JPH11236208A - Hydrous silica for rubber reinforcement - Google Patents

Hydrous silica for rubber reinforcement

Info

Publication number
JPH11236208A
JPH11236208A JP10043151A JP4315198A JPH11236208A JP H11236208 A JPH11236208 A JP H11236208A JP 10043151 A JP10043151 A JP 10043151A JP 4315198 A JP4315198 A JP 4315198A JP H11236208 A JPH11236208 A JP H11236208A
Authority
JP
Japan
Prior art keywords
surface area
specific surface
silicic acid
rubber
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10043151A
Other languages
Japanese (ja)
Inventor
Masahiro Harada
正博 原田
Toshitaka Kurasumi
敏隆 蔵澄
Hidenobu Yonei
英伸 米井
Norio Ishikawa
紀夫 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Silica Corp
Original Assignee
Nippon Silica Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Silica Industrial Co Ltd filed Critical Nippon Silica Industrial Co Ltd
Priority to JP10043151A priority Critical patent/JPH11236208A/en
Publication of JPH11236208A publication Critical patent/JPH11236208A/en
Pending legal-status Critical Current

Links

Landscapes

  • Silicon Compounds (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain wet process hydrous silica capable of improving the breaking strength and wear resistance of rubber and not deteriorating the processability of rubber when added to the rubber. SOLUTION: The hydrous silica has 250-400 m<2> /g N2 method specific surface area (A), 200-300 m<2> /g Hg method specific surface area (B) and 1.7-2.5 ml/g N2 method pore volume (C), satisfies the relation of A×C/B>=2.3 and preferably has <=2.5 ml/g Hg method pare volume. The ratio of the N2 method specific surface area of the silica to the CTAB method specific surface area is preferably >=1.2.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、新規な湿式法含水
ケイ酸に関する。さらに詳しくは、ゴムの破壊特性及び
耐摩耗性を向上させたゴム補強用充填剤として有用な湿
式法含水ケイ酸に関する。本発明の含水ケイ酸は、自動
車タイヤ、履物、ベルト等のあらゆるゴム製工業製品の
補強用として有用である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a novel wet hydrated silicic acid. More specifically, the present invention relates to a wet-process hydrous silicate which is useful as a rubber reinforcing filler having improved rubber breaking characteristics and abrasion resistance. The hydrous silicic acid of the present invention is useful for reinforcing all rubber industrial products such as automobile tires, footwear and belts.

【0002】[0002]

【従来の技術】従来、ゴム補強用充填剤としては、特に
タイヤ関係にはカーボンブラックが多用されてきた。ま
た、カーボンブラックと並んで含水ケイ酸もゴム補強用
充填剤として広く使用されている。さらに、近年、タイ
ヤの性能をより改善するための開発が世界的に進められ
ており、それに伴って含水ケイ酸の特性も見直され、そ
の有利さから使用量が増加するとともに、更なる改良が
試みられている。しかしながら、未だ満足な物性のもの
は得られていない。
2. Description of the Related Art Conventionally, carbon black has been frequently used as a filler for reinforcing rubber, particularly for tires. In addition, hydrated silicic acid is widely used as a rubber reinforcing filler along with carbon black. Furthermore, in recent years, development for further improving the performance of tires has been promoted worldwide, and the characteristics of hydrated silica have been reviewed accordingly, and the use amount has been increased due to its advantages, and further improvements have been made. Attempted. However, satisfactory properties have not yet been obtained.

【0003】[0003]

【発明が解決しようとする課題】ゴム分野、特に自動車
タイヤの分野において、より高い性能のタイヤの開発が
進められている。例えば、タイヤを高性能化することに
より、操縦安定性等を向上させることや、転がり抵抗を
削減することにより、省エネルギーを推進することが試
みられ、現実にそのような機能を有する製品も市販され
つつある。これら高い性能のタイヤには、従来品に比べ
てより高い破壊強度及び耐摩耗性を有することが要求さ
れる。その結果、タイヤの補強充填剤である含水ケイ酸
に対しても、従来にない、より高い性能、即ち、ゴムの
破壊強度及び耐摩耗性を向上させることが可能な性能を
有することが要求されるようになっている。
In the rubber field, particularly in the field of automobile tires, tires having higher performance are being developed. For example, by increasing the performance of tires, improving steering stability, etc., and reducing the rolling resistance, energy saving has been attempted, and products with such functions have actually been marketed. It is getting. These high performance tires are required to have higher breaking strength and wear resistance than conventional products. As a result, hydrated silica, which is a reinforcing filler for tires, is required to have unprecedented and higher performance, that is, performance capable of improving the breaking strength and abrasion resistance of rubber. It has become so.

【0004】ゴム補強機能は、充填剤である含水ケイ酸
の比表面積及びその細孔容積に影響されることはよく知
られている。通常、比表面積及び細孔容積が大きいほど
補強性は良くなる傾向にある。ゴム補強用シリカとして
一般に知られているものは、N2法比表面積が140〜
220m2/gの範囲であるが、より高い補強性を得る
という観点から220m2/g以上の含水ケイ酸につい
ても知られている。しかしながら、N2法比表面積が2
20m2/g以上になると、含水ケイ酸の凝集力が強過
ぎて分散不良を起こし、加工性が低下してしまい、却っ
て補強性の低下を招く場合もある。また、分散不良によ
る加工性の低下をシランカップリング剤等の薬剤で補う
ことも提案されている。しかし、シランカップリング剤
等による物性の改善にも限界がある。
It is well known that the rubber reinforcing function is affected by the specific surface area and the pore volume of hydrated silica as a filler. Usually, the larger the specific surface area and the pore volume, the better the reinforcing property. What is generally known as rubber reinforcing silica has an N2 specific surface area of 140 to
In the range of 220 m 2 / g, but is also known for the 220 m 2 / g or more precipitated silica from the viewpoint of obtaining a higher reinforcing properties. However, the N2 specific surface area is 2
When it is 20 m 2 / g or more, the cohesive force of the hydrated silicic acid is too strong, causing poor dispersion, resulting in reduced workability and, on the contrary, reduced reinforcement. It has also been proposed to compensate for the reduction in workability due to poor dispersion with a chemical such as a silane coupling agent. However, there is a limit to improvement in physical properties by a silane coupling agent or the like.

【0005】そこで本発明の目的は、ゴムの破壊強度及
び耐摩耗性を改善することができ、かつゴムへ配合する
際の加工性も低下させることがない湿式法含水ケイ酸を
提供することにある。
Accordingly, an object of the present invention is to provide wet-process hydrous silicic acid which can improve the breaking strength and abrasion resistance of rubber and does not reduce the processability when compounding the rubber. is there.

【0006】[0006]

【課題を解決するための手段】本発明は、N2法比表面
積(A)が250〜400m2/gの範囲であり、Hg
法比表面積(B)が200〜300m2/gの範囲であ
り、N2法細孔容積(C)が1.7〜2.5ml/gの
範囲であり、かつA×C/Bが2.3以上である湿式法
含水ケイ酸に関する。
According to the present invention, the specific surface area (A) of the N2 method is in the range of 250 to 400 m 2 / g, and Hg
The method specific surface area (B) is in the range of 200 to 300 m 2 / g, the N2 method pore volume (C) is in the range of 1.7 to 2.5 ml / g, and A × C / B is 2. The present invention relates to wet hydrated silicic acid having 3 or more.

【0007】[0007]

【発明の実施の形態】本発明を更に詳細に説明する。含
水ケイ酸のゴム補強機構に関して数々の研究がなされて
いる。その中で、本発明者らは、ゴム補強に特に関与す
ると思われる含水ケイ酸の一次粒子径(表面積)及びそ
の細孔容積との相関関係に着目して、種々研究を重ね
た。
DETAILED DESCRIPTION OF THE INVENTION The present invention will be described in more detail. Numerous studies have been made on the rubber reinforcing mechanism of hydrous silicate. Among them, the present inventors have repeated various studies paying attention to the correlation between the primary particle diameter (surface area) of hydrated silicic acid which seems to be particularly involved in rubber reinforcement and its pore volume.

【0008】一般に、ゴムの補強性は通常N2法比表面
積と関連し、表面積が大きくなるに従って補強性能も上
がる傾向にある。しかしながら含水ケイ酸は表面にシラ
ノール基(Si−OH)が存在し、表面積を大きくしす
ぎると凝集力が強まり、分散不良をきたし補強性が低下
する傾向がある。また細孔容積に関しても、大きいほど
構造性が豊かとなり補強効果をもたらす反面、ゴムの粘
度が高くなり加工性が悪化したり、ゴム混練時に薬剤を
吸着して補強効果を低下させる等の欠点もある。
In general, the reinforcing property of rubber is usually related to the specific surface area by the N2 method, and the reinforcing performance tends to increase as the surface area increases. However, hydrous silicic acid has a silanol group (Si-OH) on the surface, and if the surface area is too large, cohesive strength is increased, poor dispersion tends to occur, and reinforcing properties tend to be reduced. Regarding the pore volume, the larger the pore size, the richer the structure and the reinforcing effect, but on the other hand, the viscosity of the rubber increases and the processability deteriorates. is there.

【0009】このように充填剤である含水ケイ酸の表面
積及び細孔容積のコントロールは重要で、ゴム補強に大
きな影響を及ぼすファクターである。即ち、両者のバラ
ンスをコントロールすることで、ゴム補強性能を大きく
左右できることは想像できる。しかし、どのようにこれ
らのファクターを変化させれば、ゴムへ配合する際の加
工性を低下させることなく、ゴムの破壊強度及び耐摩耗
性を改善することができるかについては知られていなか
った。そこで、本発明者らは、種々検討を重ねた結果、
前記の物性が前記に特定した範囲にある含水ケイ酸が、
優れた補強効果を発揮できることを見い出し、本発明を
完成するに至った。
As described above, control of the surface area and pore volume of hydrated silicic acid as a filler is important and is a factor having a great effect on rubber reinforcement. That is, it can be imagined that the rubber reinforcement performance can be largely influenced by controlling the balance between the two. However, it has not been known how these factors can be changed to improve the breaking strength and abrasion resistance of rubber without lowering the workability when compounding the rubber. . Thus, the present inventors have conducted various studies, and as a result,
Hydrous silicic acid whose physical properties are in the range specified above,
It has been found that an excellent reinforcing effect can be exhibited, and the present invention has been completed.

【0010】本発明の湿式法含水ケイ酸は、N2法比表
面積(A)が250〜400m2/gの範囲であり、H
g法比表面積(B)が200〜300m2/gの範囲で
あり、N2法細孔容積(C)が1.7〜2.5ml/g
の範囲であり、かつA×C/Bが2.3以上であること
を特徴とする。
The wet hydrated silicic acid of the present invention has an N2 specific surface area (A) in the range of 250 to 400 m 2 / g.
g method specific surface area (B) is in the range of 200 to 300 m 2 / g, and N2 method pore volume (C) is 1.7 to 2.5 ml / g.
And A × C / B is 2.3 or more.

【0011】従来、ゴム補強用充填剤として使用されて
いる含水ケイ酸はN2法比表面積が220m2/g以下
であり、かつN2法細孔容積も1.7ml/g以下と低
いのが一般的である。分散をより容易にさせることが主
眼となっていたことからこの領域になったものと推察さ
れる。
Conventionally, hydrous silicic acid used as a filler for reinforcing rubber has a specific surface area of 220 m 2 / g or less according to N2 method and a low pore volume of 1.7 ml / g or less according to N2 method. It is a target. It is presumed that this area came from the fact that the main purpose was to make dispersion easier.

【0012】それに対して、本発明の含水ケイ酸は、N
2法比表面積(以下、N2SAと略記する)が250〜
400m2/gの範囲であり、N2法細孔容積(以下、
N2Poと略記する)が1.7〜2.5ml/gの範囲
であり、従来品に比べてより高いN2SA及びN2Po
を有する。このような物性を有する本発明の含水ケイ酸
は、ゴムに配合した場合、優れた補強性を発揮する。
On the other hand, the hydrated silicic acid of the present invention contains N
2 method specific surface area (hereinafter abbreviated as N2SA) is 250 to
400 m 2 / g, and the N2 method pore volume (hereinafter, referred to as
(Abbreviated as N2Po) is in the range of 1.7 to 2.5 ml / g, which is higher than that of the conventional product.
Having. The hydrated silicic acid of the present invention having such physical properties exhibits excellent reinforcing properties when blended with rubber.

【0013】N2SAは250m2/g未満では補強性
が低く、更には400m2/gを超えると含水ケイ酸の
凝集力があまりにも強すぎるためか、ゴム中での分散不
良を招き補強性は低下し、且つ、ゴム配合物の粘度が高
くなりすぎて加工性をも悪化させることになるので好ま
しくない。好ましくは250〜370m2/gの範囲で
ある。N2Poは1.7〜2.5ml/gの範囲であ
る。N2Poは直径3000Å以下の微細孔容積で構造
性の指標となる。N2Poが1.7ml/g未満では補
強性が低下する。N2Poは高いほど補強性は増すが、
沈澱法により生産可能であるという観点から、上限は
2.5ml/g程度である。
When N2SA is less than 250 m 2 / g, the reinforcing property is low, and when it exceeds 400 m 2 / g, the cohesive force of hydrated silica is too strong. It is not preferable because the viscosity decreases and the viscosity of the rubber compound becomes too high to deteriorate the processability. Preferably it is in the range of 250 to 370 m 2 / g. N2Po ranges from 1.7 to 2.5 ml / g. N2Po is an index of structural properties with a micropore volume of 3000 mm or less in diameter. If N2Po is less than 1.7 ml / g, the reinforcing property is reduced. The higher N2Po is, the stronger the reinforcement is,
The upper limit is about 2.5 ml / g from the viewpoint that production is possible by the precipitation method.

【0014】また、本発明の含水ケイ酸は、Hg法細孔
容積(以下、HgPoと略記する)が比較的低いので、
Hg法比表面積(以下、HgSAと略記する)はN2S
Aに比し200〜300m2/gとあまり高くない。
尚、HgSAの算出法は、細孔を円筒形と仮定してA=
2V/rで算出する。(但し、A=表面積(m2/g)、V
=全細孔容積(ml/g)、r=平均細孔半径(μm))即
ち、メソポアーが少なくミクロポアーが多いのが特徴と
いえる。HgSAは、好ましくは200〜270m2
gの範囲である。HgSAは、後述のN2SA(A)×
N2Po(C)/HgSA(B)の調整において重要で
ある。
Further, the hydrous silicic acid of the present invention has a relatively low Hg method pore volume (hereinafter abbreviated as HgPo).
Hg method specific surface area (hereinafter abbreviated as HgSA) is N2S
Compared with A, it is not so high as 200 to 300 m 2 / g.
In addition, the calculation method of HgSA is as follows, assuming that the pores are cylindrical.
Calculate at 2V / r. (However, A = surface area (m 2 / g), V
= Total pore volume (ml / g), r = average pore radius (μm)) That is, it can be said that the feature is that there are few mesopores and there are many micropores. HgSA is preferably 200 to 270 m 2 /
g. HgSA is N2SA (A) × described below.
It is important in adjusting N2Po (C) / HgSA (B).

【0015】通常、N2SAの高いものは前記したよう
に、分散不良を起こしやすく補強性能は上がりにくい傾
向にあったが、本発明ではこれを、他の物性とのバラン
スを調整することで解消した。即ち、本発明では、N2
SAが高いにも係わらず、N2SA(A)×N2Po
(C)/HgSA(B)を調整することで、分散不良を
防止して補強性能の向上を図ることができた。即ち、本
発明の含水ケイ酸では、A×C/Bが2.3以上であり
従来品に比べて高く、これにより、分散不良を起こすこ
となく補強性能(破壊特性及び耐摩耗性)を向上させる
ことができた。尚、A×C/Bの値には、本発明の目的
との関係では上限はないが、生産技術上は、3.3程度
が上限であろう。本発明の含水ケイ酸は、好ましくは
2.3〜3.3の範囲である。A×C/Bが2.3未満
の含水ケイ酸は、補強性に劣り、2.3以上であれば、
ゴムとの相溶性がよく好分散が可能である。
Usually, as described above, those having high N2SA tend to cause poor dispersion and hardly increase the reinforcing performance, but in the present invention, this was solved by adjusting the balance with other physical properties. . That is, in the present invention, N2
N2SA (A) × N2Po despite high SA
By adjusting (C) / HgSA (B), it was possible to prevent dispersion failure and improve reinforcement performance. That is, in the hydrous silicic acid of the present invention, A × C / B is 2.3 or more, which is higher than that of the conventional product, thereby improving the reinforcing performance (fracture characteristics and abrasion resistance) without causing poor dispersion. I was able to. Although there is no upper limit for the value of A × C / B in relation to the object of the present invention, the upper limit may be about 3.3 in production technology. The hydrated silicic acid of the present invention is preferably in the range of 2.3 to 3.3. Aqueous silicic acid having an A × C / B of less than 2.3 is inferior in reinforcement, and if it is 2.3 or more,
Good compatibility with rubber and good dispersion.

【0016】本発明においては、表面積を高くし(一次
粒子径は小)、微細孔(ミクロポアー)を大きくし、H
gPo(メソポアー)を小さくして粒度と空隙のバラン
スをコントロールすることで補強性能の向上が図れたも
のと推察される。N2SAを高くすることでゴムとの接
触点を多くして補強効果をあげ、N2Poを大きくして
構造性を豊かにし、ゴム分子との絡みを強固にして補強
効果を図り、HgSAを適正値にしてバランスをとり、
高分散を図り補強性を高めることができたと考えられ
る。
In the present invention, the surface area is increased (the primary particle diameter is small), the fine pores (micropores) are increased, and H
It is presumed that reinforcement performance was improved by reducing gPo (mesopore) and controlling the balance between particle size and voids. By increasing N2SA, the number of contact points with rubber is increased to increase the reinforcing effect, N2Po is increased to enhance the structural properties, the entanglement with rubber molecules is strengthened, the reinforcing effect is achieved, and HgSA is adjusted to an appropriate value. Balance
It is considered that high dispersion was achieved and reinforcement was improved.

【0017】さらに本発明の含水ケイ酸は、Hg法細孔
容積(HgPo)が2.5ml/g以下の範囲であるこ
とが好ましい。Hg法細孔容積は、より好ましくは2.
0〜2.5ml/gの範囲である。前記したように、本
発明の含水ケイ酸は、N2SA及びN2Poを高く設定
しており、さらにメソボアーの指標となるHgPoをも
高くし過ぎるとゴム配合物の粘度が高くなり過ぎて加工
性を悪化させたり、ゴム薬剤を吸着し補強効果を低下さ
せることになる。さらに、HgPoが低過ぎると分散不
良を起こしやすくなる。従って、上記の範囲とすること
が好ましい。
Further, the hydrous silicic acid of the present invention preferably has an Hg method pore volume (HgPo) of not more than 2.5 ml / g. The Hg method pore volume is more preferably 2.
It is in the range of 0-2.5 ml / g. As described above, the hydrated silicic acid of the present invention has a high N2SA and N2Po, and if the HgPo, which is an indicator of mesopores, is too high, the viscosity of the rubber compound becomes too high and the processability deteriorates. Or the rubber agent is adsorbed and the reinforcing effect is reduced. Furthermore, when HgPo is too low, poor dispersion is likely to occur. Therefore, it is preferable to set the above range.

【0018】また、本発明の含水ケイ酸は、N2法比表
面積/CTAB法比表面積が1.2以上であることが好
ましい。より好ましくは、N2法比表面積/CTAB法
比表面積が1.2〜1.6の範囲である。CTAB法比
表面積は、含水ケイ酸の外部表面積を表す測定法の1つ
として多用されている。ミクロポアーの多い本発明の含
水ケイ酸においては、それ程高くはなく、N2法比表面
積/CTAB法比表面積値は、一般の含水ケイ酸に比較
して大きな値となる。CTAB法比表面積がN2法比表
面積と同様に大きな値となると、ゴム配合物の粘度が高
くなり過ぎて加工性を悪化させたり、分散不良を起こす
ことになるので、N2法比表面積/CTAB法比表面積
は1.2以上であることが好ましい。
Further, the hydrous silicic acid of the present invention preferably has an N2 specific surface area / CTAB specific surface area of 1.2 or more. More preferably, the N2 specific surface area / CTAB specific surface area is in the range of 1.2 to 1.6. The CTAB method specific surface area is frequently used as one of the measuring methods for expressing the external surface area of hydrous silicic acid. In the hydrous silicic acid of the present invention having many micropores, the value is not so high, and the value of N2 method specific surface area / CTAB method specific surface area value is larger than that of general hydrous silicic acid. If the specific surface area of the CTAB method is as large as the specific surface area of the N2 method, the viscosity of the rubber compound becomes too high, thereby deteriorating the processability and causing poor dispersion. The specific surface area is preferably 1.2 or more.

【0019】以下に本発明の含水ケイ酸の製造方法につ
いて説明する。本発明の含水ケイ酸は、反応条件の調整
は必要であるが、基本的には、従来の湿式法による含水
ケイ酸の製造方法と同様の方法で製造できる。即ち、ア
ルカリ金属ケイ酸塩水溶液と鉱酸の反応により含水ケイ
酸を沈澱物として得る方法であり、より詳しくは、アル
カリ金属ケイ酸塩水溶液に鉱酸を添加していく片側滴下
法とアルカリ金属ケイ酸塩水溶液と鉱酸とを同時に反応
容器に添加していく同時滴下の二法がある。但し、本発
明の含水ケイ酸は、同時滴下法で調製することが、以下
で説明するように、高アルカリ域での反応を継続させて
N2SAを高く維持させ、かつA×C/Bの値を1.2
以上に調整するという観点からは適当である。
The method for producing hydrous silicic acid of the present invention will be described below. The hydrated silicic acid of the present invention requires adjustment of the reaction conditions, but can be produced basically by the same method as the method for producing hydrated silicic acid by a conventional wet method. That is, this is a method of obtaining hydrous silicic acid as a precipitate by the reaction of an aqueous solution of an alkali metal silicate with a mineral acid. More specifically, a one-sided dropping method in which a mineral acid is added to an aqueous solution of an alkali metal silicate and an alkali metal There are two simultaneous dropping methods in which a silicate aqueous solution and a mineral acid are simultaneously added to a reaction vessel. However, the hydrated silicic acid of the present invention can be prepared by the simultaneous dropping method, as described below, by continuing the reaction in a high alkali region to keep N2SA high and to obtain a value of A × C / B. To 1.2
It is appropriate from the viewpoint of adjusting as described above.

【0020】本発明のN2SAが250〜400m2
gの範囲であり、HgSAが200〜300m2/gの
範囲であり、N2Poが1.7〜2.5ml/gの範囲
であり、かつA×C/Bが2.3以上である含水ケイ酸
を製造するためには、従来にない反応条件の設定が必要
であり、その点について以下に説明する。湿式法による
含水ケイ酸の製造方法において、変動させうる反応条件
は、主に、反応溶液中のSiO2濃度、反応温度、反応
溶液のpH、及び反応時間であり、これらのファクター
を適宜変動させる。
The N2SA of the present invention is 250 to 400 m 2 /
g, HgSA is in the range of 200 to 300 m 2 / g, N2Po is in the range of 1.7 to 2.5 ml / g, and A × C / B is 2.3 or more. In order to produce an acid, it is necessary to set a reaction condition that has not existed before, and this will be described below. In the method for producing hydrous silicic acid by a wet method, the reaction conditions that can be varied are mainly SiO 2 concentration in the reaction solution, reaction temperature, pH of the reaction solution, and reaction time, and these factors are appropriately varied. .

【0021】まず、本発明において特徴的なのは、反応
溶液のpHである。従来法においては、反応溶液のpH
は7.5〜10.5の範囲内であり、より一般的には8
〜9の範囲内であった。それに対して本発明では、N2
SA及びHgSAをより高い値にするという観点から、
反応溶液のpHは10.5〜11.5の範囲とする。ま
た、反応温度は、N2SA及びHgSAをより高い値に
するという観点から、70〜85℃の範囲とする。反応
温度が高くなるほど比表面積は低くなる傾向があり、従
来のN2SAが150〜200m2/gの含水ケイ酸の
製造における反応温度は、85〜95℃である。
First, a characteristic of the present invention is the pH of the reaction solution. In the conventional method, the pH of the reaction solution
Is in the range of 7.5 to 10.5, more typically 8
-9. In contrast, in the present invention, N2
From the viewpoint of making SA and HgSA higher values,
The pH of the reaction solution is in the range of 10.5-11.5. The reaction temperature is set in the range of 70 to 85 ° C. from the viewpoint of increasing N2SA and HgSA to higher values. The specific surface area tends to decrease as the reaction temperature increases, and the reaction temperature in the conventional production of hydrated silicic acid with N2SA of 150 to 200 m 2 / g is 85 to 95 ° C.

【0022】反応溶液のSiO2濃度において、同時滴
下終了時のSiO2濃度は、40〜80g/lの範囲と
する。好ましくは50〜70g/lの範囲である。この
場合、同時滴下を開始する時の反応溶液のSiO2濃度
を12g/l以上、好ましくは13〜25g/lの範囲
とすることが適当である。同時滴下終了時のSiO2
度を低くし過ぎるとN2SAが高くなると同時にHgS
Aも高くなるので好ましくない。逆に、SiO2濃度を
高くし過ぎるとN2SAが低くなるので好ましくない。
又、同時滴下開始時、反応初期のSiO2濃度を調整す
ることが必要である。即ち、反応初期のSiO2濃度を
高く設定することでN2SAとN2Poを高く、HgS
Aは比較的低く調整することが可能となる。但し、あま
り高くし過ぎると、N2SAが高くなり過ぎるので好ま
しくない。
[0022] In a SiO 2 concentration of the reaction solution, SiO 2 concentration during simultaneous completion of the dropwise addition, the range of 40 and 80 g / l. Preferably it is in the range of 50 to 70 g / l. In this case, it is appropriate that the SiO 2 concentration of the reaction solution at the start of simultaneous dropping is 12 g / l or more, preferably 13 to 25 g / l. If the SiO 2 concentration at the end of simultaneous dropping is too low, N2SA will increase and HgS will increase.
A is also undesirably high. Conversely, if the SiO 2 concentration is too high, N2SA will be low, which is not preferable.
Further, at the start of simultaneous dropping, it is necessary to adjust the SiO 2 concentration at the beginning of the reaction. That is, by setting the SiO 2 concentration at the beginning of the reaction high, the N2SA and N2Po are increased, and the HgS
A can be adjusted relatively low. However, it is not preferable that the height is too high because N2SA becomes too high.

【0023】後述する反応時間及び反応温度等を適当に
設定し、これらの条件を選択することにより、N2SA
を高くしながら、A×C/Bの値を1.2以上と高くす
ることができる。尚、従来法における反応初期のSiO
2濃度は10g/l以下の範囲であることが一般的であ
り、この条件で得られる含水ケイ酸のN2SAは同様に
反応時間及び反応温度とも関連するが、一般に220m
2/g以下であり、又CTAB法比表面積との比が1に
近いものである。
By appropriately setting a reaction time and a reaction temperature, which will be described later, and selecting these conditions, N2SA
, The value of A × C / B can be increased to 1.2 or more. In the conventional method, the initial SiO
2 concentration is generally in the range of 10 g / l or less, and N2SA of hydrated silicate obtained under these conditions is also related to the reaction time and the reaction temperature.
2 / g or less, and the ratio to the CTAB specific surface area is close to 1.

【0024】反応時間は、60〜120分間、好ましく
は60〜110分間の範囲である。反応時間は余りに短
時間であるとN2SAは高くなるが、N2Poがあまり
大きくならない。また、余りに反応時間が長いとN2S
Aが小さくなる。反応温度は、85℃以下、より好まし
くは70〜85℃の範囲であり、反応温度が高過ぎると
N2SAが低下すると同時に、N2Poも低下し、低す
ぎるとN2SAが高くなり過ぎる。従来法における反応
温度は、85〜95℃の範囲が一般的であり、この条件
で得られる含水ケイ酸のN2SAは反応時間とも関連す
るが、一般に220m2/g以下である。
The reaction time ranges from 60 to 120 minutes, preferably from 60 to 110 minutes. If the reaction time is too short, N2SA increases, but N2Po does not increase so much. If the reaction time is too long, N2S
A becomes smaller. The reaction temperature is 85 ° C. or lower, more preferably in the range of 70 to 85 ° C. When the reaction temperature is too high, N2SA decreases, and at the same time, N2Po decreases. When the reaction temperature is too low, N2SA becomes too high. The reaction temperature in the conventional method is generally in the range of 85 to 95 ° C., and N2SA of hydrated silicate obtained under these conditions is generally 220 m 2 / g or less, although it is related to the reaction time.

【0025】[0025]

【実施例】以下本発明を実施例及び比較例に基づいて詳
細に説明する。但し、本発明はこれら実施例に限定され
るものではない。本発明で用いた各機器及び各物性値の
測定は次に示す方法により行った。 (1)N2法比表面積(BET法) カンタソーブ(米国Quantachrome社製)を用いて1点法
により測定。 (2)Hg法比表面積及び細孔容積 水銀ポロシメーター2000型(伊国Carlo Erba社製)
にて測定。 (3)N2法細孔容積 ASAP2400(島津製作所製)を用いてBarre
t−Joyner−Halenda法で測定。 (4)CTAB法比表面積 ASTMD3765(CARBON BLACK-CTAB SURFACE ARE
A)に準拠して測定。 但し、CTAB分子の吸着断面積を35Å2として算出し
た。 (5)ムーニー粘度 ムーニー粘度計SMV−200型(島津製作所製)を用
いて、125℃、L型ローターにて測定。 (6)キュラストタイムT90 JSR型キュラストメーターIIF型により、最適加硫時
間(T90)を測定した。
The present invention will be described below in detail with reference to examples and comparative examples. However, the present invention is not limited to these examples. The measurement of each device and each physical property value used in the present invention was performed by the following methods. (1) N2 method specific surface area (BET method) Measured by a one-point method using Cantasorb (manufactured by Quantachrome Co., USA). (2) Hg method specific surface area and pore volume Mercury porosimeter 2000 type (manufactured by Ino Carlo Erba)
Measured at (3) Barre using N2 method pore volume ASAP2400 (manufactured by Shimadzu Corporation)
Measured by t-Joyner-Halenda method. (4) CTAB method specific surface area ASTM D3765 (CARBON BLACK-CTAB SURFACE ARE
Measured according to A). However, to calculate the adsorption cross sectional area of the CTAB molecule as 35 Å 2. (5) Mooney viscosity Measured with an L-type rotor at 125 ° C. using a Mooney viscometer SMV-200 (manufactured by Shimadzu Corporation). (6) Curast time T90 The optimum vulcanization time (T90) was measured by a JSR type curast meter IIF.

【0026】(7)加硫物特性 ・一般加硫物特性 JIS K6301の試験法に準じ測定。 ・摩耗試験はアクロン型摩耗試験機で測定。 傾角;15°、 荷重;6ポンド 試験回数;2000rpmでの摩耗減容を測定し、比較
例1を100として指数で表示。 (数値の高い方が耐摩耗性は良) (8)配合物調製法A処方 容量1.7リットルのバンバリーミキサーにて、JSR
1712を110部とBR01を20部とを30秒間
素練り後、ステアリン酸を2部、パラフィンワックスを
1部、アロマ油を20部、含水ケイ酸を80部、シラン
Si69を7.1〜13.6部の範囲で投入し、全練り
時間5分後取り出す。取り出し時のコンパウンド温度を
140〜150℃にラム圧や回転数で調整する。コンパ
ウンドを室温にて冷却後、更に老防810NAを1部、
亜鉛華を4部、加硫促進剤Dを1.5部、同CZを1.
5部、Sを1.75部添加して約1分間混練り(取り出
し時の温度を110℃以下とする)し、後8インチロー
ルにてシーティングして未加硫物及び加硫物特性を測定
した。結果を表1に示した。B処方 A処方と同様な方法で調整したが、ゴム及び配合処方並
びに結果は表2に示した。
(7) Properties of vulcanizates-General vulcanizates properties Measured according to the test method of JIS K6301.・ Abrasion test is measured by Akron type abrasion tester. Tilt: 15 °, Load: 6 pounds Number of tests: Wear reduction at 2000 rpm was measured, and Comparative Example 1 was indicated as an index with 100 as 100. (8) The higher the numerical value, the better the abrasion resistance. (8) Formulation of formulation A : JSR using a 1.7 liter Banbury mixer.
After 110 parts of 1712 and 20 parts of BR01 were masticated for 30 seconds, 2 parts of stearic acid, 1 part of paraffin wax, 20 parts of aroma oil, 80 parts of hydrous silicic acid and 7.1 to 13 of silane Si69. Charge in the range of 6 parts and take out after 5 minutes of total kneading time. The compound temperature at the time of removal is adjusted to 140 to 150 ° C. by the ram pressure and the number of rotations. After cooling the compound at room temperature, 1 part of old protection 810NA,
4 parts of zinc white, 1.5 parts of vulcanization accelerator D, and 1 part of CZ
5 parts and 1.75 parts of S were added and kneaded for about 1 minute (the temperature at the time of removal was set to 110 ° C. or less), followed by sheeting with an 8-inch roll to determine the properties of the unvulcanized product and the vulcanized product. It was measured. The results are shown in Table 1. Formulation B was prepared in the same manner as Formulation A, but the rubber, formulation and results are shown in Table 2.

【0027】(実施例1)撹拌機を備えた240リット
ルのジャケット付きステンレス容器に、水を125リッ
トル及びケイ酸ナトリウム水溶液13.9リットル(S
iO2150g/l、SiO2/Na2O重量比3.3)
を投入し、加熱して温度82℃とした。この時のpHは
10.9、SiO2濃度は15g/lであった。本水溶
液に、上記同様のケイ酸ナトリウム水溶液と硫酸(1
8.4mol/l)とをpH10.9±0.2及び温度
82±1℃を維持しながら100分間でSiO2濃度が
60g/lとなるように均等に添加して、100分でケ
イ酸ナトリウム水溶液のみを停止した。続けて同様の硫
酸をpH3となるまで添加して沈澱物を得た。その後得
られた反応物を濾過、水洗、乾燥して湿式沈澱法による
含水ケイ酸を得た。
Example 1 In a 240-liter jacketed stainless steel container equipped with a stirrer, 125 liters of water and 13.9 liters of an aqueous sodium silicate solution (S
iO 2 150 g / l, SiO 2 / Na 2 O weight ratio 3.3)
And heated to a temperature of 82 ° C. At this time, the pH was 10.9, and the SiO 2 concentration was 15 g / l. To this aqueous solution, an aqueous solution of sodium silicate and sulfuric acid (1
8.4 mol / l) was added evenly so that the SiO2 concentration became 60 g / l in 100 minutes while maintaining pH 10.9 ± 0.2 and temperature 82 ± 1 ° C., and sodium silicate was added in 100 minutes. Only the aqueous solution was stopped. Subsequently, the same sulfuric acid was added until pH 3 was obtained to obtain a precipitate. Thereafter, the obtained reaction product was filtered, washed with water, and dried to obtain hydrous silicic acid by a wet precipitation method.

【0028】(実施例2)実施例1と同容器、同原料を
用い、水を120リットル及びケイ酸ナトリウム水溶液
を投入し、加熱して温度80℃とした。この時のpHは
11.1、SiO2濃度は18g/lであった。その後
はpHを11.1±0.2、温度80±1℃を維持して
同時添加を行い、実施例1と同様な方法で含水ケイ酸を
得た。
(Example 2) Using the same container and the same raw materials as in Example 1, 120 liters of water and an aqueous solution of sodium silicate were charged and heated to a temperature of 80 ° C. At this time, the pH was 11.1 and the SiO 2 concentration was 18 g / l. Thereafter, simultaneous addition was performed while maintaining the pH at 11.1 ± 0.2 and the temperature at 80 ± 1 ° C., and hydrous silicic acid was obtained in the same manner as in Example 1.

【0029】(実施例3)実施例1と同容器、同原料を
用い、水を115リットル及びケイ酸ナトリウム水溶液
を投入し、加熱して温度80℃とした。その時のpHは
11.3、SiO2濃度は20g/lであった。その後
は実施例1と同様な方法で含水ケイ酸を得た。 (実施例4)実施例1と同容器、同原料を用い、水を1
15リットル及びケイ酸ナトリウム水溶液を投入し、加
熱して温度78℃とした。その時のpHは11.3、S
iO2濃度は21g/lであった。その後は実施例1と
同様な方法で含水ケイ酸を得た。 (実施例5)温度を75℃とした以外は実施例4と同様
な方法で含水ケイ酸を得た。
(Example 3) Using the same container and the same raw materials as in Example 1, 115 liters of water and an aqueous solution of sodium silicate were charged, and heated to a temperature of 80 ° C. At that time, the pH was 11.3 and the SiO 2 concentration was 20 g / l. Thereafter, hydrous silicic acid was obtained in the same manner as in Example 1. (Example 4) The same container and raw materials as in Example 1 were used,
15 liters and an aqueous solution of sodium silicate were charged, and heated to a temperature of 78 ° C. The pH at that time was 11.3, S
The iO 2 concentration was 21 g / l. Thereafter, hydrous silicic acid was obtained in the same manner as in Example 1. (Example 5) Hydrous silicic acid was obtained in the same manner as in Example 4 except that the temperature was changed to 75 ° C.

【0030】(比較例1)Nipsil AQ(日本シ
リカ工業社製) (比較例2)Nipsil NS−KR(日本シリカ工
業社製) (比較例3)Nipsil HD−R(日本シリカ工業
社製) (比較例4)Ultrasil VN3(独国デグッサ
社製)
(Comparative Example 1) Nipsil AQ (Nippon Silica Industry Co., Ltd.) (Comparative Example 2) Nipsil NS-KR (Nippon Silica Industry Co., Ltd.) (Comparative Example 3) Nipsil HD-R (Nippon Silica Industry Co., Ltd.) Comparative Example 4) Ultrasil VN3 (manufactured by Degussa, Germany)

【0031】[0031]

【表1】 [Table 1]

【0032】[0032]

【表2】 [Table 2]

【0033】表中、TBは引張強度、M300は300
%引張応力、Ebは伸び、Hsは硬度をそれぞれ示す。
シランSi69の変量に関しては、含水ケイ酸の表面積
と加硫速度は相関が大きく、表面積が高くなるに従って
加硫不足が生じるので好適加硫速度を得るため、比較例
1のN2SA対比でシラン量を配合した。
In the table, TB is tensile strength, M300 is 300
% Tensile stress, Eb indicates elongation, and Hs indicates hardness.
Regarding the variation of the silane Si69, the surface area of the hydrous silicic acid and the vulcanization rate have a large correlation, and the vulcanization deficiency occurs as the surface area increases, so that a preferable vulcanization rate is obtained. Was blended.

【0034】[0034]

【発明の効果】本発明の含水ケイ酸によれば、従来の含
水ケイ酸はシリカが欠点としていた、ゴムコンパウンド
を作製する際に分散不良等の加工性の問題を生じること
なく、ゴムコンパウンドの引っ張り強さ及び耐摩耗性を
大幅に向上させることができる。
According to the hydrated silicic acid of the present invention, the conventional hydrated silicic acid is free from the problem of processability such as poor dispersion when producing a rubber compound, which is a disadvantage of silica. The tensile strength and wear resistance can be greatly improved.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 N2法比表面積(A)が250〜400
2/gの範囲であり、Hg法比表面積(B)が200
〜300m2/gの範囲であり、N2法細孔容積(C)
が1.7〜2.5ml/gの範囲であり、かつA×C/
Bが2.3以上である湿式法含水ケイ酸。
1. The specific surface area (A) of the N2 method is from 250 to 400.
m 2 / g, and the Hg method specific surface area (B) is 200
300300 m 2 / g, and the N2 method pore volume (C)
Is in the range of 1.7 to 2.5 ml / g, and A × C /
A wet hydrated silicic acid wherein B is 2.3 or more.
【請求項2】 A×C/Bが2.3〜3.3である請求
項1に記載の含水ケイ酸。
2. The hydrous silicic acid according to claim 1, wherein A × C / B is 2.3 to 3.3.
【請求項3】 Hg法細孔容積が2.5ml/g以下の
範囲であり、かつN2法比表面積/CTAB法比表面積
が1.2以上である請求項1または2記載の含水ケイ
酸。
3. The hydrous silicic acid according to claim 1, wherein the Hg method pore volume is in a range of 2.5 ml / g or less, and the N2 method specific surface area / CTAB method specific surface area is 1.2 or more.
【請求項4】 Hg法細孔容積が2.0〜2.5ml/
gの範囲であり、かつN2法比表面積/CTAB法比表
面積の比が1.2〜1.6の範囲である請求項3に記載
の含水ケイ酸。
4. The pore volume of the Hg method is 2.0 to 2.5 ml /
The hydrous silicic acid according to claim 3, wherein the ratio is in the range of 1.2 to 1.6 and the ratio of the N2 method specific surface area / CTAB method specific surface area is 1.2 to 1.6.
JP10043151A 1998-02-25 1998-02-25 Hydrous silica for rubber reinforcement Pending JPH11236208A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10043151A JPH11236208A (en) 1998-02-25 1998-02-25 Hydrous silica for rubber reinforcement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10043151A JPH11236208A (en) 1998-02-25 1998-02-25 Hydrous silica for rubber reinforcement

Publications (1)

Publication Number Publication Date
JPH11236208A true JPH11236208A (en) 1999-08-31

Family

ID=12655853

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10043151A Pending JPH11236208A (en) 1998-02-25 1998-02-25 Hydrous silica for rubber reinforcement

Country Status (1)

Country Link
JP (1) JPH11236208A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000319513A (en) * 1999-05-12 2000-11-21 Nippon Silica Ind Co Ltd Filler for reinforcing silicone rubber
JP2003525191A (en) * 2000-03-03 2003-08-26 グレース・ゲーエムベーハー・ウント・コムパニー・カーゲー Amorphous silica particles containing boron
WO2012005013A1 (en) * 2010-07-09 2012-01-12 株式会社ブリヂストン Rubber composition and pneumatic tire using same
JP2012017440A (en) * 2010-07-09 2012-01-26 Bridgestone Corp Rubber composition and pneumatic tire using the same
JP2012102249A (en) * 2010-11-10 2012-05-31 Bridgestone Corp Rubber composition and pneumatic tire using the same
WO2013105502A1 (en) * 2012-01-10 2013-07-18 株式会社ブリヂストン Rubber composition for tire, vulcanized rubber composition for tire, and tires using same
WO2016199744A1 (en) * 2015-06-12 2016-12-15 東ソー・シリカ株式会社 Hydrous silicate for rubber-reinforcing filler
KR20200018571A (en) 2017-06-09 2020-02-19 토소실리카 가부시키가이샤 Water-containing silicic acid for rubber reinforcement filling and preparation method thereof

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6340715A (en) * 1986-06-06 1988-02-22 ロ−ヌ−プ−ラン・シミ Silica base granule, manufacture and use as reinforcing filler for elastomer
JPH0345511A (en) * 1989-07-03 1991-02-27 Rhone Poulenc Chim Silica with adjusted porosity and manufacture thereof
JPH0596849A (en) * 1991-04-04 1993-04-20 Shionogi & Co Ltd Silica filler for heat sensitive recording sheet
JPH05311599A (en) * 1992-04-28 1993-11-22 Tokuyama Soda Co Ltd Filler for paper and paper using the same
JPH0640714A (en) * 1992-07-21 1994-02-15 Shionogi & Co Ltd High-oil-absorptive porous silica, production thereof and carrier
JPH07172815A (en) * 1993-10-07 1995-07-11 Degussa Ag Precipitated silicic acid, its preparation and vulcanizable elastic rubber mixture containing this and vulcanized rubber
JPH08502716A (en) * 1993-09-29 1996-03-26 ローヌ−プーラン シミ Precipitated silica
JPH0891820A (en) * 1994-09-26 1996-04-09 Nippon Chem Ind Co Ltd Hydrated silicic acid and its production
JPH08169710A (en) * 1994-12-20 1996-07-02 Nippon Silica Ind Co Ltd Silica gel having high specific surface area and low controlled constructive property and its production
JPH09165213A (en) * 1995-12-18 1997-06-24 Tokuyama Corp Heavy hydrated silica
JPH10194723A (en) * 1996-12-27 1998-07-28 Nippon Silica Ind Co Ltd Water-containing silicic acid for rubber reinforcement and its production
JPH10194722A (en) * 1996-12-27 1998-07-28 Nippon Silica Ind Co Ltd Water-containing silicic acid for elastomer reinforcement and its production
JPH11124474A (en) * 1997-05-26 1999-05-11 Michelin & Cie Silica-base rubber composition intended for manufacture of road tire of improved resistance to rolling
JPH11157826A (en) * 1997-09-15 1999-06-15 Degussa Ag Easily dispersible precipitated silicic acid
JPH11228125A (en) * 1998-02-18 1999-08-24 Tokuyama Corp Hydrated silicic acid and its production
JPH11228126A (en) * 1998-02-18 1999-08-24 Tokuyama Corp Precipitated silica and its production

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6340715A (en) * 1986-06-06 1988-02-22 ロ−ヌ−プ−ラン・シミ Silica base granule, manufacture and use as reinforcing filler for elastomer
JPH0345511A (en) * 1989-07-03 1991-02-27 Rhone Poulenc Chim Silica with adjusted porosity and manufacture thereof
JPH0596849A (en) * 1991-04-04 1993-04-20 Shionogi & Co Ltd Silica filler for heat sensitive recording sheet
JPH05311599A (en) * 1992-04-28 1993-11-22 Tokuyama Soda Co Ltd Filler for paper and paper using the same
JPH0640714A (en) * 1992-07-21 1994-02-15 Shionogi & Co Ltd High-oil-absorptive porous silica, production thereof and carrier
JPH08502716A (en) * 1993-09-29 1996-03-26 ローヌ−プーラン シミ Precipitated silica
JPH07172815A (en) * 1993-10-07 1995-07-11 Degussa Ag Precipitated silicic acid, its preparation and vulcanizable elastic rubber mixture containing this and vulcanized rubber
JPH0891820A (en) * 1994-09-26 1996-04-09 Nippon Chem Ind Co Ltd Hydrated silicic acid and its production
JPH08169710A (en) * 1994-12-20 1996-07-02 Nippon Silica Ind Co Ltd Silica gel having high specific surface area and low controlled constructive property and its production
JPH09165213A (en) * 1995-12-18 1997-06-24 Tokuyama Corp Heavy hydrated silica
JPH10194723A (en) * 1996-12-27 1998-07-28 Nippon Silica Ind Co Ltd Water-containing silicic acid for rubber reinforcement and its production
JPH10194722A (en) * 1996-12-27 1998-07-28 Nippon Silica Ind Co Ltd Water-containing silicic acid for elastomer reinforcement and its production
JPH11124474A (en) * 1997-05-26 1999-05-11 Michelin & Cie Silica-base rubber composition intended for manufacture of road tire of improved resistance to rolling
JPH11157826A (en) * 1997-09-15 1999-06-15 Degussa Ag Easily dispersible precipitated silicic acid
JPH11228125A (en) * 1998-02-18 1999-08-24 Tokuyama Corp Hydrated silicic acid and its production
JPH11228126A (en) * 1998-02-18 1999-08-24 Tokuyama Corp Precipitated silica and its production

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000319513A (en) * 1999-05-12 2000-11-21 Nippon Silica Ind Co Ltd Filler for reinforcing silicone rubber
JP2003525191A (en) * 2000-03-03 2003-08-26 グレース・ゲーエムベーハー・ウント・コムパニー・カーゲー Amorphous silica particles containing boron
US9221962B2 (en) 2010-07-09 2015-12-29 Bridgestone Corporation Rubber composition and pneumatic tire using the same
WO2012005013A1 (en) * 2010-07-09 2012-01-12 株式会社ブリヂストン Rubber composition and pneumatic tire using same
JP2012017440A (en) * 2010-07-09 2012-01-26 Bridgestone Corp Rubber composition and pneumatic tire using the same
CN103097450A (en) * 2010-07-09 2013-05-08 株式会社普利司通 Rubber composition and pneumatic tire by using same
JP2012102249A (en) * 2010-11-10 2012-05-31 Bridgestone Corp Rubber composition and pneumatic tire using the same
JP2013142108A (en) * 2012-01-10 2013-07-22 Bridgestone Corp Rubber composition for tire, vulcanized rubber composition for tire, and tire using them
WO2013105502A1 (en) * 2012-01-10 2013-07-18 株式会社ブリヂストン Rubber composition for tire, vulcanized rubber composition for tire, and tires using same
US9447208B2 (en) 2012-01-10 2016-09-20 Bridgestone Corporation Rubber composition for tire, vulcanized rubber composition for tire, and tires using same
WO2016199744A1 (en) * 2015-06-12 2016-12-15 東ソー・シリカ株式会社 Hydrous silicate for rubber-reinforcing filler
JP2017002210A (en) * 2015-06-12 2017-01-05 東ソー・シリカ株式会社 Hydrous silicic acid for rubber reinforcement and filling
CN107709438A (en) * 2015-06-12 2018-02-16 东曹硅化工株式会社 The aqueous silicic acid of rubber reinforcement filling
KR20180017143A (en) 2015-06-12 2018-02-20 토소실리카 가부시키가이샤 Silicone rubber reinforced functional silicate
CN107709438B (en) * 2015-06-12 2019-11-05 东曹硅化工株式会社 Rubber reinforcement fills aqueous silicic acid
KR20200018571A (en) 2017-06-09 2020-02-19 토소실리카 가부시키가이샤 Water-containing silicic acid for rubber reinforcement filling and preparation method thereof

Similar Documents

Publication Publication Date Title
KR100401394B1 (en) Rubber compositions for tire making based on aluminum &amp;quot; doped &amp;quot;
TWI376352B (en) Precipitated silicas with particular pore size distribution
US8268921B2 (en) Elastomeric composition comprising functionalized butadienic elastomers and high dispersible aluminium-based silica
JP5448849B2 (en) Rubber composition and tire
KR101072413B1 (en) Diene rubber composition and process for producing the same
TW201006763A (en) Precipitated silicas as a reinforcing filler for elastomer mixtures
JP4405849B2 (en) Rubber composition for tire tread and tire using the same
JPS61231037A (en) Rubber composition for tire tread
KR102405234B1 (en) Hydrous silicic acid for rubber reinforcement filling
JPH11236208A (en) Hydrous silica for rubber reinforcement
US5610221A (en) Tire tread composition comprising highly reinforcing reinforced amorphous precipitated silica
JP3818554B2 (en) Hydrous silicic acid for reinforcing elastomer and method for producing the same
JPH0689267B2 (en) Soft carbon black
JPH11240982A (en) Rubber composition and pneumatic tire using the same
WO2013001651A1 (en) Pneumatic tire tread
US10981795B2 (en) Precipitated silica
JP3998793B2 (en) Precipitated silica and method for producing the same
US5605950A (en) Tire tread composition comprising highly reinforcing reinforced amorphous precipitated silica
JP4071343B2 (en) Rubber composition and pneumatic tire using the same
JPH10194723A (en) Water-containing silicic acid for rubber reinforcement and its production
JP4607564B2 (en) Rubber composition and pneumatic tire using the same
JP3974248B2 (en) Rubber composition and pneumatic tire using the same
JP7473350B2 (en) Hydrous silicic acid for rubber reinforcing filler and hydrous silicic acid-containing rubber composition
JP3445081B2 (en) Rubber composition and pneumatic tire using the rubber composition
JP2000302912A (en) Hydrous silicic acid for rubber reinforcing and filling and rubber composition using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070606

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070612

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071016