WO2018225254A1 - Light source device, projector, and method for starting light source device - Google Patents

Light source device, projector, and method for starting light source device Download PDF

Info

Publication number
WO2018225254A1
WO2018225254A1 PCT/JP2017/021497 JP2017021497W WO2018225254A1 WO 2018225254 A1 WO2018225254 A1 WO 2018225254A1 JP 2017021497 W JP2017021497 W JP 2017021497W WO 2018225254 A1 WO2018225254 A1 WO 2018225254A1
Authority
WO
WIPO (PCT)
Prior art keywords
light source
solid
temperature
source device
types
Prior art date
Application number
PCT/JP2017/021497
Other languages
French (fr)
Japanese (ja)
Inventor
豊後 善弘
Original Assignee
Necディスプレイソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Necディスプレイソリューションズ株式会社 filed Critical Necディスプレイソリューションズ株式会社
Priority to PCT/JP2017/021497 priority Critical patent/WO2018225254A1/en
Priority to JP2019523321A priority patent/JP6763562B2/en
Publication of WO2018225254A1 publication Critical patent/WO2018225254A1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details

Definitions

  • the present invention relates to a light source device using a solid light source element, a projector including the light source device, and a method for starting the light source device.
  • Some projector light source devices use a solid light source element such as a laser element. Since color reproducibility is important in projectors, a solid light source element needs to operate stably.
  • the solid light source element has a characteristic that the light emission power efficiency and the light emission wavelength change depending on the temperature used even if the element is the same. This originates in the structure of the element, and at present, there are many products designed to be most efficient and stable at temperatures around 25 ° C. For this reason, when the surroundings are at a low temperature, as shown in Patent Document 1 and Patent Document 2, warm-up operation is required until the solid state light source element operates stably, and this warm-up operation time can be shortened. It has been demanded. In recent years, blue lasers are no longer a problem due to recent technological innovations.
  • COD optical end face destruction
  • the amount of light generated by the solid light source element may become unstable at low temperatures, and the light source device employed in projectors that emphasize color reproducibility, such as for movie theaters. Then it becomes a problem.
  • the temperature at which defects such as the generation of COD and the instability of the light amount occur varies depending on the color of light generated by the solid semiconductor element.
  • a heating device including a chiller heating function
  • a method has been used in which the light is heated while being used and lighted while being driven and controlled so as not to cause a problem in accordance with luminance information from an optical sensor or the like.
  • a heating device There are roughly two types of methods using a heating device. There are a method of heating by electric power using a heater and the like, and a method of heating using a heat exchange device such as a heat pipe or a Peltier element.
  • the problem of the method of heating with electric power using a heater, etc. is that the heat conversion efficiency for electric power is low and the product becomes large because the heater etc. must be physically placed in the liquid cooling circulation path In addition, since the cooling target at the normal time extends to this heater, the cooling efficiency is reduced.
  • the problem with the method of heating using a heat exchange device such as a heat pipe or Peltier element is that the efficiency is low due to the low ambient temperature, which is the heat source, and the heating time is prolonged.
  • the method of lighting and heating the solid light source element while controlling the drive so as not to cause a defect has the advantage that the laser solid light source element can be started from the beginning even at low temperatures, but from low temperature to room temperature. There was a problem that the emission wavelength changed during the time. For this reason, in the case of a device used in an environment in which color reproducibility is important, it is a time that cannot be used substantially.
  • the present invention relates to a light source device and a projector in an environment where importance is placed on color reproducibility, a light source device and a projector, and a light source device start-up method in which a stable light emission state is achieved early even when the ambient temperature is low without impairing the cooling efficiency Is realized.
  • the light source device of the present invention includes a plurality of types of solid light source elements that generate light of different colors, A plurality of types of solid-state light source elements attached, and a circulation path in which the plurality of solid-state light source elements and a heat medium circulating inside are thermally coupled; A temperature detector for detecting the temperature of the heat medium; A controller that circulates the heat medium in the circulation path and starts a plurality of types of solid state light source elements in response to a rise in temperature detected by the temperature detector when an activation command is received. .
  • a projector according to the present invention includes the light source element described above.
  • the light source device activation method includes a plurality of types of solid light source elements that generate light of different colors, and the plurality of types of solid light source elements attached thereto, and circulates through the plurality of solid light source elements.
  • a starting method of a light source device in a light source device comprising: a circulation path in which a heat medium is thermally coupled; and a temperature detection unit that detects a temperature of the heat medium, When an activation command is received, the heat medium is circulated in the circulation path, and a plurality of types of solid state light source elements are sequentially activated in accordance with a rise in temperature detected by the temperature detection unit.
  • FIG. 1 is a block diagram showing a configuration of an embodiment of a light source device according to the present invention.
  • the present embodiment shows a light source device built in a projector.
  • Semiconductor laser elements (RL) 102 and 103 that generate red laser light
  • semiconductor laser elements (GL) 104 and 105 that generate green laser light.
  • the semiconductor laser elements (BL) 106 and 107 that generate blue laser light
  • the heat radiation plates 108 to 113 provided in the respective semiconductor laser elements 102 to 107
  • the heat radiation plates 108 to 113 are connected to each other, and the circulating fluid is contained therein.
  • Circulates in the circulation path 100 a temperature detector 101 provided for measuring the temperature of the circulating fluid in the circulation path 100, a cooling device 114 provided for cooling the circulating fluid in the circulation path 100, and a control The apparatus 115 is comprised.
  • the cooling device 114 circulates the cooling liquid in the circulation path 100 and cools the cooling liquid.
  • the control device 115 performs start / stop of each of the semiconductor laser elements 102 to 107 and adjustment of the driving current. Cooling / stopping the circulating fluid, adjusting the cooling capacity, and controlling circulation / stopping of the circulating fluid.
  • the semiconductor laser elements 102 to 107 are thermally coupled to the circulating fluid through the heat radiation plates 108 to 113 and the circulation path 100. Through the heat radiation plates 108 to 113, heat transfer is performed satisfactorily.
  • the circulating fluid in the circulation path 100 is circulated so as to return from the cooling device 114 to the cooling device 114 through the heat radiation plates 108 to 113 in order.
  • FIG. 2 is a block diagram showing the configuration of the control device 115.
  • the control device 115 includes a control unit 201 and a storage unit 202.
  • the storage unit 202 includes a temperature REF1 that is a criterion for determining that the red and green semiconductor laser elements 102 to 15 are free from defects such as COD and unstable light emission, and a red semiconductor laser element that is higher than the temperature REF1 and that is higher than the temperature REF1.
  • the temperature REF2 and the temperature REF3, which are higher than the temperature REF2 and the temperature REF2, which are the criteria for determining that no trouble occurs in the memories 102 and 103, are stored.
  • the control unit 201 receives a signal indicating the temperature THM from the temperature detection unit 101, and according to the comparison result with the value stored in the storage unit 202, the driving signal DC1 of the cooling device 114, and the semiconductor laser elements 102 to 107.
  • Drive signals DL1 to DL6 for driving are output.
  • FIG. 3 is a flowchart showing the control operation of the control unit 201.
  • the control unit 201 that has received an activation command from the control unit of the projector, which is the host device, outputs a driving signal DC1 that circulates the circulating fluid to the cooling device 114, and the temperature detection signal from the temperature detecting unit 101 determines the circulating fluid.
  • the temperature THM is detected (step S301). At this time, the cooling device 114 is in a state of stopping the cooling operation.
  • step S302 the circulating fluid temperature THM detected by the signal from the temperature detection unit 101 is compared with the temperatures REF1 and REF2 stored in the storage unit 202, and the result is confirmed (step S302). If it is confirmed in step S302 that REF1 ⁇ THM, the blue semiconductor laser elements 106 and 107 are driven with the maximum current (step S303), and the process returns to step S302. If it is confirmed in step S302 that REF2 ⁇ THM> REF1, the blue semiconductor laser elements 106 and 107 and the green semiconductor laser elements 104 and 105 are driven with the maximum current (step S304), and step S302 is performed. Return to.
  • step S302 If it is confirmed in step S302 that THM> REF2, all the semiconductor laser elements 102 to 107 are driven with the maximum current (step S305), and the process returns to step S302. If it is confirmed in step S302 that THM> REF3, the process ends.
  • the ambient temperature is a low temperature at which COD is generated in some red and green semiconductor laser elements.
  • the operation when the light source device is activated when the temperature THM indicated by the signal from the temperature detection unit 101 is lower than REF1 will be described. Since THM is lower than REF1, the control 201 drives only the blue semiconductor laser elements 106 and 107 with the maximum current. At this time, the red and green semiconductor laser elements 102 to 105 are not driven. The heat generated by driving the blue semiconductor laser elements 106 and 107 raises the temperature of the circulating fluid in the circulation path 100, and the red and green semiconductor lasers pass through the circulating fluid and the heat radiation plates 108 to 111. -Heat the elements 102-105.
  • red and green semiconductor laser elements have a temperature condition for generating COD
  • red semiconductor laser elements have a higher temperature for generating COD than green semiconductor laser elements.
  • the control unit 201 adds to the blue semiconductor laser elements 106 and 107.
  • the green semiconductor laser elements 104 and 105 are driven with the maximum current. At this time, the red semiconductor laser elements 102 and 103 are not driven.
  • the control unit 201 sets all the semiconductor laser elements 102 to 107 to the maximum current. To drive. Thereafter, when the temperature of the circulating fluid reaches an efficient and stable temperature REF3 for all the laser elements, the warm-up operation is finished, and thereafter, the heat generated by each of the semiconductor laser elements 102 to 107 is the same as before.
  • the room temperature is maintained by turning on / off the cooling device 114.
  • the semiconductor laser element is shown as the solid light source element.
  • the present invention is not limited to this, and the solid light source element may be an LED (Light Emitting Diode).
  • LED Light Emitting Diode
  • the present invention is applicable to solid light source elements that have different temperatures such as red and blue and green and blue.
  • the present invention can be implemented and is not limited to the combination of the embodiments.
  • the number of semiconductor laser elements may not be two each, one or any number, and the number of three or two kinds may be different.
  • FIG. 4 is a block diagram showing the configuration of the projector 400 according to the present invention.
  • the light source device 401 has the same configuration as the light source device shown in FIG.
  • the optical system 402 projects image light using illumination light supplied from the light source device 401.
  • the configuration of the optical system 402 is a general configuration using an image display device, and does not have a specific configuration according to the present invention, and thus detailed description thereof is omitted. Since the projector 400 includes the light source device 401, the projector 400 can be quickly and reliably performed after the projection power source with high color reproducibility is turned on.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Projection Apparatus (AREA)
  • Arrangement Of Elements, Cooling, Sealing, Or The Like Of Lighting Devices (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)

Abstract

The present invention makes it possible to be quickly in a stable light emitting state without deteriorating cooling efficiency even at a time when the ambient temperature is low. The present invention has: a plurality of kinds of solid-state light source elements (102-107) that respectively generate light having different colors; a circulation path (100), wherein the plurality of kinds of solid-state light source elements (102-107) are attached, and the solid-state light source elements (102-107) and a heating medium circulating in the circulation path are thermally coupled to each other; a temperature detection unit (101) that detects the temperature of the heating medium; and a control unit (115), which circulates the heating medium in the circulation path (100) when the control unit receives a start command, and which sequentially starts the plurality of kinds of solid-state light source elements (102-107) in accordance with a temperature increase detected by the temperature detection unit (101).

Description

光源装置およびプロジェクタ、光源装置の起動方法LIGHT SOURCE DEVICE, PROJECTOR, AND LIGHT SOURCE DEVICE START-UP METHOD
 本発明は、固体光源素子を用いた光源装置、該光源装置を備えたプロジェクタ、光源装置の起動方法に関する。 The present invention relates to a light source device using a solid light source element, a projector including the light source device, and a method for starting the light source device.
 プロジェクタの光源装置には、レーザ素子等の固体光源素子を使用するものがある。プロジェクタでは色再現性が重視されるため、固体光源素子には安定した動作が必要とされる。
 固体光源素子は、例え同一の素子であっても使用する温度によって発光電力効率や発光波長が変わってしまう特性がある。これは素子の構造に由来するもので、現状では25℃前後の温度で最も効率的で安定するように設計されている製品が多い。
 このため、周囲が低温の時には、特許文献1や特許文献2に示されるように、固体光源素子が安定した動作となるまでに暖気運転が必要とされ、この暖気運転の時間を短くすることが求められている。
 また、近年の技術革新により青色レーザでは問題が無くなりつつあるが、赤色等、青色以外の光を発生する固体光源素子を定常温より低い低温時に起動させる場合には光学的端面瞬時破壊(COD:Catastrophic Optical Damage)に注意しなければならない。CODは、低温時には光変換効率が飛躍的に大きくなり、定格内駆動電流でも発光量が大きくなってしまい、その光量により物理的な劣化が加速的に発生してしまう現象である。
Some projector light source devices use a solid light source element such as a laser element. Since color reproducibility is important in projectors, a solid light source element needs to operate stably.
The solid light source element has a characteristic that the light emission power efficiency and the light emission wavelength change depending on the temperature used even if the element is the same. This originates in the structure of the element, and at present, there are many products designed to be most efficient and stable at temperatures around 25 ° C.
For this reason, when the surroundings are at a low temperature, as shown in Patent Document 1 and Patent Document 2, warm-up operation is required until the solid state light source element operates stably, and this warm-up operation time can be shortened. It has been demanded.
In recent years, blue lasers are no longer a problem due to recent technological innovations. However, when a solid-state light source element that generates light other than blue, such as red, is started at a low temperature lower than the normal temperature, optical end face destruction (COD: Note the Catastrophic Optical Damage). COD is a phenomenon in which the light conversion efficiency is drastically increased at low temperatures, the amount of light emission is increased even with a drive current within the rating, and physical deterioration is accelerated due to the amount of light.
 また、CODが発生しない場合であっても、低温時には固体光源素子が発生する光量が不安定となることがあり、映画館用向けなどの色再現性が重視されるプロジェクタに採用される光源装置では、問題となる。
 CODの発生や、光量が不安定となるなどの不具合が発生する温度は、固体半導体素子が発生する光の色に応じて異なる。
 現状では、低温で起動させる時、固体光源素子が、不具合が発生しない温度(常温)となるまでの期間は、固体光源素子の液冷循環経路内に加熱装置(チラーの加熱機能も含む)を用いて加熱し、光センサ等からの輝度情報に応じて不具合が発生しない様に駆動制御しながら点灯させる等の手法が取られてきた。
Further, even when COD does not occur, the amount of light generated by the solid light source element may become unstable at low temperatures, and the light source device employed in projectors that emphasize color reproducibility, such as for movie theaters. Then it becomes a problem.
The temperature at which defects such as the generation of COD and the instability of the light amount occur varies depending on the color of light generated by the solid semiconductor element.
At present, when starting at a low temperature, a heating device (including a chiller heating function) is installed in the liquid-cooling circulation path of the solid light source element until the solid light source element reaches a temperature (room temperature) at which no malfunction occurs. A method has been used in which the light is heated while being used and lighted while being driven and controlled so as not to cause a problem in accordance with luminance information from an optical sensor or the like.
国際公表WO2012/160658号International publication WO2012 / 160658 特開2014-112124号公報JP 2014-112124 A
 加熱装置を用いる方法は大きく分けて2種類あり、ヒータ等を用いて電力により加熱する方法と、ヒ-トパイプやペルチェ素子等の熱交換装置を用いて加熱する方法とがある。
 ヒータ等を用いた電力により加熱する方法の課題としては、電力に対する熱変換効率が低いこと、物理的にヒータ等を液冷循環経路内に配置しなければならない為に製品が大きくなってしまうことや、定常時の冷却対象がこのヒータ等にも及ぶため、冷却効率が低下してしまうことが挙げられる。
 ヒ-トパイプやペルチェ素子等の熱交換装置を用いて加熱する方法の課題としては、そもそも熱源である周囲温度が低い為に効率が低く、加熱の時間が長くなってしまうことが挙げられる。
 また、固体光源素子を不具合が発生しない様に駆動制御しながら点灯させて加熱する方法は、低温時でも最初からレーザ固体光源素子を起動させることが出来る利点があるものの、低温から常温に至るまでの時間に発光波長が変化してしまう問題があった。そのため、色再現性を重視する環境に用いられる機器の場合には、実質的に使用出来ない時間となっていた。
There are roughly two types of methods using a heating device. There are a method of heating by electric power using a heater and the like, and a method of heating using a heat exchange device such as a heat pipe or a Peltier element.
The problem of the method of heating with electric power using a heater, etc., is that the heat conversion efficiency for electric power is low and the product becomes large because the heater etc. must be physically placed in the liquid cooling circulation path In addition, since the cooling target at the normal time extends to this heater, the cooling efficiency is reduced.
The problem with the method of heating using a heat exchange device such as a heat pipe or Peltier element is that the efficiency is low due to the low ambient temperature, which is the heat source, and the heating time is prolonged.
In addition, the method of lighting and heating the solid light source element while controlling the drive so as not to cause a defect has the advantage that the laser solid light source element can be started from the beginning even at low temperatures, but from low temperature to room temperature. There was a problem that the emission wavelength changed during the time. For this reason, in the case of a device used in an environment in which color reproducibility is important, it is a time that cannot be used substantially.
 加えて、光センサ等からの輝度情報を用いて複雑な制御を行う必要があり、且つ、光を発生させる固体光源素子の駆動電流を徐々に増加させる制御となる為、特に加熱当初の駆動電力は抑えられることにより、加熱の時間が長くなってしまう。
 本発明は、色再現性を重視する環境での光源装置およびプロジェクタにおいて、冷却効率を損なうことなく、周囲温度が低温時でも早期に安定した発光状態となる光源装置およびプロジェクタ、光源装置の起動方法を実現する。
In addition, it is necessary to perform complex control using luminance information from an optical sensor and the like, and the driving current of the solid state light source element that generates light is gradually increased. By suppressing the heating time, the heating time becomes longer.
The present invention relates to a light source device and a projector in an environment where importance is placed on color reproducibility, a light source device and a projector, and a light source device start-up method in which a stable light emission state is achieved early even when the ambient temperature is low without impairing the cooling efficiency Is realized.
 本発明の光源装置は、それぞれ異なる色の光を発生する複数の種類の固体光源素子と、
 前記複数の種類の固体光源素子が取り付けられ、該複数の固体光源素子と内部を循環する熱媒体が熱的に結合する循環路と、
 前記熱媒体の温度を検出する温度検出部と、
 起動の指令を受け付けると、前記循環路内に前記熱媒体を循環させ、前記温度検出部が検出した温度の上昇に応じて複数の種類の固体光源素子を順番に起動する制御部と、を有する。
 本発明のプロジェクタは、上記の光源素子を備えている。
 本発明の光源装置の起動方法は、それぞれ異なる色の光を発生する複数の種類の固体光源素子と、前記複数の種類の固体光源素子が取り付けられ、該複数の固体光源素子と内部を循環する熱媒体が熱的に結合する循環路と、前記熱媒体の温度を検出する温度検出部と、を備えた光源装置における光源装置の起動方法であって、
 起動の指令を受け付けると、前記循環路内に前記熱媒体を循環させ、前記温度検出部が検出した温度の上昇に応じて複数の種類の固体光源素子を順番に起動する。
The light source device of the present invention includes a plurality of types of solid light source elements that generate light of different colors,
A plurality of types of solid-state light source elements attached, and a circulation path in which the plurality of solid-state light source elements and a heat medium circulating inside are thermally coupled;
A temperature detector for detecting the temperature of the heat medium;
A controller that circulates the heat medium in the circulation path and starts a plurality of types of solid state light source elements in response to a rise in temperature detected by the temperature detector when an activation command is received. .
A projector according to the present invention includes the light source element described above.
The light source device activation method according to the present invention includes a plurality of types of solid light source elements that generate light of different colors, and the plurality of types of solid light source elements attached thereto, and circulates through the plurality of solid light source elements. A starting method of a light source device in a light source device comprising: a circulation path in which a heat medium is thermally coupled; and a temperature detection unit that detects a temperature of the heat medium,
When an activation command is received, the heat medium is circulated in the circulation path, and a plurality of types of solid state light source elements are sequentially activated in accordance with a rise in temperature detected by the temperature detection unit.
 上記の構成を備える本発明においては、冷却効率を損なうことなく、周囲温度が低温時でも早期に安定した発光状態となる。 In the present invention having the above-described configuration, a stable light emission state is obtained at an early stage even when the ambient temperature is low without impairing the cooling efficiency.
本発明による光源装置の一実施形態の構成を示すブロック図である。It is a block diagram which shows the structure of one Embodiment of the light source device by this invention. 図1中の制御装置115の構成を示すブロック図である。It is a block diagram which shows the structure of the control apparatus 115 in FIG. 図2中の制御部201の制御動作を示すフローチャートである。It is a flowchart which shows the control action of the control part 201 in FIG. 本発明によるプロジェクタ400の構成を示すブロック図である。It is a block diagram which shows the structure of the projector 400 by this invention.
 次に、本発明の実施形態について図面を参照して説明する。
 図1は本発明による光源装置の一実施形態の構成を示すブロック図である。
 本実施形態は、プロジェクタに内蔵される光源装置を示すもので、赤色のレーザ光を発生する半導体レーザ素子(RL)102,103、緑色のレーザ光を発生する半導体レーザ素子(GL)104,105、青色のレーザ光を発生する半導体レーザ素子(BL)106,107と、各半導体レーザ素子102~107にそれぞれ設けられた放熱プレート108~113と、放熱プレート108~113を結び、内部に循環液が循環する循環路100と、循環路100に循環液の温度を計測するために設けられた温度検出部101と、循環路100に循環液を冷却するために設けられた冷却装置114と、制御装置115から構成されている。
 冷却装置114は循環路100内の冷却液体を循環させ、また、冷却液体の冷却を行う。
 制御装置115は、半導体レ-ザ素子102~107それぞれの起動/停止、および、駆動電流の調整を行い、また、温度検出部101により検出された循環液の温度に応じて、冷却装置114による循環液の冷却/停止、冷却能力の調整、循環液の循環/停止の制御、を行う。
 半導体レーザ素子102~107は、放熱プレート108~113と循環路100を介して循環液と熱的に結合されている。放熱プレート108~113を介することにより、熱伝達が良好に行われるものとなっている。
 循環路100内の循環液は、冷却装置114から放熱プレート108~113を順に通って冷却装置114へ戻るように循環されている。
Next, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a block diagram showing a configuration of an embodiment of a light source device according to the present invention.
The present embodiment shows a light source device built in a projector. Semiconductor laser elements (RL) 102 and 103 that generate red laser light, and semiconductor laser elements (GL) 104 and 105 that generate green laser light. The semiconductor laser elements (BL) 106 and 107 that generate blue laser light, the heat radiation plates 108 to 113 provided in the respective semiconductor laser elements 102 to 107, and the heat radiation plates 108 to 113 are connected to each other, and the circulating fluid is contained therein. Circulates in the circulation path 100, a temperature detector 101 provided for measuring the temperature of the circulating fluid in the circulation path 100, a cooling device 114 provided for cooling the circulating fluid in the circulation path 100, and a control The apparatus 115 is comprised.
The cooling device 114 circulates the cooling liquid in the circulation path 100 and cools the cooling liquid.
The control device 115 performs start / stop of each of the semiconductor laser elements 102 to 107 and adjustment of the driving current. Cooling / stopping the circulating fluid, adjusting the cooling capacity, and controlling circulation / stopping of the circulating fluid.
The semiconductor laser elements 102 to 107 are thermally coupled to the circulating fluid through the heat radiation plates 108 to 113 and the circulation path 100. Through the heat radiation plates 108 to 113, heat transfer is performed satisfactorily.
The circulating fluid in the circulation path 100 is circulated so as to return from the cooling device 114 to the cooling device 114 through the heat radiation plates 108 to 113 in order.
 図2は、制御装置115の構成を示すブロック図である。制御装置115は制御部201と記憶部202から構成されている。
 記憶部202は、赤色および緑色の半導体レーザ素子102~15にCODや発光量が不安定などの不具合が発生しなくなる判断基準となる温度REF1、および、温度REF1よりも高く、赤色の半導体レーザ素子102,103に不具合が発生しなくなる判断基準となる温度REF2、温度REF2よりも高く、暖気運転が完了したことを示す温度REF3を記憶している。
 制御部201は、温度検出部101からの温度THMを示す信号を入力し、記憶部202が記憶している値との比較結果に応じて冷却装置114の駆動信号DC1、半導体レーザ素子102~107を駆動する駆動信号DL1~DL6を出力する。
FIG. 2 is a block diagram showing the configuration of the control device 115. The control device 115 includes a control unit 201 and a storage unit 202.
The storage unit 202 includes a temperature REF1 that is a criterion for determining that the red and green semiconductor laser elements 102 to 15 are free from defects such as COD and unstable light emission, and a red semiconductor laser element that is higher than the temperature REF1 and that is higher than the temperature REF1. The temperature REF2 and the temperature REF3, which are higher than the temperature REF2 and the temperature REF2, which are the criteria for determining that no trouble occurs in the memories 102 and 103, are stored.
The control unit 201 receives a signal indicating the temperature THM from the temperature detection unit 101, and according to the comparison result with the value stored in the storage unit 202, the driving signal DC1 of the cooling device 114, and the semiconductor laser elements 102 to 107. Drive signals DL1 to DL6 for driving are output.
 次に、本実施形態の起動時における半導体レーザ素子および冷却装置114の暖気運転の制御動作について図3を参照して説明する。図3は、制御部201の制御動作を示すフローチャートである。
 上位装置であるプロジェクタの制御部からの起動の指令を受けた制御部201は、冷却装置114へ循環液を巡回させる駆動信号DC1を出力し、温度検出部101からの温度検出信号により循環液の温度THMを検知する(ステップS301)。この時、冷却装置114は冷却動作を停止している状態にある。
 次に、温度検出部101からの信号により検知された循環液の温度THMと、記憶部202が記憶する温度REF1、REF2とを比較し、その結果を確認する(ステップS302)。
 ステップS302において、REF1≧THMであることが確認された場合には、青色の半導体レーザ素子106,107を最大電流で駆動し(ステップS303)、ステップS302へ戻る。
 ステップS302において、REF2≧THM>REF1であることが確認された場合には、青色の半導体レーザ素子106,107および緑色の半導体レーザ素子104,105を最大電流で駆動し(ステップS304)、ステップS302へ戻る。
 ステップS302において、THM>REF2であることが確認された場合には、すべての半導体レーザ素子102~107を最大電流で駆動し(ステップS305)、ステップS302へ戻る。
 ステップS302において、THM>REF3であることが確認された場合には、終了する。
Next, the control operation of the warm-up operation of the semiconductor laser element and the cooling device 114 at the time of startup of the present embodiment will be described with reference to FIG. FIG. 3 is a flowchart showing the control operation of the control unit 201.
The control unit 201 that has received an activation command from the control unit of the projector, which is the host device, outputs a driving signal DC1 that circulates the circulating fluid to the cooling device 114, and the temperature detection signal from the temperature detecting unit 101 determines the circulating fluid. The temperature THM is detected (step S301). At this time, the cooling device 114 is in a state of stopping the cooling operation.
Next, the circulating fluid temperature THM detected by the signal from the temperature detection unit 101 is compared with the temperatures REF1 and REF2 stored in the storage unit 202, and the result is confirmed (step S302).
If it is confirmed in step S302 that REF1 ≧ THM, the blue semiconductor laser elements 106 and 107 are driven with the maximum current (step S303), and the process returns to step S302.
If it is confirmed in step S302 that REF2 ≧ THM> REF1, the blue semiconductor laser elements 106 and 107 and the green semiconductor laser elements 104 and 105 are driven with the maximum current (step S304), and step S302 is performed. Return to.
If it is confirmed in step S302 that THM> REF2, all the semiconductor laser elements 102 to 107 are driven with the maximum current (step S305), and the process returns to step S302.
If it is confirmed in step S302 that THM> REF3, the process ends.
 上記の制御を行う本実施形態の具体的な動作として、以下では、本発明が有効となる、周囲温度が一部の赤色および緑色の半導体レーザ素子にCODが発生する低温時、具体的には温度検出部101からの信号が示す温度THMがREF1よりも低いときに光源装置を起動させたときの動作説明を行う。
 THMがREF1よりも低いため、制御201は青色の半導体レ-ザ素子106,107のみを最大電流で駆動する。この時、赤色や緑色の半導体レ-ザ素子102~105は駆動していない。
 青色の半導体レ-ザ素子106,107を駆動することによる発熱は、循環路100内の循環液の温度を上昇させ、該循環液、放熱プレート108~111を経由して赤色や緑色の半導体レ-ザ素子102~105を加熱する。
As a specific operation of the present embodiment for performing the above-described control, the following description will be given. Specifically, the ambient temperature is a low temperature at which COD is generated in some red and green semiconductor laser elements. The operation when the light source device is activated when the temperature THM indicated by the signal from the temperature detection unit 101 is lower than REF1 will be described.
Since THM is lower than REF1, the control 201 drives only the blue semiconductor laser elements 106 and 107 with the maximum current. At this time, the red and green semiconductor laser elements 102 to 105 are not driven.
The heat generated by driving the blue semiconductor laser elements 106 and 107 raises the temperature of the circulating fluid in the circulation path 100, and the red and green semiconductor lasers pass through the circulating fluid and the heat radiation plates 108 to 111. -Heat the elements 102-105.
 一般的に赤色や緑色の半導体レ-ザ素子はCODが発生する温度条件を持っていて、赤色の半導体レ-ザ素子の方が緑色の半導体レ-ザ素子よりもCODが発生する温度が高い。
 この後、循環液の温度が上昇し、緑色の半導体レーザ素子104,105にCODが発生しないREF2≧THM>REF1となると、制御部201は、青色の半導体レ-ザ素子106,107に加えて緑色の半導体レ-ザ素子104,105を最大電流で駆動する。この時、赤色の半導体レ-ザ素子102,103は駆動しない。
 この後、循環液の温度がさらに上昇し、赤色の半導体レーザ素子102,103にCODが発生しないRETHM>REF2となると、制御部201は、すべての半導体レ-ザ素子102~107を最大電流で駆動する。
 その後、循環液の温度が全てのレ-ザ素子に対して効率的で安定する温度REF3となると暖気運転は終了し、その後は、従来と同様の、各半導体レ-ザ素子102~107による発熱と冷却装置114のON/OFFなどによりで常温が維持される。
In general, red and green semiconductor laser elements have a temperature condition for generating COD, and red semiconductor laser elements have a higher temperature for generating COD than green semiconductor laser elements. .
Thereafter, when the temperature of the circulating fluid rises and REF2 ≧ THM> REF1 is generated in which the COD is not generated in the green semiconductor laser elements 104 and 105, the control unit 201 adds to the blue semiconductor laser elements 106 and 107. The green semiconductor laser elements 104 and 105 are driven with the maximum current. At this time, the red semiconductor laser elements 102 and 103 are not driven.
Thereafter, when the temperature of the circulating liquid further rises and RETHM> REF2 in which COD is not generated in the red semiconductor laser elements 102 and 103, the control unit 201 sets all the semiconductor laser elements 102 to 107 to the maximum current. To drive.
Thereafter, when the temperature of the circulating fluid reaches an efficient and stable temperature REF3 for all the laser elements, the warm-up operation is finished, and thereafter, the heat generated by each of the semiconductor laser elements 102 to 107 is the same as before. The room temperature is maintained by turning on / off the cooling device 114.
 以上説明した実施形態では、固体光源素子として半導体レーザ素子を示したが、これに限定されるものではなく、固体光源素子はLED(Light Emittimg Diode)であってもよい。
 また、赤色、緑色、青色の光を発生する3種類の半導体レーザ素子を用いるものとしたが、赤色と青色、緑色と青色など、不具合の発生する温度が異なる固体光源素子であれば本発明は実施可能であり、実施形態の組み合わせに限定されるものではない。
 半導体レ-ザ素子の数量は各々2つでなくとも良く、各々1つでもいくつでも良いし、3種又は2種の数量は異なっていても構わない。
In the embodiment described above, the semiconductor laser element is shown as the solid light source element. However, the present invention is not limited to this, and the solid light source element may be an LED (Light Emitting Diode).
In addition, although three types of semiconductor laser elements that generate red, green, and blue light are used, the present invention is applicable to solid light source elements that have different temperatures such as red and blue and green and blue. The present invention can be implemented and is not limited to the combination of the embodiments.
The number of semiconductor laser elements may not be two each, one or any number, and the number of three or two kinds may be different.
 図4は、本発明によるプロジェクタ400の構成を示すブロック図である。
 光源装置401は、図1に示した光源装置と同様の構成を備えている。光学系402は光源装置401より供給される照明光を用いて映像光を投写する。光学系402の構成は、画像表示装置を用いた一般的な構成のものであり、本発明による特有の構成を備えるものではないため、詳細な説明は省略する。
 プロジェクタ400は、光源装置401を備えることから色再現性の高い投写電源投入時から迅速かつ確実に行われるものとなっている。
FIG. 4 is a block diagram showing the configuration of the projector 400 according to the present invention.
The light source device 401 has the same configuration as the light source device shown in FIG. The optical system 402 projects image light using illumination light supplied from the light source device 401. The configuration of the optical system 402 is a general configuration using an image display device, and does not have a specific configuration according to the present invention, and thus detailed description thereof is omitted.
Since the projector 400 includes the light source device 401, the projector 400 can be quickly and reliably performed after the projection power source with high color reproducibility is turned on.
 100  循環路
 101  温度検出部
 102~107  半導体レーザ素子
 108~113  放熱プレート
 114  冷却装置
 115  制御装置
 201  制御部
 202  記憶部
 400  プロジェクタ
 401  光源装置
 402  光学系
DESCRIPTION OF SYMBOLS 100 Circulation path 101 Temperature detection part 102-107 Semiconductor laser element 108-113 Radiation plate 114 Cooling device 115 Control apparatus 201 Control part 202 Storage part 400 Projector 401 Light source apparatus 402 Optical system

Claims (7)

  1. それぞれ異なる色の光を発生する複数の種類の固体光源素子と、
     前記複数の種類の固体光源素子が取り付けられ、該複数の固体光源素子と内部を循環する熱媒体が熱的に結合する循環路と、
     前記熱媒体の温度を検出する温度検出部と、
     起動の指令を受け付けると、前記循環路内に前記熱媒体を循環させ、前記温度検出部が検出した温度の上昇に応じて複数の種類の固体光源素子を順番に起動する制御部と、を有する光源装置。
    A plurality of types of solid state light source elements, each generating light of a different color,
    A plurality of types of solid-state light source elements attached, and a circulation path in which the plurality of solid-state light source elements and a heat medium circulating inside are thermally coupled;
    A temperature detector for detecting the temperature of the heat medium;
    A controller that circulates the heat medium in the circulation path and starts a plurality of types of solid state light source elements in response to a rise in temperature detected by the temperature detector when an activation command is received. Light source device.
  2. 請求項1記載の光源装置において、
     前記複数の種類の固体半導体素子の種類に対応して不具合が発生しなくなる基準となる基準温度を記憶する記憶部を備え、
     前記制御部は、前記温度検出部が検出した温度が前記基準温度のいずれかを超えると、該基準温度に対応する種類の固体光源素子を起動する、光源装置。
    The light source device according to claim 1,
    A storage unit that stores a reference temperature that serves as a reference in which a defect does not occur corresponding to the types of the plurality of types of solid-state semiconductor elements,
    When the temperature detected by the temperature detection unit exceeds any of the reference temperatures, the control unit activates a solid-state light source element of a type corresponding to the reference temperature.
  3. 請求項1または請求項2に記載の光源装置において、
     前記複数の種類の固体光源素子は、個別に設けられた放熱プレートを介して前記循環路に取り付けられている、光源装置。
    The light source device according to claim 1 or 2,
    The light source device, wherein the plurality of types of solid light source elements are attached to the circulation path via individually radiating plates.
  4. 請求項1ないし請求項3のいずれかに記載の光源装置において、
     前記固体光源素子は半導体レーザ素子である、光源装置。
    The light source device according to any one of claims 1 to 3,
    The light source device, wherein the solid light source element is a semiconductor laser element.
  5. 請求項1ないし請求項4のいずれかに記載の光源装置において、
     前記固体光源素子は、各種類に複数設けられている、光源装置。
    The light source device according to any one of claims 1 to 4,
    A light source device in which a plurality of the solid light source elements are provided for each type.
  6. 請求項1ないし請求項5のいずれかに記載の光源素子を備えたプロジェクタ。 A projector comprising the light source element according to any one of claims 1 to 5.
  7. それぞれ異なる色の光を発生する複数の種類の固体光源素子と、前記複数の種類の固体光源素子が取り付けられ、該複数の固体光源素子と内部を循環する熱媒体が熱的に結合する循環路と、前記熱媒体の温度を検出する温度検出部と、を備えた光源装置における光源装置の起動方法であって、
     起動の指令を受け付けると、前記循環路内に前記熱媒体を循環させ、前記温度検出部が検出した温度の上昇に応じて複数の種類の固体光源素子を順番に起動する、光源装置の起動方法。
    A plurality of types of solid-state light source elements that generate light of different colors, and a circulation path in which the plurality of types of solid-state light source elements are attached, and the plurality of solid-state light source elements and a heat medium circulating inside are thermally coupled. And a temperature detection unit that detects the temperature of the heat medium, and a light source device activation method in a light source device comprising:
    When a start command is received, the heat medium is circulated in the circulation path, and a plurality of types of solid state light source elements are sequentially started in accordance with a rise in temperature detected by the temperature detection unit. .
PCT/JP2017/021497 2017-06-09 2017-06-09 Light source device, projector, and method for starting light source device WO2018225254A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2017/021497 WO2018225254A1 (en) 2017-06-09 2017-06-09 Light source device, projector, and method for starting light source device
JP2019523321A JP6763562B2 (en) 2017-06-09 2017-06-09 Light source device and projector, how to start the light source device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/021497 WO2018225254A1 (en) 2017-06-09 2017-06-09 Light source device, projector, and method for starting light source device

Publications (1)

Publication Number Publication Date
WO2018225254A1 true WO2018225254A1 (en) 2018-12-13

Family

ID=64566117

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/021497 WO2018225254A1 (en) 2017-06-09 2017-06-09 Light source device, projector, and method for starting light source device

Country Status (2)

Country Link
JP (1) JP6763562B2 (en)
WO (1) WO2018225254A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020034902A (en) * 2018-08-27 2020-03-05 キヤノン株式会社 Light source device and image projection device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006202846A (en) * 2005-01-18 2006-08-03 Fuji Xerox Co Ltd Luminescence control unit and image forming apparatus
JP2009031557A (en) * 2007-07-27 2009-02-12 Alps Electric Co Ltd Liquid-cooling system
WO2011152217A1 (en) * 2010-05-31 2011-12-08 日本電気株式会社 Display device
JP2012242708A (en) * 2011-05-23 2012-12-10 Panasonic Corp Image forming apparatus
JP2013167774A (en) * 2012-02-16 2013-08-29 Mitsubishi Electric Corp Multi-screen display device
JP2014112124A (en) * 2012-12-05 2014-06-19 Panasonic Corp Light source device and projection display device
JP2015111507A (en) * 2013-12-06 2015-06-18 キヤノン株式会社 Lighting device and control method of the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006202846A (en) * 2005-01-18 2006-08-03 Fuji Xerox Co Ltd Luminescence control unit and image forming apparatus
JP2009031557A (en) * 2007-07-27 2009-02-12 Alps Electric Co Ltd Liquid-cooling system
WO2011152217A1 (en) * 2010-05-31 2011-12-08 日本電気株式会社 Display device
JP2012242708A (en) * 2011-05-23 2012-12-10 Panasonic Corp Image forming apparatus
JP2013167774A (en) * 2012-02-16 2013-08-29 Mitsubishi Electric Corp Multi-screen display device
JP2014112124A (en) * 2012-12-05 2014-06-19 Panasonic Corp Light source device and projection display device
JP2015111507A (en) * 2013-12-06 2015-06-18 キヤノン株式会社 Lighting device and control method of the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020034902A (en) * 2018-08-27 2020-03-05 キヤノン株式会社 Light source device and image projection device

Also Published As

Publication number Publication date
JPWO2018225254A1 (en) 2020-04-09
JP6763562B2 (en) 2020-09-30

Similar Documents

Publication Publication Date Title
CN108279547B (en) Heat transport device and projector
JP4196983B2 (en) COOLING DEVICE, PROJECTOR, AND COOLING METHOD
JP4562411B2 (en) Projection-type image display device
WO2018225254A1 (en) Light source device, projector, and method for starting light source device
EP2722588B1 (en) Image projection apparatus, control method, and computer-readable storage medium
US11418763B2 (en) Light source apparatus and image projection apparatus
JP6519188B2 (en) Light source device and projector
JP6683085B2 (en) LCD projector
JP2008305791A (en) Lighting system, video image display device, and projection video display device
JP2009086272A (en) System for starting projection type video display device
US11112688B2 (en) Light source apparatus, image projection apparatus, and control apparatus that control multiple light sources at different lighting timings
JP6680166B2 (en) LCD projector
CN112859498B (en) Illumination device, projection system and operation method thereof
US10209608B2 (en) Liquid crystal projector apparatus
JP6733351B2 (en) Light source device, projection device, light source control method, and program
JP2024073993A (en) Projection type image display device and control method
JP2016090605A (en) Image projection device and control method of image projection device
JP6303542B2 (en) Light source device and image projection device
JP2005191223A (en) Semiconductor laser source
JP2008300661A (en) Air duct type temperature control device
JP2017129730A (en) projector
JP2020052232A (en) Light source device and image projection device
JP2020034614A (en) Light source device and image projection device
US10025278B2 (en) Information processing apparatus, information processing method, and program for controlling the temperature of an image display apparatus
JP2008281628A (en) Projector

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17912484

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019523321

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17912484

Country of ref document: EP

Kind code of ref document: A1