WO2018224010A1 - 电源转换电路、充电装置及系统 - Google Patents

电源转换电路、充电装置及系统 Download PDF

Info

Publication number
WO2018224010A1
WO2018224010A1 PCT/CN2018/090279 CN2018090279W WO2018224010A1 WO 2018224010 A1 WO2018224010 A1 WO 2018224010A1 CN 2018090279 W CN2018090279 W CN 2018090279W WO 2018224010 A1 WO2018224010 A1 WO 2018224010A1
Authority
WO
WIPO (PCT)
Prior art keywords
switching element
coupled
energy storage
power conversion
conversion circuit
Prior art date
Application number
PCT/CN2018/090279
Other languages
English (en)
French (fr)
Other versions
WO2018224010A9 (zh
Inventor
宋俊
王鹏飞
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP18813483.7A priority Critical patent/EP3627650B1/en
Priority to EP22176915.1A priority patent/EP4131714A3/en
Publication of WO2018224010A1 publication Critical patent/WO2018224010A1/zh
Publication of WO2018224010A9 publication Critical patent/WO2018224010A9/zh
Priority to US16/706,030 priority patent/US11404895B2/en
Priority to US17/860,402 priority patent/US11811254B2/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/263Arrangements for using multiple switchable power supplies, e.g. battery and AC
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/0003
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/00032Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by data exchange
    • H02J7/00034Charger exchanging data with an electronic device, i.e. telephone, whose internal battery is under charge
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/00032Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by data exchange
    • H02J7/00036Charger exchanging data with battery
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/00032Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by data exchange
    • H02J7/00045Authentication, i.e. circuits for checking compatibility between one component, e.g. a battery or a battery charger, and another component, e.g. a power source
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0027
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/4837Flying capacitor converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/20Charging or discharging characterised by the power electronics converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/30Charge provided using DC bus or data bus of a computer
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0095Hybrid converter topologies, e.g. NPC mixed with flying capacitor, thyristor converter mixed with MMC or charge pump mixed with buck
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/06Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using resistors or capacitors, e.g. potential divider
    • H02M3/07Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using resistors or capacitors, e.g. potential divider using capacitors charged and discharged alternately by semiconductor devices with control electrode, e.g. charge pumps

Definitions

  • This application relates to the field of circuits and, more particularly, to power conversion circuits, charging devices and systems.
  • Batteries have long been used as power sources for mobile electronic devices.
  • the battery provides energy in the form of voltage and current that allows the circuit to operate.
  • the energy stored by the battery is limited, and the battery loses power when the electronic device is in use.
  • the battery's energy supply is exhausted, the battery's voltage will begin to drop from its rated voltage, and the electronics that rely on the battery to obtain power will no longer be suitable for continued operation.
  • some form of battery charging system is required.
  • a battery charging system typically includes a power adapter and a charging device, and the transfer of energy and information between the two is typically accomplished via a USB cable.
  • the function of the power adapter is to transfer the energy of the utility power to the charging device according to a certain voltage.
  • the function of the charging device is to convert the energy obtained by the power adapter into a voltage and then transfer it to the battery.
  • the existing battery charging system only supports one voltage mode, but different batteries support different amounts of power, voltage and current.
  • the voltage or current supplied to the battery is too large, Then the battery may be damaged or even explode, or if the voltage or current supplied to the battery is too small, the charging process may be inefficient or completely ineffective.
  • the application provides a power conversion circuit, a charging device and a system, which can support multiple charging modes and effectively increase the charging rate of the battery.
  • a power conversion circuit including: a first switching element, a second switching element, a third switching element, a fourth working switching element, a fifth switching element, and a sixth switching element, a first energy storage element and a second energy storage element.
  • a first end of the first switching element is coupled to an input power source through a first external end of the power conversion circuit, and a second end of the first switching element is coupled to the a first end of the first energy storage element, a first end of the second switching element, and a first end of the fifth switching element, a second end of the first energy storage element coupled to the third a first end of the switching element, a first end of the fourth switching element, and a first end of the sixth switching element, and a second end of the second switching element passes through a second external end of the power conversion circuit a second end of the fifth switching element coupled to the first end of the second energy storage element and the second end of the sixth switching element, the second energy storage element
  • the second end is coupled to the second external terminal
  • the second end of the fourth switching element is coupled to the second external terminal
  • the second end of the third switching element is grounded.
  • the power conversion circuit further includes a seventh switching element, wherein the first end of the seventh switching element is respectively coupled to the second end of the first switching element, a first end of the second switching element, a first end of the fifth switching element, and a first end of the first energy storage element, and a second end of the seventh switching element is coupled to the first a first end of the three switching element, a first end of the fourth switching element, a first end of the sixth switching element, and a second end of the first energy storage element.
  • a charging apparatus comprising the power conversion circuit of the foregoing aspects and implementations, and an information acquisition and signal control circuit and an input/output port coupled to the power conversion circuit,
  • the information acquisition and signal control circuit is coupled to the input/output port.
  • the information collecting and signal control circuit comprises: a digital core processing component, a battery information detecting component, an output driving component, an information input component, a first power conversion component, and a second power supply Conversion component.
  • the information input element, the first power conversion element, and the second power conversion element respectively pass through a first external end of the information acquisition and signal control circuit and the An input power coupling connection, the information input component being coupled to the digital core processing component, the first power conversion component coupled to the digital core processing component, the second power conversion component coupled to the output drive component, the number
  • the core processing component is coupled to the data line of the power adapter through a second external end of the information acquisition and signal control circuit
  • the digital core processing component is coupled to the battery information detecting component
  • the battery information detecting component passes the a third external terminal of the information acquisition and signal control circuit is coupled to the battery
  • the digital core processing component is coupled to the output driving component
  • the output driving component is respectively through a fourth external terminal of the information
  • a first end of the input/output port is connected to an input power of the power adapter, and a second end of the input/output port is respectively coupled to the power conversion a first external end of the circuit and the first external end of the information acquisition and signal control circuit, a third end of the input/output port is connected to a data line of the power adapter, the input/output port A fourth end is coupled to the second external terminal of the information acquisition and signal control circuit.
  • the input/output port is a USB port.
  • a charging system comprising the charging device of the foregoing aspects and implementations, and a power adapter and battery element coupled to the charging device.
  • the charging device and the battery component may be disposed in a device, which may be a terminal, a base station, or an electric vehicle.
  • a method for charging a battery by a power conversion circuit is provided. Based on the foregoing aspects and the composition of the power conversion circuit in the implementation manner, a possible implementation manner is that the power conversion circuit can be according to the first charging mode.
  • Implementing charging of the battery comprising: maintaining the second switching element and the sixth switching element disconnected, keeping the fifth switching element closed, in the first time period, the first switching element and the a fourth switching element is in a closed state and the third switching element is in an open state, the first energy storage element and the second energy storage element being charged, a second time period after the first time period The first switching element and the fourth switching element are in an off state, and the third switching element is in a closed state, and the first energy storage element and the second energy storage element are discharged.
  • the power conversion circuit can perform charging of the battery according to the second charging mode, and the method includes: keeping the fourth switching element and the fifth switching element off, keeping the closed The sixth switching element, in a first period of time, the first switching element is in a closed state, and the second switching element and the third switching element are in an off state, the first energy storage element Charging with the second energy storage element, in a second period of time after the first period of time, the first switching element is in an off state, and the second switching element and the third switching element In the closed state, the first energy storage element and the second energy storage element are discharged.
  • the power conversion circuit can perform charging of the battery according to the third charging mode, and the method includes: keeping the fifth switching element and the sixth switching element off, In a period of time, the first switching element and the fourth switching element are in a closed state, and the second switching element and the third switching element are in an off state, and the first energy storage element is charged, In a second period of time after the first period of time, the first switching element and the fourth switching element are in an off state, and the second switching element and the third switching element are in a closed state The first energy storage element is discharged.
  • the power conversion circuit can perform charging of the battery according to the fourth charging mode, including: maintaining the fourth switching element, the fifth switching element, and the a sixth switching element that keeps closing the first switching element and the third switching element, and in the first period of time, the second switching element is in a closed state to directly charge the battery during the first time period In the subsequent second period of time, the second switching element is in an off state, suspending charging of the battery.
  • the power conversion circuit can perform charging of the battery according to the fifth charging mode, and the method includes: maintaining the second switching element, the fourth switching element, and the a sixth switching element, and keeping the fifth switching element and the seventh switching element closed, in the first period of time, the first switching element is in a closed state, and the third switching element is in an off state
  • the second energy storage element is charged, in a second period of time after the first period of time, the first switching element is in an off state, and the third switching element is in a closed state, the The second energy storage element is discharged.
  • the power conversion circuit can perform charging of the battery according to the sixth charging mode, including: maintaining the second switching element, the fourth switching element, and the a fifth switching element, and keeping the sixth switching element and the seventh switching element closed; in the first period of time, the first switching element is in a closed state, and the third switching element is in an off state
  • the second energy storage element is charged, in a second period of time after the first period of time, the first switching element is in an off state, and the third switching element is in a closed state, the The second energy storage element is discharged.
  • another power conversion circuit including: a first switching element, a second switching element, a third switching element, a seventh working switching element, a first energy storage element, and a second storage Energy component.
  • a first end of the first switching element is coupled to an input power source through a first external end of the power conversion circuit, and a second end of the first switching element is coupled to the a first end of the second switching element, a first end of the seventh switching element, and a first end of the first energy storage element, a second end of the first energy storage element coupled to the second a first end of the energy storage element, a first end of the third switching element, and a second end of the seventh switching element, and a second end of the second switching element passes through a second external connection of the power conversion circuit
  • the end is coupled to the battery, the second end of the second energy storage element is coupled to the second external end, and the second end of the third switching element is coupled to ground.
  • the power conversion circuit can charge the battery based on the second charging mode or the sixth charging mode.
  • another power conversion circuit including: a first switching element, a second switching element, a third switching element, a fifth working switching element, a seventh working switching element, and a first storage The energy component and the second energy storage component.
  • a first end of the first switching element is coupled to an input power source through a first external end of the power conversion circuit, and a second end of the first switching element is coupled to the a first end of the second switching element, a first end of the fifth switching element, a first end of the seventh switching element, and a first end of the first energy storage element, the first energy storage element a second end coupled to the first end of the third switching element and a second end of the seventh switching element, the second end of the second switching element passing through the second external end of the power conversion circuit Coupling with a battery, a second end of the fifth switching element is coupled to the first end of the second energy storage element, and a second end of the second energy storage element is coupled to the second external end, The second end of the third switching element is grounded.
  • the power conversion circuit can charge the battery based on the second charging mode, the fourth charging mode, the fifth charging mode, or the sixth charging mode.
  • the power conversion circuit further includes a fourth switching element, wherein the first end of the fourth switching element is respectively coupled to the first end of the third switching element, a second end of the seventh switching element and a second end of the first energy storage element, and a second end of the fourth switching element is coupled to the second external end.
  • the power conversion circuit can also charge the battery based on the third charging mode.
  • another power conversion circuit including: a first switching element, a second switching element, a third switching element, a sixth working switching element, a seventh working switching element, and a first storage The energy component and the second energy storage component.
  • a first end of the first switching element is coupled to an input power source through a first external end of the power conversion circuit, and a second end of the first switching element is coupled to the a first end of the second switching element, a first end of the seventh switching element, and a first end of the first energy storage element, a second end of the first energy storage element coupled to the third a first end of the switching element, a first end of the sixth switching element, and a second end of the seventh switching element, the second end of the second switching element passing through a second external end of the power conversion circuit Coupling with a battery, a second end of the sixth switching element is coupled to the first end of the second energy storage element, and a second end of the second energy storage element is coupled to the second external end, The second end of the third switching element is grounded.
  • the power conversion circuit can charge the battery based on the second charging mode, the fourth charging mode, or the sixth charging mode.
  • the power conversion circuit further includes a fourth switching element, wherein the first end of the fourth switching element is respectively coupled to the first end of the third switching element, a first end of the sixth switching element, a second end of the seventh switching element, and a second end of the first energy storage element, the second end of the fourth switching element being coupled to the second External terminal.
  • the power conversion circuit can also charge the battery based on the third charging mode.
  • another power conversion circuit including: a first switching element, a second switching element, a third switching element, a fourth work switching element, and a first energy storage element.
  • a first end of the first switching element is coupled to an input power source through a first external end of the power conversion circuit, and a second end of the first switching element is coupled to the a first end of the second switching element and a first end of the first energy storage element, a second end of the first energy storage element being coupled to a first end and a fourth end of the third switching element, respectively a first end of the switching element, a second end of the second switching element is coupled to the battery via a second external end of the power conversion circuit, and a second end of the fourth switching element is coupled to the second external connection The second end of the third switching element is grounded.
  • the power conversion circuit can charge the battery based on the third charging mode or the fourth charging mode.
  • the power conversion circuit further includes a fifth switching element and a second energy storage element; a first end of the fifth switching element is coupled to the first switching element a second end, a first end of the second switching element and a first end of the first energy storage element, a second end of the fifth switching element being coupled to a first end of the second energy storage element The second end of the second energy storage element is coupled to the second external end.
  • the power conversion circuit can also charge the battery based on the first charging mode.
  • another power conversion circuit including: a first switching element, a second switching element, a third switching element, a sixth working switching element, a first energy storage element, and a second storage Energy component.
  • a first end of the first switching element is coupled to an input power source through a first external end of the power conversion circuit, and a second end of the first switching element is coupled to the a first end of the second switching element and a first end of the first energy storage element, the second end of the first energy storage element being coupled to the first end and the sixth of the third switching element, respectively a first end of the switching element, a second end of the second switching element is coupled to the battery via a second external end of the power conversion circuit, and a second end of the sixth switching element is coupled to the second energy storage A first end of the component, a second end of the second energy storage component is coupled to the second external terminal, and a second end of the third switching component is coupled to ground.
  • the power conversion circuit can charge the battery based on the second charging mode or the fourth charging mode.
  • the power conversion circuit further includes a fourth switching element, wherein the first end of the fourth switching element is respectively coupled to the first end of the third switching element, a first end of the sixth switching element and a second end of the first energy storage element, the second end of the fourth switching element being coupled to the second external end.
  • the power conversion circuit can also charge the battery based on the third charging mode.
  • another power conversion circuit including: a first switching element, a third switching element, a fourth switching element, a seventh working switching element, a first energy storage element, and a second storage Energy component.
  • a first end of the first switching element is coupled to an input power source through a first external end of the power conversion circuit, and a second end of the first switching element is coupled to the a first end of the seventh switching element, a first end of the first energy storage element, and a first end of the second energy storage element, the second end of the first energy storage element being coupled to the first a first end of the third switching element, a first end of the fourth switching element, and a second end of the seventh switching element, the second end of the second energy storage element passes the second of the power conversion circuit
  • the external terminal is coupled to the battery, the second end of the fourth switching element is coupled to the second external terminal, and the second end of the third switching element is grounded.
  • the power conversion circuit can charge the battery based on the first charging mode or the fifth charging mode.
  • another power conversion circuit comprising: a first switching element, a third switching element, a fourth switching element, a fifth working switching element, a sixth working switching element, and a seventh a power switching element, a first energy storage element, and a second energy storage element.
  • a first end of the first switching element is coupled to an input power source through a first external end of the power conversion circuit, and a second end of the first switching element is coupled to the a first end of the fifth switching element, a first end of the seventh switching element, and a first end of the first energy storage element, the second end of the first energy storage element being coupled to the third a first end of the switching element, a first end of the fourth switching element, a first end of the sixth switching element, and a second end of the seventh switching element, the first of the second energy storage element
  • the terminals are respectively coupled to the second end of the fifth switching element and the second end of the sixth switching element, and the second end of the second energy storage element passes through the second external end of the power conversion circuit and the battery
  • a coupling connection a second end of the fourth switching element is coupled to the second external terminal, and a second end of the third switching element is grounded.
  • the power conversion circuit can charge the battery based on the first charging mode or the fifth charging mode and the sixth charging mode.
  • the technical solution described above can support a plurality of different charging modes, which can not only meet the charging requirements of the battery, but also effectively increase the charging rate of the battery.
  • the first energy storage element is a capacitor
  • the second energy storage element is an inductor
  • the first energy storage element is composed of at least two capacitors
  • the components are connected in parallel
  • the second energy storage component is composed of at least two inductors connected in series.
  • FIG. 1 is a schematic diagram of a charging device according to an embodiment of the present invention.
  • FIG. 2 is a schematic structural diagram of a power conversion circuit according to an embodiment of the present invention.
  • FIG. 3 is a schematic structural diagram of an information collection and signal control circuit according to an embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of an input/output port according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of a charging system according to an embodiment of the present invention.
  • FIG. 6 is a schematic diagram of an effective working circuit structure of a power conversion circuit according to an embodiment of the present invention in a first charging mode.
  • FIG. 7 is a schematic diagram of timings of control signals of the power conversion circuit provided by the embodiment of the present invention.
  • FIG. 8 is a schematic diagram of an effective working circuit structure of a power conversion circuit according to an embodiment of the present invention in a second charging mode.
  • FIG. 9 is a schematic diagram of an effective working circuit structure of a power conversion circuit according to an embodiment of the present invention in a third charging mode.
  • FIG. 10 is another schematic structural diagram of a power conversion circuit according to an embodiment of the present invention.
  • FIG. 11 is a schematic diagram of an effective working circuit structure of a power conversion circuit according to an embodiment of the present invention in a fifth charging mode or a sixth charging mode.
  • FIG. 12 is a schematic diagram showing another structure of a power conversion circuit according to an embodiment of the present invention.
  • FIG. 13 is a schematic diagram showing another structure of a power conversion circuit according to an embodiment of the present invention.
  • FIG. 14 is a schematic diagram showing another structure of a power conversion circuit according to an embodiment of the present invention.
  • FIG. 15 is a schematic diagram showing another structure of a power conversion circuit according to an embodiment of the present invention.
  • FIG. 16 is a schematic diagram showing another structure of a power conversion circuit according to an embodiment of the present invention.
  • FIG. 17 is a schematic diagram showing another structure of a power conversion circuit according to an embodiment of the present invention.
  • FIG. 18 is a schematic diagram showing another structure of a power conversion circuit according to an embodiment of the present invention.
  • FIG. 1 shows a charging device 100 according to an embodiment of the present invention, which can be used to convert input power energy into a battery according to a preset mode.
  • the charging device 100 includes a power conversion circuit 101, an information acquisition and signal control circuit 102, and an input/output port 103.
  • FIG. 2 shows a configuration of a power conversion circuit provided by an embodiment of the present invention.
  • the power conversion circuit 101 is used to convert the power source V BUS into power energy required for the battery.
  • the power conversion circuit 101 includes: a first switching element 201, a second switching element 202, a third switching element 203, a fourth working switching element 204, a fifth switching element 205, a sixth switching element 206, and a first energy storage element. 207 and a second energy storage component 208.
  • the first end of the first switching element 201 is coupled to the power source V BUS through a first external terminal 209 of the power conversion circuit 101, and the second end of the first switching element 201 is coupled to the first energy storage element 207, respectively.
  • the first end of the switching element 204 and the first end of the sixth switching element 206, and the second end of the second switching element 202 are coupled to the battery through the second external terminal 210 of the power conversion circuit 101, and the fifth switching element 205
  • the two ends are coupled to the first end of the second energy storage element 208 and the second end of the sixth switching element 206, respectively, and the second end of the second energy storage element 208 is coupled to the second external end 210, the fourth switching element 204 The second end is coupled to the second external terminal 210, and
  • the first energy storage element 207 and the second energy storage element 208 may be one or more devices capable of storing energy and capable of releasing stored energy, such as a capacitor or inductor.
  • the first energy storage element 207 and the second energy storage element 208 may have different device types.
  • the first energy storage component 207 is a capacitor and the second energy storage component 208 is an inductor.
  • the first energy storage component 207 is comprised of at least two capacitors in parallel, and the second energy storage component 208 is comprised of at least two inductors in series.
  • the embodiment of the present invention does not limit the device type, the number of devices, and the device component form of the energy storage device.
  • At least one of the first switching element 201, the second switching element 202, the third switching element 203, the fourth working switching element 204, the fifth switching element 205, and the sixth switching element 206 is a metal oxide A metal oxide semiconductor (MOS) or a bipolar junction transistor (BJT) is not limited in this embodiment of the present invention.
  • MOS metal oxide semiconductor
  • BJT bipolar junction transistor
  • FIG. 3 shows a structure of an information acquisition and signal control circuit provided by an embodiment of the present invention.
  • the information acquisition and signal control circuit 102 includes a digital core processing component (also denoted as a digital core) 301, a battery information detecting component (also denoted as BAT info DET) 302, and an output driving component (also Expressed as output driver 303, information input component (also denoted as INPT info) 304, first power conversion component (also denoted LD) 305 and second power conversion component (also denoted LD) 306.
  • a digital core processing component also denoted as a digital core
  • BAT info DET battery information detecting component
  • an output driving component also Expressed as output driver 303
  • information input component also denoted as INPT info
  • first power conversion component also denoted LD
  • second power conversion component also denoted LD
  • information input component 304, first power conversion component 305, and second power conversion component 306 are coupled to power supply V BUS via first external terminal 307 of information acquisition and signal control circuit 102, respectively.
  • the information input component 304 is coupled to the digital core processing component 301 for collecting electrical characteristics of the power source V BUS , for example, the electrical characteristics may be voltage and/or current information, and then the information input component 304 transmits the collected electrical characteristics to Digital core processing component 301.
  • the first power conversion component 305 is coupled to a digital core processing component 301 for converting the voltage of the power supply V BUS to the voltage V 1 required by the digital core processing component 301.
  • the second power conversion element 306 is connected to the output driving element 303, and the second power conversion element 306 is used to convert the voltage of the power source V BUS into the voltage V 2 required to output the driving element 303.
  • the digital core processing component 301 is coupled to the data line of the power adapter through the second external terminal 308 of the information acquisition and signal control circuit 102, and realizes data communication by reading D+/D-high and low levels, for example, the communication is a power adapter and The protocol handshake between the charging devices, or the voltage of the power supply V BUS .
  • the digital core processing component 301 is also coupled to the battery information sensing component 302, and the battery information sensing component 302 is coupled to the battery via a third external terminal 309 of the information acquisition and signal control circuit 102.
  • the battery information detecting component 302 is configured to collect battery system information, for example, battery-supportable voltage, current information, or battery retention capacity, and then the battery information detecting component 302 transmits the collected battery system information to the digital core processing. Element 301.
  • the digital core processing component 301 is also connected to the output driving component 303, for example, by way of a gate control bus.
  • the digital core processing unit 301 analyzes the collected electrical characteristics of the power supply V BUS and the system information of the battery, and generates a timing signal according to the business needs. This timing signal is then passed to the output drive component 303.
  • the service needs to be a charging mode set by the charging device.
  • one charging mode charges the battery in a large current (for example, 2A), and the other charging mode is in a higher voltage (for example, 9v or 12v). Charge the battery.
  • the timing signal is used to control the closing or opening of each switching element in the power conversion circuit 101 such that the energy storage element achieves energy storage and release according to different charging modes.
  • the output driving component 303 is coupled to each switching component of the power conversion circuit 101 through a fourth external terminal 310 of the information acquisition and signal control circuit 102, and the output driving component 303 is configured to convert the digital signal transmitted by the digital core processing component 301 into an analog signal. Then, according to the analog signal, each switching element of the power conversion circuit 101 is driven to be closed or opened to realize charging of the battery by the charging device according to business needs.
  • the battery information detecting component 302 and the information input component 304 may collect information periodically, and may also dynamically collect information according to the charging requirement, which is not limited by the embodiment of the present invention.
  • FIG. 4 shows a structure of an input/output port provided by an embodiment of the present invention.
  • the input/output port 103 is a USB port (also denoted as a USB port) and belongs to serial communication.
  • the first end 401 of the USB port is connected to the power supply V BUS of the power adapter, and the second end 402 of the USB port is coupled to the first external terminal 209 of the power conversion circuit 101 and the information acquisition and signal control circuit 102, respectively.
  • An external terminal 307 transmits the energy of the power source V BUS to the power conversion circuit 101 and the information acquisition and signal control circuit 102 through the second terminal 402.
  • the third end 403 of the USB port is connected to the data line of the power adapter, and the fourth end 404 of the USB port is coupled to the second external terminal 308 of the information acquisition and signal control circuit 102, and the high end is transmitted through the fourth end 404.
  • the data acquisition and signal control circuit 102 reads and writes data.
  • FIG. 5 illustrates a charging system 500 provided by an embodiment of the present invention.
  • the charging system 500 includes a charging device 100, a power adapter 501, and a battery element 502.
  • One end of the power adapter 501 is connected to an external power supply, and the other end thereof is connected to the input/output port 103 of the charging device 100.
  • the power adapter 501 is configured to convert the external power source into the power source V BUS required by the charging device 100, and then output the energy of the power source V BUS to the charging device 100 through the power line.
  • the output type can be divided into an AC output type and a DC output type. This embodiment of the present invention does not limit this.
  • the power adapter 501 is also used to implement data communication communication with the charging device 100 through the data line.
  • the charging device 100 may be a stand-alone device or disposed in a device, which may be a device such as a terminal, a base station, an electric vehicle, or the like.
  • the terminal can be a mobile phone (also known as a smart phone), a tablet personal computer, a personal digital assistant (PDA), an e-book reader, or a wearable device. )Wait.
  • the base station may include various forms of macro base stations, micro base stations (also referred to as small stations), relay stations, access points, and the like.
  • the charging device 100 is coupled to a battery element 502 for charging the battery with the energy obtained.
  • the device may further include a battery element 502, which may have one or more batteries. If the battery element 502 includes a plurality of batteries, the plurality of batteries may be connected in series or in parallel, which is not limited in the embodiment of the present invention.
  • xx components express the components only from the functional point of view, and do not limit the implementation forms of the components, for example, the components.
  • the part may be implemented by a physical device, or implemented by a chip, or implemented by a circuit/integrated circuit, which is not limited by the embodiment of the present invention.
  • the power conversion circuit of FIG. 2 includes at least six switching elements, which are constructed in such a manner that the charging device can support charging of the battery in different charging modes.
  • the technical solutions provided by the embodiments of the present invention are described below with reference to the description of the charging device.
  • the first charging mode the power conversion circuit is configured to charge the battery in a low voltage and high current mode.
  • the second switching element and the sixth switching element in the power conversion circuit remain off at all times, and the fifth switching element remains closed at all times.
  • FIG. 6 shows an effective working circuit structure of the power conversion circuit provided by the embodiment of the present invention in the first charging mode.
  • the third switching element is represented as Q 3
  • the fourth switching element is represented as Q 4
  • a first energy storage element is a capacitor C FLY
  • a second energy storage element is an inductor L.
  • the first end of the capacitor C FLY is connected to the power source V BUS through the switching element Q 1 , the first end of the capacitor C FLY is also connected to the first end of the inductor L, and the second end of the capacitor C FLY is passed
  • the switching element Q 3 is grounded, the second end of the capacitor C FLY is connected to the second end of the inductor L through the switching element Q 4 , and the second end of the inductor L is coupled to the positive terminal of the battery element (Battery shown in FIG. 6 ) Connect, the negative terminal of the battery component is grounded.
  • FIG. 7 shows the control signal timing of the power conversion circuit provided by the embodiment of the present invention.
  • a complete control signal period T includes two time periods: a first time period t ON and a second time period t OFF .
  • the switching element Q 1 and the switching element Q 4 are in a closed state
  • the switching element Q 3 is in an off state
  • the input power source V BUS is connected to the capacitor C FLY , then connected to the battery V BAT
  • the input power source V BUS is connected to inductor L and then to battery V BAT , at which point capacitor C FLY and inductor L are in a state of charge storage.
  • the switching element Q 1 and the switching element Q 4 is in the off state, the switching element Q 3 in the closed state, the lower plate of the capacitor C FLY via the switch
  • the component Q 3 is grounded, and the voltage of the upper plate of the capacitor C FLY is V BUS -V BAT , at which time the capacitor C FLY and the inductor L are in a discharged state to charge the battery element.
  • the first charging mode is generally applied when the power adapter supports the power supply 5v/2A.
  • the charging device charges the battery in the first charging mode through the power conversion circuit, and the charging voltage of the battery is V BUS -V BAT , and the voltage is not high (for example, 5v). Since the energy loss of the inductive winding in the circuit is low and the energy loss at the junction of the capacitor C FLY and the inductor L is low, the overall energy loss of the power conversion circuit when charging the battery is low. In the case of low energy loss, the current input to the battery becomes large (for example, 2A), thereby effectively increasing the rate of battery charging.
  • the second charging mode the power conversion circuit is for charging the battery in a high voltage and high current mode. Based on this mode, in conjunction with FIG. 2, the fourth switching element and the fifth switching element in the power conversion circuit remain off at all times, and the sixth switching element remains closed at all times. Then in the second charging mode, the power conversion circuit actually constitutes an effective working circuit structure by the first switching element, the second switching element, the third switching element, the first energy storage element and the second energy storage element.
  • FIG. 8 shows an effective working circuit structure of the power conversion circuit provided by the embodiment of the present invention in the second charging mode. In FIG.
  • the first switching element is denoted as Q 1
  • the second switching element is denoted as Q 2
  • the third switching element is denoted as Q 3
  • the first energy storage element is capacitor C FLY
  • the second energy storage element is inductor L.
  • the first end of the capacitor C FLY is connected to the power source V BUS through the switching element Q 1
  • the first end of the capacitor C FLY is also passed through the switching element Q 2 and the battery element (Battery shown in FIG. 8).
  • the second end of the capacitor C FLY is grounded through the switching element Q 3 , the second end of the capacitor C FLY is coupled to the first end of the inductor L, and the second end of the inductor L is coupled to the positive terminal of the battery element The negative terminal of the battery component is grounded.
  • the switching element Q 1 is in a closed state
  • the switching element Q 2 and the switching element Q 3 are in an off state
  • the input power source V BUS is connected to the capacitor C FLY
  • the inductor is connected.
  • L and then connected to the battery V BAT , the capacitor C FLY and the inductor L form a series connection, at which time the capacitor C FLY and the inductor L are in a state of charge storage.
  • the switching element Q 1 In the second period t OFF after the first period t ON , the switching element Q 1 is in the off state, the switching element Q 2 and the switching element Q 3 are in the closed state, the lower plate of the capacitor C FLY and the inductor The first end is grounded, the upper plate of the capacitor C FLY and the second end of the inductor L are both connected to the battery V BAT , and the capacitor C FLY and the inductor L are connected in parallel, at which time the capacitor C FLY and the inductor L are in a discharged state. , charging the battery components.
  • the second charging mode is generally applied when the power adapter supports a voltage of 9v or 12v.
  • the charging device charges the battery in the second charging mode through the power conversion circuit, and the charging voltage of the battery is the voltage across the capacitor C FLY and the inductor L, and the charging voltage is usually high (for example, 9v or 12v). Since the energy loss of the inductive winding in the circuit is low and the energy loss at the junction of the capacitor C FLY and the inductor L is low, the overall energy loss of the power conversion circuit when charging the battery is low. In the case of low energy loss, the current input to the battery becomes large (for example, 2A), thereby effectively increasing the rate of battery charging.
  • a third charging mode the power conversion circuit is for charging the battery in a high voltage direct charge mode. Based on this mode, in conjunction with FIG. 2, the fifth switching element and the sixth switching element in the power conversion circuit are kept off at all times, so that the second energy storage element is always in an inoperative state. Then in the third charging mode, the power conversion circuit actually constitutes an effective working circuit structure by the first switching element, the second switching element, the third switching element, the fourth switching element and the first energy storage element.
  • FIG. 9 shows a power conversion circuit structure based on a third charging mode provided by an embodiment of the present invention. In FIG.
  • a first energy storage element is a capacitor C FLY .
  • the first end of the capacitor C FLY is connected to the power source V BUS through the switching element Q 1 , and the first end of the capacitor C FLY is also passed through the switching element Q 2 and the battery element (Battery shown in FIG. 9).
  • the second end of the capacitor C FLY is grounded through the switching element Q 3 , and the second end of the capacitor C FLY is also coupled to the positive terminal of the battery element through the switching element Q 4 , and the negative terminal of the battery element is grounded.
  • the switching element Q 1 and the switching element Q 4 are in a closed state, the switching element Q 2 and the switching element Q 3 are in an off state, and the input power source V BUS is connected to the capacitor C FLY. And then connected to the battery V BAT , at which point the capacitor C FLY is in the state of charge storage.
  • the switching element Q 1 and the switching element Q 4 are in an off state, the switching element Q 2 and the switching element Q 3 are in a closed state, and the lower pole of the capacitor C FLY The board is grounded, and the upper plate of the capacitor C FLY is connected to the battery V BAT , at which time the capacitor C FLY is in a discharged state to charge the battery element.
  • the charging device charges the battery in the third charging mode through the power conversion circuit, because in the first time period t ON , the two ends of the capacitor C FLY are directly connected to the power source V BUS and the battery V BAT , respectively, and in the second time period t In OFF , the charging voltage of the battery is the voltage across the capacitor C FLY , and the direct charging mode of the charging circuit makes the battery charging efficiency very high.
  • the third charging mode is typically applied when the power adapter supports a higher voltage (eg, 9v or 12v).
  • the charging device charges the battery in the third charging mode through the power conversion circuit, and the charging voltage of the battery is the voltage across the capacitor C FLY . Since the input power source V BUS directly charges the capacitor C FLY , the charging efficiency of the capacitor is high, and the input battery is charged. The energy is directly derived from the energy charged by the capacitor, making the input supply voltage close to twice the voltage of the battery. In the case of such a high voltage direct charge, the energy loss is low, and the battery is easily charged quickly, thereby effectively increasing the rate of battery charging.
  • a fourth charging mode the power conversion circuit is for charging the battery in a low voltage direct charge mode. Based on the mode, in conjunction with FIG. 2, the fourth switching element, the fifth switching element, and the sixth switching element in the power conversion circuit are always kept off, and the first switching element and the third switching element are always kept closed, which makes An energy storage component and a second energy storage component are always in an inoperative state. Then, in the power conversion circuit, one end of the second switching element is coupled to the power source V BUS , and the other end of the second switching element is coupled to the positive terminal of the battery, and the negative terminal of the battery element is grounded.
  • the second switching element in the first period t ON , the second switching element is in a closed state, and the input power source V BUS is connected to the battery V BAT , at which time the battery element is directly charged.
  • the second period t OFF the second switching element is in the off state, and the battery element is suspended.
  • the fourth charging mode is typically applied when the power adapter supports a lower voltage (eg 3v or 5v).
  • the charging device directly charges the power of the power into the battery by using the closing and opening of the second switching element of the power conversion circuit.
  • the energy loss is low, and the battery is easily charged quickly, thereby effectively increasing the rate of battery charging.
  • FIG. 10 shows another configuration of the power conversion circuit provided by the embodiment of the present invention.
  • the power conversion circuit 101 is used to convert the power source V BUS into the power source energy required for the battery.
  • the power conversion circuit 101 further includes a seventh switching element 211.
  • the first end of the seventh switching element 211 is coupled to the second end of the first switching element 201, the first end of the second switching element 202, the first end of the fifth switching element 205, and the first energy storage element 207, respectively a first end, the second end of the seventh switching element 211 is coupled to the first end of the third switching element 203, the first end of the fourth switching element 204, the first end of the sixth switching element 206, and the first storage The second end of the energy component 207.
  • the power conversion circuit of FIG. 10 includes at least seven switching elements, which are configured in such a manner that the charging device can support not only the above four charging modes but also other charging modes, thereby realizing charging of the battery.
  • the fifth charging mode or the sixth charging mode the power conversion circuit charges the battery in a normal mode.
  • the power conversion circuit in the two modes is similar to the typical BUCK circuit and is usually used when the power adapter supports voltages of 5v, 9v or 12v.
  • the fifth charging mode is that the second switching element, the fourth switching element, and the sixth switching element in the power conversion circuit are always kept off, and the fifth switching element is And the seventh switching element is kept closed all the time
  • the sixth charging mode is that the second switching element, the fourth switching element and the fifth switching element in the power conversion circuit are kept off, and the sixth switching element and the seventh switching element are always Keep closed.
  • FIG. 11 shows an effective working circuit structure of the power conversion circuit provided by the embodiment of the present invention in the fifth charging mode or the sixth charging mode.
  • a first switching element Q 1 the third switching element is represented as Q 3
  • a second energy storage element is an inductor L.
  • the first end of the inductor L is connected to the power source V BUS through the switching element Q 1 , the first end of the inductor L is also grounded through the switching element Q 3 , and the second end of the inductor L is connected to the battery element ( The positive terminal of the battery shown in Fig. 11 is coupled and the negative terminal of the battery element is grounded.
  • the switching element Q 1 in the first period t ON , the switching element Q 1 is in the closed state, the switching element Q 3 is in the off state, the input power source V BUS is connected to the inductor L, and then connected to the battery V BAT .
  • the inductor L is in a state of charge storage.
  • the switching element Q 1 is in the off state, the switching element Q 3 is in the closed state, and the inductor L is in the discharging state to charge the battery element.
  • the six switching elements or the seven switching elements, and the first energy storage element and the second energy storage element are not essential components of the power conversion circuit.
  • the number of components and the composition of the power conversion circuit can be adjusted in advance according to the supported charging mode. The following is a description of the embodiments of the present invention.
  • FIG. 12 shows another structure of a power conversion circuit provided by an embodiment of the present invention.
  • the power conversion circuit 101 includes a first switching element 201, a second switching element 202, a third switching element 203, a seventh power switching element 211, a first energy storage element 207, and a second energy storage element 208.
  • the first end of the first switching element 201 is coupled to the input power source via a first external terminal 209 of the power conversion circuit, and the second end of the first switching element 201 is coupled to the first end and the seventh end of the second switching element 202, respectively.
  • the second end of the second switching element 211 is coupled to the battery through a second external connection 210 end of the power conversion circuit, and the second end of the second energy storage element 208 is coupled to the second end.
  • the second external terminal 210 and the second end of the third switching element 203 are grounded.
  • the power conversion circuit 101 can charge the battery according to the second charging mode or the sixth charging mode. Specifically, the power conversion circuit 101 keeps turning off the seventh switching element 211 in the second charging mode, in the first period of time, the first switching element 201 is in a closed state, and the second switching element 202 and the third switch The element 203 is in an off state, the first energy storage element 207 and the second energy storage element 208 are charged, and in a second time period after the first time period, the first switching element 201 is in an off state, and the second switching element 202 and the third switching element 203 are in a closed state, and the first energy storage element 207 and the second energy storage element 208 are discharged.
  • the power conversion circuit 101 keeps turning off the second switching element 202 in the sixth charging mode, and keeps closing the seventh switching element 211.
  • the first switching element 201 is in a closed state, and the third switch The element 203 is in an off state, and the second energy storage element 208 is charged.
  • the first switching element 201 is in an off state and the third switching element 203 is in a closed state, the second The energy storage element 208 is discharged.
  • FIG. 13 shows another structure of a power conversion circuit provided by an embodiment of the present invention.
  • the power conversion circuit 101 includes a first switching element 201, a second switching element 202, a third switching element 203, a fifth power switching element 205, a seventh power switching element 211, a first energy storage element 207, and Second energy storage element 208.
  • the first end of the first switching element 201 is coupled to the input power source through the first external terminal 209 of the power conversion circuit 101, and the second end of the first switching element 201 is coupled to the first end and the fifth end of the second switching element 202, respectively.
  • the second end of the second switching element 211, the second end of the second switching element 202 is coupled to the battery through the second external terminal 210 of the power conversion circuit 101, and the second end of the fifth switching element 205 is connected to the second storage.
  • the first end of the energy element 208, the second end of the second energy storage element 208 is coupled to the second external terminal 210, and the second end of the third switching element 203 is grounded.
  • the power conversion circuit can charge the battery according to the second charging mode, the fourth charging mode, the fifth charging mode, or the sixth charging mode.
  • the power conversion circuit 101 keeps turning off the fifth switching element 205 and the seventh switching element 211 in the second charging mode, in the first period of time, the first switching element 201 is in a closed state, and the second switch The element 202 and the third switching element 203 are in an off state, and the first energy storage element 207 and the second energy storage element 208 are charged, and in a second period of time after the first period of time, the first switching element 201 is in an off state.
  • the power conversion circuit 101 keeps turning off the fifth switching element 205 and the seventh switching element 211 in the fourth charging mode, and keeps closing the first switching element 201 and the third switching element 203, in the first period of time,
  • the two switching elements 202 are in a closed state to directly charge the battery.
  • the second switching element 202 is in an off state, suspending charging of the battery.
  • the power conversion circuit 101 keeps turning off the second switching element 202 in the fifth charging mode, and keeps closing the fifth switching element 205 and the seventh switching element 211, in the first period of time, the first switching element 201 is closed. a state, and the third switching element 203 is in an off state, the second energy storage element 208 is charged, in a second period of time after the first period of time, the first switching element 201 is in an off state, and the third switching element The 203 is in a closed state and the second energy storage element 208 is discharged.
  • the power conversion circuit 101 keeps turning off the second switching element 202 and the fifth switching element 205 in the sixth charging mode, and keeps closing the seventh switching element 211, in the first period of time, the first switching element 201 is closed State, and the third switching element 203 is in an off state, the second energy storage element 208 is charged, in a second period of time after the first period of time, the first switching element 201 is in an off state, and the third switching element 203 In the closed state, the second energy storage element 208 is discharged.
  • the power conversion circuit of FIG. 13 further includes a fourth switching element (not shown), the first end of the fourth switching element being coupled to the first end of the third switching element, the second end of the seventh switching element, and the first A second end of the energy storage component, the second end of the fourth switching component being coupled to the second external termination.
  • the power conversion circuit can also charge the battery according to the third charging mode.
  • the power conversion circuit keeps turning off the fifth switching element in the third charging mode, in the first time period, the first switching element and the fourth switching element are in a closed state, and the second switching element and the third The switching element is in an off state, the first energy storage element is charged, and in a second period of time after the first period of time, the first switching element and the fourth switching element are in an off state, and the second switching element and the third switch The component is in a closed state and the first energy storage component is discharged.
  • FIG. 14 shows another structure of a power conversion circuit provided by an embodiment of the present invention.
  • the power conversion circuit 101 includes a first switching element 201, a second switching element 202, a third switching element 203, a sixth power switching element 206, a seventh power switching element 211, a first energy storage element 207, and Second energy storage element 208.
  • the first end of the first switching element 201 is coupled to the input power source through the first external terminal 209 of the power conversion circuit 101, and the second end of the first switching element 201 is coupled to the first end and the seventh end of the second switching element 202, respectively.
  • the second end of the first energy storage element 207 is coupled to the first end of the third switching element 203 and the first end of the sixth switching element 206, respectively
  • the second end of the second switching element 211, the second end of the second switching element 202 is coupled to the battery through the second external terminal 210 of the power conversion circuit 101, and the second end of the sixth switching element 206 is connected to the second storage.
  • the first end of the energy element 208, the second end of the second energy storage element 208 is coupled to the second external terminal 210, and the second end of the third switching element 203 is grounded.
  • the power conversion circuit can charge the battery according to the second charging mode, the fourth charging mode, or the sixth charging mode.
  • the power conversion circuit 101 keeps closing the sixth switching element 206 in the second charging mode, in the first period of time, the first switching element 201 is in a closed state, and the second switching element 202 and the third switching element 203 pieces are in an off state, the first energy storage element 207 and the second energy storage element 208 are charged, in a second time period after the first time period, the first switching element 201 is in an off state, and the second switching element
  • the 202 and third switching elements 203 are in a closed state, and the first energy storage element 207 and the second energy storage element 208 are discharged.
  • the power conversion circuit 101 keeps turning off the sixth switching element 206 in the fourth charging mode, and keeps closing the first switching element 201 and the third switching element 203, and in the first period of time, the second switching element 202 is closed. In the state, the battery is directly charged, and in the second period after the first period of time, the second switching element 202 is in the off state, and the charging of the battery is suspended.
  • the power conversion circuit 101 keeps turning off the second switching element 202 in the sixth charging mode, and keeps closing the sixth switching element 206 and the seventh switching element 211, in the first period of time, the first switching element 201 is closed State, and the third switching element 203 is in an off state, the second energy storage element 208 is charged, in a second period of time after the first period of time, the first switching element 201 is in an off state, and the third switching element 203 In the closed state, the second energy storage element 208 is discharged.
  • the power conversion circuit of FIG. 14 further includes a fourth switching element (not shown), the first end of the fourth switching element being coupled to the first end of the third switching element, the first end of the sixth switching element, and the first A second end of the seventh switching element and a second end of the first energy storage element, the second end of the fourth switching element being coupled to the second external end.
  • the power conversion circuit can also charge the battery according to the third charging mode.
  • the power conversion circuit keeps turning off the sixth switching element in the third charging mode, in the first period of time, the first switching element and the fourth switching element are in a closed state, and the second switching element and the third The switching element is in an off state, the first energy storage element is charged, and in a second period of time after the first period of time, the first switching element and the fourth switching element are in an off state, and the second switching element and the third switch The component is in a closed state and the first energy storage component is discharged.
  • FIG. 15 shows another structure of a power conversion circuit provided by an embodiment of the present invention.
  • the power conversion circuit 101 includes a first switching element 201, a second switching element 202, a third switching element 203, a fourth work switching element 204, and a first energy storage element 207.
  • the first end of the first switching element 201 is coupled to the input power source through the first external terminal 209 of the power conversion circuit 101, and the second end of the first switching element 201 is coupled to the first end of the second switching element 202 and the first
  • the first end of the first energy storage element 207 is coupled to the first end of the third switching element 203 and the first end of the fourth switching element 204, and the second end of the second switching element 202, respectively.
  • the terminal is coupled to the battery through the second external terminal 210 of the power conversion circuit 101, the second end of the fourth switching element 204 is coupled to the second external terminal 210, and the second end of the third switching element 203 is grounded.
  • the power conversion circuit can charge the battery according to the third charging mode or the fourth charging mode.
  • the third charging mode in the first charging mode, the first switching element 201 and the fourth switching element 204 are in a closed state, and the second switching element 202 and the third switching element 203 are in a first period of time.
  • the off state the first energy storage element 201 is charged, in a second time period after the first time period, the first switching element 201 and the fourth switching element 204 are in an off state, and the second switching element 202 and the third The switching element 203 is in a closed state and the first energy storage element 207 is discharged.
  • the power conversion circuit of FIG. 15 further includes a fifth switching element and a second energy storage element (not shown), the first ends of the fifth switching elements being respectively coupled to the second end of the first switching element, the second switching element The first end is coupled to the first end of the first energy storage component, the second end of the fifth switching element is coupled to the first end of the second energy storage component, and the second end of the second energy storage component is coupled to the second external termination.
  • the power conversion circuit can also charge the battery according to the first charging mode.
  • the power conversion circuit keeps turning off the second switching element and keeps closing the fifth switching element in the first charging mode, in the first period of time, the first switching element and the fourth switching element are in a closed state, And the third switching element is in an off state, the first energy storage element and the second energy storage element are charged, and in the second time period after the first time period, the first switching element and the fourth switching element are in an off state, And the third switching element is in a closed state, and the first energy storage element and the second energy storage element are discharged.
  • FIG. 16 shows another structure of a power conversion circuit provided by an embodiment of the present invention.
  • the power conversion circuit 101 includes a first switching element 201, a second switching element 202, a third switching element 203, a sixth power switching element 206, a first energy storage element 207, and a second energy storage element 208.
  • the first end of the first switching element 201 is coupled to the input power source through the first external terminal 209 of the power conversion circuit 101, and the second end of the first switching element 201 is coupled to the first end of the second switching element 202 and the first The first end of the energy storage element 207, the second end of the first energy storage element 207 is coupled to the first end of the third switching element 203 and the first end of the sixth switching element 206, respectively, and the second end of the second switching element 202
  • the second terminal 210 of the power conversion circuit 101 is coupled to the battery
  • the second end of the sixth switching element 206 is coupled to the first end of the second energy storage component 208
  • the second end of the second energy storage component 208 is coupled to The second external terminal 210 and the second end of the third switching element 203 are grounded.
  • the power conversion circuit can charge the battery according to the second charging mode or the fourth charging mode. Specifically, the power conversion circuit 101 keeps closing the sixth switching element 206 in the second charging mode, in the first period of time, the first switching element 201 is in a closed state, and the second switching element 202 and the third switching element 203 pieces are in an off state, the first energy storage element 207 and the second energy storage element 208 are charged, in a second time period after the first time period, 201 the first switching element is in an off state, and the second switching element 202 and the third switching element 203 are in a closed state, and the first energy storage element 207 and the second energy storage element 208 are discharged.
  • the power conversion circuit 101 keeps turning off the sixth switching element 206 in the fourth charging mode, and keeps closing the first switching element 201 and the third switching element 203.
  • the second switching element 202 In the first period of time, the second switching element 202 is in the In the closed state, the battery is directly charged, and in the second period of time after the first period of time, the second switching element 202 is in an off state, and charging of the battery is suspended.
  • the power conversion circuit of FIG. 16 further includes a fourth switching element (not shown), the first end of the fourth switching element being coupled to the first end of the third switching element, the first end of the sixth switching element, and the first A second end of the energy storage component, the second end of the fourth switching component being coupled to the second external termination.
  • the power conversion circuit can also charge the battery according to the third charging mode.
  • the power conversion circuit keeps turning off the sixth switching element in the third charging mode, in the first period of time, the first switching element and the fourth switching element are in a closed state, and the second switching element and the third The switching element is in an off state, the first energy storage element is charged, and in a second period of time after the first period of time, the first switching element and the fourth switching element are in an off state, and the second switching element and the third switch The component is in a closed state and the first energy storage component is discharged.
  • FIG. 17 shows another structure of a power conversion circuit provided by an embodiment of the present invention.
  • the power conversion circuit 101 includes a first switching element 201, a third switching element 203, a fourth switching element 204, a seventh work switching element 211, a first energy storage element 207, and a second energy storage element 208.
  • the first end of the first switching element 201 is coupled to the input power source through the first external terminal 209 of the power conversion circuit 101, and the second end of the first switching element 201 is coupled to the first end of the seventh switching element 211, respectively.
  • the first end of the energy storage element 207 and the first end of the second energy storage element 208, the second end of the first energy storage element 207 is coupled to the first end of the third switching element 203 and the fourth end of the fourth switching element 204, respectively
  • the first end of the second switching element 211 and the second end of the second energy storage element 208 are coupled to the battery through the second external terminal 210 of the power conversion circuit 101, and the second end of the fourth switching element 204 is coupled to The second external terminal 210 and the second end of the third switching element 203 are grounded.
  • the power conversion circuit can charge the battery according to the first charging mode or the fifth charging mode.
  • the power conversion circuit 101 is in the first charging mode, in the first time period, the first switching element 201 and the fourth switching element 204 are in a closed state, and the third switching element 203 is in an off state, first The energy storage element 207 and the second energy storage element 208 are charged, in a second time period after the first time period, the first switching element 201 and the fourth switching element 204 are in an off state, and the third switching element 203 is in a closed state. In the state, the first energy storage element 207 and the second energy storage element 208 are discharged.
  • the power conversion circuit 101 keeps turning off the fourth switching element 204 in the fifth charging mode, and keeps closing the seventh switching element 211.
  • the first switching element 201 is in a closed state, and the third switch The element 203 is in an off state, and the second energy storage element 208 is charged.
  • the first switching element 201 is in an off state and the third switching element 203 is in a closed state, the second The energy storage element 208 is discharged.
  • FIG. 18 shows another structure of a power conversion circuit provided by an embodiment of the present invention.
  • the power conversion circuit 101 includes: a first switching element 201, a third switching element 203, a fourth switching element 204, a fifth power switching element 205, a sixth power switching element 206, and a seventh power switching element 211, The first energy storage element 207 and the second energy storage element 208.
  • the first end of the first switching element 201 is coupled to the input power source through the first external terminal 209 of the power conversion circuit 101, and the second end of the first switching element 201 is coupled to the first end and the seventh end of the fifth switching element 205, respectively.
  • the second end of the first energy storage element 207 is coupled to the first end of the third switching element 203 and the first end of the fourth switching element 204, respectively
  • the first end of the sixth switching element 206 and the second end of the seventh switching element 211, the first end of the second energy storage element 208 is coupled to the second end of the fifth switching element 205 and the sixth switching element 206, respectively
  • the second end of the second energy storage component 208 is coupled to the battery through the second external terminal 210 of the power conversion circuit 101
  • the second end of the fourth switching component 204 is coupled to the second external terminal 210
  • the third The second end of the switching element 203 is grounded.
  • the power conversion circuit can charge the battery according to the first charging mode or the fifth charging mode and the sixth charging mode.
  • the power conversion circuit 101 keeps turning off the sixth switching element 206 in the first charging mode, and keeps closing the fifth switching element 205.
  • the first switching element 201 and the fourth switching element 204 are in a closed state.
  • the third switching element 203 is in an off state, the first energy storage element 207 and the second energy storage element 208 are charged, and in the second time period after the first time period, the first switching element 201 and the fourth switching element 204 is in an open state and the third switching element 203 is in a closed state, and the first energy storage element 207 and the second energy storage element 208 are discharged.
  • the power conversion circuit 101 keeps turning off the fourth switching element 204 and the sixth switching element 206 in the fifth charging mode, and keeps closing the fifth switching element 205 and the seventh switching element 211, in the first period of time, A switching element 201 is in a closed state, and the third switching element 203 is in an off state, and the second energy storage element 208 is charged. In a second period of time after the first period of time, the first switching element 201 is in an off state, And the third switching element 203 is in a closed state, and the second energy storage element 208 is discharged.
  • the power conversion circuit 101 keeps turning off the fourth switching element 204 and the fifth switching element 205 in the sixth charging mode, and keeps closing the sixth switching element 206 and the seventh switching element 211; in the first time period
  • the first switching element 201 is in the closed state
  • the third switching element 203 is in the off state
  • the second energy storage element 208 is charged.
  • the first switching element 201 is in the off state.
  • the state, and the third switching element 203 is in a closed state, and the second energy storage element 208 is discharged.
  • the closing or opening of the switching element is achieved by changing the magnitude of the gate voltage of the switching element.
  • the first end of the switching element Q 1 is coupled to the power source V BUS
  • the second end of the switching element Q 1 is connected to other components, and when the charging device determines that the switching element Q 1 needs to be closed, the switching element Q 1 raises the gate. voltage, and the gate voltage higher than the second end of the switching element Q 1, in which case the switching element Q 1 'in the low resistance conductive state.
  • the charging device will be disconnected when the switching element Q 1, a switching element Q to reduce the gate voltage and the gate voltage of the switching element Q is less than a second voltage terminal, in which case the switching element Q 1 is off in the high impedance state.
  • the implementation of the closing or opening of the switching element may be different.
  • the input/output port 103 of the charging device 100 obtains the input power source V BUS through connection with the power adapter 501, and then supplies the power source energy to the power source conversion circuit 101 and the information acquisition and signal control circuit 102, respectively.
  • the digital core processing component 301 in the information acquisition and signal control circuit 102 communicates with the power adapter 501 via the input/output port 103, and then determines the charging mode employed by the power conversion circuit 101 in accordance with the charging mode supported by the power adapter 501.
  • the digital core processing component 301 determines that the power adapter 501 supports the aforementioned five charging modes, and then determines the five charging modes according to the electrical characteristics of the power source V BUS collected by the information input component 304 and the battery system information collected by the battery information detecting component 302.
  • the third charging mode is that the charging rate is the fastest, and then the charging state is set in the third charging mode.
  • the digital core processing component 301 determines that the power adapter 501 supports the foregoing first charging mode and the second charging mode, and then according to the electrical characteristics of the power source V BUS collected by the information input component 304 and the battery system information collected by the battery information detecting component 302, It is judged that the second charging mode of the two charging modes is the charging rate being the fastest, and then the charging state is set in the second charging mode.
  • the digital core processing component 301 is in protocol communication with the power adapter 501 via the input/output port 103, causing the power adapter 501 to regulate the power supply voltage and/or current input to the charging device 100 in accordance with the determined charging mode.
  • the digital core processing element 301 drives the switching elements of the power conversion circuit 101 to be turned off or off by the output driving element 303 based on the determined charging mode to effect charging of the battery element 502 by the charging device 100.
  • the battery information detecting component 302 detects that the battery component 502 is fully charged, and then notifies the digital core processing component 301.
  • the digital core processing component 301 performs protocol communication with the power adapter 501 through the input/output port 103, causing the power adapter 501 to adjust the voltage input to the charging device 100 to 5v, and then drives the power conversion circuit 101 through the output driving component 303 to exit the used charging. mode. Since the input/output port 103 is typically a USB port, its standard voltage defaults to 5v.
  • the circuit structure of the charging device can support a plurality of different charging modes, so that the battery can be charged more quickly, thereby effectively improving the charging efficiency.
  • connection of A and B may indicate that A and B are directly connected, or that A and B are indirectly connected.
  • A is connected to B through one or more components, which is not limited by the embodiment of the present invention.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the division of the elements is only a logical function division, and the actual implementation may have another division manner, for example, multiple components may be combined or may be integrated into another system, or some features may be ignored or not executed.
  • the coupling or communication connections shown or discussed herein may be indirect coupling or communication connections through some interfaces, devices or units, and may be electrical, mechanical or otherwise.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Dc-Dc Converters (AREA)

Abstract

一种电源转换电路及充电装置,能够支持多种充电模式,有效提升电池的充电速率。该电源转换电路包括:第一开关元件的第一端通过电源转换电路的第一外接端与输入电源耦合连接,第一开关元件的第二端分别耦合至第一储能元件的第一端、第二开关元件的第一端和第五开关元件的第一端,第一储能元件的第二端分别耦合至第三开关元件的第一端、第四开关元件的第一端和第六开关元件的第一端,第二开关元件的第二端通过电源转换电路的第二外接端与电池耦合连接,第五开关元件的第二端分别耦合至第二储能元件的第一端和第六开关元件的第二端,第二储能元件的第二端耦合至第二外接端,第四开关元件的第二端耦合至所述第二外接端,第三开关元件的第二端接地。

Description

电源转换电路、充电装置及系统 技术领域
本申请涉及电路领域,并且更具体地,涉及电源转换电路、充电装置及系统。
背景技术
长期以来,电池一直用作移动电子装置的电源。电池提供允许电路运作的电压及电流形式的能量。然而,电池所存储的能量是有限的,当电子装置在使用时电池损失电力。当电池的能量供应被耗尽时,该电池的电压将开始从其额定电压下降,依赖于该电池获得电力的电子装置将不再适合继续运作。为了使电池能再次充满能量,需要某一形式的电池充电系统。
通常电池充电系统包括电源适配器和充电装置,两者之间能量和信息的传递一般通过USB电缆实现。电源适配器的作用是将公用电源的能量按照一定电压方式传递给充电装置。充电装置的作用是将通过电源适配器获得的能量做电压转化后传递给电池。
目前现有的电池充电系统只支持某一种电压模式,但是不同的电池所支持的电量、电压和电流是不同的,在充电受限的情况下,如果供应到电池的电压或电流过大,那么该电池可能受损坏或甚至爆炸,或者如果供应到电池的电压或电流过小,那么充电过程可能是效率低或完全无效的。
发明内容
本申请提供一种电源转换电路、充电装置及系统,能够支持多种充电模式,有效提升电池的充电速率。
第一方面,提供了一种电源转换电路,所述电源转换电路包括:第一开关元件、第二开关元件、第三开关元件、第四功开关元件、第五开关元件、第六开关元件、第一储能元件和第二储能元件。在所述电源转换电路中,所述第一开关元件的第一端通过所述电源转换电路的第一外接端与输入电源耦合连接,所述第一开关元件的第二端分别耦合至所述第一储能元件的第一端、所述第二开关元件的第一端和所述第五开关元件的第一端,所述第一储能元件的第二端分别耦合至所述第三开关元件的第一端、所述第四开关元件的第一端和所述第六开关元件的第一端,所述第二开关元件的第二端通过所述电源转换电路的第二外接端与电池耦合连接,所述第五开关元件的第二端分别耦合至所述第二储能元件的第一端和所述第六开关元件的第二端,所述第二储能元件的第二端耦合至所述第二外接端,所述第四开关元件的第二端耦合至所述第二外接端,所述第三开关元件的第二端接地。
在第一方面的一种可能的实现方式中,所述的电源转换电路还包括第七开关元件,所述第七开关元件的第一端分别耦合至所述第一开关元件的第二端、所述第二开关元件的第一端、所述第五开关元件的第一端和所述第一储能元件的第一端,所述第七开关元件的第 二端分别耦合至所述第三开关元件的第一端、所述第四开关元件的第一端、所述第六开关元件的第一端和所述第一储能元件的第二端。
第二方面,提供了一种充电装置,所述充电装置包括前述方面及实现方式中的电源转换电路,以及耦合至所述的电源转换电路的信息采集和信号控制电路和输入/输出端口,所述信息采集和信号控制电路与所述输入/输出端口耦合连接。
在第二方面的一种可能的实现方式中,所述信息采集和信号控制电路包括:数字核心处理元件、电池信息检测元件、输出驱动元件、信息输入元件、第一电源转换元件和第二电源转换元件。在所述信息采集和信号控制电路中,所述信息输入元件、所述第一电源转换元件和所述第二电源转换元件分别通过所述信息采集和信号控制电路的第一外接端与所述输入电源耦合连接,所述信息输入元件连接所述数字核心处理元件,所述第一电源转换元件连接所述数字核心处理元件,所述第二电源转换元件连接所述输出驱动元件,所述数字核心处理元件通过所述信息采集和信号控制电路的第二外接端与电源适配器的数据线耦合连接,所述数字核心处理元件与所述电池信息检测元件连接,所述电池信息检测元件通过所述信息采集和信号控制电路的第三外接端与电池耦合连接,所述数字核心处理元件与所述输出驱动元件连接,所述输出驱动元件通过所述信息采集和信号控制电路的第四外接端分别耦合至所述电源转换电路的各开关元件。
在第二方面的另一种可能的实现方式中,所述输入/输出端口的第一端连接所述电源适配器的输入电源,所述输入/输出端口的第二端分别耦合至所述电源转换电路的所述第一外接端和所述信息采集和信号控制电路的所述第一外接端,所述输入/输出端口的第三端连接所述电源适配器的数据线,所述输入/输出端口的第四端耦合至所述信息采集和信号控制电路的所述第二外接端。可选地,所述输入/输出端口是USB端口。
第三方面,提供了一种充电系统,所述充电系统包括前述方面及实现方式中的充电装置,以及耦合至所述充电装置的电源适配器和电池元件。所述充电装置与所述电池元件可以被设置在一个设备内,所述设备可以是终端、基站或电动车。
第四方面,提供了一种电源转换电路对电池充电的方法,基于前述方面及实现方式中的电源转换电路的组成结构,一种可能的实现方式为所述电源转换电路可以根据第一充电模式实施对电池充电,方法包括:保持断开所述第二开关元件和所述第六开关元件,保持闭合所述第五开关元件,在第一时间段中,所述第一开关元件和所述第四开关元件处于闭合状态、且所述第三开关元件处于断开状态,所述第一储能元件和所述第二储能元件充电,在所述第一时间段之后的第二时间段中,所述第一开关元件和所述第四开关元件处于断开状态、且所述第三开关元件处于闭合状态,所述第一储能元件和所述第二储能元件放电。
第四方面的另一种可能的实现方式为所述电源转换电路可以根据第二充电模式实施对电池充电,方法包括:保持断开所述第四开关元件和所述第五开关元件,保持闭合所述第六开关元件,在第一时间段中,所述第一开关元件处于闭合状态、且所述第二开关元件和所述第三开关元件处于断开状态,所述第一储能元件和所述第二储能元件充电,在所述第一时间段之后的第二时间段中,所述第一开关元件处于断开状态、且所述第二开关元件和所述第三开关元件处于闭合状态,所述第一储能元件和所述第二储能元件放电。
第四方面的另一种可能的实现方式为所述电源转换电路可以根据第三充电模式实施对电池充电,方法包括:保持断开所述第五开关元件和所述第六开关元件,在第一时间段中, 所述第一开关元件和所述第四开关元件处于闭合状态、且所述第二开关元件和所述第三开关元件处于断开状态,所述第一储能元件充电,在所述第一时间段之后的第二时间段中,所述第一开关元件和所述第四开关元件处于断开状态、且所述第二开关元件和所述第三开关元件处于闭合状态,所述第一储能元件放电。
第四方面的另一种可能的实现方式为所述电源转换电路可以根据第四充电模式实施对电池充电,方法包括:保持断开所述第四开关元件、所述第五开关元件和所述第六开关元件,保持闭合所述第一开关元件和所述第三开关元件,在第一时间段中,所述第二开关元件处于闭合状态,直接对电池充电,在所述第一时间段之后的第二时间段中,所述第二开关元件处于断开状态,暂停对电池充电。
第四方面的另一种可能的实现方式为所述电源转换电路可以根据第五充电模式实施对电池充电,方法包括:保持断开所述第二开关元件、所述第四开关元件和所述第六开关元件,且保持闭合所述第五开关元件和所述第七开关元件,在第一时间段中,所述第一开关元件处于闭合状态、且所述第三开关元件处于断开状态,所述第二储能元件充电,在所述第一时间段之后的第二时间段中,所述第一开关元件处于断开状态、且所述第三开关元件处于闭合状态,所述第二储能元件放电。
第四方面的另一种可能的实现方式为所述电源转换电路可以根据第六充电模式实施对电池充电,方法包括:保持断开所述第二开关元件、所述第四开关元件和所述第五开关元件,且保持闭合所述第六开关元件和所述第七开关元件;在第一时间段中,所述第一开关元件处于闭合状态、且所述第三开关元件处于断开状态,所述第二储能元件充电,在所述第一时间段之后的第二时间段中,所述第一开关元件处于断开状态、且所述第三开关元件处于闭合状态,所述第二储能元件放电。
第五方面,提供了另一种电源转换电路,所述电源转换电路包括:第一开关元件、第二开关元件、第三开关元件、第七功开关元件、第一储能元件和第二储能元件。在所述电源转换电路中,所述第一开关元件的第一端通过所述电源转换电路的第一外接端与输入电源耦合连接,所述第一开关元件的第二端分别耦合至所述第二开关元件的第一端、所述第七开关元件的第一端和所述第一储能元件的第一端,所述第一储能元件的第二端分别耦合至所述第二储能元件的第一端、所述第三开关元件的第一端和所述第七开关元件的第二端,所述第二开关元件的第二端通过所述电源转换电路的第二外接端与电池耦合连接,所述第二储能元件的第二端耦合至所述第二外接端,所述第三开关元件的第二端接地。
基于第五方面的电源转换电路的组成结构,所述电源转换电路可以基于第二充电模式或第六充电模式对电池充电。
第六方面,提供了另一种电源转换电路,所述电源转换电路包括:第一开关元件、第二开关元件、第三开关元件、第五功开关元件、第七功开关元件、第一储能元件和第二储能元件。在所述电源转换电路中,所述第一开关元件的第一端通过所述电源转换电路的第一外接端与输入电源耦合连接,所述第一开关元件的第二端分别耦合至所述第二开关元件的第一端、所述第五开关元件的第一端、所述第七开关元件的第一端和所述第一储能元件的第一端,所述第一储能元件的第二端分别耦合至所述第三开关元件的第一端和所述第七开关元件的第二端,所述第二开关元件的第二端通过所述电源转换电路的第二外接端与电池耦合连接,所述第五开关元件的第二端连接所述第二储能元件的第一端,所述第二储能 元件的第二端耦合至所述第二外接端,所述第三开关元件的第二端接地。
基于第六方面的电源转换电路的组成结构,所述电源转换电路可以基于第二充电模式、第四充电模式、第五充电模式或第六充电模式对电池充电。
在第六方面的一种可能的实现方式中,所述的电源转换电路还包括第四开关元件,所述第四开关元件的第一端分别耦合至所述第三开关元件的第一端、所述第七开关元件的第二端和所述第一储能元件的第二端,所述第四开关元件的第二端耦合至所述第二外接端。
基于第六方面的实现方式中的电源转换电路的组成结构,所述电源转换电路还可以基于第三充电模式对电池充电。
第七方面,提供了另一种电源转换电路,所述电源转换电路包括:第一开关元件、第二开关元件、第三开关元件、第六功开关元件、第七功开关元件、第一储能元件和第二储能元件。在所述电源转换电路中,所述第一开关元件的第一端通过所述电源转换电路的第一外接端与输入电源耦合连接,所述第一开关元件的第二端分别耦合至所述第二开关元件的第一端、所述第七开关元件的第一端和所述第一储能元件的第一端,所述第一储能元件的第二端分别耦合至所述第三开关元件的第一端、所述第六开关元件的第一端和所述第七开关元件的第二端,所述第二开关元件的第二端通过所述电源转换电路的第二外接端与电池耦合连接,所述第六开关元件的第二端连接所述第二储能元件的第一端,所述第二储能元件的第二端耦合至所述第二外接端,所述第三开关元件的第二端接地。
基于第七方面的电源转换电路的组成结构,所述电源转换电路可以基于第二充电模式、第四充电模式或第六充电模式对电池充电。
在第七方面的一种可能的实现方式中,所述的电源转换电路还包括第四开关元件,所述第四开关元件的第一端分别耦合至所述第三开关元件的第一端、所述第六开关元件的第一端、所述第七开关元件的第二端和所述第一储能元件的第二端,所述第四开关元件的第二端耦合至所述第二外接端。
基于第七方面的实现方式中的电源转换电路的组成结构,所述电源转换电路还可以基于第三充电模式对电池充电。
第八方面,提供了另一种电源转换电路,所述电源转换电路包括:第一开关元件、第二开关元件、第三开关元件、第四功开关元件和第一储能元件。在所述电源转换电路中,所述第一开关元件的第一端通过所述电源转换电路的第一外接端与输入电源耦合连接,所述第一开关元件的第二端分别耦合至所述第二开关元件的第一端和所述第一储能元件的第一端,所述第一储能元件的第二端分别耦合至所述第三开关元件的第一端和所述第四开关元件的第一端,所述第二开关元件的第二端通过所述电源转换电路的第二外接端与电池耦合连接,所述第四开关元件的第二端耦合至所述第二外接端,所述第三开关元件的第二端接地。
基于第八方面的电源转换电路的组成结构,所述电源转换电路可以基于第三充电模式或第四充电模式对电池充电。
第八方面的一种可能的实现方式中,所述的电源转换电路还包括第五开关元件和第二储能元件;所述第五开关元件的第一端分别耦合至所述第一开关元件的第二端、所述第二开关元件的第一端和所述第一储能元件的第一端,所述第五开关元件的第二端连接所述第二储能元件的第一端,所述第二储能元件的第二端耦合至所述第二外接端。
基于第八方面的实现方式中的电源转换电路的组成结构,所述电源转换电路还可以基于第一充电模式对电池充电。
第九方面,提供了另一种电源转换电路,所述电源转换电路包括:第一开关元件、第二开关元件、第三开关元件、第六功开关元件、第一储能元件和第二储能元件。在所述电源转换电路中,所述第一开关元件的第一端通过所述电源转换电路的第一外接端与输入电源耦合连接,所述第一开关元件的第二端分别耦合至所述第二开关元件的第一端和所述第一储能元件的第一端,所述第一储能元件的第二端分别耦合至所述第三开关元件的第一端和所述第六开关元件的第一端,所述第二开关元件的第二端通过所述电源转换电路的第二外接端与电池耦合连接,所述第六开关元件的第二端连接所述第二储能元件的第一端,所述第二储能元件的第二端耦合至所述第二外接端,所述第三开关元件的第二端接地。
基于第九方面的电源转换电路的组成结构,所述电源转换电路可以基于第二充电模式或第四充电模式对电池充电。
第九方面的一种可能的实现方式中,所述的电源转换电路还包括第四开关元件,所述第四开关元件的第一端分别耦合至所述第三开关元件的第一端、所述第六开关元件的第一端和所述第一储能元件的第二端,所述第四开关元件的第二端耦合至所述第二外接端。
基于第九方面的实现方式中的电源转换电路的组成结构,所述电源转换电路还可以基于第三充电模式对电池充电。
第十方面,提供了另一种电源转换电路,所述电源转换电路包括:第一开关元件、第三开关元件、第四开关元件、第七功开关元件、第一储能元件和第二储能元件。在所述电源转换电路中,所述第一开关元件的第一端通过所述电源转换电路的第一外接端与输入电源耦合连接,所述第一开关元件的第二端分别耦合至所述第七开关元件的第一端、所述第一储能元件的第一端和所述第二储能元件的第一端,所述第一储能元件的第二端分别耦合至所述第三开关元件的第一端、所述第四开关元件的第一端和所述第七开关元件的第二端,所述第二储能元件的第二端通过所述电源转换电路的第二外接端与电池耦合连接,所述第四开关元件的第二端耦合至所述第二外接端,所述第三开关元件的第二端接地。
基于第十方面的电源转换电路的组成结构,所述电源转换电路可以基于第一充电模式或第五充电模式对电池充电。
第十一方面,提供了另一种电源转换电路,所述电源转换电路包括:第一开关元件、第三开关元件、第四开关元件、第五功开关元件、第六功开关元件、第七功开关元件、第一储能元件和第二储能元件。在所述电源转换电路中,所述第一开关元件的第一端通过所述电源转换电路的第一外接端与输入电源耦合连接,所述第一开关元件的第二端分别耦合至所述第五开关元件的第一端、所述第七开关元件的第一端和所述第一储能元件的第一端,所述第一储能元件的第二端分别耦合至所述第三开关元件的第一端、所述第四开关元件的第一端、所述第六开关元件的第一端和所述第七开关元件的第二端,所述第二储能元件的第一端分别耦合至所述第五开关元件的第二端和所述第六开关元件的第二端,所述第二储能元件的第二端通过所述电源转换电路的第二外接端与电池耦合连接,所述第四开关元件的第二端耦合至所述第二外接端,所述第三开关元件的第二端接地。
基于第十一方面的电源转换电路的组成结构,所述电源转换电路可以基于第一充电模式、或第五充电模式第六充电模式对电池充电。
以上所描述的技术方案,可以支持多种不同充电模式,不仅可以满足电池的充电要求,而且有效提升了电池的充电速率。
前述方面和实现方式中的第一储能元件和第二储能元件,例如,第一储能元件是电容器,第二储能元件是电感器,或者,第一储能元件由至少两个电容器并联组成,第二储能元件由至少两个电感器串联组成。
附图说明
图1是本发明实施例提供的充电装置示意图。
图2是本发明实施例提供的电源转换电路的一种结构示意图。
图3是本发明实施例提供的信息采集和信号控制电路的一种结构示意图。
图4是本发明实施例提供的输入/输出端口的一种结构示意图。
图5是本发明实施例提供的充电系统示意图。
图6是本发明实施例提供的电源转换电路在第一充电模式下的一种有效工作电路结构示意图。
图7是本名实施例提供的电源转换电路的控制信号时序的示意图。
图8是本发明实施例提供的电源转换电路在第二充电模式下的一种有效工作电路结构示意图。
图9是本发明实施例提供的电源转换电路在第三充电模式下的一种有效工作电路结构示意图。
图10是本发明实施例提供的电源转换电路的另一种结构示意图。
图11是本发明实施例提供的电源转换电路在第五充电模式或第六充电模式下的一种有效工作电路结构示意图。
图12示是本发明实施例提供的电源转换电路的另一种结构示意图。
图13示是本发明实施例提供的电源转换电路的另一种结构示意图。
图14示是本发明实施例提供的电源转换电路的另一种结构示意图。
图15示是本发明实施例提供的电源转换电路的另一种结构示意图。
图16示是本发明实施例提供的电源转换电路的另一种结构示意图。
图17示是本发明实施例提供的电源转换电路的另一种结构示意图。
图18示是本发明实施例提供的电源转换电路的另一种结构示意图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
图1示出了本发明实施例提供的充电装置100,其可以用于将输入的电源能量按照预设模式做转换后提供给电池。在图1中,该充电装置100包括电源转换电路101、信息采集和信号控制电路102及输入/输出端口103。
关于充电装置100中的电源转换电路101,图2示出了本发明实施例提供的电源转换电路的一种结构。在图2中,该电源转换电路101用于将电源V BUS转换成电池所需的电源能量。所述电源转换电路101包括:第一开关元件201、第二开关元件202、第三开关元件203、 第四功开关元件204、第五开关元件205、第六开关元件206、第一储能元件207和第二储能元件208。
在图2中,第一开关元件201的第一端通过电源转换电路101的第一外接端209与电源V BUS耦合连接,第一开关元件201的第二端分别耦合至第一储能元件207的第一端、第二开关元件202的第一端和第五开关元件205的第一端,第一储能元件207的第二端分别耦合至第三开关元件203的第一端、第四开关元件204的第一端和第六开关元件206的第一端,第二开关元件202的第二端通过电源转换电路101的第二外接端210与电池耦合连接,第五开关元件205的第二端分别耦合至第二储能元件208的第一端和第六开关元件206的第二端,第二储能元件208的第二端耦合至第二外接端210,第四开关元件204的第二端耦合至第二外接端210,第三开关元件203的第二端接地。
可选地,第一储能元件207和第二储能元件208可以为能够储存能量并且能够释放储存的能量的一个或多个器件,例如该器件是电容器或电感器。可选地,第一储能元件207和第二储能元件208可以具有不同的器件类型。例如,第一储能元件207为电容器,第二储能元件208为电感器。再例如,第一储能元件207由至少两个电容器并联组成,第二储能元件208由至少两个电感器串联组成。对于储能元件所包含的器件类型、器件数量及器件组成形式,本发明实施例对此不做限定。
可选地,第一开关元件201、第二开关元件202、第三开关元件203、第四功开关元件204、第五开关元件205和第六开关元件206中的至少一个开关元件为金属氧化物半导体场效应管(metal oxide semiconductor,MOS)或者双极结型晶体管(bipolar junction transistor,BJT),本发明实施例对此不做限定。
关于充电装置100中的信息采集和信号控制电路102,图3示出了本发明实施例提供的信息采集和信号控制电路的一种结构。在图3中,该信息采集和信号控制电路102包括:数字核心处理元件(也可表示为digital core)301、电池信息检测元件(也可表示为BAT info DET)302、输出驱动元件(也可表示为output driver)303、信息输入元件(也可表示为INPT info)304、第一电源转换元件(也可表示为LD)305和第二电源转换元件(也可表示为LD)306。
在图3中,信息输入元件304、第一电源转换元件305和第二电源转换元件306分别通过信息采集和信号控制电路102的第一外接端307与电源V BUS耦合连接。信息输入元件304连接数字核心处理元件301,信息输入元件304用于采集电源V BUS的电器特性,例如电器特性可以是电压和/或电流信息,然后信息输入元件304将采集到的电器特性传递至数字核心处理元件301。第一电源转换元件305连接数字核心处理元件301,第一电源转换元件305用于将电源V BUS的电压转换成数字核心处理元件301所需的电压V 1。而第二电源转换元件306连接输出驱动元件303,第二电源转换元件306用于将电源V BUS的电压转换成输出驱动元件303所需的电压V 2。数字核心处理元件301通过信息采集和信号控制电路102的第二外接端308与电源适配器的数据线耦合连接,通过读取D+/D-高低电平来实现数据通信,例如该通信是电源适配器与充电装置之间的协议握手,或者是调节电源V BUS的电压。数字核心处理元件301还与电池信息检测元件302连接,而电池信息检测元件302通过信息采集和信号控制电路102的第三外接端309与电池耦合连接。电池信息检测元件302用于采集电池系统信息,例如,电池可支持的电压、电流信息,或者电池保持容量(retention  capacity),然后电池信息检测元件302将采集到的电池系统信息传递至数字核心处理元件301。数字核心处理元件301还与输出驱动元件303连接,例如通过gate control bus的方式连接,数字核心处理单元301分析收集到的电源V BUS的电器特性和电池的系统信息,根据业务需要产生时序信号,然后将该时序信号传递至输出驱动元件303。该业务需要是充电装置设置的充电模式,例如,一种充电模式是以较大电流(例如2A)的方式给电池充电,另一种充电模式是以较高电压(例如9v或12v)的方式给电池充电。该时序信号用于控制电源转换电路101中各开关元件的闭合或断开,使得储能元件根据不同的充电模式实现能量存储和释放。输出驱动元件303通过信息采集和信号控制电路102的第四外接端310分别耦合至电源转换电路101的各开关元件,输出驱动元件303用于将数字核心处理元件301传递的数字信号转换成模拟信号,然后根据该模拟信号驱动电源转换电路101的各开关元件做闭合或断开,以实现充电装置根据业务需要对电池的充电。
可选地,电池信息检测元件302和信息输入元件304可以周期性地采集信息,也可以根据充电需要动态地采集信息,本发明实施例对此不做限定。
关于充电装置100中的输入/输出端口103,图4示出了本发明实施例提供的输入/输出端口的一种结构。在图4中,该输入/输出端口103是USB端口(也可表示为USB port),属于串口通信。具体地,该USB端口的第一端401连接电源适配器的电源V BUS,该USB端口的第二端402分别耦合至电源转换电路101的第一外接端209和信息采集和信号控制电路102的第一外接端307,通过第二端402将电源V BUS的能量传递至电源转换电路101和信息采集和信号控制电路102。该USB端口的第三端403连接电源适配器的数据线,该USB端口的第四端404耦合至信息采集和信号控制电路102的第二外接端308,通过第四端404传递高低电平来实现信息采集和信号控制电路102的数据读写。
结合图1至4关于充电装置的描述,图5示出了本发明实施例提供的充电系统500。在图5中,该充电系统500包括:充电装置100、电源适配器501和电池元件502。电源适配器501的一端连接外部供电电源,其另一端连接充电装置100的输入/输出端口103。电源适配器501用于把外部电源转换成充电装置100所需的电源V BUS,然后通过电源线将电源V BUS的能量输出至充电装置100,其输出类型可分为交流输出型和直流输出型,本发明实施例对此不做限定。电源适配器501还用于通过数据线与充电装置100实现数据通信交流。充电装置100可以是独立装置或者设置在设备内,该设备可以是终端、基站、电动车等设备。该终端可以是移动电话(又称智能手机)、平板电脑(Tablet Personal Computer)、个人数字助理(personal digital assistant,PDA)、电子书阅读器(e-book reader)或可穿戴式设备(wearable device)等。该基站可以包括各种形式的宏基站、微基站(也称为小站)、中继站、接入点等。充电装置100与电池元件502连接,其用于把获得的能量对电池充电。可选地,该设备还可以包括电池元件502,该电池元件502的电池数量可以是一个或多个。若电池元件502包含多个电池,多个电池之间可以通过串联或并联的方式连接,本发明实施例对此不做限定。
需要说明的是,本申请的充电装置和充电系统中包含的一些组成部分采用“xx元件”表述,该表述仅仅从功能角度呈现各组成部分,并没有限制各组成部分的实现形式,例如各组成部分可以由物理器件实现,或者芯片实现,或者由电路/集成电路实现,本发明实施例对此不做限定。
图2中的电源转换电路至少包括六个开关元件,其组成结构使得充电装置可以支持在不同的充电模式下实现对电池充电。下面以不同的充电模式为例,结合上述关于充电装置的描述,对本发明实施例提供的技术方案进行说明。
可选地,第一充电模式:电源转换电路用于以低压大电流的模式对电池充电。基于该模式,结合附图2,电源转换电路中的第二开关元件和第六开关元件一直保持断开、且第五开关元件一直保持闭合。所谓“保持断开”,由于被断开的开关元件阻抗很大,从实际效果来看,类似于被断开的开关元件与其他元件未连接。所谓“保持闭合”,由于被闭合的开关元件阻抗很小,从实际效果来看,类似于被闭合的开关元件以导线的方式连接其他元件。那么在该第一充电模式下,电源转换电路实际由第一开关元件、第三开关元件、第四开关元件、第一储能元件和第二储能元件组成有效工作电路结构。具体地,图6示出了本发明实施例提供的电源转换电路在第一充电模式下的一种有效工作电路结构。在图6中,第一开关元件表示为Q 1,第三开关元件表示为Q 3,第四开关元件表示为Q 4,第一储能元件为电容器C FLY,第二储能元件为电感器L。在电源转换电路中,电容器C FLY的第一端通过开关元件Q 1与电源V BUS相连,电容器C FLY的第一端还与电感器L的第一端相连,电容器C FLY的第二端通过开关元件Q 3接地,电容器C FLY的第二端通过开关元件Q 4与电感器L的第二端相连,电感器L的第二端与电池元件(图6所示的Battery)的正极端耦合连接,电池元件的负极端接地。
图7示出了本名实施例提供的电源转换电路的控制信号时序,在图7中,一个完整的控制信号周期T包括两个时间段:第一时间段t ON和第二时间段t OFF。在第一时间段t ON中,开关元件Q 1和开关元件Q 4处于闭合状态,开关元件Q 3处于断开状态,输入电源V BUS连接电容器C FLY,然后连接到电池V BAT,并且输入电源V BUS连接电感器L,然后连接到电池V BAT,此时电容器C FLY和电感器L处于充电蓄能状态。在所述第一时间段t ON之后的第二时间段t OFF中,开关元件Q 1和开关元件Q 4处于断开状态,开关元件Q 3处于闭合状态,电容器C FLY的下极板经开关元件Q 3接地,电容器C FLY的上极板的电压为V BUS-V BAT,此时电容器C FLY和电感器L处于放电状态,为电池元件充电。
第一充电模式通常适用于电源适配器支持电源5v/2A的情况。充电装置通过电源转换电路在第一充电模式下对电池充电,电池的充电电压为V BUS-V BAT,该电压不高(例如5v)。由于该电路中的电感绕组的能量损耗较低,并且电容器C FLY和电感器L连接处的能量损耗较低,使得电源转换电路在对电池充电时整体能量损耗较低。在能量损耗低的情况下,输入至电池的电流变大(例如2A),从而有效提升电池充电的速率。
可选地,第二充电模式:电源转换电路用于以高压大电流模式对电池充电。基于该模式,结合附图2,电源转换电路中的第四开关元件和第五开关元件一直保持断开、且第六开关元件一直保持闭合。那么在该第二充电模式下,电源转换电路实际由第一开关元件、第二开关元件、第三开关元件、第一储能元件和第二储能元件组成有效工作电路结构。具体地,图8示出了本发明实施例提供的电源转换电路在第二充电模式下的一种有效工作电路结构。在图8中,第一开关元件表示为Q 1,第二开关元件表示为Q 2,第三开关元件表示为Q 3,第一储能元件为电容器C FLY,第二储能元件为电感器L。在电源转换电路中,电容器C FLY的第一端通过开关元件Q 1与电源V BUS相连,电容器C FLY的第一端还通过开关元件Q 2与电池元件(图8所示的Battery)的正极端耦合连接,电容器C FLY的第二端通过开关元件Q 3接 地,电容器C FLY的第二端耦合至电感器L的第一端,电感器L的第二端与电池元件的正极端耦合连接,电池元件的负极端接地。
结合图7所示,在第一时间段t ON中,开关元件Q 1处于闭合状态,开关元件Q 2和开关元件Q 3处于断开状态,输入电源V BUS连接电容器C FLY,然后连接电感器L,再连接到电池V BAT,电容器C FLY和电感器L形成串联,此时电容器C FLY和电感器L处于充电蓄能状态。在第一时间段t ON之后的第二时间段t OFF中,开关元件Q 1处于断开状态,开关元件Q 2和开关元件Q 3处于闭合状态,电容器C FLY的下极板和电感器的第一端都接地,电容器C FLY的上极板和电感器L的第二端都连接到电池V BAT,电容器C FLY和电感器L形成并联,此时电容器C FLY和电感器L处于放电状态,为电池元件充电。
第二充电模式通常适用于电源适配器支持电压9v或12v的情况。充电装置通过电源转换电路在第二充电模式下对电池充电,电池的充电电压为电容器C FLY和电感器L的两端电压,通常充电电压较高(例如9v或12v)。由于该电路中的电感绕组的能量损耗较低,并且电容器C FLY和电感器L连接处的能量损耗较低,使得电源转换电路在对电池充电时整体能量损耗较低。在能量损耗低的情况下,输入至电池的电流变大(例如2A),从而有效提升电池充电的速率。
可选地,第三充电模式:电源转换电路用于以高压直充的模式对电池充电。基于该模式,结合附图2,电源转换电路中的第五开关元件和第六开关元件一直保持断开,使得第二储能元件一直处于不工作状态。那么在该第三充电模式下,电源转换电路实际由第一开关元件、第二开关元件、第三开关元件、第四开关元件和第一储能元件组成有效工作电路结构。具体地,图9示出了本发明实施例提供的基于第三充电模式的一种电源转换电路结构。在图9中,第一开关元件表示为Q 1,第二开关元件表示为Q 2,第三开关元件表示为Q 3,第四开关元件表示为Q 4,第一储能元件为电容器C FLY。在电源转换电路中,电容器C FLY的第一端通过开关元件Q 1与电源V BUS相连,电容器C FLY的第一端还通过开关元件Q 2与电池元件(图9所示的Battery)的正极端耦合连接,电容器C FLY的第二端通过开关元件Q 3接地,电容器C FLY的第二端还通过开关元件Q 4与电池元件的正极端耦合连接,电池元件的负极端接地。
结合图7所示,在第一时间段t ON中,开关元件Q 1和开关元件Q 4处于闭合状态,开关元件Q 2和开关元件Q 3处于断开状态,输入电源V BUS连接电容器C FLY,然后连接到电池V BAT,此时电容器C FLY处于充电蓄能状态。在第一时间段t ON之后的第二时间段t OFF中,开关元件Q 1和开关元件Q 4处于断开状态,开关元件Q 2和开关元件Q 3处于闭合状态,电容器C FLY的下极板接地,电容器C FLY的上极板连接到电池V BAT,此时电容器C FLY处于放电状态,为电池元件充电。
充电装置通过电源转换电路在第三充电模式下对电池充电,由于在第一时间段t ON中,电容器C FLY的两端分别直接连接电源V BUS和电池V BAT,而在第二时间段t OFF中,电池的充电电压为电容器C FLY两端电压,充电电路这种直充直放的模式使电池充电效率非常高。
第三充电模式通常适用于电源适配器支持较高电压(例如9v或12v)的情况。充电装置通过电源转换电路在第三充电模式下对电池充电,电池的充电电压为电容器C FLY两端电压,由于输入电源V BUS直接对电容器C FLY充电,电容器的充电效率较高,而输入电池的能量直接来源于电容器充电的能量,使得输入电源电压接近于电池的两倍电压。在这种高压 直充的情况下,能量损耗较低,电池容易快速充满电量,从而有效提升电池充电的速率。
可选地,第四充电模式:电源转换电路用于以低压直充的模式对电池充电。基于该模式,结合附图2,电源转换电路中的第四开关元件、第五开关元件和第六开关元件一直保持断开,而第一开关元件和第三开关元件一直保持闭合,这使得第一储能元件和第二储能元件一直处于不工作状态。那么在电源转换电路中,第二开关元件的一端耦合连接电源V BUS,第二开关元件的另一端耦合连接电池正极端,电池元件的负极端接地。
结合图7所示,在第一时间段t ON中,第二开关元件处于闭合状态,输入电源V BUS连接到电池V BAT,此时直接对电池元件充电。在第二时间段t OFF中,第二开关元件处于断开状态,电池元件暂停充电。
第四充电模式通常适用于电源适配器支持较低电压(例如3v或5v)的情况。充电装置在第四充电模式下,利用电源转换电路的第二开关元件的闭合和断开,直接将电源能量直充进电池。在这种低压直充的情况下,能量损耗较低,电池容易快速充满电量,从而有效提升电池充电的速率。
关于充电装置100中的电源转换电路101,图10示出了本发明实施例提供的电源转换电路的另一种结构。在图10中,电源转换电路101用于将电源V BUS转换成电池所需的电源能量。与图2相比较,不同之处在于,所述电源转换电路101还包括:第七开关元件211。该第七开关元件211的第一端分别耦合至第一开关元件201的第二端、第二开关元件202的第一端、第五开关元件205的第一端和第一储能元件207的第一端,该第七开关元件211的第二端分别耦合至第三开关元件203的第一端、第四开关元件204的第一端、第六开关元件206的第一端和第一储能元件207的第二端。
图10中的电源转换电路至少包括七个开关元件,其组成结构使得充电装置不但可以支持在前述的四种充电模式,还可以支持其他的充电模式,从而实现对电池充电。
可选地,第五充电模式或第六充电模式:电源转换电路采用常规模式对电池充电。两种模式下的电源转换电路类似于典型的BUCK电路,通常适用于电源适配器支持电压5v、9v或12v情况。基于第五充电模式或第六充电模式,结合附图10,第五充电模式是电源转换电路中的第二开关元件、第四开关元件和第六开关元件一直保持断开、且第五开关元件和第七开关元件一直保持闭合,而第六充电模式是电源转换电路中的第二开关元件、第四开关元件和第五开关元件一直保持断开、且第六开关元件和第七开关元件一直保持闭合。由于第七开关元件一直保持闭合,使得第一储能元件被短接而处在不工作状态。那么在第五充电模式或第六充电模式下,电源转换电路实际由第一开关元件、第三开关元件和第二储能元件组成有效工作电路结构。具体地,图11示出了本发明实施例提供的电源转换电路在第五充电模式或第六充电模式下的一种有效工作电路结构。在图11中,第一开关元件表示为Q 1,第三开关元件表示为Q 3,第二储能元件为电感器L。在电源转换电路中,电感器L的第一端通过开关元件Q 1与电源V BUS相连,电感器L的第一端还通过开关元件Q 3接地,电感器L的第二端与电池元件(图11所示的Battery)的正极端耦合连接,电池元件的负极端接地。
结合图7所示,在第一时间段t ON中,开关元件Q 1处于闭合状态,开关元件Q 3处于断开状态,输入电源V BUS连接电感器L,然后连接到电池V BAT,此时电感器L处于充电蓄能状态。在第二时间段t OFF中,开关元件Q 1处于断开状态,开关元件Q 3处于闭合状态,电感器L处 于放电状态,为电池元件充电。
需要说明的是,六个开关元件或者七个开关元件、以及第一储能元件和第二储能元件并不是电源转换电路必须的组成结构。电源转换电路的元件数量和组成结构是可以预先根据所支持的充电模式做调整。下面结合附图做举例说明,本发明实施例对此不做限定。
例如,图12示出了本发明实施例提供的电源转换电路的另一种结构。在图12中,电源转换电路101包括:第一开关元件201、第二开关元件202、第三开关元件203、第七功开关元件211、第一储能元件207和第二储能元件208。第一开关元件201的第一端通过电源转换电路的第一外接端209与输入电源耦合连接,第一开关元件201的第二端分别耦合至述第二开关元件202的第一端、第七开关元件211的第一端和第一储能元件207的第一端,第一储能元件207的第二端分别耦合至第二储能元件208的第一端、第三开关元件203的第一端和第七开关元件211的第二端,第二开关元件202的第二端通过电源转换电路的第二外接210端与电池耦合连接,第二储能元件208的第二端耦合至第二外接端210,第三开关元件203的第二端接地。
基于图12所示的电源转换电路的组成结构,该电源转换电路101可以根据第二充电模式或第六充电模式对电池充电。具体地,该电源转换电路101在第二充电模式下,保持断开第七开关元件211,在第一时间段中,第一开关元件201处于闭合状态、且第二开关元件202和第三开关元件203处于断开状态,第一储能元件207和第二储能元件208充电,在第一时间段之后的第二时间段中,第一开关元件201处于断开状态、且第二开关元件202和第三开关元件203处于闭合状态,第一储能元件207和第二储能元件208放电。该电源转换电路101在第六充电模式下,保持断开第二开关元件202,且保持闭合第七开关元件211,在第一时间段中,第一开关元件201处于闭合状态、且第三开关元件203处于断开状态,第二储能元件208充电,在第一时间段之后的第二时间段中,第一开关元件201处于断开状态、且第三开关元件203处于闭合状态,第二储能元件208放电。
例如,图13示出了本发明实施例提供的电源转换电路的另一种结构。在图13中,电源转换电路101包括:第一开关元件201、第二开关元件202、第三开关元件203、第五功开关元件205、第七功开关元件211、第一储能元件207和第二储能元件208。第一开关元件201的第一端通过电源转换电路101的第一外接端209与输入电源耦合连接,第一开关元件201的第二端分别耦合至第二开关元件202的第一端、第五开关元件205的第一端、第七开关元件211的第一端和第一储能元件207的第一端,第一储能元件207的第二端分别耦合至第三开关元件203的第一端和第七开关元件211的第二端,第二开关元件202的第二端通过电源转换电路101的第二外接端210与电池耦合连接,第五开关元件205的第二端连接第二储能元件208的第一端,第二储能元件208的第二端耦合至第二外接端210,第三开关元件203的第二端接地。
基于图13所示的电源转换电路的组成结构,该电源转换电路可以根据第二充电模式、第四充电模式、第五充电模式或第六充电模式对电池充电。具体地,该电源转换电路101在第二充电模式下,保持断开第五开关元件205和第七开关元件211,在第一时间段中,第一开关元件201处于闭合状态、且第二开关元件202和第三开关元件203处于断开状态,第一储能元件207和第二储能元件208充电,在第一时间段之后的第二时间段中,第一开关元件201处于断开状态、且第二开关元件202和第三开关元件203处于闭合状态,第一 储能元件207和第二储能元件208放电。该电源转换电路101在第四充电模式下,保持断开第五开关元件205和第七开关元件211,且保持闭合第一开关元件201和第三开关元件203,在第一时间段中,第二开关元件202处于闭合状态,直接对电池充电,在第一时间段之后的第二时间段中,第二开关元件202处于断开状态,暂停对电池充电。该电源转换电路101在第五充电模式下,保持断开第二开关元件202,且保持闭合第五开关元件205和第七开关元件211,在第一时间段中,第一开关元件201处于闭合状态、且第三开关元件203处于断开状态,第二储能元件208充电,在第一时间段之后的第二时间段中,第一开关元201件处于断开状态、且第三开关元件203处于闭合状态,第二储能元件208放电。该电源转换电路101在第六充电模式下,保持断开第二开关元件202和第五开关元件205,且保持闭合第七开关元件211,在第一时间段中,第一开关元件201处于闭合状态、且第三开关元件203处于断开状态,第二储能元件208充电,在第一时间段之后的第二时间段中,第一开关元件201处于断开状态、且第三开关元件203处于闭合状态,第二储能元件208放电。
图13的电源转换电路还包括第四开关元件(图中未示出),第四开关元件的第一端分别耦合至第三开关元件的第一端、第七开关元件的第二端和第一储能元件的第二端,第四开关元件的第二端耦合至第二外接端。该电源转换电路还可以根据第三充电模式对电池充电。具体地,该电源转换电路在第三充电模式下,保持断开第五开关元件,在第一时间段中,第一开关元件和第四开关元件处于闭合状态、且第二开关元件和第三开关元件处于断开状态,第一储能元件充电,在第一时间段之后的第二时间段中,第一开关元件和第四开关元件处于断开状态、且第二开关元件和第三开关元件处于闭合状态,第一储能元件放电。
例如,图14示出了本发明实施例提供的电源转换电路的另一种结构。在图14中,电源转换电路101包括:第一开关元件201、第二开关元件202、第三开关元件203、第六功开关元件206、第七功开关元件211、第一储能元件207和第二储能元件208。第一开关元件201的第一端通过电源转换电路101的第一外接端209与输入电源耦合连接,第一开关元件201的第二端分别耦合至第二开关元件202的第一端、第七开关元件211的第一端和第一储能元件207的第一端,第一储能元件207的第二端分别耦合至第三开关元件203的第一端、第六开关元件206的第一端和第七开关元件211的第二端,第二开关元件202的第二端通过电源转换电路101的第二外接端210与电池耦合连接,第六开关元件206的第二端连接第二储能元件208的第一端,第二储能元件208的第二端耦合至第二外接端210,第三开关元件203的第二端接地。
基于图14所示的电源转换电路的组成结构,该电源转换电路可以根据第二充电模式、第四充电模式或第六充电模式对电池充电。具体地,该电源转换电路101在第二充电模式下,保持闭合第六开关元件206,在第一时间段中,第一开关元件201处于闭合状态、且第二开关元件202和第三开关元203件处于断开状态,第一储能元件207和第二储能元件208充电,在第一时间段之后的第二时间段中,第一开关元件201处于断开状态、且第二开关元件202和第三开关元203件处于闭合状态,第一储能元件207和第二储能元件208放电。该电源转换电路101在第四充电模式下,保持断开第六开关元件206,且保持闭合第一开关元件201和第三开关元件203,在第一时间段中,第二开关元件202处于闭合状态,直接对电池充电,在第一时间段之后的第二时间段中,第二开关元件202处于断开状态,暂停对电池充电。该电源转换电路101在第六充电模式下,保持断开第二开关元件202,且保持闭 合第六开关元件206和第七开关元件211,在第一时间段中,第一开关元件201处于闭合状态、且第三开关元件203处于断开状态,第二储能元件208充电,在第一时间段之后的第二时间段中,第一开关元件201处于断开状态、且第三开关元件203处于闭合状态,第二储能元件208放电。
图14的电源转换电路还包括第四开关元件(图中未示出),第四开关元件的第一端分别耦合至第三开关元件的第一端、第六开关元件的第一端、第七开关元件的第二端和第一储能元件的第二端,第四开关元件的第二端耦合至第二外接端。该电源转换电路还可以根据第三充电模式对电池充电。具体地,该电源转换电路在第三充电模式下,保持断开第六开关元件,在第一时间段中,第一开关元件和第四开关元件处于闭合状态、且第二开关元件和第三开关元件处于断开状态,第一储能元件充电,在第一时间段之后的第二时间段中,第一开关元件和第四开关元件处于断开状态、且第二开关元件和第三开关元件处于闭合状态,第一储能元件放电。
例如,图15示出了本发明实施例提供的电源转换电路的另一种结构。在图15中,电源转换电路101包括:第一开关元件201、第二开关元件202、第三开关元件203、第四功开关元件204和第一储能元件207。第一开关元件201的第一端通过电源转换电路101的第一外接端209与输入电源耦合连接,第一开关元件201的第二端分别耦合至第二开关元件202的第一端和第一储能元件207的第一端,第一储能元件207的第二端分别耦合至第三开关元件203的第一端和第四开关元件204的第一端,第二开关元件202的第二端通过电源转换电路101的第二外接端210与电池耦合连接,第四开关元件204的第二端耦合至第二外接端210,第三开关元件203的第二端接地。
基于图15所示的电源转换电路的组成结构,该电源转换电路可以根据第三充电模式或第四充电模式对电池充电。具体地,该电源转换电路101在第三充电模式下,在第一时间段中,第一开关元件201和第四开关元件204处于闭合状态、且第二开关元件202和第三开关元件203处于断开状态,第一储能元件201充电,在第一时间段之后的第二时间段中,第一开关元件201和第四开关元件204处于断开状态、且第二开关元件202和第三开关元件203处于闭合状态,第一储能元件207放电。
图15的电源转换电路还包括第五开关元件和第二储能元件(图中未示出),第五开关元件的第一端分别耦合至第一开关元件的第二端、第二开关元件的第一端和第一储能元件的第一端,第五开关元件的第二端连接第二储能元件的第一端,第二储能元件的第二端耦合至第二外接端。该电源转换电路还可以根据第一充电模式对电池充电。具体地,该电源转换电路在第一充电模式下,保持断开第二开关元件,且保持闭合第五开关元件,在第一时间段中,第一开关元件和第四开关元件处于闭合状态、且第三开关元件处于断开状态,第一储能元件和第二储能元件充电,在第一时间段之后的第二时间段中,第一开关元件和第四开关元件处于断开状态、且第三开关元件处于闭合状态,第一储能元件和第二储能元件放电。
例如,图16示出了本发明实施例提供的电源转换电路的另一种结构。在图16中,电源转换电路101包括:第一开关元件201、第二开关元件202、第三开关元件203、第六功开关元件206、第一储能元件207和第二储能元件208。第一开关元件201的第一端通过电源转换电路101的第一外接端209与输入电源耦合连接,第一开关元件201的第二端分别 耦合至第二开关元件202的第一端和第一储能元件207的第一端,第一储能元件207的第二端分别耦合至第三开关元件203的第一端和第六开关元件206的第一端,第二开关元件202的第二端通过电源转换电路101的第二外接端210与电池耦合连接,第六开关元件206的第二端连接第二储能元件208的第一端,第二储能元件208的第二端耦合至第二外接端210,第三开关元件203的第二端接地。
基于图16所示的电源转换电路的组成结构,该电源转换电路可以根据第二充电模式或第四充电模式对电池充电。具体地,该电源转换电路101在第二充电模式下,保持闭合第六开关元件206,在第一时间段中,第一开关元件201处于闭合状态、且第二开关元件202和第三开关元203件处于断开状态,第一储能元件207和第二储能元件208充电,在第一时间段之后的第二时间段中,201第一开关元件处于断开状态、且第二开关元件202和第三开关元件203处于闭合状态,第一储能元件207和第二储能元件208放电。该电源转换电路101在第四充电模式下,保持断开第六开关元件206,且保持闭合第一开关元件201和第三开关元件203,在第一时间段中,第二开关元202件处于闭合状态,直接对电池充电,在第一时间段之后的第二时间段中,第二开关元件202处于断开状态,暂停对电池充电。
图16的电源转换电路还包括第四开关元件(图中未示出),第四开关元件的第一端分别耦合至第三开关元件的第一端、第六开关元件的第一端和第一储能元件的第二端,第四开关元件的第二端耦合至第二外接端。该电源转换电路还可以根据第三充电模式对电池充电。具体地,该电源转换电路在第三充电模式下,保持断开第六开关元件,在第一时间段中,第一开关元件和第四开关元件处于闭合状态、且第二开关元件和第三开关元件处于断开状态,第一储能元件充电,在第一时间段之后的第二时间段中,第一开关元件和第四开关元件处于断开状态、且第二开关元件和第三开关元件处于闭合状态,第一储能元件放电。
例如,图17示出了本发明实施例提供的电源转换电路的另一种结构。在图17中,电源转换电路101包括:第一开关元件201、第三开关元件203、第四开关元件204、第七功开关元件211、第一储能元件207和第二储能元件208。第一开关元件201的第一端通过电源转换电路101的第一外接端209与输入电源耦合连接,第一开关元件201的第二端分别耦合至第七开关元件211的第一端、第一储能元件207的第一端和第二储能元件208的第一端,第一储能元件207的第二端分别耦合至第三开关元件203的第一端、第四开关元件204的第一端和第七开关元件211的第二端,第二储能元件208的第二端通过电源转换电路101的第二外接端210与电池耦合连接,第四开关元件204的第二端耦合至第二外接端210,第三开关元件203的第二端接地。
基于图17所示的电源转换电路的组成结构,该电源转换电路可以根据第一充电模式或第五充电模式对电池充电。具体地,该电源转换电路101在第一充电模式下,在第一时间段中,第一开关元件201和第四开关元件204处于闭合状态、且第三开关元件203处于断开状态,第一储能元件207和第二储能元件208充电,在第一时间段之后的第二时间段中,第一开关元件201和第四开关元件204处于断开状态、且第三开关元件203处于闭合状态,第一储能元件207和第二储能元208件放电。
该电源转换电路101在第五充电模式下,保持断开第四开关元件204,且保持闭合第七开关元件211,在第一时间段中,第一开关元件201处于闭合状态、且第三开关元件203处于断开状态,第二储能元件208充电,在第一时间段之后的第二时间段中,第一开关元件 201处于断开状态、且第三开关元件203处于闭合状态,第二储能元件208放电。
例如,图18示出了本发明实施例提供的电源转换电路的另一种结构。在图18中,电源转换电路101包括:第一开关元件201、第三开关元件203、第四开关元件204、第五功开关元件205、第六功开关元件206、第七功开关元件211、第一储能元件207和第二储能元件208。第一开关元件201的第一端通过电源转换电路101的第一外接端209与输入电源耦合连接,第一开关元件201的第二端分别耦合至第五开关元件205的第一端、第七开关元件211的第一端和第一储能元件207的第一端,第一储能元件207的第二端分别耦合至第三开关元件203的第一端、第四开关元件204的第一端、第六开关元件206的第一端和第七开关元件211的第二端,第二储能元件208的第一端分别耦合至第五开关元件205的第二端和第六开关元件206的第二端,第二储能元件208的第二端通过电源转换电路101的第二外接端210与电池耦合连接,第四开关元件204的第二端耦合至第二外接端210,第三开关元件203的第二端接地。
基于图18所示的电源转换电路的组成结构,该电源转换电路可以根据第一充电模式、或第五充电模式第六充电模式对电池充电。该电源转换电路101在第一充电模式下,保持断开第六开关元件206,保持闭合第五开关元件205,在第一时间段中,第一开关元件201和第四开关元件204处于闭合状态、且第三开关元件203处于断开状态,第一储能元件207和第二储能元件208充电,在第一时间段之后的第二时间段中,第一开关元件201和第四开关元件204处于断开状态、且第三开关元件203处于闭合状态,第一储能元件207和第二储能元件208放电。该电源转换电路101在第五充电模式下,保持断开第四开关元件204和第六开关元件206,且保持闭合第五开关元件205和第七开关元件211,在第一时间段中,第一开关元件201处于闭合状态、且第三开关元件203处于断开状态,第二储能元件208充电,在第一时间段之后的第二时间段中,第一开关元件201处于断开状态、且第三开关元件203处于闭合状态,第二储能元件208放电。
该电源转换电路101在第六充电模式下,保持断开第四开关元件204和所述第五开关元件205,且保持闭合第六开关元件206和第七开关元件211;在第一时间段中,第一开关元件201处于闭合状态、且第三开关元件203处于断开状态,第二储能元件208充电,在第一时间段之后的第二时间段中,第一开关元件201处于断开状态、且第三开关元件203处于闭合状态,第二储能元件208放电。
关于前述实施例所描述的电源转换电路中的开关元件,可选的,通过改变开关元件的栅极电压大小来实现开关元件的闭合或断开。举例来说,开关元件Q 1的第一端与电源V BUS耦合连接,开关元件Q 1的第二端连接其他元件,当充电装置确定需要闭合开关元件Q 1,开关元件Q 1升高栅极电压,并且使栅极电压高于开关元件Q 1第二端的电压,此时开关元件Q 1的处于低阻导通状态。当充电装置确定需要断开开关元件Q 1,开关元件Q 1降低栅极电压,并且使栅极电压低于开关元件Q 1第二端的电压,此时开关元件Q 1的处于高阻截止状态。由于开关元件的类型不同,相应的,开关元件的闭合或断开的实现方式会不同,本发明实施例对此不做限定。
结合前面的描述,下面说明充电系统如何对电池充电的具体过程。
充电装置100的输入/输出端口103通过与电源适配器501的连接,获得输入的电源V BUS,然后分别将电源能量提供至电源转换电路101和信息采集和信号控制电路102。信息 采集和信号控制电路102中的数字核心处理元件301通过输入/输出端口103与电源适配器501进行协议通讯,然后根据电源适配器501支持的充电模式确定电源转换电路101所采用的充电模式。例如,数字核心处理元件301确定电源适配器501支持前述五种充电模式,然后根据信息输入元件304采集的电源V BUS的电器特性和电池信息检测元件302采集的电池系统信息,判断五种充电模式中第三充电模式是充电速率最快的,然后将充电状态设置在第三充电模式下。再例如,数字核心处理元件301确定电源适配器501支持前述第一充电模式和第二充电模式,然后根据信息输入元件304采集的电源V BUS的电器特性和电池信息检测元件302采集的电池系统信息,判断两种充电模式中第二充电模式是充电速率最快的,然后将充电状态设置在第二充电模式下。数字核心处理元件301通过输入/输出端口103与电源适配器501进行协议通讯,根据确定的充电模式促使电源适配器501调节输入至充电装置100的电源电压和/或电流。数字核心处理元件301基于确定的充电模式,通过输出驱动元件303驱动电源转换电路101的各开关元件做闭合或断开,以实现充电装置100对电池元件502的充电。可选的,电池信息检测元件302检测到电池元件502电池充满,然后通知数字核心处理元件301。数字核心处理元件301通过输入/输出端口103与电源适配器501进行协议通讯,促使电源适配器501调节输入至充电装置100的电压为5v,然后通过输出驱动元件303驱动电源转换电路101退出所采用的充电模式。由于输入/输出端口103通常为USB端口,其标准电压默认为5v。
基于前述实施例中的描述,充电装置的电路结构可以支持多种不同的充电模式,使得电池能够获得更快速地充电,从而有效提升充电效率。
本申请的说明书、权利要求书以及说明书中的术语“第一”、“第二”、“第三”和“第四”等是用于区别不同对象,而不是用于描述特定顺序。
应理解,在本发明实施例中,相同的元件对应于类似的附图标记。此外,上文对本发明实施例的描述着重于强调各个实施例之间的不同之处,未提到的相同或相似之处可以互相参考,为了简洁,这里不再赘述。
还应理解,在本文中,A与B连接可以表示A与B直接连接,或者A与B间接连接,例如A通过一个或多个元件与B连接,本发明实施例对此不做限定。
此外,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的数字核心处理元件及方法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,所述元件的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个元件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (10)

  1. 一种电源转换电路,其特征在于,包括:第一开关元件、第二开关元件、第三开关元件、第四功开关元件、第五开关元件、第六开关元件、第一储能元件和第二储能元件;其中,
    所述第一开关元件的第一端通过所述电源转换电路的第一外接端与输入电源耦合连接,所述第一开关元件的第二端分别耦合至所述第一储能元件的第一端、所述第二开关元件的第一端和所述第五开关元件的第一端,所述第一储能元件的第二端分别耦合至所述第三开关元件的第一端、所述第四开关元件的第一端和所述第六开关元件的第一端,所述第二开关元件的第二端通过所述电源转换电路的第二外接端与电池耦合连接,所述第五开关元件的第二端分别耦合至所述第二储能元件的第一端和所述第六开关元件的第二端,所述第二储能元件的第二端耦合至所述第二外接端,所述第四开关元件的第二端耦合至所述第二外接端,所述第三开关元件的第二端接地。
  2. 如权利要求1所述的电源转换电路,其特征在于,还包括第七开关元件,所述第七开关元件的第一端分别耦合至所述第一开关元件的第二端、所述第二开关元件的第一端、所述第五开关元件的第一端和所述第一储能元件的第一端,所述第七开关元件的第二端分别耦合至所述第三开关元件的第一端、所述第四开关元件的第一端、所述第六开关元件的第一端和所述第一储能元件的第二端。
  3. 一种充电装置,其特征在于,包括如权利要求1-2中任意一项所述的电源转换电路,以及耦合至所述的电源转换电路的信息采集和信号控制电路和输入/输出端口,所述信息采集和信号控制电路与所述输入/输出端口耦合连接。
  4. 如权利要求3所述的充电装置,其特征在于,所述信息采集和信号控制电路包括:数字核心处理元件、电池信息检测元件、输出驱动元件、信息输入元件、第一电源转换元件和第二电源转换元件;其中,
    所述信息输入元件、所述第一电源转换元件和所述第二电源转换元件分别通过所述信息采集和信号控制电路的第一外接端与所述输入电源耦合连接,所述信息输入元件连接所述数字核心处理元件,所述第一电源转换元件连接所述数字核心处理元件,所述第二电源转换元件连接所述输出驱动元件,所述数字核心处理元件通过所述信息采集和信号控制电路的第二外接端与电源适配器的数据线耦合连接,所述数字核心处理元件与所述电池信息检测元件连接,所述电池信息检测元件通过所述信息采集和信号控制电路的第三外接端与电池耦合连接,所述数字核心处理元件与所述输出驱动元件连接,所述输出驱动元件通过所述信息采集和信号控制电路的第四外接端分别耦合至所述电源转换电路的各开关元件。
  5. 如权利要求3-4中任意一项所述的充电装置,其特征在于,所述输入/输出端口的第一端连接所述电源适配器的输入电源,所述输入/输出端口的第二端分别耦合至所述电源转换电路的所述第一外接端和所述信息采集和信号控制电路的所述第一外接端,所述输入/输出端口的第三端连接所述电源适配器的数据线,所述输入/输出端口的第四端耦合至所述信息采集和信号控制电路的所述第二外接端。
  6. 如权利要求3-5中任意一项所述的充电装置,其特征在于,所述输入/输出端口是USB端口。
  7. 一种充电系统,其特征在于,包括如权利要求3至6中任一项所述的充电装置,以及耦合至所述充电装置的电源适配器和电池元件。
  8. 如权利要求7中所述的充电系统,其特征在于,所述充电装置与所述电池元件被设置在一个设备内,所述设备是终端、基站或电动车。
  9. 一种电源转换电路对电池充电的方法,其特征在于,所述电源转换电路包括:第一开关元件、第二开关元件、第三开关元件、第四功开关元件、第五开关元件、第六开关元件、第一储能元件和第二储能元件;其中,
    所述第一开关元件的第一端通过所述电源转换电路的第一外接端与输入电源耦合连接,所述第一开关元件的第二端分别耦合至所述第一储能元件的第一端、所述第二开关元件的第一端和所述第五开关元件的第一端,所述第一储能元件的第二端分别耦合至所述第三开关元件的第一端、所述第四开关元件的第一端和所述第六开关元件的第一端,所述第二开关元件的第二端通过所述电源转换电路的第二外接端与电池耦合连接,所述第五开关元件的第二端分别耦合至所述第二储能元件的第一端和所述第六开关元件的第二端,所述第二储能元件的第二端耦合至所述第二外接端,所述第四开关元件的第二端耦合至所述第二外接端,所述第三开关元件的第二端接地;
    所述电源转换电路根据下述模式之一实施对电池充电,该方法包括:
    基于第一充电模式,保持断开所述第二开关元件和所述第六开关元件,保持闭合所述第五开关元件,在第一时间段中,所述第一开关元件和所述第四开关元件处于闭合状态、且所述第三开关元件处于断开状态,所述第一储能元件和所述第二储能元件充电,在所述第一时间段之后的第二时间段中,所述第一开关元件和所述第四开关元件处于断开状态、且所述第三开关元件处于闭合状态,所述第一储能元件和所述第二储能元件放电;
    基于第二充电模式,保持断开所述第四开关元件和所述第五开关元件,保持闭合所述第六开关元件,在第一时间段中,所述第一开关元件处于闭合状态、且所述第二开关元件和所述第三开关元件处于断开状态,所述第一储能元件和所述第二储能元件充电,在所述第一时间段之后的第二时间段中,所述第一开关元件处于断开状态、且所述第二开关元件和所述第三开关元件处于闭合状态,所述第一储能元件和所述第二储能元件放电;
    基于第三充电模式,保持断开所述第五开关元件和所述第六开关元件,在第一时间段中,所述第一开关元件和所述第四开关元件处于闭合状态、且所述第二开关元件和所述第三开关元件处于断开状态,所述第一储能元件充电,在所述第一时间段之后的第二时间段中,所述第一开关元件和所述第四开关元件处于断开状态、且所述第二开关元件和所述第三开关元件处于闭合状态,所述第一储能元件放电;
    基于第四充电模式,保持断开所述第四开关元件、所述第五开关元件和所述第六开关元件,保持闭合所述第一开关元件和所述第三开关元件,在第一时间段中,所述第二开关元件处于闭合状态,直接对电池充电,在所述第一时间段之后的第二时间段中,所述第二开关元件处于断开状态,暂停对电池充电。
  10. 如权利要求9中所述的控制方法,其特征在于,所述电源转换电路还包括第七开关元件,所述第七开关元件的第一端分别耦合至所述第一开关元件的第二端、所述第二开关元件的第一端、所述第五开关元件的第一端和所述第一储能元件的第一端,所述第七开关元件的第二端分别耦合至所述第三开关元件的第一端、所述第四开关元件的第一端、所述第六开
PCT/CN2018/090279 2017-06-08 2018-06-07 电源转换电路、充电装置及系统 WO2018224010A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP18813483.7A EP3627650B1 (en) 2017-06-08 2018-06-07 Power supply conversion circuit, charging device, and system
EP22176915.1A EP4131714A3 (en) 2017-06-08 2018-06-07 Power conversion circuit, and charging apparatus and system
US16/706,030 US11404895B2 (en) 2017-06-08 2019-12-06 Power conversion circuit, and charging apparatus and system
US17/860,402 US11811254B2 (en) 2017-06-08 2022-07-08 Power conversion circuit, and charging apparatus and system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710429394.6A CN109038694B (zh) 2017-06-08 2017-06-08 电源转换电路、充电装置及系统
CN201710429394.6 2017-06-08

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/706,030 Continuation US11404895B2 (en) 2017-06-08 2019-12-06 Power conversion circuit, and charging apparatus and system

Publications (2)

Publication Number Publication Date
WO2018224010A1 true WO2018224010A1 (zh) 2018-12-13
WO2018224010A9 WO2018224010A9 (zh) 2019-11-28

Family

ID=64566354

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/090279 WO2018224010A1 (zh) 2017-06-08 2018-06-07 电源转换电路、充电装置及系统

Country Status (4)

Country Link
US (2) US11404895B2 (zh)
EP (2) EP3627650B1 (zh)
CN (1) CN109038694B (zh)
WO (1) WO2018224010A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110611424B (zh) * 2017-02-28 2021-10-26 华为技术有限公司 电压转换器及其控制方法和电压转换系统
CN109038694B (zh) * 2017-06-08 2020-02-21 华为技术有限公司 电源转换电路、充电装置及系统
CN112311101A (zh) * 2019-08-01 2021-02-02 北京小米移动软件有限公司 无线受电设备、无线充电方法及系统
CN114598147A (zh) * 2022-03-03 2022-06-07 珠海澳大科技研究院 降压直流-直流转换器、控制方法及电子设备
CN114498866B (zh) * 2022-04-19 2022-07-29 伏达半导体(合肥)有限公司 双电池充电装置、方法及其控制器

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201369577Y (zh) * 2008-12-18 2009-12-23 成都市华为赛门铁克科技有限公司 一种掉电保护装置及利用其实现的电子设备
CN205945143U (zh) * 2016-08-15 2017-02-08 珠海市魅族科技有限公司 一种充电电路、系统及移动终端
US20170126133A1 (en) * 2015-10-30 2017-05-04 Apple Inc. AC-DC Power Converters with Improved Voltage Output Level Transitions
CN106685219A (zh) * 2017-02-28 2017-05-17 华为技术有限公司 电压转换器及其控制方法和电压转换系统

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6304068B1 (en) * 2000-04-20 2001-10-16 City University Of Hong Kong Bi-directional switched-capacitor based voltage converter
US7782027B2 (en) * 2006-12-30 2010-08-24 Advanced Analogic Technologies, Inc. High-efficiency DC/DC voltage converter including down inductive switching pre-regulator and capacitive switching post-converter
FR2959624A1 (fr) * 2010-04-28 2011-11-04 St Ericsson Sa Circuit de conversion de tension continue
CN104052278B (zh) * 2013-03-15 2018-10-16 马克西姆综合产品公司 多电平增压变换器拓扑、控制和软启动系统及方法
US10903678B2 (en) * 2014-10-21 2021-01-26 Maxwell Technologies, Inc. Apparatus and method for providing bidirectional voltage support
JP6164195B2 (ja) * 2014-11-06 2017-07-19 トヨタ自動車株式会社 電力変換器
US9602057B1 (en) * 2015-09-18 2017-03-21 Samsung Electronics Co., Ltd Apparatus for and method of a supply modulator for a power amplifier
US10177576B2 (en) * 2016-09-20 2019-01-08 Richtek Technology Corporation Charger circuit and capacitive power conversion circuit and reverse blocking switch circuit thereof
US10181744B2 (en) * 2016-09-20 2019-01-15 Richtek Technology Corporation Capacitive power conversion circuit and charging control method thereof
US10797500B2 (en) * 2016-09-20 2020-10-06 Richtek Technology Corporation Charger circuit and capacitive power conversion circuit and charging control method thereof
CN109038694B (zh) * 2017-06-08 2020-02-21 华为技术有限公司 电源转换电路、充电装置及系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201369577Y (zh) * 2008-12-18 2009-12-23 成都市华为赛门铁克科技有限公司 一种掉电保护装置及利用其实现的电子设备
US20170126133A1 (en) * 2015-10-30 2017-05-04 Apple Inc. AC-DC Power Converters with Improved Voltage Output Level Transitions
CN205945143U (zh) * 2016-08-15 2017-02-08 珠海市魅族科技有限公司 一种充电电路、系统及移动终端
CN106685219A (zh) * 2017-02-28 2017-05-17 华为技术有限公司 电压转换器及其控制方法和电压转换系统

Also Published As

Publication number Publication date
EP4131714A3 (en) 2023-04-26
US20230017143A1 (en) 2023-01-19
CN109038694A (zh) 2018-12-18
US20200112177A1 (en) 2020-04-09
CN109038694B (zh) 2020-02-21
EP3627650A4 (en) 2020-05-13
EP3627650B1 (en) 2022-07-27
EP4131714A2 (en) 2023-02-08
US11811254B2 (en) 2023-11-07
US11404895B2 (en) 2022-08-02
EP3627650A1 (en) 2020-03-25
WO2018224010A9 (zh) 2019-11-28

Similar Documents

Publication Publication Date Title
WO2018224010A1 (zh) 电源转换电路、充电装置及系统
CN109149915B (zh) 电源转换电路、充电装置及系统
EP3518377A1 (en) Electronic cigarette, and power supply structure thereof
US11183863B2 (en) Charging apparatus and terminal
WO2023000732A1 (zh) 一种充放电电路和电子设备
CN105162228A (zh) 智能充电器及其充电控制电路
WO2013097381A1 (zh) 一种移动终端及其充电设备、方法
CN103427618B (zh) 一种软启动控制电路
CN102594129B (zh) 一种变频器直流母线电容的充电控制方法及其实现电路
CN103607009A (zh) 一种带自动保护功能的充放电电路
WO2020224467A1 (zh) 一种充电控制电路及电子设备
CN102882246A (zh) 使用可拆卸装置对主装置进行充电的系统和方法
CN105356421A (zh) 一种锂电池组充放电保护电路
CN104167768A (zh) 一种充电装置及充电方法
CN204290475U (zh) 电源切换电路和电子设备
EP3961895A1 (en) Step-down circuit, electronic device, and step-down method
CN105356564B (zh) 无线能量接收系统
CN207625314U (zh) 一种usb与dc兼容的双充电路
CN215817596U (zh) 一种用于为不同电压的单兵用电装备充电的电源管理装置
CN209375184U (zh) 耳机充电盒
CN103855731A (zh) 一种不间断充电电池电源
WO2021035404A1 (zh) 充电系统和方法
WO2023115779A1 (zh) 充电架构、充电控制方法、充电芯片及终端设备
CN213305037U (zh) 一种低待机功耗usb充电电路
JP3097811B2 (ja) スレーブ機器の電源供給回路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18813483

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018813483

Country of ref document: EP

Effective date: 20191218