WO2018225439A1 - Air-conditioning control device - Google Patents

Air-conditioning control device Download PDF

Info

Publication number
WO2018225439A1
WO2018225439A1 PCT/JP2018/017719 JP2018017719W WO2018225439A1 WO 2018225439 A1 WO2018225439 A1 WO 2018225439A1 JP 2018017719 W JP2018017719 W JP 2018017719W WO 2018225439 A1 WO2018225439 A1 WO 2018225439A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
vehicle
air conditioning
conditioning control
time
Prior art date
Application number
PCT/JP2018/017719
Other languages
French (fr)
Japanese (ja)
Inventor
酒井 剛志
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2018006224A external-priority patent/JP6907953B2/en
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to DE112018002845.3T priority Critical patent/DE112018002845B4/en
Publication of WO2018225439A1 publication Critical patent/WO2018225439A1/en
Priority to US16/675,032 priority patent/US10800227B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/22Heating, cooling or ventilating [HVAC] devices the heat being derived otherwise than from the propulsion plant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices

Definitions

  • This disclosure relates to an air conditioning control device mounted on a vehicle capable of unmanned traveling.
  • Patent Document 1 discloses a control device that operates an air conditioning compressor or the like for personal control during manned traveling and stops the air conditioning compressor or the like during unmanned traveling. In vehicles that run unattended, there is a need to improve fuel efficiency by implementing efficient air-conditioning operation such as avoiding unnecessary air-conditioning.
  • the disclosed object is to provide an air conditioning control device that performs appropriate air conditioning control in advance in an unattended state.
  • the present disclosure is an air conditioning control device mounted on a vehicle, and includes a determination unit (52) that determines a passenger's boarding state and a traveling state of the vehicle, and temperature adjustment based on a determination result of the determination unit. And an output unit (53) for executing air conditioning control.
  • the output unit executes air conditioning control when the determination result indicates an unmanned state and a traveling state of the vehicle, and stops executing the air conditioning control when the determination result indicates an unattended state and a stopped state of the vehicle. To do.
  • the air conditioning operation is performed during unmanned traveling, and the air conditioning operation is stopped while the vehicle is stopped.
  • the radiator can be cooled by the traveling wind, an efficient air conditioning operation is possible.
  • FIG. 1 is a block diagram of a vehicle air conditioner.
  • FIG. 2 is a flowchart regarding control of the vehicle air conditioner.
  • FIG. 3 is a flowchart of step S151 in the flowchart of FIG.
  • FIG. 4 is a block diagram of the vehicle air conditioner of the second embodiment.
  • FIG. 5 is a flowchart relating to the control of the second embodiment.
  • the vehicle air conditioner 1 is mounted in the vehicle.
  • the vehicle air conditioner 1 provides cooling, heating, and / or ventilation in the passenger compartment.
  • the vehicle air conditioner 1 performs cooling and heating by blowing temperature-conditioned air into the passenger compartment.
  • the vehicle air conditioner 1 discharges the air inside the vehicle interior to the outside of the vehicle interior, and takes the air outside the vehicle interior into the vehicle interior for ventilation.
  • the driving of the vehicle is controlled by a vehicle control device (hereinafter referred to as a vehicle ECU) 10.
  • vehicle ECU 10 controls the traveling system of the vehicle and the cooling system necessary for traveling of the vehicle.
  • the vehicle ECU 10 is connected to a surrounding monitoring sensor 21, a human body detection sensor 22, a vehicle speed sensor 23, a first water temperature sensor 24, a reservation setting unit 25, and a car navigation device 26.
  • a signal that is a detection result from each connection component is input to the vehicle ECU 10.
  • the perimeter monitoring sensor 21 is a sensor that acquires external environment data around the vehicle.
  • the periphery monitoring sensor 21 is a camera provided toward the front of the vehicle that is the traveling direction of the vehicle.
  • the surrounding monitoring sensor 21 may be a radar that detects the presence or absence of an obstacle in front of the vehicle. Further, both the camera and the radar may be used as the periphery monitoring sensor 21.
  • the vehicle ECU 10 uses the periphery monitoring sensor 21 to acquire data necessary for unmanned traveling control of the vehicle such as external environment data around the vehicle.
  • the human body detection sensor 22 is an unmanned determination means for determining whether the passenger compartment is unmanned or manned.
  • the human body detection sensor 22 is a seating sensor that is provided in the seat and determines whether or not the vehicle is in a manned state by receiving a load due to the seating of the occupant.
  • the seating sensor is individually provided in a plurality of seats in the vehicle, and detects in which seat the occupant is seated.
  • the human body detection sensor 22 is not limited to a seating sensor.
  • the human body detection sensor 22 may be a seat belt sensor that detects whether or not a seat belt is worn.
  • the human body detection sensor 22 may be an infrared sensor that detects infrared rays emitted from the human body. The infrared sensor can determine whether or not the passenger compartment is manned even when the passenger is not sitting on the seat.
  • the vehicle speed sensor 23 is a sensor that detects the traveling speed of the vehicle.
  • the vehicle speed sensor 23 is provided on the wheel of the vehicle and detects the rotational speed of the wheel. Thereby, the vehicle speed that is the traveling speed of the vehicle is calculated.
  • the first water temperature sensor 24 is a circulation path of engine cooling water and is a temperature sensor provided near the outlet of the engine 31.
  • the first water temperature sensor 24 detects the temperature of the engine coolant immediately after the temperature has risen due to heat exchange with the engine 31.
  • the reservation setting means 25 is an operation means for a user to set a reservation for a vehicle.
  • the vehicle ECU 10 performs control to automatically drive the vehicle to a place designated at a time designated in advance by reservation setting.
  • the reservation setting means 25 is a communication terminal outside the passenger compartment such as a smartphone or a personal computer.
  • the reservation setting means 25 may be an operation terminal provided in the vehicle interior. In this case, the reservation is set by inputting information such as a next boarding scheduled time and a boarding planned place by a passenger on board.
  • the reservation setting means 25 can also set information such as the target temperature in the passenger compartment and the presence or absence of music in the passenger compartment.
  • the car navigation device 26 uses the set destination information and the current vehicle location information acquired by GPS to determine the optimum travel route and calculate the expected time.
  • the required time to the destination is calculated by dividing the distance information calculated by multiplying the linear distance from the current position to the destination by a detour coefficient by speed information (for example, 40 km / h).
  • speed information for example, 40 km / h.
  • traffic jam information may be acquired, and correction may be performed such as increasing the required time when the traffic jam occurs.
  • the vehicle ECU 10 is connected to an engine 31, an accelerator 33, a brake 34, and a steering 35 that are necessary for traveling.
  • the vehicle ECU 10 is connected to an engine radiator fan 36 and an electric water pump 37, which are cooling devices for cooling devices necessary for traveling. From vehicle ECU10, the signal which controls each connection component is output.
  • Engine 31 is vehicle power for the vehicle to travel.
  • the engine 31 is an internal combustion engine that obtains power by combustion gas generated when fuel is burned.
  • the power generated by the engine 31 is also used for the power of the compressor that compresses and circulates the refrigerant in the cooling heat exchanger of the air conditioner.
  • Accelerator 33 is a device that accelerates the vehicle.
  • the brake 34 is a device that decelerates the vehicle.
  • the vehicle ECU 10 controls the accelerator 33 and the brake 34 to control the vehicle speed by accelerating or decelerating the vehicle.
  • Steering 35 is a device that controls the direction of the tire.
  • the vehicle ECU 10 controls the traveling direction of the vehicle by controlling the steering 35.
  • the engine radiator fan 36 is a blower that blows air to the engine radiator, which is a radiator that circulates engine cooling water.
  • the engine radiator fan 36 is provided in front of the engine radiator provided in the front portion of the vehicle. In other words, the engine radiator fan 36 is provided opposite to the engine radiator.
  • the engine radiator fan 36 blows air rearward from the front of the vehicle. In other words, the air is blown in the same direction as the traveling wind received by the traveling vehicle.
  • the vehicle ECU 10 is connected to the electric water pump 37.
  • the electric water pump 37 is a pump that is driven as power for circulating engine coolant that cools the engine 31 that is vehicle power.
  • the electric water pump 37 is controlled by the vehicle ECU 10 in addition to on / off of the drive, as well as the strength of the output.
  • the vehicle ECU 10 controls all devices used for traveling, such as transmissions, headlights, blinkers, and wipers.
  • the vehicle ECU 10 is connected to an air conditioning control device (hereinafter referred to as an air conditioning ECU) 50 that performs control related to the air conditioning operation so as to be able to communicate with each other.
  • an air conditioning ECU air conditioning control device
  • the air conditioning ECU 50 includes an input unit 51, a determination unit 52, an output unit 53, and a storage unit 54.
  • the input unit 51 receives a signal output from each connection component such as a sensor.
  • the determination unit 52 performs a calculation based on information input to the input unit 51 to determine the air conditioning control content.
  • the output unit 53 transmits the air conditioning control content determined by the determination unit 52 to each connection component that is a control target.
  • the storage unit 54 stores information received by the input unit 51, determination results determined by the determination unit 52, and the like.
  • an inside air sensor 61 Connected to the air conditioning ECU 50 are an inside air sensor 61, an outside air sensor 62, a solar radiation sensor 63, an air conditioning setting means 64, and an evaporator temperature sensor 65.
  • a signal that is a detection result from each connection component is input to the air conditioning ECU 50.
  • the inside air sensor 61 is a temperature sensor that measures the temperature in the passenger compartment.
  • the inside air sensor 61 is disposed in an instrument panel in the vehicle interior.
  • the outside air sensor 62 is a temperature sensor that measures the temperature outside the passenger compartment.
  • the outside air sensor 62 is disposed on the back of the front bumper that is not easily affected by hot air in the engine room.
  • the solar radiation sensor 63 is a sensor that measures the solar radiation intensity of sunlight irradiated on the vehicle.
  • the solar radiation sensor 63 is provided on the upper surface of the dashboard.
  • the air conditioning setting means 64 is an operation panel that allows the occupant to set the target temperature in the vehicle, the strength of the blown air volume, and the like.
  • the air conditioning setting means 64 is provided in the vehicle interior.
  • the air conditioning setting means 64 can be operated while the occupant is traveling.
  • the air conditioning setting means 64 is not limited to an operation panel provided in the vehicle interior.
  • the air conditioning setting means 64 may be a communication terminal outside the passenger compartment such as a smartphone or a personal computer.
  • the air conditioning setting unit 64 may enable air conditioning setting and reservation setting at the same terminal as the reservation setting unit 25.
  • the air conditioning ECU 50 uses the measurement results of the inside air sensor 61, the outside air sensor 62, and the solar radiation sensor 63 and the target air temperature that is the target temperature in the vicinity of the air conditioning air outlet from the information such as the target temperature in the vehicle input by the air conditioning setting means 64. Calculate the mouth temperature. The air conditioning ECU 50 performs the air conditioning operation based on the calculated target outlet temperature.
  • the evaporator temperature sensor 65 is a temperature sensor that measures the temperature of an evaporator that is a heat exchanger for cooling.
  • the evaporator temperature sensor 65 is provided near the outlet pipe of the evaporator.
  • the air conditioning ECU 50 controls the cooling operation based on the evaporator temperature measured by the evaporator temperature sensor 65.
  • the air conditioning ECU 50 is connected with an indoor fan 71, an inlet door 72, an air mix door 73, a condenser fan 74, a clutch 75, a heater 77, and a window 78.
  • the air conditioning ECU 50 outputs a signal for controlling each connection component.
  • the indoor fan 71 is a fan that blows conditioned air into the vehicle interior.
  • the indoor fan 71 blows air to an evaporator that is a cooling heat exchanger and a heater core that is a heating heat exchanger.
  • the air exchanged heat with the evaporator and the heater core is blown out from the outlet to the passenger compartment as conditioned air.
  • the air conditioning ECU 50 controls the indoor fan 71 to control the air conditioning by blowing conditioned air into the vehicle interior.
  • the suction port door 72 is a door member that closes one of two types of suction ports, an inside air suction port and an outside air suction port.
  • the inlet door 72 is a rotary door that rotates around a rotation axis to adjust the opening degree.
  • the mode in which wind is circulated in the passenger compartment is the inside air mode.
  • the mode for taking in wind from outside the vehicle compartment to the vehicle interior is the outside air mode.
  • the air mix door 73 is a door member that controls the rate of heat exchange between the wind that has passed through the evaporator, which is a cooling heat exchanger, and the heater core, which is a heating heat exchanger.
  • the air mix door 73 is provided in front of the heater core.
  • the air mix door 73 is a plate door. When the air mix door 73 covers and covers the entire front surface of the heater core, the cold conditioned air that has been heat-exchanged only by the evaporator is blown into the vehicle interior. When the air mix door 73 is opened away from the front surface of the heater core, the conditioned air subjected to heat exchange by both the evaporator and the heater core is blown into the vehicle interior.
  • the condenser fan 74 is a blower that blows air to a condenser, which is a radiator that forms part of the refrigeration cycle for cooling.
  • the condenser fan 74 is provided further forward of the condenser provided in the front portion of the vehicle. In other words, the capacitor fan 74 is provided to face the capacitor.
  • the condenser fan 74 blows air from the front of the vehicle toward the rear. In other words, the air is blown in the same direction as the traveling wind received by the traveling vehicle.
  • the condenser fan 74 and the engine radiator fan 36 are provided adjacent to each other.
  • the clutch 75 is a connecting device that controls the connection between the engine 31 and a compressor that forms a cooling refrigeration cycle.
  • the clutch 75 is a magnet clutch that controls a connected state and a released state depending on the presence or absence of magnetic force.
  • the clutch 75 is brought into a connected state. That is, the engine 31 and the compressor are connected to drive the compressor using the engine 31 as power.
  • the compressor is an air conditioner that performs air conditioning using the engine 31 that is vehicle power as power. Therefore, when the cooling operation is performed while the vehicle is stopped, it is necessary to drive the engine 31 in order to drive the compressor.
  • the clutch 75 is released. That is, the engine 31 and the compressor are separated and the compressor is not driven.
  • the heater 77 is a heat source used for heating the passenger compartment.
  • the heater 77 is a PTC heater having a property that the value of electric resistance changes with a positive coefficient as the temperature rises.
  • the heater 77 is a heater that is provided in addition to the heater core and contributes to the heating of the vehicle interior.
  • the air conditioning ECU 50 increases the temperature by energizing the heater 77 when heating is required.
  • the heater 77 may be a heater that contributes to heating. For example, a seat heater provided in the seat may be used.
  • the window 78 has a ventilation function for taking outside air into the passenger compartment.
  • the window 78 is provided in the upper part of the door which a passenger
  • the air-conditioning ECU 50 opens the window 78 to release indoor air to the outside while performing ventilation operation, and takes in the outside air into the vehicle interior.
  • the air conditioning ECU 50 closes the window 78 after completing the ventilation operation.
  • the air conditioning ECU 50 controls each device so that the conditioned air is blown out at the target outlet temperature. That is, the air conditioning ECU 50 controls the rotational speed of the indoor fan 71. The air conditioning ECU 50 controls switching of the suction port door 72. The air conditioning ECU 50 controls the opening degree of the air mix door 73. The air conditioning ECU 50 controls the rotational speed of the capacitor fan 74. The air conditioning ECU 50 controls switching between connection and release of the clutch 75. The air conditioning ECU 50 controls the output of the heater 77. The air conditioning ECU 50 controls the opening and closing of the window 78.
  • step S101 the presence or absence of a person in the passenger compartment is detected using the human body detection sensor 22. After detecting the presence or absence of a person, it is determined in step S102 whether or not the passenger compartment is unmanned. If it is determined that it is unattended, the process proceeds to step S103. On the other hand, if it is determined that the person is not unattended, the process proceeds to step S191.
  • step S191 air conditioning control is performed in the manned air conditioning mode.
  • air conditioning is performed so that the passenger currently on board feels comfortable.
  • air conditioning operation is performed in consideration of comfort factors other than temperature such as noise.
  • the indoor fan 71 is set lower than the operating intensity of the indoor fan 71 in the unmanned state. In other words, the upper limit of the rotational speed of the indoor fan 71 is made lower than that in the unattended state.
  • the seat heater is used only in the manned air conditioning mode. In this case, the seat heater is not energized in the unattended state, and the seat heater is energized after the occupant is seated to start use.
  • the process proceeds to step S199 with the air conditioning operation maintained.
  • step S103 the boarding position information input by the user using the reservation setting means 25 is acquired.
  • the boarding position information is boarding schedule information indicating information expected to be in the next manned state.
  • the boarding position information is information indicating an address where the user intends to board. However, the user may search for an address by inputting a building name or a place name instead of directly inputting the address.
  • a boarding place fixed as boarding position information may be set in advance, and the user may always get on from a predetermined boarding place. In this case, the boarding position information is not input by the user but is acquired by reading the boarding position information set in advance. After obtaining the boarding position information, the process proceeds to step S104.
  • step S104 the boarding time information input by the user via the reservation setting means 25 is acquired.
  • the boarding time information is boarding schedule information indicating information expected to be manned next.
  • the boarding time information is information indicating the time when the user tries to board. For example, the time is 19:30.
  • the user may input the elapsed time from the current time instead of directly inputting the time. That is, the elapsed time such as after 30 minutes.
  • the user may be allowed to input the current time instead of the future time. That is, the user who wants to get on as soon as possible inputs the current time. In this case, the current time or the past time is acquired as the boarding time information.
  • the process proceeds to step S105.
  • the vehicle ECU 10 starts traveling control based on the acquired boarding position information and boarding time information.
  • the travel control is performed so as to reach the boarding position by the boarding time.
  • the boarding time information is 19:30
  • the boarding position information is set to a place that requires 15 minutes to move from the current location, until 19:15 Wait at your current location.
  • traveling toward the boarding position is started.
  • the travel control may be performed so that it arrives slightly earlier than the boarding time.
  • the travel control is performed so as to reach the boarding position earliest.
  • step S105 the estimated boarding time T1 is calculated.
  • the scheduled boarding time T1 is the longer of the time required to move from the current location to the boarding position or the time from the current time to the boarding time.
  • the time required to move from the current location to the boarding position is acquired from the car navigation device 26. For example, if the time required to move from the current location to the boarding position is 15 minutes and the time from the current time to the boarding time is 1 hour, the scheduled boarding time T1 is 1 hour.
  • the time required to move from the current location to the boarding position may be calculated by the vehicle ECU 10 instead of being acquired from the car navigation device 26.
  • a communication device may be provided, and a time required for movement from the current location to the boarding position calculated externally may be acquired.
  • the scheduled air conditioning time T2 is calculated.
  • the scheduled air conditioning time T2 is the time required from the start of air conditioning to the completion of air conditioning.
  • the scheduled air conditioning time T2 is determined from the characteristic map stored in the air conditioning ECU 50 using the temperature difference between the current temperature in the passenger compartment measured by the room air sensor 61 and the target temperature.
  • the target temperature is the temperature in the passenger compartment input by the user using the reservation setting means 25.
  • the target temperature is 20 ° C., for example.
  • the scheduled air conditioning time T2 is not determined by the characteristic map, but the temperature difference between the temperature in the passenger compartment and the target temperature may be calculated by a function stored in the air conditioning ECU 50.
  • the scheduled air conditioning time T2 is a fixed time such as 30 minutes, for example.
  • step S107 it is determined whether the scheduled boarding time T1 is shorter than the total time of the scheduled air conditioning time T2 and the buffer time T0. If the scheduled boarding time T1 is shorter than the total time of the scheduled air conditioning time T2 and the buffer time T0, the process proceeds to step S108. On the other hand, if the scheduled boarding time T1 is longer than the total time of the scheduled air conditioning time T2 and the buffer time T0, the process proceeds to step S111.
  • the buffer time T0 is a time for completing the air conditioning earlier than the scheduled boarding time T1.
  • the buffer time T0 is, for example, 10 minutes.
  • the scheduled air conditioning time T2 is calculated as 20 minutes
  • the total time of the scheduled air conditioning time T2 and the buffer time T0 is 30 minutes. Therefore, if the scheduled boarding time T1 is less than 30 minutes, the process proceeds to step S108, and if the scheduled boarding time T1 is greater than 30 minutes, the process proceeds to step S111.
  • the buffer time T0 may not be a fixed value. That is, it may be calculated as half the air conditioning scheduled time T2.
  • step S111 the air conditioning operation is stopped.
  • the stopped state is maintained, and when the air conditioning operation has already been started, the air conditioning operation is stopped.
  • the driving of the indoor fan 71 and the condenser fan 74 is stopped, the connection of the clutch 75 is released, and the energization to the heater 77 is stopped.
  • energy consumption is suppressed for all devices used for air conditioning operation.
  • step S199 with the air conditioning stopped being maintained.
  • step S108 it is determined whether the scheduled boarding time T1 is longer than the scheduled air conditioning time T2. If the scheduled boarding time T1 is longer than the scheduled air conditioning time T2, the process proceeds to step S151. On the other hand, if the scheduled boarding time T1 is shorter than the scheduled air conditioning time T2, the process proceeds to step S121.
  • pre-air-conditioning operation before manned traveling is performed in the early air-conditioning mode.
  • the early air conditioning mode is a mode in which air conditioning is completed in a time shorter than the calculated scheduled air conditioning time T2.
  • the air-conditioning operation is performed in the inside-air mode in which wind is taken from the inside-air intake port.
  • the rotational speed of the indoor fan 71 is set higher than in the energy saving air conditioning mode.
  • the apparatus used for the air-conditioning operation such as the indoor fan 71 is set to the continuous operation without providing a stop time. That is, the operating time of the device used for air conditioning operation such as the indoor fan 71 is set longer than the energy saving air conditioning mode.
  • the control content in the early air conditioning mode is not limited to the method described above.
  • the number of operating indoor fans 71 may be increased in the early air conditioning mode than in the energy saving air conditioning mode.
  • the rotational speed of the condenser fan 74 is set higher than that in the energy saving air conditioning mode, and the rotational speed of the engine 31 is increased to set the rotational speed of the compressor higher than that in the energy saving air conditioning mode.
  • the output of the heater 77 may be set larger than that in the energy saving air conditioning mode.
  • step S151 a pre-air conditioning operation before manned traveling is performed in an energy saving air conditioning mode described later. After performing the air conditioning operation in the energy saving air conditioning mode, the process proceeds to step S199 with the air conditioning operation maintained.
  • step S199 state quantities related to air conditioning control are stored.
  • State quantities to be stored include human body detection information, boarding position information, boarding time information, scheduled boarding time T1, air conditioning scheduled time T2, running air conditioning mode, vehicle speed, engine 31 speed, engine coolant temperature, outside air temperature, etc. It is.
  • the air conditioning ECU 50 maintains the air conditioning operation based on the state quantity stored in step S199. Then, it returns to step S101 again and repeats the flow of air-conditioning control. In the second and subsequent flows, when the latest state quantity is newly acquired in step S101 or the like, air conditioning control is performed using the latest state quantity instead of the stored state quantity.
  • the stored state quantity is shared with the vehicle ECU 10 and is also used for control other than air conditioning control such as travel control.
  • step S161 vehicle speed information is acquired in step S161.
  • the vehicle speed information is measured by the vehicle speed sensor 23.
  • step S162 it is determined whether the acquired vehicle speed is equal to or higher than a predetermined value.
  • the predetermined value is, for example, 30 km / h. If the vehicle speed is greater than or equal to the predetermined value, the process proceeds to step S163. On the other hand, if the vehicle speed is smaller than the predetermined value, the process proceeds to step S174.
  • the state where the vehicle is stopped is a state where the vehicle speed is zero and the vehicle speed is lower than a predetermined value.
  • step S163 cooling air blowing is stopped.
  • the driving of the engine radiator fan 36 and the condenser fan 74 is stopped.
  • the engine radiator and the condenser are cooled by receiving only the traveling wind accompanying the traveling of the vehicle.
  • the rotational speed may be lowered to reduce the energy consumed by the fan.
  • step S171 the rotational speed of the engine 31 is acquired as vehicle power information.
  • the rotational speed of the engine 31 is measured by electrically detecting and counting the voltage applied to the ignition coil.
  • the state where the rotational speed of the engine 31 is low is a state where the cooling loss of the engine 31 is large and the efficiency is not good.
  • the state where the engine 31 is high is a state where the mechanical loss of the engine 31 is large and the efficiency is not good.
  • the state where the rotational speed of the engine 31 is medium is the most efficient state in which the cooling loss and the mechanical loss are improved in a balanced manner.
  • the temperature of the engine 31 may be acquired as vehicle power information.
  • the temperature of the engine 31 is acquired by measuring the temperature of the engine coolant using the first water temperature sensor 24.
  • the temperature of the engine cooling water is low, the warm-up is not completed and the combustion efficiency of gasoline is poor, so the efficiency of the engine 31 is low.
  • the temperature of the engine cooling water is high, the warm-up is completed and the combustion efficiency of gasoline is high, so the efficiency of the engine 31 is high. After obtaining the vehicle power information, the process proceeds to step S172.
  • step S172 it is determined whether or not the vehicle power efficiency is high.
  • the rotational speed of the engine 31 it is determined whether or not the rotational speed of the engine 31 is in an intermediate rotational speed range. That is, if the rotation speed of the engine 31 is in an intermediate rotation speed range, it is determined that the efficiency of the engine 31 is equal to or greater than a predetermined value.
  • the medium rotation speed range is a rotation speed range of 500 rpm before and after the rotation speed including the maximum efficiency.
  • the maximum efficiency means the efficiency when the ratio of output energy obtained as power to input energy in the engine 31 is the largest. If the rotation speed at which the maximum efficiency is obtained is 2000 rpm, 1500 rpm to 2500 rpm is an intermediate rotation speed range.
  • the rotational speed region where the vehicle power efficiency is high may be a rotational speed region including the maximum efficient rotational speed, and is not limited to the above range.
  • the temperature of the engine coolant is equal to or higher than the warm-up completion temperature. That is, if the temperature of the engine coolant is equal to or higher than the warm-up completion temperature, it is determined that the efficiency of the engine 31 is equal to or higher than a predetermined value.
  • the warm-up completion temperature is 80 ° C., for example.
  • the warm-up completion temperature may be a temperature that can be regarded as the completion of warm-up, and it may be determined that the vehicle power efficiency is high at a temperature slightly lower than the warm-up completion temperature. If the vehicle power efficiency is greater than or equal to the predetermined value, the process proceeds to step S173. On the other hand, when the vehicle power efficiency is smaller than the predetermined value, the process proceeds to step S174.
  • step S173 the air conditioning operation is started.
  • the driving time of the indoor fan 71 is made shorter than in the manned air-conditioning mode to reduce the energy required for the air-conditioning operation in total.
  • the indoor fan 71 is driven at a higher rotational speed than the rotational speed of the indoor fan 71 in the manned air conditioning mode, and a large amount of conditioned air is sent into the vehicle interior at once.
  • air-conditioning operation is performed in the inside-air mode in which wind is taken from the inside-air intake port.
  • the compressor is driven with the clutch 75 connected.
  • Energization of the heater 77 is started.
  • the air mix door 73 By adjusting the air mix door 73 to an appropriate opening degree, cold air and hot air are mixed to create conditioned air at a target temperature. If the target temperature for air conditioning is low, the heater 77 may not be energized, and the cooling operation may be performed only by the operation of the refrigeration cycle by driving the compressor and the ventilation.
  • the target temperature for air conditioning is high, the compressor may not be driven and the heating operation may be performed only by energizing the heater 77 and blowing air. With this air conditioning operation maintained, the process returns to the start of the energy saving air conditioning mode and repeats a series of air conditioning control again.
  • step S174 the air conditioning operation is temporarily stopped.
  • the air conditioning stop state the driving of the indoor fan 71 is stopped, the connection of the clutch 75 is released, and the energization to the heater 77 is stopped.
  • the air conditioning stop state is a state in which energy consumption is suppressed for all devices used for the air conditioning operation.
  • the energy consumption may not be suppressed for all devices used for the air conditioning operation, but may be controlled so as to suppress the energy consumption only for a specific device.
  • the air conditioning operation is performed in the unmanned traveling state before the manned traveling, and the air conditioning operation is not performed while the vehicle is not traveling even in the unmanned state. For this reason, it is possible to cool the radiator such as the condenser by utilizing the traveling wind of the vehicle, and to reduce the energy consumption by driving the radiator fan 36 for the engine and the condenser fan 74. Further, since the vehicle power is not used to perform the air conditioning operation while the vehicle power is not used for traveling, energy consumption can be reduced. In other words, since the engine 31 is not driven only for air conditioning operation, energy consumption can be reduced.
  • Air conditioning operation with temperature adjustment is performed when the vehicle speed is above a predetermined value. For this reason, air-conditioning operation with much energy consumption will be performed at the timing which receives much driving
  • Air conditioning operation with temperature adjustment is performed when the vehicle power efficiency is above a predetermined value. For this reason, the power of air-conditioning driving
  • air-conditioning operation is performed in consideration of comfort factors other than temperature such as noise. Thereby, it is possible to prevent a decrease in silence due to the sound of the indoor fan 71. For this reason, the comfort in a vehicle interior can be improved.
  • ⁇ ⁇ ⁇ Use the seat heater only in the manned air conditioning mode. That is, a heating appliance that exhibits a high effect in a state where the occupant is seated is not used in an unattended state where the occupant is not seated. For this reason, it is possible to efficiently perform the heating operation while suppressing excessive energy consumption in the heating operation.
  • the rotational speed of the indoor fan 71 is increased as compared with the manned air conditioning mode.
  • the vehicle air conditioner 1 performs an air conditioning operation in an unmanned state based on boarding schedule information indicating information expected to be in a manned state next. For this reason, since pre-air-conditioning can be performed when air-conditioning is required, the energy consumed can be reduced compared with the case where air-conditioning operation is always continued in the pre-air-conditioning state. In addition, since the pre-air conditioning is performed before entering the manned state, the comfort in the passenger compartment when the occupant gets in can be improved. In addition, even if the scheduled boarding time T1 becomes longer due to a sudden event such as traffic jams, unnecessary pre-air conditioning can be stopped and air-conditioning operation can be performed at the optimal timing at which pre-air conditioning should be started. it can.
  • a boarding scheduled time T1 based on the boarding position information and the current location is calculated, and the boarding scheduled time T1 and the air conditioning scheduled time T2 are compared to determine the start of pre-air conditioning. For this reason, pre-air conditioning can be started at an appropriate timing before reaching the boarding position. Therefore, it is possible to improve the comfort of the passenger who gets into the passenger compartment while suppressing the energy consumption during the air conditioning operation.
  • a boarding scheduled time T1 based on the boarding time information and the current time is calculated, and the boarding scheduled time T1 and the air conditioning scheduled time T2 are compared to determine the start of pre-air conditioning. For this reason, prior air conditioning can be started at an appropriate timing before the boarding time is changed. Therefore, it is possible to improve the comfort of passengers getting into the passenger compartment while suppressing energy consumption in air-conditioning operation.
  • This embodiment is a modified example based on the preceding embodiment.
  • a motor 332 is used instead of the engine 31 as vehicle power. That is, the vehicle air conditioner 1 is mounted on a vehicle that uses the motor 332 as vehicle power, such as an electric vehicle.
  • the vehicle ECU 10 is connected not with the first water temperature sensor 24 but with the second water temperature sensor 324.
  • the second water temperature sensor 324 is a temperature sensor provided in a cooling water circulation path for cooling heat generating components such as the motor 332, the inverter 339, and the battery.
  • the second water temperature sensor 324 detects the temperature of the cooling water immediately after the heat is exchanged with the motor 332 and the temperature is increased.
  • the vehicle ECU 10 is connected to a battery monitoring unit 327.
  • the battery monitoring unit 327 is a unit that monitors a battery that supplies electric power to an electric component such as the motor 332.
  • the battery monitoring unit 327 detects the amount of electricity stored in the battery.
  • the vehicle ECU 10 takes out electricity from the battery during acceleration and drives the motor 332. On the other hand, at the time of deceleration, the motor 332 generates power and stores electricity in the battery.
  • the vehicle ECU 10 is connected to the motor 332 via the inverter 339 instead of the engine 31.
  • the inverter 339 is a device that converts a direct current into an alternating current.
  • the motor 332 is vehicle power for the vehicle to travel.
  • the motor 332 converts electrical energy supplied from the battery into mechanical energy.
  • the vehicle ECU 10 is connected not to the engine radiator fan 36 but to the motor radiator fan 336.
  • the motor radiator fan 336 is a blower that blows air to the motor radiator, which is a radiator that circulates cooling water that cools the motor 332 and the like.
  • the motor radiator fan 336 is provided in front of the motor radiator provided in the front portion of the vehicle. In other words, the motor radiator fan 336 is provided to face the motor radiator.
  • the motor radiator fan 336 blows air from the front of the vehicle toward the rear. In other words, the air is blown in the same direction as the wind received by the traveling vehicle.
  • the air conditioning ECU 50 is connected to the electric compressor 376 instead of the clutch 75.
  • the electric compressor 376 is a compressor that forms a refrigeration cycle for cooling.
  • the electric compressor 376 is controlled by the air-conditioning ECU 50 in addition to driving on / off, as well as the strength of the output.
  • the driving of the electric compressor 376 is independent of the driving of the motor 332. That is, vehicle power is not used for control related to air conditioning operation.
  • the electric compressor 376 is driven to supply the refrigerant to the evaporator.
  • steps denoted by the same step numbers as those in the preceding embodiment are similar processes and exhibit the same operational effects.
  • the contents different from the preceding embodiment will be described below.
  • step S162 in the energy saving air conditioning mode it is determined whether or not the acquired vehicle speed is a predetermined value or more.
  • the predetermined value is, for example, 30 km / h. If the vehicle speed is greater than or equal to the predetermined value, the process proceeds to step S363. On the other hand, if the vehicle speed is lower than the predetermined value, the process proceeds to step S374.
  • the state where the vehicle is stopped is included when the vehicle speed is lower than a predetermined value.
  • step S363 the cooling air flow is stopped.
  • the driving of the motor radiator fan 336 and the condenser fan 74 is stopped.
  • the motor radiator and the condenser are cooled by receiving only the traveling wind accompanying the traveling of the vehicle.
  • the rotational speed may be lowered to reduce the energy consumed by the blower.
  • step S373 the air conditioning operation is started. Specifically, the indoor fan 71 is driven at a higher rotational speed than the rotational speed of the indoor fan 71 in the manned air conditioning mode. Further, the electric compressor 376 is driven. Alternatively, energization of the heater 77 is started. In addition, by appropriately adjusting the opening degree of the air mix door 73, the cold air and the hot air are mixed to create an air conditioned air having a target temperature. While maintaining this air conditioning operation, the system returns to the start of the energy saving air conditioning mode and repeats a series of air conditioning control again.
  • step S374 the air conditioning operation is temporarily stopped.
  • the air conditioning stop state driving of the indoor fan 71 is stopped, and energization to the electric compressor 376 and the heater 77 is stopped. That is, the air conditioning stop state is a state in which energy consumption is suppressed for all devices used for air conditioning operation.
  • the energy consumption may not be suppressed for all of the devices used for the air conditioning operation, but control may be performed so as to suppress the energy consumption only for specific parts. That is, the driving of the two devices of the electric compressor 376 and the heater 77 used for temperature adjustment may be stopped, and driving may be continued otherwise. While maintaining this stop state, the process returns to the start of the energy saving air conditioning mode and repeats a series of air conditioning control again.
  • the pre-air conditioning operation before the manned traveling is not performed while the vehicle is not traveling even in the unmanned state. For this reason, cooling can be performed by utilizing the traveling wind of the vehicle, and energy consumption due to driving of the radiator fan 336 and the condenser fan 74 can be reduced.
  • Air conditioning operation with temperature adjustment is performed when the vehicle speed is equal to or higher than the specified value. For this reason, the air-conditioning operation which consumes a lot of energy is performed at the timing of receiving a lot of vehicle wind. Therefore, efficient air conditioning can be performed by reducing energy consumption by driving the motor radiator fan 336 and the condenser fan 74.
  • the disclosure herein is not limited to the illustrated embodiments.
  • the disclosure encompasses the illustrated embodiments and variations by those skilled in the art based thereon.
  • the disclosure is not limited to the combinations of parts and / or elements shown in the embodiments.
  • the disclosure can be implemented in various combinations.
  • the disclosure may have additional parts that can be added to the embodiments.
  • the disclosure includes those in which parts and / or elements of the embodiments are omitted.
  • the disclosure encompasses the replacement or combination of parts and / or elements between one embodiment and another.
  • the technical scope disclosed is not limited to the description of the embodiments. Some technical scope disclosed is indicated by the description of the claims, and should be understood to include all modifications within the meaning and scope equivalent to the description of the claims.
  • the vehicle air conditioner 1 is applied to a vehicle such as a hybrid vehicle that travels by using two vehicle powers of the engine and the motor. May be applied.

Landscapes

  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

The air-conditioning control device (50) executes air-conditioning control when a determination result indicates that a vehicle is in both unmanned and traveling states, and stops the air-conditioning control when the determination result indicates that the vehicle is in both unmanned and stopped states.

Description

空調制御装置Air conditioning controller 関連出願の相互参照Cross-reference of related applications
 本出願は、2017年6月5日に出願された日本国特許出願2017-111018号と、2018年1月18日に出願された日本国特許出願2018-006224号と、に基づくものであって、その優先権の利益を主張するものであり、その特許出願の全ての内容が、参照により本明細書に組み込まれる。 This application is based on Japanese Patent Application No. 2017-111018 filed on June 5, 2017 and Japanese Patent Application No. 2018-006224 filed on January 18, 2018. Claims the benefit of that priority, the entire contents of which are incorporated herein by reference.
 本開示は、無人走行が可能な車両に搭載される空調制御装置に関する。 This disclosure relates to an air conditioning control device mounted on a vehicle capable of unmanned traveling.
 特許文献1は、有人走行中は対人用制御である空調用のコンプレッサなどを運転し、無人走行中は空調用のコンプレッサなどを停止する制御装置を開示する。無人走行を行う車両において、不要な空調を控えるなどの効率的な空調運転を実施することで燃費を向上させることが求められている。 Patent Document 1 discloses a control device that operates an air conditioning compressor or the like for personal control during manned traveling and stops the air conditioning compressor or the like during unmanned traveling. In vehicles that run unattended, there is a need to improve fuel efficiency by implementing efficient air-conditioning operation such as avoiding unnecessary air-conditioning.
特開2001-1787号公報Japanese Patent Laid-Open No. 2001-1787
 従来技術の構成では、無人走行と判断された場合に空調用のコンプレッサなどを停止して空調運転を停止している。このため、無人走行後に車両に乗り込んだ乗員が快適な車内空間に空調が完了されるまでに多くの時間とエネルギーを要してしまう。また、無人運転中も常に空調運転を行うこととすると空調運転で多くのエネルギーを消費してしまう。上述の観点において、または言及されていない他の観点において、車両用空調装置にはさらなる改良が求められている。 In the configuration of the prior art, when it is determined that the vehicle is unmanned, the air conditioning compressor is stopped to stop the air conditioning operation. For this reason, it takes much time and energy for the occupant who has entered the vehicle after unmanned driving to complete air conditioning in a comfortable interior space. Further, if the air-conditioning operation is always performed even during the unattended operation, a lot of energy is consumed in the air-conditioning operation. In view of the above, or other aspects not mentioned, there is a need for further improvements in vehicle air conditioners.
 開示される目的は、無人状態で事前に適切な空調制御を行う空調制御装置を提供することである。 The disclosed object is to provide an air conditioning control device that performs appropriate air conditioning control in advance in an unattended state.
 本開示は、車両に搭載される空調制御装置であって、車両への乗員の乗車状態及び車両の走行状態を判定する判定部(52)と、判定部の判定結果に基づいて温度調整を伴う空調制御を実行する出力部(53)と、を備える。出力部は、判定結果が車両の無人状態且つ走行状態を示すものである場合に空調制御を実行し、判定結果が車両の無人状態且つ停車状態を示すものである場合に空調制御の実行を停止する。 The present disclosure is an air conditioning control device mounted on a vehicle, and includes a determination unit (52) that determines a passenger's boarding state and a traveling state of the vehicle, and temperature adjustment based on a determination result of the determination unit. And an output unit (53) for executing air conditioning control. The output unit executes air conditioning control when the determination result indicates an unmanned state and a traveling state of the vehicle, and stops executing the air conditioning control when the determination result indicates an unattended state and a stopped state of the vehicle. To do.
 本開示によれば、無人走行中に空調運転を行い、停車中は空調運転を停止する。これにより、放熱器を走行風で冷却できるため効率的な空調運転が可能である。 According to the present disclosure, the air conditioning operation is performed during unmanned traveling, and the air conditioning operation is stopped while the vehicle is stopped. Thereby, since the radiator can be cooled by the traveling wind, an efficient air conditioning operation is possible.
 尚、「発明の概要」及び「請求の範囲」に記載した括弧内の符号は、後述する「発明を実施するための形態」との対応関係を示すものであって、「発明の概要」及び「請求の範囲」が、後述する「発明を実施するための形態」に限定されることを示すものではない。 The reference numerals in parentheses described in the “Summary of the Invention” and “Claims” indicate the correspondence with the “Mode for Carrying Out the Invention” to be described later. It does not indicate that the “claims” are limited to the “modes for carrying out the invention” described below.
図1は、車両用空調装置のブロック図である。FIG. 1 is a block diagram of a vehicle air conditioner. 図2は、車両用空調装置の制御に関するフローチャートである。FIG. 2 is a flowchart regarding control of the vehicle air conditioner. 図3は、図2のフローチャートにおけるステップS151のフローチャートである。FIG. 3 is a flowchart of step S151 in the flowchart of FIG. 図4は、第2実施形態の車両用空調装置のブロック図である。FIG. 4 is a block diagram of the vehicle air conditioner of the second embodiment. 図5は、第2実施形態の制御に関するフローチャートである。FIG. 5 is a flowchart relating to the control of the second embodiment.
 以下、添付図面を参照しながら本実施形態について説明する。説明の理解を容易にするため、各図面において同一の構成要素に対しては可能な限り同一の符号を付して、重複する説明は省略する。 Hereinafter, the present embodiment will be described with reference to the accompanying drawings. In order to facilitate the understanding of the description, the same constituent elements in the drawings will be denoted by the same reference numerals as much as possible, and redundant description will be omitted.
 第1実施形態
 車両用空調装置1は、車両に搭載されている。車両用空調装置1は、車室内の冷房、暖房、および/または換気を提供する。車両用空調装置1は、車室内に温度調整された空調風を送風して冷暖房を行う。車両用空調装置1は、車室内の空気を車室外に吐き出し、車室外の空気を車室内に取り込んで換気する。
1st Embodiment The vehicle air conditioner 1 is mounted in the vehicle. The vehicle air conditioner 1 provides cooling, heating, and / or ventilation in the passenger compartment. The vehicle air conditioner 1 performs cooling and heating by blowing temperature-conditioned air into the passenger compartment. The vehicle air conditioner 1 discharges the air inside the vehicle interior to the outside of the vehicle interior, and takes the air outside the vehicle interior into the vehicle interior for ventilation.
 車両は車両制御装置(以下、車両ECUと示す)10によってその駆動が制御されている。言い換えると、車両ECU10は、車両の走行制御や車両の走行に必要な冷却系統などの制御を行う。 The driving of the vehicle is controlled by a vehicle control device (hereinafter referred to as a vehicle ECU) 10. In other words, the vehicle ECU 10 controls the traveling system of the vehicle and the cooling system necessary for traveling of the vehicle.
 図1において、車両ECU10には、周辺監視センサ21、人体検知センサ22、車速センサ23、第1水温センサ24、予約設定手段25、カーナビゲーション装置26が接続されている。車両ECU10には、各接続部品からの検出結果である信号が入力される。 In FIG. 1, the vehicle ECU 10 is connected to a surrounding monitoring sensor 21, a human body detection sensor 22, a vehicle speed sensor 23, a first water temperature sensor 24, a reservation setting unit 25, and a car navigation device 26. A signal that is a detection result from each connection component is input to the vehicle ECU 10.
 周辺監視センサ21は、車両周囲における外部環境のデータを取得するセンサである。周辺監視センサ21は、車両の進行方向である車両前方に向けて備えたカメラである。周辺監視センサ21は、車両前方の障害物の有無を検知するレーダーでもよい。また、周辺監視センサ21としてカメラとレーダーとの両方の装置を用いてもよい。車両ECU10は、周辺監視センサ21を用いて、車両周囲の外部環境データなどの車両の無人走行制御に必要なデータを取得する。 The perimeter monitoring sensor 21 is a sensor that acquires external environment data around the vehicle. The periphery monitoring sensor 21 is a camera provided toward the front of the vehicle that is the traveling direction of the vehicle. The surrounding monitoring sensor 21 may be a radar that detects the presence or absence of an obstacle in front of the vehicle. Further, both the camera and the radar may be used as the periphery monitoring sensor 21. The vehicle ECU 10 uses the periphery monitoring sensor 21 to acquire data necessary for unmanned traveling control of the vehicle such as external environment data around the vehicle.
 人体検知センサ22は、車室内が無人状態か有人状態かを判断する無人判断手段である。人体検知センサ22は、座席に設けられて、乗員の着座による荷重を受けて有人状態であるか否かを判断する着座センサである。着座センサは、車両内の複数の座席に個別に設けられており、どの座席に乗員が着座しているかを検知する。人体検知センサ22は、着座センサに限られない。人体検知センサ22は、シートベルトの装着の有無を検知するシートベルトセンサでもよい。人体検知センサ22は、人体から放射される赤外線を検知する赤外線センサでもよい。赤外線センサは、乗員が座席に座っていない状態であっても車室内が有人状態であるか否かを判断可能である。 The human body detection sensor 22 is an unmanned determination means for determining whether the passenger compartment is unmanned or manned. The human body detection sensor 22 is a seating sensor that is provided in the seat and determines whether or not the vehicle is in a manned state by receiving a load due to the seating of the occupant. The seating sensor is individually provided in a plurality of seats in the vehicle, and detects in which seat the occupant is seated. The human body detection sensor 22 is not limited to a seating sensor. The human body detection sensor 22 may be a seat belt sensor that detects whether or not a seat belt is worn. The human body detection sensor 22 may be an infrared sensor that detects infrared rays emitted from the human body. The infrared sensor can determine whether or not the passenger compartment is manned even when the passenger is not sitting on the seat.
 車速センサ23は、車両の走行速度を検出するセンサである。車速センサ23は、車両の車輪に設けられて、車輪の回転速度を検出する。これにより、車両の走行速度である車速を算出する。 The vehicle speed sensor 23 is a sensor that detects the traveling speed of the vehicle. The vehicle speed sensor 23 is provided on the wheel of the vehicle and detects the rotational speed of the wheel. Thereby, the vehicle speed that is the traveling speed of the vehicle is calculated.
 第1水温センサ24は、エンジン冷却水の循環経路であって、エンジン31の出口付近に設けられている温度センサである。第1水温センサ24は、エンジン31と熱交換して温度が上昇した直後のエンジン冷却水の温度を検知する。 The first water temperature sensor 24 is a circulation path of engine cooling water and is a temperature sensor provided near the outlet of the engine 31. The first water temperature sensor 24 detects the temperature of the engine coolant immediately after the temperature has risen due to heat exchange with the engine 31.
 予約設定手段25は、利用者が車両の予約を設定する操作手段である。車両ECU10は、予約設定によってあらかじめ指定された時間に指定された場所まで車両を自動運転する制御を行う。予約設定手段25は、スマートフォンやパソコンなどの車室外の通信用端末である。予約設定手段25は、車室内部に設けられた操作端末であってもよい。この場合、乗車中の乗員が次回の乗車予定時刻や乗車予定場所などの情報を入力することで、予約設定を行う。予約設定手段25では、車室内の目標温度や、車室内の音楽の有無などの情報も設定可能である。 The reservation setting means 25 is an operation means for a user to set a reservation for a vehicle. The vehicle ECU 10 performs control to automatically drive the vehicle to a place designated at a time designated in advance by reservation setting. The reservation setting means 25 is a communication terminal outside the passenger compartment such as a smartphone or a personal computer. The reservation setting means 25 may be an operation terminal provided in the vehicle interior. In this case, the reservation is set by inputting information such as a next boarding scheduled time and a boarding planned place by a passenger on board. The reservation setting means 25 can also set information such as the target temperature in the passenger compartment and the presence or absence of music in the passenger compartment.
 カーナビゲーション装置26は、設定された目的地の情報とGPSで取得した車両の現在地情報とを用いて、最適な走行ルートの決定と予想される所要時間の算出を行う。目的地までの所要時間は、現在地から目的地までの直線距離に迂回係数をかけて算出した距離情報を速度情報(例えば、時速40km)で割ることで算出する。所要時間の算出において渋滞情報を取得して、渋滞が発生している場合には所要時間を長くするなどの補正を行ってもよい。 The car navigation device 26 uses the set destination information and the current vehicle location information acquired by GPS to determine the optimum travel route and calculate the expected time. The required time to the destination is calculated by dividing the distance information calculated by multiplying the linear distance from the current position to the destination by a detour coefficient by speed information (for example, 40 km / h). In the calculation of the required time, traffic jam information may be acquired, and correction may be performed such as increasing the required time when the traffic jam occurs.
 車両ECU10には、走行に必要な装置であるエンジン31、アクセル33、ブレーキ34、ステアリング35が接続されている。車両ECU10には、走行に必要な装置を冷却するための冷却装置であるエンジン用ラジエータファン36、電動ウォータポンプ37が接続されている。車両ECU10からは、各接続部品を制御する信号が出力される。 The vehicle ECU 10 is connected to an engine 31, an accelerator 33, a brake 34, and a steering 35 that are necessary for traveling. The vehicle ECU 10 is connected to an engine radiator fan 36 and an electric water pump 37, which are cooling devices for cooling devices necessary for traveling. From vehicle ECU10, the signal which controls each connection component is output.
 エンジン31は、車両が走行するための車両動力である。エンジン31は、燃料を燃焼させた際に発生する燃焼ガスによって動力を得る内燃機関である。エンジン31により発生した動力は、空調装置の冷房用熱交換器に冷媒を圧縮して循環させるコンプレッサの動力にも使用される。 Engine 31 is vehicle power for the vehicle to travel. The engine 31 is an internal combustion engine that obtains power by combustion gas generated when fuel is burned. The power generated by the engine 31 is also used for the power of the compressor that compresses and circulates the refrigerant in the cooling heat exchanger of the air conditioner.
 アクセル33は、車両の加速を行う装置である。ブレーキ34は、車両の減速を行う装置である。車両ECU10は、アクセル33とブレーキ34を制御することで、車両の加速や減速を行うことで車速を制御する。 Accelerator 33 is a device that accelerates the vehicle. The brake 34 is a device that decelerates the vehicle. The vehicle ECU 10 controls the accelerator 33 and the brake 34 to control the vehicle speed by accelerating or decelerating the vehicle.
 ステアリング35は、タイヤの向きを制御する装置である。車両ECU10は、ステアリング35を制御することで、車両の進行方向を制御する。 Steering 35 is a device that controls the direction of the tire. The vehicle ECU 10 controls the traveling direction of the vehicle by controlling the steering 35.
 エンジン用ラジエータファン36は、エンジン冷却水が循環する放熱器であるエンジン用ラジエータに対して送風する送風機である。エンジン用ラジエータファン36は、車両前部に設けられたエンジン用ラジエータの前方に設けられている。言い換えると、エンジン用ラジエータファン36は、エンジン用ラジエータに対向して設けられている。エンジン用ラジエータファン36は、車両の前部から後方に向かって送風する。言い換えると、走行中の車両が受ける走行風と同じ方向に送風する。 The engine radiator fan 36 is a blower that blows air to the engine radiator, which is a radiator that circulates engine cooling water. The engine radiator fan 36 is provided in front of the engine radiator provided in the front portion of the vehicle. In other words, the engine radiator fan 36 is provided opposite to the engine radiator. The engine radiator fan 36 blows air rearward from the front of the vehicle. In other words, the air is blown in the same direction as the traveling wind received by the traveling vehicle.
 車両ECU10は、電動ウォータポンプ37と接続されている。電動ウォータポンプ37は、車両動力であるエンジン31を冷却するエンジン冷却水を循環するための動力として駆動されるポンプである。電動ウォータポンプ37は、車両ECU10によって駆動のオンオフに加えて出力の強弱も制御される。 The vehicle ECU 10 is connected to the electric water pump 37. The electric water pump 37 is a pump that is driven as power for circulating engine coolant that cools the engine 31 that is vehicle power. The electric water pump 37 is controlled by the vehicle ECU 10 in addition to on / off of the drive, as well as the strength of the output.
 このほか、車両ECU10は、トランスミッションやヘッドライトやウィンカーやワイパーなど走行に使用するあらゆる装置の制御を行う。車両ECU10は、空調運転に関する制御を行う空調制御装置(以下、空調ECUと示す)50と相互に通信可能に接続されている。 In addition, the vehicle ECU 10 controls all devices used for traveling, such as transmissions, headlights, blinkers, and wipers. The vehicle ECU 10 is connected to an air conditioning control device (hereinafter referred to as an air conditioning ECU) 50 that performs control related to the air conditioning operation so as to be able to communicate with each other.
 空調ECU50は、入力部51と、判定部52と、出力部53と、記憶部54とを備えている。入力部51は、センサなどの各接続部品から出力された信号を受信する。判定部52は、入力部51に入力された情報に基づいて演算を行い、空調制御内容を判定する。出力部53は、判定部52で判定した空調制御内容を制御対象である各接続部品に送信する。記憶部54は、入力部51で受信した情報や、判定部52で判定した判定結果などを記憶する。 The air conditioning ECU 50 includes an input unit 51, a determination unit 52, an output unit 53, and a storage unit 54. The input unit 51 receives a signal output from each connection component such as a sensor. The determination unit 52 performs a calculation based on information input to the input unit 51 to determine the air conditioning control content. The output unit 53 transmits the air conditioning control content determined by the determination unit 52 to each connection component that is a control target. The storage unit 54 stores information received by the input unit 51, determination results determined by the determination unit 52, and the like.
 空調ECU50には、内気センサ61、外気センサ62、日射センサ63、空調設定手段64、蒸発器温度センサ65が接続されている。空調ECU50には、各接続部品からの検出結果である信号が入力される。 Connected to the air conditioning ECU 50 are an inside air sensor 61, an outside air sensor 62, a solar radiation sensor 63, an air conditioning setting means 64, and an evaporator temperature sensor 65. A signal that is a detection result from each connection component is input to the air conditioning ECU 50.
 内気センサ61は、車室内の温度を測定する温度センサである。内気センサ61は、車室内のインストルメントパネル内に配置されている。外気センサ62は、車室外の温度を測定する温度センサである。外気センサ62は、エンジンルーム内の熱気の影響を受けにくい、フロントバンパー裏に配置されている。日射センサ63は、車両に照射される太陽光の日射強度を測定するセンサである。日射センサ63は、ダッシュボードの上面に設けられている。 The inside air sensor 61 is a temperature sensor that measures the temperature in the passenger compartment. The inside air sensor 61 is disposed in an instrument panel in the vehicle interior. The outside air sensor 62 is a temperature sensor that measures the temperature outside the passenger compartment. The outside air sensor 62 is disposed on the back of the front bumper that is not easily affected by hot air in the engine room. The solar radiation sensor 63 is a sensor that measures the solar radiation intensity of sunlight irradiated on the vehicle. The solar radiation sensor 63 is provided on the upper surface of the dashboard.
 空調設定手段64は、乗員が車内の目標温度や、吹き出し風量の強さなどを設定可能な操作パネルである。空調設定手段64は、車室内に設けられている。空調設定手段64は、乗員が走行中に操作可能である。空調設定手段64は、車室内に設けた操作パネルに限られない。空調設定手段64は、スマートフォンやパソコンなどの車室外の通信用端末としてもよい。空調設定手段64は、予約設定手段25と同じ端末で空調設定と予約設定を可能としてもよい。 The air conditioning setting means 64 is an operation panel that allows the occupant to set the target temperature in the vehicle, the strength of the blown air volume, and the like. The air conditioning setting means 64 is provided in the vehicle interior. The air conditioning setting means 64 can be operated while the occupant is traveling. The air conditioning setting means 64 is not limited to an operation panel provided in the vehicle interior. The air conditioning setting means 64 may be a communication terminal outside the passenger compartment such as a smartphone or a personal computer. The air conditioning setting unit 64 may enable air conditioning setting and reservation setting at the same terminal as the reservation setting unit 25.
 空調ECU50は、内気センサ61、外気センサ62、日射センサ63の測定結果と、空調設定手段64で入力された車内の目標温度等の情報とから空調風の吹き出し口近傍における目標温度である目標吹き出し口温度を算出する。空調ECU50は、算出した目標吹き出し口温度に基づいて空調運転を行う。 The air conditioning ECU 50 uses the measurement results of the inside air sensor 61, the outside air sensor 62, and the solar radiation sensor 63 and the target air temperature that is the target temperature in the vicinity of the air conditioning air outlet from the information such as the target temperature in the vehicle input by the air conditioning setting means 64. Calculate the mouth temperature. The air conditioning ECU 50 performs the air conditioning operation based on the calculated target outlet temperature.
 蒸発器温度センサ65は、冷房用熱交換器である蒸発器の温度を測定する温度センサである。蒸発器温度センサ65は、蒸発器の出口配管付近に設けられている。空調ECU50は、蒸発器温度センサ65で測定した蒸発器の温度に基づき冷房運転を制御する。 The evaporator temperature sensor 65 is a temperature sensor that measures the temperature of an evaporator that is a heat exchanger for cooling. The evaporator temperature sensor 65 is provided near the outlet pipe of the evaporator. The air conditioning ECU 50 controls the cooling operation based on the evaporator temperature measured by the evaporator temperature sensor 65.
 空調ECU50には、室内ファン71、吸入口ドア72、エアミックスドア73、コンデンサファン74、クラッチ75、ヒーター77、窓78が接続されている。空調ECU50からは、各接続部品を制御する信号が出力される。 The air conditioning ECU 50 is connected with an indoor fan 71, an inlet door 72, an air mix door 73, a condenser fan 74, a clutch 75, a heater 77, and a window 78. The air conditioning ECU 50 outputs a signal for controlling each connection component.
 室内ファン71は、車室内に空調風を送風するファンである。室内ファン71は、冷房用熱交換器である蒸発器と、暖房用熱交換器であるヒーターコアとに対して風を送風する。蒸発器およびヒーターコアと熱交換した風は空調風として吹き出し口から車室内に吹き出す。空調ECU50は、室内ファン71を制御することにより空調風を車室内に送風して空調制御を行う。 The indoor fan 71 is a fan that blows conditioned air into the vehicle interior. The indoor fan 71 blows air to an evaporator that is a cooling heat exchanger and a heater core that is a heating heat exchanger. The air exchanged heat with the evaporator and the heater core is blown out from the outlet to the passenger compartment as conditioned air. The air conditioning ECU 50 controls the indoor fan 71 to control the air conditioning by blowing conditioned air into the vehicle interior.
 吸入口ドア72は、内気吸入口と外気吸入口との2種類の吸入口のどちらか一方を閉塞するドア部材である。吸入口ドア72は、回転軸を中心に回動して開度を調整するロータリドアである。外気吸入口を閉塞した場合は、車室内において空調風を循環する。車室内で風を循環するモードは、内気モードである。内気吸入口を閉塞した場合は、車室外から取り込んだ風を車室内に送風する。車室外から車室内に風を取り込むモードは、外気モードである。 The suction port door 72 is a door member that closes one of two types of suction ports, an inside air suction port and an outside air suction port. The inlet door 72 is a rotary door that rotates around a rotation axis to adjust the opening degree. When the outside air inlet is blocked, the conditioned air is circulated in the passenger compartment. The mode in which wind is circulated in the passenger compartment is the inside air mode. When the inside air suction port is blocked, the wind taken from outside the vehicle compartment is blown into the vehicle interior. The mode for taking in wind from outside the vehicle compartment to the vehicle interior is the outside air mode.
 エアミックスドア73は、冷房用熱交換器である蒸発器を通過した風と暖房用熱交換器であるヒーターコアとを熱交換させる割合を制御するドア部材である。エアミックスドア73は、ヒーターコアの前方に位置して設けられている。エアミックスドア73は、板ドアである。エアミックスドア73がヒーターコアの前面を全体にわたって覆って閉じている場合は、蒸発器のみで熱交換を行った冷たい空調風が車室内に送風されることとなる。エアミックスドア73がヒーターコアの前面から離れて開いている場合は、蒸発器とヒーターコアとの両方で熱交換を行った空調風が車室内に送風されることとなる。 The air mix door 73 is a door member that controls the rate of heat exchange between the wind that has passed through the evaporator, which is a cooling heat exchanger, and the heater core, which is a heating heat exchanger. The air mix door 73 is provided in front of the heater core. The air mix door 73 is a plate door. When the air mix door 73 covers and covers the entire front surface of the heater core, the cold conditioned air that has been heat-exchanged only by the evaporator is blown into the vehicle interior. When the air mix door 73 is opened away from the front surface of the heater core, the conditioned air subjected to heat exchange by both the evaporator and the heater core is blown into the vehicle interior.
 コンデンサファン74は、冷房用の冷凍サイクルの一部をなす放熱器であるコンデンサに送風する送風機である。コンデンサファン74は、車両前部に設けられたコンデンサのさらに前方に設けられている。言い換えると、コンデンサファン74は、コンデンサに対向して設けられている。コンデンサファン74は、車両の前部から後方に向かって送風する。言い換えると、走行中の車両が受ける走行風と同じ方向に送風する。コンデンサファン74とエンジン用ラジエータファン36とは隣接して設けられている。 The condenser fan 74 is a blower that blows air to a condenser, which is a radiator that forms part of the refrigeration cycle for cooling. The condenser fan 74 is provided further forward of the condenser provided in the front portion of the vehicle. In other words, the capacitor fan 74 is provided to face the capacitor. The condenser fan 74 blows air from the front of the vehicle toward the rear. In other words, the air is blown in the same direction as the traveling wind received by the traveling vehicle. The condenser fan 74 and the engine radiator fan 36 are provided adjacent to each other.
 クラッチ75は、エンジン31と冷房用の冷凍サイクルをなすコンプレッサとの連結を制御する連結装置である。クラッチ75は、磁力の有無により連結状態と解除状態とを制御するマグネットクラッチである。冷房運転を行う場合には、クラッチ75を連結状態とする。すなわち、エンジン31とコンプレッサとを連結して、エンジン31を動力としてコンプレッサを駆動する。言い換えると、コンプレッサは車両動力であるエンジン31を動力に利用して空調する空調装置である。したがって、車両が停車中に冷房運転を行う場合にはコンプレッサを駆動するためにエンジン31を駆動する必要がある。一方、冷房運転を行わない場合には、クラッチ75を解除状態とする。すなわち、エンジン31とコンプレッサとを離してコンプレッサが駆動していない状態とする。 The clutch 75 is a connecting device that controls the connection between the engine 31 and a compressor that forms a cooling refrigeration cycle. The clutch 75 is a magnet clutch that controls a connected state and a released state depending on the presence or absence of magnetic force. When performing the cooling operation, the clutch 75 is brought into a connected state. That is, the engine 31 and the compressor are connected to drive the compressor using the engine 31 as power. In other words, the compressor is an air conditioner that performs air conditioning using the engine 31 that is vehicle power as power. Therefore, when the cooling operation is performed while the vehicle is stopped, it is necessary to drive the engine 31 in order to drive the compressor. On the other hand, when the cooling operation is not performed, the clutch 75 is released. That is, the engine 31 and the compressor are separated and the compressor is not driven.
 ヒーター77は、車室内の暖房に用いる熱源である。ヒーター77は、温度上昇にともない電気抵抗の値が正の係数をもって変化する性質を持つPTCヒーターである。ヒーター77は、ヒーターコアに追加して設けられて車室内の暖房に寄与するヒーターである。空調ECU50は、暖房が必要な場合にヒーター77に通電して温度を上昇させる。ヒーター77は、暖房に寄与するヒーターであればよい。例えば座席に設けられたシートヒータでもよい。 The heater 77 is a heat source used for heating the passenger compartment. The heater 77 is a PTC heater having a property that the value of electric resistance changes with a positive coefficient as the temperature rises. The heater 77 is a heater that is provided in addition to the heater core and contributes to the heating of the vehicle interior. The air conditioning ECU 50 increases the temperature by energizing the heater 77 when heating is required. The heater 77 may be a heater that contributes to heating. For example, a seat heater provided in the seat may be used.
 窓78は、車室内に外気を取り込む換気機能を備えている。窓78は、乗員が乗降のために開閉する扉の上部に設けられている。空調ECU50は、換気運転を行う場合に窓78を開放して室内の空気を外に出すとともに、外気を車室内に取り込む。空調ECU50は、換気運転の完了後、窓78を閉じる。 The window 78 has a ventilation function for taking outside air into the passenger compartment. The window 78 is provided in the upper part of the door which a passenger | crew opens and closes for boarding / alighting. The air-conditioning ECU 50 opens the window 78 to release indoor air to the outside while performing ventilation operation, and takes in the outside air into the vehicle interior. The air conditioning ECU 50 closes the window 78 after completing the ventilation operation.
 空調ECU50は、目標吹き出し口温度で空調風が吹き出されるように各装置を制御する。すなわち、空調ECU50は、室内ファン71の回転数を制御する。空調ECU50は、吸入口ドア72の切り替えを制御する。空調ECU50は、エアミックスドア73の開度を制御する。空調ECU50は、コンデンサファン74の回転数を制御する。空調ECU50は、クラッチ75の連結と解除との切り替えを制御する。空調ECU50は、ヒーター77の出力を制御する。空調ECU50は、窓78の開閉を制御する。 The air conditioning ECU 50 controls each device so that the conditioned air is blown out at the target outlet temperature. That is, the air conditioning ECU 50 controls the rotational speed of the indoor fan 71. The air conditioning ECU 50 controls switching of the suction port door 72. The air conditioning ECU 50 controls the opening degree of the air mix door 73. The air conditioning ECU 50 controls the rotational speed of the capacitor fan 74. The air conditioning ECU 50 controls switching between connection and release of the clutch 75. The air conditioning ECU 50 controls the output of the heater 77. The air conditioning ECU 50 controls the opening and closing of the window 78.
 次に、車両用空調装置1の制御処理を説明する。図2において、車両用空調装置1が空調制御を開始する場合、まず、ステップS101で人体検知センサ22を用いて車室内の人の有無を検知する。人の有無を検出した後、ステップS102で、車室内が無人であるか否かを判定する。無人であると判定した場合には、ステップS103に進む。一方、無人ではないと判定した場合には、ステップS191に進む。 Next, the control process of the vehicle air conditioner 1 will be described. In FIG. 2, when the vehicle air conditioner 1 starts air conditioning control, first, in step S101, the presence or absence of a person in the passenger compartment is detected using the human body detection sensor 22. After detecting the presence or absence of a person, it is determined in step S102 whether or not the passenger compartment is unmanned. If it is determined that it is unattended, the process proceeds to step S103. On the other hand, if it is determined that the person is not unattended, the process proceeds to step S191.
 ステップS191では、有人空調モードで空調制御を行う。すなわち、現在乗車中の乗員が快適であると感じられるように空調を行う。言い換えると、有人空調モードでは、騒音などの温度以外の快適性の要素も考慮した空調運転を行う。より具体的には、有人空調モードでは室内ファン71を無人状態における室内ファン71の運転強度よりも低くする。言い換えると、室内ファン71の回転数の上限を無人状態に比べて低くする。また、シートヒータは有人空調モードでのみ使用する。この場合、無人状態ではシートヒータに通電せず、乗員の着座後にシートヒータに通電して使用を開始する。有人空調モードでの空調運転を実施した後、空調運転を維持した状態でステップS199に進む。 In step S191, air conditioning control is performed in the manned air conditioning mode. In other words, air conditioning is performed so that the passenger currently on board feels comfortable. In other words, in the manned air conditioning mode, air conditioning operation is performed in consideration of comfort factors other than temperature such as noise. More specifically, in the manned air conditioning mode, the indoor fan 71 is set lower than the operating intensity of the indoor fan 71 in the unmanned state. In other words, the upper limit of the rotational speed of the indoor fan 71 is made lower than that in the unattended state. The seat heater is used only in the manned air conditioning mode. In this case, the seat heater is not energized in the unattended state, and the seat heater is energized after the occupant is seated to start use. After performing the air conditioning operation in the manned air conditioning mode, the process proceeds to step S199 with the air conditioning operation maintained.
 ステップS103では、利用者が予約設定手段25を用いて入力した乗車位置情報を取得する。乗車位置情報は、次に有人状態となると予想される情報を示す乗車予定情報である。乗車位置情報は、利用者が乗車しようとする住所を示す情報である。ただし、利用者が住所を直接入力するのではなく、建物名や場所の名前を入力して住所を検索するようにしてもよい。また、あらかじめ乗車位置情報として固定された乗車場所を設定しておき、利用者は必ず所定の乗車場所から乗車することにしてもよい。この場合、乗車位置情報は利用者が入力するのではなく、あらかじめ設定された乗車位置情報を読み出すことで取得する。乗車位置情報の取得後、ステップS104に進む。 In step S103, the boarding position information input by the user using the reservation setting means 25 is acquired. The boarding position information is boarding schedule information indicating information expected to be in the next manned state. The boarding position information is information indicating an address where the user intends to board. However, the user may search for an address by inputting a building name or a place name instead of directly inputting the address. In addition, a boarding place fixed as boarding position information may be set in advance, and the user may always get on from a predetermined boarding place. In this case, the boarding position information is not input by the user but is acquired by reading the boarding position information set in advance. After obtaining the boarding position information, the process proceeds to step S104.
 ステップS104では、予約設定手段25を経由して利用者が入力した乗車時刻情報を取得する。乗車時刻情報は、次に有人状態となると予想される情報を示す乗車予定情報である。乗車時刻情報は、利用者が乗車しようとする時刻を示す情報である。例えば、19時30分などの時刻である。ただし、利用者が時刻を直接入力するのではなく、現在時刻からの経過時間を入力するようにしてもよい。すなわち、30分後などの経過時間である。また、利用者が未来の時間ではなく現在時刻を入力できるようにしてもよい。すなわち、少しでも早く乗車したい利用者は現在時刻を入力する。この場合、乗車時刻情報としては、現在時刻もしくは過去の時刻を取得することとなる。乗車時刻情報の取得後、ステップS105に進む。 In step S104, the boarding time information input by the user via the reservation setting means 25 is acquired. The boarding time information is boarding schedule information indicating information expected to be manned next. The boarding time information is information indicating the time when the user tries to board. For example, the time is 19:30. However, the user may input the elapsed time from the current time instead of directly inputting the time. That is, the elapsed time such as after 30 minutes. Further, the user may be allowed to input the current time instead of the future time. That is, the user who wants to get on as soon as possible inputs the current time. In this case, the current time or the past time is acquired as the boarding time information. After obtaining the boarding time information, the process proceeds to step S105.
 車両ECU10は、取得した乗車位置情報と乗車時刻情報とに基づき走行制御を開始する。すなわち、乗車時刻までに乗車位置にたどり着くように走行制御を行う。例えば、現在時刻が19時であって、乗車時刻情報が19時30分であって、乗車位置情報が現在地から移動に15分を要する場所に設定されている場合は、19時15分までは現在地で待機する。その後、19時15分に乗車位置に向けて走行を開始する。乗車時刻よりもわずかに早く到着するように走行制御を行ってもよい。ただし、乗車時刻情報として現在時刻が設定された場合など乗車時刻までに乗車位置に到着できない場合であっても、最も早く乗車位置にたどり着けるように走行制御を行う。 The vehicle ECU 10 starts traveling control based on the acquired boarding position information and boarding time information. In other words, the travel control is performed so as to reach the boarding position by the boarding time. For example, if the current time is 19:00, the boarding time information is 19:30, and the boarding position information is set to a place that requires 15 minutes to move from the current location, until 19:15 Wait at your current location. After that, at 19:15, traveling toward the boarding position is started. The travel control may be performed so that it arrives slightly earlier than the boarding time. However, even when the current time is set as the boarding time information, even when it is not possible to arrive at the boarding position by the boarding time, the travel control is performed so as to reach the boarding position earliest.
 ステップS105では、乗車予定時間T1を算出する。乗車予定時間T1は、現在地から乗車位置までの移動に要する時間、または現在時刻から乗車時刻までの時間のどちらか長い方の時間である。現在地から乗車位置までの移動に要する時間は、カーナビゲーション装置26から取得する。例えば、現在地から乗車位置までの移動に要する時間が15分であり、現在時刻から乗車時刻までの時間が1時間であれば、乗車予定時間T1は1時間である。現在地から乗車位置までの移動に要する時間は、カーナビゲーション装置26から取得するのではなく、車両ECU10により算出するなどしてもよい。また、通信装置を備え、外部で算出した現在地から乗車位置までの移動に要する時間を取得するようにしてもよい。乗車予定時間T1の算出後、ステップS106に進む。 In step S105, the estimated boarding time T1 is calculated. The scheduled boarding time T1 is the longer of the time required to move from the current location to the boarding position or the time from the current time to the boarding time. The time required to move from the current location to the boarding position is acquired from the car navigation device 26. For example, if the time required to move from the current location to the boarding position is 15 minutes and the time from the current time to the boarding time is 1 hour, the scheduled boarding time T1 is 1 hour. The time required to move from the current location to the boarding position may be calculated by the vehicle ECU 10 instead of being acquired from the car navigation device 26. In addition, a communication device may be provided, and a time required for movement from the current location to the boarding position calculated externally may be acquired. After the estimated boarding time T1 is calculated, the process proceeds to step S106.
 ステップS106では、空調予定時間T2を算出する。空調予定時間T2は、空調開始から空調完了までに要する所要時間である。空調予定時間T2は、内気センサ61で測定した現在の車室内の温度と、目標温度との温度差を用いて、空調ECU50が記憶している特性マップにより決定する。目標温度は、予約設定手段25を用いて利用者により入力された車室内の温度である。目標温度は、例えば20℃である。空調予定時間T2は、特性マップにより決定するのではなく、車室内の温度と、目標温度との温度差を空調ECU50が記憶している関数により算出してもよい。また、空調予定時間T2を目標温度などから算出するのではなく、目標温度に到達するのに十分な時間を空調予定時間T2としてあらかじめ設定してもよい。この場合、空調予定時間T2は、例えば30分などの固定された時間である。空調予定時間T2の算出後、ステップS107に進む。 In step S106, the scheduled air conditioning time T2 is calculated. The scheduled air conditioning time T2 is the time required from the start of air conditioning to the completion of air conditioning. The scheduled air conditioning time T2 is determined from the characteristic map stored in the air conditioning ECU 50 using the temperature difference between the current temperature in the passenger compartment measured by the room air sensor 61 and the target temperature. The target temperature is the temperature in the passenger compartment input by the user using the reservation setting means 25. The target temperature is 20 ° C., for example. The scheduled air conditioning time T2 is not determined by the characteristic map, but the temperature difference between the temperature in the passenger compartment and the target temperature may be calculated by a function stored in the air conditioning ECU 50. Further, instead of calculating the scheduled air conditioning time T2 from the target temperature or the like, a time sufficient to reach the target temperature may be set in advance as the scheduled air conditioning time T2. In this case, the scheduled air conditioning time T2 is a fixed time such as 30 minutes, for example. After calculating the air conditioning scheduled time T2, the process proceeds to step S107.
 ステップS107では、乗車予定時間T1が空調予定時間T2とバッファ時間T0との合計時間よりも短いか否かを判断する。乗車予定時間T1が空調予定時間T2とバッファ時間T0との合計時間よりも短くなった場合にはステップS108に進む。一方、乗車予定時間T1が空調予定時間T2とバッファ時間T0との合計時間よりも長い場合にはステップS111に進む。ここで、バッファ時間T0は、乗車予定時間T1よりも早く空調を完了させるための時間である。バッファ時間T0は、例えば10分である。例えば空調予定時間T2が20分と算出された場合は、空調予定時間T2とバッファ時間T0との合計時間は30分である。したがって、乗車予定時間T1が30分を下回った場合にはステップS108に進み、乗車予定時間T1が30分を上回っている場合にはステップS111に進む。バッファ時間T0は固定値でなくてもよい。すなわち、空調予定時間T2の半分の時間として算出するなどしてもよい。 In step S107, it is determined whether the scheduled boarding time T1 is shorter than the total time of the scheduled air conditioning time T2 and the buffer time T0. If the scheduled boarding time T1 is shorter than the total time of the scheduled air conditioning time T2 and the buffer time T0, the process proceeds to step S108. On the other hand, if the scheduled boarding time T1 is longer than the total time of the scheduled air conditioning time T2 and the buffer time T0, the process proceeds to step S111. Here, the buffer time T0 is a time for completing the air conditioning earlier than the scheduled boarding time T1. The buffer time T0 is, for example, 10 minutes. For example, when the scheduled air conditioning time T2 is calculated as 20 minutes, the total time of the scheduled air conditioning time T2 and the buffer time T0 is 30 minutes. Therefore, if the scheduled boarding time T1 is less than 30 minutes, the process proceeds to step S108, and if the scheduled boarding time T1 is greater than 30 minutes, the process proceeds to step S111. The buffer time T0 may not be a fixed value. That is, it may be calculated as half the air conditioning scheduled time T2.
 ステップS111では、空調運転を停止する。言い換えると、もともと空調運転を行っていない場合には停止された状態を維持し、すでに空調運転を開始していた場合には、空調運転を停止する。空調停止状態では、室内ファン71とコンデンサファン74の駆動を停止するとともに、クラッチ75の連結を解除し、ヒーター77への通電を停止する。言い換えると、空調運転に使用する全ての装置についてエネルギー消費を抑えた状態とする。ただし、空調停止状態において、空調運転に使用する全ての装置についてエネルギー消費を抑えなくてもよい。例えば、エネルギー消費の削減効果の大きいクラッチ75の連結解除のみを行ってもよい。また、クラッチ75を連結状態とするとともにコンデンサファン74を回転させることで冷凍サイクルによる冷房準備を維持しながら、室内ファン71の駆動のみを停止するなどしてもよい。空調停止後、空調停止を維持した状態でステップS199に進む。 In step S111, the air conditioning operation is stopped. In other words, when the air conditioning operation is not originally performed, the stopped state is maintained, and when the air conditioning operation has already been started, the air conditioning operation is stopped. In the air conditioning stop state, the driving of the indoor fan 71 and the condenser fan 74 is stopped, the connection of the clutch 75 is released, and the energization to the heater 77 is stopped. In other words, energy consumption is suppressed for all devices used for air conditioning operation. However, in the air conditioning stop state, it is not necessary to suppress energy consumption for all devices used for air conditioning operation. For example, only the clutch 75 having a large energy consumption reduction effect may be released. Alternatively, only the driving of the indoor fan 71 may be stopped while maintaining the cooling preparation by the refrigeration cycle by rotating the condenser fan 74 while the clutch 75 is in a connected state. After the air conditioning is stopped, the process proceeds to step S199 with the air conditioning stopped being maintained.
 ステップS108では、乗車予定時間T1が空調予定時間T2よりも長いか否かを判定する。乗車予定時間T1が空調予定時間T2よりも長い場合にはステップS151に進む。一方、乗車予定時間T1が空調予定時間T2よりも短い場合にはステップS121に進む。 In step S108, it is determined whether the scheduled boarding time T1 is longer than the scheduled air conditioning time T2. If the scheduled boarding time T1 is longer than the scheduled air conditioning time T2, the process proceeds to step S151. On the other hand, if the scheduled boarding time T1 is shorter than the scheduled air conditioning time T2, the process proceeds to step S121.
 ステップS121では、早期空調モードで有人走行前の事前空調運転を行う。早期空調モードは、算出された空調予定時間T2よりも短い時間で空調を完了するモードである。早期空調モードにおいては、内気吸入口から風を取り込む内気モードで空調運転を行う。早期空調モードにおいては、室内ファン71の回転数を省エネ空調モードよりも高く設定する。また、早期空調モードにおいては、室内ファン71などの空調運転に使用する装置に停止時間を設けず連続運転とする。すなわち、室内ファン71などの空調運転に使用する装置の稼働時間を省エネ空調モードよりも長く設定する。 In step S121, pre-air-conditioning operation before manned traveling is performed in the early air-conditioning mode. The early air conditioning mode is a mode in which air conditioning is completed in a time shorter than the calculated scheduled air conditioning time T2. In the early air-conditioning mode, the air-conditioning operation is performed in the inside-air mode in which wind is taken from the inside-air intake port. In the early air conditioning mode, the rotational speed of the indoor fan 71 is set higher than in the energy saving air conditioning mode. In the early air-conditioning mode, the apparatus used for the air-conditioning operation such as the indoor fan 71 is set to the continuous operation without providing a stop time. That is, the operating time of the device used for air conditioning operation such as the indoor fan 71 is set longer than the energy saving air conditioning mode.
 早期空調モードにおける制御内容は上述した方法に限られない。例えば、室内ファン71を複数備えた空調装置において、早期空調モードでは省エネ空調モードよりも室内ファン71の稼働台数を増やすなどしてもよい。あるいは、コンデンサファン74の回転数を省エネ空調モードよりも高く設定するとともに、エンジン31の回転数を上昇させることでコンプレッサの回転数を省エネ空調モードよりも高く設定する。あるいは、ヒーター77の出力を省エネ空調モードよりも大きく設定するなどしてもよい。早期空調モードでの空調運転を実施した後、空調運転を維持した状態でステップS199に進む。 The control content in the early air conditioning mode is not limited to the method described above. For example, in an air conditioning apparatus including a plurality of indoor fans 71, the number of operating indoor fans 71 may be increased in the early air conditioning mode than in the energy saving air conditioning mode. Alternatively, the rotational speed of the condenser fan 74 is set higher than that in the energy saving air conditioning mode, and the rotational speed of the engine 31 is increased to set the rotational speed of the compressor higher than that in the energy saving air conditioning mode. Alternatively, the output of the heater 77 may be set larger than that in the energy saving air conditioning mode. After performing the air conditioning operation in the early air conditioning mode, the process proceeds to step S199 with the air conditioning operation maintained.
 ステップS151では、後述する省エネ空調モードで有人走行前の事前空調運転を行う。省エネ空調モードでの空調運転を実施した後、空調運転を維持した状態でステップS199に進む。 In step S151, a pre-air conditioning operation before manned traveling is performed in an energy saving air conditioning mode described later. After performing the air conditioning operation in the energy saving air conditioning mode, the process proceeds to step S199 with the air conditioning operation maintained.
 ステップS199では、空調制御に関連する状態量を記憶する。記憶する状態量は、人体検知情報、乗車位置情報、乗車時刻情報、乗車予定時間T1、空調予定時間T2、実施中の空調モード、車速、エンジン31の回転数、エンジン冷却水温度、外気温などである。空調ECU50は、ステップS199で記憶した状態量に基づいて空調運転を維持する。その後、再びステップS101に戻って空調制御のフローを繰り返す。2回目以降のフローにおいて、ステップS101などで新たに最新の状態量を取得した場合には、記憶済みの状態量の代わりに最新の状態量を用いて空調制御を行う。記憶された状態量は、車両ECU10と共有され、走行制御などの空調制御以外の制御にも用いられる。 In step S199, state quantities related to air conditioning control are stored. State quantities to be stored include human body detection information, boarding position information, boarding time information, scheduled boarding time T1, air conditioning scheduled time T2, running air conditioning mode, vehicle speed, engine 31 speed, engine coolant temperature, outside air temperature, etc. It is. The air conditioning ECU 50 maintains the air conditioning operation based on the state quantity stored in step S199. Then, it returns to step S101 again and repeats the flow of air-conditioning control. In the second and subsequent flows, when the latest state quantity is newly acquired in step S101 or the like, air conditioning control is performed using the latest state quantity instead of the stored state quantity. The stored state quantity is shared with the vehicle ECU 10 and is also used for control other than air conditioning control such as travel control.
 次に、ステップS151である省エネ空調モードにおける車両用空調装置1の制御処理を説明する。図3において、省エネ空調モードの運転を開始する場合、まず、ステップS161で車速情報を取得する。車速情報は車速センサ23で測定する。ステップS162では、取得した車速が所定値以上であるか否かを判定する。所定値は、例えば時速30kmである。車速が所定値以上である場合には、ステップS163に進む。一方、車速が所定値よりも小さい場合には、ステップS174に進む。ここで、車両が停止している状態は、車速がゼロの状態であり、車速が所定値よりも低い場合に含まれる。 Next, the control process of the vehicle air conditioner 1 in the energy saving air conditioning mode which is step S151 will be described. In FIG. 3, when the operation in the energy saving air conditioning mode is started, first, vehicle speed information is acquired in step S161. The vehicle speed information is measured by the vehicle speed sensor 23. In step S162, it is determined whether the acquired vehicle speed is equal to or higher than a predetermined value. The predetermined value is, for example, 30 km / h. If the vehicle speed is greater than or equal to the predetermined value, the process proceeds to step S163. On the other hand, if the vehicle speed is smaller than the predetermined value, the process proceeds to step S174. Here, the state where the vehicle is stopped is a state where the vehicle speed is zero and the vehicle speed is lower than a predetermined value.
 ステップS163では、冷却送風を停止する。言い換えると、エンジン用ラジエータファン36とコンデンサファン74との駆動を停止する。これにより、エンジン用ラジエータとコンデンサとは、車両の走行に伴う走行風のみを受けて冷却されることとなる。ステップS163で送風を完全に停止するのではなく、回転数を低くしてファンで消費するエネルギーを低下させるようにしてもよい。ファン駆動を停止した後、ステップS171に進む。 In step S163, cooling air blowing is stopped. In other words, the driving of the engine radiator fan 36 and the condenser fan 74 is stopped. As a result, the engine radiator and the condenser are cooled by receiving only the traveling wind accompanying the traveling of the vehicle. Instead of completely stopping the blowing in step S163, the rotational speed may be lowered to reduce the energy consumed by the fan. After the fan drive is stopped, the process proceeds to step S171.
 ステップS171では、車両動力情報としてエンジン31の回転数を取得する。エンジン31の回転数は、イグニッションコイルへの印加電圧を電気的に検出してカウントすることで測定する。エンジン31の回転数が低い状態は、エンジン31の冷却損失が大きく効率が良くない状態である。エンジン31の回転数が高い状態は、エンジン31の機械損失が大きく効率が良くない状態である。エンジン31の回転数が中程度の状態は、冷却損失と機械損失とがバランスよく改善した最も効率が良い状態である。 In step S171, the rotational speed of the engine 31 is acquired as vehicle power information. The rotational speed of the engine 31 is measured by electrically detecting and counting the voltage applied to the ignition coil. The state where the rotational speed of the engine 31 is low is a state where the cooling loss of the engine 31 is large and the efficiency is not good. The state where the engine 31 is high is a state where the mechanical loss of the engine 31 is large and the efficiency is not good. The state where the rotational speed of the engine 31 is medium is the most efficient state in which the cooling loss and the mechanical loss are improved in a balanced manner.
 車両動力情報として、エンジン31の温度を取得してもよい。エンジン31の温度は、第1水温センサ24を用いてエンジン冷却水の温度を測定することで取得する。エンジン冷却水の温度が低い状態では暖機が完了しておらず、ガソリンの燃焼効率が悪いため、エンジン31の効率が低い状態である。エンジン冷却水の温度が高い状態では暖機が完了しており、ガソリンの燃焼効率が高いため、エンジン31の効率が高い状態である。車両動力情報の取得後、ステップS172に進む。 The temperature of the engine 31 may be acquired as vehicle power information. The temperature of the engine 31 is acquired by measuring the temperature of the engine coolant using the first water temperature sensor 24. When the temperature of the engine cooling water is low, the warm-up is not completed and the combustion efficiency of gasoline is poor, so the efficiency of the engine 31 is low. When the temperature of the engine cooling water is high, the warm-up is completed and the combustion efficiency of gasoline is high, so the efficiency of the engine 31 is high. After obtaining the vehicle power information, the process proceeds to step S172.
 ステップS172では、車両動力の効率が高いか否かを判断する。エンジン31の回転数に基づいて判断する場合は、エンジン31の回転数が、中程度の回転数域にあるか否かを判断する。すなわち、エンジン31の回転数が中程度の回転数域にあれば、エンジン31の効率が所定値以上であると判断する。中程度の回転数域とは、最大効率を発揮できる回転数を含む前後500rpmの回転数域である。ここで、最大効率とは、エンジン31において、入力エネルギーに対して動力として得られる出力エネルギーの比が最も大きいときの効率のことをいう。仮に最大効率が得られる回転数が2000rpmであれば、1500rpmから2500rpmが中程度の回転数域である。ただし、車両動力の効率が高い回転数領域は、最大効率の回転数を含む回転数域であればよく、上述の範囲に限定されない。 In step S172, it is determined whether or not the vehicle power efficiency is high. When determining based on the rotational speed of the engine 31, it is determined whether or not the rotational speed of the engine 31 is in an intermediate rotational speed range. That is, if the rotation speed of the engine 31 is in an intermediate rotation speed range, it is determined that the efficiency of the engine 31 is equal to or greater than a predetermined value. The medium rotation speed range is a rotation speed range of 500 rpm before and after the rotation speed including the maximum efficiency. Here, the maximum efficiency means the efficiency when the ratio of output energy obtained as power to input energy in the engine 31 is the largest. If the rotation speed at which the maximum efficiency is obtained is 2000 rpm, 1500 rpm to 2500 rpm is an intermediate rotation speed range. However, the rotational speed region where the vehicle power efficiency is high may be a rotational speed region including the maximum efficient rotational speed, and is not limited to the above range.
 エンジン31の温度に基づいて判断する場合は、エンジン冷却水の温度が暖機完了温度以上であるか否かを判断する。すなわち、エンジン冷却水の温度が暖機完了温度以上の温度であれば、エンジン31の効率が所定値以上であると判断する。暖機完了温度とは例えば、80℃である。ただし、暖機完了温度は、暖機が完了したとみなせる程度の温度であればよく、暖気完了温度よりも少し低い温度で車両動力の効率が高い状態であると判断してもよい。車両動力の効率が所定値以上である場合には、ステップS173に進む。一方、車両動力の効率が所定値よりも小さい場合には、ステップS174に進む。 When determining based on the temperature of the engine 31, it is determined whether or not the temperature of the engine coolant is equal to or higher than the warm-up completion temperature. That is, if the temperature of the engine coolant is equal to or higher than the warm-up completion temperature, it is determined that the efficiency of the engine 31 is equal to or higher than a predetermined value. The warm-up completion temperature is 80 ° C., for example. However, the warm-up completion temperature may be a temperature that can be regarded as the completion of warm-up, and it may be determined that the vehicle power efficiency is high at a temperature slightly lower than the warm-up completion temperature. If the vehicle power efficiency is greater than or equal to the predetermined value, the process proceeds to step S173. On the other hand, when the vehicle power efficiency is smaller than the predetermined value, the process proceeds to step S174.
 ステップS173では、空調運転を開始する。省エネ空調モードにおいては、有人空調モードよりも室内ファン71の駆動時間を短くしてトータルで空調運転に要するエネルギーを低減させる。具体的には、有人空調モードにおける室内ファン71の回転数よりも高い回転数で室内ファン71を駆動して、車室内に対して一度に大量の空調風を送り込む。 In step S173, the air conditioning operation is started. In the energy saving air-conditioning mode, the driving time of the indoor fan 71 is made shorter than in the manned air-conditioning mode to reduce the energy required for the air-conditioning operation in total. Specifically, the indoor fan 71 is driven at a higher rotational speed than the rotational speed of the indoor fan 71 in the manned air conditioning mode, and a large amount of conditioned air is sent into the vehicle interior at once.
 省エネ空調モードにおいては、内気吸入口から風を取り込む内気モードで空調運転を行う。クラッチ75を連結状態としてコンプレッサを駆動する。ヒーター77の通電を開始する。エアミックスドア73を適切な開度に調整することで、冷風と温風を混ぜて目標温度の空調風を作り出す。空調の目標温度が低い場合には、ヒーター77に通電せず、コンプレッサの駆動による冷凍サイクルの運転と送風のみで冷房運転を行ってもよい。空調の目標温度が高い場合には、コンプレッサを駆動せず、ヒーター77への通電と送風のみで暖房運転を行ってもよい。この空調運転を維持した状態で、省エネ空調モードのスタートに戻り、再び一連の空調制御を繰り返す。 In the energy-saving air-conditioning mode, air-conditioning operation is performed in the inside-air mode in which wind is taken from the inside-air intake port. The compressor is driven with the clutch 75 connected. Energization of the heater 77 is started. By adjusting the air mix door 73 to an appropriate opening degree, cold air and hot air are mixed to create conditioned air at a target temperature. If the target temperature for air conditioning is low, the heater 77 may not be energized, and the cooling operation may be performed only by the operation of the refrigeration cycle by driving the compressor and the ventilation. When the target temperature for air conditioning is high, the compressor may not be driven and the heating operation may be performed only by energizing the heater 77 and blowing air. With this air conditioning operation maintained, the process returns to the start of the energy saving air conditioning mode and repeats a series of air conditioning control again.
 ステップS174では、空調運転を一時的に停止する。空調停止状態では、室内ファン71の駆動を停止するとともに、クラッチ75の連結を解除し、ヒーター77への通電を停止する。言い換えると、空調停止状態は、空調運転に使用する全ての装置についてエネルギー消費を抑えた状態である。ただし、空調停止状態において、空調運転に使用する全ての装置についてエネルギー消費を抑えるのではなく、特定の装置についてのみエネルギー消費を抑えるように制御してもよい。 In step S174, the air conditioning operation is temporarily stopped. In the air conditioning stop state, the driving of the indoor fan 71 is stopped, the connection of the clutch 75 is released, and the energization to the heater 77 is stopped. In other words, the air conditioning stop state is a state in which energy consumption is suppressed for all devices used for the air conditioning operation. However, in the air conditioning stop state, the energy consumption may not be suppressed for all devices used for the air conditioning operation, but may be controlled so as to suppress the energy consumption only for a specific device.
 上述した実施形態によると、有人走行前の無人走行状態で空調運転を行い、無人状態であっても走行していない停車中は空調運転を行わない。このため、車両の走行風を活用してコンデンサ等の放熱器の冷却ができ、エンジン用ラジエータファン36やコンデンサファン74の駆動によるエネルギー消費を低減できる。また、走行に車両動力を用いない停車中において、空調運転を行うために車両動力を用いることが無いので、エネルギー消費を低減できる。言い換えると、空調運転のためだけにエンジン31を駆動することが無いので、エネルギー消費を低減できる。 According to the above-described embodiment, the air conditioning operation is performed in the unmanned traveling state before the manned traveling, and the air conditioning operation is not performed while the vehicle is not traveling even in the unmanned state. For this reason, it is possible to cool the radiator such as the condenser by utilizing the traveling wind of the vehicle, and to reduce the energy consumption by driving the radiator fan 36 for the engine and the condenser fan 74. Further, since the vehicle power is not used to perform the air conditioning operation while the vehicle power is not used for traveling, energy consumption can be reduced. In other words, since the engine 31 is not driven only for air conditioning operation, energy consumption can be reduced.
 車両の車速が所定値以上の場合に温度調整を伴う空調運転を行う。このため、車両の走行風を多く受けるタイミングでエネルギー消費の多い空調運転を行うこととなる。したがって、エンジン用ラジエータファン36やコンデンサファン74を駆動するためのエネルギー消費を低減して効率的な空調を行うことができる。また、停車中や低速走行中に空調運転の目的でエンジン31を駆動させることがないのでエネルギー消費を低減できる。 空調 Air conditioning operation with temperature adjustment is performed when the vehicle speed is above a predetermined value. For this reason, air-conditioning operation with much energy consumption will be performed at the timing which receives much driving | running | working wind of a vehicle. Therefore, the energy consumption for driving the engine radiator fan 36 and the condenser fan 74 can be reduced and efficient air conditioning can be performed. In addition, energy consumption can be reduced because the engine 31 is not driven for the purpose of air conditioning operation while the vehicle is stopped or traveling at a low speed.
 車両動力の効率が所定値以上の場合に温度調整を伴う空調運転を行う。このため、車両動力であるエンジン31の効率が高い状態で空調運転の動力を確保できる。したがって、空調運転で消費するエネルギーを低減して、効率的に空調することができる。 ∙ Air conditioning operation with temperature adjustment is performed when the vehicle power efficiency is above a predetermined value. For this reason, the power of air-conditioning driving | operation is securable in the state with the high efficiency of the engine 31 which is vehicle power. Therefore, energy consumed in the air conditioning operation can be reduced and air conditioning can be performed efficiently.
 有人空調モードでは、騒音などの温度以外の快適性の要素も考慮して空調運転を行う。これにより、室内ファン71の発音による静音性の低下を防止できる。このため、車室内の快適性を向上できる。 In the manned air-conditioning mode, air-conditioning operation is performed in consideration of comfort factors other than temperature such as noise. Thereby, it is possible to prevent a decrease in silence due to the sound of the indoor fan 71. For this reason, the comfort in a vehicle interior can be improved.
 シートヒータを有人空調モードでのみ使用する。すなわち、乗員が着座した状態で高い効果を発揮する暖房器具を乗員が着座していない無人状態では使用しない。このため、暖房運転での余計なエネルギー消費を抑えて効率的に暖房運転を行うことができる。 シ ー ト Use the seat heater only in the manned air conditioning mode. That is, a heating appliance that exhibits a high effect in a state where the occupant is seated is not used in an unattended state where the occupant is not seated. For this reason, it is possible to efficiently perform the heating operation while suppressing excessive energy consumption in the heating operation.
 省エネ空調モードと早期空調モードとにおいて、有人空調モードに比べて室内ファン71の回転数を高くする。これにより、静音性を確保する必要のない無人状態で車室内の風量を多くして素早く空調できるため、車室内の温度を目標温度まで早く近づけることができる。したがって、空調運転を行うトータルの時間を短くできるため、空調運転で消費するエネルギーを低減できる。 In the energy saving air conditioning mode and the early air conditioning mode, the rotational speed of the indoor fan 71 is increased as compared with the manned air conditioning mode. Thereby, since the air volume in the vehicle interior can be increased and air conditioning can be performed quickly in an unattended state where it is not necessary to ensure quietness, the temperature in the vehicle interior can be quickly brought close to the target temperature. Therefore, since the total time for performing the air conditioning operation can be shortened, the energy consumed in the air conditioning operation can be reduced.
 車両用空調装置1は、次に有人状態になると予想される情報を示す乗車予定情報に基づいて無人状態での空調運転を行う。このため、空調が必要な場合に事前空調を行うことができるため、常に事前空調状態として空調運転を継続する場合に比べて、消費するエネルギーを低減できる。また、有人状態になる前に事前空調を行うため、乗員が乗り込んだ際の車室内の快適性を向上させることができる。また、渋滞などの突発的な事象により乗車予定時間T1が長くなってしまう場合であっても、不要な事前空調を停止して、事前空調を開始すべき最適なタイミングで空調運転を行うことができる。 The vehicle air conditioner 1 performs an air conditioning operation in an unmanned state based on boarding schedule information indicating information expected to be in a manned state next. For this reason, since pre-air-conditioning can be performed when air-conditioning is required, the energy consumed can be reduced compared with the case where air-conditioning operation is always continued in the pre-air-conditioning state. In addition, since the pre-air conditioning is performed before entering the manned state, the comfort in the passenger compartment when the occupant gets in can be improved. In addition, even if the scheduled boarding time T1 becomes longer due to a sudden event such as traffic jams, unnecessary pre-air conditioning can be stopped and air-conditioning operation can be performed at the optimal timing at which pre-air conditioning should be started. it can.
 乗車予定情報として、乗車位置情報と現在地とに基づく乗車予定時間T1を算出し、乗車予定時間T1と空調予定時間T2とを比較して事前空調の開始を判断する。このため、乗車位置にたどり着く前の適切なタイミングで事前空調を開始できる。したがって、空調運転での消費エネルギーを抑えつつ、車室内に乗り込む乗員の快適性を向上させることができる。 As the boarding schedule information, a boarding scheduled time T1 based on the boarding position information and the current location is calculated, and the boarding scheduled time T1 and the air conditioning scheduled time T2 are compared to determine the start of pre-air conditioning. For this reason, pre-air conditioning can be started at an appropriate timing before reaching the boarding position. Therefore, it is possible to improve the comfort of the passenger who gets into the passenger compartment while suppressing the energy consumption during the air conditioning operation.
 乗車予定情報として、乗車時刻情報と現在時刻とに基づく乗車予定時間T1を算出し、乗車予定時間T1と空調予定時間T2とを比較して事前空調の開始を判断する。このため、乗車時刻をむかえる前の適切なタイミングで事前空調を開始できる。したがって、空調運転における消費エネルギーを抑えつつ、車室内に乗り込む乗員の快適性を向上させることができる。 As the boarding schedule information, a boarding scheduled time T1 based on the boarding time information and the current time is calculated, and the boarding scheduled time T1 and the air conditioning scheduled time T2 are compared to determine the start of pre-air conditioning. For this reason, prior air conditioning can be started at an appropriate timing before the boarding time is changed. Therefore, it is possible to improve the comfort of passengers getting into the passenger compartment while suppressing energy consumption in air-conditioning operation.
 空調予定時間T2が乗車予定時間T1を超えると判定した場合に、早期空調モードで事前空調を行う。このため、乗員が乗り込んだ際に空調が完了していないことによる車室内の快適性の悪化を低減することができる。 When it is determined that the scheduled air conditioning time T2 exceeds the scheduled boarding time T1, pre-air conditioning is performed in the early air conditioning mode. For this reason, the deterioration of the comfort in the vehicle interior due to the fact that the air conditioning is not completed when the passenger gets in can be reduced.
 第2実施形態
 この実施形態は、先行する実施形態を基礎的形態とする変形例である。この実施形態では、車両動力としてエンジン31の代わりにモータ332を用いる。すなわち、車両用空調装置1は、電気自動車のようにモータ332を車両動力とする車両に搭載されている。
Second Embodiment This embodiment is a modified example based on the preceding embodiment. In this embodiment, a motor 332 is used instead of the engine 31 as vehicle power. That is, the vehicle air conditioner 1 is mounted on a vehicle that uses the motor 332 as vehicle power, such as an electric vehicle.
 図4において、車両ECU10は、第1水温センサ24ではなく、第2水温センサ324と接続されている。第2水温センサ324は、モータ332やインバータ339やバッテリーなどの発熱部品を冷却する冷却水の循環経路に設けられている温度センサである。第2水温センサ324は、モータ332と熱交換して温度が上昇した直後の冷却水の温度を検知する。 In FIG. 4, the vehicle ECU 10 is connected not with the first water temperature sensor 24 but with the second water temperature sensor 324. The second water temperature sensor 324 is a temperature sensor provided in a cooling water circulation path for cooling heat generating components such as the motor 332, the inverter 339, and the battery. The second water temperature sensor 324 detects the temperature of the cooling water immediately after the heat is exchanged with the motor 332 and the temperature is increased.
 車両ECU10は、バッテリー監視ユニット327と接続されている。バッテリー監視ユニット327は、モータ332などの電動部品に電力を供給するバッテリーを監視するユニットである。バッテリー監視ユニット327は、バッテリーに蓄えられている電気の量を検出する。車両ECU10は、加速時にバッテリーから電気を取り出し、モータ332を駆動する。一方、減速時にモータ332で発電を行いバッテリーに電気を蓄える。 The vehicle ECU 10 is connected to a battery monitoring unit 327. The battery monitoring unit 327 is a unit that monitors a battery that supplies electric power to an electric component such as the motor 332. The battery monitoring unit 327 detects the amount of electricity stored in the battery. The vehicle ECU 10 takes out electricity from the battery during acceleration and drives the motor 332. On the other hand, at the time of deceleration, the motor 332 generates power and stores electricity in the battery.
 車両ECU10は、エンジン31ではなく、インバータ339を介してモータ332と接続されている。インバータ339は、直流電流を交流電流に変換する装置である。モータ332は、車両が走行するための車両動力である。モータ332は、バッテリーから供給される電気エネルギーを力学的エネルギーに変換する。 The vehicle ECU 10 is connected to the motor 332 via the inverter 339 instead of the engine 31. The inverter 339 is a device that converts a direct current into an alternating current. The motor 332 is vehicle power for the vehicle to travel. The motor 332 converts electrical energy supplied from the battery into mechanical energy.
 車両ECU10は、エンジン用ラジエータファン36ではなく、モータ用ラジエータファン336と接続されている。モータ用ラジエータファン336は、モータ332などを冷却する冷却水が循環する放熱器であるモータ用ラジエータに対して送風する送風機である。モータ用ラジエータファン336は、車両前部に設けられたモータ用ラジエータの前方に設けられている。言い換えると、モータ用ラジエータファン336は、モータ用ラジエータに対向して設けられている。モータ用ラジエータファン336は、車両の前部から後方に向かって送風する。言い換えると、走行中の車両が受ける風と同じ方向に送風する。 The vehicle ECU 10 is connected not to the engine radiator fan 36 but to the motor radiator fan 336. The motor radiator fan 336 is a blower that blows air to the motor radiator, which is a radiator that circulates cooling water that cools the motor 332 and the like. The motor radiator fan 336 is provided in front of the motor radiator provided in the front portion of the vehicle. In other words, the motor radiator fan 336 is provided to face the motor radiator. The motor radiator fan 336 blows air from the front of the vehicle toward the rear. In other words, the air is blown in the same direction as the wind received by the traveling vehicle.
 空調ECU50は、クラッチ75ではなく、電動コンプレッサ376と接続されている。電動コンプレッサ376は、冷房用の冷凍サイクルをなす圧縮機である。電動コンプレッサ376は、空調ECU50によって駆動のオンオフに加えて出力の強弱も制御される。電動コンプレッサ376の駆動は、モータ332の駆動と独立している。すなわち、空調運転に関連する制御には車両動力を用いていない。冷房運転を行う場合、電動コンプレッサ376を駆動して、蒸発器に冷媒を供給する。 The air conditioning ECU 50 is connected to the electric compressor 376 instead of the clutch 75. The electric compressor 376 is a compressor that forms a refrigeration cycle for cooling. The electric compressor 376 is controlled by the air-conditioning ECU 50 in addition to driving on / off, as well as the strength of the output. The driving of the electric compressor 376 is independent of the driving of the motor 332. That is, vehicle power is not used for control related to air conditioning operation. When performing the cooling operation, the electric compressor 376 is driven to supply the refrigerant to the evaporator.
 図5において、先行する実施形態と同じステップ番号を付したステップは同様の処理であり、同様の作用効果を奏する。以下に先行する実施形態とは異なる内容について説明する。 In FIG. 5, steps denoted by the same step numbers as those in the preceding embodiment are similar processes and exhibit the same operational effects. The contents different from the preceding embodiment will be described below.
 省エネ空調モードにおけるステップS162において、取得した車速が所定値以上であるか否かを判定する。所定値は、例えば時速30kmである。車速が所定値以上である場合には、ステップS363に進む。一方、車速が所定値よりも低い場合には、ステップS374に進む。ここで、車両が停止している状態は、車速が所定値よりも低い場合に含まれる。 In step S162 in the energy saving air conditioning mode, it is determined whether or not the acquired vehicle speed is a predetermined value or more. The predetermined value is, for example, 30 km / h. If the vehicle speed is greater than or equal to the predetermined value, the process proceeds to step S363. On the other hand, if the vehicle speed is lower than the predetermined value, the process proceeds to step S374. Here, the state where the vehicle is stopped is included when the vehicle speed is lower than a predetermined value.
 ステップS363では、冷却送風を停止する。言い換えると、モータ用ラジエータファン336とコンデンサファン74との駆動を停止する。これにより、モータ用ラジエータとコンデンサとは、車両の走行に伴う走行風のみを受けて冷却されることとなる。ステップS363で送風を完全に停止するのではなく、回転数を低くして送風機で消費するエネルギーを低下させるようにしてもよい。ファン駆動を停止した後、ステップS373に進む。 In step S363, the cooling air flow is stopped. In other words, the driving of the motor radiator fan 336 and the condenser fan 74 is stopped. As a result, the motor radiator and the condenser are cooled by receiving only the traveling wind accompanying the traveling of the vehicle. Instead of completely stopping the blowing in step S363, the rotational speed may be lowered to reduce the energy consumed by the blower. After the fan drive is stopped, the process proceeds to step S373.
 ステップS373では、空調運転を開始する。具体的には、有人空調モードにおける室内ファン71の回転数よりも高い回転数で室内ファン71を駆動する。また、電動コンプレッサ376を駆動する。あるいは、ヒーター77に通電を開始する。また、エアミックスドア73の開度を適切に調整することで、冷風と温風を混ぜて目標温度の空調風を作り出す。この空調運転を維持したまま、省エネ空調モードのスタートに戻り、再び一連の空調制御を繰り返す。 In step S373, the air conditioning operation is started. Specifically, the indoor fan 71 is driven at a higher rotational speed than the rotational speed of the indoor fan 71 in the manned air conditioning mode. Further, the electric compressor 376 is driven. Alternatively, energization of the heater 77 is started. In addition, by appropriately adjusting the opening degree of the air mix door 73, the cold air and the hot air are mixed to create an air conditioned air having a target temperature. While maintaining this air conditioning operation, the system returns to the start of the energy saving air conditioning mode and repeats a series of air conditioning control again.
 ステップS374では、空調運転を一時的に停止する。空調停止状態では、室内ファン71の駆動を停止するとともに、電動コンプレッサ376、ヒーター77への通電を停止する。すなわち、空調停止状態は、空調運転に使用する全ての装置についてエネルギー消費を抑えた状態である。ただし、空調停止状態において、空調運転に使用する装置の全てについてエネルギー消費を抑えるのではなく、特定の部品についてのみエネルギー消費を抑えるように制御してもよい。すなわち、温度調整に使用する電動コンプレッサ376とヒーター77との2つの装置については駆動を停止し、それ以外は駆動を継続するなどしてもよい。この停止状態を維持したまま、省エネ空調モードのスタートに戻り、再び一連の空調制御を繰り返す。 In step S374, the air conditioning operation is temporarily stopped. In the air conditioning stop state, driving of the indoor fan 71 is stopped, and energization to the electric compressor 376 and the heater 77 is stopped. That is, the air conditioning stop state is a state in which energy consumption is suppressed for all devices used for air conditioning operation. However, in the air conditioning stop state, the energy consumption may not be suppressed for all of the devices used for the air conditioning operation, but control may be performed so as to suppress the energy consumption only for specific parts. That is, the driving of the two devices of the electric compressor 376 and the heater 77 used for temperature adjustment may be stopped, and driving may be continued otherwise. While maintaining this stop state, the process returns to the start of the energy saving air conditioning mode and repeats a series of air conditioning control again.
 上述した実施形態によると、無人状態であっても走行していない停車中は、有人走行前の事前空調運転を行わない。このため、車両の走行風を活用して冷却ができ、モータ用ラジエータファン336やコンデンサファン74の駆動によるエネルギー消費を低減できる。 According to the above-described embodiment, the pre-air conditioning operation before the manned traveling is not performed while the vehicle is not traveling even in the unmanned state. For this reason, cooling can be performed by utilizing the traveling wind of the vehicle, and energy consumption due to driving of the radiator fan 336 and the condenser fan 74 can be reduced.
 車速が所定値以上の場合に温度調整を伴う空調運転を行う。このため、車両の走行風を多く受けるタイミングで多くのエネルギーを消費する空調運転を行うこととなる。したがって、モータ用ラジエータファン336やコンデンサファン74の駆動によるエネルギー消費を低減して効率的な空調を行うことができる。 空調 Air conditioning operation with temperature adjustment is performed when the vehicle speed is equal to or higher than the specified value. For this reason, the air-conditioning operation which consumes a lot of energy is performed at the timing of receiving a lot of vehicle wind. Therefore, efficient air conditioning can be performed by reducing energy consumption by driving the motor radiator fan 336 and the condenser fan 74.
 他の実施形態
 この明細書における開示は、例示された実施形態に制限されない。開示は、例示された実施形態と、それらに基づく当業者による変形態様を包含する。例えば、開示は、実施形態において示された部品および/または要素の組み合わせに限定されない。開示は、多様な組み合わせによって実施可能である。開示は、実施形態に追加可能な追加的な部分をもつことができる。開示は、実施形態の部品および/または要素が省略されたものを包含する。開示は、ひとつの実施形態と他の実施形態との間における部品および/または要素の置き換え、または組み合わせを包含する。開示される技術的範囲は、実施形態の記載に限定されない。開示されるいくつかの技術的範囲は、請求の範囲の記載によって示され、さらに請求の範囲の記載と均等の意味および範囲内での全ての変更を含むものと解されるべきである。
Other Embodiments The disclosure herein is not limited to the illustrated embodiments. The disclosure encompasses the illustrated embodiments and variations by those skilled in the art based thereon. For example, the disclosure is not limited to the combinations of parts and / or elements shown in the embodiments. The disclosure can be implemented in various combinations. The disclosure may have additional parts that can be added to the embodiments. The disclosure includes those in which parts and / or elements of the embodiments are omitted. The disclosure encompasses the replacement or combination of parts and / or elements between one embodiment and another. The technical scope disclosed is not limited to the description of the embodiments. Some technical scope disclosed is indicated by the description of the claims, and should be understood to include all modifications within the meaning and scope equivalent to the description of the claims.
 エンジンを搭載した車両とモータを搭載した車両との2つの車両を例に説明を行ったが、エンジンとモータとの2つの車両動力を使い分けて走行するハイブリッド自動車などの車両に車両用空調装置1を適用してもよい。 The description has been given by taking as an example two vehicles, a vehicle equipped with an engine and a vehicle equipped with a motor. However, the vehicle air conditioner 1 is applied to a vehicle such as a hybrid vehicle that travels by using two vehicle powers of the engine and the motor. May be applied.

Claims (4)

  1.  無人走行が可能な車両に搭載される空調制御装置であって、
     前記車両への乗員の乗車状態及び前記車両の走行状態を判定する判定部(52)と、
     前記判定部の判定結果に基づいて、車外の空気と熱交換する放熱器を用いて温度調整を伴う空調制御を実行する出力部(53)と、を備え、
     前記出力部は、前記判定結果が前記車両の無人状態且つ走行状態を示すものである場合に前記空調制御を実行し、前記判定結果が前記車両の無人状態且つ停車状態を示すものである場合に前記空調制御の実行を停止する、空調制御装置。
    An air conditioning control device mounted on a vehicle capable of unmanned traveling,
    A determination unit (52) for determining a ride state of a passenger in the vehicle and a running state of the vehicle;
    An output unit (53) that performs air conditioning control with temperature adjustment using a radiator that exchanges heat with air outside the vehicle based on the determination result of the determination unit;
    The output unit executes the air conditioning control when the determination result indicates an unmanned state and a traveling state of the vehicle, and when the determination result indicates an unmanned state and a stop state of the vehicle. An air conditioning control device that stops execution of the air conditioning control.
  2.  請求項1に記載の空調制御装置であって、
     前記出力部は、前記車両の車速が所定値以上の場合に前記空調制御を実行し、前記車両の車速が所定値未満の場合に前記空調制御を停止する、空調制御装置。
    The air conditioning control device according to claim 1,
    The said output part performs the said air-conditioning control when the vehicle speed of the said vehicle is more than predetermined value, and stops the said air-conditioning control when the vehicle speed of the said vehicle is less than predetermined value.
  3.  請求項1又は2に記載の空調制御装置であって、
     前記空調制御は、前記車両の走行に用いる車両動力を利用して空調する空調装置を制御するものであり、
     前記出力部は、前記車両動力の効率が所定値以上の場合に前記空調制御を実行し、前記車両動力の効率が所定値未満の場合に前記空調制御を停止する、空調制御装置。
    The air-conditioning control device according to claim 1 or 2,
    The air conditioning control is to control an air conditioner that performs air conditioning using vehicle power used to travel the vehicle,
    The said output part is an air-conditioning control apparatus which performs the said air-conditioning control when the efficiency of the said vehicle motive power is more than predetermined value, and stops the said air-conditioning control when the efficiency of the said vehicle motive power is less than predetermined value.
  4.  請求項1から3のいずれか1項に記載の空調制御装置であって、
     前記出力部は、前記空調制御の実行において、車室内の空気を循環する内気モードを実行する、空調制御装置。
    The air conditioning control device according to any one of claims 1 to 3,
    The said output part is an air-conditioning control apparatus which performs the inside air mode which circulates the air in a vehicle interior in execution of the said air-conditioning control.
PCT/JP2018/017719 2017-06-05 2018-05-08 Air-conditioning control device WO2018225439A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE112018002845.3T DE112018002845B4 (en) 2017-06-05 2018-05-08 climate control device
US16/675,032 US10800227B2 (en) 2017-06-05 2019-11-05 Air-conditioning control apparatus

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017111018 2017-06-05
JP2017-111018 2017-06-05
JP2018006224A JP6907953B2 (en) 2017-06-05 2018-01-18 Air conditioning controller
JP2018-006224 2018-01-18

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/675,032 Continuation US10800227B2 (en) 2017-06-05 2019-11-05 Air-conditioning control apparatus

Publications (1)

Publication Number Publication Date
WO2018225439A1 true WO2018225439A1 (en) 2018-12-13

Family

ID=64567037

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/017719 WO2018225439A1 (en) 2017-06-05 2018-05-08 Air-conditioning control device

Country Status (1)

Country Link
WO (1) WO2018225439A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11766917B2 (en) 2019-12-16 2023-09-26 Hyundai Motor Company Detachable remote controller and remote controlling method for controlling air conditioner of autonomous vehicle

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001001787A (en) * 1999-04-19 2001-01-09 Toyota Motor Corp Controller of vehicle
JP2002264635A (en) * 2001-03-13 2002-09-18 Toyota Motor Corp Controller for vehicle air conditioner
JP2003011657A (en) * 2001-07-04 2003-01-15 Japan Climate Systems Corp Vehicular air-conditioner
US20160090055A1 (en) * 2002-06-11 2016-03-31 Intelligent Technologies International, Inc. Smartphone-Based Vehicle Control Methods
US9682609B1 (en) * 2016-06-07 2017-06-20 Ford Global Technologies, Llc Autonomous vehicle dynamic climate control

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001001787A (en) * 1999-04-19 2001-01-09 Toyota Motor Corp Controller of vehicle
JP2002264635A (en) * 2001-03-13 2002-09-18 Toyota Motor Corp Controller for vehicle air conditioner
JP2003011657A (en) * 2001-07-04 2003-01-15 Japan Climate Systems Corp Vehicular air-conditioner
US20160090055A1 (en) * 2002-06-11 2016-03-31 Intelligent Technologies International, Inc. Smartphone-Based Vehicle Control Methods
US9682609B1 (en) * 2016-06-07 2017-06-20 Ford Global Technologies, Llc Autonomous vehicle dynamic climate control

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11766917B2 (en) 2019-12-16 2023-09-26 Hyundai Motor Company Detachable remote controller and remote controlling method for controlling air conditioner of autonomous vehicle

Similar Documents

Publication Publication Date Title
JP2018197096A (en) Air-conditioning control device
US10800227B2 (en) Air-conditioning control apparatus
US9352635B1 (en) Energy control mechanisms for an electric vehicle
US9090144B2 (en) Automotive air conditioning system
US10150347B2 (en) Vehicular air conditioning device
JP5545284B2 (en) Air conditioning control device for vehicles
KR101305830B1 (en) Inside ventilation methode of car
JP4923859B2 (en) Vehicle air conditioner and program
JP5044985B2 (en) Air conditioning control device for vehicles
JP2010132078A (en) Capacitor heating device
WO2018207756A1 (en) Air conditioning control device
JP2004336832A (en) Temperature controller of battery
WO2016186170A1 (en) Air conditioning device for vehicle
WO2017138258A1 (en) Vehicular air-conditioning device
KR20120023409A (en) Air-conditioning method for electric vehicle
JP5849893B2 (en) Air conditioner for vehicles
WO2018225439A1 (en) Air-conditioning control device
JP2013166468A (en) Vehicular air conditioning apparatus
WO2018207757A1 (en) Air conditioning control device
KR20190079138A (en) Engine control method for heating of hybrid electric vehicle
JP2013086728A (en) Vehicle control system
JP3261099B2 (en) Vehicle air conditioner
JP6630615B2 (en) Vehicle air conditioner
JP3656439B2 (en) Air conditioner for vehicles
JP7316119B2 (en) electric car air conditioning system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18812919

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 18812919

Country of ref document: EP

Kind code of ref document: A1