JP6487785B2 - Hydrous silicic acid for rubber reinforcement filling - Google Patents

Hydrous silicic acid for rubber reinforcement filling Download PDF

Info

Publication number
JP6487785B2
JP6487785B2 JP2015118783A JP2015118783A JP6487785B2 JP 6487785 B2 JP6487785 B2 JP 6487785B2 JP 2015118783 A JP2015118783 A JP 2015118783A JP 2015118783 A JP2015118783 A JP 2015118783A JP 6487785 B2 JP6487785 B2 JP 6487785B2
Authority
JP
Japan
Prior art keywords
silicic acid
sio
hydrous silicic
peak
pore
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015118783A
Other languages
Japanese (ja)
Other versions
JP2017002210A (en
JP2017002210A5 (en
Inventor
秀夫 金満
秀夫 金満
英伸 米井
英伸 米井
悠軌 伊藤
悠軌 伊藤
大祐 古城
大祐 古城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Silica Corp
Original Assignee
Tosoh Silica Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Silica Corp filed Critical Tosoh Silica Corp
Priority to JP2015118783A priority Critical patent/JP6487785B2/en
Priority to MYPI2017704716A priority patent/MY181368A/en
Priority to PCT/JP2016/066839 priority patent/WO2016199744A1/en
Priority to KR1020187000932A priority patent/KR102405234B1/en
Priority to CN201680034018.0A priority patent/CN107709438B/en
Publication of JP2017002210A publication Critical patent/JP2017002210A/en
Publication of JP2017002210A5 publication Critical patent/JP2017002210A5/ja
Application granted granted Critical
Publication of JP6487785B2 publication Critical patent/JP6487785B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/18Preparation of finely divided silica neither in sol nor in gel form; After-treatment thereof
    • C01B33/187Preparation of finely divided silica neither in sol nor in gel form; After-treatment thereof by acidic treatment of silicates
    • C01B33/193Preparation of finely divided silica neither in sol nor in gel form; After-treatment thereof by acidic treatment of silicates of aqueous solutions of silicates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L21/00Compositions of unspecified rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/006Additives being defined by their surface area

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Inorganic Chemistry (AREA)
  • Silicon Compounds (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)

Description

本発明は、ゴム補強充填用含水ケイ酸に関する。本発明は、詳細には天然ゴム、合成ゴムのうちジエン系ゴムに配合した際に、ゴムの耐摩耗性を向上させたゴム補強用充填剤として有用であり、耐摩耗性が要求されるゴム製工業製品の補強用として有用な含水ケイ酸を提供する。   The present invention relates to hydrous silicic acid for rubber reinforcement filling. In particular, the present invention is useful as a filler for reinforcing rubber with improved wear resistance when blended with diene rubber among natural rubber and synthetic rubber, and is required to have wear resistance. Provided is a hydrous silicic acid useful for reinforcing industrial products.

含水ケイ酸はホワイトカーボンの名で知られ、カーボンブラックと並んで古くからゴム補強充填剤として使用されてきた。含水ケイ酸は加硫ゴムの耐熱老化性、引裂抵抗性、耐屈曲亀裂性、接着性等に優れている。反面、高充填配合時に配合物の粘度が高く加工性が劣ること、並びに一般的なゴム特性の中で引張強度及び耐磨耗性がカーボンブラックに比べて劣っている。これらの欠点を解消するため、シランカップリング剤やその他の有機配合物の併用配合等が行われている。しかし、未だ満足のいくゴム物性を提供できる含水ケイ酸は得られておらず、ゴム配合処方の研究とともに、含水ケイ酸のさらなる改質が強く望まれている。   Hydrous silicic acid is known as white carbon and has been used as a rubber reinforcing filler for a long time along with carbon black. Hydrous silicic acid is excellent in the heat aging resistance, tear resistance, flex crack resistance, adhesion and the like of the vulcanized rubber. On the other hand, the viscosity of the compound is high and the processability is inferior at the time of high filling compounding, and the tensile strength and wear resistance are inferior to those of carbon black among the general rubber characteristics. In order to eliminate these drawbacks, a silane coupling agent and other organic compounds are used in combination. However, hydrous silicic acid that can provide satisfactory rubber properties has not yet been obtained, and further modification of hydrous silicic acid is strongly desired along with research on rubber compounding formulations.

有機ゴムの耐摩耗性を向上することができる含水ケイ酸は、例えば、特許文献1及び2に開示がある。   For example, Patent Documents 1 and 2 disclose hydrous silicic acid capable of improving the wear resistance of organic rubber.

特開2000−302912号公報JP 2000-302912 A 特開平11−236208号公報Japanese Patent Laid-Open No. 11-236208

しかしながら、ゴム組成物が関連する市場、例えば、タイヤ市場においては、環境問題およびエネルギー問題に関連して、従来にも増して耐摩耗性が向上したゴム組成物が求められており、そのようなゴム組成物を提供できるゴム補強充填用含水ケイ酸が求められている。本発明の目的は、従来にも増して耐摩耗性が向上したゴム組成物を提供できるゴム補強充填用含水ケイ酸を提供することにある。   However, in the market related to the rubber composition, for example, the tire market, there is a demand for a rubber composition having improved wear resistance as compared with the related art in relation to environmental problems and energy problems. There is a need for hydrous silicic acid for rubber reinforcement filling that can provide a rubber composition. An object of the present invention is to provide a water-containing silicic acid for filling and reinforcing a rubber capable of providing a rubber composition having an improved wear resistance as compared with the prior art.

本発明者らは、含水ケイ酸の細孔構造を制御し、ゴム分子を含水ケイ酸の細孔内部まで侵入しやすくするという観点から、鋭意検討を行った。加えて、含水ケイ酸の表面とゴム分子の化学結合をより強力にするという観点から鋭意検討を行った。含水ケイ酸の細孔構造を所定の構造にした含水ケイ酸が、これまでにない優れた耐摩耗性を有するゴム組成物を提供できることを見出して本発明を完成させた。   The present inventors have intensively studied from the viewpoint of controlling the pore structure of hydrous silicic acid so that rubber molecules can easily penetrate into the pores of hydrous silicic acid. In addition, intensive studies were conducted from the viewpoint of strengthening the chemical bond between the surface of the hydrous silicic acid and the rubber molecules. The present invention was completed by finding that hydrous silicic acid having a predetermined pore structure of hydrous silicic acid can provide a rubber composition having unprecedented excellent wear resistance.

即ち、本発明者らは、CTAB比表面積160 m2/g以上である含水ケイ酸に、窒素吸脱着法による細孔分布のピークが細孔半径10〜24nmの範囲にあり、かつ細孔分布のピークの半値を示す細孔分布の細孔半径xをx1及びx2(x2>x1)としたときに、x1が前記細孔分布のピークにおける細孔半径の55%以下であり、x2が前記細孔分布のピークにおける細孔半径の190%以上であることを特徴とする細孔分布を持たせることで、ゴムに対する補強性が増し、この含水ケイ酸を充填したゴムの耐摩耗性が向上する事を見出し、本発明を完成するに至った。 That is, the present inventors have a hydrous silicic acid having a CTAB specific surface area of 160 m 2 / g or more, the peak of the pore distribution by the nitrogen adsorption / desorption method is in the range of the pore radius of 10 to 24 nm, and the pore distribution X1 is 55% or less of the pore radius at the peak of the pore distribution, and x2 is the above when the pore radius x of the pore distribution showing the half value of the peak is x1 and x2 (x2> x1) Providing a pore distribution characterized by being 190% or more of the pore radius at the peak of the pore distribution increases the reinforcement to the rubber and improves the wear resistance of the rubber filled with hydrous silicate. As a result, the present invention has been completed.

本発明のゴム補強充填用含水ケイ酸は、天然ゴム、合成ゴムのうちジエン系ゴムに配合した際に、ゴムの耐摩耗性を向上させることが出来るため、耐摩耗性に対する要求の高いタイヤやベルト等のゴム製工業製品の補強充填剤として有用に使用することが出来る。   The hydrous silicic acid for filling and reinforcing rubber of the present invention can improve the wear resistance of rubber when blended with diene rubber among natural rubber and synthetic rubber. It can be usefully used as a reinforcing filler for rubber industrial products such as belts.

実施例1および比較例1の含水ケイ酸の窒素吸脱着法による細孔分布測定結果。The pore distribution measurement result by the nitrogen adsorption-and-desorption method of the hydrous silicic acid of Example 1 and Comparative Example 1.

<ゴム補強充填用含水ケイ酸>
本発明のゴム補強充填用含水ケイ酸は、
(A)CTAB比表面積が160 m2/g以上であり、
(B)窒素吸脱着法による脱着分布において窒素細孔ピークが半径10〜24nmの範囲にあり、かつ
(C)細孔分布のピークの値の半値になる時のx(細孔半径)の値をx1、x2(x2>x1)とするときx1がピーク半径の55%以下であり、x2がピーク半径の190%以上であることを特徴とする。
<Hydrosilicate for rubber reinforcement filling>
The hydrous silicic acid for rubber reinforcement filling of the present invention is
(A) The CTAB specific surface area is 160 m 2 / g or more,
(B) The value of x (pore radius) when the nitrogen pore peak is in the range of 10 to 24 nm in the desorption distribution by the nitrogen adsorption / desorption method, and (C) is half the value of the peak of the pore distribution. Where x1 and x2 (x2> x1), x1 is 55% or less of the peak radius, and x2 is 190% or more of the peak radius.

(A)本発明の含水ケイ酸は、CTAB比表面積が160 m2/g以上の範囲である。CTAB比表面積の測定は、ASTM D3765(CARBON BLACK-CTAB SURFACE AREA)に準拠して行い、CTAB分子の吸着断面積を35Å2として算出する。CTAB比表面積は、好ましくは200 m2/g以上の範囲である。CTAB比表面積が160 m2/g未満では、ゴム分子とシリカの相溶性が弱まり、ゴムに対して低い補強性しか提供できない。CTAB比表面積は高いほど、ゴムに対する補強性は増すが、380 m2/gを超えるCTAB比表面積を有する含水ケイ酸は、製造が困難であることから、CTAB比表面積の事実上の上限は380 m2/gである。 (A) The hydrous silicic acid of the present invention has a CTAB specific surface area of 160 m 2 / g or more. The CTAB specific surface area is measured according to ASTM D3765 (CARBON BLACK-CTAB SURFACE AREA), and the CTAB molecule adsorption cross section is calculated as 35 2 . The CTAB specific surface area is preferably in the range of 200 m 2 / g or more. If the CTAB specific surface area is less than 160 m 2 / g, the compatibility between the rubber molecules and silica is weakened, and only low reinforcement can be provided for the rubber. The higher the CTAB specific surface area, the more reinforcing the rubber. However, hydrous silicic acid having a CTAB specific surface area of over 380 m 2 / g is difficult to produce, so the practical upper limit of the CTAB specific surface area is 380. m 2 / g.

(B)本発明の含水ケイ酸は、窒素吸脱着法による細孔分布のピークが細孔半径10〜24nmの範囲にある。上記細孔分布は、窒素吸脱着法による脱着分布において得られる細孔分布であり、測定方法は実施例に記載する。細孔分布のピークが細孔半径10〜24nmの範囲である。細孔分布のピークは、より好ましくは細孔半径12〜20nmの範囲である。細孔分布がピークを示す細孔半径が小さ過ぎると細孔内にゴム分子が入らず、所望の補強効果を得られにくい。また、細孔分布がピークを示す細孔半径が大き過ぎると細孔内でゴム分子を捕捉することができず、この場合も、所望の補強効果を得られにくい。 (B) The hydrous silicic acid of the present invention has a pore distribution peak by a nitrogen adsorption / desorption method in a pore radius range of 10 to 24 nm. The pore distribution is the pore distribution obtained in the desorption distribution by the nitrogen adsorption / desorption method, and the measurement method is described in the examples. The peak of the pore distribution is in the range of the pore radius of 10 to 24 nm. The peak of the pore distribution is more preferably in the range of the pore radius of 12 to 20 nm. If the pore radius at which the pore distribution shows a peak is too small, rubber molecules do not enter the pores, making it difficult to obtain the desired reinforcing effect. Further, if the pore radius at which the pore distribution has a peak is too large, rubber molecules cannot be captured in the pores, and in this case, it is difficult to obtain a desired reinforcing effect.

(C)本発明の含水ケイ酸は、細孔分布のピークの半値を示す細孔分布の細孔半径xをx1及びx2(x2>x1)としたときに、x1が細孔分布のピークにおける細孔半径の55%以下であり、x2が細孔分布のピークにおける細孔半径の190%以上である。好ましくは、x1がピークにおける細孔半径の50%以下、x2がピークにおける細孔半径の200%以上の範囲である。x1の値が大き過ぎる場合やx2の値が小さ過ぎる場合には、細孔内部までゴム分子が侵入し難くなり、所望の補強効果を得られにくい。 (C) In the hydrous silicic acid of the present invention, when the pore radius x of the pore distribution showing the half value of the pore distribution peak is x1 and x2 (x2> x1), x1 is at the peak of the pore distribution. It is 55% or less of the pore radius, and x2 is 190% or more of the pore radius at the peak of the pore distribution. Preferably, x1 is a range of 50% or less of the pore radius at the peak, and x2 is a range of 200% or more of the pore radius at the peak. When the value of x1 is too large or when the value of x2 is too small, it is difficult for rubber molecules to penetrate into the pores, making it difficult to obtain a desired reinforcing effect.

上記(A)を満足する本発明の含水ケイ酸は、ゴムとの相溶性が高く、かつ(B)及び(C)を満足する本発明の含水ケイ酸は、窒素吸脱着法による細孔分布が比較的ブロードであるが故にゴム分子が細孔内部まで侵入し易く、その結果、従来にない高い補強効果が得られ、本発明の含水ケイ酸を配合したゴム組成物は高い耐摩耗性を示すものと推察される。   The hydrous silicic acid of the present invention satisfying the above (A) has high compatibility with rubber, and the hydrous silicic acid of the present invention satisfying (B) and (C) is a pore distribution by a nitrogen adsorption / desorption method. Is relatively broad, so rubber molecules can easily penetrate into the pores.As a result, an unprecedented high reinforcing effect can be obtained, and the rubber composition containing the hydrous silicic acid of the present invention has high wear resistance. It is inferred to show.

本発明の(A)、(B)及び(C)を満足する本発明の含水ケイ酸は、硫酸過多法により調製した含水ケイ酸である。硫酸過多法は、ケイ酸一次粒子の凝集を早く起こし、本発明の(A)、(B)及び(C)を満足する本発明の含水ケイ酸を調製するために、含水ケイ酸製造のための中和反応における初期のケイ酸ナトリウム濃度を通常の方法より高く設定している。これにより従来技術で提供される含水ケイ酸よりも密な凝集体とし、発達した細孔構造を形成させることにより、様々な半径の細孔が多数生成し、ブロードな細孔分布を有する本発明の含水ケイ酸を製造できる。さらに、新たな核生成の機会を増やすことで、本発明の(A)、(B)及び(C)を満足する本発明の含水ケイ酸を調製するために、中和反応中の硫酸滴下量を通常の方法より過剰量で滴下している。これにより従来技術で提供される含水ケイ酸よりも、不均一な粒子径のシリカを多数生成し、ブロードな細孔分布を有する本発明の含水ケイ酸を製造できる。   The hydrous silicic acid of the present invention that satisfies (A), (B) and (C) of the present invention is a hydrous silicic acid prepared by an excessive sulfuric acid method. In order to prepare hydrous silicic acid of the present invention, the sulfuric acid excess method causes the aggregation of primary particles of silicic acid quickly and satisfies the present invention (A), (B) and (C). The initial sodium silicate concentration in the neutralization reaction is set higher than in the usual method. Thus, the present invention has a broad pore distribution by forming a dense aggregate than the hydrous silicic acid provided in the prior art, and forming a developed pore structure, thereby generating a large number of pores of various radii. Can be produced. Furthermore, in order to prepare the hydrous silicic acid of the present invention satisfying (A), (B) and (C) of the present invention by increasing the opportunities for new nucleation, the amount of sulfuric acid dropped during the neutralization reaction Is dripped in an excess amount from the usual method. As a result, it is possible to produce a large amount of silica having a non-uniform particle size than the hydrous silicic acid provided in the prior art, and to produce the hydrous silicic acid of the present invention having a broad pore distribution.

含水ケイ酸の湿式製造方法は、一般に、アルカリ金属ケイ酸塩水溶液と鉱酸とを反応させることにより行われることは知られている。本発明の含水ケイ酸の製造方法も基本的にはこの方法に基づく。但し、上記のように硫酸過多法により、ブロードな細孔分布を有する本発明の含水ケイ酸を得る。硫酸過多法は以下に示す工程(ア)を含む、含水ケイ酸の製造方法であり、工程(イ)〜(エ)をさらに含むことができる。
(ア)SiO2濃度15〜25g/l、pH11〜12である80〜85℃に加熱したケイ酸アルカリ水溶液に、ケイ酸アルカリ水溶液と硫酸とを80〜85℃の温度で添加して、反応液のpHが10〜11の範囲になるようにケイ酸アルカリ水溶液と硫酸の添加量(比率)を制御しつつ中和反応を行い、SiO2濃度が60〜70g/lの範囲になるまで、前記添加を行い水溶液中にケイ酸を形成する工程、
(イ)前記ケイ酸アルカリ水溶液の添加を停止し、硫酸添加を継続して、反応液のpHが5以下となるまで添加して沈澱物を得る工程、
(ウ)得られた沈澱物を濾過、水洗してケークを得る工程、及び
(エ)得られたケークを乾燥、粉砕してケイ酸粉末を得る工程。
It is known that the wet manufacturing method of hydrous silicic acid is generally performed by reacting an aqueous alkali metal silicate solution with a mineral acid. The method for producing hydrous silicic acid according to the present invention is also basically based on this method. However, the hydrous silicic acid of the present invention having a broad pore distribution is obtained by the sulfuric acid excess method as described above. The excessive sulfuric acid method is a method for producing hydrous silicic acid including the following step (a), and can further include steps (a) to (e).
(A) An alkali silicate aqueous solution and sulfuric acid are added to an alkali silicate aqueous solution heated to 80 to 85 ° C. having a SiO 2 concentration of 15 to 25 g / l and a pH of 11 to 12 at a temperature of 80 to 85 ° C. The neutralization reaction is performed while controlling the addition amount (ratio) of the alkali silicate aqueous solution and sulfuric acid so that the pH of the solution is in the range of 10 to 11, until the SiO 2 concentration is in the range of 60 to 70 g / l. Performing the addition to form silicic acid in the aqueous solution;
(A) Stopping the addition of the alkali silicate aqueous solution, continuing the addition of sulfuric acid, and adding until the pH of the reaction solution is 5 or less to obtain a precipitate;
(C) a step of filtering and washing the obtained precipitate to obtain a cake; and (d) a step of drying and pulverizing the obtained cake to obtain a silicate powder.

工程(ア)では、反応槽に予めSiO2濃度15〜25g/l、pH11〜12のケイ酸アルカリ水溶液を充填し、これを80〜85℃に加熱した後、ケイ酸アルカリ水溶液と硫酸とを添加することで、ケイ酸アルカリの中和反応を進行させる。ケイ酸アルカリ水溶液および硫酸の添加時の温度は、80〜85℃の範囲とする。この中和反応は、反応液のpHを10〜11の範囲、好ましくは10.2〜10.8の範囲に維持し、かつSiO2濃度が60〜70g/lの範囲になるまで行い水溶液中にケイ酸を形成させる。上記反応槽に予め反応槽に充填するケイ酸アルカリ水溶液のSiO2濃度およびpH並びに温度、ケイ酸アルカリ水溶液および硫酸の添加時の温度およびpH、さらには中和反応の終了時のSiO2濃度を、上記範囲にすることで、所望の物性を有する本発明の含水ケイ酸を得ることができる。上記反応に用いる、ケイ酸アルカリ水溶液は特に限定しないが、例えば、ケイ酸ナトリウム水溶液を用いることができる。工程(ア)においては、反応槽に予め充填するケイ酸アルカリ水溶液のSiO2濃度15〜25g/lとし、かつ中和反応における反応液のpHを10〜11の範囲に維持することで、本発明の(A)〜(C)を満足する含水ケイ酸を得ることができる。 In the step (a), an alkali silicate aqueous solution having a SiO 2 concentration of 15 to 25 g / l and a pH of 11 to 12 is charged in a reaction tank in advance, and this is heated to 80 to 85 ° C., and then an alkali silicate aqueous solution and sulfuric acid are added. By adding, the neutralization reaction of alkali silicate is advanced. The temperature at the time of addition of the alkali silicate aqueous solution and sulfuric acid is set to a range of 80 to 85 ° C. This neutralization reaction is carried out until the pH of the reaction solution is maintained in the range of 10 to 11, preferably 10.2 to 10.8, and the SiO 2 concentration is in the range of 60 to 70 g / l. To form silicic acid. The SiO 2 concentration and pH and temperature of the alkali silicate aqueous solution charged in the reaction vessel in advance into the reaction vessel, the temperature and pH when adding the alkali silicate aqueous solution and sulfuric acid, and the SiO 2 concentration at the end of the neutralization reaction By setting the content in the above range, the hydrous silicic acid of the present invention having desired physical properties can be obtained. Although the alkali silicate aqueous solution used for the said reaction is not specifically limited, For example, sodium silicate aqueous solution can be used. In the step (a), the SiO 2 concentration of the alkali silicate aqueous solution previously charged in the reaction vessel is set to 15 to 25 g / l, and the pH of the reaction solution in the neutralization reaction is maintained in the range of 10 to 11, A hydrous silicic acid satisfying the inventions (A) to (C) can be obtained.

工程(イ)では、前記ケイ酸アルカリ水溶液の添加を停止し、硫酸添加を継続して、反応液のpHが5以下、好ましくは3以下となるまで添加して沈澱物を得る。中和反応の途中段階で反応溶液は白濁が進み粘度が急激に上昇するゲル化現象が起こる。反応液の固体濃度が所定の値になったところで、pHを5以下になるように硫酸を添加して反応を停止させる。   In the step (a), the addition of the aqueous alkali silicate solution is stopped, and the sulfuric acid addition is continued until the pH of the reaction solution is 5 or less, preferably 3 or less to obtain a precipitate. In the middle of the neutralization reaction, the reaction solution becomes white turbid and a gelation phenomenon occurs in which the viscosity rapidly increases. When the solid concentration of the reaction solution reaches a predetermined value, the reaction is stopped by adding sulfuric acid so that the pH is 5 or less.

工程(ウ)では、得られた沈澱物を濾過、水洗してケークを得、次いで、工程(エ)において、得られたケークを乾燥、粉砕してケイ酸粉末を得る。工程(ウ)および(エ)では、得られた沈澱物を濾過、水洗、乾燥させ、場合により粉砕又は顆粒状にすることにより、本発明の沈澱ケイ酸は得られる。具体的には、得られた沈澱物をフィルタープレス等で濾過し、例えば、pH5.5〜7.5、電気伝導度が200μs/cm以下になるまで水洗することで含水ケイ酸ケーキを得る。得られた湿潤ケーキを乾燥した後必要に応じて粉砕分級あるいは顆粒化を行って本発明の含水ケイ酸を得ることができる。   In the step (c), the obtained precipitate is filtered and washed with water to obtain a cake, and then in the step (d), the obtained cake is dried and ground to obtain a silicic acid powder. In the steps (c) and (d), the precipitated silicic acid of the present invention is obtained by filtering, washing and drying the resulting precipitate, and optionally pulverizing or granulating it. Specifically, the obtained precipitate is filtered with a filter press or the like, and washed with water until the pH becomes 5.5 to 7.5 and the electric conductivity is 200 μs / cm or less, for example, to obtain a hydrous silicate cake. The obtained wet cake is dried and then pulverized or granulated as necessary to obtain the hydrous silicic acid of the present invention.

<好ましい態様1>
本発明の含水ケイ酸は、前記のように(A)、(B)及び(C)を満足する含水ケイ酸であることに加えて、上記Al2O3とSiO2の質量比に関して以下の条件を満足するものであることが有機ゴム分子とケイ酸表面とをシランカップリング剤を介して化学的に結合させることで、補強性が増し、耐摩耗性が向上することができるという観点から好ましい。
Al2O3とSiO2の質量比Al2O3/SiO2をASR1とし、この含水ケイ酸を10%希塩酸に10質量%の濃度で30分間分散した後分離して、pHが6以上になるまで水洗して得られる含水ケイ酸のAl2O3とSiO2の質量比Al2O3/SiO2量をASR2としたとき、0.200≦ASR1-ASR2≦0.600である。
<Preferred embodiment 1>
In addition to the hydrous silicic acid satisfying (A), (B) and (C) as described above, the hydrous silicic acid of the present invention has the following mass ratio of Al 2 O 3 and SiO 2 . From the viewpoint that the organic rubber molecules and the silicic acid surface can be chemically bonded via a silane coupling agent to increase the reinforcement and improve the wear resistance. preferable.
Mass ratio of Al 2 O 3 and SiO 2 Al 2 O 3 / SiO 2 is ASR1, and this hydrous silicic acid is dispersed in 10% dilute hydrochloric acid at a concentration of 10% by mass for 30 minutes and then separated to a pH of 6 or more. when and the Al 2 O 3 of hydrous silicic acid obtained by washing SiO 2 weight ratio Al 2 O 3 / SiO 2 amount ASR2 until a 0.200 ≦ ASR1-ASR2 ≦ 0.600.

有機ゴム分子と含水ケイ酸表面の化学結合には触媒の存在が不可欠であり、その触媒として、化学的に結合していないアルミ(以下、表面アルミニウムと呼ぶ)の存在が不可欠であることが本発明者らの検討結果から判明した。この表面アルミニウムの含有量は、0.200%以上、0.600%以下の範囲であることが好ましく、特にシランカップリング剤を使うゴム組成物の配合において充分な効果を発揮する。表面アルミニウムは、10%希塩酸水洗によって簡単に除去できるアルミニウムであり、その含有量は以下の方法に従って測定する。   The existence of a catalyst is indispensable for the chemical bond between the organic rubber molecule and the surface of the hydrous silicate, and the existence of non-chemically bonded aluminum (hereinafter referred to as surface aluminum) is indispensable as the catalyst. It became clear from the examination results of the inventors. The surface aluminum content is preferably in the range of 0.200% or more and 0.600% or less, and particularly exhibits a sufficient effect in the blending of a rubber composition using a silane coupling agent. Surface aluminum is aluminum that can be easily removed by washing with 10% dilute hydrochloric acid, and its content is measured according to the following method.

含水ケイ酸の外部に担持されたAl2O3(アルミはAl2O3の形態で担持されていると考えられる)の持つ正の電荷を帯びた酸点が触媒として働き、含水ケイ酸とシランカップリング剤の反応を促進することで、含水ケイ酸とゴムの結合をより強固にし、耐摩耗性を向上させていると考えられる。
0.200≦ASR1-ASR2≦0.600の場合には、含水ケイ酸の外部に担持されたAl2O3の量が充分であり、含水ケイ酸を配合したゴム組成物の耐摩耗性が向上する。それに対してASR1-ASR2<0.200の場合には、含水ケイ酸の外部に担持されたAl2O3の量が充分でなく、耐摩耗性の向上は、0.200≦ASR1-ASR2の場合に比べて小さい。0.600<ASR1-ASR2の場合には、含水ケイ酸の外部に担持されたAl2O3の量が過剰であり、そのため含水ケイ酸とシランカップリング剤の結合点が減少する傾向があり、ゴム中での含水ケイ酸の分散性が悪化し、耐摩耗性が悪化する傾向がある。
The positively charged acid spots of Al 2 O 3 supported on the outside of hydrous silicic acid (aluminum is thought to be supported in the form of Al 2 O 3 ) act as a catalyst, It is considered that by promoting the reaction of the silane coupling agent, the bond between the hydrous silicic acid and the rubber is further strengthened, and the wear resistance is improved.
When 0.200 ≦ ASR1-ASR2 ≦ 0.600, the amount of Al 2 O 3 supported on the outside of the hydrous silicic acid is sufficient, and the wear resistance of the rubber composition containing the hydrous silicic acid is improved. In contrast, when ASR1-ASR2 <0.200, the amount of Al 2 O 3 supported on the outside of the hydrous silicic acid is not sufficient, and the improvement in wear resistance is 0.200 ≦ ASR1-ASR2. small. In the case of 0.600 <ASR1-ASR2, the amount of Al 2 O 3 supported on the outside of the hydrous silicic acid is excessive, so that the bonding point between the hydrous silicic acid and the silane coupling agent tends to decrease, and the rubber The dispersibility of the hydrous silicic acid in it tends to deteriorate and the wear resistance tends to deteriorate.

本発明の含水ケイ酸は、種々のゴム組成物の補強充填用として応用でき、ゴム組成物の用途は、タイヤのみではなく、ベルト等の工業用部品も含む。   The hydrous silicic acid of the present invention can be applied for reinforcing and filling various rubber compositions, and uses of the rubber composition include not only tires but also industrial parts such as belts.

本発明の含水ケイ酸を用いる(配合する)ことができるゴム組成物は特に制限はないが、ゴムとしては、天然ゴム(NR)又はジエン系合成ゴムを単独又はこれらをブレンドして含むゴム組成物であることができる。合成ゴムとしては、例えば、合成ポリイソプレンゴム(IR)、ポリブタジエンゴム(BR)やスチレンブタジエンゴム(SBR)、アクリロニトリルブタジエンゴム(NBR)、ブチルゴム(IIR)等が挙げられる。本発明の含水ケイ酸は、特に、ジエン系合成ゴムを含有するゴム組成物において、耐摩耗性向上効果が顕著である。従って、ゴム成分の50質量%以上がジエン系合成ゴムであるゴム組成物における耐摩耗性向上効果が顕著であり、ゴム成分の70質量%以上がジエン系合成ゴムであることが好ましい。本発明の含水ケイ酸は、天然ゴム及び/又はジエン系合成ゴム100質量部に対して、例えば、5〜100質量部を配合できる。但し、この範囲に限定する意図ではない。   The rubber composition in which the hydrous silicic acid of the present invention can be used (blended) is not particularly limited, but as the rubber, a rubber composition containing natural rubber (NR) or diene synthetic rubber alone or blended with them. Can be a thing. Examples of the synthetic rubber include synthetic polyisoprene rubber (IR), polybutadiene rubber (BR), styrene butadiene rubber (SBR), acrylonitrile butadiene rubber (NBR), and butyl rubber (IIR). The hydrous silicic acid of the present invention has a remarkable effect of improving wear resistance, particularly in a rubber composition containing a diene synthetic rubber. Accordingly, the effect of improving the wear resistance in a rubber composition in which 50% by mass or more of the rubber component is a diene-based synthetic rubber is remarkable, and 70% by mass or more of the rubber component is preferably a diene-based synthetic rubber. The hydrous silicic acid of this invention can mix | blend 5-100 mass parts with respect to 100 mass parts of natural rubber and / or diene type synthetic rubber, for example. However, it is not intended to limit to this range.

上記ゴム組成物は、シランカップリング剤を添加したものであることができる。シランカップリング剤は、ゴム組成物に用いられているものを例示でき、例えば、下記式(I)〜式(III)に示される少なくとも一つが挙げられる。
(式中、Xは炭素数1〜3のアルキル基又は塩素原子、nは1〜3の整数、mは1〜3の整数、pは1〜9の整数を表し、qは1以上の整数で分布を有する場合もある)
(式中、Xは炭素数1〜3のアルキル基又は塩素原子、Yはメルカプト基、ビニル基、アミノ基、イミド基、グリシドキシ基、メタクリロキシ基またはエポキシ基、nは1〜3の整数、mは1〜3の整数、pは1〜9の整数を表す。)
(式中、Xは炭素数1〜3のアルキル基又は塩素原子、Zはベンゾチアゾリル基、N,N−ジメチルチオカルバモイル基またはメタクリレート基、nは1〜3の整数、mは1〜3の整数、pは1〜9の整数を表し、qは1以上の整数で分布を有する場合もある。)
The rubber composition may be one to which a silane coupling agent is added. Examples of the silane coupling agent include those used in rubber compositions, and examples include at least one of the following formulas (I) to (III).
(In the formula, X represents an alkyl group having 1 to 3 carbon atoms or a chlorine atom, n represents an integer of 1 to 3, m represents an integer of 1 to 3, p represents an integer of 1 to 9, and q represents an integer of 1 or more. May have a distribution)
(Wherein X is an alkyl group having 1 to 3 carbon atoms or chlorine atom, Y is a mercapto group, vinyl group, amino group, imide group, glycidoxy group, methacryloxy group or epoxy group, n is an integer of 1 to 3, m Represents an integer of 1 to 3, and p represents an integer of 1 to 9.)
(Wherein X is an alkyl group having 1 to 3 carbon atoms or chlorine atom, Z is a benzothiazolyl group, N, N-dimethylthiocarbamoyl group or methacrylate group, n is an integer of 1 to 3, and m is an integer of 1 to 3) , P represents an integer of 1 to 9, and q may be an integer of 1 or more and have a distribution.)

具体的には、ビス(3−トリエトキシシリルプロピル)ポリスルフィド、γ−メルカプトプロピルトリメトキシシラン、γ−メルカプトプロピルトリエトキシシラン、γ−アミノプロピルトリメトキシシラン、γ−アミノプロピルトリエトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、γ−グリシドキシプロピルトリメトキシシラン、γ−グリシドキシプロピルメチルジエトキシシラン、3−トリメトキシシリルプロピル−N、N−ジメチルカルバモイルテトラスルフィド、3−トリメトキシシリルプロピルベンゾチアゾリルテトラスルフィド、3−トリメトキシシリルプロピルメタクリレートモノスルフィド、等が挙げられる。シランカップリング剤の配合量は、含水ケイ酸の質量に対し1〜20質量%、好ましくは2〜15質量%である。但し、この範囲に限定する意図ではない。   Specifically, bis (3-triethoxysilylpropyl) polysulfide, γ-mercaptopropyltrimethoxysilane, γ-mercaptopropyltriethoxysilane, γ-aminopropyltrimethoxysilane, γ-aminopropyltriethoxysilane, vinyltri Methoxysilane, vinyltriethoxysilane, γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropylmethyldiethoxysilane, 3-trimethoxysilylpropyl-N, N-dimethylcarbamoyl tetrasulfide, 3-trimethoxysilyl And propylbenzothiazolyl tetrasulfide, 3-trimethoxysilylpropyl methacrylate monosulfide, and the like. The compounding quantity of a silane coupling agent is 1-20 mass% with respect to the mass of a hydrous silicic acid, Preferably it is 2-15 mass%. However, it is not intended to limit to this range.

本発明の含水ケイ酸をゴム組成物に用いる場合には、上記のゴムおよびシランカップリング剤以外に、必要に応じて、カーボンブラック、軟化剤(ワックス、オイル)、老化防止剤、加硫剤、加硫促進剤、加硫促進助剤等の通常ゴム工業で使用される配合剤を適宜配合することができる。ゴム組成物は、上記ゴム成分、含水ケイ酸、シランカップリング剤、上記必要に応じて配合する上記カーボンブラック、ゴム配合剤等をバンバリーミキサーなどの混練機で調製することができる。   When the hydrous silicic acid of the present invention is used in a rubber composition, in addition to the above rubber and silane coupling agent, carbon black, softening agent (wax, oil), anti-aging agent, vulcanizing agent may be used as necessary. Compounding agents usually used in the rubber industry, such as vulcanization accelerators and vulcanization accelerators, can be appropriately blended. The rubber composition can be prepared by using a kneader such as a Banbury mixer with the rubber component, hydrous silicic acid, silane coupling agent, the carbon black to be blended as necessary, a rubber compounding agent, and the like.

本発明の含水ケイ酸を配合したゴム組成物は、タイヤ、コンベアベルト、ホースなどのゴム製品に好適に適用できるものであり、製品となったタイヤ、コンベアベルト、ホースなどのゴム製品は補強性、高耐磨耗性等に優れたものとなる。また、本発明の含水ケイ酸を配合したゴム組成物を用いた空気入りタイヤは、上記ゴム組成物をタイヤトレッド部に使用したものであることができ、タイヤトレッド部の補強性、高耐磨耗性に優れた空気入りタイヤが得られる。   The rubber composition containing the hydrous silicic acid of the present invention can be suitably applied to rubber products such as tires, conveyor belts, hoses, etc., and the rubber products such as tires, conveyor belts, hoses and the like that are products are reinforcing. It is excellent in high wear resistance and the like. In addition, a pneumatic tire using the rubber composition containing the hydrous silicic acid of the present invention can be obtained by using the rubber composition in a tire tread portion, and the tire tread portion has a reinforcing property and high abrasion resistance. A pneumatic tire having excellent wear characteristics can be obtained.

以下本発明を具体的に説明するために実施例および比較例を挙げて説明するが、もちろんこれらに限定されるものではない。なお、含水ケイ酸の各物性値の測定はJIS K−5101(顔料試験法)に基づき、次に示す方法により実施した。   In order to describe the present invention in detail, examples and comparative examples will be described below, but the present invention is not limited to these examples. In addition, the measurement of each physical-property value of hydrous silicic acid was implemented by the method shown next based on JIS K-5101 (pigment test method).

●含水ケイ酸原粉中のAl2O3の測定
粉体試料を酸溶液に溶解したのち、ICP発光分析装置(型式:SPS3100;エスアイアイ・ナノテクノロジー社製)を用いてAl2O3量の定量分析を行った。
● After dissolving measuring powder samples of Al 2 O 3 of hydrous silicic SanHara Konachu in an acid solution, ICP emission spectrometer (Model: SPS3100; manufactured by SII Nano Technology Inc.) Al 2 O 3 amount using the Quantitative analysis was performed.

●含水ケイ酸原粉中のSiO2量の測定
医薬部外品原料規格2006の無水ケイ酸定量法によってSiO2量の定量分析を行った。10%希塩酸は、医薬部外品原料規格2006に基づき調製した。また、測定サンプルのうち、ASR2は10gの非晶質含水ケイ酸を100mlの10%希塩酸中で30分攪拌後、ヌッチェ及び5A濾紙を用いて真空濾過し、pHが6以上になるまで水洗した後にろ別した含水ケイ酸を105℃、2時間以上充分乾燥したものを使用した。なお、pHは市販のガラス電極pHメーター(型式:D-14 (株)堀場製作所製)で測定した。
● Measurement of SiO 2 content in hydrous silicate raw powder Quantitative analysis of SiO 2 content was performed by the silicic acid quantification method of Quasi-drug raw material standard 2006. 10% dilute hydrochloric acid was prepared based on the Quasi-drug Raw Material Standard 2006. Of the measurement samples, ASR2 was prepared by stirring 10 g of amorphous hydrous silicic acid in 100 ml of 10% dilute hydrochloric acid for 30 minutes, vacuum filtration using Nutsche and 5A filter paper, and washing with water until the pH reached 6 or more. The hydrous silicic acid that was filtered off later was used after sufficiently drying at 105 ° C. for 2 hours or more. The pH was measured with a commercially available glass electrode pH meter (model: D-14, manufactured by Horiba, Ltd.).

●CTAB法比表面積
ASTM D3765(CARBON BLACK-CTAB SURFACE AREA)に準拠して測定を行った。但し、CTAB分子の吸着断面積を35Å2として算出した。
-CTAB method specific surface area It measured based on ASTM D3765 (CARBON BLACK-CTAB SURFACE AREA). However, the adsorption cross section of CTAB molecules was calculated as 35 2 .

●BET比表面積(N2法比表面積)
全自動比表面積測定装置(型式:Macsorb(R) HM model-1201;(株)マウンテック社製)を用いて1点法により測定した。
● BET specific surface area (N2 method specific surface area)
Measurement was carried out by a one-point method using a fully automatic specific surface area measuring device (model: Macsorb (R) HM model-1201; manufactured by Mountec Co., Ltd.).

●窒素吸脱着法による細孔分布
高精度ガス/蒸気吸着量測定装置(型式:Belsorp max;(株)日本ベル社製)を用いてBarret-Joyner-Halenda法により測定した。
● Pore distribution by nitrogen adsorption / desorption method Measured by the Barret-Joyner-Halenda method using a high-accuracy gas / vapor adsorption amount measuring device (model: Belsorp max; manufactured by Nippon Bell Co., Ltd.).

●水銀圧入法による細孔分布
水銀ポロシメーター(型式:PASCAL 440;ThermoQuest社製)を用いて水銀細孔を測定した。
● Pore distribution by mercury intrusion method Mercury pores were measured using a mercury porosimeter (model: PASCAL 440; manufactured by ThermoQuest).

●配合物調製法
容量1.7リットルのバンバリーミキサーにて、JSR SL552(溶液重合スチレンブタジエンゴム)を80部とIR2200(ポリイソプレンゴム)を20部とを、30秒間素練り後、ステアリン酸を2部、含水ケイ酸を45部、シランKBE846(ビス(トリエトキシシリルプロピル)テトラスルフィド)を1.8〜10.8部の範囲(詳細は表1〜表3に記載)で投入し、全練り時間5分後取り出した。取り出し時のコンパウンド温度を140〜150℃にラム圧や回転数で調整を行い、コンパウンドを室温にて冷却後、更に老化防止剤ノクラック810NA(N-フェニル-N'-イソプロピル-p-フェニレンジアミン)を1部、亜鉛華を3部、加硫促進剤ノクセラーD(1,3-ジフェニルグアニジン)を1.5部、同ノクセラーCZ-G(N-シクロヘキシル-2-ベンゾチアゾリルスルフェンアミド)を1.2部、硫黄(200メッシュ)を1.5部添加して約1分間混練り(取り出し時の温度を100℃以下とする)し、後8インチロールにてシーティングして未加硫物及び加硫物特性を測定した。
Formulation preparation method In a Banbury mixer with a capacity of 1.7 liters, 80 parts of JSR SL552 (solution-polymerized styrene butadiene rubber) and 20 parts of IR2200 (polyisoprene rubber) were masticated for 30 seconds, and then stearic acid was added. 2 parts, 45 parts of hydrous silicic acid, and silane KBE846 (bis (triethoxysilylpropyl) tetrasulfide) in the range of 1.8 to 10.8 parts (details are given in Tables 1 to 3), The kneading time was taken out after 5 minutes. The compound temperature at the time of removal is adjusted to 140 to 150 ° C. by ram pressure and rotation speed, the compound is cooled at room temperature, and the anti-aging agent NOCRACK 810NA (N-phenyl-N′-isopropyl-p-phenylenediamine) 1 part, Zinc flower 3 parts, Vulcanization accelerator Noxeller D (1,3-diphenylguanidine) 1.5 parts, Noxeller CZ-G (N-cyclohexyl-2-benzothiazolylsulfenamide) 1.2 parts and 1.5 parts of sulfur (200 mesh) are added and kneaded for about 1 minute (the temperature at the time of taking out is 100 ° C. or less), then sheeted with an 8-inch roll and unvulcanized. And vulcanizate properties were measured.

●ムーニー粘度
ムーニー粘度計VR−1132型(上島製作所製)を用いて、125℃、L型ローターにて測定。
●キュラストタイム
JSR型キュラストメーターIIF型により、最適加硫時間(T90)を測定した。
●加硫物特性(TB, M300, EB, Hs)
JIS の試験法に準じ測定を行った。
● Mooney viscosity Measured with Mooney viscometer VR-1132 type (manufactured by Ueshima Seisakusho) at 125 ° C with L-type rotor
● Clasting Time The optimum vulcanization time (T90) was measured with a JSR type Clastometer IIF type.
Vulcanizate characteristics (TB, M300, EB, Hs)
Measurements were performed according to the JIS test method.

●摩耗試験
アクロン型摩耗試験機で測定。傾角;15°、荷重;6ポンド試験回数;1000回転での摩耗減容を測定した。測定結果は比較例1を100とした場合の指数で求めた。指数が高い程耐摩耗性が良いことを示し、指数が110以上の場合を、耐摩耗性が10%以上向上したものとみなし○とした。
● Abrasion test Measured with an Akron-type abrasion tester. Tilt angle: 15 °, load; 6 pound test number; wear reduction at 1000 revolutions was measured. The measurement result was obtained by an index when Comparative Example 1 was set to 100. The higher the index, the better the wear resistance. When the index was 110 or more, the wear resistance was regarded as having been improved by 10% or more, and it was marked as ◯.

(実施例1)
ケイ酸一次粒子の凝集を早く起こすことを目的として、初期ケイ酸ナトリウム濃度を高くする反応を行った。これにより後述する比較例1よりも密な凝集体とし、発達した細孔構造を形成させることにより、様々な半径の細孔が多数生成し、ブロードな細孔分布を有する含水ケイ酸を製造できる。具体的には、撹拌機を備えた240リットルのジャケット付きステンレス容器に、水を80リットル及びケイ酸ナトリウム水溶液を通常より多い14リットル(SiO2150g/l、SiO2/Na2O質量比3.3)を投入し、加熱して温度82℃とした。この時のSiO2濃度は22g/l、pHは11.5になった。
Example 1
A reaction was carried out to increase the initial sodium silicate concentration for the purpose of causing the aggregation of the primary particles of silicate early. Thus, by forming a denser aggregate than in Comparative Example 1 described later and forming a developed pore structure, a large number of pores with various radii are generated, and hydrous silicic acid having a broad pore distribution can be produced. . Specifically, in a 240 liter jacketed stainless steel vessel equipped with a stirrer, 80 liters of water and 14 liters of sodium silicate aqueous solution more than usual (SiO 2 150 g / l, SiO 2 / Na 2 O mass ratio 3 3) was added and heated to a temperature of 82 ° C. At this time, the SiO 2 concentration was 22 g / l, and the pH was 11.5.

硫酸過多による中和反応を行うことにより、不均一な粒子径のケイ酸を形成することで、ブロードな細孔分布を有する含水ケイ酸が生成される反応を行った。具体的には、本水溶液に、上記同様のケイ酸ナトリウム水溶液と硫酸(18.4mol/l)とを、温度82±1℃を維持しながら100分間で、SiO2濃度が65g/l、pHが10.9となるように添加して、100分でケイ酸ナトリウム水溶液のみを停止した。尚、上記反応液(反応開始前のpHは11.5)におけるpHが10.9になるようにケイ酸ナトリウム水溶液に対する硫酸の添加量が過剰になるように硫酸添加を行った。 By carrying out a neutralization reaction by excessive sulfuric acid, silicic acid having a non-uniform particle size was formed, and a reaction was carried out in which hydrous silicic acid having a broad pore distribution was generated. Specifically, the same sodium silicate aqueous solution and sulfuric acid (18.4 mol / l) as above were added to this aqueous solution for 100 minutes while maintaining a temperature of 82 ± 1 ° C., with a SiO 2 concentration of 65 g / l, pH. Was added to 10.9, and only the aqueous sodium silicate solution was stopped in 100 minutes. Sulfuric acid was added so that the amount of sulfuric acid added to the sodium silicate aqueous solution was excessive so that the pH in the above reaction solution (pH before starting the reaction was 11.5) was 10.9.

所定の中和反応終了後は同様の硫酸をpH3となるまで添加して沈澱物を得た。その後得られた反応物を濾過、水洗してケークを得た。得られたケークを乳化し、この乳化液を乾燥して含水ケイ酸を製造し、評価を行った。窒素吸脱着法による細孔分布の測定結果を図1に示す。   After completion of the predetermined neutralization reaction, the same sulfuric acid was added until pH 3 was obtained to obtain a precipitate. Thereafter, the obtained reaction product was filtered and washed with water to obtain a cake. The obtained cake was emulsified, and this emulsion was dried to produce hydrous silicic acid and evaluated. The measurement results of the pore distribution by the nitrogen adsorption / desorption method are shown in FIG.

(実施例2)
得られたケークを乳化し、この乳化液にアルミン酸ソーダを、ケーク中のケイ酸量に対し、Al23/SiO2質量比で0.30%分追加投入した以外は、実施例1と同様な方法で含水ケイ酸を製造し、評価を行った。
(Example 2)
Example 1 except that the obtained cake was emulsified, and sodium aluminate was added to the emulsion in an amount of 0.30% by mass of Al 2 O 3 / SiO 2 with respect to the amount of silicic acid in the cake. Hydrous silicic acid was produced in the same manner as described above and evaluated.

(実施例3)
得られたケークを乳化し、この乳化液にアルミン酸ソーダを、ケーク中のケイ酸量に対し、Al23/SiO2質量比で0.50%分追加投入した以外は、実施例1と同様な方法で含水ケイ酸を製造し、評価を行った。
(Example 3)
Example 1 except that the obtained cake was emulsified, and sodium aluminate was added to this emulsion in an amount of 0.50% in terms of Al 2 O 3 / SiO 2 mass ratio with respect to the amount of silicic acid in the cake. Hydrous silicic acid was produced in the same manner as described above and evaluated.

(実施例4)
得られたケークを乳化し、この乳化液にアルミン酸ソーダを、ケーク中のケイ酸量に対し、Al23/SiO2質量比で0.70%分追加投入する以外は、実施例1と同様な方法で含水ケイ酸を製造し、評価を行った。
Example 4
Example 1 except that the obtained cake was emulsified, and sodium aluminate was added to this emulsion in an amount of 0.70% by mass of Al 2 O 3 / SiO 2 with respect to the amount of silicic acid in the cake. Hydrous silicic acid was produced in the same manner as described above and evaluated.

表1に示すように、ブロードな細孔分布を有する(請求項1の条件を全て満たす)実施例1,2,3,4は、後述する比較例1に対し耐摩耗性向上効果が認められた。とりわけこれらの実施例1,2,3,4の中でも、乳化液にアルミン酸ソーダを適切な量添加し、ASR1‐ASR2が0.2〜0.6の範囲内にある実施例2と3は、特に高い耐摩耗性向上効果が認められた。   As shown in Table 1, Examples 1, 2, 3, and 4 having a broad pore distribution (satisfying all the conditions of claim 1) have an effect of improving wear resistance as compared with Comparative Example 1 described later. It was. In particular, among these Examples 1, 2, 3, and 4, Examples 2 and 3 in which an appropriate amount of sodium aluminate was added to the emulsion and ASR1-ASR2 was in the range of 0.2 to 0.6 were: In particular, a high wear resistance improving effect was observed.

(実施例5)
撹拌機を備えた240リットルのジャケット付きステンレス容器に、水を80リットル及びケイ酸ナトリウム水溶液3.5リットル(SiO2150g/l、SiO2/Na2O質量比3.3)を投入し、加熱して温度72℃とした。この時のSiO2濃度は6.0g/l、pHは10.9になった。本水溶液に、上記同様のケイ酸ナトリウム水溶液と硫酸(18.4mol/l)とを、温度72±1℃、pH10.9を維持しながら100分間で、SiO2濃度が65g/lとなるように添加して、100分でケイ酸ナトリウム水溶液のみを停止した。比較例1の場合に比べて反応温度を低くすることで、ケイ酸一次粒子の成長速度を抑制し、一次粒子が微粒子の段階で凝集を起こさせている。これにより比較例1よりも密な凝集体とし、発達した細孔構造を形成させることにより、様々な半径の細孔が多数生成し、ブロードな細孔分布を有する含水ケイ酸を製造した。
(Example 5)
Into a 240 liter jacketed stainless steel vessel equipped with a stirrer, 80 liters of water and 3.5 liters of an aqueous sodium silicate solution (SiO 2 150 g / l, SiO 2 / Na 2 O mass ratio 3.3) were added, Heated to a temperature of 72 ° C. At this time, the SiO 2 concentration was 6.0 g / l, and the pH was 10.9. To this aqueous solution, an aqueous sodium silicate solution and sulfuric acid (18.4 mol / l) similar to the above are added so that the SiO 2 concentration becomes 65 g / l in 100 minutes while maintaining a temperature of 72 ± 1 ° C. and a pH of 10.9. And only the aqueous sodium silicate solution was stopped after 100 minutes. By making the reaction temperature lower than in the case of Comparative Example 1, the growth rate of the silicic acid primary particles is suppressed, and the primary particles cause aggregation at the fine particle stage. Thus, a denser aggregate than in Comparative Example 1 was formed, and a developed pore structure was formed, whereby a large number of pores with various radii were generated, and hydrous silicic acid having a broad pore distribution was produced.

所定の中和反応終了後は同様の硫酸をpH3となるまで添加して沈澱物を得た。その後得られた反応物を濾過、水洗してケークを得た。得られたケークを乳化し、この乳化液を乾燥して含水ケイ酸を製造し、評価を行った。   After completion of the predetermined neutralization reaction, the same sulfuric acid was added until pH 3 was obtained to obtain a precipitate. Thereafter, the obtained reaction product was filtered and washed with water to obtain a cake. The obtained cake was emulsified, and this emulsion was dried to produce hydrous silicic acid and evaluated.

(実施例6)
得られたケークを乳化し、この乳化液にアルミン酸ソーダを、ケーク中のケイ酸量に対し、Al23/SiO2質量比で0.30%分追加投入した以外は、実施例5と同様な方法で含水ケイ酸を製造し、評価を行った。
(Example 6)
Example 5 was carried out except that the obtained cake was emulsified, and sodium aluminate was additionally added to this emulsion in an amount of 0.30% by mass of Al 2 O 3 / SiO 2 with respect to the amount of silicic acid in the cake. Hydrous silicic acid was produced in the same manner as described above and evaluated.

(実施例7)
ケイ酸ナトリウム水溶液と硫酸(18.4mol/l)の同時滴下が終了した直後に、アルミン酸ソーダを、反応液中のケイ酸量に対し、Al23/SiO2質量比で0.40%分追加投入した以外は、実施例5と同様な方法で含水ケイ酸を製造し、評価を行った。
(Example 7)
Immediately after the simultaneous addition of the sodium silicate aqueous solution and sulfuric acid (18.4 mol / l) was completed, sodium aluminate was added in an amount of 0.40 at a mass ratio of Al 2 O 3 / SiO 2 with respect to the amount of silicic acid in the reaction solution. A hydrous silicic acid was produced and evaluated in the same manner as in Example 5 with the exception that an additional% was added.

(実施例8)
得られたケークを乳化し、乳化液にアルミン酸ソーダを、ケーク中のケイ酸量に対し、Al23/SiO2質量比で0.50%分追加投入した以外は、実施例5と同様な方法で含水ケイ酸を製造し、評価を行った。
(Example 8)
The obtained cake was emulsified, and sodium aluminate was added to the emulsified liquid as in Example 5 except that 0.50% of Al 2 O 3 / SiO 2 mass ratio was added to the amount of silicic acid in the cake. Hydrous silicic acid was produced by the same method and evaluated.

(実施例9)
得られたケークを乳化し、乳化液にアルミン酸ソーダを、ケーク中のケイ酸量に対し、Al23/SiO2質量比で0.70%分追加投入した以外は、実施例5と同様な方法で含水ケイ酸を製造し、評価を行った。
Example 9
The obtained cake was emulsified, and sodium aluminate was added to the emulsified liquid as in Example 5 except that 0.70% of Al 2 O 3 / SiO 2 mass ratio with respect to the amount of silicic acid in the cake was added. Hydrous silicic acid was produced by the same method and evaluated.

表2に示すように、ブロードな細孔分布を有する(請求項1の条件を全て満たす)実施例5,6,7,8,9は、後述する比較例1に対し耐摩耗性向上効果が認められた。とりわけこれらの実施例5,6,7,8,9の中でも、乳化液または反応液にアルミン酸ソーダを適切な量添加しASR1‐ASR2が0.2〜0.6の範囲内にある実施例6,7,8は、特に高い耐摩耗性向上効果が認められた。   As shown in Table 2, Examples 5, 6, 7, 8, and 9 having broad pore distribution (satisfying all the conditions of claim 1) have an effect of improving wear resistance compared to Comparative Example 1 described later. Admitted. In particular, among these Examples 5, 6, 7, 8, and 9, Examples in which an appropriate amount of sodium aluminate is added to the emulsion or reaction solution and ASR1-ASR2 is in the range of 0.2 to 0.6. Nos. 6, 7 and 8 were found to have a particularly high wear resistance improving effect.

(比較例1)
撹拌機を備えた240リットルのジャケット付きステンレス容器に、水を85リットル及びケイ酸ナトリウム水溶液6.0リットル(SiO2150g/l、SiO2/Na2O質量比3.3)を投入し、加熱して温度90℃とした。この時のpHは11.2、SiO2濃度は10.0g/lであった。本水溶液に、上記同様のケイ酸ナトリウム水溶液と硫酸(18.4mol/l)とを、温度90±1℃、pH11.2を維持しながら100分間で、SiO2濃度が60g/lとなるように添加して、100分でケイ酸ナトリウム水溶液のみを停止した。続けて同様の硫酸をpH3となるまで添加して沈澱物を得た。その後得られた反応物を濾過、水洗してケークを得た。
(Comparative Example 1)
Into a 240 liter jacketed stainless steel vessel equipped with a stirrer, 85 liters of water and 6.0 liters of sodium silicate aqueous solution (SiO 2 150 g / l, SiO 2 / Na 2 O mass ratio 3.3) were added, Heated to a temperature of 90 ° C. At this time, the pH was 11.2 and the SiO 2 concentration was 10.0 g / l. To this aqueous solution, the same sodium silicate aqueous solution and sulfuric acid (18.4 mol / l) as described above were added so that the SiO 2 concentration became 60 g / l in 100 minutes while maintaining the temperature 90 ± 1 ° C. and pH 11.2. And only the aqueous sodium silicate solution was stopped after 100 minutes. Subsequently, similar sulfuric acid was added until pH 3 was obtained to obtain a precipitate. Thereafter, the obtained reaction product was filtered and washed with water to obtain a cake.

得られたケークを乳化(強い攪拌によりケークを水中に分散させ液状とする)し、この乳化液を乾燥してゴム用の基準となる含水ケイ酸を製造し、評価を行った。窒素吸脱着法による細孔分布の測定結果を図1に示す。   The obtained cake was emulsified (the cake was dispersed in water by vigorous stirring to form a liquid), and this emulsion was dried to produce a hydrous silicic acid serving as a reference for rubber and evaluated. Fig. 1 shows the measurement results of the pore distribution by the nitrogen adsorption / desorption method.

尚、比較例1の含水ケイ酸は、従来よりゴム用含水ケイ酸の基準反応として広く利用されているものである。この含水ケイ酸の摩耗指数を100として、実施例1〜9、比較例2〜4の摩耗指数を求めた。   The hydrous silicic acid of Comparative Example 1 has been widely used as a standard reaction for hydrous silicic acid for rubber. The abrasion index of Examples 1 to 9 and Comparative Examples 2 to 4 was determined with the abrasion index of this hydrous silicate being 100.

(比較例2)
得られたケークを乳化し、乳化液にアルミン酸ソーダを、ケーク中のケイ酸量に対し、Al23/SiO2質量比で0.30%分追加投入した以外は、比較例1と同様な方法で含水ケイ酸を製造し、評価を行った。
(Comparative Example 2)
Comparative Example 1 except that the obtained cake was emulsified, and sodium aluminate was added to the emulsified liquid in an amount of 0.30% in terms of Al 2 O 3 / SiO 2 mass ratio with respect to the amount of silicic acid in the cake. Hydrous silicic acid was produced by the same method and evaluated.

(比較例3)
得られたケークを乳化し、乳化液にアルミン酸ソーダを、ケーク中のケイ酸量に対し、Al23/SiO2質量比で0.50%分追加投入した以外は、比較例1と同様な方法で含水ケイ酸を製造し、評価を行った。
(Comparative Example 3)
Comparative Example 1 except that the obtained cake was emulsified, and sodium aluminate was added to the emulsified liquid in an amount of 0.50% in terms of Al 2 O 3 / SiO 2 mass ratio with respect to the amount of silicic acid in the cake. Hydrous silicic acid was produced by the same method and evaluated.

(比較例4)
得られたケークを乳化し、乳化液にアルミン酸ソーダを、ケーク中のケイ酸量に対し、Al23/SiO2質量比で0.70%分追加投入した以外は、比較例1と同様な方法で含水ケイ酸を製造し、評価を行った。
(Comparative Example 4)
Comparative Example 1 except that the obtained cake was emulsified and sodium aluminate was added to the emulsion in an amount of 0.70% in terms of Al 2 O 3 / SiO 2 mass ratio with respect to the amount of silicic acid in the cake. Hydrous silicic acid was produced by the same method and evaluated.

請求項1の条件を前述のように(A)(B)(C)に分け、請求項3は条件(D)として、比較例1〜4がどの条件を満たすかを表3に示した。   The conditions of claim 1 are divided into (A), (B), and (C) as described above, and claim 3 shows the conditions (D) that are satisfied in Comparative Examples 1 to 4 in Table 3.

表3に示すように、比較例1〜4は、ブロードな細孔分布を有する実施例1〜9に比べて耐摩耗性が低い。   As shown in Table 3, Comparative Examples 1 to 4 have lower wear resistance than Examples 1 to 9 having a broad pore distribution.

本発明は、含水ケイ酸、特にゴム組成物の補強充填用に適した含水ケイ酸が関連する分野に有用である。   The present invention is useful in fields related to hydrous silicic acid, particularly hydrous silicic acid suitable for reinforcing and filling rubber compositions.

Claims (7)

CTAB比表面積が160 m2/g以上であり、
窒素吸脱着法による細孔分布のピークが細孔半径10〜24nmの範囲にあり、かつ
細孔分布のピークの半値を示す細孔分布の細孔半径xをx1及びx2(x2>x1)としたときに、x1が前記細孔分布のピークにおける細孔半径の55%以下であり、x2が前記細孔分布のピークにおける細孔半径の190%以上であり、Al 2 O 3 とSiO 2 の質量比Al 2 O 3 /SiO 2 をASR1とし、この含水ケイ酸を10%希塩酸に10質量%の濃度で30分間分散した後分離して、pHが6以上になるまで水洗して得られる含水ケイ酸のAl 2 O 3 とSiO 2 の質量比Al 2 O 3 /SiO 2 量をASR2としたとき、0.20≦ASR1-ASR2≦0.60であ
ことを特徴とするゴム補強充填用含水ケイ酸。
CTAB specific surface area is 160 m 2 / g or more,
The pore radius x is x1 and x2 (x2> x1) where the peak of the pore distribution by the nitrogen adsorption / desorption method is in the range of the pore radius of 10 to 24 nm and shows the half value of the peak of the pore distribution. when, x1 is not less than 55% of the pore radius at the peak of the pore distribution, x2 is Ri der 190% or more of the pore radius at the peak of the pore distribution, Al 2 O 3 and SiO 2 The mass ratio of Al 2 O 3 / SiO 2 is ASR1, and this hydrous silicic acid is dispersed in 10% dilute hydrochloric acid at a concentration of 10% by mass for 30 minutes and then separated and washed with water until the pH reaches 6 or more. when the Al 2 O 3 and SiO 2 weight ratio Al 2 O 3 / SiO 2 weight precipitated silica and ASR2, rubber reinforcing filler for precipitated silica and 0.20 ≦ ASR1-ASR2 ≦ 0.60 der wherein Rukoto .
硫酸過多法により調製した含水ケイ酸である請求項1に記載のゴム補強充填用含水ケイ酸。 The hydrous silicic acid for rubber reinforcement filling according to claim 1, which is a hydrous silicic acid prepared by an excessive sulfuric acid method. シランカップリング剤を併用するジエン系ゴム組成物の補強充填用である請求項に記載のゴム補強充填用含水ケイ酸。 The hydrous silicic acid for rubber reinforcement filling according to claim 1 , which is for reinforcement filling of a diene rubber composition used in combination with a silane coupling agent. 水銀法圧入法による細孔分布においてピークが半径7〜12nmの範囲にあることを特徴とする請求項1〜のいずれかに記載のゴム補強充填用含水ケイ酸。 The hydrous silicic acid for filling and reinforcing rubber according to any one of claims 1 to 3 , wherein a peak in a pore distribution by a mercury method intrusion method has a radius in a range of 7 to 12 nm. (ア)SiO2濃度15〜25g/l、pH11〜12である80〜85℃に加熱したケイ酸アルカリ水溶液に、ケイ酸アルカリ水溶液と硫酸とを80〜85℃の温度で添加して、反応液のpHが10〜11の範囲になるようにケイ酸アルカリ水溶液と硫酸の添加量を制御しつつ中和反応を行い、SiO2濃度が60〜70g/lの範囲になるまで、前記添加を行い水溶液中にケイ酸を形成する工程、
を含む、CTAB比表面積が160 m 2 /g以上であり、
窒素吸脱着法による細孔分布のピークが細孔半径10〜24nmの範囲にあり、かつ
細孔分布のピークの半値を示す細孔分布の細孔半径xをx1及びx2(x2>x1)としたときに、x1が前記細孔分布のピークにおける細孔半径の55%以下であり、x2が前記細孔分布のピークにおける細孔半径の190%以上であり、Al 2 O 3 とSiO 2 の質量比Al 2 O 3 /SiO 2 をASR1とし、この含水ケイ酸を10%希塩酸に10質量%の濃度で30分間分散した後分離して、pHが6以上になるまで水洗して得られる含水ケイ酸のAl 2 O 3 とSiO 2 の質量比Al 2 O 3 /SiO 2 量をASR2としたとき、0.20≦ASR1-ASR2≦0.60である、
含水ケイ酸の製造方法。
(A) An alkali silicate aqueous solution and sulfuric acid are added to an alkali silicate aqueous solution heated to 80 to 85 ° C. having a SiO 2 concentration of 15 to 25 g / l and a pH of 11 to 12 at a temperature of 80 to 85 ° C. The neutralization reaction is performed while controlling the addition amount of the alkali silicate aqueous solution and sulfuric acid so that the pH of the solution is in the range of 10 to 11, and the addition is performed until the SiO 2 concentration is in the range of 60 to 70 g / l. Carrying out and forming silicic acid in the aqueous solution,
The CTAB specific surface area is 160 m 2 / g or more,
The peak of pore distribution by nitrogen adsorption / desorption method is in the range of pore radius of 10 to 24 nm, and
When the pore radius x of the pore distribution showing the half value of the peak of the pore distribution is x1 and x2 (x2> x1), x1 is 55% or less of the pore radius in the peak of the pore distribution, x2 is not less than 190% of the pore radius at the peak of the pore distribution, 10 Al 2 O 3 mass ratio Al 2 O 3 / SiO 2 of SiO 2 and ASR1, the hydrated silicic acid 10% diluted hydrochloric acid separated after dispersing for 30 minutes at a concentration of mass%, the Al 2 O 3 mass ratio Al 2 O 3 / SiO 2 of SiO 2 of hydrous silicic acid obtained by washing with water until the pH reached 6 or more ASR2 When 0.20 ≦ ASR1-ASR2 ≦ 0.60,
A method for producing hydrous silicic acid.
さらに以下の工程(イ)、(ウ)および(エ)を含む、請求項に記載の含水ケイ酸の製造方法。
(イ)前記ケイ酸アルカリ水溶液の添加を停止し、硫酸添加を継続して、反応液のpHが5以下となるまで添加して沈澱物を得る工程、
(ウ)得られた沈澱物を濾過、水洗してケークを得る工程、及び
(エ)得られたケークを乾燥、粉砕してケイ酸粉末を得る工程。
Furthermore, the manufacturing method of the hydrous silicic acid of Claim 5 including the following processes (I), (U), and (D).
(A) Stopping the addition of the alkali silicate aqueous solution, continuing the addition of sulfuric acid, and adding until the pH of the reaction solution is 5 or less to obtain a precipitate;
(C) a step of filtering and washing the obtained precipitate to obtain a cake; and (d) a step of drying and pulverizing the obtained cake to obtain a silicate powder.
CTAB比表面積が160 mCTAB specific surface area of 160 m 22 /g以上であり、/ g or more,
窒素吸脱着法による細孔分布のピークが細孔半径10〜24nmの範囲にあり、かつThe peak of pore distribution by nitrogen adsorption / desorption method is in the range of pore radius of 10 to 24 nm, and
細孔分布のピークの半値を示す細孔分布の細孔半径xをx1及びx2(x2>x1)としたときに、x1が前記細孔分布のピークにおける細孔半径の55%以下であり、x2が前記細孔分布のピークにおける細孔半径の190%以上であり、AlWhen the pore radius x of the pore distribution showing the half value of the peak of the pore distribution is x1 and x2 (x2> x1), x1 is 55% or less of the pore radius in the peak of the pore distribution, x2 is 190% or more of the pore radius at the peak of the pore distribution, Al 22 OO 3Three とSiOAnd SiO 22 の質量比AlMass ratio of Al 22 OO 3Three /SiO/ SiO 22 をASR1とし、この含水ケイ酸を10%希塩酸に10質量%の濃度で30分間分散した後分離して、pHが6以上になるまで水洗して得られる含水ケイ酸のAlASR1, and this hydrous silicic acid is dispersed in 10% dilute hydrochloric acid at a concentration of 10% by mass for 30 minutes, separated, and washed with water until the pH reaches 6 or higher. 22 OO 3Three とSiOAnd SiO 22 の質量比AlMass ratio of Al 22 OO 3Three /SiO/ SiO 22 量をASR2としたとき、0.20≦ASR1-ASR2≦0.60である含水ケイ酸のゴム補強充填への使用。Use of hydrous silicic acid for rubber reinforcement filling where ASR2 is 0.20 ≦ ASR1-ASR2 ≦ 0.60.

JP2015118783A 2015-06-12 2015-06-12 Hydrous silicic acid for rubber reinforcement filling Active JP6487785B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2015118783A JP6487785B2 (en) 2015-06-12 2015-06-12 Hydrous silicic acid for rubber reinforcement filling
MYPI2017704716A MY181368A (en) 2015-06-12 2016-06-07 Hydrous silicate for rubber-reinforcing filler
PCT/JP2016/066839 WO2016199744A1 (en) 2015-06-12 2016-06-07 Hydrous silicate for rubber-reinforcing filler
KR1020187000932A KR102405234B1 (en) 2015-06-12 2016-06-07 Hydrous silicic acid for rubber reinforcement filling
CN201680034018.0A CN107709438B (en) 2015-06-12 2016-06-07 Rubber reinforcement fills aqueous silicic acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015118783A JP6487785B2 (en) 2015-06-12 2015-06-12 Hydrous silicic acid for rubber reinforcement filling

Publications (3)

Publication Number Publication Date
JP2017002210A JP2017002210A (en) 2017-01-05
JP2017002210A5 JP2017002210A5 (en) 2018-04-12
JP6487785B2 true JP6487785B2 (en) 2019-03-20

Family

ID=57504800

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015118783A Active JP6487785B2 (en) 2015-06-12 2015-06-12 Hydrous silicic acid for rubber reinforcement filling

Country Status (5)

Country Link
JP (1) JP6487785B2 (en)
KR (1) KR102405234B1 (en)
CN (1) CN107709438B (en)
MY (1) MY181368A (en)
WO (1) WO2016199744A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6781106B2 (en) 2017-06-09 2020-11-04 東ソー・シリカ株式会社 Hydrous silicic acid for rubber reinforcement filling and its manufacturing method
JP6811750B2 (en) * 2018-08-10 2021-01-13 東ソー・シリカ株式会社 Hydrous silicic acid for rubber reinforcement filling
JP6811751B2 (en) 2018-08-10 2021-01-13 東ソー・シリカ株式会社 Hydrous silicic acid for rubber reinforcement filling
JP7473350B2 (en) 2020-02-05 2024-04-23 東ソー・シリカ株式会社 Hydrous silicic acid for rubber reinforcing filler and hydrous silicic acid-containing rubber composition
KR20230002288A (en) * 2020-04-28 2023-01-05 토소실리카 가부시키가이샤 Hydrophobic silica gel for polishing energy ray curing type paint

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3027488B2 (en) * 1993-03-22 2000-04-04 日本シリカ工業株式会社 Method for producing hydrous silicic acid for silicone rubber filler
JP4071343B2 (en) * 1998-02-18 2008-04-02 株式会社ブリヂストン Rubber composition and pneumatic tire using the same
JP3998793B2 (en) * 1998-02-18 2007-10-31 株式会社トクヤマ Precipitated silica and method for producing the same
JP3974248B2 (en) * 1998-02-18 2007-09-12 株式会社ブリヂストン Rubber composition and pneumatic tire using the same
JPH11236208A (en) * 1998-02-25 1999-08-31 Nippon Silica Ind Co Ltd Hydrous silica for rubber reinforcement
JP2000302912A (en) 1999-04-20 2000-10-31 Nippon Silica Ind Co Ltd Hydrous silicic acid for rubber reinforcing and filling and rubber composition using the same
JP4515761B2 (en) * 2001-08-13 2010-08-04 ロディア・シミ Silica production process, silica with specific pore size and / or particle size distribution and their use especially for polymer reinforcement
JP2005053728A (en) * 2003-08-01 2005-03-03 Dsl Japan Co Ltd Amorphous silica particle having high oil absorption and high structural performance
DE102005043201A1 (en) * 2005-09-09 2007-03-15 Degussa Ag Precipitated silicas with a special pore size distribution
WO2012005013A1 (en) * 2010-07-09 2012-01-12 株式会社ブリヂストン Rubber composition and pneumatic tire using same
JP5503685B2 (en) * 2012-04-23 2014-05-28 住友ゴム工業株式会社 Rubber composition for sidewall or base tread, and pneumatic tire

Also Published As

Publication number Publication date
JP2017002210A (en) 2017-01-05
KR20180017143A (en) 2018-02-20
KR102405234B1 (en) 2022-06-07
WO2016199744A1 (en) 2016-12-15
CN107709438B (en) 2019-11-05
CN107709438A (en) 2018-02-16
MY181368A (en) 2020-12-21

Similar Documents

Publication Publication Date Title
JP6487785B2 (en) Hydrous silicic acid for rubber reinforcement filling
EP2233522B1 (en) Rubber composition and tire
JP5478816B2 (en) Rubber composition for tire
JP2007138069A (en) Rubber composition and pneumatic tire
JP2005325206A (en) Rubber composition for tire tread and tire using the same
EP3572457B1 (en) Inorganic composite for rubber reinforcement, method for preparing the same, and rubber composition for tires comprising the same
JP3818554B2 (en) Hydrous silicic acid for reinforcing elastomer and method for producing the same
WO2016199429A1 (en) Rubber composition and tire
JP2013056984A (en) Rubber composition and pneumatic tire using the same
JP6781106B2 (en) Hydrous silicic acid for rubber reinforcement filling and its manufacturing method
JP5480585B2 (en) Composite, rubber composition and pneumatic tire
KR20210038080A (en) A reinforcing materials for rubber comprising aluminosilicate particles and rubber composition for tires comprising the same
WO2024085032A1 (en) Master batch, method for producing master batch, rubber composition for tires, method for producing rubber composition for tires, rubber material for tires, and tire
JP3445080B2 (en) Rubber composition and pneumatic tire using the rubber composition
KR102684258B1 (en) Reinforcing materials for rubber comprising aluminosilicate particles and rubber composition for tires comprising the same
JP7472305B2 (en) Rubber composition, rubber product and tire
JP2012153787A (en) Rubber composition for tire, and pneumatic tire
JP3445081B2 (en) Rubber composition and pneumatic tire using the rubber composition
JP6227849B1 (en) Inorganic filler for rubber, rubber composition and tire
JP2000302912A (en) Hydrous silicic acid for rubber reinforcing and filling and rubber composition using the same
JP2024008000A (en) Rubber composition for tire and tire using the same
JP2024525928A (en) Rubber composition
KR20210011300A (en) Surface modified aluminosilicate particles, preparation method thereof, and rubber composition for tires comprising the surface modified aluminosilicate particles
JP2008222798A (en) Rubber composition for tire and pneumatic tire using the same
KR20210038254A (en) Aluminosilicate particles and a method for preparing aluminosilicate particles

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180223

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180223

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190222

R150 Certificate of patent or registration of utility model

Ref document number: 6487785

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350