充填用含水ケイ酸及びその製造方法Hydrous silicic acid for filling and reinforcing rubber and method for producing the same
 本発明は、ゴム補強充填用含水ケイ酸に関する。詳細にはシランカップリング剤を併用するジエン系ゴムの補強性向上に効果的なゴム補強用充填用含水ケイ酸である。本発明の含水ケイ酸は、ゴムの補強性(特に耐摩耗性)が要求されるタイヤのトレッド用やベルト用などのゴム製工業製品の補強用として有用である。 The present invention relates to hydrous silicic acid for rubber reinforcement filling. Specifically, it is a hydrous silicic acid for filling a rubber that is effective for improving the reinforcing property of a diene rubber using a silane coupling agent. The hydrous silicic acid of the present invention is useful for reinforcing industrial rubber products such as tire treads and belts that require rubber reinforcement (particularly wear resistance).
 一般に、含水ケイ酸はホワイトカーボンの名で知られ、カーボンブラックと並んで古くからゴム補強充填剤として使用されてきた。含水ケイ酸は加硫ゴムの耐熱老化性、引裂抵抗性、耐屈曲亀裂性、接着性等に優れている。反面、カーボンブラックに比べて分散性が悪く、高充填配合時に配合物の粘度が高く加工性が劣り、一般的なゴム特性の中で補強性(特に耐摩耗性)が劣っている。これらの欠点を解消するため、シランカップリング剤やその他の有機配合物の併用配合等が行われている。しかし、未だ満足のいくゴム物性を提供できる含水ケイ酸は得られていない。そのため、ゴム配合処方の研究とともに、含水ケイ酸の更なる改質が強く望まれている。ゴムの耐摩耗性を向上することができる含水ケイ酸は、例えば、特許文献1及び2に開示がある。 Generally, hydrous silicic acid is known as white carbon and has been used as a rubber reinforcing filler for a long time along with carbon black. Hydrous silicic acid is excellent in the heat aging resistance, tear resistance, flex crack resistance, adhesion and the like of the vulcanized rubber. On the other hand, the dispersibility is poor compared to carbon black, the viscosity of the compound is high and the processability is inferior at the time of high filling compounding, and the reinforcing property (especially abrasion resistance) is inferior among the general rubber properties. In order to eliminate these drawbacks, a silane coupling agent and other organic compounds are used in combination. However, hydrous silicic acid that can provide satisfactory rubber properties has not yet been obtained. Therefore, further improvement of hydrous silicic acid is strongly desired along with research on rubber compounding recipes. For example, Patent Documents 1 and 2 disclose hydrous silicic acid that can improve the wear resistance of rubber.
 本発明者らは、含水ケイ酸の細孔構造を制御し、ゴム分子を含水ケイ酸の細孔内部まで侵入しやすくするという観点から、及び含水ケイ酸の表面とゴム分子の化学結合をより強力にするという観点から鋭意検討を行い、含水ケイ酸の細孔構造を所定の構造にした含水ケイ酸が、これまでにない優れた耐摩耗性を有するゴム組成物を提供できることを見出して特許出願した(特許文献3)。 From the viewpoint of controlling the pore structure of hydrous silicic acid and facilitating the penetration of rubber molecules into the pores of hydrous silicic acid, the present inventors have improved chemical bonding between the surface of hydrous silicic acid and rubber molecules. We have intensively studied from the viewpoint of strengthening, and found that hydrous silicic acid having a predetermined pore structure of hydrous silicic acid can provide a rubber composition having unprecedented wear resistance. Applied (Patent Document 3).
 特許文献1:日本特開2000-302912号公報
 特許文献2:日本特開平11-236208号公報
 特許文献3:日本特開2017-002210号公報
 特許文献4:WO2013/168424
Patent Document 1: Japanese Patent Laid-Open No. 2000-302912 Patent Document 2: Japanese Laid-Open Patent Publication No. 11-236208 Patent Document 3: Japanese Patent Laid-Open No. 2017-002210 Patent Document 4: WO 2013/168424
 しかし、ゴム組成物が関連する市場、例えば、タイヤ市場においては、環境問題及びエネルギー問題に関連して、従来にも増して耐摩耗性が向上したゴム組成物が求められている。そのため、そのようなゴム組成物を提供できるゴム補強充填用含水ケイ酸が求められている。例えば、特許文献3に記載のゴム補強充填用含水ケイ酸よりもさらに、耐摩耗性が向上したゴム組成物を提供できるゴム補強充填用含水ケイ酸の提供が望まれている。 However, in the market related to the rubber composition, for example, the tire market, there is a demand for a rubber composition having improved wear resistance as compared with the related art in relation to environmental problems and energy problems. Therefore, there is a need for a hydrous silicic acid for rubber reinforcement filling that can provide such a rubber composition. For example, it is desired to provide a hydrous silicic acid for rubber reinforcement filling that can provide a rubber composition with improved wear resistance, compared to the hydrous silicic acid for rubber reinforcement filling described in Patent Document 3.
 本発明の目的は、従来にも増して耐摩耗性が向上したゴム組成物を提供できるゴム補強充填用含水ケイ酸を提供することにある。 An object of the present invention is to provide a water-containing silicic acid for reinforcing and filling a rubber capable of providing a rubber composition having improved wear resistance as compared with the prior art.
 本発明者らは、シランカップリング剤と含水ケイ酸の反応性に着目し、含水ケイ酸とゴム分子との結合を効率的に行い、更に分散性も向上させることで補強性を向上させるという観点から鋭意検討を行った。その結果、含水ケイ酸表面とシランカップリング剤を介してのゴム分子との結合には、含水ケイ酸の表面における固体酸密度が重要であること、但し、表面固体酸密度の調整のみでは耐摩耗性を著しく向上させることはできないこと、表面固体酸密度を所定範囲に調整することに加えて、所定の界面活性剤を添加することで、シランカップリング剤を併用したジエン系ゴムに対して著しく向上させることができる含水ケイ酸を提供できる事を見出した。 The present inventors pay attention to the reactivity of the silane coupling agent and the hydrous silicic acid, and efficiently perform the bonding between the hydrous silicic acid and the rubber molecule, and further improve the dispersibility, thereby improving the reinforcement. We have studied earnestly from the viewpoint. As a result, the solid acid density on the surface of the hydrous silicic acid is important for the bonding between the hydrous silicic acid surface and the rubber molecules via the silane coupling agent. In addition to adjusting the surface solid acid density within a predetermined range, the wear resistance cannot be remarkably improved, and by adding a predetermined surfactant, the diene rubber combined with the silane coupling agent is used. It has been found that a hydrous silicic acid that can be significantly improved can be provided.
 即ち、本発明者らは、含水ケイ酸のシランカップリング剤を併用したゴム組成物に対する耐摩耗性の付与に関しては、所定範囲の表面固体酸密度を有する含水ケイ酸に所定の界面活性剤を含有させることで、ゴムに対する優れた補強性を有する含水ケイ酸のゴムへの分散性を所定の界面活性剤により向上させることで、この含水ケイ酸がゴム組成物に対して付与できる耐摩耗性を著しく向上できることを見出して本発明を完成させた。 That is, the present inventors have given a predetermined surfactant to hydrous silicic acid having a surface solid acid density within a predetermined range for imparting abrasion resistance to a rubber composition in combination with a hydrous silicic acid silane coupling agent. By containing, by improving the dispersibility of the hydrous silicic acid having excellent reinforcing properties to the rubber with a predetermined surfactant, this hydrous silicic acid can impart to the rubber composition. As a result, the present invention was completed.
 本発明は、表面固体酸密度が1.8~2.4m-mol/m2の範囲にあり、かつ所定の界面活性剤を含有していることを特徴とする含水ケイ酸であり、この含水ケイ酸を、シランカップリング剤を併用したゴム組成物に配合することで、従来に比べて、耐摩耗性を著しく大きく向上させたゴム組成物を得ることに成功した。 The present invention is a hydrous silicic acid characterized in that the surface solid acid density is in the range of 1.8 to 2.4 m-mol / m 2 and contains a predetermined surfactant. In addition, by blending with a rubber composition using a silane coupling agent in combination, the present inventors have succeeded in obtaining a rubber composition with significantly improved wear resistance compared to the conventional one.
 本発明のゴム補強充填用含水ケイ酸は、耐摩耗性を向上するために、シランカップリング剤を介してのゴム分子との化学結合を促進するための有効な範囲の表面固体酸密度を有し、かつ所定の界面活性剤を含有することによって、ゴム組成物に対する耐摩耗性を著しく向上させることを最大の特徴としている。 The hydrous silicic acid for rubber reinforcement filling of the present invention has a surface solid acid density in an effective range for promoting chemical bonding with rubber molecules via a silane coupling agent in order to improve wear resistance. In addition, the greatest feature is that the wear resistance of the rubber composition is remarkably improved by containing a predetermined surfactant.
本発明は以下のとおりである。
[1]
表面固体酸密度が1.8~2.4m-mol/m2の範囲にあり、かつカチオン系又はノニオン系界面活性剤を含有することを特徴とするゴム補強充填用含水ケイ酸。
[2]
シランカップリング剤を併用するジエン系ゴム組成物の補強充填用である[1]に記載のゴム補強充填用含水ケイ酸。
[3]
CTAB比表面積が130~300 m2/gである[1]または[2]に記載のゴム補強充填用含水ケイ酸。
[4]
界面活性剤の含有量(質量部/ 100SiO2質量部(固形分基準))とCTAB比表面積(m2/g)の比が0.001~0.01の範囲である[3]に記載のゴム補強充填用含水ケイ酸。
[5]
含水ケイ酸を製造する工程のいずれかの段階において、
アルミン酸塩を添加し、その後にカチオン系又はノニオン系界面活性剤を添加することを含む、[1]~[4]のいずれかに記載のゴム補強充填用含水ケイ酸の製造方法。
[6]
前記含水ケイ酸を製造する工程が、ケイ酸アルカリ水溶液の添加終了から引き続き酸を添加する段階、濾過水洗を行う段階、乾燥の段階のいずれかの段階を含み、かつこれらの段階のいずれかにおいて、アルミン酸塩を添加し、その後に界面活性剤を添加する、[5]に記載の製造方法。
[7]
アルミン酸塩はアルミン酸ソーダであり、アルミン酸ソーダは、Na2O/Al2O3モル比1.8~20.0であり、かつAl2O3濃度1.0~16.0wt%である、[5]または[6]に記載の製造方法。
[8]
前記界面活性剤は固形分基準で20~90wt%の範囲の水溶液として添加する、[5]~[7]のいずれかに記載の製造方法。
[9]
水溶液中に含水ケイ酸を形成する工程は、SiO2濃度5~50g/L、pH10~12である70~90℃に加熱したケイ酸アルカリ水溶液に、ケイ酸アルカリ水溶液と硫酸とを70~90℃の温度で添加して、反応液のpHが10~11の範囲になるようにケイ酸アルカリ水溶液と硫酸の添加量(比率)を制御しつつ中和反応を行い、SiO2濃度が50~80g/Lの範囲になるまで前記添加を行うことを含む、[5]~[8]のいずれかに記載の製造方法。
The present invention is as follows.
[1]
A hydrous silicic acid for rubber reinforcement filling, characterized by having a surface solid acid density in a range of 1.8 to 2.4 m-mol / m 2 and containing a cationic or nonionic surfactant.
[2]
The hydrous silicic acid for reinforcing and filling a rubber according to [1], which is used for reinforcing and filling a diene rubber composition in combination with a silane coupling agent.
[3]
The hydrous silicic acid for rubber reinforcement filling according to [1] or [2], wherein the CTAB specific surface area is 130 to 300 m 2 / g.
[Four]
The content of the surfactant (parts by mass / 100SiO 2 parts by weight (solids)) rubber reinforcing filler according to the ratio of the CTAB specific surface area (m 2 / g) is in the range of 0.001-0.01 [3] Hydrous silicic acid.
[Five]
In any stage of the process for producing hydrous silicic acid,
The method for producing hydrous silicic acid for rubber reinforcement filling according to any one of [1] to [4], comprising adding an aluminate and then adding a cationic or nonionic surfactant.
[6]
The step of producing the hydrous silicic acid includes any one of a step of adding an acid after completion of the addition of the alkali silicate aqueous solution, a step of washing with filtered water, and a step of drying, and in any of these steps The production method according to [5], wherein aluminate is added, and then a surfactant is added.
[7]
The aluminate is sodium aluminate, the sodium aluminate has a Na 2 O / Al 2 O 3 molar ratio of 1.8 to 20.0, and an Al 2 O 3 concentration of 1.0 to 16.0 wt% [5] or [ [6] The production method according to [6].
[8]
The production method according to any one of [5] to [7], wherein the surfactant is added as an aqueous solution in a range of 20 to 90 wt% based on solid content.
[9]
The step of forming hydrous silicic acid in the aqueous solution is performed by adding an alkali silicate aqueous solution and sulfuric acid to an alkali silicate aqueous solution heated to 70 to 90 ° C. having a SiO 2 concentration of 5 to 50 g / L and a pH of 10 to 12, and 70 to 90%. The neutralization reaction is carried out while controlling the addition amount (ratio) of the alkali silicate aqueous solution and sulfuric acid so that the pH of the reaction solution is in the range of 10 to 11, and the SiO 2 concentration is 50 to 50 ° C. The production method according to any one of [5] to [8], comprising performing the addition until the amount is in a range of 80 g / L.
 本発明のゴム補強充填用含水ケイ酸は、天然ゴム、合成ゴム、例えば、ジエン系ゴムに配合した際、ゴムの補強性(特に耐摩耗性)を向上させることができるため、耐摩耗性に対する要求の高い、タイヤやベルト等のゴム製工業製品の補強充填剤として有用に使用することができる。 The hydrous silicic acid for filling and reinforcing rubber according to the present invention can improve the rubber reinforcement (particularly the wear resistance) when blended with natural rubber and synthetic rubber, for example, diene rubber, and therefore is resistant to wear resistance. It can be usefully used as a reinforcing filler for rubber industrial products such as tires and belts that are highly demanded.
<ゴム補強充填用含水ケイ酸>
 本発明のゴム補強充填用含水ケイ酸は、
(A) 表面固体酸密度が1.8~2.4m-mol/m2の範囲にあり、かつ
(B) 界面活性剤を含有していることを特徴とする。
<Hydrosilicate for rubber reinforcement filling>
The hydrous silicic acid for rubber reinforcement filling of the present invention is
(A) The surface solid acid density is in the range of 1.8 to 2.4 m-mol / m 2 , and
(B) It contains a surfactant.
 本発明の含水ケイ酸は、シランカップリング剤との反応性が高く、シランカップリング剤と共にゴム組成物に添加することで、優れた補強性(特に耐摩耗性)を有するゴム組成物を提供するという観点で、固体酸量が所定範囲ということではなく、表面固体酸密度を所定範囲(1.8~2.4m-mol/m2)とする。 The hydrous silicic acid of the present invention is highly reactive with a silane coupling agent, and is added to the rubber composition together with the silane coupling agent to provide a rubber composition having excellent reinforcing properties (particularly abrasion resistance). In view of this, the solid acid amount is not in the predetermined range, but the surface solid acid density is in the predetermined range (1.8 to 2.4 m-mol / m 2 ).
 従来から、含水ケイ酸とゴムとの分散性を向上させるため、含水ケイ酸を配合する際には、シランカップリング剤が広く用いられている。含水ケイ酸とシランカップリング剤の反応では、まずシランカップリング剤の加水分解基が加水分解反応をすることによりシラノール基(-SiOH)を生成し、シランカップリング剤のシラノール基と含水ケイ酸表面に存在するシラノール基が脱水縮合反応することで含水ケイ酸表面に結合する。これらの反応は一般的に酸性もしくはアルカリ性条件下で反応が促進されることが知られている。 Conventionally, in order to improve the dispersibility between hydrous silicic acid and rubber, silane coupling agents have been widely used when blending hydrous silicic acid. In the reaction between hydrous silicic acid and the silane coupling agent, first, the hydrolyzable group of the silane coupling agent undergoes a hydrolysis reaction to produce a silanol group (-SiOH). The silanol group of the silane coupling agent and the hydrous silicic acid Silanol groups present on the surface bind to the hydrous silicic acid surface through a dehydration condensation reaction. It is known that these reactions are generally promoted under acidic or alkaline conditions.
 含水ケイ酸に、例えばアルミニウムのような異原子が取り込まれると、その原子周辺で電荷の局在化により、固体酸となることが知られている。固体酸が含水ケイ酸の表面に存在する場合、表面固体酸となり、酸触媒効果を発現する。 It is known that when a heteroatom such as aluminum is incorporated into hydrous silicic acid, it becomes a solid acid due to the localization of electric charges around the atom. When the solid acid is present on the surface of the hydrous silicic acid, it becomes a surface solid acid and exhibits an acid catalytic effect.
 表面固体酸は、含水ケイ酸の表面で触媒作用を発現し、含水ケイ酸とシランカップリング剤の反応を促進することが期待できる。過去においても表面固体酸の量について検討された例はある。しかし、本発明では、表面固体酸が触媒として働くという点から、含水ケイ酸の表面に対して、ある一定の密度で分布することが重要であると考えた。つまり、触媒作用は、含水ケイ酸表面に対して、一定の密度で固体酸が存在する時、含水ケイ酸とシランカップリング剤の結合を促進し、ゴム配合時に補強性向上効果を発現すると期待した。 The surface solid acid is expected to exhibit a catalytic action on the surface of the hydrous silicic acid and promote the reaction between the hydrous silicic acid and the silane coupling agent. There have been examples of investigations on the amount of surface solid acid in the past. However, in the present invention, it was considered that it is important that the surface solid acid is distributed at a certain density with respect to the surface of the hydrous silicic acid because the surface solid acid acts as a catalyst. In other words, the catalytic action is expected to promote the binding of hydrous silicic acid and silane coupling agent when a solid acid is present at a constant density on the hydrous silicic acid surface, and to exert a reinforcing effect when rubber is compounded. did.
 しかし、本発明者らの検討の結果、参考例1に示すように、含水ケイ酸表面積に対して一定の密度で固体酸が存在することで、多少の補強性向上効果(比較例1の含水ケイ酸との対比)は得られたが、上記で期待したような、ゴム配合時の著しい補強性向上効果を得ることはできなかった。これに対して、参考例1の結果では、比較例1の含水ケイ酸を用いた場合に比べて、分散性が低下しており、これが改善されれば、より高い補強性向上効果が得られる可能性があるとの予測の下、参考例2の実験を行った。即ち、ゴム配合時に含水ケイ酸の分散性を向上する目的で、界面活性剤を併用した。しかし、参考例2に示すように、参考例2の条件では十分な分散性向上効果は得られず、補強性向上効果も得られなかった。 However, as a result of the study by the present inventors, as shown in Reference Example 1, the presence of a solid acid at a constant density with respect to the surface area of the hydrous silicic acid makes it possible to slightly improve the reinforcement (the water content of Comparative Example 1). Although a comparison with silicic acid) was obtained, it was not possible to obtain a remarkable reinforcing effect when rubber was blended as expected above. On the other hand, in the result of Reference Example 1, the dispersibility is lower than when the hydrous silicic acid of Comparative Example 1 is used, and if this is improved, a higher reinforcing effect can be obtained. The experiment of Reference Example 2 was conducted under the prediction that there was a possibility. That is, a surfactant was used in combination for the purpose of improving the dispersibility of hydrous silicic acid when blended with rubber. However, as shown in Reference Example 2, a sufficient dispersibility improvement effect was not obtained under the conditions of Reference Example 2, and a reinforcement improvement effect was not obtained.
 それに対して、表面固体酸密度を制御した結果、分散性が低下した含水ケイ酸に対して、ゴム配合前の段階で所定の界面活性剤を添加することを試みた。その結果、実施例1~6に示すように、分散性に大幅な改善は見られなかったものの(比較例2と同等)、耐摩耗性は、著しく向上させることができることを見出した。本発明の含水ケイ酸においては、所定の界面活性剤は、含水ケイ酸の表面に吸着されることで、含水ケイ酸の凝集を防止し、分散性を向上させていると推測されるが、それにより得られる耐摩耗性の改善効果は予測を遥かに超える著しいものである。 On the other hand, as a result of controlling the surface solid acid density, an attempt was made to add a predetermined surfactant to the hydrous silicic acid having reduced dispersibility before the rubber compounding. As a result, as shown in Examples 1 to 6, it was found that although the dispersibility was not significantly improved (equivalent to Comparative Example 2), the wear resistance could be remarkably improved. In the hydrous silicic acid of the present invention, it is speculated that the predetermined surfactant is adsorbed on the surface of the hydrous silicic acid, thereby preventing aggregation of the hydrous silicic acid and improving dispersibility. The resulting improvement in wear resistance is far more than expected.
 含水ケイ酸の凝集を抑止、防止する方法として、界面活性剤の添加が広く知られており、界面活性剤は、ゴム混練中に添加する、或いはあらかじめ含水ケイ酸に添加されて使用されている(特許文献4)。しかし、これまで、含水ケイ酸の製造において、凝集を強固にするアルミニウム化合物と分散性を改良する目的で使用される界面活性剤は同時に用いられることはなかった。本発明者らは、これらを適切な方法で含水ケイ酸の製造に用いることで、表面固体酸密度を所定の範囲に制御し、かつ所定の界面活性剤を用いることで、含水ケイ酸のシランカップリング剤との反応性、及びゴム組成物に対する分散性が向上し、より大きなゴムの補強性、耐摩耗性向上効果が得られることを見出した。 The addition of surfactants is widely known as a method for inhibiting and preventing the aggregation of hydrous silicic acid, and the surfactant is added during rubber kneading, or added in advance to hydrous silicic acid. (Patent Document 4). However, until now, in the production of hydrous silicic acid, an aluminum compound that strengthens aggregation and a surfactant that is used for the purpose of improving dispersibility have not been used at the same time. The present inventors use these in a suitable method for the production of hydrous silicic acid, thereby controlling the surface solid acid density within a predetermined range and using a predetermined surfactant to obtain a silane of hydrous silicic acid. It has been found that the reactivity with the coupling agent and the dispersibility with respect to the rubber composition are improved, and a greater effect of improving the rubber reinforcement and wear resistance can be obtained.
 本発明の含水ケイ酸においては、界面活性剤はあらかじめ表面に吸着されているので、ゴムに分散する際、必要最低限の添加量で最大限の凝集抑制効果、或いは分散効果を発揮することが出来る。その結果、従来から行われていたようなゴム配合時に界面活性剤を添加する方法と比較すると、より効率的に界面活性剤の特性(含水ケイ酸の分散効果)を利用することができる。 In the hydrous silicic acid of the present invention, since the surfactant is adsorbed on the surface in advance, when dispersed in the rubber, the maximum aggregation suppression effect or the dispersion effect can be exhibited with the minimum necessary addition amount. I can do it. As a result, the characteristics of the surfactant (the dispersion effect of the hydrous silicic acid) can be used more efficiently compared to the conventional method of adding a surfactant during rubber compounding.
 本発明における含水ケイ酸の表面固体酸密度は、以下のように表面固体酸量及びCTAB比表面積から求めることができる。 The surface solid acid density of the hydrous silicic acid in the present invention can be determined from the surface solid acid amount and the CTAB specific surface area as follows.
 表面固体酸量測定:
 105℃で2時間乾燥した含水ケイ酸約0.1gに対して、0.5m-mol/Lに調製したメチルレッド指示薬のベンセン溶液を10滴滴下し、さらに5mLのベンゼンを加えた。50m-mol/Lに調製したn-ブチルアミンのベンゼン溶液を用いて滴定し、黄色に変色した時点のn-ブチルアミン滴下量から、含水ケイ酸1gあたりの表面固体酸量が求まる。
Surface solid acid measurement:
To about 0.1 g of hydrous silicic acid dried at 105 ° C. for 2 hours, 10 drops of a methyl red indicator benzene solution prepared at 0.5 m-mol / L was added dropwise, and 5 mL of benzene was further added. Titration is performed using a benzene solution of n-butylamine prepared to 50 m-mol / L, and the amount of surface solid acid per gram of hydrous silicic acid is determined from the amount of n-butylamine dropped when the color changes to yellow.
 本発明の含水ケイ酸は、所定の表面固体酸密度を有するためには、CTAB比表面積にもよるが、固体酸量は、例えば、300~500m-mol/gの範囲であることが適当である。 Although the hydrous silicic acid of the present invention has a predetermined surface solid acid density, depending on the CTAB specific surface area, the amount of solid acid is suitably in the range of 300 to 500 m-mol / g, for example. is there.
 CTAB比表面積測定:
 JIS K6430(ゴム配合剤-シリカ-試験方法)に準拠して行う。CTAB比表面積は、CTAB分子の吸着断面積を35Å2として含水ケイ酸に吸着した量から算出した値(m2/g)である。
CTAB specific surface area measurement:
Performed according to JIS K6430 (rubber compounding agent-silica-test method). The CTAB specific surface area is a value (m 2 / g) calculated from the amount adsorbed on hydrous silicic acid with the cross-section area of CTAB molecules as 35 2 .
 本発明の含水ケイ酸は、所定の表面固体酸密度を有するためには、固体酸量にもよるが、CTAB比表面積は、好ましくは130~300m2/g、より好ましくは150~290m2/g、さらに好ましくは170~280m2/gの範囲である。 Precipitated silica of the present invention, in order to have a predetermined surface solid acid density, depending on the amount of solid acid, CTAB specific surface area is preferably 130 ~ 300m 2 / g, more preferably 0.99 ~ 290 m 2 / g, more preferably in the range of 170 to 280 m 2 / g.
 一般に価数や電気陰性度の異なる原子が、含水ケイ酸表面に存在する場合、表面固体酸点を形成することが知られている。この含水ケイ酸表面に存在する固体酸が、ゴム分子と含水ケイ酸表面とをシランカップリング剤を介して化学的に結合することで補強性が向上することができると考えている。 Generally, it is known that when atoms having different valences and electronegativity are present on the surface of hydrous silicic acid, surface solid acid spots are formed. It is considered that the solid acid present on the surface of the hydrous silicic acid can improve the reinforcement by chemically bonding the rubber molecule and the surface of the hydrous silicic acid via a silane coupling agent.
 含水ケイ酸に取り込まれることで、固体酸点を作る金属イオンとしては、Al、Ti、Mgなどがあるが、入手のしやすさ、安定性等を考慮すると、アルミニウムが好適である。また、含水ケイ酸製造に用いられるアルミニウム源としては、含水ケイ酸表面を侵食し効率的に取り込まれることから、アルカリ性であることが好ましく、アルミン酸塩が好ましく、アルミン酸ソーダが最も好適に使用されている。 There are Al, Ti, Mg, and the like as metal ions that create a solid acid point by being incorporated into hydrous silicic acid, but aluminum is preferable in consideration of availability and stability. Moreover, as an aluminum source used for hydrous silicic acid production, it is preferable that it is alkaline, because it erodes the hydrous silicic acid surface and is taken in efficiently, aluminate is preferred, and sodium aluminate is most preferably used. Has been.
 本発明において表面固体酸密度が1.8m-mol/m2未満の場合、シランカップリング剤との反応を促進する効果が不十分なため、従来技術以上の耐摩耗性向上効果が得られない。逆に2.4m-mol/m2超の場合、反応性が高くなりすぎ、シランカップリング剤が局所的に反応する恐れがあり、好ましくない。表面固体酸密度は、好ましくは1.8m-mol/m2以上、2.35m-mol/m2以下の範囲である。 In the present invention, when the surface solid acid density is less than 1.8 m-mol / m 2, the effect of accelerating the reaction with the silane coupling agent is insufficient, so that the effect of improving the wear resistance over the prior art cannot be obtained. On the other hand, if it exceeds 2.4 m-mol / m 2 , the reactivity becomes too high and the silane coupling agent may react locally, which is not preferable. The surface solid acid density is preferably in the range of 1.8 m-mol / m 2 or more and 2.35 m-mol / m 2 or less.
 以下、添加する界面活性剤の種類について説明するが、本発明の含水ケイ酸に添加するカチオン系及び/又はノニオン系の界面活性剤に限定される。カチオン系界面活性剤及びノニオン系界面活性剤は単独で使用することもできるが、併用することもできる。 Hereinafter, the types of surfactants to be added will be described, but the surfactants are limited to cationic and / or nonionic surfactants added to the hydrous silicic acid of the present invention. Cationic surfactants and nonionic surfactants can be used alone or in combination.
 前記カチオン性界面活性剤は、水に溶けたときプラスの電荷を持つ界面活性剤であり、例えば、第四級アンモニウム塩、第三級アンモニウム塩、第二級アンモニウム塩、第一級アンモニウム塩、ピリジニウム塩、アミン塩などが挙げられる。市販されているカチオン系界面活性剤の例としては、コータミン(花王社製)やカチオーゲン(第一工業製薬社製)等が挙げられる。但し、これに限定される意図ではない。 The cationic surfactant is a surfactant having a positive charge when dissolved in water, such as a quaternary ammonium salt, a tertiary ammonium salt, a secondary ammonium salt, a primary ammonium salt, Examples include pyridinium salts and amine salts. Examples of commercially available cationic surfactants include coatamine (manufactured by Kao Corporation) and cationogen (manufactured by Daiichi Kogyo Seiyaku Co., Ltd.). However, it is not the intention limited to this.
 前記ノニオン性界面活性剤は、水に溶けたときイオン化しない親水基を持つ界面活性剤であり、例えば、ポリエチレングリコールアルキルエーテル、ポリエチレングリコール脂肪酸エステル、アルキルグリコシド、脂肪酸アルカノールアミド、グリセリン脂肪酸エステル、アルキルグリセリルエーテル、ソルビタン脂肪酸エステル、ポリエチレングリコールソルビタン脂肪酸エステル、ショ糖脂肪酸エステル、ポリオキシエチレントリデシルエーテル、ポリオキシエチレンオレイルエーテル、ポリオキシエチレンアルキルエーテル、ポリビニルピロリドン、ポリオキシアルキレンラウリルエーテル、ポリオキシエチレンフェニルエーテルなどが挙げられる。市販されているノニオン系界面活性剤の例としては、エマルゲン(花王社製)やノイゲン(第一工業製薬社製)等が挙げられる。但し、これに限定される意図ではない。 The nonionic surfactant is a surfactant having a hydrophilic group that does not ionize when dissolved in water, for example, polyethylene glycol alkyl ether, polyethylene glycol fatty acid ester, alkyl glycoside, fatty acid alkanolamide, glycerin fatty acid ester, alkyl glyceryl. Ether, sorbitan fatty acid ester, polyethylene glycol sorbitan fatty acid ester, sucrose fatty acid ester, polyoxyethylene tridecyl ether, polyoxyethylene oleyl ether, polyoxyethylene alkyl ether, polyvinyl pyrrolidone, polyoxyalkylene lauryl ether, polyoxyethylene phenyl ether Etc. Examples of commercially available nonionic surfactants include Emulgen (manufactured by Kao Corporation) and Neugen (manufactured by Daiichi Kogyo Seiyaku Co., Ltd.). However, it is not the intention limited to this.
 本発明の含水ケイ酸における界面活性剤の量は、表面固体酸によるシランカップリング剤との反応を妨げず、分散性を確保できる量であれば問題なく、含水ケイ酸100質量部に対する界面活性剤の固形分基準での量(質量部/ 100SiO2質量部)とCTAB比表面積(m2/g)の比は、例えば、0.001~0.010の範囲とすることができ、0.002~0.009の範囲が好適である。 The amount of the surfactant in the hydrous silicic acid of the present invention is not a problem as long as the dispersibility can be ensured without interfering with the reaction with the silane coupling agent by the surface solid acid, and the surface activity with respect to 100 parts by mass of the hydrous silicic acid. The ratio of the amount of the agent based on the solid content (parts by mass / 100 SiO 2 parts by mass) and the CTAB specific surface area (m 2 / g) can be in the range of 0.001 to 0.010, for example, in the range of 0.002 to 0.009. Is preferred.
 界面活性剤の固形分基準での量の計算方法を例示すると、例えばCTAB比表面積が250m2/gの含水ケイ酸の場合、界面活性剤の添加量(固形分基準)は、含水ケイ酸100質量部あたり、250×0.001~250×0.01 = 0.25~2.5(質量部)の範囲と計算することができる。 For example, in the case of hydrous silicic acid having a CTAB specific surface area of 250 m 2 / g, the amount of surfactant added (solid basis) is 100% hydrous silicic acid. It can be calculated as 250 × 0.001 to 250 × 0.01 = 0.25 to 2.5 (parts by mass) per part by mass.
 界面活性剤の種類としては、含水ケイ酸表面に効率よく吸着するためカチオン系もしくはノニオン系の界面活性剤でなければならず、アニオン系界面活性剤では十分な分散効果を見出せていない。 As the type of surfactant, it must be a cationic or nonionic surfactant in order to adsorb efficiently on the surface of the hydrous silicate, and an anionic surfactant has not found a sufficient dispersion effect.
 界面活性剤は、含水ケイ酸表面に均一に処理するため、後述する方法で湿式処理することが好ましい。含水ケイ酸乾燥粉に直接界面活性剤を混ぜる乾式処理の場合、乾燥による凝集を防ぐ効果がないだけでなく、不均一な処理となりやすく、分散性向上効果が十分に得られない。 In order to uniformly treat the surface of the hydrous silicate, the surfactant is preferably wet-treated by a method described later. In the case of a dry treatment in which a surfactant is directly mixed with a hydrous silicate dry powder, not only does not have an effect of preventing aggregation due to drying, but also a non-uniform treatment tends to occur and a dispersibility improvement effect cannot be sufficiently obtained.
 本発明の含水ケイ酸は、シランカップリング剤を併用するジエン系ゴム組成物の補強充填用に特に優れた効果を発揮する。シランカップリング剤及びジエン系ゴム組成物の例は後述する。 The hydrous silicic acid of the present invention exhibits a particularly excellent effect for reinforcing and filling a diene rubber composition using a silane coupling agent in combination. Examples of the silane coupling agent and the diene rubber composition will be described later.
<含水ケイ酸の製造方法>
 本発明の含水ケイ酸は、含水ケイ酸を製造する工程のいずれかの段階において、アルミン酸塩を添加し、その後にカチオン系又はノニオン系界面活性剤を添加することを含む、方法により製造される。アルミン酸塩はアルミン酸ソーダであることが、入手が容易であるという観点で好ましい。
<Method for producing hydrous silicic acid>
The hydrous silicic acid of the present invention is produced by a method comprising adding an aluminate and then adding a cationic or nonionic surfactant at any stage of the process of producing the hydrous silicic acid. The The aluminate is preferably sodium aluminate from the viewpoint of easy availability.
 前記含水ケイ酸を製造する工程は、例えば、ケイ酸アルカリ水溶液の添加終了から引き続き酸を添加する段階、濾過水洗を行う段階、乾燥の段階のいずれかの段階を含み、かつこれらの段階のいずれかにおいて、前記アルミン酸塩、好ましくはアルミン酸ソーダを添加し、その後に界面活性剤を添加することができる。アルミン酸ソーダは、好ましくはNa2O/Al2O3モル比1.8~20.0であり、かつAl2O3濃度1.0~16.0wt%である。前記界面活性剤は固形分基準で20~90wt%の範囲の水溶液として添加することが好ましい。 The step of producing the hydrous silicic acid includes, for example, any one of a step of adding an acid after the addition of the alkali silicate aqueous solution, a step of washing with filtered water, and a step of drying, and any of these steps. In this case, the aluminate, preferably sodium aluminate, can be added, and then the surfactant can be added. The sodium aluminate preferably has a Na 2 O / Al 2 O 3 molar ratio of 1.8 to 20.0 and an Al 2 O 3 concentration of 1.0 to 16.0 wt%. The surfactant is preferably added as an aqueous solution in the range of 20 to 90 wt% based on the solid content.
 前記製造工程において水溶液中に含水ケイ酸を形成する工程は、例えば、SiO2濃度5~50g/L、pH10~12である70~90℃に加熱したケイ酸アルカリ水溶液に、ケイ酸アルカリ水溶液と硫酸とを70~90℃の温度で添加して、反応液のpHが10~11の範囲になるようにケイ酸アルカリ水溶液と硫酸の添加量(比率)を制御しつつ中和反応を行い、SiO2濃度が50~80g/Lの範囲になるまで前記添加を行うことを含むことができる。 The step of forming hydrous silicic acid in the aqueous solution in the production process includes, for example, an alkali silicate aqueous solution and an alkali silicate aqueous solution heated to 70 to 90 ° C. having a SiO 2 concentration of 5 to 50 g / L and a pH of 10 to 12. Sulfuric acid is added at a temperature of 70 to 90 ° C, and the neutralization reaction is performed while controlling the addition amount (ratio) of the alkali silicate aqueous solution and sulfuric acid so that the pH of the reaction solution is in the range of 10 to 11. The addition may be performed until the SiO 2 concentration is in the range of 50 to 80 g / L.
 本発明の含水ケイ酸の湿式製造方法は、一般に、ケイ酸アルカリ水溶液と鉱酸(一般的には硫酸)とを反応させることにより行われることは知られている。本発明の含水ケイ酸の製造方法も基本的にはこの方法に基づく。特に好ましい様態としては、反応開始から終了にかけて、徐々にpHを低下させる硫酸過多法が分散性に優れたCTAB表面積の高い含水ケイ酸を得やすいが、この方法に限定されるものではない。本発明の目的を達するためにはアルミニウムの添加方法や界面活性剤の添加方法も重要である。
 各工程の具体例は以下のとおり。
It is known that the wet manufacturing method of hydrous silicic acid of the present invention is generally performed by reacting an aqueous alkali silicate solution with a mineral acid (generally sulfuric acid). The method for producing hydrous silicic acid according to the present invention is also basically based on this method. As a particularly preferred embodiment, the sulfuric acid excess method in which the pH is gradually lowered from the start to the end of the reaction is easy to obtain hydrous silicic acid having excellent dispersibility and a high CTAB surface area, but is not limited to this method. In order to achieve the object of the present invention, a method for adding aluminum and a method for adding a surfactant are also important.
Specific examples of each process are as follows.
(ア)SiO2濃度5~50g/L、pH10~12である70~90℃に加熱したケイ酸アルカリ水溶液に、ケイ酸アルカリ水溶液と硫酸とを70~90℃の温度で添加して、反応液のpHが10~11の範囲になるようにケイ酸アルカリ水溶液と硫酸の添加量(比率)を制御しつつ中和反応を行い、SiO2濃度が50~80g/Lの範囲になるまで、前記添加を行い水溶液中にケイ酸を形成する工程。 (A) An alkali silicate aqueous solution and sulfuric acid are added to an alkali silicate aqueous solution heated to 70 to 90 ° C. having a SiO 2 concentration of 5 to 50 g / L and pH 10 to 12 at a temperature of 70 to 90 ° C. to react. Perform neutralization reaction while controlling the addition amount (ratio) of alkali silicate aqueous solution and sulfuric acid so that the pH of the solution is in the range of 10 to 11, until the SiO 2 concentration is in the range of 50 to 80 g / L. Performing the addition to form silicic acid in the aqueous solution.
(イ)前記ケイ酸アルカリ水溶液の添加を停止し、反応液のpHが5以下となるまで硫酸添加を継続して沈澱物を得る工程。 (A) A step of stopping the addition of the alkali silicate aqueous solution and continuing the addition of sulfuric acid until the pH of the reaction solution becomes 5 or less to obtain a precipitate.
(ウ)得られた沈澱物を濾過、水洗してケークを得る工程。 (C) A step of filtering and washing the resulting precipitate to obtain a cake.
(エ)必要であれば(ウ)で得られたケークを乳化する工程を追加できる。 (D) If necessary, a step of emulsifying the cake obtained in (C) can be added.
(オ)得られたケークもしくは乳化スラリーを乾燥、粉砕して含水ケイ酸粉末を得る工程。 (E) A step of drying and pulverizing the obtained cake or emulsified slurry to obtain a hydrous silicate powder.
 アルミニウムや界面活性剤は(イ)~(エ)の工程のいずれかの工程中で添加する。反応段階である(ア)で添加した場合、含水ケイ酸の凝集構造が変化し、含水ケイ酸の分散性が悪化する可能性があるので(ア)終了後の(イ)以降の工程とすることが好ましい。 Aluminum and surfactant are added during any of steps (i) to (d). When added in the reaction stage (a), the agglomerated structure of the hydrous silicic acid may change and the dispersibility of the hydrous silicic acid may deteriorate. It is preferable.
 尚、界面活性剤の添加は、少なくとも(オ)の乾燥前に行うことが、乾燥時の凝集を防ぐこともできるためにより好ましい。 It should be noted that the addition of the surfactant is more preferably performed at least before the drying of (e), since aggregation during drying can also be prevented.
 アルミニウム源としてアルミン酸塩が好ましく、アルミン酸ソーダが最適である。含水ケイ酸は、弱アルカリ性の溶液には微量溶解するため、アルミン酸ソーダのようなアルカリ性のAl2O3溶液を添加することで、含水ケイ酸の表面のみが溶解し、アルミニウムが取り込まれやすくなる。 Aluminates are preferred as the aluminum source, with sodium aluminate being most suitable. Hydrous silicic acid dissolves in a slight amount in weakly alkaline solutions. By adding an alkaline Al 2 O 3 solution such as sodium aluminate, only the surface of hydrous silicic acid dissolves and aluminum is easily taken up. Become.
 また、Na2O/Al2O3モル比1.8~20.0、Al2O3濃度1.0~16.0wt%に調製したアルミン酸ソーダの添加が、後述する理由でもっとも好ましく、含水ケイ酸表面に均一に処理するため、湿式で添加を行い、添加後5分以上攪拌して含水ケイ酸表面に取り込ませる事が望ましい。 Addition of sodium aluminate prepared to a Na 2 O / Al 2 O 3 molar ratio of 1.8 to 20.0 and an Al 2 O 3 concentration of 1.0 to 16.0 wt% is most preferable for the reason described later, and is uniformly applied to the surface of the hydrous silicate. In order to perform the treatment, it is desirable that the addition is performed in a wet manner, and the mixture is stirred for 5 minutes or more and added to the surface of the hydrous silicic acid.
 アルミン酸ソーダのAl2O3濃度が1.0wt%以上であれば、アルミニウムの含水ケイ酸表面への取り込みが十分になり、16.0wt%以下であれば添加時に含水ケイ酸の凝集を引き起こすこともない。また、アルミン酸ソーダは、水溶液中のAl2O3濃度とNa2O/Al2O3モル比によっては、加水分解を起こすことや、結晶化することが知られているが、Al2O3濃度1.0wt%~16.0wt%ではNa2O/Al2O3モル比が1.8以上であれば、安定なアルミン酸ソーダ水溶液が得られる。モル比は高いほうが安定な溶液が得られやすいが、高いほどアルカリが強くなる。Na2O/Al2O3モル比が20.0以下であれば、含水ケイ酸の凝集を引き起こす心配はない。尚、安定したアルミン酸ソーダを得られる範囲であればモル比は低いほうが好ましい。 If the Al 2 O 3 concentration of sodium aluminate is 1.0 wt% or more, aluminum will be sufficiently taken into the surface of the hydrous silicate, and if it is 16.0 wt% or less, aggregation of the hydrated silicic acid may be caused at the time of addition. Absent. Furthermore, sodium aluminate, depending on the concentration of Al 2 O 3 and Na 2 O / Al 2 O 3 molar ratio in an aqueous solution, it and causing hydrolysis, it is known to crystallize, Al 2 O 3 If the Na 2 O / Al 2 O 3 molar ratio is 1.8 or more at a concentration of 1.0 wt% to 16.0 wt%, a stable sodium aluminate aqueous solution can be obtained. The higher the molar ratio, the easier it is to obtain a stable solution, but the higher the molar ratio, the stronger the alkali. If the Na 2 O / Al 2 O 3 molar ratio is 20.0 or less, there is no worry of causing aggregation of hydrous silicic acid. The molar ratio is preferably low as long as stable sodium aluminate can be obtained.
 界面活性剤の添加は、アルミン酸塩を添加した後に行う。固形分基準濃度を20~90wt%の範囲に調整した界面活性剤を添加することが好ましい。含水ケイ酸表面に均一に処理するため、界面活性剤は必ずスラリー中に添加(湿式処理)し、添加後5分以上攪拌して含水ケイ酸表面に均一に処理することが望ましい。 The surfactant is added after the aluminate is added. It is preferable to add a surfactant having a solid content reference concentration adjusted to a range of 20 to 90 wt%. In order to uniformly treat the surface of the hydrous silicic acid, it is desirable that the surfactant is always added to the slurry (wet treatment) and stirred for 5 minutes or more after the addition to uniformly treat the surface of the hydrous silicic acid.
 界面活性剤の固形分基準濃度が20wt%以上であれば、界面活性剤の含水ケイ酸表面への吸着が良好に行われ、90wt%以下であれば含水ケイ酸表面へ均一に処理され、凝集抑制効果が十分に発揮できる。さらに、上記(エ)工程の乳化スラリー中に添加する場合もこの濃度範囲であれば、ゲル化等の現象を引き起こすことなく添加できる。添加後は界面活性剤が含水ケイ酸表面上にほぼ均等に配置し、含水ケイ酸の凝集を抑制するように5分以上攪拌することが望ましい。 If the solid content standard concentration of the surfactant is 20 wt% or more, the surfactant is satisfactorily adsorbed on the hydrous silicate surface, and if it is 90 wt% or less, it is uniformly treated on the hydrous silicate surface and agglomerates. The inhibitory effect can be sufficiently exerted. Further, when added to the emulsified slurry in the step (d), the concentration can be added without causing a phenomenon such as gelation. After the addition, it is desirable that the surfactant be placed almost evenly on the surface of the hydrous silicic acid and stirred for 5 minutes or more so as to suppress aggregation of the hydrous silicic acid.
 本発明において、アルミン酸塩(例えば、ソーダ)及び界面活性剤の添加順序及び添加方法は重要である。本発明の含水ケイ酸の製造方法において、アルミン酸塩の添加と界面活性剤の添加の順序を逆にすると、界面活性剤により、アルミニウムが含水ケイ酸表面に取り込まれ固体酸を形成するのを阻害されるため、所望の耐摩耗性向上効果を有する含水ケイ酸が得られない。 In the present invention, the order and method of adding aluminate (for example, soda) and surfactant are important. In the method for producing hydrous silicic acid of the present invention, when the order of addition of the aluminate and the addition of the surfactant is reversed, the surfactant causes the aluminum to be taken into the hydrous silicic acid surface to form a solid acid. Since it is inhibited, a hydrous silicic acid having a desired effect of improving wear resistance cannot be obtained.
 本発明の含水ケイ酸は、種々のゴム組成物の補強充填用として応用できるが、ジエン系ゴムへの補強充填用が好ましい。ゴム組成物の用途は、タイヤ、ベルト等の耐摩耗性を要求される工業用ゴム分野において広く用いることができる。 The hydrous silicic acid of the present invention can be applied for reinforcing and filling various rubber compositions, but is preferably used for reinforcing and filling diene rubbers. The use of the rubber composition can be widely used in the industrial rubber field where wear resistance is required, such as tires and belts.
 本発明の含水ケイ酸を用いることができるゴム組成物は特に制限はないが、ゴムとしては、天然ゴム(NR)又はジエン系合成ゴムを単独又はこれらをブレンドして含むゴム組成物であることができる。合成ゴムとしては、例えば、合成ポリイソプレンゴム(IR)、ポリブタジエンゴム(BR)やスチレンブタジエンゴム(SBR)、アクリロニトリルブタジエンゴム(NBR)等が挙げられる。本発明の含水ケイ酸は、特に、シランカップリング剤を併用するジエン系合成ゴムを含有するゴム組成物において、耐摩耗性向上効果が顕著である。本発明の含水ケイ酸は、天然ゴム及び/又はジエン系合成ゴム100質量部に対して、例えば、5~100質量部を配合できる。但し、この範囲に限定する意図ではない。 The rubber composition in which the hydrous silicic acid of the present invention can be used is not particularly limited, but the rubber is a rubber composition containing natural rubber (NR) or diene synthetic rubber alone or blended with them. Can do. Examples of the synthetic rubber include synthetic polyisoprene rubber (IR), polybutadiene rubber (BR), styrene butadiene rubber (SBR), acrylonitrile butadiene rubber (NBR), and the like. The hydrous silicic acid of the present invention has a remarkable effect of improving wear resistance, particularly in a rubber composition containing a diene synthetic rubber used in combination with a silane coupling agent. The hydrous silicic acid of the present invention can be blended, for example, 5 to 100 parts by mass with respect to 100 parts by mass of natural rubber and / or diene synthetic rubber. However, it is not intended to limit to this range.
 上記ゴム組成物は、シランカップリング剤を添加したものであることができる。シランカップリング剤は、ゴム組成物に用いられているものを例示でき、例えば、下記式(I)~式(III)に示される少なくとも一つが挙げられる。
Figure JPOXMLDOC01-appb-C000001
(式中、Xは炭素数1~3のアルキル基又は塩素原子、nは1~3の整数、mは1~3の整数、pは1~9の整数を表し、qは1以上の整数で分布を有する場合もある)
Figure JPOXMLDOC01-appb-C000002
(式中、Xは炭素数1~3のアルキル基又は塩素原子、Yはメルカプト基、ビニル基、アミノ基、イミド基、グリシドキシ基、メタクリロキシ基またはエポキシ基、nは1~3の整数、mは1~3の整数、pは1~9の整数を表す。)
Figure JPOXMLDOC01-appb-C000003
(式中、Xは炭素数1~3のアルキル基又は塩素原子、Zはベンゾチアゾリル基、N,N-ジメチルチオカルバモイル基またはメタクリレート基、nは1~3の整数、mは1~3の整数、pは1~9の整数を表し、qは1以上の整数で分布を有する場合もある。)
The rubber composition may be one to which a silane coupling agent is added. Examples of the silane coupling agent include those used in rubber compositions, and examples include at least one of the following formulas (I) to (III).
Figure JPOXMLDOC01-appb-C000001
(In the formula, X represents an alkyl group having 1 to 3 carbon atoms or a chlorine atom, n represents an integer of 1 to 3, m represents an integer of 1 to 3, p represents an integer of 1 to 9, and q represents an integer of 1 or more. May have a distribution)
Figure JPOXMLDOC01-appb-C000002
(Wherein X is an alkyl group having 1 to 3 carbon atoms or chlorine atom, Y is a mercapto group, vinyl group, amino group, imide group, glycidoxy group, methacryloxy group or epoxy group, n is an integer of 1 to 3, m Is an integer from 1 to 3, and p is an integer from 1 to 9.)
Figure JPOXMLDOC01-appb-C000003
(Wherein X is an alkyl group having 1 to 3 carbon atoms or chlorine atom, Z is a benzothiazolyl group, N, N-dimethylthiocarbamoyl group or methacrylate group, n is an integer of 1 to 3, and m is an integer of 1 to 3 , P represents an integer of 1 to 9, and q may be an integer of 1 or more and have a distribution.)
 シランカップリング剤は、具体的には、ビス(3-トリエトキシシリルプロピル)ポリスルフィド、γ-メルカプトプロピルトリメトキシシラン、γ-メルカプトプロピルトリエトキシシラン、γ-アミノプロピルトリメトキシシラン、γ-アミノプロピルトリエトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルメチルジエトキシシラン、3-トリメトキシシリルプロピル-N、N-ジメチルカルバモイルテトラスルフィド、3-トリメトキシシリルプロピルベンゾチアゾリルテトラスルフィド、3-トリメトキシシリルプロピルメタクリレートモノスルフィド、等が挙げられる。シランカップリング剤の配合量は、含水ケイ酸の質量に対し例えば、1~20質量%、好ましくは2~15質量%である。但し、この範囲に限定する意図ではない。 Specific examples of the silane coupling agent include bis (3-triethoxysilylpropyl) polysulfide, γ-mercaptopropyltrimethoxysilane, γ-mercaptopropyltriethoxysilane, γ-aminopropyltrimethoxysilane, and γ-aminopropyl. Triethoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane, γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropylmethyldiethoxysilane, 3-trimethoxysilylpropyl-N, N-dimethylcarbamoyl tetrasulfide 3-trimethoxysilylpropyl benzothiazolyl tetrasulfide, 3-trimethoxysilylpropyl methacrylate monosulfide, and the like. The compounding amount of the silane coupling agent is, for example, 1 to 20% by mass, preferably 2 to 15% by mass, with respect to the mass of the hydrous silicic acid. However, it is not intended to limit to this range.
 本発明の含水ケイ酸をゴム組成物に用いる場合には、上記のゴムおよびシランカップリング剤以外に、必要に応じて、カーボンブラック、軟化剤(ワックス、オイル)、老化防止剤、加硫剤、加硫促進剤、加硫促進助剤等の通常ゴム工業で使用される配合剤を適宜配合することができる。ゴム組成物は、上記ゴム成分、本発明の含水ケイ酸、シランカップリング剤、上記必要に応じて配合する上記カーボンブラック、ゴム配合剤等をバンバリーミキサー等の混練機で調製することができる。 When the hydrous silicic acid of the present invention is used in a rubber composition, in addition to the above rubber and silane coupling agent, carbon black, softening agent (wax, oil), anti-aging agent, vulcanizing agent may be used as necessary. Compounding agents usually used in the rubber industry, such as vulcanization accelerators and vulcanization accelerators, can be appropriately blended. The rubber composition can be prepared by using a kneader such as a Banbury mixer with the rubber component, the hydrous silicic acid of the present invention, a silane coupling agent, the carbon black blended as necessary, the rubber compounding agent, and the like.
 本発明の含水ケイ酸を配合したゴム組成物は、タイヤ、コンベアベルトなどのゴム製品に好適に適用できるものであり、タイヤ、コンベアベルト、などのゴム製品は補強性、耐摩耗性等に優れたものとなる。 The rubber composition containing the hydrous silicic acid of the present invention can be suitably applied to rubber products such as tires and conveyor belts, and rubber products such as tires and conveyor belts are excellent in reinforcing properties, wear resistance, etc. It will be.
 以下本発明を具体的に説明するために実施例および比較例を挙げて説明するが、もちろんこれらに限定されるものではない。なお、含水ケイ酸の各物性値の測定は、次に示す方法により実施した。 Hereinafter, the present invention will be described in detail by way of examples and comparative examples, but of course not limited thereto. In addition, the measurement of each physical-property value of a hydrous silicic acid was implemented by the method shown next.
●表面固体酸量/密度
 105℃で2時間乾燥した含水ケイ酸約0.1gに対して、0.5m-mol/Lに調製したメチルレッド指示薬のベンセン溶液を10滴滴下し、5mLのベンゼンを加えた。50m-mol/Lに調製したn-ブチルアミンのベンゼン溶液を用いて滴定し、黄色に変色した時点のn-ブチルアミン滴下量から表面固体酸量を算出した。また、表面固体酸量をCTAB比表面積で割ることで、表面固体酸密度を算出した。
● Surface solid acid amount / density To approximately 0.1 g of hydrous silicic acid dried at 105 ° C for 2 hours, add 10 drops of methyl red indicator benzene solution prepared at 0.5m-mol / L, and add 5mL of benzene. It was. Titration was performed using a benzene solution of n-butylamine prepared to 50 m-mol / L, and the amount of surface solid acid was calculated from the amount of n-butylamine dropped when the color changed to yellow. Further, the surface solid acid density was calculated by dividing the surface solid acid amount by the CTAB specific surface area.
●CTAB比表面積
 JIS K6430(ゴム配合剤-シリカ-試験方法)に準拠して行った。但し、CTAB分子の吸着断面積を35Å2として算出した。
● CTAB specific surface area JIS K6430 (rubber compounding agent-silica-test method) was used. However, the adsorption cross section of CTAB molecules was calculated as 35 2 .
●配合物調製法
 表1に示した配合にしたがって、下記混練手順によりゴム試験用サンプルを調整した。
(i)1.7Lバンバリーミキサー(神戸製鋼製)にてポリマー700gを素練り(30秒)し、表1の配合物Aを加え、取り出し時のコンパウンド温度を140~150℃になるようラム圧や回転数で調節を行い、約5分混練後取り出した。
(ii)コンパウンドを室温にて冷却後、表1の配合物Bを加え約1分混練後取り出し(取り出し時の温度を100℃以下とする)、8インチオープンロールにてシーティングを行い未加硫物及び加硫物特性を測定した。


Figure JPOXMLDOC01-appb-T000004
Formulation Preparation Method According to the formulation shown in Table 1, a rubber test sample was prepared by the following kneading procedure.
(i) Knead 700g of polymer (30 seconds) with a 1.7L Banbury mixer (manufactured by Kobe Steel), add the compound A shown in Table 1, and adjust the ram pressure so that the compound temperature at the time of removal is 140-150 ° C. Adjustment was performed at the number of rotations, and the mixture was taken out after kneading for about 5 minutes.
(ii) After cooling the compound at room temperature, add the compound B shown in Table 1 and knead for about 1 minute, then take it out (the temperature at the time of taking out is 100 ° C. or less), perform sheeting with an 8-inch open roll, and unvulcanize The product and vulcanizate properties were measured.


Figure JPOXMLDOC01-appb-T000004
●未加硫物特性(スコーチタイム t5)
 ムーニー粘度計VR-1132型(上島製作所製)を用いて、125℃、L型ローターにて測定。
●加硫物特性(引っ張り強度)
 JIS の試験法に準じ測定を行った。
Unvulcanized properties (Scorch time t5)
Using a Mooney viscometer VR-1132 (manufactured by Ueshima Seisakusho), measured with an L-shaped rotor at 125 ° C.
Vulcanizate properties (tensile strength)
Measurements were performed according to the JIS test method.
●分散性試験
 オプティグレード社製ディスパーグレーダーで測定。倍率100倍 Eスケール
 比較例1のX値を100とした場合の分散性指数で求めた。指数が高いほど分散性が良いことを示す。
● Dispersibility test Measured with Optigrade Dispers Grader. Magnification 100 times E scale It was calculated | required by the dispersibility index | exponent when the X value of the comparative example 1 was set to 100. A higher index indicates better dispersibility.
●摩耗試験
 アクロン型摩耗試験機で測定。傾角;15°、荷重;6ポンド試験回数;1000回転での摩耗減容を測定した。測定結果は比較例1を100とした場合の耐摩耗指数で求めた。指数が高い程耐摩耗性が良いことを示す。
● Abrasion test Measured with an Akron-type abrasion tester. Tilt angle: 15 °, load; 6 pound test number; wear reduction at 1000 revolutions was measured. The measurement result was obtained as an abrasion resistance index when Comparative Example 1 was set to 100. A higher index indicates better wear resistance.
 本発明の評価では、分散性及び耐摩耗性に着目し、分散性指数が100以上、且つ耐摩耗指数が150以上の場合を、Aとし、分散性指数が100以上、且つ耐摩耗指数が180以上の場合をSとした。また、分散性指数が100以上、耐摩耗性指数が100以上140未満のものは、改善効果が不十分ということでB、分散性指数、耐摩耗指数のどちらかが100未満となるものは、改善効果が見られないとしてCとした。 In the evaluation of the present invention, paying attention to dispersibility and wear resistance, when the dispersibility index is 100 or more and the wear index is 150 or more, it is set as A, the dispersibility index is 100 or more, and the wear index is 180. The above case was designated as S. In addition, those with a dispersibility index of 100 or more and an abrasion resistance index of 100 or more and less than 140 are those where either B, dispersibility index, or wear resistance index is less than 100 because the improvement effect is insufficient. It was set as C because the improvement effect was not seen.
(実施例1)
 攪拌機を備えた240Lのジャケット付きステンレス容器に、水80L及びケイ酸ナトリウム水溶液を14L(SiO2 150g/L、SiO2/Na2O質量比3.3)を投入し、加熱して温度82℃とした。このときSiO2濃度は22g/L、pHは11.5になった。
(Example 1)
In a 240 L jacketed stainless steel vessel equipped with a stirrer, 80 L of water and 14 L of sodium silicate aqueous solution (SiO 2 150 g / L, SiO 2 / Na 2 O mass ratio 3.3) were charged and heated to a temperature of 82 ° C. . At this time, the SiO 2 concentration was 22 g / L and the pH was 11.5.
 本水溶液に、上記同様のケイ酸ナトリウム水溶液と硫酸(18.4mol/L)とを、温度82℃±1℃を維持しながら、100分間でSiO2濃度が65g/L、pHが10.9になるように硫酸過多で添加して100分でケイ酸ナトリウムの添加のみを停止した。 To this aqueous solution, the same sodium silicate aqueous solution and sulfuric acid (18.4 mol / L) as above are maintained so that the SiO 2 concentration becomes 65 g / L and the pH becomes 10.9 in 100 minutes while maintaining the temperature at 82 ° C. ± 1 ° C. Only 100% of sodium silicate was stopped after 100 minutes.
 所定の中和反応終了後は同様の硫酸をpH3.0となるまで添加して沈殿物を得た。その後得られた反応物をろ過、水洗してケークを得た。得られたケークを乳化した。この乳化スラリーに対して、含水ケイ酸表面に均一に処理するためNa2O/Al2O3モル比5.9、Al2O3濃度5.0wt%に調製したアルミン酸ソーダ水溶液をAl2O3/SiO2質量比で0.8%となるように十分に時間をかけて添加した。このように十分に薄いAl2O3濃度のアルミン酸ソーダを添加することで、含水ケイ酸表面に均一に処理ができ、含水ケイ酸表面に取り込まれるアルミニウムが多くなる。10分攪拌してアルミニウムを含水ケイ酸表面に取り込ませた後、固形分濃度20wt%に調製したカチオンA(カチオン系界面活性剤:ポリジアリルジメチルアンモニウムクロライド)を界面活性剤/SiO2質量比(固形分基準)で1.4%となるように添加し、10分攪拌した。その後、乾燥して含水ケイ酸を製造し、評価を行った。 After completion of the predetermined neutralization reaction, the same sulfuric acid was added until the pH reached 3.0 to obtain a precipitate. Thereafter, the obtained reaction product was filtered and washed with water to obtain a cake. The resulting cake was emulsified. For this emulsified slurry, an aqueous solution of sodium aluminate prepared with a Na 2 O / Al 2 O 3 molar ratio of 5.9 and an Al 2 O 3 concentration of 5.0 wt% was uniformly treated with Al 2 O 3 / It was added over a sufficient period of time so that the SiO 2 mass ratio was 0.8%. By adding sodium aluminate having a sufficiently thin Al 2 O 3 concentration in this manner, the surface of the hydrous silicic acid can be uniformly treated, and the amount of aluminum taken into the hydrous silicic acid surface increases. After stirring for 10 minutes to incorporate aluminum into the surface of the hydrous silicate, cation A (cationic surfactant: polydiallyldimethylammonium chloride) prepared to a solid content concentration of 20 wt% was added to the surfactant / SiO 2 mass ratio ( (Solid content basis) was added to 1.4% and stirred for 10 minutes. Then, it dried and manufactured hydrous silicic acid, and evaluated.
(実施例2)
 攪拌機を備えた240Lのジャケット付きステンレス容器に、水80L及びケイ酸ナトリウム水溶液を3.5L(SiO2 150g/L、SiO2/Na2O質量比3.3)を投入し、加熱して温度72℃とした。このときSiO2濃度は6.0g/L、pHは10.9になった。
(Example 2)
In a 240 L jacketed stainless steel vessel equipped with a stirrer, 80 L of water and 3.5 L of sodium silicate aqueous solution (SiO 2 150 g / L, SiO 2 / Na 2 O mass ratio 3.3) are charged and heated to a temperature of 72 ° C. did. At this time, the SiO 2 concentration was 6.0 g / L, and the pH was 10.9.
 本水溶液に、上記同様のケイ酸ナトリウム水溶液と硫酸(18.4mol/L)とを、温度72℃±1℃、pH10.9を維持しながら、100分間でSiO2濃度が65g/Lになるように添加して100分でケイ酸ナトリウムの添加のみを停止した。 To this aqueous solution, the same sodium silicate aqueous solution and sulfuric acid (18.4 mol / L) as above are maintained so that the SiO 2 concentration becomes 65 g / L in 100 minutes while maintaining the temperature at 72 ° C. ± 1 ° C. and pH 10.9. In 100 minutes, only the addition of sodium silicate was stopped.
 所定の中和反応終了後は同様の硫酸をpH3.0となるまで添加して沈殿物を得た。その後得られた反応物をろ過、水洗してケークを得た。得られたケークを乳化し、この乳化スラリーに対して、Na2O/Al2O3モル比3.0、Al2O3濃度10.0wt%に調製したアルミン酸ソーダ水溶液をAl2O3/SiO2質量比で1.5%となるように十分に時間をかけて添加した。5分攪拌してアルミニウムを含水ケイ酸表面に取り込ませた後、固形分40wt%に調製したカチオンB(カチオン系界面活性剤:ステアリルアミンアセテート)を界面活性剤/SiO2質量比(固形分基準)で1.5%となるように添加し、5分攪拌した。その後、乾燥して含水ケイ酸を製造し、評価を行った。 After completion of the predetermined neutralization reaction, the same sulfuric acid was added until the pH reached 3.0 to obtain a precipitate. Thereafter, the obtained reaction product was filtered and washed with water to obtain a cake. The obtained cake was emulsified, and an aqueous sodium aluminate solution prepared at a Na 2 O / Al 2 O 3 molar ratio of 3.0 and an Al 2 O 3 concentration of 10.0 wt% was added to this emulsified slurry with an Al 2 O 3 / SiO 2 It was added over a sufficient amount of time so that the mass ratio was 1.5%. After stirring for 5 minutes to incorporate aluminum into the hydrous silicate surface, cation B (cationic surfactant: stearylamine acetate) prepared to a solid content of 40 wt% was added to the surfactant / SiO 2 mass ratio (based on solid content) ) Was added to 1.5% and stirred for 5 minutes. Then, it dried and manufactured hydrous silicic acid, and evaluated.
(実施例3)
 実施例2と同様の方法で反応を行い、100分でケイ酸ナトリウムの添加のみを停止した。同様の硫酸を添加しながら、Na2O/Al2O3モル比3.0、Al2O3濃度10.0wt%に調製したアルミン酸ソーダ水溶液をAl2O3/SiO2質量比で0.8%となるように添加した。5分攪拌してアルミニウムを含水ケイ酸表面に取り込ませた後、固形分50wt%に調製したカチオンAを界面活性剤/SiO2質量比(固形分基準)で0.5%となるように添加し、5分以上攪拌した。
Example 3
The reaction was carried out in the same manner as in Example 2, and only the addition of sodium silicate was stopped in 100 minutes. While adding the same sulfuric acid, the sodium aluminate aqueous solution prepared to a Na 2 O / Al 2 O 3 molar ratio of 3.0 and an Al 2 O 3 concentration of 10.0 wt% becomes 0.8% by mass ratio of Al 2 O 3 / SiO 2. Was added as follows. After stirring for 5 minutes to incorporate aluminum into the surface of the hydrous silicate, cation A prepared to a solid content of 50 wt% was added to a surfactant / SiO 2 mass ratio (solid content basis) of 0.5%, Stir for 5 minutes or more.
 界面活性剤添加終了後も同様の硫酸添加をpH3.0となるまで継続して沈殿物を得た。その後得られた反応物をろ過、水洗してケークを得た。得られたケークを乾燥して含水ケイ酸を製造し、評価を行った。 After the addition of the surfactant, the same sulfuric acid addition was continued until the pH reached 3.0 to obtain a precipitate. Thereafter, the obtained reaction product was filtered and washed with water to obtain a cake. The obtained cake was dried to produce hydrous silicic acid and evaluated.
(実施例4)
 攪拌機を備えた240Lのジャケット付きステンレス容器に、水85L及びケイ酸ナトリウム水溶液を6.0L(SiO2 150g/L、SiO2/Na2O質量比3.3)を投入し、加熱して温度90℃とした。このときSiO2濃度は10.0g/L、pHは11.2になった。
Example 4
In a 240 L jacketed stainless steel container equipped with a stirrer, 85 L of water and 6.0 L of sodium silicate aqueous solution (SiO 2 150 g / L, SiO 2 / Na 2 O mass ratio 3.3) are charged and heated to a temperature of 90 ° C. did. At this time, the SiO 2 concentration was 10.0 g / L, and the pH was 11.2.
 本水溶液に、上記同様のケイ酸ナトリウム水溶液と硫酸(18.4mol/L)とを、温度90℃±1℃、pH10.9を維持しながら、100分間でSiO2濃度が60g/Lになるように添加して100分でケイ酸ナトリウムの添加のみを停止した。 To this aqueous solution, the same sodium silicate aqueous solution and sulfuric acid (18.4 mol / L) as above are maintained at a temperature of 90 ° C. ± 1 ° C. and pH 10.9 so that the SiO 2 concentration becomes 60 g / L in 100 minutes. In 100 minutes, only the addition of sodium silicate was stopped.
 同様の硫酸を添加しながら、Na2O/Al2O3モル比19.7、Al2O3濃度1.0wt%に調製したアルミン酸ソーダ水溶液をAl2O3/SiO2質量比で0.8%となるように添加した。5分攪拌してアルミニウムを含水ケイ酸表面に取り込ませた後、固形分80wt%に調整したカチオンAを界面活性剤/SiO2質量比(固形分基準)で1.3%となるように添加し、5分以上攪拌した。 While adding the same sulfuric acid, the sodium aluminate aqueous solution prepared to a Na 2 O / Al 2 O 3 molar ratio of 19.7 and an Al 2 O 3 concentration of 1.0 wt% becomes 0.8% in an Al 2 O 3 / SiO 2 mass ratio. Was added as follows. After stirring for 5 minutes to incorporate aluminum into the hydrous silicate surface, cation A adjusted to a solid content of 80 wt% was added to a surfactant / SiO 2 mass ratio (solid content basis) of 1.3%, Stir for 5 minutes or more.
 界面活性剤添加終了後も同様の硫酸添加をpH3.0となるまで継続して沈殿物を得た。その後得られた反応物をろ過、水洗してケークを得た。得られたケークを乾燥して含水ケイ酸を製造し、評価を行った。 After the addition of the surfactant, the same sulfuric acid addition was continued until the pH reached 3.0 to obtain a precipitate. Thereafter, the obtained reaction product was filtered and washed with water to obtain a cake. The obtained cake was dried to produce hydrous silicic acid and evaluated.
(実施例5)
 得られたケークを乳化し、この乳化スラリーに対して、Na2O/Al2O3モル比2.2、Al2O3濃度15.0wt%に調製したアルミン酸ソーダ水溶液をAl2O3/SiO2質量比で1.5%となるように十分に時間をかけて添加した。5分攪拌してアルミニウムを含水ケイ酸表面に取り込ませた後、固形分75wt%に調製したカチオンC(カチオン系界面活性剤:ジステアリルジメチルアンモニウムクロライド)を界面活性剤/SiO2質量比(固形分基準)で1.5%となるように添加し、5分攪拌した。この操作以外は、実施例3と同様な方法で含水ケイ酸を製造し、評価を行った。
(Example 5)
The obtained cake was emulsified, and an aqueous sodium aluminate solution prepared to have a Na 2 O / Al 2 O 3 molar ratio of 2.2 and an Al 2 O 3 concentration of 15.0 wt% was added to this emulsified slurry as Al 2 O 3 / SiO 2. It was added over a sufficient amount of time so that the mass ratio was 1.5%. After stirring for 5 minutes to incorporate aluminum into the hydrous silicate surface, cation C (cationic surfactant: distearyldimethylammonium chloride) prepared to a solid content of 75 wt% was added to the surfactant / SiO 2 mass ratio (solid (Based on minute) to be 1.5%, and stirred for 5 minutes. Except for this operation, hydrous silicic acid was produced in the same manner as in Example 3 and evaluated.
(実施例6)
 得られたケークを乳化し、この乳化スラリーに対して、Na2O/Al2O3モル比2.2、Al2O3濃度15.0wt%に調製したアルミン酸ソーダ水溶液をAl2O3/SiO2質量比で1.5%となるように十分に時間をかけて添加した。5分攪拌してアルミニウムを含水ケイ酸表面に取り込ませた後、固形分80wt%に調製したノニオン(ノニオン系界面活性剤:ポリオキシエチレンオレイルエーテル)を界面活性剤/SiO2質量比(固形分基準)で1.5%となるように添加し、5分攪拌した。この操作以外は、実施例3と同様な方法で含水ケイ酸を製造し、評価を行った。
Example 6
The obtained cake was emulsified, and an aqueous sodium aluminate solution prepared to have a Na 2 O / Al 2 O 3 molar ratio of 2.2 and an Al 2 O 3 concentration of 15.0 wt% was added to this emulsified slurry as Al 2 O 3 / SiO 2. It was added over a sufficient amount of time so that the mass ratio was 1.5%. After stirring for 5 minutes to incorporate aluminum into the surface of the hydrous silicate, nonionic (nonionic surfactant: polyoxyethylene oleyl ether) prepared to a solid content of 80 wt% was added to the surfactant / SiO 2 mass ratio (solid content (Standard) to be 1.5%, and stirred for 5 minutes. Except for this operation, hydrous silicic acid was produced in the same manner as in Example 3 and evaluated.
 比較例1は、Nipsil AQ(東ソーシリカ製)である。Nipsil AQはゴム補強充填剤として汎用されている含水ケイ酸である。表2に示すように、実施例1~6の含水ケイ酸は、比較例1に対し分散性は同等以上であり、かつ耐摩耗性の著しい向上効果が認められた。 Comparative Example 1 is N ipsil AQ (manufactured by Tosoh Silica). Nipsil AQ is a hydrous silicic acid that is widely used as a rubber reinforcing filler. As shown in Table 2, the hydrous silicic acids of Examples 1 to 6 were equivalent to or higher in dispersibility than Comparative Example 1, and a remarkable improvement effect in wear resistance was observed.
(比較例2)
 実施例2と同様の方法で反応を行い、100分でケイ酸ナトリウムの添加のみを停止した。同様の硫酸を添加しながら、固形分40wt%に調製したカチオンAを界面活性剤/SiO2質量比(固形分基準)で1.5%となるように添加し、5分以上攪拌した。
(Comparative Example 2)
The reaction was carried out in the same manner as in Example 2, and only the addition of sodium silicate was stopped in 100 minutes. While adding the same sulfuric acid, the cation A prepared to a solid content of 40 wt% was added to a surfactant / SiO 2 mass ratio (solid content basis) of 1.5% and stirred for 5 minutes or more.
 界面活性剤添加終了後も同様の硫酸添加をpH3.0となるまで継続して沈殿物を得た。その後得られた反応物をろ過、水洗してケークを得た。得られたケークを乾燥して含水ケイ酸を製造し、評価を行った。 After the addition of the surfactant, the same sulfuric acid addition was continued until the pH reached 3.0 to obtain a precipitate. Thereafter, the obtained reaction product was filtered and washed with water to obtain a cake. The obtained cake was dried to produce hydrous silicic acid and evaluated.
 (参考例1)
 実施例2と同様の方法で反応を行い、100分でケイ酸ナトリウムの添加のみを停止した。同様の硫酸を添加しながら、Na2O/Al2O3モル比3.0、Al2O3濃度10.0wt%に調整したアルミン酸ソーダ水溶液をAl2O3/SiO2質量比0.8%となるように添加し、5分以上攪拌した。その後、得られた反応物をろ過、水洗してケークを得た。得られたケークを乾燥して含水ケイ酸を製造し、評価を行った。
(Reference Example 1)
The reaction was carried out in the same manner as in Example 2, and only the addition of sodium silicate was stopped in 100 minutes. While adding the same sulfuric acid, the sodium aluminate aqueous solution adjusted to a Na 2 O / Al 2 O 3 molar ratio of 3.0 and an Al 2 O 3 concentration of 10.0 wt% has an Al 2 O 3 / SiO 2 mass ratio of 0.8%. And stirred for more than 5 minutes. Thereafter, the obtained reaction product was filtered and washed with water to obtain a cake. The obtained cake was dried to produce hydrous silicic acid and evaluated.
(参考例2)
 参考例1に対して、ゴム混練の際、更に有効成分40%のカチオンAを1.69phr(界面活性剤有効成分/SiO2質量比で1.5%)添加した。

Figure JPOXMLDOC01-appb-T000005
(Reference example 2)
To Reference Example 1, 1.69 phr (surfactant active ingredient / SiO 2 mass ratio of 1.5%) of 40% active ingredient was further added during rubber kneading.

Figure JPOXMLDOC01-appb-T000005
 表2に示すように、実施例1~6は、比較例1に比べて耐摩耗性改善効果が著しい。
 表面固体酸密度が、本発明の範囲にある参考例1は、比較例1に比べて耐摩耗性は向上しているが分散性は低下しており、表面固体酸密度の調整のみでは、実施例1~6で得られるような著しい耐摩耗性改善効果は得られない。さらに、参考例2に示すように、参考例1と同様の表面固体酸密度を有し、かつゴムとの混練時に、実施例1、3、4で使用したと同様のカチオンAを含水ケイ酸とともに混練しても、耐摩耗性及び分散性は参考例1とほぼ変化がない。比較例2の含水ケイ酸は、特許文献4の実施例10及び16同等品であり、実施例1、3、4で使用したと同様のカチオンAを含有する。しかし、表面固体酸密度が、本発明の範囲外であり、実施例1~6の含水ケイ酸のような耐摩耗性の著しい向上効果が認められない。実施例1~6の含水ケイ酸と比較例2の含水ケイ酸とは、分散性においては、ほぼ同等であるか、あるいは実施例3及び6の含水ケイ酸は、比較例2の含水ケイ酸より多少劣っている。しかし、それにも関わらず、実施例1~6の含水ケイ酸の耐摩耗性の向上効果は、比較例2の含水ケイ酸に比べて著しく高い。
As shown in Table 2, Examples 1 to 6 are significantly more effective in improving the wear resistance than Comparative Example 1.
In Reference Example 1 in which the surface solid acid density is within the scope of the present invention, the wear resistance is improved compared to Comparative Example 1, but the dispersibility is lowered. The significant improvement in wear resistance obtained in Examples 1 to 6 cannot be obtained. Further, as shown in Reference Example 2, the same cation A as that used in Examples 1, 3, and 4 has the same surface solid acid density as in Reference Example 1 and is kneaded with rubber. Even when kneaded together, the wear resistance and dispersibility are almost the same as in Reference Example 1. The hydrous silicic acid of Comparative Example 2 is equivalent to Examples 10 and 16 of Patent Document 4, and contains the same cation A as used in Examples 1, 3, and 4. However, the surface solid acid density is outside the scope of the present invention, and no significant improvement in wear resistance like the hydrous silicic acid of Examples 1 to 6 is observed. The hydrous silicic acid of Examples 1 to 6 and the hydrous silicic acid of Comparative Example 2 are substantially the same in dispersibility, or the hydrous silicic acid of Examples 3 and 6 is the hydrous silicic acid of Comparative Example 2. Somewhat inferior. However, in spite of this, the effect of improving the abrasion resistance of the hydrous silicic acids of Examples 1 to 6 is significantly higher than that of the hydrous silicic acid of Comparative Example 2.
 これらの結果から、本発明の含水ケイ酸により得られる、シランカップリング剤を併用するジエン系ゴム組成物の耐摩耗性向上効果は、表面固体酸密度が所定範囲にあり、かつ所定の界面活性剤を含水ケイ酸に担持することにより得られる相乗効果であり、単に表面固体酸密度を所定範囲に調整すること、あるいは、表面固体酸密度を所定範囲に調整すること及び所定の界面活性剤を含水ケイ酸と共にゴム組成物に混練することのみでは得られない、予期せぬ効果である。 From these results, the effect of improving the wear resistance of the diene rubber composition used in combination with the silane coupling agent obtained by the hydrous silicic acid of the present invention is that the surface solid acid density is in a predetermined range, and the predetermined surface activity. This is a synergistic effect obtained by loading the agent on hydrous silicic acid, and simply adjusting the surface solid acid density to a predetermined range, or adjusting the surface solid acid density to a predetermined range and a predetermined surfactant. This is an unexpected effect that cannot be obtained only by kneading into a rubber composition together with hydrous silicic acid.
 本発明のゴム補強充填用含水ケイ酸は、タイヤのトレッド、ベルト等の特に耐摩耗性を要求される工業用ゴム分野において、有用なゴム組成物を提供できることにある。 The water-containing silicic acid for reinforcing and filling rubber according to the present invention is capable of providing a useful rubber composition in the industrial rubber field that requires particularly abrasion resistance, such as tire treads and belts.

Claims (9)

  1. 表面固体酸密度が1.8~2.4m-mol/m2の範囲にあり、かつカチオン系又はノニオン系界面活性剤を含有することを特徴とするゴム補強充填用含水ケイ酸。 A hydrous silicic acid for rubber reinforcement filling, characterized by having a surface solid acid density in a range of 1.8 to 2.4 m-mol / m 2 and containing a cationic or nonionic surfactant.
  2. シランカップリング剤を併用するジエン系ゴム組成物の補強充填用である請求項1に記載のゴム補強充填用含水ケイ酸。 2. The water-containing silicic acid for reinforcing and filling rubber according to claim 1, which is used for reinforcing and filling a diene rubber composition in combination with a silane coupling agent.
  3. CTAB比表面積が130~300 m2/gである請求項1または2に記載のゴム補強充填用含水ケイ酸。 3. The hydrous silicic acid for rubber reinforcement filling according to claim 1, wherein the CTAB specific surface area is 130 to 300 m 2 / g.
  4. 界面活性剤の含有量(質量部/ 100SiO2質量部(固形分基準))とCTAB比表面積(m2/g)の比が0.001~0.01の範囲である請求項3に記載のゴム補強充填用含水ケイ酸。 4. The rubber reinforcement filling according to claim 3, wherein the ratio of the surfactant content (parts by mass / 100 parts by mass of SiO 2 (solid content basis)) and the CTAB specific surface area (m 2 / g) is in the range of 0.001 to 0.01. Hydrous silicic acid.
  5. 含水ケイ酸を製造する工程のいずれかの段階において、
    アルミン酸塩を添加し、その後にカチオン系又はノニオン系界面活性剤を添加することを含む、請求項1~4のいずれかに記載のゴム補強充填用含水ケイ酸の製造方法。
    In any stage of the process for producing hydrous silicic acid,
    5. The method for producing hydrous silicic acid for rubber reinforcement filling according to claim 1, comprising adding an aluminate and then adding a cationic or nonionic surfactant.
  6. 前記含水ケイ酸を製造する工程が、ケイ酸アルカリ水溶液の添加終了から引き続き酸を添加する段階、濾過水洗を行う段階、乾燥の段階のいずれかの段階を含み、かつこれらの段階のいずれかにおいて、アルミン酸塩を添加し、その後に界面活性剤を添加する、請求項5に記載の製造方法。 The step of producing the hydrous silicic acid includes any one of a step of adding an acid after completion of the addition of the alkali silicate aqueous solution, a step of washing with filtered water, and a step of drying, and in any of these steps 6. The production method according to claim 5, wherein the aluminate is added, and then the surfactant is added.
  7. アルミン酸塩はアルミン酸ソーダであり、アルミン酸ソーダは、Na2O/Al2O3モル比1.8~20.0であり、かつAl2O3濃度1.0~16.0wt%である、請求項5または6に記載の製造方法。 The aluminate is sodium aluminate, and the sodium aluminate has a Na 2 O / Al 2 O 3 molar ratio of 1.8 to 20.0 and an Al 2 O 3 concentration of 1.0 to 16.0 wt%. The manufacturing method as described in.
  8. 前記界面活性剤は固形分基準で20~90wt%の範囲の水溶液として添加する、請求項5~7のいずれかに記載の製造方法。 The production method according to any one of claims 5 to 7, wherein the surfactant is added as an aqueous solution in a range of 20 to 90 wt% based on solid content.
  9. 水溶液中に含水ケイ酸を形成する工程は、SiO2濃度5~50g/L、pH10~12である70~90℃に加熱したケイ酸アルカリ水溶液に、ケイ酸アルカリ水溶液と硫酸とを70~90℃の温度で添加して、反応液のpHが10~11の範囲になるようにケイ酸アルカリ水溶液と硫酸の添加量(比率)を制御しつつ中和反応を行い、SiO2濃度が50~80g/Lの範囲になるまで前記添加を行うことを含む、請求項5~8のいずれかに記載の製造方法。 The step of forming hydrous silicic acid in the aqueous solution is performed by adding an alkali silicate aqueous solution and sulfuric acid to an alkali silicate aqueous solution heated to 70 to 90 ° C. having a SiO 2 concentration of 5 to 50 g / L and a pH of 10 to 12, and 70 to 90%. The neutralization reaction is carried out while controlling the addition amount (ratio) of the alkali silicate aqueous solution and sulfuric acid so that the pH of the reaction solution is in the range of 10 to 11, and the SiO 2 concentration is 50 to 50 ° C. The production method according to any one of claims 5 to 8, comprising the addition until the addition is in a range of 80 g / L.
PCT/JP2018/021369 2017-06-09 2018-06-04 Hydrated silicic acid for rubber reinforcement filling and method for producing same WO2018225686A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201880038041.6A CN110719892B (en) 2017-06-09 2018-06-04 Hydrated silicic acid for rubber reinforcement and filling and method for producing same
KR1020207000252A KR102278120B1 (en) 2017-06-09 2018-06-04 Hydrous silicic acid for rubber-reinforced filling and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-113962 2017-06-09
JP2017113962A JP6781106B2 (en) 2017-06-09 2017-06-09 Hydrous silicic acid for rubber reinforcement filling and its manufacturing method

Publications (1)

Publication Number Publication Date
WO2018225686A1 true WO2018225686A1 (en) 2018-12-13

Family

ID=64566718

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/021369 WO2018225686A1 (en) 2017-06-09 2018-06-04 Hydrated silicic acid for rubber reinforcement filling and method for producing same

Country Status (4)

Country Link
JP (1) JP6781106B2 (en)
KR (1) KR102278120B1 (en)
CN (1) CN110719892B (en)
WO (1) WO2018225686A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018203970A (en) * 2017-06-09 2018-12-27 株式会社ブリヂストン Rubber composition, method for producing rubber composition and tire
JP7473350B2 (en) * 2020-02-05 2024-04-23 東ソー・シリカ株式会社 Hydrous silicic acid for rubber reinforcing filler and hydrous silicic acid-containing rubber composition

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5884115A (en) * 1981-11-12 1983-05-20 Nippon Chem Ind Co Ltd:The A type zeolite containing substituted alkaline earth metal and its manufacture
JPH05135621A (en) * 1991-11-08 1993-06-01 Matsushita Electric Ind Co Ltd Dielectric material
US5723529A (en) * 1994-12-21 1998-03-03 The Goodyear Tire & Rubber Company Silica based aggregates, elastomers reinforced therewith and tire tread thereof
JPH10504012A (en) * 1995-03-29 1998-04-14 ローヌ−プーラン シミ Novel process for the preparation of precipitated silicas, new precipitated silicas containing aluminum and their use as elastomeric reinforcement
JPH11124474A (en) * 1997-05-26 1999-05-11 Michelin & Cie Silica-base rubber composition intended for manufacture of road tire of improved resistance to rolling
JPH11228125A (en) * 1998-02-18 1999-08-24 Tokuyama Corp Hydrated silicic acid and its production
JP2000515483A (en) * 1998-03-30 2000-11-21 ロディア シミ Composition comprising a liquid adsorbed on a precipitated silica-based support
JP2004522682A (en) * 2000-12-28 2004-07-29 ロディア・シミ Method for producing precipitated silica containing aluminum
JP2005500420A (en) * 2001-08-13 2005-01-06 ソシエテ ド テクノロジー ミシュラン Diene rubber composition for tires containing specific silica as reinforcing filler
WO2005047184A1 (en) * 2003-11-13 2005-05-26 Kyowa Chemical Industry Co., Ltd. Calcium hydroxide, resin composition containing same, and formed article
JP2010513200A (en) * 2006-12-22 2010-04-30 ロディア オペレーションズ A novel method for producing precipitated silica using high-speed blender
WO2013168424A1 (en) * 2012-05-08 2013-11-14 株式会社ブリヂストン Rubber composition, crosslinked rubber composition and tire
JP2014500379A (en) * 2010-12-23 2014-01-09 コンパニー ゼネラール デ エタブリッスマン ミシュラン Manufacturing method of masterbatch in liquid phase
JP2014210901A (en) * 2013-04-22 2014-11-13 株式会社ブリヂストン Method for producing rubber composition
WO2015128404A1 (en) * 2014-02-28 2015-09-03 Rhodia Operations Process for the preparation of precipitated silicas, precipitated silicas and their uses, in particular for the reinforcement of polymers

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2105719A1 (en) * 1993-06-28 1994-12-29 Rene Jean Zimmer Silica based aggregates, elastomers reinforced therewith and tire with tread thereof
JPH11236208A (en) 1998-02-25 1999-08-31 Nippon Silica Ind Co Ltd Hydrous silica for rubber reinforcement
JP2000302912A (en) 1999-04-20 2000-10-31 Nippon Silica Ind Co Ltd Hydrous silicic acid for rubber reinforcing and filling and rubber composition using the same
JP4549295B2 (en) * 2003-05-13 2010-09-22 旭硝子株式会社 Method for producing inorganic spherical body
DE102008017747A1 (en) * 2008-04-07 2009-10-08 Evonik Degussa Gmbh Precipitated silicas as reinforcing filler for elastomer mixtures
FR2957914B1 (en) * 2010-03-25 2015-05-15 Rhodia Operations NOVEL PROCESS FOR PREPARING PRECIPITATED SILICES CONTAINING ALUMINUM
FR2994963B1 (en) * 2012-08-31 2014-10-03 Rhodia Operations NOVEL PROCESS FOR THE PREPARATION OF PRECIPITATED SILICES, NOVEL PRECIPITED SILICES AND THEIR USES, IN PARTICULAR FOR THE STRENGTHENING OF POLYMERS
JP6487785B2 (en) 2015-06-12 2019-03-20 東ソー・シリカ株式会社 Hydrous silicic acid for rubber reinforcement filling

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5884115A (en) * 1981-11-12 1983-05-20 Nippon Chem Ind Co Ltd:The A type zeolite containing substituted alkaline earth metal and its manufacture
JPH05135621A (en) * 1991-11-08 1993-06-01 Matsushita Electric Ind Co Ltd Dielectric material
US5723529A (en) * 1994-12-21 1998-03-03 The Goodyear Tire & Rubber Company Silica based aggregates, elastomers reinforced therewith and tire tread thereof
JPH10504012A (en) * 1995-03-29 1998-04-14 ローヌ−プーラン シミ Novel process for the preparation of precipitated silicas, new precipitated silicas containing aluminum and their use as elastomeric reinforcement
JPH11124474A (en) * 1997-05-26 1999-05-11 Michelin & Cie Silica-base rubber composition intended for manufacture of road tire of improved resistance to rolling
JPH11228125A (en) * 1998-02-18 1999-08-24 Tokuyama Corp Hydrated silicic acid and its production
JP2000515483A (en) * 1998-03-30 2000-11-21 ロディア シミ Composition comprising a liquid adsorbed on a precipitated silica-based support
JP2004522682A (en) * 2000-12-28 2004-07-29 ロディア・シミ Method for producing precipitated silica containing aluminum
JP2005500420A (en) * 2001-08-13 2005-01-06 ソシエテ ド テクノロジー ミシュラン Diene rubber composition for tires containing specific silica as reinforcing filler
WO2005047184A1 (en) * 2003-11-13 2005-05-26 Kyowa Chemical Industry Co., Ltd. Calcium hydroxide, resin composition containing same, and formed article
JP2010513200A (en) * 2006-12-22 2010-04-30 ロディア オペレーションズ A novel method for producing precipitated silica using high-speed blender
JP2014500379A (en) * 2010-12-23 2014-01-09 コンパニー ゼネラール デ エタブリッスマン ミシュラン Manufacturing method of masterbatch in liquid phase
WO2013168424A1 (en) * 2012-05-08 2013-11-14 株式会社ブリヂストン Rubber composition, crosslinked rubber composition and tire
JP2014210901A (en) * 2013-04-22 2014-11-13 株式会社ブリヂストン Method for producing rubber composition
WO2015128404A1 (en) * 2014-02-28 2015-09-03 Rhodia Operations Process for the preparation of precipitated silicas, precipitated silicas and their uses, in particular for the reinforcement of polymers

Also Published As

Publication number Publication date
KR102278120B1 (en) 2021-07-14
CN110719892B (en) 2022-12-30
KR20200018571A (en) 2020-02-19
JP6781106B2 (en) 2020-11-04
JP2018203596A (en) 2018-12-27
CN110719892A (en) 2020-01-21

Similar Documents

Publication Publication Date Title
KR101784018B1 (en) Use of s-(3-aminopropyl)thiosulfuric acid or metal salt thereof
JP6053763B2 (en) Rubber composition, crosslinked rubber composition and tire
JP5667547B2 (en) Method for producing vulcanized rubber composition
WO2006057343A1 (en) Modified natural rubber latex and method for producing same, modified natural rubber and method for producing same, rubber composition and tire
KR20130124286A (en) Method for using s-(3-aminopropyl)thiosulfuric acid and/or metal salt thereof
JP6120713B2 (en) Method for producing rubber composition
JP6487785B2 (en) Hydrous silicic acid for rubber reinforcement filling
EP2883901A1 (en) Silica/styrene butadiene rubber composite body, method for producing same, rubber composition and pneumatic tire
JP5436820B2 (en) Surface-treated inorganic oxide, and rubber composition and pneumatic tire using the same
WO2013018815A1 (en) Method for lowering dynamic-to-static modulus ratio of vulcanized rubber
WO2018225686A1 (en) Hydrated silicic acid for rubber reinforcement filling and method for producing same
JP2012012457A (en) Method for using s-(3-aminopropyl)thiosulfuric acid and/or metal salt thereof, and method for suppressing generation of heat in vulcanized rubber composition
JP5085469B2 (en) Hydrophobic inorganic oxide and rubber composition using the same
EP2754689B1 (en) Composite and method for producing the same, rubber composition, and pneumatic tire
WO2012002521A1 (en) Process for producing vulcanized rubber composition
JP6340164B2 (en) Method for producing rubber composition
EP2957587B1 (en) Method for producing rubber composition, and rubber composition
JP4419878B2 (en) Rubber composition
JP2013056984A (en) Rubber composition and pneumatic tire using the same
JPWO2016199429A1 (en) Rubber composition and tire
WO2014118120A1 (en) New compositions, cross-linkable rubber mixtures containing these compositions, process for their production and their use
JP5758195B2 (en) Silica-containing rubber masterbatch and method for producing the same
JP2018203970A (en) Rubber composition, method for producing rubber composition and tire
KR20210038254A (en) Aluminosilicate particles and a method for preparing aluminosilicate particles
JP4454420B2 (en) Rubber composition for tire side tread

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18813900

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20207000252

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 18813900

Country of ref document: EP

Kind code of ref document: A1